vmlinux.lds.h: restructure BSS linker script macros
[linux-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
103638d9 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
103638d9 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
a4c2f00f
PZ
76static const struct sched_class fair_sched_class;
77
bf0f6f24
IM
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
b758149c
PZ
82static inline struct task_struct *task_of(struct sched_entity *se)
83{
84 return container_of(se, struct task_struct, se);
85}
86
62160e3f 87#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 88
62160e3f 89/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
62160e3f 92 return cfs_rq->rq;
bf0f6f24
IM
93}
94
62160e3f
IM
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
bf0f6f24 97
b758149c
PZ
98/* Walk up scheduling entities hierarchy */
99#define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103{
104 return p->se.cfs_rq;
105}
106
107/* runqueue on which this entity is (to be) queued */
108static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109{
110 return se->cfs_rq;
111}
112
113/* runqueue "owned" by this group */
114static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115{
116 return grp->my_q;
117}
118
119/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123{
124 return cfs_rq->tg->cfs_rq[this_cpu];
125}
126
127/* Iterate thr' all leaf cfs_rq's on a runqueue */
128#define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131/* Do the two (enqueued) entities belong to the same group ? */
132static inline int
133is_same_group(struct sched_entity *se, struct sched_entity *pse)
134{
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139}
140
141static inline struct sched_entity *parent_entity(struct sched_entity *se)
142{
143 return se->parent;
144}
145
464b7527
PZ
146/* return depth at which a sched entity is present in the hierarchy */
147static inline int depth_se(struct sched_entity *se)
148{
149 int depth = 0;
150
151 for_each_sched_entity(se)
152 depth++;
153
154 return depth;
155}
156
157static void
158find_matching_se(struct sched_entity **se, struct sched_entity **pse)
159{
160 int se_depth, pse_depth;
161
162 /*
163 * preemption test can be made between sibling entities who are in the
164 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
165 * both tasks until we find their ancestors who are siblings of common
166 * parent.
167 */
168
169 /* First walk up until both entities are at same depth */
170 se_depth = depth_se(*se);
171 pse_depth = depth_se(*pse);
172
173 while (se_depth > pse_depth) {
174 se_depth--;
175 *se = parent_entity(*se);
176 }
177
178 while (pse_depth > se_depth) {
179 pse_depth--;
180 *pse = parent_entity(*pse);
181 }
182
183 while (!is_same_group(*se, *pse)) {
184 *se = parent_entity(*se);
185 *pse = parent_entity(*pse);
186 }
187}
188
62160e3f 189#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 190
62160e3f
IM
191static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192{
193 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
194}
195
196#define entity_is_task(se) 1
197
b758149c
PZ
198#define for_each_sched_entity(se) \
199 for (; se; se = NULL)
bf0f6f24 200
b758149c 201static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 202{
b758149c 203 return &task_rq(p)->cfs;
bf0f6f24
IM
204}
205
b758149c
PZ
206static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
207{
208 struct task_struct *p = task_of(se);
209 struct rq *rq = task_rq(p);
210
211 return &rq->cfs;
212}
213
214/* runqueue "owned" by this group */
215static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
216{
217 return NULL;
218}
219
220static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
221{
222 return &cpu_rq(this_cpu)->cfs;
223}
224
225#define for_each_leaf_cfs_rq(rq, cfs_rq) \
226 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
227
228static inline int
229is_same_group(struct sched_entity *se, struct sched_entity *pse)
230{
231 return 1;
232}
233
234static inline struct sched_entity *parent_entity(struct sched_entity *se)
235{
236 return NULL;
237}
238
464b7527
PZ
239static inline void
240find_matching_se(struct sched_entity **se, struct sched_entity **pse)
241{
242}
243
b758149c
PZ
244#endif /* CONFIG_FAIR_GROUP_SCHED */
245
bf0f6f24
IM
246
247/**************************************************************
248 * Scheduling class tree data structure manipulation methods:
249 */
250
0702e3eb 251static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 252{
368059a9
PZ
253 s64 delta = (s64)(vruntime - min_vruntime);
254 if (delta > 0)
02e0431a
PZ
255 min_vruntime = vruntime;
256
257 return min_vruntime;
258}
259
0702e3eb 260static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
261{
262 s64 delta = (s64)(vruntime - min_vruntime);
263 if (delta < 0)
264 min_vruntime = vruntime;
265
266 return min_vruntime;
267}
268
0702e3eb 269static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 270{
30cfdcfc 271 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
272}
273
1af5f730
PZ
274static void update_min_vruntime(struct cfs_rq *cfs_rq)
275{
276 u64 vruntime = cfs_rq->min_vruntime;
277
278 if (cfs_rq->curr)
279 vruntime = cfs_rq->curr->vruntime;
280
281 if (cfs_rq->rb_leftmost) {
282 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
283 struct sched_entity,
284 run_node);
285
e17036da 286 if (!cfs_rq->curr)
1af5f730
PZ
287 vruntime = se->vruntime;
288 else
289 vruntime = min_vruntime(vruntime, se->vruntime);
290 }
291
292 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
293}
294
bf0f6f24
IM
295/*
296 * Enqueue an entity into the rb-tree:
297 */
0702e3eb 298static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
299{
300 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
301 struct rb_node *parent = NULL;
302 struct sched_entity *entry;
9014623c 303 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
304 int leftmost = 1;
305
306 /*
307 * Find the right place in the rbtree:
308 */
309 while (*link) {
310 parent = *link;
311 entry = rb_entry(parent, struct sched_entity, run_node);
312 /*
313 * We dont care about collisions. Nodes with
314 * the same key stay together.
315 */
9014623c 316 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
317 link = &parent->rb_left;
318 } else {
319 link = &parent->rb_right;
320 leftmost = 0;
321 }
322 }
323
324 /*
325 * Maintain a cache of leftmost tree entries (it is frequently
326 * used):
327 */
1af5f730 328 if (leftmost)
57cb499d 329 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
330
331 rb_link_node(&se->run_node, parent, link);
332 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
333}
334
0702e3eb 335static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 336{
3fe69747
PZ
337 if (cfs_rq->rb_leftmost == &se->run_node) {
338 struct rb_node *next_node;
3fe69747
PZ
339
340 next_node = rb_next(&se->run_node);
341 cfs_rq->rb_leftmost = next_node;
3fe69747 342 }
e9acbff6 343
bf0f6f24 344 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
345}
346
bf0f6f24
IM
347static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
348{
f4b6755f
PZ
349 struct rb_node *left = cfs_rq->rb_leftmost;
350
351 if (!left)
352 return NULL;
353
354 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
355}
356
f4b6755f 357static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 358{
7eee3e67 359 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 360
70eee74b
BS
361 if (!last)
362 return NULL;
7eee3e67
IM
363
364 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
365}
366
bf0f6f24
IM
367/**************************************************************
368 * Scheduling class statistics methods:
369 */
370
b2be5e96
PZ
371#ifdef CONFIG_SCHED_DEBUG
372int sched_nr_latency_handler(struct ctl_table *table, int write,
373 struct file *filp, void __user *buffer, size_t *lenp,
374 loff_t *ppos)
375{
376 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
377
378 if (ret || !write)
379 return ret;
380
381 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
382 sysctl_sched_min_granularity);
383
384 return 0;
385}
386#endif
647e7cac 387
a7be37ac 388/*
f9c0b095 389 * delta /= w
a7be37ac
PZ
390 */
391static inline unsigned long
392calc_delta_fair(unsigned long delta, struct sched_entity *se)
393{
f9c0b095
PZ
394 if (unlikely(se->load.weight != NICE_0_LOAD))
395 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
396
397 return delta;
398}
399
647e7cac
IM
400/*
401 * The idea is to set a period in which each task runs once.
