sched: fix, always create kernel threads with normal priority
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
23/*
21805085 24 * Targeted preemption latency for CPU-bound tasks:
722aab0c 25 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 26 *
21805085 27 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
28 * 'timeslice length' - timeslices in CFS are of variable length
29 * and have no persistent notion like in traditional, time-slice
30 * based scheduling concepts.
bf0f6f24 31 *
d274a4ce
IM
32 * (to see the precise effective timeslice length of your workload,
33 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 34 */
19978ca6 35unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
36
37/*
b2be5e96 38 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 39 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 40 */
722aab0c 41unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
42
43/*
b2be5e96
PZ
44 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
45 */
722aab0c 46static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
47
48/*
49 * After fork, child runs first. (default) If set to 0 then
50 * parent will (try to) run first.
21805085 51 */
b2be5e96 52const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 53
1799e35d
IM
54/*
55 * sys_sched_yield() compat mode
56 *
57 * This option switches the agressive yield implementation of the
58 * old scheduler back on.
59 */
60unsigned int __read_mostly sysctl_sched_compat_yield;
61
bf0f6f24
IM
62/*
63 * SCHED_BATCH wake-up granularity.
722aab0c 64 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
65 *
66 * This option delays the preemption effects of decoupled workloads
67 * and reduces their over-scheduling. Synchronous workloads will still
68 * have immediate wakeup/sleep latencies.
69 */
19978ca6 70unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
bf0f6f24
IM
71
72/*
73 * SCHED_OTHER wake-up granularity.
722aab0c 74 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
19978ca6 80unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
bf0f6f24 81
da84d961
IM
82const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
83
bf0f6f24
IM
84/**************************************************************
85 * CFS operations on generic schedulable entities:
86 */
87
62160e3f 88#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 89
62160e3f 90/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
91static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
92{
62160e3f 93 return cfs_rq->rq;
bf0f6f24
IM
94}
95
62160e3f
IM
96/* An entity is a task if it doesn't "own" a runqueue */
97#define entity_is_task(se) (!se->my_q)
bf0f6f24 98
62160e3f 99#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 100
62160e3f
IM
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
103 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
104}
105
106#define entity_is_task(se) 1
107
bf0f6f24
IM
108#endif /* CONFIG_FAIR_GROUP_SCHED */
109
110static inline struct task_struct *task_of(struct sched_entity *se)
111{
112 return container_of(se, struct task_struct, se);
113}
114
115
116/**************************************************************
117 * Scheduling class tree data structure manipulation methods:
118 */
119
0702e3eb 120static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 121{
368059a9
PZ
122 s64 delta = (s64)(vruntime - min_vruntime);
123 if (delta > 0)
02e0431a
PZ
124 min_vruntime = vruntime;
125
126 return min_vruntime;
127}
128
0702e3eb 129static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
130{
131 s64 delta = (s64)(vruntime - min_vruntime);
132 if (delta < 0)
133 min_vruntime = vruntime;
134
135 return min_vruntime;
136}
137
0702e3eb 138static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 139{
30cfdcfc 140 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
141}
142
bf0f6f24
IM
143/*
144 * Enqueue an entity into the rb-tree:
145 */
0702e3eb 146static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
147{
148 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
149 struct rb_node *parent = NULL;
150 struct sched_entity *entry;
9014623c 151 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
152 int leftmost = 1;
153
154 /*
155 * Find the right place in the rbtree:
156 */
157 while (*link) {
158 parent = *link;
159 entry = rb_entry(parent, struct sched_entity, run_node);
160 /*
161 * We dont care about collisions. Nodes with
162 * the same key stay together.
163 */
9014623c 164 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
165 link = &parent->rb_left;
166 } else {
167 link = &parent->rb_right;
168 leftmost = 0;
169 }
170 }
171
172 /*
173 * Maintain a cache of leftmost tree entries (it is frequently
174 * used):
175 */
176 if (leftmost)
57cb499d 177 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
178
179 rb_link_node(&se->run_node, parent, link);
180 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
181}
182
0702e3eb 183static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
184{
185 if (cfs_rq->rb_leftmost == &se->run_node)
57cb499d 186 cfs_rq->rb_leftmost = rb_next(&se->run_node);
e9acbff6 187
bf0f6f24 188 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
189}
190
191static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
192{
193 return cfs_rq->rb_leftmost;
194}
195
196static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
197{
198 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
199}
200
aeb73b04
PZ
201static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
202{
203 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
204 struct sched_entity *se = NULL;
205 struct rb_node *parent;
206
207 while (*link) {
208 parent = *link;
209 se = rb_entry(parent, struct sched_entity, run_node);
210 link = &parent->rb_right;
211 }
212
213 return se;
214}
215
bf0f6f24
IM
216/**************************************************************
217 * Scheduling class statistics methods:
218 */
219
b2be5e96
PZ
220#ifdef CONFIG_SCHED_DEBUG
221int sched_nr_latency_handler(struct ctl_table *table, int write,
222 struct file *filp, void __user *buffer, size_t *lenp,
223 loff_t *ppos)
224{
225 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
226
227 if (ret || !write)
228 return ret;
229
230 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
231 sysctl_sched_min_granularity);
232
233 return 0;
234}
235#endif
647e7cac
IM
236
237/*
238 * The idea is to set a period in which each task runs once.
239 *
240 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
241 * this period because otherwise the slices get too small.
