sched: Avoid side-effect of tickless idle on update_cpu_load
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
6e0534f2 81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
7c941438 238#ifdef CONFIG_CGROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
68318b8e 248 struct cgroup_subsys_state css;
6c415b92 249
052f1dc7 250#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
052f1dc7
PZ
256#endif
257
258#ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
d0b27fa7 262 struct rt_bandwidth rt_bandwidth;
052f1dc7 263#endif
6b2d7700 264
ae8393e5 265 struct rcu_head rcu;
6f505b16 266 struct list_head list;
f473aa5e
PZ
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
29f59db3
SV
271};
272
eff766a6 273#define root_task_group init_task_group
6f505b16 274
8ed36996 275/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
276 * a task group's cpu shares.
277 */
8ed36996 278static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 279
e9036b36
CG
280#ifdef CONFIG_FAIR_GROUP_SCHED
281
57310a98
PZ
282#ifdef CONFIG_SMP
283static int root_task_group_empty(void)
284{
285 return list_empty(&root_task_group.children);
286}
287#endif
288
052f1dc7 289# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 290
cb4ad1ff 291/*
2e084786
LJ
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
cb4ad1ff
MX
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
18d95a28 299#define MIN_SHARES 2
2e084786 300#define MAX_SHARES (1UL << 18)
18d95a28 301
052f1dc7
PZ
302static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303#endif
304
29f59db3 305/* Default task group.
3a252015 306 * Every task in system belong to this group at bootup.
29f59db3 307 */
434d53b0 308struct task_group init_task_group;
29f59db3 309
7c941438 310#endif /* CONFIG_CGROUP_SCHED */
29f59db3 311
6aa645ea
IM
312/* CFS-related fields in a runqueue */
313struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
6aa645ea 317 u64 exec_clock;
e9acbff6 318 u64 min_vruntime;
6aa645ea
IM
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
4a55bd5e
PZ
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
4793241b 330 struct sched_entity *curr, *next, *last;
ddc97297 331
5ac5c4d6 332 unsigned int nr_spread_over;
ddc97297 333
62160e3f 334#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
41a2d6cf
IM
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857
PZ
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
f1d239f7
PZ
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2
GH
429#ifdef CONFIG_SMP
430 struct cpupri cpupri;
431#endif
57d885fe
GH
432};
433
dc938520
GH
434/*
435 * By default the system creates a single root-domain with all cpus as
436 * members (mimicking the global state we have today).
437 */
57d885fe
GH
438static struct root_domain def_root_domain;
439
440#endif
441
1da177e4
LT
442/*
443 * This is the main, per-CPU runqueue data structure.
444 *
445 * Locking rule: those places that want to lock multiple runqueues
446 * (such as the load balancing or the thread migration code), lock
447 * acquire operations must be ordered by ascending &runqueue.
448 */
70b97a7f 449struct rq {
d8016491 450 /* runqueue lock: */
05fa785c 451 raw_spinlock_t lock;
1da177e4
LT
452
453 /*
454 * nr_running and cpu_load should be in the same cacheline because
455 * remote CPUs use both these fields when doing load calculation.
456 */
457 unsigned long nr_running;
6aa645ea
IM
458 #define CPU_LOAD_IDX_MAX 5
459 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 460 unsigned long last_load_update_tick;
46cb4b7c 461#ifdef CONFIG_NO_HZ
39c0cbe2 462 u64 nohz_stamp;
46cb4b7c
SS
463 unsigned char in_nohz_recently;
464#endif
a64692a3
MG
465 unsigned int skip_clock_update;
466
d8016491
IM
467 /* capture load from *all* tasks on this cpu: */
468 struct load_weight load;
6aa645ea
IM
469 unsigned long nr_load_updates;
470 u64 nr_switches;
471
472 struct cfs_rq cfs;
6f505b16 473 struct rt_rq rt;
6f505b16 474
6aa645ea 475#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
476 /* list of leaf cfs_rq on this cpu: */
477 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
478#endif
479#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 480 struct list_head leaf_rt_rq_list;
1da177e4 481#endif
1da177e4
LT
482
483 /*
484 * This is part of a global counter where only the total sum
485 * over all CPUs matters. A task can increase this counter on
486 * one CPU and if it got migrated afterwards it may decrease
487 * it on another CPU. Always updated under the runqueue lock:
488 */
489 unsigned long nr_uninterruptible;
490
36c8b586 491 struct task_struct *curr, *idle;
c9819f45 492 unsigned long next_balance;
1da177e4 493 struct mm_struct *prev_mm;
6aa645ea 494
3e51f33f 495 u64 clock;
6aa645ea 496
1da177e4
LT
497 atomic_t nr_iowait;
498
499#ifdef CONFIG_SMP
0eab9146 500 struct root_domain *rd;
1da177e4
LT
501 struct sched_domain *sd;
502
e51fd5e2
PZ
503 unsigned long cpu_power;
504
a0a522ce 505 unsigned char idle_at_tick;
1da177e4 506 /* For active balancing */
3f029d3c 507 int post_schedule;
1da177e4
LT
508 int active_balance;
509 int push_cpu;
969c7921 510 struct cpu_stop_work active_balance_work;
d8016491
IM
511 /* cpu of this runqueue: */
512 int cpu;
1f11eb6a 513 int online;
1da177e4 514
a8a51d5e 515 unsigned long avg_load_per_task;
1da177e4 516
e9e9250b
PZ
517 u64 rt_avg;
518 u64 age_stamp;
1b9508f6
MG
519 u64 idle_stamp;
520 u64 avg_idle;
1da177e4
LT
521#endif
522
dce48a84
TG
523 /* calc_load related fields */
524 unsigned long calc_load_update;
525 long calc_load_active;
526
8f4d37ec 527#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
528#ifdef CONFIG_SMP
529 int hrtick_csd_pending;
530 struct call_single_data hrtick_csd;
531#endif
8f4d37ec
PZ
532 struct hrtimer hrtick_timer;
533#endif
534
1da177e4
LT
535#ifdef CONFIG_SCHEDSTATS
536 /* latency stats */
537 struct sched_info rq_sched_info;
9c2c4802
KC
538 unsigned long long rq_cpu_time;
539 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
540
541 /* sys_sched_yield() stats */
480b9434 542 unsigned int yld_count;
1da177e4
LT
543
544 /* schedule() stats */
480b9434
KC
545 unsigned int sched_switch;
546 unsigned int sched_count;
547 unsigned int sched_goidle;
1da177e4
LT
548
549 /* try_to_wake_up() stats */
480b9434
KC
550 unsigned int ttwu_count;
551 unsigned int ttwu_local;
b8efb561
IM
552
553 /* BKL stats */
480b9434 554 unsigned int bkl_count;
1da177e4
LT
555#endif
556};
557
f34e3b61 558static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 559
7d478721
PZ
560static inline
561void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 562{
7d478721 563 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
564
565 /*
566 * A queue event has occurred, and we're going to schedule. In
567 * this case, we can save a useless back to back clock update.
568 */
569 if (test_tsk_need_resched(p))
570 rq->skip_clock_update = 1;
dd41f596
IM
571}
572
0a2966b4
CL
573static inline int cpu_of(struct rq *rq)
574{
575#ifdef CONFIG_SMP
576 return rq->cpu;
577#else
578 return 0;
579#endif
580}
581
497f0ab3 582#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
583 rcu_dereference_check((p), \
584 rcu_read_lock_sched_held() || \
585 lockdep_is_held(&sched_domains_mutex))
586
674311d5
NP
587/*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 589 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
48f24c4d 594#define for_each_domain(cpu, __sd) \
497f0ab3 595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
596
597#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598#define this_rq() (&__get_cpu_var(runqueues))
599#define task_rq(p) cpu_rq(task_cpu(p))
600#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 601#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 602
dc61b1d6
PZ
603#ifdef CONFIG_CGROUP_SCHED
604
605/*
606 * Return the group to which this tasks belongs.
607 *
608 * We use task_subsys_state_check() and extend the RCU verification
609 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
612 */
613static inline struct task_group *task_group(struct task_struct *p)
614{
615 struct cgroup_subsys_state *css;
616
617 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
618 lockdep_is_held(&task_rq(p)->lock));
619 return container_of(css, struct task_group, css);
620}
621
622/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
623static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
624{
625#ifdef CONFIG_FAIR_GROUP_SCHED
626 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
627 p->se.parent = task_group(p)->se[cpu];
628#endif
629
630#ifdef CONFIG_RT_GROUP_SCHED
631 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
632 p->rt.parent = task_group(p)->rt_se[cpu];
633#endif
634}
635
636#else /* CONFIG_CGROUP_SCHED */
637
638static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
639static inline struct task_group *task_group(struct task_struct *p)
640{
641 return NULL;
642}
643
644#endif /* CONFIG_CGROUP_SCHED */
645
aa9c4c0f 646inline void update_rq_clock(struct rq *rq)
3e51f33f 647{
a64692a3
MG
648 if (!rq->skip_clock_update)
649 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
650}
651
bf5c91ba
IM
652/*
653 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 */
655#ifdef CONFIG_SCHED_DEBUG
656# define const_debug __read_mostly
657#else
658# define const_debug static const
659#endif
660
017730c1
IM
661/**
662 * runqueue_is_locked
e17b38bf 663 * @cpu: the processor in question.
017730c1
IM
664 *
665 * Returns true if the current cpu runqueue is locked.
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
668 */
89f19f04 669int runqueue_is_locked(int cpu)
017730c1 670{
05fa785c 671 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
672}
673
bf5c91ba
IM
674/*
675 * Debugging: various feature bits
676 */
f00b45c1
PZ
677
678#define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
680
bf5c91ba 681enum {
f00b45c1 682#include "sched_features.h"
bf5c91ba
IM
683};
684
f00b45c1
PZ
685#undef SCHED_FEAT
686
687#define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
689
bf5c91ba 690const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
691#include "sched_features.h"
692 0;
693
694#undef SCHED_FEAT
695
696#ifdef CONFIG_SCHED_DEBUG
697#define SCHED_FEAT(name, enabled) \
698 #name ,
699
983ed7a6 700static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
701#include "sched_features.h"
702 NULL
703};
704
705#undef SCHED_FEAT
706
34f3a814 707static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 708{
f00b45c1
PZ
709 int i;
710
711 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
712 if (!(sysctl_sched_features & (1UL << i)))
713 seq_puts(m, "NO_");
714 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 715 }
34f3a814 716 seq_puts(m, "\n");
f00b45c1 717
34f3a814 718 return 0;
f00b45c1
PZ
719}
720
721static ssize_t
722sched_feat_write(struct file *filp, const char __user *ubuf,
723 size_t cnt, loff_t *ppos)
724{
725 char buf[64];
726 char *cmp = buf;
727 int neg = 0;
728 int i;
729
730 if (cnt > 63)
731 cnt = 63;
732
733 if (copy_from_user(&buf, ubuf, cnt))
734 return -EFAULT;
735
736 buf[cnt] = 0;
737
c24b7c52 738 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
739 neg = 1;
740 cmp += 3;
741 }
742
743 for (i = 0; sched_feat_names[i]; i++) {
744 int len = strlen(sched_feat_names[i]);
745
746 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
747 if (neg)
748 sysctl_sched_features &= ~(1UL << i);
749 else
750 sysctl_sched_features |= (1UL << i);
751 break;
752 }
753 }
754
755 if (!sched_feat_names[i])
756 return -EINVAL;
757
42994724 758 *ppos += cnt;
f00b45c1
PZ
759
760 return cnt;
761}
762
34f3a814
LZ
763static int sched_feat_open(struct inode *inode, struct file *filp)
764{
765 return single_open(filp, sched_feat_show, NULL);
766}
767
828c0950 768static const struct file_operations sched_feat_fops = {
34f3a814
LZ
769 .open = sched_feat_open,
770 .write = sched_feat_write,
771 .read = seq_read,
772 .llseek = seq_lseek,
773 .release = single_release,
f00b45c1
PZ
774};
775
776static __init int sched_init_debug(void)
777{
f00b45c1
PZ
778 debugfs_create_file("sched_features", 0644, NULL, NULL,
779 &sched_feat_fops);
780
781 return 0;
782}
783late_initcall(sched_init_debug);
784
785#endif
786
787#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 788
b82d9fdd
PZ
789/*
790 * Number of tasks to iterate in a single balance run.
791 * Limited because this is done with IRQs disabled.
792 */
793const_debug unsigned int sysctl_sched_nr_migrate = 32;
794
2398f2c6
PZ
795/*
796 * ratelimit for updating the group shares.
55cd5340 797 * default: 0.25ms
2398f2c6 798 */
55cd5340 799unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 800unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 801
ffda12a1
PZ
802/*
803 * Inject some fuzzyness into changing the per-cpu group shares
804 * this avoids remote rq-locks at the expense of fairness.
805 * default: 4
806 */
807unsigned int sysctl_sched_shares_thresh = 4;
808
e9e9250b
PZ
809/*
810 * period over which we average the RT time consumption, measured
811 * in ms.
812 *
813 * default: 1s
814 */
815const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
816
fa85ae24 817/*
9f0c1e56 818 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
819 * default: 1s
820 */
9f0c1e56 821unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 822
6892b75e
IM
823static __read_mostly int scheduler_running;
824
9f0c1e56
PZ
825/*
826 * part of the period that we allow rt tasks to run in us.