402 *
403 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
404 * this period because otherwise the slices get too small.
405 *
406 * p = (nr <= nl) ? l : l*nr/nl
407 */
4d78e7b6
PZ
408static u64 __sched_period(unsigned long nr_running)
409{
410 u64 period = sysctl_sched_latency;
b2be5e96 411 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
412
413 if (unlikely(nr_running > nr_latency)) {
4bf0b771 414 period = sysctl_sched_min_granularity;
4d78e7b6 415 period *= nr_running;
4d78e7b6
PZ
416 }
417
418 return period;
419}
420
647e7cac
IM
421/*
422 * We calculate the wall-time slice from the period by taking a part
423 * proportional to the weight.
424 *
f9c0b095 425 * s = p*P[w/rw]
647e7cac 426 */
6d0f0ebd 427static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 428{
0a582440 429 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 430
0a582440 431 for_each_sched_entity(se) {
6272d68c 432 struct load_weight *load;
3104bf03 433 struct load_weight lw;
6272d68c
LM
434
435 cfs_rq = cfs_rq_of(se);
436 load = &cfs_rq->load;
f9c0b095 437
0a582440 438 if (unlikely(!se->on_rq)) {
3104bf03 439 lw = cfs_rq->load;
0a582440
MG
440
441 update_load_add(&lw, se->load.weight);
442 load = &lw;
443 }
444 slice = calc_delta_mine(slice, se->load.weight, load);
445 }
446 return slice;
bf0f6f24
IM
447}
448
647e7cac 449/*
ac884dec 450 * We calculate the vruntime slice of a to be inserted task
647e7cac 451 *
f9c0b095 452 * vs = s/w
647e7cac 453 */
f9c0b095 454static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 455{
f9c0b095 456 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
457}
458
bf0f6f24
IM
459/*
460 * Update the current task's runtime statistics. Skip current tasks that
461 * are not in our scheduling class.
462 */
463static inline void
8ebc91d9
IM
464__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
465 unsigned long delta_exec)
bf0f6f24 466{
bbdba7c0 467 unsigned long delta_exec_weighted;
bf0f6f24 468
8179ca23 469 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
470
471 curr->sum_exec_runtime += delta_exec;
7a62eabc 472 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 473 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 474 curr->vruntime += delta_exec_weighted;
1af5f730 475 update_min_vruntime(cfs_rq);
bf0f6f24
IM
476}
477
b7cc0896 478static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 479{
429d43bc 480 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 481 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
482 unsigned long delta_exec;
483
484 if (unlikely(!curr))
485 return;
486
487 /*
488 * Get the amount of time the current task was running
489 * since the last time we changed load (this cannot
490 * overflow on 32 bits):
491 */
8ebc91d9 492 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
493 if (!delta_exec)
494 return;
bf0f6f24 495
8ebc91d9
IM
496 __update_curr(cfs_rq, curr, delta_exec);
497 curr->exec_start = now;
d842de87
SV
498
499 if (entity_is_task(curr)) {
500 struct task_struct *curtask = task_of(curr);
501
502 cpuacct_charge(curtask, delta_exec);
f06febc9 503 account_group_exec_runtime(curtask, delta_exec);
d842de87 504 }
bf0f6f24
IM
505}
506
507static inline void
5870db5b 508update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 509{
d281918d 510 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
511}
512
bf0f6f24
IM
513/*
514 * Task is being enqueued - update stats:
515 */
d2417e5a 516static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 517{
bf0f6f24
IM
518 /*
519 * Are we enqueueing a waiting task? (for current tasks
520 * a dequeue/enqueue event is a NOP)
521 */
429d43bc 522 if (se != cfs_rq->curr)
5870db5b 523 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
524}
525
bf0f6f24 526static void
9ef0a961 527update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
bbdba7c0
IM
529 schedstat_set(se->wait_max, max(se->wait_max,
530 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
531 schedstat_set(se->wait_count, se->wait_count + 1);
532 schedstat_set(se->wait_sum, se->wait_sum +
533 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 534 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
535}
536
537static inline void
19b6a2e3 538update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 539{
bf0f6f24
IM
540 /*
541 * Mark the end of the wait period if dequeueing a
542 * waiting task:
543 */
429d43bc 544 if (se != cfs_rq->curr)
9ef0a961 545 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
546}
547
548/*
549 * We are picking a new current task - update its stats:
550 */
551static inline void
79303e9e 552update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
553{
554 /*
555 * We are starting a new run period:
556 */
d281918d 557 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
558}
559
bf0f6f24
IM
560/**************************************************
561 * Scheduling class queueing methods:
562 */
563
c09595f6
PZ
564#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
565static void
566add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
567{
568 cfs_rq->task_weight += weight;
569}
570#else
571static inline void
572add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
573{
574}
575#endif
576
30cfdcfc
DA
577static void
578account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
579{
580 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
581 if (!parent_entity(se))
582 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 583 if (entity_is_task(se)) {
c09595f6 584 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
585 list_add(&se->group_node, &cfs_rq->tasks);
586 }
30cfdcfc
DA
587 cfs_rq->nr_running++;
588 se->on_rq = 1;
589}
590
591static void
592account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
593{
594 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
595 if (!parent_entity(se))
596 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 597 if (entity_is_task(se)) {
c09595f6 598 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
599 list_del_init(&se->group_node);
600 }
30cfdcfc
DA
601 cfs_rq->nr_running--;
602 se->on_rq = 0;
603}
604
2396af69 605static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 606{
bf0f6f24
IM
607#ifdef CONFIG_SCHEDSTATS
608 if (se->sleep_start) {
d281918d 609 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 610 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
611
612 if ((s64)delta < 0)
613 delta = 0;
614
615 if (unlikely(delta > se->sleep_max))
616 se->sleep_max = delta;
617
618 se->sleep_start = 0;
619 se->sum_sleep_runtime += delta;
9745512c
AV
620
621 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
622 }
623 if (se->block_start) {
d281918d 624 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 625 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
626
627 if ((s64)delta < 0)
628 delta = 0;
629
630 if (unlikely(delta > se->block_max))
631 se->block_max = delta;
632
633 se->block_start = 0;
634 se->sum_sleep_runtime += delta;
30084fbd
IM
635
636 /*
637 * Blocking time is in units of nanosecs, so shift by 20 to
638 * get a milliseconds-range estimation of the amount of
639 * time that the task spent sleeping:
640 */
641 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 642
30084fbd
IM
643 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
644 delta >> 20);
645 }
9745512c 646 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
647 }
648#endif
649}
650
ddc97297
PZ
651static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
652{
653#ifdef CONFIG_SCHED_DEBUG
654 s64 d = se->vruntime - cfs_rq->min_vruntime;
655
656 if (d < 0)
657 d = -d;
658
659 if (d > 3*sysctl_sched_latency)
660 schedstat_inc(cfs_rq, nr_spread_over);
661#endif
662}
663
aeb73b04
PZ
664static void
665place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
666{
1af5f730 667 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 668
2cb8600e
PZ
669 /*
670 * The 'current' period is already promised to the current tasks,
671 * however the extra weight of the new task will slow them down a
672 * little, place the new task so that it fits in the slot that
673 * stays open at the end.