242 *
243 * p = (nr <= nl) ? l : l*nr/nl
244 */
4d78e7b6
PZ
245static u64 __sched_period(unsigned long nr_running)
246{
247 u64 period = sysctl_sched_latency;
b2be5e96 248 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
249
250 if (unlikely(nr_running > nr_latency)) {
4bf0b771 251 period = sysctl_sched_min_granularity;
4d78e7b6 252 period *= nr_running;
4d78e7b6
PZ
253 }
254
255 return period;
256}
257
647e7cac
IM
258/*
259 * We calculate the wall-time slice from the period by taking a part
260 * proportional to the weight.
261 *
262 * s = p*w/rw
263 */
6d0f0ebd 264static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 265{
647e7cac 266 u64 slice = __sched_period(cfs_rq->nr_running);
21805085 267
647e7cac
IM
268 slice *= se->load.weight;
269 do_div(slice, cfs_rq->load.weight);
21805085 270
647e7cac 271 return slice;
bf0f6f24
IM
272}
273
647e7cac
IM
274/*
275 * We calculate the vruntime slice.
276 *
277 * vs = s/w = p/rw
278 */
279static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
67e9fb2a 280{
647e7cac 281 u64 vslice = __sched_period(nr_running);
67e9fb2a 282
10b77724 283 vslice *= NICE_0_LOAD;
647e7cac 284 do_div(vslice, rq_weight);
67e9fb2a 285
647e7cac
IM
286 return vslice;
287}
5f6d858e 288
647e7cac
IM
289static u64 sched_vslice(struct cfs_rq *cfs_rq)
290{
291 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
292}
293
294static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
295{
296 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
297 cfs_rq->nr_running + 1);
67e9fb2a
PZ
298}
299
bf0f6f24
IM
300/*
301 * Update the current task's runtime statistics. Skip current tasks that
302 * are not in our scheduling class.
303 */
304static inline void
8ebc91d9
IM
305__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
306 unsigned long delta_exec)
bf0f6f24 307{
bbdba7c0 308 unsigned long delta_exec_weighted;
b0ffd246 309 u64 vruntime;
bf0f6f24 310
8179ca23 311 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
312
313 curr->sum_exec_runtime += delta_exec;
7a62eabc 314 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
315 delta_exec_weighted = delta_exec;
316 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
317 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
318 &curr->load);
319 }
320 curr->vruntime += delta_exec_weighted;
02e0431a
PZ
321
322 /*
323 * maintain cfs_rq->min_vruntime to be a monotonic increasing
324 * value tracking the leftmost vruntime in the tree.
325 */
326 if (first_fair(cfs_rq)) {
b0ffd246
PZ
327 vruntime = min_vruntime(curr->vruntime,
328 __pick_next_entity(cfs_rq)->vruntime);
02e0431a 329 } else
b0ffd246 330 vruntime = curr->vruntime;
02e0431a
PZ
331
332 cfs_rq->min_vruntime =
b0ffd246 333 max_vruntime(cfs_rq->min_vruntime, vruntime);
bf0f6f24
IM
334}
335
b7cc0896 336static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 337{
429d43bc 338 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 339 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
340 unsigned long delta_exec;
341
342 if (unlikely(!curr))
343 return;
344
345 /*
346 * Get the amount of time the current task was running
347 * since the last time we changed load (this cannot
348 * overflow on 32 bits):
349 */
8ebc91d9 350 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 351
8ebc91d9
IM
352 __update_curr(cfs_rq, curr, delta_exec);
353 curr->exec_start = now;
d842de87
SV
354
355 if (entity_is_task(curr)) {
356 struct task_struct *curtask = task_of(curr);
357
358 cpuacct_charge(curtask, delta_exec);
359 }
bf0f6f24
IM
360}
361
362static inline void
5870db5b 363update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 364{
d281918d 365 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
366}
367
bf0f6f24
IM
368/*
369 * Task is being enqueued - update stats:
370 */
d2417e5a 371static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 372{
bf0f6f24
IM
373 /*
374 * Are we enqueueing a waiting task? (for current tasks
375 * a dequeue/enqueue event is a NOP)
376 */
429d43bc 377 if (se != cfs_rq->curr)
5870db5b 378 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
379}
380
bf0f6f24 381static void
9ef0a961 382update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 383{
bbdba7c0
IM
384 schedstat_set(se->wait_max, max(se->wait_max,
385 rq_of(cfs_rq)->clock - se->wait_start));
6cfb0d5d 386 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
387}
388
389static inline void
19b6a2e3 390update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 391{
bf0f6f24
IM
392 /*
393 * Mark the end of the wait period if dequeueing a
394 * waiting task:
395 */
429d43bc 396 if (se != cfs_rq->curr)
9ef0a961 397 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
398}
399
400/*
401 * We are picking a new current task - update its stats:
402 */
403static inline void
79303e9e 404update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
405{
406 /*
407 * We are starting a new run period:
408 */
d281918d 409 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
410}
411
bf0f6f24
IM
412/**************************************************
413 * Scheduling class queueing methods:
414 */
415
30cfdcfc
DA
416static void
417account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
418{