827 * default: 0.95s
828 */
829int sysctl_sched_rt_runtime = 950000;
fa85ae24 830
d0b27fa7
PZ
831static inline u64 global_rt_period(void)
832{
833 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
834}
835
836static inline u64 global_rt_runtime(void)
837{
e26873bb 838 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
839 return RUNTIME_INF;
840
841 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
842}
fa85ae24 843
1da177e4 844#ifndef prepare_arch_switch
4866cde0
NP
845# define prepare_arch_switch(next) do { } while (0)
846#endif
847#ifndef finish_arch_switch
848# define finish_arch_switch(prev) do { } while (0)
849#endif
850
051a1d1a
DA
851static inline int task_current(struct rq *rq, struct task_struct *p)
852{
853 return rq->curr == p;
854}
855
4866cde0 856#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 857static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 858{
051a1d1a 859 return task_current(rq, p);
4866cde0
NP
860}
861
70b97a7f 862static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
863{
864}
865
70b97a7f 866static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 867{
da04c035
IM
868#ifdef CONFIG_DEBUG_SPINLOCK
869 /* this is a valid case when another task releases the spinlock */
870 rq->lock.owner = current;
871#endif
8a25d5de
IM
872 /*
873 * If we are tracking spinlock dependencies then we have to
874 * fix up the runqueue lock - which gets 'carried over' from
875 * prev into current:
876 */
877 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
878
05fa785c 879 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
880}
881
882#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 883static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
884{
885#ifdef CONFIG_SMP
886 return p->oncpu;
887#else
051a1d1a 888 return task_current(rq, p);
4866cde0
NP
889#endif
890}
891
70b97a7f 892static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
893{
894#ifdef CONFIG_SMP
895 /*
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
898 * here.
899 */
900 next->oncpu = 1;
901#endif
902#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 903 raw_spin_unlock_irq(&rq->lock);
4866cde0 904#else
05fa785c 905 raw_spin_unlock(&rq->lock);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * After ->oncpu is cleared, the task can be moved to a different CPU.
914 * We must ensure this doesn't happen until the switch is completely
915 * finished.
916 */
917 smp_wmb();
918 prev->oncpu = 0;
919#endif
920#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
921 local_irq_enable();
1da177e4 922#endif
4866cde0
NP
923}
924#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 925
0970d299 926/*
65cc8e48
PZ
927 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
928 * against ttwu().
0970d299
PZ
929 */
930static inline int task_is_waking(struct task_struct *p)
931{
0017d735 932 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
933}
934
b29739f9
IM
935/*
936 * __task_rq_lock - lock the runqueue a given task resides on.
937 * Must be called interrupts disabled.
938 */
70b97a7f 939static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
940 __acquires(rq->lock)
941{
0970d299
PZ
942 struct rq *rq;
943
3a5c359a 944 for (;;) {
0970d299 945 rq = task_rq(p);
05fa785c 946 raw_spin_lock(&rq->lock);
65cc8e48 947 if (likely(rq == task_rq(p)))
3a5c359a 948 return rq;
05fa785c 949 raw_spin_unlock(&rq->lock);
b29739f9 950 }
b29739f9
IM
951}
952
1da177e4
LT
953/*
954 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 955 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
956 * explicitly disabling preemption.
957 */
70b97a7f 958static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
959 __acquires(rq->lock)
960{
70b97a7f 961 struct rq *rq;
1da177e4 962
3a5c359a
AK
963 for (;;) {
964 local_irq_save(*flags);
965 rq = task_rq(p);
05fa785c 966 raw_spin_lock(&rq->lock);
65cc8e48 967 if (likely(rq == task_rq(p)))
3a5c359a 968 return rq;
05fa785c 969 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 970 }
1da177e4
LT
971}
972
a9957449 973static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
974 __releases(rq->lock)
975{
05fa785c 976 raw_spin_unlock(&rq->lock);
b29739f9
IM
977}
978
70b97a7f 979static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
980 __releases(rq->lock)
981{
05fa785c 982 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
983}
984
1da177e4 985/*
cc2a73b5 986 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 987 */
a9957449 988static struct rq *this_rq_lock(void)
1da177e4
LT
989 __acquires(rq->lock)
990{
70b97a7f 991 struct rq *rq;
1da177e4
LT
992
993 local_irq_disable();
994 rq = this_rq();
05fa785c 995 raw_spin_lock(&rq->lock);
1da177e4
LT
996
997 return rq;
998}
999
8f4d37ec
PZ
1000#ifdef CONFIG_SCHED_HRTICK
1001/*
1002 * Use HR-timers to deliver accurate preemption points.
1003 *
1004 * Its all a bit involved since we cannot program an hrt while holding the
1005 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1006 * reschedule event.
1007 *
1008 * When we get rescheduled we reprogram the hrtick_timer outside of the
1009 * rq->lock.
1010 */
8f4d37ec
PZ
1011
1012/*
1013 * Use hrtick when:
1014 * - enabled by features
1015 * - hrtimer is actually high res
1016 */
1017static inline int hrtick_enabled(struct rq *rq)
1018{
1019 if (!sched_feat(HRTICK))
1020 return 0;
ba42059f 1021 if (!cpu_active(cpu_of(rq)))
b328ca18 1022 return 0;
8f4d37ec
PZ
1023 return hrtimer_is_hres_active(&rq->hrtick_timer);
1024}
1025
8f4d37ec
PZ
1026static void hrtick_clear(struct rq *rq)
1027{
1028 if (hrtimer_active(&rq->hrtick_timer))
1029 hrtimer_cancel(&rq->hrtick_timer);
1030}
1031
8f4d37ec
PZ
1032/*
1033 * High-resolution timer tick.
1034 * Runs from hardirq context with interrupts disabled.
1035 */
1036static enum hrtimer_restart hrtick(struct hrtimer *timer)
1037{
1038 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1039
1040 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1041
05fa785c 1042 raw_spin_lock(&rq->lock);
3e51f33f 1043 update_rq_clock(rq);
8f4d37ec 1044 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1045 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1046
1047 return HRTIMER_NORESTART;
1048}
1049
95e904c7 1050#ifdef CONFIG_SMP
31656519
PZ
1051/*
1052 * called from hardirq (IPI) context
1053 */
1054static void __hrtick_start(void *arg)
b328ca18 1055{
31656519 1056 struct rq *rq = arg;
b328ca18 1057
05fa785c 1058 raw_spin_lock(&rq->lock);
31656519
PZ
1059 hrtimer_restart(&rq->hrtick_timer);
1060 rq->hrtick_csd_pending = 0;
05fa785c 1061 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1062}
1063
31656519
PZ
1064/*
1065 * Called to set the hrtick timer state.
1066 *
1067 * called with rq->lock held and irqs disabled
1068 */
1069static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1070{
31656519
PZ
1071 struct hrtimer *timer = &rq->hrtick_timer;
1072 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1073
cc584b21 1074 hrtimer_set_expires(timer, time);
31656519
PZ
1075
1076 if (rq == this_rq()) {
1077 hrtimer_restart(timer);
1078 } else if (!rq->hrtick_csd_pending) {
6e275637 1079 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1080 rq->hrtick_csd_pending = 1;
1081 }
b328ca18
PZ
1082}
1083
1084static int
1085hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1086{
1087 int cpu = (int)(long)hcpu;
1088
1089 switch (action) {
1090 case CPU_UP_CANCELED:
1091 case CPU_UP_CANCELED_FROZEN:
1092 case CPU_DOWN_PREPARE:
1093 case CPU_DOWN_PREPARE_FROZEN:
1094 case CPU_DEAD:
1095 case CPU_DEAD_FROZEN:
31656519 1096 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1097 return NOTIFY_OK;
1098 }
1099
1100 return NOTIFY_DONE;
1101}
1102
fa748203 1103static __init void init_hrtick(void)
b328ca18
PZ
1104{
1105 hotcpu_notifier(hotplug_hrtick, 0);
1106}
31656519
PZ
1107#else
1108/*
1109 * Called to set the hrtick timer state.
1110 *
1111 * called with rq->lock held and irqs disabled
1112 */
1113static void hrtick_start(struct rq *rq, u64 delay)
1114{
7f1e2ca9 1115 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1116 HRTIMER_MODE_REL_PINNED, 0);
31656519 1117}
b328ca18 1118
006c75f1 1119static inline void init_hrtick(void)
8f4d37ec 1120{
8f4d37ec 1121}
31656519 1122#endif /* CONFIG_SMP */
8f4d37ec 1123
31656519 1124static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1125{
31656519
PZ
1126#ifdef CONFIG_SMP
1127 rq->hrtick_csd_pending = 0;
8f4d37ec 1128
31656519
PZ
1129 rq->hrtick_csd.flags = 0;
1130 rq->hrtick_csd.func = __hrtick_start;
1131 rq->hrtick_csd.info = rq;
1132#endif
8f4d37ec 1133
31656519
PZ
1134 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1135 rq->hrtick_timer.function = hrtick;
8f4d37ec 1136}
006c75f1 1137#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1138static inline void hrtick_clear(struct rq *rq)
1139{
1140}
1141
8f4d37ec
PZ
1142static inline void init_rq_hrtick(struct rq *rq)
1143{
1144}
1145
b328ca18
PZ
1146static inline void init_hrtick(void)
1147{
1148}
006c75f1 1149#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1150
c24d20db
IM
1151/*
1152 * resched_task - mark a task 'to be rescheduled now'.
1153 *
1154 * On UP this means the setting of the need_resched flag, on SMP it
1155 * might also involve a cross-CPU call to trigger the scheduler on
1156 * the target CPU.
1157 */
1158#ifdef CONFIG_SMP
1159
1160#ifndef tsk_is_polling
1161#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1162#endif
1163
31656519 1164static void resched_task(struct task_struct *p)
c24d20db
IM
1165{
1166 int cpu;
1167
05fa785c 1168 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1169
5ed0cec0 1170 if (test_tsk_need_resched(p))
c24d20db
IM
1171 return;
1172
5ed0cec0 1173 set_tsk_need_resched(p);
c24d20db
IM
1174
1175 cpu = task_cpu(p);
1176 if (cpu == smp_processor_id())
1177 return;
1178
1179 /* NEED_RESCHED must be visible before we test polling */
1180 smp_mb();
1181 if (!tsk_is_polling(p))
1182 smp_send_reschedule(cpu);
1183}
1184
1185static void resched_cpu(int cpu)
1186{
1187 struct rq *rq = cpu_rq(cpu);
1188 unsigned long flags;
1189
05fa785c 1190 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1191 return;
1192 resched_task(cpu_curr(cpu));
05fa785c 1193 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1194}
06d8308c
TG
1195
1196#ifdef CONFIG_NO_HZ
1197/*
1198 * When add_timer_on() enqueues a timer into the timer wheel of an
1199 * idle CPU then this timer might expire before the next timer event
1200 * which is scheduled to wake up that CPU. In case of a completely
1201 * idle system the next event might even be infinite time into the
1202 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1203 * leaves the inner idle loop so the newly added timer is taken into
1204 * account when the CPU goes back to idle and evaluates the timer
1205 * wheel for the next timer event.
1206 */
1207void wake_up_idle_cpu(int cpu)
1208{
1209 struct rq *rq = cpu_rq(cpu);
1210
1211 if (cpu == smp_processor_id())
1212 return;
1213
1214 /*
1215 * This is safe, as this function is called with the timer
1216 * wheel base lock of (cpu) held. When the CPU is on the way
1217 * to idle and has not yet set rq->curr to idle then it will
1218 * be serialized on the timer wheel base lock and take the new
1219 * timer into account automatically.