674 */
94dfb5e7 675 if (initial && sched_feat(START_DEBIT))
f9c0b095 676 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 677
8465e792 678 if (!initial) {
2cb8600e 679 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
680 if (sched_feat(NEW_FAIR_SLEEPERS)) {
681 unsigned long thresh = sysctl_sched_latency;
682
683 /*
6bc912b7
PZ
684 * Convert the sleeper threshold into virtual time.
685 * SCHED_IDLE is a special sub-class. We care about
686 * fairness only relative to other SCHED_IDLE tasks,
687 * all of which have the same weight.
a7be37ac 688 */
6bc912b7 689 if (sched_feat(NORMALIZED_SLEEPER) &&
d07387b4
PT
690 (!entity_is_task(se) ||
691 task_of(se)->policy != SCHED_IDLE))
a7be37ac
PZ
692 thresh = calc_delta_fair(thresh, se);
693
694 vruntime -= thresh;
695 }
94359f05 696
2cb8600e
PZ
697 /* ensure we never gain time by being placed backwards. */
698 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
699 }
700
67e9fb2a 701 se->vruntime = vruntime;
aeb73b04
PZ
702}
703
bf0f6f24 704static void
83b699ed 705enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
706{
707 /*
a2a2d680 708 * Update run-time statistics of the 'current'.
bf0f6f24 709 */
b7cc0896 710 update_curr(cfs_rq);
a992241d 711 account_entity_enqueue(cfs_rq, se);
bf0f6f24 712
e9acbff6 713 if (wakeup) {
aeb73b04 714 place_entity(cfs_rq, se, 0);
2396af69 715 enqueue_sleeper(cfs_rq, se);
e9acbff6 716 }
bf0f6f24 717
d2417e5a 718 update_stats_enqueue(cfs_rq, se);
ddc97297 719 check_spread(cfs_rq, se);
83b699ed
SV
720 if (se != cfs_rq->curr)
721 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
722}
723
a571bbea 724static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695
PZ
725{
726 if (cfs_rq->last == se)
727 cfs_rq->last = NULL;
728
729 if (cfs_rq->next == se)
730 cfs_rq->next = NULL;
731}
732
a571bbea
PZ
733static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
734{
735 for_each_sched_entity(se)
736 __clear_buddies(cfs_rq_of(se), se);
737}
738
bf0f6f24 739static void
525c2716 740dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 741{
a2a2d680
DA
742 /*
743 * Update run-time statistics of the 'current'.
744 */
745 update_curr(cfs_rq);
746
19b6a2e3 747 update_stats_dequeue(cfs_rq, se);
db36cc7d 748 if (sleep) {
67e9fb2a 749#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
750 if (entity_is_task(se)) {
751 struct task_struct *tsk = task_of(se);
752
753 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 754 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 755 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 756 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 757 }
db36cc7d 758#endif
67e9fb2a
PZ
759 }
760
2002c695 761 clear_buddies(cfs_rq, se);
4793241b 762
83b699ed 763 if (se != cfs_rq->curr)
30cfdcfc
DA
764 __dequeue_entity(cfs_rq, se);
765 account_entity_dequeue(cfs_rq, se);
1af5f730 766 update_min_vruntime(cfs_rq);
bf0f6f24
IM
767}
768
769/*
770 * Preempt the current task with a newly woken task if needed:
771 */
7c92e54f 772static void
2e09bf55 773check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 774{
11697830
PZ
775 unsigned long ideal_runtime, delta_exec;
776
6d0f0ebd 777 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 778 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 779 if (delta_exec > ideal_runtime) {
bf0f6f24 780 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
781 /*
782 * The current task ran long enough, ensure it doesn't get
783 * re-elected due to buddy favours.
784 */
785 clear_buddies(cfs_rq, curr);
786 }
bf0f6f24
IM
787}
788
83b699ed 789static void
8494f412 790set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 791{
83b699ed
SV
792 /* 'current' is not kept within the tree. */
793 if (se->on_rq) {
794 /*
795 * Any task has to be enqueued before it get to execute on
796 * a CPU. So account for the time it spent waiting on the
797 * runqueue.
798 */
799 update_stats_wait_end(cfs_rq, se);
800 __dequeue_entity(cfs_rq, se);
801 }
802
79303e9e 803 update_stats_curr_start(cfs_rq, se);
429d43bc 804 cfs_rq->curr = se;
eba1ed4b
IM
805#ifdef CONFIG_SCHEDSTATS
806 /*
807 * Track our maximum slice length, if the CPU's load is at
808 * least twice that of our own weight (i.e. dont track it
809 * when there are only lesser-weight tasks around):
810 */
495eca49 811 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
812 se->slice_max = max(se->slice_max,
813 se->sum_exec_runtime - se->prev_sum_exec_runtime);
814 }
815#endif
4a55b450 816 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
817}
818
3f3a4904
PZ
819static int
820wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
821
f4b6755f 822static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 823{
f4b6755f
PZ
824 struct sched_entity *se = __pick_next_entity(cfs_rq);
825
4793241b
PZ
826 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
827 return cfs_rq->next;
aa2ac252 828
4793241b
PZ
829 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
830 return cfs_rq->last;
831
832 return se;
aa2ac252
PZ
833}
834
ab6cde26 835static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
836{
837 /*
838 * If still on the runqueue then deactivate_task()
839 * was not called and update_curr() has to be done:
840 */
841 if (prev->on_rq)
b7cc0896 842 update_curr(cfs_rq);
bf0f6f24 843
ddc97297 844 check_spread(cfs_rq, prev);
30cfdcfc 845 if (prev->on_rq) {
5870db5b 846 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
847 /* Put 'current' back into the tree. */
848 __enqueue_entity(cfs_rq, prev);
849 }
429d43bc 850 cfs_rq->curr = NULL;
bf0f6f24
IM
851}
852
8f4d37ec
PZ
853static void
854entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 855{
bf0f6f24 856 /*
30cfdcfc 857 * Update run-time statistics of the 'current'.