419 update_load_add(&cfs_rq->load, se->load.weight);
420 cfs_rq->nr_running++;
421 se->on_rq = 1;
422}
423
424static void
425account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
426{
427 update_load_sub(&cfs_rq->load, se->load.weight);
428 cfs_rq->nr_running--;
429 se->on_rq = 0;
430}
431
2396af69 432static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 433{
bf0f6f24
IM
434#ifdef CONFIG_SCHEDSTATS
435 if (se->sleep_start) {
d281918d 436 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
437
438 if ((s64)delta < 0)
439 delta = 0;
440
441 if (unlikely(delta > se->sleep_max))
442 se->sleep_max = delta;
443
444 se->sleep_start = 0;
445 se->sum_sleep_runtime += delta;
446 }
447 if (se->block_start) {
d281918d 448 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
449
450 if ((s64)delta < 0)
451 delta = 0;
452
453 if (unlikely(delta > se->block_max))
454 se->block_max = delta;
455
456 se->block_start = 0;
457 se->sum_sleep_runtime += delta;
30084fbd
IM
458
459 /*
460 * Blocking time is in units of nanosecs, so shift by 20 to
461 * get a milliseconds-range estimation of the amount of
462 * time that the task spent sleeping:
463 */
464 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf
IM
465 struct task_struct *tsk = task_of(se);
466
30084fbd
IM
467 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
468 delta >> 20);
469 }
bf0f6f24
IM
470 }
471#endif
472}
473
ddc97297
PZ
474static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
475{
476#ifdef CONFIG_SCHED_DEBUG
477 s64 d = se->vruntime - cfs_rq->min_vruntime;
478
479 if (d < 0)
480 d = -d;
481
482 if (d > 3*sysctl_sched_latency)
483 schedstat_inc(cfs_rq, nr_spread_over);
484#endif
485}
486
aeb73b04
PZ
487static void
488place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
489{
67e9fb2a 490 u64 vruntime;
aeb73b04 491
67e9fb2a 492 vruntime = cfs_rq->min_vruntime;
94dfb5e7 493
06877c33 494 if (sched_feat(TREE_AVG)) {
94dfb5e7
PZ
495 struct sched_entity *last = __pick_last_entity(cfs_rq);
496 if (last) {
67e9fb2a
PZ
497 vruntime += last->vruntime;
498 vruntime >>= 1;
94dfb5e7 499 }
67e9fb2a 500 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
647e7cac 501 vruntime += sched_vslice(cfs_rq)/2;
94dfb5e7 502
2cb8600e
PZ
503 /*
504 * The 'current' period is already promised to the current tasks,
505 * however the extra weight of the new task will slow them down a
506 * little, place the new task so that it fits in the slot that
507 * stays open at the end.
508 */
94dfb5e7 509 if (initial && sched_feat(START_DEBIT))
647e7cac 510 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 511
8465e792 512 if (!initial) {
2cb8600e 513 /* sleeps upto a single latency don't count. */
6cbf1c12 514 if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se))
94359f05
IM
515 vruntime -= sysctl_sched_latency;
516
2cb8600e
PZ
517 /* ensure we never gain time by being placed backwards. */
518 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
519 }
520
67e9fb2a 521 se->vruntime = vruntime;
aeb73b04
PZ
522}
523
bf0f6f24 524static void
83b699ed 525enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
526{
527 /*
a2a2d680 528 * Update run-time statistics of the 'current'.
bf0f6f24 529 */
b7cc0896 530 update_curr(cfs_rq);
bf0f6f24 531
e9acbff6 532 if (wakeup) {
aeb73b04 533 place_entity(cfs_rq, se, 0);
2396af69 534 enqueue_sleeper(cfs_rq, se);
e9acbff6 535 }
bf0f6f24 536
d2417e5a 537 update_stats_enqueue(cfs_rq, se);
ddc97297 538 check_spread(cfs_rq, se);
83b699ed
SV
539 if (se != cfs_rq->curr)
540 __enqueue_entity(cfs_rq, se);
30cfdcfc 541 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
542}
543
544static void
525c2716 545dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 546{
a2a2d680
DA
547 /*
548 * Update run-time statistics of the 'current'.
549 */
550 update_curr(cfs_rq);
551
19b6a2e3 552 update_stats_dequeue(cfs_rq, se);
db36cc7d 553 if (sleep) {
67e9fb2a 554#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
555 if (entity_is_task(se)) {
556 struct task_struct *tsk = task_of(se);
557
558 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 559 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 560 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 561 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 562 }
db36cc7d 563#endif
67e9fb2a
PZ
564 }
565
83b699ed 566 if (se != cfs_rq->curr)
30cfdcfc
DA
567 __dequeue_entity(cfs_rq, se);
568 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
569}
570
571/*
572 * Preempt the current task with a newly woken task if needed:
573 */
7c92e54f 574static void
2e09bf55 575check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 576{
11697830
PZ
577 unsigned long ideal_runtime, delta_exec;
578
6d0f0ebd 579 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 580 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 581 if (delta_exec > ideal_runtime)
bf0f6f24
IM
582 resched_task(rq_of(cfs_rq)->curr);
583}
584
83b699ed 585static void
8494f412 586set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 587{
83b699ed
SV
588 /* 'current' is not kept within the tree. */
589 if (se->on_rq) {
590 /*
591 * Any task has to be enqueued before it get to execute on
592 * a CPU. So account for the time it spent waiting on the
593 * runqueue.