1220 */
1221 if (rq->curr != rq->idle)
1222 return;
1223
1224 /*
1225 * We can set TIF_RESCHED on the idle task of the other CPU
1226 * lockless. The worst case is that the other CPU runs the
1227 * idle task through an additional NOOP schedule()
1228 */
5ed0cec0 1229 set_tsk_need_resched(rq->idle);
06d8308c
TG
1230
1231 /* NEED_RESCHED must be visible before we test polling */
1232 smp_mb();
1233 if (!tsk_is_polling(rq->idle))
1234 smp_send_reschedule(cpu);
1235}
39c0cbe2
MG
1236
1237int nohz_ratelimit(int cpu)
1238{
1239 struct rq *rq = cpu_rq(cpu);
1240 u64 diff = rq->clock - rq->nohz_stamp;
1241
1242 rq->nohz_stamp = rq->clock;
1243
1244 return diff < (NSEC_PER_SEC / HZ) >> 1;
1245}
1246
6d6bc0ad 1247#endif /* CONFIG_NO_HZ */
06d8308c 1248
e9e9250b
PZ
1249static u64 sched_avg_period(void)
1250{
1251 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1252}
1253
1254static void sched_avg_update(struct rq *rq)
1255{
1256 s64 period = sched_avg_period();
1257
1258 while ((s64)(rq->clock - rq->age_stamp) > period) {
1259 rq->age_stamp += period;
1260 rq->rt_avg /= 2;
1261 }
1262}
1263
1264static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1265{
1266 rq->rt_avg += rt_delta;
1267 sched_avg_update(rq);
1268}
1269
6d6bc0ad 1270#else /* !CONFIG_SMP */
31656519 1271static void resched_task(struct task_struct *p)
c24d20db 1272{
05fa785c 1273 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1274 set_tsk_need_resched(p);
c24d20db 1275}
e9e9250b
PZ
1276
1277static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1278{
1279}
6d6bc0ad 1280#endif /* CONFIG_SMP */
c24d20db 1281
45bf76df
IM
1282#if BITS_PER_LONG == 32
1283# define WMULT_CONST (~0UL)
1284#else
1285# define WMULT_CONST (1UL << 32)
1286#endif
1287
1288#define WMULT_SHIFT 32
1289
194081eb
IM
1290/*
1291 * Shift right and round:
1292 */
cf2ab469 1293#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1294
a7be37ac
PZ
1295/*
1296 * delta *= weight / lw
1297 */
cb1c4fc9 1298static unsigned long
45bf76df
IM
1299calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1300 struct load_weight *lw)
1301{
1302 u64 tmp;
1303
7a232e03
LJ
1304 if (!lw->inv_weight) {
1305 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1306 lw->inv_weight = 1;
1307 else
1308 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1309 / (lw->weight+1);
1310 }
45bf76df
IM
1311
1312 tmp = (u64)delta_exec * weight;
1313 /*
1314 * Check whether we'd overflow the 64-bit multiplication:
1315 */
194081eb 1316 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1317 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1318 WMULT_SHIFT/2);
1319 else
cf2ab469 1320 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1321
ecf691da 1322 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1323}
1324
1091985b 1325static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1326{
1327 lw->weight += inc;
e89996ae 1328 lw->inv_weight = 0;
45bf76df
IM
1329}
1330
1091985b 1331static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1332{
1333 lw->weight -= dec;
e89996ae 1334 lw->inv_weight = 0;
45bf76df
IM
1335}
1336
2dd73a4f
PW
1337/*
1338 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1339 * of tasks with abnormal "nice" values across CPUs the contribution that
1340 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1341 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1342 * scaled version of the new time slice allocation that they receive on time
1343 * slice expiry etc.
1344 */
1345
cce7ade8
PZ
1346#define WEIGHT_IDLEPRIO 3
1347#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1348
1349/*
1350 * Nice levels are multiplicative, with a gentle 10% change for every
1351 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1352 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1353 * that remained on nice 0.
1354 *
1355 * The "10% effect" is relative and cumulative: from _any_ nice level,
1356 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1357 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1358 * If a task goes up by ~10% and another task goes down by ~10% then
1359 * the relative distance between them is ~25%.)
dd41f596
IM
1360 */
1361static const int prio_to_weight[40] = {
254753dc
IM
1362 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1363 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1364 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1365 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1366 /* 0 */ 1024, 820, 655, 526, 423,
1367 /* 5 */ 335, 272, 215, 172, 137,
1368 /* 10 */ 110, 87, 70, 56, 45,
1369 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1370};
1371
5714d2de
IM
1372/*
1373 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1374 *
1375 * In cases where the weight does not change often, we can use the
1376 * precalculated inverse to speed up arithmetics by turning divisions
1377 * into multiplications:
1378 */
dd41f596 1379static const u32 prio_to_wmult[40] = {
254753dc
IM
1380 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1381 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1382 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1383 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1384 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1385 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1386 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1387 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1388};
2dd73a4f 1389
ef12fefa
BR
1390/* Time spent by the tasks of the cpu accounting group executing in ... */
1391enum cpuacct_stat_index {
1392 CPUACCT_STAT_USER, /* ... user mode */
1393 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1394
1395 CPUACCT_STAT_NSTATS,
1396};
1397
d842de87
SV
1398#ifdef CONFIG_CGROUP_CPUACCT
1399static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1400static void cpuacct_update_stats(struct task_struct *tsk,
1401 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1402#else
1403static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1404static inline void cpuacct_update_stats(struct task_struct *tsk,
1405 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1406#endif
1407
18d95a28
PZ
1408static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1409{
1410 update_load_add(&rq->load, load);
1411}
1412
1413static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1414{
1415 update_load_sub(&rq->load, load);
1416}
1417
7940ca36 1418#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1419typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1420
1421/*
1422 * Iterate the full tree, calling @down when first entering a node and @up when
1423 * leaving it for the final time.
1424 */
eb755805 1425static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1426{
1427 struct task_group *parent, *child;
eb755805 1428 int ret;
c09595f6
PZ
1429
1430 rcu_read_lock();
1431 parent = &root_task_group;
1432down:
eb755805
PZ
1433 ret = (*down)(parent, data);
1434 if (ret)
1435 goto out_unlock;
c09595f6
PZ
1436 list_for_each_entry_rcu(child, &parent->children, siblings) {
1437 parent = child;
1438 goto down;
1439
1440up:
1441 continue;
1442 }
eb755805
PZ
1443 ret = (*up)(parent, data);
1444 if (ret)
1445 goto out_unlock;
c09595f6
PZ
1446
1447 child = parent;
1448 parent = parent->parent;
1449 if (parent)
1450 goto up;
eb755805 1451out_unlock:
c09595f6 1452 rcu_read_unlock();
eb755805
PZ
1453
1454 return ret;
c09595f6
PZ
1455}
1456
eb755805
PZ
1457static int tg_nop(struct task_group *tg, void *data)
1458{
1459 return 0;
c09595f6 1460}
eb755805
PZ
1461#endif
1462
1463#ifdef CONFIG_SMP
f5f08f39
PZ
1464/* Used instead of source_load when we know the type == 0 */
1465static unsigned long weighted_cpuload(const int cpu)
1466{
1467 return cpu_rq(cpu)->load.weight;
1468}
1469
1470/*
1471 * Return a low guess at the load of a migration-source cpu weighted
1472 * according to the scheduling class and "nice" value.
1473 *
1474 * We want to under-estimate the load of migration sources, to
1475 * balance conservatively.
1476 */
1477static unsigned long source_load(int cpu, int type)
1478{
1479 struct rq *rq = cpu_rq(cpu);
1480 unsigned long total = weighted_cpuload(cpu);
1481
1482 if (type == 0 || !sched_feat(LB_BIAS))
1483 return total;
1484
1485 return min(rq->cpu_load[type-1], total);
1486}
1487
1488/*
1489 * Return a high guess at the load of a migration-target cpu weighted
1490 * according to the scheduling class and "nice" value.
1491 */
1492static unsigned long target_load(int cpu, int type)
1493{
1494 struct rq *rq = cpu_rq(cpu);
1495 unsigned long total = weighted_cpuload(cpu);
1496
1497 if (type == 0 || !sched_feat(LB_BIAS))
1498 return total;
1499
1500 return max(rq->cpu_load[type-1], total);
1501}
1502
ae154be1
PZ
1503static unsigned long power_of(int cpu)
1504{
e51fd5e2 1505 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1506}
1507
eb755805
PZ
1508static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1509
1510static unsigned long cpu_avg_load_per_task(int cpu)
1511{
1512 struct rq *rq = cpu_rq(cpu);
af6d596f 1513 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1514
4cd42620
SR
1515 if (nr_running)
1516 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1517 else
1518 rq->avg_load_per_task = 0;
eb755805
PZ
1519
1520 return rq->avg_load_per_task;
1521}
1522
1523#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1524
43cf38eb 1525static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1526
c09595f6
PZ
1527static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1528
1529/*
1530 * Calculate and set the cpu's group shares.
1531 */
34d76c41
PZ
1532static void update_group_shares_cpu(struct task_group *tg, int cpu,
1533 unsigned long sd_shares,
1534 unsigned long sd_rq_weight,
4a6cc4bd 1535 unsigned long *usd_rq_weight)
18d95a28 1536{
34d76c41 1537 unsigned long shares, rq_weight;
a5004278 1538 int boost = 0;
c09595f6 1539
4a6cc4bd 1540 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1541 if (!rq_weight) {
1542 boost = 1;
1543 rq_weight = NICE_0_LOAD;
1544 }
c8cba857 1545
c09595f6 1546 /*
a8af7246
PZ
1547 * \Sum_j shares_j * rq_weight_i
1548 * shares_i = -----------------------------
1549 * \Sum_j rq_weight_j
c09595f6 1550 */
ec4e0e2f 1551 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1552 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1553
ffda12a1
PZ
1554 if (abs(shares - tg->se[cpu]->load.weight) >
1555 sysctl_sched_shares_thresh) {
1556 struct rq *rq = cpu_rq(cpu);
1557 unsigned long flags;
c09595f6 1558
05fa785c 1559 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1560 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1561 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1562 __set_se_shares(tg->se[cpu], shares);
05fa785c 1563 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1564 }
18d95a28 1565}
c09595f6
PZ
1566
1567/*
c8cba857
PZ
1568 * Re-compute the task group their per cpu shares over the given domain.
1569 * This needs to be done in a bottom-up fashion because the rq weight of a
1570 * parent group depends on the shares of its child groups.
c09595f6 1571 */
eb755805 1572static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1573{
cd8ad40d 1574 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1575 unsigned long *usd_rq_weight;
eb755805 1576 struct sched_domain *sd = data;
34d76c41 1577 unsigned long flags;
c8cba857 1578 int i;
c09595f6 1579
34d76c41
PZ
1580 if (!tg->se[0])
1581 return 0;
1582
1583 local_irq_save(flags);
4a6cc4bd 1584 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1585
758b2cdc 1586 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1587 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1588 usd_rq_weight[i] = weight;
34d76c41 1589
cd8ad40d 1590 rq_weight += weight;
ec4e0e2f
KC
1591 /*
1592 * If there are currently no tasks on the cpu pretend there
1593 * is one of average load so that when a new task gets to
1594 * run here it will not get delayed by group starvation.
1595 */
ec4e0e2f
KC
1596 if (!weight)
1597 weight = NICE_0_LOAD;
1598
cd8ad40d 1599 sum_weight += weight;
c8cba857 1600 shares += tg->cfs_rq[i]->shares;
c09595f6 1601 }
c09595f6 1602
cd8ad40d
PZ
1603 if (!rq_weight)
1604 rq_weight = sum_weight;
1605
c8cba857
PZ
1606 if ((!shares && rq_weight) || shares > tg->shares)
1607 shares = tg->shares;
1608
1609 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1610 shares = tg->shares;
c09595f6 1611
758b2cdc 1612 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1613 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1614
1615 local_irq_restore(flags);
eb755805
PZ
1616
1617 return 0;
c09595f6
PZ
1618}
1619
1620/*
c8cba857
PZ
1621 * Compute the cpu's hierarchical load factor for each task group.
1622 * This needs to be done in a top-down fashion because the load of a child
1623 * group is a fraction of its parents load.
c09595f6 1624 */
eb755805 1625static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1626{
c8cba857 1627 unsigned long load;
eb755805 1628 long cpu = (long)data;
c09595f6 1629
c8cba857
PZ
1630 if (!tg->parent) {
1631 load = cpu_rq(cpu)->load.weight;
1632 } else {
1633 load = tg->parent->cfs_rq[cpu]->h_load;
1634 load *= tg->cfs_rq[cpu]->shares;
1635 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1636 }
c09595f6 1637
c8cba857 1638 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1639
eb755805 1640 return 0;
c09595f6
PZ
1641}
1642
c8cba857 1643static void update_shares(struct sched_domain *sd)
4d8d595d 1644{
e7097159
PZ
1645 s64 elapsed;
1646 u64 now;
1647
1648 if (root_task_group_empty())
1649 return;
1650
c676329a 1651 now = local_clock();
e7097159 1652 elapsed = now - sd->last_update;
2398f2c6
PZ
1653
1654 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1655 sd->last_update = now;
eb755805 1656 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1657 }
4d8d595d
PZ
1658}
1659
eb755805 1660static void update_h_load(long cpu)
c09595f6 1661{
e7097159
PZ
1662 if (root_task_group_empty())
1663 return;
1664
eb755805 1665 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1666}
1667
c09595f6
PZ
1668#else
1669
c8cba857 1670static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1671{
1672}
1673
18d95a28
PZ
1674#endif
1675
8f45e2b5
GH
1676#ifdef CONFIG_PREEMPT
1677
b78bb868
PZ
1678static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1679
70574a99 1680/*
8f45e2b5
GH
1681 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1682 * way at the expense of forcing extra atomic operations in all
1683 * invocations. This assures that the double_lock is acquired using the
1684 * same underlying policy as the spinlock_t on this architecture, which
1685 * reduces latency compared to the unfair variant below. However, it
1686 * also adds more overhead and therefore may reduce throughput.
70574a99 1687 */
8f45e2b5
GH
1688static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1689 __releases(this_rq->lock)
1690 __acquires(busiest->lock)
1691 __acquires(this_rq->lock)
1692{
05fa785c 1693 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1694 double_rq_lock(this_rq, busiest);
1695
1696 return 1;
1697}
1698
1699#else
1700/*
1701 * Unfair double_lock_balance: Optimizes throughput at the expense of
1702 * latency by eliminating extra atomic operations when the locks are
1703 * already in proper order on entry. This favors lower cpu-ids and will
1704 * grant the double lock to lower cpus over higher ids under contention,
1705 * regardless of entry order into the function.