bf0f6f24 858 */
30cfdcfc 859 update_curr(cfs_rq);
bf0f6f24 860
8f4d37ec
PZ
861#ifdef CONFIG_SCHED_HRTICK
862 /*
863 * queued ticks are scheduled to match the slice, so don't bother
864 * validating it and just reschedule.
865 */
983ed7a6
HH
866 if (queued) {
867 resched_task(rq_of(cfs_rq)->curr);
868 return;
869 }
8f4d37ec
PZ
870 /*
871 * don't let the period tick interfere with the hrtick preemption
872 */
873 if (!sched_feat(DOUBLE_TICK) &&
874 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
875 return;
876#endif
877
ce6c1311 878 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 879 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
880}
881
882/**************************************************
883 * CFS operations on tasks:
884 */
885
8f4d37ec
PZ
886#ifdef CONFIG_SCHED_HRTICK
887static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
888{
8f4d37ec
PZ
889 struct sched_entity *se = &p->se;
890 struct cfs_rq *cfs_rq = cfs_rq_of(se);
891
892 WARN_ON(task_rq(p) != rq);
893
894 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
895 u64 slice = sched_slice(cfs_rq, se);
896 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
897 s64 delta = slice - ran;
898
899 if (delta < 0) {
900 if (rq->curr == p)
901 resched_task(p);
902 return;
903 }
904
905 /*
906 * Don't schedule slices shorter than 10000ns, that just
907 * doesn't make sense. Rely on vruntime for fairness.
908 */
31656519 909 if (rq->curr != p)
157124c1 910 delta = max_t(s64, 10000LL, delta);
8f4d37ec 911
31656519 912 hrtick_start(rq, delta);
8f4d37ec
PZ
913 }
914}
a4c2f00f
PZ
915
916/*
917 * called from enqueue/dequeue and updates the hrtick when the
918 * current task is from our class and nr_running is low enough
919 * to matter.
920 */
921static void hrtick_update(struct rq *rq)
922{
923 struct task_struct *curr = rq->curr;
924
925 if (curr->sched_class != &fair_sched_class)
926 return;
927
928 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
929 hrtick_start_fair(rq, curr);
930}
55e12e5e 931#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
932static inline void
933hrtick_start_fair(struct rq *rq, struct task_struct *p)
934{
935}
a4c2f00f
PZ
936
937static inline void hrtick_update(struct rq *rq)
938{
939}
8f4d37ec
PZ
940#endif
941
bf0f6f24
IM
942/*
943 * The enqueue_task method is called before nr_running is
944 * increased. Here we update the fair scheduling stats and
945 * then put the task into the rbtree:
946 */
fd390f6a 947static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
948{
949 struct cfs_rq *cfs_rq;
62fb1851 950 struct sched_entity *se = &p->se;
bf0f6f24
IM
951
952 for_each_sched_entity(se) {
62fb1851 953 if (se->on_rq)
bf0f6f24
IM
954 break;
955 cfs_rq = cfs_rq_of(se);
83b699ed 956 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 957 wakeup = 1;
bf0f6f24 958 }
8f4d37ec 959
a4c2f00f 960 hrtick_update(rq);
bf0f6f24
IM
961}
962
963/*
964 * The dequeue_task method is called before nr_running is
965 * decreased. We remove the task from the rbtree and
966 * update the fair scheduling stats:
967 */
f02231e5 968static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
969{
970 struct cfs_rq *cfs_rq;
62fb1851 971 struct sched_entity *se = &p->se;
bf0f6f24
IM
972
973 for_each_sched_entity(se) {
974 cfs_rq = cfs_rq_of(se);
525c2716 975 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 976 /* Don't dequeue parent if it has other entities besides us */
62fb1851 977 if (cfs_rq->load.weight)
bf0f6f24 978 break;
b9fa3df3 979 sleep = 1;
bf0f6f24 980 }
8f4d37ec 981
a4c2f00f 982 hrtick_update(rq);
bf0f6f24
IM
983}
984
985/*
1799e35d
IM
986 * sched_yield() support is very simple - we dequeue and enqueue.
987 *
988 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 989 */
4530d7ab 990static void yield_task_fair(struct rq *rq)
bf0f6f24 991{
db292ca3
IM
992 struct task_struct *curr = rq->curr;
993 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
994 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
995
996 /*
1799e35d
IM
997 * Are we the only task in the tree?
998 */
999 if (unlikely(cfs_rq->nr_running == 1))
1000 return;
1001
2002c695
PZ
1002 clear_buddies(cfs_rq, se);
1003
db292ca3 1004 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1005 update_rq_clock(rq);
1799e35d 1006 /*
a2a2d680 1007 * Update run-time statistics of the 'current'.
1799e35d 1008 */
2b1e315d 1009 update_curr(cfs_rq);
1799e35d
IM
1010
1011 return;
1012 }
1013 /*
1014 * Find the rightmost entry in the rbtree:
bf0f6f24 1015 */
2b1e315d 1016 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1017 /*
1018 * Already in the rightmost position?
1019 */
79b3feff 1020 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1799e35d
IM
1021 return;
1022
1023 /*
1024 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1025 * Upon rescheduling, sched_class::put_prev_task() will place
1026 * 'current' within the tree based on its new key value.
1799e35d 1027 */
30cfdcfc 1028 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1029}
1030
e7693a36
GH
1031/*
1032 * wake_idle() will wake a task on an idle cpu if task->cpu is
1033 * not idle and an idle cpu is available. The span of cpus to
1034 * search starts with cpus closest then further out as needed,
1035 * so we always favor a closer, idle cpu.
e761b772 1036 * Domains may include CPUs that are not usable for migration,
96f874e2 1037 * hence we need to mask them out (cpu_active_mask)
e7693a36
GH
1038 *
1039 * Returns the CPU we should wake onto.