594 */
595 update_stats_wait_end(cfs_rq, se);
596 __dequeue_entity(cfs_rq, se);
597 }
598
79303e9e 599 update_stats_curr_start(cfs_rq, se);
429d43bc 600 cfs_rq->curr = se;
eba1ed4b
IM
601#ifdef CONFIG_SCHEDSTATS
602 /*
603 * Track our maximum slice length, if the CPU's load is at
604 * least twice that of our own weight (i.e. dont track it
605 * when there are only lesser-weight tasks around):
606 */
495eca49 607 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
608 se->slice_max = max(se->slice_max,
609 se->sum_exec_runtime - se->prev_sum_exec_runtime);
610 }
611#endif
4a55b450 612 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
613}
614
9948f4b2 615static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 616{
08ec3df5 617 struct sched_entity *se = NULL;
bf0f6f24 618
08ec3df5
DA
619 if (first_fair(cfs_rq)) {
620 se = __pick_next_entity(cfs_rq);
621 set_next_entity(cfs_rq, se);
622 }
bf0f6f24
IM
623
624 return se;
625}
626
ab6cde26 627static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
628{
629 /*
630 * If still on the runqueue then deactivate_task()
631 * was not called and update_curr() has to be done:
632 */
633 if (prev->on_rq)
b7cc0896 634 update_curr(cfs_rq);
bf0f6f24 635
ddc97297 636 check_spread(cfs_rq, prev);
30cfdcfc 637 if (prev->on_rq) {
5870db5b 638 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
639 /* Put 'current' back into the tree. */
640 __enqueue_entity(cfs_rq, prev);
641 }
429d43bc 642 cfs_rq->curr = NULL;
bf0f6f24
IM
643}
644
8f4d37ec
PZ
645static void
646entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 647{
bf0f6f24 648 /*
30cfdcfc 649 * Update run-time statistics of the 'current'.
bf0f6f24 650 */
30cfdcfc 651 update_curr(cfs_rq);
bf0f6f24 652
8f4d37ec
PZ
653#ifdef CONFIG_SCHED_HRTICK
654 /*
655 * queued ticks are scheduled to match the slice, so don't bother
656 * validating it and just reschedule.
657 */
658 if (queued)
659 return resched_task(rq_of(cfs_rq)->curr);
660 /*
661 * don't let the period tick interfere with the hrtick preemption
662 */
663 if (!sched_feat(DOUBLE_TICK) &&
664 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
665 return;
666#endif
667
ce6c1311 668 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 669 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
670}
671
672/**************************************************
673 * CFS operations on tasks:
674 */
675
676#ifdef CONFIG_FAIR_GROUP_SCHED
677
678/* Walk up scheduling entities hierarchy */
679#define for_each_sched_entity(se) \
680 for (; se; se = se->parent)
681
682static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
683{
684 return p->se.cfs_rq;
685}
686
687/* runqueue on which this entity is (to be) queued */
688static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
689{
690 return se->cfs_rq;
691}
692
693/* runqueue "owned" by this group */
694static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
695{
696 return grp->my_q;
697}
698
699/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
700 * another cpu ('this_cpu')
701 */
702static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
703{
29f59db3 704 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
705}
706
707/* Iterate thr' all leaf cfs_rq's on a runqueue */
708#define for_each_leaf_cfs_rq(rq, cfs_rq) \
ec2c507f 709 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
bf0f6f24 710
fad095a7
SV
711/* Do the two (enqueued) entities belong to the same group ? */
712static inline int
713is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24 714{
fad095a7 715 if (se->cfs_rq == pse->cfs_rq)
bf0f6f24
IM
716 return 1;
717
718 return 0;
719}
720
fad095a7
SV
721static inline struct sched_entity *parent_entity(struct sched_entity *se)
722{
723 return se->parent;
724}
725
6b2d7700
SV
726#define GROUP_IMBALANCE_PCT 20
727
bf0f6f24
IM
728#else /* CONFIG_FAIR_GROUP_SCHED */
729
730#define for_each_sched_entity(se) \
731 for (; se; se = NULL)
732
733static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
734{
735 return &task_rq(p)->cfs;
736}
737
738static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
739{
740 struct task_struct *p = task_of(se);
741 struct rq *rq = task_rq(p);
742
743 return &rq->cfs;
744}
745
746/* runqueue "owned" by this group */
747static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
748{
749 return NULL;
750}
751
752static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
753{
754 return &cpu_rq(this_cpu)->cfs;
755}
756
757#define for_each_leaf_cfs_rq(rq, cfs_rq) \
758 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
759
fad095a7
SV
760static inline int
761is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24
IM
762{
763 return 1;
764}
765
fad095a7
SV
766static inline struct sched_entity *parent_entity(struct sched_entity *se)
767{
768 return NULL;
769}
770
bf0f6f24
IM
771#endif /* CONFIG_FAIR_GROUP_SCHED */
772
8f4d37ec
PZ
773#ifdef CONFIG_SCHED_HRTICK
774static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
775{
776 int requeue = rq->curr == p;
777 struct sched_entity *se = &p->se;
778 struct cfs_rq *cfs_rq = cfs_rq_of(se);
779
780 WARN_ON(task_rq(p) != rq);
781
782 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
783 u64 slice = sched_slice(cfs_rq, se);
784 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
785 s64 delta = slice - ran;
786
787 if (delta < 0) {
788 if (rq->curr == p)
789 resched_task(p);
790 return;
791 }
792
793 /*
794 * Don't schedule slices shorter than 10000ns, that just
795 * doesn't make sense. Rely on vruntime for fairness.