1706 */
1707static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1708 __releases(this_rq->lock)
1709 __acquires(busiest->lock)
1710 __acquires(this_rq->lock)
1711{
1712 int ret = 0;
1713
05fa785c 1714 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1715 if (busiest < this_rq) {
05fa785c
TG
1716 raw_spin_unlock(&this_rq->lock);
1717 raw_spin_lock(&busiest->lock);
1718 raw_spin_lock_nested(&this_rq->lock,
1719 SINGLE_DEPTH_NESTING);
70574a99
AD
1720 ret = 1;
1721 } else
05fa785c
TG
1722 raw_spin_lock_nested(&busiest->lock,
1723 SINGLE_DEPTH_NESTING);
70574a99
AD
1724 }
1725 return ret;
1726}
1727
8f45e2b5
GH
1728#endif /* CONFIG_PREEMPT */
1729
1730/*
1731 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1732 */
1733static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1734{
1735 if (unlikely(!irqs_disabled())) {
1736 /* printk() doesn't work good under rq->lock */
05fa785c 1737 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1738 BUG_ON(1);
1739 }
1740
1741 return _double_lock_balance(this_rq, busiest);
1742}
1743
70574a99
AD
1744static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1745 __releases(busiest->lock)
1746{
05fa785c 1747 raw_spin_unlock(&busiest->lock);
70574a99
AD
1748 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1749}
1e3c88bd
PZ
1750
1751/*
1752 * double_rq_lock - safely lock two runqueues
1753 *
1754 * Note this does not disable interrupts like task_rq_lock,
1755 * you need to do so manually before calling.
1756 */
1757static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1758 __acquires(rq1->lock)
1759 __acquires(rq2->lock)
1760{
1761 BUG_ON(!irqs_disabled());
1762 if (rq1 == rq2) {
1763 raw_spin_lock(&rq1->lock);
1764 __acquire(rq2->lock); /* Fake it out ;) */
1765 } else {
1766 if (rq1 < rq2) {
1767 raw_spin_lock(&rq1->lock);
1768 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1769 } else {
1770 raw_spin_lock(&rq2->lock);
1771 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1772 }
1773 }
1e3c88bd
PZ
1774}
1775
1776/*
1777 * double_rq_unlock - safely unlock two runqueues
1778 *
1779 * Note this does not restore interrupts like task_rq_unlock,
1780 * you need to do so manually after calling.
1781 */
1782static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1783 __releases(rq1->lock)
1784 __releases(rq2->lock)
1785{
1786 raw_spin_unlock(&rq1->lock);
1787 if (rq1 != rq2)
1788 raw_spin_unlock(&rq2->lock);
1789 else
1790 __release(rq2->lock);
1791}
1792
18d95a28
PZ
1793#endif
1794
30432094 1795#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1796static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1797{
30432094 1798#ifdef CONFIG_SMP
34e83e85
IM
1799 cfs_rq->shares = shares;
1800#endif
1801}
30432094 1802#endif
e7693a36 1803
74f5187a 1804static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1805static void update_sysctl(void);
acb4a848 1806static int get_update_sysctl_factor(void);
fdf3e95d 1807static void update_cpu_load(struct rq *this_rq);
dce48a84 1808
cd29fe6f
PZ
1809static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1810{
1811 set_task_rq(p, cpu);
1812#ifdef CONFIG_SMP
1813 /*
1814 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1815 * successfuly executed on another CPU. We must ensure that updates of
1816 * per-task data have been completed by this moment.
1817 */
1818 smp_wmb();
1819 task_thread_info(p)->cpu = cpu;
1820#endif
1821}
dce48a84 1822
1e3c88bd 1823static const struct sched_class rt_sched_class;
dd41f596
IM
1824
1825#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1826#define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
dd41f596 1828
1e3c88bd
PZ
1829#include "sched_stats.h"
1830
c09595f6 1831static void inc_nr_running(struct rq *rq)
9c217245
IM
1832{
1833 rq->nr_running++;
9c217245
IM
1834}
1835
c09595f6 1836static void dec_nr_running(struct rq *rq)
9c217245
IM
1837{
1838 rq->nr_running--;
9c217245
IM
1839}
1840
45bf76df
IM
1841static void set_load_weight(struct task_struct *p)
1842{
1843 if (task_has_rt_policy(p)) {
e51fd5e2
PZ
1844 p->se.load.weight = 0;
1845 p->se.load.inv_weight = WMULT_CONST;
dd41f596
IM
1846 return;
1847 }
45bf76df 1848
dd41f596
IM
1849 /*
1850 * SCHED_IDLE tasks get minimal weight:
1851 */
1852 if (p->policy == SCHED_IDLE) {
1853 p->se.load.weight = WEIGHT_IDLEPRIO;
1854 p->se.load.inv_weight = WMULT_IDLEPRIO;
1855 return;
1856 }
71f8bd46 1857
dd41f596
IM
1858 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1859 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1860}
1861
371fd7e7 1862static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1863{
a64692a3 1864 update_rq_clock(rq);
dd41f596 1865 sched_info_queued(p);
371fd7e7 1866 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1867 p->se.on_rq = 1;
71f8bd46
IM
1868}
1869
371fd7e7 1870static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1871{
a64692a3 1872 update_rq_clock(rq);
46ac22ba 1873 sched_info_dequeued(p);
371fd7e7 1874 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1875 p->se.on_rq = 0;
71f8bd46
IM
1876}
1877
1e3c88bd
PZ
1878/*
1879 * activate_task - move a task to the runqueue.
1880 */
371fd7e7 1881static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1882{
1883 if (task_contributes_to_load(p))
1884 rq->nr_uninterruptible--;
1885
371fd7e7 1886 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1887 inc_nr_running(rq);
1888}
1889
1890/*
1891 * deactivate_task - remove a task from the runqueue.
1892 */
371fd7e7 1893static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1894{
1895 if (task_contributes_to_load(p))
1896 rq->nr_uninterruptible++;
1897
371fd7e7 1898 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1899 dec_nr_running(rq);
1900}
1901
1902#include "sched_idletask.c"
1903#include "sched_fair.c"
1904#include "sched_rt.c"
1905#ifdef CONFIG_SCHED_DEBUG
1906# include "sched_debug.c"
1907#endif
1908
14531189 1909/*
dd41f596 1910 * __normal_prio - return the priority that is based on the static prio
14531189 1911 */
14531189
IM
1912static inline int __normal_prio(struct task_struct *p)
1913{
dd41f596 1914 return p->static_prio;
14531189
IM
1915}
1916
b29739f9
IM
1917/*
1918 * Calculate the expected normal priority: i.e. priority
1919 * without taking RT-inheritance into account. Might be
1920 * boosted by interactivity modifiers. Changes upon fork,
1921 * setprio syscalls, and whenever the interactivity
1922 * estimator recalculates.
1923 */
36c8b586 1924static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1925{
1926 int prio;
1927
e05606d3 1928 if (task_has_rt_policy(p))
b29739f9
IM
1929 prio = MAX_RT_PRIO-1 - p->rt_priority;
1930 else
1931 prio = __normal_prio(p);
1932 return prio;
1933}
1934
1935/*
1936 * Calculate the current priority, i.e. the priority
1937 * taken into account by the scheduler. This value might
1938 * be boosted by RT tasks, or might be boosted by
1939 * interactivity modifiers. Will be RT if the task got
1940 * RT-boosted. If not then it returns p->normal_prio.
1941 */
36c8b586 1942static int effective_prio(struct task_struct *p)
b29739f9
IM
1943{
1944 p->normal_prio = normal_prio(p);
1945 /*
1946 * If we are RT tasks or we were boosted to RT priority,
1947 * keep the priority unchanged. Otherwise, update priority
1948 * to the normal priority:
1949 */
1950 if (!rt_prio(p->prio))
1951 return p->normal_prio;
1952 return p->prio;
1953}
1954
1da177e4
LT
1955/**
1956 * task_curr - is this task currently executing on a CPU?
1957 * @p: the task in question.
1958 */
36c8b586 1959inline int task_curr(const struct task_struct *p)
1da177e4
LT
1960{
1961 return cpu_curr(task_cpu(p)) == p;
1962}
1963
cb469845
SR
1964static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1965 const struct sched_class *prev_class,
1966 int oldprio, int running)
1967{
1968 if (prev_class != p->sched_class) {
1969 if (prev_class->switched_from)
1970 prev_class->switched_from(rq, p, running);
1971 p->sched_class->switched_to(rq, p, running);
1972 } else
1973 p->sched_class->prio_changed(rq, p, oldprio, running);
1974}
1975
1da177e4 1976#ifdef CONFIG_SMP
cc367732
IM
1977/*
1978 * Is this task likely cache-hot:
1979 */
e7693a36 1980static int
cc367732
IM
1981task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1982{
1983 s64 delta;
1984
e6c8fba7
PZ
1985 if (p->sched_class != &fair_sched_class)
1986 return 0;
1987
f540a608
IM
1988 /*
1989 * Buddy candidates are cache hot:
1990 */
f685ceac 1991 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
1992 (&p->se == cfs_rq_of(&p->se)->next ||
1993 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1994 return 1;
1995
6bc1665b
IM
1996 if (sysctl_sched_migration_cost == -1)
1997 return 1;
1998 if (sysctl_sched_migration_cost == 0)
1999 return 0;
2000
cc367732
IM
2001 delta = now - p->se.exec_start;
2002
2003 return delta < (s64)sysctl_sched_migration_cost;
2004}
2005
dd41f596 2006void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2007{
e2912009
PZ
2008#ifdef CONFIG_SCHED_DEBUG
2009 /*
2010 * We should never call set_task_cpu() on a blocked task,
2011 * ttwu() will sort out the placement.
2012 */
077614ee
PZ
2013 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2014 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2015#endif
2016
de1d7286 2017 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2018
0c69774e
PZ
2019 if (task_cpu(p) != new_cpu) {
2020 p->se.nr_migrations++;
2021 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2022 }
dd41f596
IM
2023
2024 __set_task_cpu(p, new_cpu);
c65cc870
IM
2025}
2026
969c7921 2027struct migration_arg {
36c8b586 2028 struct task_struct *task;
1da177e4 2029 int dest_cpu;
70b97a7f 2030};
1da177e4 2031
969c7921
TH
2032static int migration_cpu_stop(void *data);
2033
1da177e4
LT
2034/*
2035 * The task's runqueue lock must be held.
2036 * Returns true if you have to wait for migration thread.
2037 */
969c7921 2038static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2039{
70b97a7f 2040 struct rq *rq = task_rq(p);
1da177e4
LT
2041
2042 /*
2043 * If the task is not on a runqueue (and not running), then
e2912009 2044 * the next wake-up will properly place the task.
1da177e4 2045 */
969c7921 2046 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2047}
2048
2049/*
2050 * wait_task_inactive - wait for a thread to unschedule.
2051 *
85ba2d86
RM
2052 * If @match_state is nonzero, it's the @p->state value just checked and
2053 * not expected to change. If it changes, i.e. @p might have woken up,
2054 * then return zero. When we succeed in waiting for @p to be off its CPU,
2055 * we return a positive number (its total switch count). If a second call
2056 * a short while later returns the same number, the caller can be sure that
2057 * @p has remained unscheduled the whole time.
2058 *
1da177e4
LT
2059 * The caller must ensure that the task *will* unschedule sometime soon,
2060 * else this function might spin for a *long* time. This function can't
2061 * be called with interrupts off, or it may introduce deadlock with
2062 * smp_call_function() if an IPI is sent by the same process we are
2063 * waiting to become inactive.
2064 */
85ba2d86 2065unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2066{
2067 unsigned long flags;
dd41f596 2068 int running, on_rq;
85ba2d86 2069 unsigned long ncsw;
70b97a7f 2070 struct rq *rq;
1da177e4 2071
3a5c359a
AK
2072 for (;;) {
2073 /*
2074 * We do the initial early heuristics without holding
2075 * any task-queue locks at all. We'll only try to get
2076 * the runqueue lock when things look like they will
2077 * work out!
2078 */
2079 rq = task_rq(p);
fa490cfd 2080
3a5c359a
AK
2081 /*
2082 * If the task is actively running on another CPU
2083 * still, just relax and busy-wait without holding
2084 * any locks.
2085 *
2086 * NOTE! Since we don't hold any locks, it's not
2087 * even sure that "rq" stays as the right runqueue!
2088 * But we don't care, since "task_running()" will
2089 * return false if the runqueue has changed and p
2090 * is actually now running somewhere else!
2091 */
85ba2d86
RM
2092 while (task_running(rq, p)) {
2093 if (match_state && unlikely(p->state != match_state))
2094 return 0;
3a5c359a 2095 cpu_relax();
85ba2d86 2096 }
fa490cfd 2097
3a5c359a
AK
2098 /*
2099 * Ok, time to look more closely! We need the rq
2100 * lock now, to be *sure*. If we're wrong, we'll
2101 * just go back and repeat.
2102 */
2103 rq = task_rq_lock(p, &flags);
27a9da65 2104 trace_sched_wait_task(p);
3a5c359a
AK
2105 running = task_running(rq, p);
2106 on_rq = p->se.on_rq;
85ba2d86 2107 ncsw = 0;
f31e11d8 2108 if (!match_state || p->state == match_state)
93dcf55f 2109 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2110 task_rq_unlock(rq, &flags);
fa490cfd 2111
85ba2d86
RM
2112 /*
2113 * If it changed from the expected state, bail out now.
2114 */
2115 if (unlikely(!ncsw))
2116 break;
2117
3a5c359a
AK
2118 /*
2119 * Was it really running after all now that we
2120 * checked with the proper locks actually held?