1040 */
1041#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1042static int wake_idle(int cpu, struct task_struct *p)
1043{
e7693a36
GH
1044 struct sched_domain *sd;
1045 int i;
7eb52dfa
VS
1046 unsigned int chosen_wakeup_cpu;
1047 int this_cpu;
1048
1049 /*
1050 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1051 * are idle and this is not a kernel thread and this task's affinity
1052 * allows it to be moved to preferred cpu, then just move!
1053 */
1054
1055 this_cpu = smp_processor_id();
1056 chosen_wakeup_cpu =
1057 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1058
1059 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1060 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1061 p->mm && !(p->flags & PF_KTHREAD) &&
1062 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1063 return chosen_wakeup_cpu;
e7693a36
GH
1064
1065 /*
1066 * If it is idle, then it is the best cpu to run this task.
1067 *
1068 * This cpu is also the best, if it has more than one task already.
1069 * Siblings must be also busy(in most cases) as they didn't already
1070 * pickup the extra load from this cpu and hence we need not check
1071 * sibling runqueue info. This will avoid the checks and cache miss
1072 * penalities associated with that.
1073 */
104f6454 1074 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
1075 return cpu;
1076
1077 for_each_domain(cpu, sd) {
1d3504fc
HS
1078 if ((sd->flags & SD_WAKE_IDLE)
1079 || ((sd->flags & SD_WAKE_IDLE_FAR)
1080 && !task_hot(p, task_rq(p)->clock, sd))) {
758b2cdc
RR
1081 for_each_cpu_and(i, sched_domain_span(sd),
1082 &p->cpus_allowed) {
1083 if (cpu_active(i) && idle_cpu(i)) {
e7693a36
GH
1084 if (i != task_cpu(p)) {
1085 schedstat_inc(p,
1086 se.nr_wakeups_idle);
1087 }
1088 return i;
1089 }
1090 }
1091 } else {
1092 break;
1093 }
1094 }
1095 return cpu;
1096}
55e12e5e 1097#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
e7693a36
GH
1098static inline int wake_idle(int cpu, struct task_struct *p)
1099{
1100 return cpu;
1101}
1102#endif
1103
1104#ifdef CONFIG_SMP
098fb9db 1105
bb3469ac 1106#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1107/*
1108 * effective_load() calculates the load change as seen from the root_task_group
1109 *
1110 * Adding load to a group doesn't make a group heavier, but can cause movement
1111 * of group shares between cpus. Assuming the shares were perfectly aligned one
1112 * can calculate the shift in shares.
1113 *
1114 * The problem is that perfectly aligning the shares is rather expensive, hence
1115 * we try to avoid doing that too often - see update_shares(), which ratelimits
1116 * this change.
1117 *
1118 * We compensate this by not only taking the current delta into account, but
1119 * also considering the delta between when the shares were last adjusted and
1120 * now.
1121 *
1122 * We still saw a performance dip, some tracing learned us that between
1123 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1124 * significantly. Therefore try to bias the error in direction of failing
1125 * the affine wakeup.
1126 *
1127 */
f1d239f7
PZ
1128static long effective_load(struct task_group *tg, int cpu,
1129 long wl, long wg)
bb3469ac 1130{
4be9daaa 1131 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1132
1133 if (!tg->parent)
1134 return wl;
1135
f5bfb7d9
PZ
1136 /*
1137 * By not taking the decrease of shares on the other cpu into
1138 * account our error leans towards reducing the affine wakeups.
1139 */
1140 if (!wl && sched_feat(ASYM_EFF_LOAD))
1141 return wl;
1142
4be9daaa 1143 for_each_sched_entity(se) {
cb5ef42a 1144 long S, rw, s, a, b;
940959e9
PZ
1145 long more_w;
1146
1147 /*
1148 * Instead of using this increment, also add the difference
1149 * between when the shares were last updated and now.
1150 */
1151 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1152 wl += more_w;
1153 wg += more_w;
4be9daaa
PZ
1154
1155 S = se->my_q->tg->shares;
1156 s = se->my_q->shares;
f1d239f7 1157 rw = se->my_q->rq_weight;
bb3469ac 1158
cb5ef42a
PZ
1159 a = S*(rw + wl);
1160 b = S*rw + s*wg;
4be9daaa 1161
940959e9
PZ
1162 wl = s*(a-b);
1163
1164 if (likely(b))
1165 wl /= b;
1166
83378269
PZ
1167 /*
1168 * Assume the group is already running and will
1169 * thus already be accounted for in the weight.
1170 *
1171 * That is, moving shares between CPUs, does not
1172 * alter the group weight.
1173 */
4be9daaa 1174 wg = 0;
4be9daaa 1175 }
bb3469ac 1176
4be9daaa 1177 return wl;
bb3469ac 1178}
4be9daaa 1179
bb3469ac 1180#else
4be9daaa 1181
83378269
PZ
1182static inline unsigned long effective_load(struct task_group *tg, int cpu,
1183 unsigned long wl, unsigned long wg)
4be9daaa 1184{
83378269 1185 return wl;
bb3469ac 1186}
4be9daaa 1187
bb3469ac
PZ
1188#endif
1189
098fb9db 1190static int
64b9e029 1191wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
4ae7d5ce
IM
1192 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1193 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1194 unsigned int imbalance)
1195{
fc631c82
PZ
1196 struct task_struct *curr = this_rq->curr;
1197 struct task_group *tg;
098fb9db
IM
1198 unsigned long tl = this_load;
1199 unsigned long tl_per_task;
83378269 1200 unsigned long weight;
b3137bc8 1201 int balanced;
098fb9db 1202
b3137bc8 1203 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1204 return 0;
1205
fc631c82
PZ
1206 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1207 p->se.avg_overlap > sysctl_sched_migration_cost))
1208 sync = 0;
1209
b3137bc8
MG
1210 /*
1211 * If sync wakeup then subtract the (maximum possible)
1212 * effect of the currently running task from the load
1213 * of the current CPU:
1214 */
83378269
PZ
1215 if (sync) {
1216 tg = task_group(current);
1217 weight = current->se.load.weight;
1218
1219 tl += effective_load(tg, this_cpu, -weight, -weight);
1220 load += effective_load(tg, prev_cpu, 0, -weight);
1221 }
b3137bc8 1222
83378269
PZ
1223 tg = task_group(p);
1224 weight = p->se.load.weight;
b3137bc8 1225
83378269
PZ
1226 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1227 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1228
098fb9db 1229 /*
4ae7d5ce
IM
1230 * If the currently running task will sleep within
1231 * a reasonable amount of time then attract this newly
1232 * woken task:
098fb9db 1233 */
2fb7635c
PZ
1234 if (sync && balanced)
1235 return 1;
098fb9db
IM
1236
1237 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1238 tl_per_task = cpu_avg_load_per_task(this_cpu);
1239
64b9e029
AA
1240 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1241 tl_per_task)) {
098fb9db
IM
1242 /*
1243 * This domain has SD_WAKE_AFFINE and
1244 * p is cache cold in this domain, and
1245 * there is no bad imbalance.