796 */
797 if (!requeue)
798 delta = max(10000LL, delta);
799
800 hrtick_start(rq, delta, requeue);
801 }
802}
803#else
804static inline void
805hrtick_start_fair(struct rq *rq, struct task_struct *p)
806{
807}
808#endif
809
bf0f6f24
IM
810/*
811 * The enqueue_task method is called before nr_running is
812 * increased. Here we update the fair scheduling stats and
813 * then put the task into the rbtree:
814 */
fd390f6a 815static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
816{
817 struct cfs_rq *cfs_rq;
58e2d4ca
SV
818 struct sched_entity *se = &p->se,
819 *topse = NULL; /* Highest schedulable entity */
820 int incload = 1;
bf0f6f24
IM
821
822 for_each_sched_entity(se) {
58e2d4ca
SV
823 topse = se;
824 if (se->on_rq) {
825 incload = 0;
bf0f6f24 826 break;
58e2d4ca 827 }
bf0f6f24 828 cfs_rq = cfs_rq_of(se);
83b699ed 829 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 830 wakeup = 1;
bf0f6f24 831 }
58e2d4ca
SV
832 /* Increment cpu load if we just enqueued the first task of a group on
833 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
834 * at the highest grouping level.
835 */
836 if (incload)
837 inc_cpu_load(rq, topse->load.weight);
8f4d37ec
PZ
838
839 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
840}
841
842/*
843 * The dequeue_task method is called before nr_running is
844 * decreased. We remove the task from the rbtree and
845 * update the fair scheduling stats:
846 */
f02231e5 847static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
848{
849 struct cfs_rq *cfs_rq;
58e2d4ca
SV
850 struct sched_entity *se = &p->se,
851 *topse = NULL; /* Highest schedulable entity */
852 int decload = 1;
bf0f6f24
IM
853
854 for_each_sched_entity(se) {
58e2d4ca 855 topse = se;
bf0f6f24 856 cfs_rq = cfs_rq_of(se);
525c2716 857 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 858 /* Don't dequeue parent if it has other entities besides us */
58e2d4ca
SV
859 if (cfs_rq->load.weight) {
860 if (parent_entity(se))
861 decload = 0;
bf0f6f24 862 break;
58e2d4ca 863 }
b9fa3df3 864 sleep = 1;
bf0f6f24 865 }
58e2d4ca
SV
866 /* Decrement cpu load if we just dequeued the last task of a group on
867 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
868 * at the highest grouping level.
869 */
870 if (decload)
871 dec_cpu_load(rq, topse->load.weight);
8f4d37ec
PZ
872
873 hrtick_start_fair(rq, rq->curr);
bf0f6f24
IM
874}
875
876/*
1799e35d
IM
877 * sched_yield() support is very simple - we dequeue and enqueue.
878 *
879 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 880 */
4530d7ab 881static void yield_task_fair(struct rq *rq)
bf0f6f24 882{
db292ca3
IM
883 struct task_struct *curr = rq->curr;
884 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
885 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
886
887 /*
1799e35d
IM
888 * Are we the only task in the tree?
889 */
890 if (unlikely(cfs_rq->nr_running == 1))
891 return;
892
db292ca3 893 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1799e35d
IM
894 __update_rq_clock(rq);
895 /*
a2a2d680 896 * Update run-time statistics of the 'current'.
1799e35d 897 */
2b1e315d 898 update_curr(cfs_rq);
1799e35d
IM
899
900 return;
901 }
902 /*
903 * Find the rightmost entry in the rbtree:
bf0f6f24 904 */
2b1e315d 905 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
906 /*
907 * Already in the rightmost position?
908 */
2b1e315d 909 if (unlikely(rightmost->vruntime < se->vruntime))
1799e35d
IM
910 return;
911
912 /*
913 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
914 * Upon rescheduling, sched_class::put_prev_task() will place
915 * 'current' within the tree based on its new key value.
1799e35d 916 */
30cfdcfc 917 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
918}
919
e7693a36
GH
920/*
921 * wake_idle() will wake a task on an idle cpu if task->cpu is
922 * not idle and an idle cpu is available. The span of cpus to
923 * search starts with cpus closest then further out as needed,
924 * so we always favor a closer, idle cpu.
925 *
926 * Returns the CPU we should wake onto.
927 */
928#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
929static int wake_idle(int cpu, struct task_struct *p)
930{
931 cpumask_t tmp;
932 struct sched_domain *sd;
933 int i;
934
935 /*
936 * If it is idle, then it is the best cpu to run this task.
937 *
938 * This cpu is also the best, if it has more than one task already.
939 * Siblings must be also busy(in most cases) as they didn't already
940 * pickup the extra load from this cpu and hence we need not check
941 * sibling runqueue info. This will avoid the checks and cache miss
942 * penalities associated with that.
943 */
944 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
945 return cpu;
946
947 for_each_domain(cpu, sd) {
948 if (sd->flags & SD_WAKE_IDLE) {
949 cpus_and(tmp, sd->span, p->cpus_allowed);
950 for_each_cpu_mask(i, tmp) {
951 if (idle_cpu(i)) {
952 if (i != task_cpu(p)) {
953 schedstat_inc(p,
954 se.nr_wakeups_idle);
955 }
956 return i;
957 }
958 }
959 } else {
960 break;
961 }
962 }
963 return cpu;
964}
965#else
966static inline int wake_idle(int cpu, struct task_struct *p)
967{
968 return cpu;
969}
970#endif
971
972#ifdef CONFIG_SMP
973static int select_task_rq_fair(struct task_struct *p, int sync)
974{
975 int cpu, this_cpu;
976 struct rq *rq;
977 struct sched_domain *sd, *this_sd = NULL;
978 int new_cpu;
979
980 cpu = task_cpu(p);
981 rq = task_rq(p);
982 this_cpu = smp_processor_id();
983 new_cpu = cpu;
984
9ec3b77e
DA
985 if (cpu == this_cpu)
986 goto out_set_cpu;
987
e7693a36
GH
988 for_each_domain(this_cpu, sd) {
989 if (cpu_isset(cpu, sd->span)) {
990 this_sd = sd;
991 break;
992 }
993 }
994
995 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
996 goto out_set_cpu;
997
998 /*
999 * Check for affine wakeup and passive balancing possibilities.