2121 *
2122 * Oops. Go back and try again..
2123 */
2124 if (unlikely(running)) {
2125 cpu_relax();
2126 continue;
2127 }
fa490cfd 2128
3a5c359a
AK
2129 /*
2130 * It's not enough that it's not actively running,
2131 * it must be off the runqueue _entirely_, and not
2132 * preempted!
2133 *
80dd99b3 2134 * So if it was still runnable (but just not actively
3a5c359a
AK
2135 * running right now), it's preempted, and we should
2136 * yield - it could be a while.
2137 */
2138 if (unlikely(on_rq)) {
2139 schedule_timeout_uninterruptible(1);
2140 continue;
2141 }
fa490cfd 2142
3a5c359a
AK
2143 /*
2144 * Ahh, all good. It wasn't running, and it wasn't
2145 * runnable, which means that it will never become
2146 * running in the future either. We're all done!
2147 */
2148 break;
2149 }
85ba2d86
RM
2150
2151 return ncsw;
1da177e4
LT
2152}
2153
2154/***
2155 * kick_process - kick a running thread to enter/exit the kernel
2156 * @p: the to-be-kicked thread
2157 *
2158 * Cause a process which is running on another CPU to enter
2159 * kernel-mode, without any delay. (to get signals handled.)
2160 *
2161 * NOTE: this function doesnt have to take the runqueue lock,
2162 * because all it wants to ensure is that the remote task enters
2163 * the kernel. If the IPI races and the task has been migrated
2164 * to another CPU then no harm is done and the purpose has been
2165 * achieved as well.
2166 */
36c8b586 2167void kick_process(struct task_struct *p)
1da177e4
LT
2168{
2169 int cpu;
2170
2171 preempt_disable();
2172 cpu = task_cpu(p);
2173 if ((cpu != smp_processor_id()) && task_curr(p))
2174 smp_send_reschedule(cpu);
2175 preempt_enable();
2176}
b43e3521 2177EXPORT_SYMBOL_GPL(kick_process);
476d139c 2178#endif /* CONFIG_SMP */
1da177e4 2179
0793a61d
TG
2180/**
2181 * task_oncpu_function_call - call a function on the cpu on which a task runs
2182 * @p: the task to evaluate
2183 * @func: the function to be called
2184 * @info: the function call argument
2185 *
2186 * Calls the function @func when the task is currently running. This might
2187 * be on the current CPU, which just calls the function directly
2188 */
2189void task_oncpu_function_call(struct task_struct *p,
2190 void (*func) (void *info), void *info)
2191{
2192 int cpu;
2193
2194 preempt_disable();
2195 cpu = task_cpu(p);
2196 if (task_curr(p))
2197 smp_call_function_single(cpu, func, info, 1);
2198 preempt_enable();
2199}
2200
970b13ba 2201#ifdef CONFIG_SMP
30da688e
ON
2202/*
2203 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2204 */
5da9a0fb
PZ
2205static int select_fallback_rq(int cpu, struct task_struct *p)
2206{
2207 int dest_cpu;
2208 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2209
2210 /* Look for allowed, online CPU in same node. */
2211 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2212 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2213 return dest_cpu;
2214
2215 /* Any allowed, online CPU? */
2216 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2217 if (dest_cpu < nr_cpu_ids)
2218 return dest_cpu;
2219
2220 /* No more Mr. Nice Guy. */
897f0b3c 2221 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2222 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2223 /*
2224 * Don't tell them about moving exiting tasks or
2225 * kernel threads (both mm NULL), since they never
2226 * leave kernel.
2227 */
2228 if (p->mm && printk_ratelimit()) {
2229 printk(KERN_INFO "process %d (%s) no "
2230 "longer affine to cpu%d\n",
2231 task_pid_nr(p), p->comm, cpu);
2232 }
2233 }
2234
2235 return dest_cpu;
2236}
2237
e2912009 2238/*
30da688e 2239 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2240 */
970b13ba 2241static inline
0017d735 2242int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2243{
0017d735 2244 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2245
2246 /*
2247 * In order not to call set_task_cpu() on a blocking task we need
2248 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2249 * cpu.
2250 *
2251 * Since this is common to all placement strategies, this lives here.
2252 *
2253 * [ this allows ->select_task() to simply return task_cpu(p) and
2254 * not worry about this generic constraint ]
2255 */
2256 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2257 !cpu_online(cpu)))
5da9a0fb 2258 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2259
2260 return cpu;
970b13ba 2261}
09a40af5
MG
2262
2263static void update_avg(u64 *avg, u64 sample)
2264{
2265 s64 diff = sample - *avg;
2266 *avg += diff >> 3;
2267}
970b13ba
PZ
2268#endif
2269
9ed3811a
TH
2270static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2271 bool is_sync, bool is_migrate, bool is_local,
2272 unsigned long en_flags)
2273{
2274 schedstat_inc(p, se.statistics.nr_wakeups);
2275 if (is_sync)
2276 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2277 if (is_migrate)
2278 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2279 if (is_local)
2280 schedstat_inc(p, se.statistics.nr_wakeups_local);
2281 else
2282 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2283
2284 activate_task(rq, p, en_flags);
2285}
2286
2287static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2288 int wake_flags, bool success)
2289{
2290 trace_sched_wakeup(p, success);
2291 check_preempt_curr(rq, p, wake_flags);
2292
2293 p->state = TASK_RUNNING;
2294#ifdef CONFIG_SMP
2295 if (p->sched_class->task_woken)
2296 p->sched_class->task_woken(rq, p);
2297
2298 if (unlikely(rq->idle_stamp)) {
2299 u64 delta = rq->clock - rq->idle_stamp;
2300 u64 max = 2*sysctl_sched_migration_cost;
2301
2302 if (delta > max)
2303 rq->avg_idle = max;
2304 else
2305 update_avg(&rq->avg_idle, delta);
2306 rq->idle_stamp = 0;
2307 }
2308#endif
21aa9af0
TH
2309 /* if a worker is waking up, notify workqueue */
2310 if ((p->flags & PF_WQ_WORKER) && success)
2311 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2312}
2313
2314/**
1da177e4 2315 * try_to_wake_up - wake up a thread
9ed3811a 2316 * @p: the thread to be awakened
1da177e4 2317 * @state: the mask of task states that can be woken
9ed3811a 2318 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2319 *
2320 * Put it on the run-queue if it's not already there. The "current"
2321 * thread is always on the run-queue (except when the actual
2322 * re-schedule is in progress), and as such you're allowed to do
2323 * the simpler "current->state = TASK_RUNNING" to mark yourself
2324 * runnable without the overhead of this.
2325 *
9ed3811a
TH
2326 * Returns %true if @p was woken up, %false if it was already running
2327 * or @state didn't match @p's state.
1da177e4 2328 */
7d478721
PZ
2329static int try_to_wake_up(struct task_struct *p, unsigned int state,
2330 int wake_flags)
1da177e4 2331{
cc367732 2332 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2333 unsigned long flags;
371fd7e7 2334 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2335 struct rq *rq;
1da177e4 2336
e9c84311 2337 this_cpu = get_cpu();
2398f2c6 2338
04e2f174 2339 smp_wmb();
ab3b3aa5 2340 rq = task_rq_lock(p, &flags);
e9c84311 2341 if (!(p->state & state))
1da177e4
LT
2342 goto out;
2343
dd41f596 2344 if (p->se.on_rq)
1da177e4
LT
2345 goto out_running;
2346
2347 cpu = task_cpu(p);
cc367732 2348 orig_cpu = cpu;
1da177e4
LT
2349
2350#ifdef CONFIG_SMP
2351 if (unlikely(task_running(rq, p)))
2352 goto out_activate;
2353
e9c84311
PZ
2354 /*
2355 * In order to handle concurrent wakeups and release the rq->lock
2356 * we put the task in TASK_WAKING state.
eb24073b
IM
2357 *
2358 * First fix up the nr_uninterruptible count:
e9c84311 2359 */
cc87f76a
PZ
2360 if (task_contributes_to_load(p)) {
2361 if (likely(cpu_online(orig_cpu)))
2362 rq->nr_uninterruptible--;
2363 else
2364 this_rq()->nr_uninterruptible--;
2365 }
e9c84311 2366 p->state = TASK_WAKING;
efbbd05a 2367
371fd7e7 2368 if (p->sched_class->task_waking) {
efbbd05a 2369 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2370 en_flags |= ENQUEUE_WAKING;
2371 }
efbbd05a 2372
0017d735
PZ
2373 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2374 if (cpu != orig_cpu)
5d2f5a61 2375 set_task_cpu(p, cpu);
0017d735 2376 __task_rq_unlock(rq);
ab19cb23 2377
0970d299
PZ
2378 rq = cpu_rq(cpu);
2379 raw_spin_lock(&rq->lock);
f5dc3753 2380
0970d299
PZ
2381 /*
2382 * We migrated the task without holding either rq->lock, however
2383 * since the task is not on the task list itself, nobody else
2384 * will try and migrate the task, hence the rq should match the
2385 * cpu we just moved it to.
2386 */
2387 WARN_ON(task_cpu(p) != cpu);
e9c84311 2388 WARN_ON(p->state != TASK_WAKING);
1da177e4 2389
e7693a36
GH
2390#ifdef CONFIG_SCHEDSTATS
2391 schedstat_inc(rq, ttwu_count);
2392 if (cpu == this_cpu)
2393 schedstat_inc(rq, ttwu_local);
2394 else {
2395 struct sched_domain *sd;
2396 for_each_domain(this_cpu, sd) {
758b2cdc 2397 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2398 schedstat_inc(sd, ttwu_wake_remote);
2399 break;
2400 }
2401 }
2402 }
6d6bc0ad 2403#endif /* CONFIG_SCHEDSTATS */
e7693a36 2404
1da177e4
LT
2405out_activate:
2406#endif /* CONFIG_SMP */
9ed3811a
TH
2407 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2408 cpu == this_cpu, en_flags);
1da177e4 2409 success = 1;
1da177e4 2410out_running:
9ed3811a 2411 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2412out:
2413 task_rq_unlock(rq, &flags);
e9c84311 2414 put_cpu();
1da177e4
LT
2415
2416 return success;
2417}
2418
21aa9af0
TH
2419/**
2420 * try_to_wake_up_local - try to wake up a local task with rq lock held
2421 * @p: the thread to be awakened
2422 *
2423 * Put @p on the run-queue if it's not alredy there. The caller must
2424 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2425 * the current task. this_rq() stays locked over invocation.
2426 */
2427static void try_to_wake_up_local(struct task_struct *p)
2428{
2429 struct rq *rq = task_rq(p);
2430 bool success = false;
2431
2432 BUG_ON(rq != this_rq());
2433 BUG_ON(p == current);
2434 lockdep_assert_held(&rq->lock);
2435
2436 if (!(p->state & TASK_NORMAL))
2437 return;
2438
2439 if (!p->se.on_rq) {
2440 if (likely(!task_running(rq, p))) {
2441 schedstat_inc(rq, ttwu_count);
2442 schedstat_inc(rq, ttwu_local);
2443 }
2444 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2445 success = true;
2446 }
2447 ttwu_post_activation(p, rq, 0, success);
2448}
2449
50fa610a
DH
2450/**
2451 * wake_up_process - Wake up a specific process
2452 * @p: The process to be woken up.
2453 *
2454 * Attempt to wake up the nominated process and move it to the set of runnable
2455 * processes. Returns 1 if the process was woken up, 0 if it was already
2456 * running.
2457 *
2458 * It may be assumed that this function implies a write memory barrier before
2459 * changing the task state if and only if any tasks are woken up.
2460 */
7ad5b3a5 2461int wake_up_process(struct task_struct *p)
1da177e4 2462{
d9514f6c 2463 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2464}
1da177e4
LT
2465EXPORT_SYMBOL(wake_up_process);
2466
7ad5b3a5 2467int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2468{
2469 return try_to_wake_up(p, state, 0);
2470}
2471
1da177e4
LT
2472/*
2473 * Perform scheduler related setup for a newly forked process p.
2474 * p is forked by current.
dd41f596
IM
2475 *
2476 * __sched_fork() is basic setup used by init_idle() too:
2477 */
2478static void __sched_fork(struct task_struct *p)
2479{
dd41f596
IM
2480 p->se.exec_start = 0;
2481 p->se.sum_exec_runtime = 0;
f6cf891c 2482 p->se.prev_sum_exec_runtime = 0;
6c594c21 2483 p->se.nr_migrations = 0;
6cfb0d5d
IM
2484
2485#ifdef CONFIG_SCHEDSTATS
41acab88 2486 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2487#endif
476d139c 2488
fa717060 2489 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2490 p->se.on_rq = 0;
4a55bd5e 2491 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2492
e107be36
AK
2493#ifdef CONFIG_PREEMPT_NOTIFIERS
2494 INIT_HLIST_HEAD(&p->preempt_notifiers);
2495#endif
dd41f596
IM
2496}
2497
2498/*
2499 * fork()/clone()-time setup:
2500 */
2501void sched_fork(struct task_struct *p, int clone_flags)
2502{
2503 int cpu = get_cpu();
2504
2505 __sched_fork(p);
06b83b5f 2506 /*
0017d735 2507 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2508 * nobody will actually run it, and a signal or other external
2509 * event cannot wake it up and insert it on the runqueue either.