1246 */
1247 schedstat_inc(this_sd, ttwu_move_affine);
1248 schedstat_inc(p, se.nr_wakeups_affine);
1249
1250 return 1;
1251 }
1252 return 0;
1253}
1254
e7693a36
GH
1255static int select_task_rq_fair(struct task_struct *p, int sync)
1256{
e7693a36 1257 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1258 int prev_cpu, this_cpu, new_cpu;
098fb9db 1259 unsigned long load, this_load;
64b9e029 1260 struct rq *this_rq;
098fb9db 1261 unsigned int imbalance;
098fb9db 1262 int idx;
e7693a36 1263
ac192d39 1264 prev_cpu = task_cpu(p);
ac192d39 1265 this_cpu = smp_processor_id();
4ae7d5ce 1266 this_rq = cpu_rq(this_cpu);
ac192d39 1267 new_cpu = prev_cpu;
e7693a36 1268
64b9e029
AA
1269 if (prev_cpu == this_cpu)
1270 goto out;
ac192d39
IM
1271 /*
1272 * 'this_sd' is the first domain that both
1273 * this_cpu and prev_cpu are present in:
1274 */
e7693a36 1275 for_each_domain(this_cpu, sd) {
758b2cdc 1276 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
e7693a36
GH
1277 this_sd = sd;
1278 break;
1279 }
1280 }
1281
96f874e2 1282 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
f4827386 1283 goto out;
e7693a36
GH
1284
1285 /*
1286 * Check for affine wakeup and passive balancing possibilities.
1287 */
098fb9db 1288 if (!this_sd)
f4827386 1289 goto out;
e7693a36 1290
098fb9db
IM
1291 idx = this_sd->wake_idx;
1292
1293 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1294
ac192d39 1295 load = source_load(prev_cpu, idx);
098fb9db
IM
1296 this_load = target_load(this_cpu, idx);
1297
64b9e029 1298 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
4ae7d5ce
IM
1299 load, this_load, imbalance))
1300 return this_cpu;
1301
098fb9db
IM
1302 /*
1303 * Start passive balancing when half the imbalance_pct
1304 * limit is reached.
1305 */
1306 if (this_sd->flags & SD_WAKE_BALANCE) {
1307 if (imbalance*this_load <= 100*load) {
1308 schedstat_inc(this_sd, ttwu_move_balance);
1309 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1310 return this_cpu;
e7693a36
GH
1311 }
1312 }
1313
f4827386 1314out:
e7693a36
GH
1315 return wake_idle(new_cpu, p);
1316}
1317#endif /* CONFIG_SMP */
1318
e52fb7c0
PZ
1319/*
1320 * Adaptive granularity
1321 *
1322 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1323 * with the limit of wakeup_gran -- when it never does a wakeup.
1324 *
1325 * So the smaller avg_wakeup is the faster we want this task to preempt,
1326 * but we don't want to treat the preemptee unfairly and therefore allow it
1327 * to run for at least the amount of time we'd like to run.
1328 *
1329 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1330 *
1331 * NOTE: we use *nr_running to scale with load, this nicely matches the
1332 * degrading latency on load.
1333 */
1334static unsigned long
1335adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1336{
1337 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1338 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1339 u64 gran = 0;
1340
1341 if (this_run < expected_wakeup)
1342 gran = expected_wakeup - this_run;
1343
1344 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1345}
1346
1347static unsigned long
1348wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1349{
1350 unsigned long gran = sysctl_sched_wakeup_granularity;
1351
e52fb7c0
PZ
1352 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1353 gran = adaptive_gran(curr, se);
1354
0bbd3336 1355 /*
e52fb7c0
PZ
1356 * Since its curr running now, convert the gran from real-time
1357 * to virtual-time in his units.
0bbd3336 1358 */
e52fb7c0
PZ
1359 if (sched_feat(ASYM_GRAN)) {
1360 /*
1361 * By using 'se' instead of 'curr' we penalize light tasks, so
1362 * they get preempted easier. That is, if 'se' < 'curr' then
1363 * the resulting gran will be larger, therefore penalizing the
1364 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1365 * be smaller, again penalizing the lighter task.
1366 *
1367 * This is especially important for buddies when the leftmost
1368 * task is higher priority than the buddy.
1369 */
1370 if (unlikely(se->load.weight != NICE_0_LOAD))
1371 gran = calc_delta_fair(gran, se);
1372 } else {
1373 if (unlikely(curr->load.weight != NICE_0_LOAD))
1374 gran = calc_delta_fair(gran, curr);
1375 }
0bbd3336
PZ
1376
1377 return gran;
1378}
1379
464b7527
PZ
1380/*
1381 * Should 'se' preempt 'curr'.
1382 *
1383 * |s1
1384 * |s2
1385 * |s3
1386 * g
1387 * |<--->|c
1388 *
1389 * w(c, s1) = -1
1390 * w(c, s2) = 0
1391 * w(c, s3) = 1
1392 *
1393 */
1394static int
1395wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1396{
1397 s64 gran, vdiff = curr->vruntime - se->vruntime;
1398
1399 if (vdiff <= 0)
1400 return -1;
1401
e52fb7c0 1402 gran = wakeup_gran(curr, se);
464b7527
PZ
1403 if (vdiff > gran)
1404 return 1;
1405
1406 return 0;
1407}
1408
02479099
PZ
1409static void set_last_buddy(struct sched_entity *se)
1410{
6bc912b7
PZ
1411 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1412 for_each_sched_entity(se)
1413 cfs_rq_of(se)->last = se;
1414 }
02479099
PZ
1415}
1416
1417static void set_next_buddy(struct sched_entity *se)
1418{
6bc912b7
PZ
1419 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1420 for_each_sched_entity(se)
1421 cfs_rq_of(se)->next = se;
1422 }
02479099
PZ
1423}
1424
bf0f6f24
IM
1425/*
1426 * Preempt the current task with a newly woken task if needed:
1427 */
15afe09b 1428static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
bf0f6f24
IM
1429{
1430 struct task_struct *curr = rq->curr;
8651a86c 1431 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1432 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
bf0f6f24 1433
03e89e45 1434 update_curr(cfs_rq);
4793241b 1435
03e89e45 1436 if (unlikely(rt_prio(p->prio))) {
bf0f6f24
IM
1437 resched_task(curr);
1438 return;
1439 }
aa2ac252 1440
d95f98d0
PZ
1441 if (unlikely(p->sched_class != &fair_sched_class))
1442 return;
1443
4ae7d5ce
IM
1444 if (unlikely(se == pse))
1445 return;
1446
4793241b
PZ
1447 /*
1448 * Only set the backward buddy when the current task is still on the
1449 * rq. This can happen when a wakeup gets interleaved with schedule on
1450 * the ->pre_schedule() or idle_balance() point, either of which can
1451 * drop the rq lock.