1000 */
1001 if (this_sd) {
1002 int idx = this_sd->wake_idx;
1003 unsigned int imbalance;
1004 unsigned long load, this_load;
1005
1006 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1007
1008 load = source_load(cpu, idx);
1009 this_load = target_load(this_cpu, idx);
1010
1011 new_cpu = this_cpu; /* Wake to this CPU if we can */
1012
1013 if (this_sd->flags & SD_WAKE_AFFINE) {
1014 unsigned long tl = this_load;
1015 unsigned long tl_per_task;
1016
1017 /*
1018 * Attract cache-cold tasks on sync wakeups:
1019 */
1020 if (sync && !task_hot(p, rq->clock, this_sd))
1021 goto out_set_cpu;
1022
1023 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1024 tl_per_task = cpu_avg_load_per_task(this_cpu);
1025
1026 /*
1027 * If sync wakeup then subtract the (maximum possible)
1028 * effect of the currently running task from the load
1029 * of the current CPU:
1030 */
1031 if (sync)
1032 tl -= current->se.load.weight;
1033
1034 if ((tl <= load &&
1035 tl + target_load(cpu, idx) <= tl_per_task) ||
1036 100*(tl + p->se.load.weight) <= imbalance*load) {
1037 /*
1038 * This domain has SD_WAKE_AFFINE and
1039 * p is cache cold in this domain, and
1040 * there is no bad imbalance.
1041 */
1042 schedstat_inc(this_sd, ttwu_move_affine);
1043 schedstat_inc(p, se.nr_wakeups_affine);
1044 goto out_set_cpu;
1045 }
1046 }
1047
1048 /*
1049 * Start passive balancing when half the imbalance_pct
1050 * limit is reached.
1051 */
1052 if (this_sd->flags & SD_WAKE_BALANCE) {
1053 if (imbalance*this_load <= 100*load) {
1054 schedstat_inc(this_sd, ttwu_move_balance);
1055 schedstat_inc(p, se.nr_wakeups_passive);
1056 goto out_set_cpu;
1057 }
1058 }
1059 }
1060
1061 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1062out_set_cpu:
1063 return wake_idle(new_cpu, p);
1064}
1065#endif /* CONFIG_SMP */
1066
1067
bf0f6f24
IM
1068/*
1069 * Preempt the current task with a newly woken task if needed:
1070 */
2e09bf55 1071static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1072{
1073 struct task_struct *curr = rq->curr;
fad095a7 1074 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 1075 struct sched_entity *se = &curr->se, *pse = &p->se;
502d26b5 1076 unsigned long gran;
bf0f6f24
IM
1077
1078 if (unlikely(rt_prio(p->prio))) {
a8e504d2 1079 update_rq_clock(rq);
b7cc0896 1080 update_curr(cfs_rq);
bf0f6f24
IM
1081 resched_task(curr);
1082 return;
1083 }
91c234b4
IM
1084 /*
1085 * Batch tasks do not preempt (their preemption is driven by
1086 * the tick):
1087 */
1088 if (unlikely(p->policy == SCHED_BATCH))
1089 return;
bf0f6f24 1090
77d9cc44
IM
1091 if (!sched_feat(WAKEUP_PREEMPT))
1092 return;
8651a86c 1093
77d9cc44
IM
1094 while (!is_same_group(se, pse)) {
1095 se = parent_entity(se);
1096 pse = parent_entity(pse);
ce6c1311 1097 }
77d9cc44 1098
77d9cc44
IM
1099 gran = sysctl_sched_wakeup_granularity;
1100 if (unlikely(se->load.weight != NICE_0_LOAD))
1101 gran = calc_delta_fair(gran, &se->load);
1102
502d26b5 1103 if (pse->vruntime + gran < se->vruntime)
77d9cc44 1104 resched_task(curr);
bf0f6f24
IM
1105}
1106
fb8d4724 1107static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1108{
8f4d37ec 1109 struct task_struct *p;
bf0f6f24
IM
1110 struct cfs_rq *cfs_rq = &rq->cfs;
1111 struct sched_entity *se;
1112
1113 if (unlikely(!cfs_rq->nr_running))
1114 return NULL;
1115
1116 do {
9948f4b2 1117 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1118 cfs_rq = group_cfs_rq(se);
1119 } while (cfs_rq);
1120
8f4d37ec
PZ
1121 p = task_of(se);
1122 hrtick_start_fair(rq, p);
1123
1124 return p;
bf0f6f24
IM
1125}
1126
1127/*
1128 * Account for a descheduled task:
1129 */
31ee529c 1130static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1131{
1132 struct sched_entity *se = &prev->se;
1133 struct cfs_rq *cfs_rq;
1134
1135 for_each_sched_entity(se) {
1136 cfs_rq = cfs_rq_of(se);
ab6cde26 1137 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1138 }
1139}
1140
681f3e68 1141#ifdef CONFIG_SMP
bf0f6f24
IM
1142/**************************************************
1143 * Fair scheduling class load-balancing methods:
1144 */
1145
1146/*
1147 * Load-balancing iterator. Note: while the runqueue stays locked
1148 * during the whole iteration, the current task might be
1149 * dequeued so the iterator has to be dequeue-safe. Here we
1150 * achieve that by always pre-iterating before returning
1151 * the current task:
1152 */
a9957449 1153static struct task_struct *
bf0f6f24
IM
1154__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1155{
1156 struct task_struct *p;
1157
1158 if (!curr)
1159 return NULL;
1160
1161 p = rb_entry(curr, struct task_struct, se.run_node);
1162 cfs_rq->rb_load_balance_curr = rb_next(curr);
1163
1164 return p;
1165}
1166
1167static struct task_struct *load_balance_start_fair(void *arg)
1168{
1169 struct cfs_rq *cfs_rq = arg;
1170
1171 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1172}