2510 */
0017d735 2511 p->state = TASK_RUNNING;
dd41f596 2512
b9dc29e7
MG
2513 /*
2514 * Revert to default priority/policy on fork if requested.
2515 */
2516 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2517 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2518 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2519 p->normal_prio = p->static_prio;
2520 }
b9dc29e7 2521
6c697bdf
MG
2522 if (PRIO_TO_NICE(p->static_prio) < 0) {
2523 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2524 p->normal_prio = p->static_prio;
6c697bdf
MG
2525 set_load_weight(p);
2526 }
2527
b9dc29e7
MG
2528 /*
2529 * We don't need the reset flag anymore after the fork. It has
2530 * fulfilled its duty:
2531 */
2532 p->sched_reset_on_fork = 0;
2533 }
ca94c442 2534
f83f9ac2
PW
2535 /*
2536 * Make sure we do not leak PI boosting priority to the child.
2537 */
2538 p->prio = current->normal_prio;
2539
2ddbf952
HS
2540 if (!rt_prio(p->prio))
2541 p->sched_class = &fair_sched_class;
b29739f9 2542
cd29fe6f
PZ
2543 if (p->sched_class->task_fork)
2544 p->sched_class->task_fork(p);
2545
5f3edc1b
PZ
2546 set_task_cpu(p, cpu);
2547
52f17b6c 2548#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2549 if (likely(sched_info_on()))
52f17b6c 2550 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2551#endif
d6077cb8 2552#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2553 p->oncpu = 0;
2554#endif
1da177e4 2555#ifdef CONFIG_PREEMPT
4866cde0 2556 /* Want to start with kernel preemption disabled. */
a1261f54 2557 task_thread_info(p)->preempt_count = 1;
1da177e4 2558#endif
917b627d
GH
2559 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2560
476d139c 2561 put_cpu();
1da177e4
LT
2562}
2563
2564/*
2565 * wake_up_new_task - wake up a newly created task for the first time.
2566 *
2567 * This function will do some initial scheduler statistics housekeeping
2568 * that must be done for every newly created context, then puts the task
2569 * on the runqueue and wakes it.
2570 */
7ad5b3a5 2571void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2572{
2573 unsigned long flags;
dd41f596 2574 struct rq *rq;
c890692b 2575 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2576
2577#ifdef CONFIG_SMP
0017d735
PZ
2578 rq = task_rq_lock(p, &flags);
2579 p->state = TASK_WAKING;
2580
fabf318e
PZ
2581 /*
2582 * Fork balancing, do it here and not earlier because:
2583 * - cpus_allowed can change in the fork path
2584 * - any previously selected cpu might disappear through hotplug
2585 *
0017d735
PZ
2586 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2587 * without people poking at ->cpus_allowed.
fabf318e 2588 */
0017d735 2589 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2590 set_task_cpu(p, cpu);
1da177e4 2591
06b83b5f 2592 p->state = TASK_RUNNING;
0017d735
PZ
2593 task_rq_unlock(rq, &flags);
2594#endif
2595
2596 rq = task_rq_lock(p, &flags);
cd29fe6f 2597 activate_task(rq, p, 0);
27a9da65 2598 trace_sched_wakeup_new(p, 1);
a7558e01 2599 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2600#ifdef CONFIG_SMP
efbbd05a
PZ
2601 if (p->sched_class->task_woken)
2602 p->sched_class->task_woken(rq, p);
9a897c5a 2603#endif
dd41f596 2604 task_rq_unlock(rq, &flags);
fabf318e 2605 put_cpu();
1da177e4
LT
2606}
2607
e107be36
AK
2608#ifdef CONFIG_PREEMPT_NOTIFIERS
2609
2610/**
80dd99b3 2611 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2612 * @notifier: notifier struct to register
e107be36
AK
2613 */
2614void preempt_notifier_register(struct preempt_notifier *notifier)
2615{
2616 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2617}
2618EXPORT_SYMBOL_GPL(preempt_notifier_register);
2619
2620/**
2621 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2622 * @notifier: notifier struct to unregister
e107be36
AK
2623 *
2624 * This is safe to call from within a preemption notifier.
2625 */
2626void preempt_notifier_unregister(struct preempt_notifier *notifier)
2627{
2628 hlist_del(&notifier->link);
2629}
2630EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2631
2632static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2633{
2634 struct preempt_notifier *notifier;
2635 struct hlist_node *node;
2636
2637 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2638 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2639}
2640
2641static void
2642fire_sched_out_preempt_notifiers(struct task_struct *curr,
2643 struct task_struct *next)
2644{
2645 struct preempt_notifier *notifier;
2646 struct hlist_node *node;
2647
2648 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2649 notifier->ops->sched_out(notifier, next);
2650}
2651
6d6bc0ad 2652#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2653
2654static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2655{
2656}
2657
2658static void
2659fire_sched_out_preempt_notifiers(struct task_struct *curr,
2660 struct task_struct *next)
2661{
2662}
2663
6d6bc0ad 2664#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2665
4866cde0
NP
2666/**
2667 * prepare_task_switch - prepare to switch tasks
2668 * @rq: the runqueue preparing to switch
421cee29 2669 * @prev: the current task that is being switched out
4866cde0
NP
2670 * @next: the task we are going to switch to.
2671 *
2672 * This is called with the rq lock held and interrupts off. It must
2673 * be paired with a subsequent finish_task_switch after the context
2674 * switch.
2675 *
2676 * prepare_task_switch sets up locking and calls architecture specific
2677 * hooks.
2678 */
e107be36
AK
2679static inline void
2680prepare_task_switch(struct rq *rq, struct task_struct *prev,
2681 struct task_struct *next)
4866cde0 2682{
e107be36 2683 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2684 prepare_lock_switch(rq, next);
2685 prepare_arch_switch(next);
2686}
2687
1da177e4
LT
2688/**
2689 * finish_task_switch - clean up after a task-switch
344babaa 2690 * @rq: runqueue associated with task-switch
1da177e4
LT
2691 * @prev: the thread we just switched away from.
2692 *
4866cde0
NP
2693 * finish_task_switch must be called after the context switch, paired
2694 * with a prepare_task_switch call before the context switch.
2695 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2696 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2697 *
2698 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2699 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2700 * with the lock held can cause deadlocks; see schedule() for
2701 * details.)
2702 */
a9957449 2703static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2704 __releases(rq->lock)
2705{
1da177e4 2706 struct mm_struct *mm = rq->prev_mm;
55a101f8 2707 long prev_state;
1da177e4
LT
2708
2709 rq->prev_mm = NULL;
2710
2711 /*
2712 * A task struct has one reference for the use as "current".
c394cc9f 2713 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2714 * schedule one last time. The schedule call will never return, and
2715 * the scheduled task must drop that reference.
c394cc9f 2716 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2717 * still held, otherwise prev could be scheduled on another cpu, die
2718 * there before we look at prev->state, and then the reference would
2719 * be dropped twice.
2720 * Manfred Spraul <manfred@colorfullife.com>
2721 */
55a101f8 2722 prev_state = prev->state;
4866cde0 2723 finish_arch_switch(prev);
8381f65d
JI
2724#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2725 local_irq_disable();
2726#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2727 perf_event_task_sched_in(current);
8381f65d
JI
2728#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2729 local_irq_enable();
2730#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2731 finish_lock_switch(rq, prev);
e8fa1362 2732
e107be36 2733 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2734 if (mm)
2735 mmdrop(mm);
c394cc9f 2736 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2737 /*
2738 * Remove function-return probe instances associated with this
2739 * task and put them back on the free list.
9761eea8 2740 */
c6fd91f0 2741 kprobe_flush_task(prev);
1da177e4 2742 put_task_struct(prev);
c6fd91f0 2743 }
1da177e4
LT
2744}
2745
3f029d3c
GH
2746#ifdef CONFIG_SMP
2747
2748/* assumes rq->lock is held */
2749static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2750{
2751 if (prev->sched_class->pre_schedule)
2752 prev->sched_class->pre_schedule(rq, prev);
2753}
2754
2755/* rq->lock is NOT held, but preemption is disabled */
2756static inline void post_schedule(struct rq *rq)
2757{
2758 if (rq->post_schedule) {
2759 unsigned long flags;
2760
05fa785c 2761 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2762 if (rq->curr->sched_class->post_schedule)
2763 rq->curr->sched_class->post_schedule(rq);
05fa785c 2764 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2765
2766 rq->post_schedule = 0;
2767 }
2768}
2769
2770#else
da19ab51 2771
3f029d3c
GH
2772static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2773{
2774}
2775
2776static inline void post_schedule(struct rq *rq)
2777{
1da177e4
LT
2778}
2779
3f029d3c
GH
2780#endif
2781
1da177e4
LT
2782/**
2783 * schedule_tail - first thing a freshly forked thread must call.
2784 * @prev: the thread we just switched away from.
2785 */
36c8b586 2786asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2787 __releases(rq->lock)
2788{
70b97a7f
IM
2789 struct rq *rq = this_rq();
2790
4866cde0 2791 finish_task_switch(rq, prev);
da19ab51 2792
3f029d3c
GH
2793 /*
2794 * FIXME: do we need to worry about rq being invalidated by the
2795 * task_switch?
2796 */
2797 post_schedule(rq);
70b97a7f 2798
4866cde0
NP
2799#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2800 /* In this case, finish_task_switch does not reenable preemption */
2801 preempt_enable();
2802#endif
1da177e4 2803 if (current->set_child_tid)
b488893a 2804 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2805}
2806
2807/*
2808 * context_switch - switch to the new MM and the new
2809 * thread's register state.
2810 */
dd41f596 2811static inline void
70b97a7f 2812context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2813 struct task_struct *next)
1da177e4 2814{
dd41f596 2815 struct mm_struct *mm, *oldmm;
1da177e4 2816
e107be36 2817 prepare_task_switch(rq, prev, next);
27a9da65 2818 trace_sched_switch(prev, next);
dd41f596
IM
2819 mm = next->mm;
2820 oldmm = prev->active_mm;
9226d125
ZA
2821 /*
2822 * For paravirt, this is coupled with an exit in switch_to to
2823 * combine the page table reload and the switch backend into
2824 * one hypercall.
2825 */
224101ed 2826 arch_start_context_switch(prev);
9226d125 2827
710390d9 2828 if (likely(!mm)) {
1da177e4
LT
2829 next->active_mm = oldmm;
2830 atomic_inc(&oldmm->mm_count);
2831 enter_lazy_tlb(oldmm, next);
2832 } else
2833 switch_mm(oldmm, mm, next);
2834
710390d9 2835 if (likely(!prev->mm)) {
1da177e4 2836 prev->active_mm = NULL;
1da177e4
LT
2837 rq->prev_mm = oldmm;
2838 }
3a5f5e48
IM
2839 /*
2840 * Since the runqueue lock will be released by the next
2841 * task (which is an invalid locking op but in the case
2842 * of the scheduler it's an obvious special-case), so we
2843 * do an early lockdep release here:
2844 */
2845#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2846 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2847#endif
1da177e4
LT
2848
2849 /* Here we just switch the register state and the stack. */
2850 switch_to(prev, next, prev);
2851
dd41f596
IM
2852 barrier();
2853 /*
2854 * this_rq must be evaluated again because prev may have moved
2855 * CPUs since it called schedule(), thus the 'rq' on its stack
2856 * frame will be invalid.
2857 */
2858 finish_task_switch(this_rq(), prev);
1da177e4
LT
2859}
2860
2861/*
2862 * nr_running, nr_uninterruptible and nr_context_switches:
2863 *
2864 * externally visible scheduler statistics: current number of runnable
2865 * threads, current number of uninterruptible-sleeping threads, total
2866 * number of context switches performed since bootup.
2867 */
2868unsigned long nr_running(void)
2869{
2870 unsigned long i, sum = 0;
2871
2872 for_each_online_cpu(i)
2873 sum += cpu_rq(i)->nr_running;
2874
2875 return sum;
f711f609 2876}
1da177e4
LT
2877
2878unsigned long nr_uninterruptible(void)
f711f609 2879{
1da177e4 2880 unsigned long i, sum = 0;
f711f609 2881
0a945022 2882 for_each_possible_cpu(i)
1da177e4 2883 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2884
2885 /*
1da177e4
LT
2886 * Since we read the counters lockless, it might be slightly
2887 * inaccurate. Do not allow it to go below zero though:
f711f609 2888 */
1da177e4
LT
2889 if (unlikely((long)sum < 0))
2890 sum = 0;
f711f609 2891
1da177e4 2892 return sum;
f711f609 2893}
f711f609 2894
1da177e4 2895unsigned long long nr_context_switches(void)
46cb4b7c 2896{
cc94abfc
SR
2897 int i;
2898 unsigned long long sum = 0;
46cb4b7c 2899
0a945022 2900 for_each_possible_cpu(i)
1da177e4 2901 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2902
1da177e4
LT
2903 return sum;
2904}
483b4ee6 2905
1da177e4
LT
2906unsigned long nr_iowait(void)
2907{
2908 unsigned long i, sum = 0;
483b4ee6 2909
0a945022 2910 for_each_possible_cpu(i)
1da177e4 2911 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2912
1da177e4
LT
2913 return sum;
2914}
483b4ee6 2915
69d25870
AV
2916unsigned long nr_iowait_cpu(void)
2917{
2918 struct rq *this = this_rq();
2919 return atomic_read(&this->nr_iowait);
2920}
46cb4b7c 2921
69d25870
AV
2922unsigned long this_cpu_load(void)
2923{
2924 struct rq *this = this_rq();
2925 return this->cpu_load[0];
2926}
e790fb0b 2927
46cb4b7c 2928
dce48a84
TG
2929/* Variables and functions for calc_load */
2930static atomic_long_t calc_load_tasks;
2931static unsigned long calc_load_update;
2932unsigned long avenrun[3];
2933EXPORT_SYMBOL(avenrun);
46cb4b7c 2934
74f5187a
PZ
2935static long calc_load_fold_active(struct rq *this_rq)
2936{
2937 long nr_active, delta = 0;
2938
2939 nr_active = this_rq->nr_running;
2940 nr_active += (long) this_rq->nr_uninterruptible;
2941
2942 if (nr_active != this_rq->calc_load_active) {
2943 delta = nr_active - this_rq->calc_load_active;
2944 this_rq->calc_load_active = nr_active;
2945 }
2946
2947 return delta;
2948}
2949
2950#ifdef CONFIG_NO_HZ
2951/*
2952 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2953 *
2954 * When making the ILB scale, we should try to pull this in as well.