1452 *
1453 * Also, during early boot the idle thread is in the fair class, for
1454 * obvious reasons its a bad idea to schedule back to the idle thread.
1455 */
1456 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
02479099
PZ
1457 set_last_buddy(se);
1458 set_next_buddy(pse);
57fdc26d 1459
aec0a514
BR
1460 /*
1461 * We can come here with TIF_NEED_RESCHED already set from new task
1462 * wake up path.
1463 */
1464 if (test_tsk_need_resched(curr))
1465 return;
1466
91c234b4 1467 /*
6bc912b7 1468 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1469 * the tick):
1470 */
6bc912b7 1471 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1472 return;
bf0f6f24 1473
6bc912b7
PZ
1474 /* Idle tasks are by definition preempted by everybody. */
1475 if (unlikely(curr->policy == SCHED_IDLE)) {
1476 resched_task(curr);
91c234b4 1477 return;
6bc912b7 1478 }
bf0f6f24 1479
77d9cc44
IM
1480 if (!sched_feat(WAKEUP_PREEMPT))
1481 return;
8651a86c 1482
fc631c82
PZ
1483 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1484 (se->avg_overlap < sysctl_sched_migration_cost &&
1485 pse->avg_overlap < sysctl_sched_migration_cost))) {
15afe09b
PZ
1486 resched_task(curr);
1487 return;
1488 }
1489
464b7527
PZ
1490 find_matching_se(&se, &pse);
1491
002f128b 1492 BUG_ON(!pse);
464b7527 1493
002f128b
PT
1494 if (wakeup_preempt_entity(se, pse) == 1)
1495 resched_task(curr);
bf0f6f24
IM
1496}
1497
fb8d4724 1498static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1499{
8f4d37ec 1500 struct task_struct *p;
bf0f6f24
IM
1501 struct cfs_rq *cfs_rq = &rq->cfs;
1502 struct sched_entity *se;
1503
1504 if (unlikely(!cfs_rq->nr_running))
1505 return NULL;
1506
1507 do {
9948f4b2 1508 se = pick_next_entity(cfs_rq);
a9f3e2b5
MG
1509 /*
1510 * If se was a buddy, clear it so that it will have to earn
1511 * the favour again.
1512 */
a571bbea 1513 __clear_buddies(cfs_rq, se);
f4b6755f 1514 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1515 cfs_rq = group_cfs_rq(se);
1516 } while (cfs_rq);
1517
8f4d37ec
PZ
1518 p = task_of(se);
1519 hrtick_start_fair(rq, p);
1520
1521 return p;
bf0f6f24
IM
1522}
1523
1524/*
1525 * Account for a descheduled task:
1526 */
31ee529c 1527static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1528{
1529 struct sched_entity *se = &prev->se;
1530 struct cfs_rq *cfs_rq;
1531
1532 for_each_sched_entity(se) {
1533 cfs_rq = cfs_rq_of(se);
ab6cde26 1534 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1535 }
1536}
1537
681f3e68 1538#ifdef CONFIG_SMP
bf0f6f24
IM
1539/**************************************************
1540 * Fair scheduling class load-balancing methods:
1541 */
1542
1543/*
1544 * Load-balancing iterator. Note: while the runqueue stays locked
1545 * during the whole iteration, the current task might be
1546 * dequeued so the iterator has to be dequeue-safe. Here we
1547 * achieve that by always pre-iterating before returning
1548 * the current task:
1549 */
a9957449 1550static struct task_struct *
4a55bd5e 1551__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1552{
354d60c2
DG
1553 struct task_struct *p = NULL;
1554 struct sched_entity *se;
bf0f6f24 1555
77ae6513
MG
1556 if (next == &cfs_rq->tasks)
1557 return NULL;
1558
b87f1724
BR
1559 se = list_entry(next, struct sched_entity, group_node);
1560 p = task_of(se);
1561 cfs_rq->balance_iterator = next->next;
77ae6513 1562
bf0f6f24
IM
1563 return p;
1564}
1565
1566static struct task_struct *load_balance_start_fair(void *arg)
1567{
1568 struct cfs_rq *cfs_rq = arg;
1569
4a55bd5e 1570 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1571}
1572
1573static struct task_struct *load_balance_next_fair(void *arg)
1574{
1575 struct cfs_rq *cfs_rq = arg;
1576
4a55bd5e 1577 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1578}
1579
c09595f6
PZ
1580static unsigned long
1581__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1582 unsigned long max_load_move, struct sched_domain *sd,
1583 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1584 struct cfs_rq *cfs_rq)
62fb1851 1585{
c09595f6 1586 struct rq_iterator cfs_rq_iterator;
62fb1851 1587
c09595f6
PZ
1588 cfs_rq_iterator.start = load_balance_start_fair;
1589 cfs_rq_iterator.next = load_balance_next_fair;
1590 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1591
c09595f6
PZ
1592 return balance_tasks(this_rq, this_cpu, busiest,
1593 max_load_move, sd, idle, all_pinned,
1594 this_best_prio, &cfs_rq_iterator);
62fb1851 1595}
62fb1851 1596
c09595f6 1597#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1598static unsigned long
bf0f6f24 1599load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1600 unsigned long max_load_move,
a4ac01c3
PW
1601 struct sched_domain *sd, enum cpu_idle_type idle,
1602 int *all_pinned, int *this_best_prio)
bf0f6f24 1603{
bf0f6f24 1604 long rem_load_move = max_load_move;
c09595f6
PZ
1605 int busiest_cpu = cpu_of(busiest);
1606 struct task_group *tg;
18d95a28 1607
c09595f6 1608 rcu_read_lock();
c8cba857 1609 update_h_load(busiest_cpu);
18d95a28 1610
caea8a03 1611 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1612 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1613 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1614 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1615 u64 rem_load, moved_load;
18d95a28 1616
c09595f6
PZ
1617 /*
1618 * empty group
1619 */
c8cba857 1620 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1621 continue;
1622
243e0e7b
SV
1623 rem_load = (u64)rem_load_move * busiest_weight;
1624 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1625
c09595f6 1626 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1627 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1628 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1629
c09595f6 1630 if (!moved_load)
bf0f6f24
IM
1631 continue;
1632
42a3ac7d 1633 moved_load *= busiest_h_load;
243e0e7b 1634 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1635
c09595f6
PZ
1636 rem_load_move -= moved_load;
1637 if (rem_load_move < 0)
bf0f6f24
IM