1173
1174static struct task_struct *load_balance_next_fair(void *arg)
1175{
1176 struct cfs_rq *cfs_rq = arg;
1177
1178 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1179}
1180
43010659 1181static unsigned long
bf0f6f24 1182load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1183 unsigned long max_load_move,
a4ac01c3
PW
1184 struct sched_domain *sd, enum cpu_idle_type idle,
1185 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
1186{
1187 struct cfs_rq *busy_cfs_rq;
bf0f6f24
IM
1188 long rem_load_move = max_load_move;
1189 struct rq_iterator cfs_rq_iterator;
6b2d7700 1190 unsigned long load_moved;
bf0f6f24
IM
1191
1192 cfs_rq_iterator.start = load_balance_start_fair;
1193 cfs_rq_iterator.next = load_balance_next_fair;
1194
1195 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 1196#ifdef CONFIG_FAIR_GROUP_SCHED
6b2d7700
SV
1197 struct cfs_rq *this_cfs_rq = busy_cfs_rq->tg->cfs_rq[this_cpu];
1198 unsigned long maxload, task_load, group_weight;
1199 unsigned long thisload, per_task_load;
1200 struct sched_entity *se = busy_cfs_rq->tg->se[busiest->cpu];
bf0f6f24 1201
6b2d7700
SV
1202 task_load = busy_cfs_rq->load.weight;
1203 group_weight = se->load.weight;
bf0f6f24 1204
6b2d7700
SV
1205 /*
1206 * 'group_weight' is contributed by tasks of total weight
1207 * 'task_load'. To move 'rem_load_move' worth of weight only,
1208 * we need to move a maximum task load of:
1209 *
1210 * maxload = (remload / group_weight) * task_load;
1211 */
1212 maxload = (rem_load_move * task_load) / group_weight;
1213
1214 if (!maxload || !task_load)
bf0f6f24
IM
1215 continue;
1216
6b2d7700
SV
1217 per_task_load = task_load / busy_cfs_rq->nr_running;
1218 /*
1219 * balance_tasks will try to forcibly move atleast one task if
1220 * possible (because of SCHED_LOAD_SCALE_FUZZ). Avoid that if
1221 * maxload is less than GROUP_IMBALANCE_FUZZ% the per_task_load.
1222 */
1223 if (100 * maxload < GROUP_IMBALANCE_PCT * per_task_load)
1224 continue;
bf0f6f24 1225
6b2d7700
SV
1226 /* Disable priority-based load balance */
1227 *this_best_prio = 0;
1228 thisload = this_cfs_rq->load.weight;
a4ac01c3 1229#else
e56f31aa 1230# define maxload rem_load_move
a4ac01c3 1231#endif
e1d1484f
PW
1232 /*
1233 * pass busy_cfs_rq argument into
bf0f6f24
IM
1234 * load_balance_[start|next]_fair iterators
1235 */
1236 cfs_rq_iterator.arg = busy_cfs_rq;
6b2d7700 1237 load_moved = balance_tasks(this_rq, this_cpu, busiest,
e1d1484f
PW
1238 maxload, sd, idle, all_pinned,
1239 this_best_prio,
1240 &cfs_rq_iterator);
bf0f6f24 1241
6b2d7700
SV
1242#ifdef CONFIG_FAIR_GROUP_SCHED
1243 /*
1244 * load_moved holds the task load that was moved. The
1245 * effective (group) weight moved would be:
1246 * load_moved_eff = load_moved/task_load * group_weight;
1247 */
1248 load_moved = (group_weight * load_moved) / task_load;
1249
1250 /* Adjust shares on both cpus to reflect load_moved */
1251 group_weight -= load_moved;
1252 set_se_shares(se, group_weight);
1253
1254 se = busy_cfs_rq->tg->se[this_cpu];
1255 if (!thisload)
1256 group_weight = load_moved;
1257 else
1258 group_weight = se->load.weight + load_moved;
1259 set_se_shares(se, group_weight);
1260#endif
1261
1262 rem_load_move -= load_moved;
1263
e1d1484f 1264 if (rem_load_move <= 0)
bf0f6f24
IM
1265 break;
1266 }
1267
43010659 1268 return max_load_move - rem_load_move;
bf0f6f24
IM
1269}
1270
e1d1484f
PW
1271static int
1272move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1273 struct sched_domain *sd, enum cpu_idle_type idle)
1274{
1275 struct cfs_rq *busy_cfs_rq;
1276 struct rq_iterator cfs_rq_iterator;
1277
1278 cfs_rq_iterator.start = load_balance_start_fair;
1279 cfs_rq_iterator.next = load_balance_next_fair;
1280
1281 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1282 /*
1283 * pass busy_cfs_rq argument into
1284 * load_balance_[start|next]_fair iterators
1285 */
1286 cfs_rq_iterator.arg = busy_cfs_rq;
1287 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1288 &cfs_rq_iterator))
1289 return 1;
1290 }
1291
1292 return 0;
1293}
681f3e68 1294#endif
e1d1484f 1295
bf0f6f24
IM
1296/*
1297 * scheduler tick hitting a task of our scheduling class:
1298 */
8f4d37ec 1299static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1300{
1301 struct cfs_rq *cfs_rq;
1302 struct sched_entity *se = &curr->se;
1303
1304 for_each_sched_entity(se) {
1305 cfs_rq = cfs_rq_of(se);
8f4d37ec 1306 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1307 }
1308}
1309
8eb172d9 1310#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
4d78e7b6 1311
bf0f6f24
IM
1312/*
1313 * Share the fairness runtime between parent and child, thus the
1314 * total amount of pressure for CPU stays equal - new tasks
1315 * get a chance to run but frequent forkers are not allowed to
1316 * monopolize the CPU. Note: the parent runqueue is locked,
1317 * the child is not running yet.