2955 */
2956static atomic_long_t calc_load_tasks_idle;
2957
2958static void calc_load_account_idle(struct rq *this_rq)
2959{
2960 long delta;
2961
2962 delta = calc_load_fold_active(this_rq);
2963 if (delta)
2964 atomic_long_add(delta, &calc_load_tasks_idle);
2965}
2966
2967static long calc_load_fold_idle(void)
2968{
2969 long delta = 0;
2970
2971 /*
2972 * Its got a race, we don't care...
2973 */
2974 if (atomic_long_read(&calc_load_tasks_idle))
2975 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2976
2977 return delta;
2978}
2979#else
2980static void calc_load_account_idle(struct rq *this_rq)
2981{
2982}
2983
2984static inline long calc_load_fold_idle(void)
2985{
2986 return 0;
2987}
2988#endif
2989
2d02494f
TG
2990/**
2991 * get_avenrun - get the load average array
2992 * @loads: pointer to dest load array
2993 * @offset: offset to add
2994 * @shift: shift count to shift the result left
2995 *
2996 * These values are estimates at best, so no need for locking.
2997 */
2998void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2999{
3000 loads[0] = (avenrun[0] + offset) << shift;
3001 loads[1] = (avenrun[1] + offset) << shift;
3002 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3003}
46cb4b7c 3004
dce48a84
TG
3005static unsigned long
3006calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3007{
dce48a84
TG
3008 load *= exp;
3009 load += active * (FIXED_1 - exp);
3010 return load >> FSHIFT;
3011}
46cb4b7c
SS
3012
3013/*
dce48a84
TG
3014 * calc_load - update the avenrun load estimates 10 ticks after the
3015 * CPUs have updated calc_load_tasks.
7835b98b 3016 */
dce48a84 3017void calc_global_load(void)
7835b98b 3018{
dce48a84
TG
3019 unsigned long upd = calc_load_update + 10;
3020 long active;
1da177e4 3021
dce48a84
TG
3022 if (time_before(jiffies, upd))
3023 return;
1da177e4 3024
dce48a84
TG
3025 active = atomic_long_read(&calc_load_tasks);
3026 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3027
dce48a84
TG
3028 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3029 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3030 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3031
dce48a84
TG
3032 calc_load_update += LOAD_FREQ;
3033}
1da177e4 3034
dce48a84 3035/*
74f5187a
PZ
3036 * Called from update_cpu_load() to periodically update this CPU's
3037 * active count.
dce48a84
TG
3038 */
3039static void calc_load_account_active(struct rq *this_rq)
3040{
74f5187a 3041 long delta;
08c183f3 3042
74f5187a
PZ
3043 if (time_before(jiffies, this_rq->calc_load_update))
3044 return;
783609c6 3045
74f5187a
PZ
3046 delta = calc_load_fold_active(this_rq);
3047 delta += calc_load_fold_idle();
3048 if (delta)
dce48a84 3049 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3050
3051 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3052}
3053
fdf3e95d
VP
3054/*
3055 * The exact cpuload at various idx values, calculated at every tick would be
3056 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3057 *
3058 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3059 * on nth tick when cpu may be busy, then we have:
3060 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3061 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3062 *
3063 * decay_load_missed() below does efficient calculation of
3064 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3065 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3066 *
3067 * The calculation is approximated on a 128 point scale.
3068 * degrade_zero_ticks is the number of ticks after which load at any
3069 * particular idx is approximated to be zero.
3070 * degrade_factor is a precomputed table, a row for each load idx.
3071 * Each column corresponds to degradation factor for a power of two ticks,
3072 * based on 128 point scale.
3073 * Example:
3074 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3075 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3076 *
3077 * With this power of 2 load factors, we can degrade the load n times
3078 * by looking at 1 bits in n and doing as many mult/shift instead of
3079 * n mult/shifts needed by the exact degradation.
3080 */
3081#define DEGRADE_SHIFT 7
3082static const unsigned char
3083 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3084static const unsigned char
3085 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3086 {0, 0, 0, 0, 0, 0, 0, 0},
3087 {64, 32, 8, 0, 0, 0, 0, 0},
3088 {96, 72, 40, 12, 1, 0, 0},
3089 {112, 98, 75, 43, 15, 1, 0},
3090 {120, 112, 98, 76, 45, 16, 2} };
3091
3092/*
3093 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3094 * would be when CPU is idle and so we just decay the old load without
3095 * adding any new load.
3096 */
3097static unsigned long
3098decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3099{
3100 int j = 0;
3101
3102 if (!missed_updates)
3103 return load;
3104
3105 if (missed_updates >= degrade_zero_ticks[idx])
3106 return 0;
3107
3108 if (idx == 1)
3109 return load >> missed_updates;
3110
3111 while (missed_updates) {
3112 if (missed_updates % 2)
3113 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3114
3115 missed_updates >>= 1;
3116 j++;
3117 }
3118 return load;
3119}
3120
46cb4b7c 3121/*
dd41f596 3122 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3123 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3124 * every tick. We fix it up based on jiffies.
46cb4b7c 3125 */
dd41f596 3126static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3127{
495eca49 3128 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3129 unsigned long curr_jiffies = jiffies;
3130 unsigned long pending_updates;
dd41f596 3131 int i, scale;
46cb4b7c 3132
dd41f596 3133 this_rq->nr_load_updates++;
46cb4b7c 3134
fdf3e95d
VP
3135 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3136 if (curr_jiffies == this_rq->last_load_update_tick)
3137 return;
3138
3139 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3140 this_rq->last_load_update_tick = curr_jiffies;
3141
dd41f596 3142 /* Update our load: */
fdf3e95d
VP
3143 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3144 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3145 unsigned long old_load, new_load;
7d1e6a9b 3146
dd41f596 3147 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3148
dd41f596 3149 old_load = this_rq->cpu_load[i];
fdf3e95d 3150 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3151 new_load = this_load;
a25707f3
IM
3152 /*
3153 * Round up the averaging division if load is increasing. This
3154 * prevents us from getting stuck on 9 if the load is 10, for
3155 * example.
3156 */
3157 if (new_load > old_load)
fdf3e95d
VP
3158 new_load += scale - 1;
3159
3160 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3161 }
fdf3e95d
VP
3162}
3163
3164static void update_cpu_load_active(struct rq *this_rq)
3165{
3166 update_cpu_load(this_rq);
46cb4b7c 3167
74f5187a 3168 calc_load_account_active(this_rq);
46cb4b7c
SS
3169}
3170
dd41f596 3171#ifdef CONFIG_SMP
8a0be9ef 3172
46cb4b7c 3173/*
38022906
PZ
3174 * sched_exec - execve() is a valuable balancing opportunity, because at
3175 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3176 */
38022906 3177void sched_exec(void)
46cb4b7c 3178{
38022906 3179 struct task_struct *p = current;
1da177e4 3180 unsigned long flags;
70b97a7f 3181 struct rq *rq;
0017d735 3182 int dest_cpu;
46cb4b7c 3183
1da177e4 3184 rq = task_rq_lock(p, &flags);
0017d735
PZ
3185 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3186 if (dest_cpu == smp_processor_id())
3187 goto unlock;
38022906 3188
46cb4b7c 3189 /*
38022906 3190 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3191 */
30da688e 3192 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3193 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3194 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3195
1da177e4 3196 task_rq_unlock(rq, &flags);
969c7921 3197 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3198 return;
3199 }
0017d735 3200unlock:
1da177e4 3201 task_rq_unlock(rq, &flags);
1da177e4 3202}
dd41f596 3203
1da177e4
LT
3204#endif
3205
1da177e4
LT
3206DEFINE_PER_CPU(struct kernel_stat, kstat);
3207
3208EXPORT_PER_CPU_SYMBOL(kstat);
3209
3210/*
c5f8d995 3211 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3212 * @p in case that task is currently running.
c5f8d995
HS
3213 *
3214 * Called with task_rq_lock() held on @rq.
1da177e4 3215 */
c5f8d995
HS
3216static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3217{
3218 u64 ns = 0;
3219
3220 if (task_current(rq, p)) {
3221 update_rq_clock(rq);
3222 ns = rq->clock - p->se.exec_start;
3223 if ((s64)ns < 0)
3224 ns = 0;
3225 }
3226
3227 return ns;
3228}
3229
bb34d92f 3230unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3231{
1da177e4 3232 unsigned long flags;
41b86e9c 3233 struct rq *rq;
bb34d92f 3234 u64 ns = 0;
48f24c4d 3235
41b86e9c 3236 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3237 ns = do_task_delta_exec(p, rq);
3238 task_rq_unlock(rq, &flags);
1508487e 3239
c5f8d995
HS
3240 return ns;
3241}
f06febc9 3242
c5f8d995
HS
3243/*
3244 * Return accounted runtime for the task.
3245 * In case the task is currently running, return the runtime plus current's
3246 * pending runtime that have not been accounted yet.
3247 */
3248unsigned long long task_sched_runtime(struct task_struct *p)
3249{
3250 unsigned long flags;
3251 struct rq *rq;
3252 u64 ns = 0;
3253
3254 rq = task_rq_lock(p, &flags);
3255 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3256 task_rq_unlock(rq, &flags);
3257
3258 return ns;
3259}
48f24c4d 3260
c5f8d995
HS
3261/*
3262 * Return sum_exec_runtime for the thread group.
3263 * In case the task is currently running, return the sum plus current's
3264 * pending runtime that have not been accounted yet.
3265 *
3266 * Note that the thread group might have other running tasks as well,
3267 * so the return value not includes other pending runtime that other
3268 * running tasks might have.
3269 */
3270unsigned long long thread_group_sched_runtime(struct task_struct *p)
3271{
3272 struct task_cputime totals;
3273 unsigned long flags;
3274 struct rq *rq;
3275 u64 ns;
3276
3277 rq = task_rq_lock(p, &flags);
3278 thread_group_cputime(p, &totals);
3279 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3280 task_rq_unlock(rq, &flags);
48f24c4d 3281
1da177e4
LT
3282 return ns;
3283}
3284
1da177e4
LT
3285/*
3286 * Account user cpu time to a process.
3287 * @p: the process that the cpu time gets accounted to
1da177e4 3288 * @cputime: the cpu time spent in user space since the last update
457533a7 3289 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3290 */
457533a7
MS
3291void account_user_time(struct task_struct *p, cputime_t cputime,
3292 cputime_t cputime_scaled)
1da177e4
LT
3293{
3294 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3295 cputime64_t tmp;
3296
457533a7 3297 /* Add user time to process. */
1da177e4 3298 p->utime = cputime_add(p->utime, cputime);
457533a7 3299 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3300 account_group_user_time(p, cputime);
1da177e4
LT
3301
3302 /* Add user time to cpustat. */
3303 tmp = cputime_to_cputime64(cputime);
3304 if (TASK_NICE(p) > 0)
3305 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3306 else
3307 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3308
3309 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3310 /* Account for user time used */
3311 acct_update_integrals(p);
1da177e4
LT
3312}
3313
94886b84
LV
3314/*
3315 * Account guest cpu time to a process.
3316 * @p: the process that the cpu time gets accounted to
3317 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3318 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3319 */
457533a7
MS
3320static void account_guest_time(struct task_struct *p, cputime_t cputime,
3321 cputime_t cputime_scaled)
94886b84
LV
3322{
3323 cputime64_t tmp;
3324 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3325
3326 tmp = cputime_to_cputime64(cputime);
3327
457533a7 3328 /* Add guest time to process. */
94886b84 3329 p->utime = cputime_add(p->utime, cputime);
457533a7 3330 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3331 account_group_user_time(p, cputime);
94886b84
LV
3332 p->gtime = cputime_add(p->gtime, cputime);
3333
457533a7 3334 /* Add guest time to cpustat. */
ce0e7b28
RO
3335 if (TASK_NICE(p) > 0) {
3336 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3337 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3338 } else {
3339 cpustat->user = cputime64_add(cpustat->user, tmp);
3340 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3341 }
94886b84
LV
3342}
3343
1da177e4
LT
3344/*
3345 * Account system cpu time to a process.