1638 break;
1639 }
c09595f6 1640 rcu_read_unlock();
bf0f6f24 1641
43010659 1642 return max_load_move - rem_load_move;
bf0f6f24 1643}
c09595f6
PZ
1644#else
1645static unsigned long
1646load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1647 unsigned long max_load_move,
1648 struct sched_domain *sd, enum cpu_idle_type idle,
1649 int *all_pinned, int *this_best_prio)
1650{
1651 return __load_balance_fair(this_rq, this_cpu, busiest,
1652 max_load_move, sd, idle, all_pinned,
1653 this_best_prio, &busiest->cfs);
1654}
1655#endif
bf0f6f24 1656
e1d1484f
PW
1657static int
1658move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1659 struct sched_domain *sd, enum cpu_idle_type idle)
1660{
1661 struct cfs_rq *busy_cfs_rq;
1662 struct rq_iterator cfs_rq_iterator;
1663
1664 cfs_rq_iterator.start = load_balance_start_fair;
1665 cfs_rq_iterator.next = load_balance_next_fair;
1666
1667 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1668 /*
1669 * pass busy_cfs_rq argument into
1670 * load_balance_[start|next]_fair iterators
1671 */
1672 cfs_rq_iterator.arg = busy_cfs_rq;
1673 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1674 &cfs_rq_iterator))
1675 return 1;
1676 }
1677
1678 return 0;
1679}
55e12e5e 1680#endif /* CONFIG_SMP */
e1d1484f 1681
bf0f6f24
IM
1682/*
1683 * scheduler tick hitting a task of our scheduling class:
1684 */
8f4d37ec 1685static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1686{
1687 struct cfs_rq *cfs_rq;
1688 struct sched_entity *se = &curr->se;
1689
1690 for_each_sched_entity(se) {
1691 cfs_rq = cfs_rq_of(se);
8f4d37ec 1692 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1693 }
1694}
1695
1696/*
1697 * Share the fairness runtime between parent and child, thus the
1698 * total amount of pressure for CPU stays equal - new tasks
1699 * get a chance to run but frequent forkers are not allowed to
1700 * monopolize the CPU. Note: the parent runqueue is locked,
1701 * the child is not running yet.
1702 */
ee0827d8 1703static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1704{
1705 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1706 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1707 int this_cpu = smp_processor_id();
bf0f6f24
IM
1708
1709 sched_info_queued(p);
1710
7109c442 1711 update_curr(cfs_rq);
aeb73b04 1712 place_entity(cfs_rq, se, 1);
4d78e7b6 1713
3c90e6e9 1714 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1715 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1716 curr && curr->vruntime < se->vruntime) {
87fefa38 1717 /*
edcb60a3
IM
1718 * Upon rescheduling, sched_class::put_prev_task() will place
1719 * 'current' within the tree based on its new key value.
1720 */
4d78e7b6 1721 swap(curr->vruntime, se->vruntime);
aec0a514 1722 resched_task(rq->curr);
4d78e7b6 1723 }
bf0f6f24 1724
b9dca1e0 1725 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1726}
1727
cb469845
SR
1728/*
1729 * Priority of the task has changed. Check to see if we preempt
1730 * the current task.
1731 */
1732static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1733 int oldprio, int running)
1734{
1735 /*
1736 * Reschedule if we are currently running on this runqueue and
1737 * our priority decreased, or if we are not currently running on
1738 * this runqueue and our priority is higher than the current's
1739 */
1740 if (running) {
1741 if (p->prio > oldprio)
1742 resched_task(rq->curr);
1743 } else
15afe09b 1744 check_preempt_curr(rq, p, 0);
cb469845
SR
1745}
1746
1747/*
1748 * We switched to the sched_fair class.
1749 */
1750static void switched_to_fair(struct rq *rq, struct task_struct *p,
1751 int running)
1752{
1753 /*
1754 * We were most likely switched from sched_rt, so
1755 * kick off the schedule if running, otherwise just see
1756 * if we can still preempt the current task.
1757 */
1758 if (running)
1759 resched_task(rq->curr);
1760 else
15afe09b 1761 check_preempt_curr(rq, p, 0);
cb469845
SR
1762}
1763
83b699ed
SV
1764/* Account for a task changing its policy or group.
1765 *
1766 * This routine is mostly called to set cfs_rq->curr field when a task
1767 * migrates between groups/classes.
1768 */
1769static void set_curr_task_fair(struct rq *rq)
1770{
1771 struct sched_entity *se = &rq->curr->se;
1772
1773 for_each_sched_entity(se)
1774 set_next_entity(cfs_rq_of(se), se);
1775}
1776
810b3817
PZ
1777#ifdef CONFIG_FAIR_GROUP_SCHED
1778static void moved_group_fair(struct task_struct *p)
1779{
1780 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1781
1782 update_curr(cfs_rq);
1783 place_entity(cfs_rq, &p->se, 1);
1784}
1785#endif
1786
bf0f6f24
IM
1787/*
1788 * All the scheduling class methods:
1789 */
5522d5d5
IM
1790static const struct sched_class fair_sched_class = {
1791 .next = &idle_sched_class,
bf0f6f24
IM
1792 .enqueue_task = enqueue_task_fair,
1793 .dequeue_task = dequeue_task_fair,
1794 .yield_task = yield_task_fair,
1795
2e09bf55 1796 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1797
1798 .pick_next_task = pick_next_task_fair,
1799 .put_prev_task = put_prev_task_fair,
1800
681f3e68 1801#ifdef CONFIG_SMP
4ce72a2c
LZ
1802 .select_task_rq = select_task_rq_fair,
1803
bf0f6f24 1804 .load_balance = load_balance_fair,
e1d1484f 1805 .move_one_task = move_one_task_fair,
681f3e68 1806#endif
bf0f6f24 1807
83b699ed 1808 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1809 .task_tick = task_tick_fair,
1810 .task_new = task_new_fair,
cb469845
SR
1811
1812 .prio_changed = prio_changed_fair,
1813 .switched_to = switched_to_fair,
810b3817
PZ
1814
1815#ifdef CONFIG_FAIR_GROUP_SCHED
1816 .moved_group = moved_group_fair,
1817#endif
bf0f6f24
IM
1818};
1819
1820#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1821static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1822{
bf0f6f24
IM
1823 struct cfs_rq *cfs_rq;
1824
5973e5b9 1825 rcu_read_lock();
c3b64f1e 1826 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1827 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1828 rcu_read_unlock();
bf0f6f24
IM
1829}
1830#endif