1318 */
ee0827d8 1319static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1320{
1321 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1322 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1323 int this_cpu = smp_processor_id();
bf0f6f24
IM
1324
1325 sched_info_queued(p);
1326
7109c442 1327 update_curr(cfs_rq);
aeb73b04 1328 place_entity(cfs_rq, se, 1);
4d78e7b6 1329
3c90e6e9 1330 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1331 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1332 curr && curr->vruntime < se->vruntime) {
87fefa38 1333 /*
edcb60a3
IM
1334 * Upon rescheduling, sched_class::put_prev_task() will place
1335 * 'current' within the tree based on its new key value.
1336 */
4d78e7b6 1337 swap(curr->vruntime, se->vruntime);
4d78e7b6 1338 }
bf0f6f24 1339
b9dca1e0 1340 enqueue_task_fair(rq, p, 0);
bb61c210 1341 resched_task(rq->curr);
bf0f6f24
IM
1342}
1343
cb469845
SR
1344/*
1345 * Priority of the task has changed. Check to see if we preempt
1346 * the current task.
1347 */
1348static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1349 int oldprio, int running)
1350{
1351 /*
1352 * Reschedule if we are currently running on this runqueue and
1353 * our priority decreased, or if we are not currently running on
1354 * this runqueue and our priority is higher than the current's
1355 */
1356 if (running) {
1357 if (p->prio > oldprio)
1358 resched_task(rq->curr);
1359 } else
1360 check_preempt_curr(rq, p);
1361}
1362
1363/*
1364 * We switched to the sched_fair class.
1365 */
1366static void switched_to_fair(struct rq *rq, struct task_struct *p,
1367 int running)
1368{
1369 /*
1370 * We were most likely switched from sched_rt, so
1371 * kick off the schedule if running, otherwise just see
1372 * if we can still preempt the current task.
1373 */
1374 if (running)
1375 resched_task(rq->curr);
1376 else
1377 check_preempt_curr(rq, p);
1378}
1379
83b699ed
SV
1380/* Account for a task changing its policy or group.
1381 *
1382 * This routine is mostly called to set cfs_rq->curr field when a task
1383 * migrates between groups/classes.
1384 */
1385static void set_curr_task_fair(struct rq *rq)
1386{
1387 struct sched_entity *se = &rq->curr->se;
1388
1389 for_each_sched_entity(se)
1390 set_next_entity(cfs_rq_of(se), se);
1391}
1392
bf0f6f24
IM
1393/*
1394 * All the scheduling class methods:
1395 */
5522d5d5
IM
1396static const struct sched_class fair_sched_class = {
1397 .next = &idle_sched_class,
bf0f6f24
IM
1398 .enqueue_task = enqueue_task_fair,
1399 .dequeue_task = dequeue_task_fair,
1400 .yield_task = yield_task_fair,
e7693a36
GH
1401#ifdef CONFIG_SMP
1402 .select_task_rq = select_task_rq_fair,
1403#endif /* CONFIG_SMP */
bf0f6f24 1404
2e09bf55 1405 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1406
1407 .pick_next_task = pick_next_task_fair,
1408 .put_prev_task = put_prev_task_fair,
1409
681f3e68 1410#ifdef CONFIG_SMP
bf0f6f24 1411 .load_balance = load_balance_fair,
e1d1484f 1412 .move_one_task = move_one_task_fair,
681f3e68 1413#endif
bf0f6f24 1414
83b699ed 1415 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1416 .task_tick = task_tick_fair,
1417 .task_new = task_new_fair,
cb469845
SR
1418
1419 .prio_changed = prio_changed_fair,
1420 .switched_to = switched_to_fair,
bf0f6f24
IM
1421};
1422
1423#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1424static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1425{
bf0f6f24
IM
1426 struct cfs_rq *cfs_rq;
1427
75c28ace
SV
1428#ifdef CONFIG_FAIR_GROUP_SCHED
1429 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1430#endif
ec2c507f 1431 lock_task_group_list();
c3b64f1e 1432 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1433 print_cfs_rq(m, cpu, cfs_rq);
ec2c507f 1434 unlock_task_group_list();
bf0f6f24
IM
1435}
1436#endif