3346 * @p: the process that the cpu time gets accounted to
3347 * @hardirq_offset: the offset to subtract from hardirq_count()
3348 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3349 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3350 */
3351void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3352 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3353{
3354 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3355 cputime64_t tmp;
3356
983ed7a6 3357 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3358 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3359 return;
3360 }
94886b84 3361
457533a7 3362 /* Add system time to process. */
1da177e4 3363 p->stime = cputime_add(p->stime, cputime);
457533a7 3364 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3365 account_group_system_time(p, cputime);
1da177e4
LT
3366
3367 /* Add system time to cpustat. */
3368 tmp = cputime_to_cputime64(cputime);
3369 if (hardirq_count() - hardirq_offset)
3370 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3371 else if (softirq_count())
3372 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3373 else
79741dd3
MS
3374 cpustat->system = cputime64_add(cpustat->system, tmp);
3375
ef12fefa
BR
3376 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3377
1da177e4
LT
3378 /* Account for system time used */
3379 acct_update_integrals(p);
1da177e4
LT
3380}
3381
c66f08be 3382/*
1da177e4 3383 * Account for involuntary wait time.
1da177e4 3384 * @steal: the cpu time spent in involuntary wait
c66f08be 3385 */
79741dd3 3386void account_steal_time(cputime_t cputime)
c66f08be 3387{
79741dd3
MS
3388 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3389 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3390
3391 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3392}
3393
1da177e4 3394/*
79741dd3
MS
3395 * Account for idle time.
3396 * @cputime: the cpu time spent in idle wait
1da177e4 3397 */
79741dd3 3398void account_idle_time(cputime_t cputime)
1da177e4
LT
3399{
3400 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3401 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3402 struct rq *rq = this_rq();
1da177e4 3403
79741dd3
MS
3404 if (atomic_read(&rq->nr_iowait) > 0)
3405 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3406 else
3407 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3408}
3409
79741dd3
MS
3410#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3411
3412/*
3413 * Account a single tick of cpu time.
3414 * @p: the process that the cpu time gets accounted to
3415 * @user_tick: indicates if the tick is a user or a system tick
3416 */
3417void account_process_tick(struct task_struct *p, int user_tick)
3418{
a42548a1 3419 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3420 struct rq *rq = this_rq();
3421
3422 if (user_tick)
a42548a1 3423 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3424 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3425 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3426 one_jiffy_scaled);
3427 else
a42548a1 3428 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3429}
3430
3431/*
3432 * Account multiple ticks of steal time.
3433 * @p: the process from which the cpu time has been stolen
3434 * @ticks: number of stolen ticks
3435 */
3436void account_steal_ticks(unsigned long ticks)
3437{
3438 account_steal_time(jiffies_to_cputime(ticks));
3439}
3440
3441/*
3442 * Account multiple ticks of idle time.
3443 * @ticks: number of stolen ticks
3444 */
3445void account_idle_ticks(unsigned long ticks)
3446{
3447 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3448}
3449
79741dd3
MS
3450#endif
3451
49048622
BS
3452/*
3453 * Use precise platform statistics if available:
3454 */
3455#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3456void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3457{
d99ca3b9
HS
3458 *ut = p->utime;
3459 *st = p->stime;
49048622
BS
3460}
3461
0cf55e1e 3462void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3463{
0cf55e1e
HS
3464 struct task_cputime cputime;
3465
3466 thread_group_cputime(p, &cputime);
3467
3468 *ut = cputime.utime;
3469 *st = cputime.stime;
49048622
BS
3470}
3471#else
761b1d26
HS
3472
3473#ifndef nsecs_to_cputime
b7b20df9 3474# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3475#endif
3476
d180c5bc 3477void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3478{
d99ca3b9 3479 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3480
3481 /*
3482 * Use CFS's precise accounting:
3483 */
d180c5bc 3484 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3485
3486 if (total) {
d180c5bc
HS
3487 u64 temp;
3488
3489 temp = (u64)(rtime * utime);
49048622 3490 do_div(temp, total);
d180c5bc
HS
3491 utime = (cputime_t)temp;
3492 } else
3493 utime = rtime;
49048622 3494
d180c5bc
HS
3495 /*
3496 * Compare with previous values, to keep monotonicity:
3497 */
761b1d26 3498 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3499 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3500
d99ca3b9
HS
3501 *ut = p->prev_utime;
3502 *st = p->prev_stime;
49048622
BS
3503}
3504
0cf55e1e
HS
3505/*
3506 * Must be called with siglock held.
3507 */
3508void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3509{
0cf55e1e
HS
3510 struct signal_struct *sig = p->signal;
3511 struct task_cputime cputime;
3512 cputime_t rtime, utime, total;
49048622 3513
0cf55e1e 3514 thread_group_cputime(p, &cputime);
49048622 3515
0cf55e1e
HS
3516 total = cputime_add(cputime.utime, cputime.stime);
3517 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3518
0cf55e1e
HS
3519 if (total) {
3520 u64 temp;
49048622 3521
0cf55e1e
HS
3522 temp = (u64)(rtime * cputime.utime);
3523 do_div(temp, total);
3524 utime = (cputime_t)temp;
3525 } else
3526 utime = rtime;
3527
3528 sig->prev_utime = max(sig->prev_utime, utime);
3529 sig->prev_stime = max(sig->prev_stime,
3530 cputime_sub(rtime, sig->prev_utime));
3531
3532 *ut = sig->prev_utime;
3533 *st = sig->prev_stime;
49048622 3534}
49048622 3535#endif
49048622 3536
7835b98b
CL
3537/*
3538 * This function gets called by the timer code, with HZ frequency.
3539 * We call it with interrupts disabled.
3540 *
3541 * It also gets called by the fork code, when changing the parent's
3542 * timeslices.
3543 */
3544void scheduler_tick(void)
3545{
7835b98b
CL
3546 int cpu = smp_processor_id();
3547 struct rq *rq = cpu_rq(cpu);
dd41f596 3548 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3549
3550 sched_clock_tick();
dd41f596 3551
05fa785c 3552 raw_spin_lock(&rq->lock);
3e51f33f 3553 update_rq_clock(rq);
fdf3e95d 3554 update_cpu_load_active(rq);
fa85ae24 3555 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3556 raw_spin_unlock(&rq->lock);
7835b98b 3557
49f47433 3558 perf_event_task_tick(curr);
e220d2dc 3559
e418e1c2 3560#ifdef CONFIG_SMP
dd41f596
IM
3561 rq->idle_at_tick = idle_cpu(cpu);
3562 trigger_load_balance(rq, cpu);
e418e1c2 3563#endif
1da177e4
LT
3564}
3565
132380a0 3566notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3567{
3568 if (in_lock_functions(addr)) {
3569 addr = CALLER_ADDR2;
3570 if (in_lock_functions(addr))
3571 addr = CALLER_ADDR3;
3572 }
3573 return addr;
3574}
1da177e4 3575
7e49fcce
SR
3576#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3577 defined(CONFIG_PREEMPT_TRACER))
3578
43627582 3579void __kprobes add_preempt_count(int val)
1da177e4 3580{
6cd8a4bb 3581#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3582 /*
3583 * Underflow?
3584 */
9a11b49a
IM
3585 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3586 return;
6cd8a4bb 3587#endif
1da177e4 3588 preempt_count() += val;
6cd8a4bb 3589#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3590 /*
3591 * Spinlock count overflowing soon?
3592 */
33859f7f
MOS
3593 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3594 PREEMPT_MASK - 10);
6cd8a4bb
SR
3595#endif
3596 if (preempt_count() == val)
3597 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3598}
3599EXPORT_SYMBOL(add_preempt_count);
3600
43627582 3601void __kprobes sub_preempt_count(int val)
1da177e4 3602{
6cd8a4bb 3603#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3604 /*
3605 * Underflow?
3606 */
01e3eb82 3607 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3608 return;
1da177e4
LT
3609 /*
3610 * Is the spinlock portion underflowing?
3611 */
9a11b49a
IM
3612 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3613 !(preempt_count() & PREEMPT_MASK)))
3614 return;
6cd8a4bb 3615#endif
9a11b49a 3616
6cd8a4bb
SR
3617 if (preempt_count() == val)
3618 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3619 preempt_count() -= val;
3620}
3621EXPORT_SYMBOL(sub_preempt_count);
3622
3623#endif
3624
3625/*
dd41f596 3626 * Print scheduling while atomic bug:
1da177e4 3627 */
dd41f596 3628static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3629{
838225b4
SS
3630 struct pt_regs *regs = get_irq_regs();
3631
3df0fc5b
PZ
3632 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3633 prev->comm, prev->pid, preempt_count());
838225b4 3634
dd41f596 3635 debug_show_held_locks(prev);
e21f5b15 3636 print_modules();
dd41f596
IM
3637 if (irqs_disabled())
3638 print_irqtrace_events(prev);
838225b4
SS
3639
3640 if (regs)
3641 show_regs(regs);
3642 else
3643 dump_stack();
dd41f596 3644}
1da177e4 3645
dd41f596
IM
3646/*
3647 * Various schedule()-time debugging checks and statistics:
3648 */
3649static inline void schedule_debug(struct task_struct *prev)
3650{
1da177e4 3651 /*
41a2d6cf 3652 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3653 * schedule() atomically, we ignore that path for now.
3654 * Otherwise, whine if we are scheduling when we should not be.
3655 */
3f33a7ce 3656 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3657 __schedule_bug(prev);
3658
1da177e4
LT
3659 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3660
2d72376b 3661 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3662#ifdef CONFIG_SCHEDSTATS
3663 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3664 schedstat_inc(this_rq(), bkl_count);
3665 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3666 }
3667#endif
dd41f596
IM
3668}
3669
6cecd084 3670static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3671{
a64692a3
MG
3672 if (prev->se.on_rq)
3673 update_rq_clock(rq);
3674 rq->skip_clock_update = 0;
6cecd084 3675 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3676}
3677
dd41f596
IM
3678/*
3679 * Pick up the highest-prio task:
3680 */
3681static inline struct task_struct *
b67802ea 3682pick_next_task(struct rq *rq)
dd41f596 3683{
5522d5d5 3684 const struct sched_class *class;
dd41f596 3685 struct task_struct *p;
1da177e4
LT
3686
3687 /*
dd41f596
IM
3688 * Optimization: we know that if all tasks are in
3689 * the fair class we can call that function directly:
1da177e4 3690 */
dd41f596 3691 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3692 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3693 if (likely(p))
3694 return p;
1da177e4
LT
3695 }
3696
dd41f596
IM
3697 class = sched_class_highest;
3698 for ( ; ; ) {
fb8d4724 3699 p = class->pick_next_task(rq);
dd41f596
IM
3700 if (p)
3701 return p;
3702 /*
3703 * Will never be NULL as the idle class always
3704 * returns a non-NULL p:
3705 */
3706 class = class->next;
3707 }
3708}
1da177e4 3709
dd41f596
IM
3710/*
3711 * schedule() is the main scheduler function.
3712 */
ff743345 3713asmlinkage void __sched schedule(void)
dd41f596
IM
3714{
3715 struct task_struct *prev, *next;
67ca7bde 3716 unsigned long *switch_count;
dd41f596 3717 struct rq *rq;
31656519 3718 int cpu;
dd41f596 3719
ff743345
PZ
3720need_resched:
3721 preempt_disable();
dd41f596
IM
3722 cpu = smp_processor_id();
3723 rq = cpu_rq(cpu);
25502a6c 3724 rcu_note_context_switch(cpu);
dd41f596 3725 prev = rq->curr;
dd41f596
IM
3726
3727 release_kernel_lock(prev);
3728need_resched_nonpreemptible:
3729
3730 schedule_debug(prev);
1da177e4 3731
31656519 3732 if (sched_feat(HRTICK))
f333fdc9 3733 hrtick_clear(rq);
8f4d37ec 3734
05fa785c 3735 raw_spin_lock_irq(&rq->lock);
1e819950 3736 clear_tsk_need_resched(prev);
1da177e4 3737
246d86b5 3738 switch_count = &prev->nivcsw;
1da177e4 3739 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3740 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3741 prev->state = TASK_RUNNING;
21aa9af0
TH
3742 } else {
3743 /*
3744 * If a worker is going to sleep, notify and
3745 * ask workqueue whether it wants to wake up a
3746 * task to maintain concurrency. If so, wake
3747 * up the task.
3748 */
3749 if (prev->flags & PF_WQ_WORKER) {
3750 struct task_struct *to_wakeup;
3751
3752 to_wakeup = wq_worker_sleeping(prev, cpu);
3753 if (to_wakeup)
3754 try_to_wake_up_local(to_wakeup);
3755 }
371fd7e7 3756 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 3757 }
dd41f596 3758 switch_count = &prev->nvcsw;
1da177e4
LT
3759 }
3760
3f029d3c 3761 pre_schedule(rq, prev);
f65eda4f 3762
dd41f596 3763 if (unlikely(!rq->nr_running))
1da177e4 3764 idle_balance(cpu, rq);
1da177e4 3765
df1c99d4 3766 put_prev_task(rq, prev);
b67802ea 3767 next = pick_next_task(rq);
1da177e4 3768
1da177e4 3769 if (likely(prev != next)) {
673a90a1 3770 sched_info_switch(prev, next);
49f47433 3771 perf_event_task_sched_out(prev, next);
673a90a1 3772
1da177e4
LT
3773 rq->nr_switches++;
3774 rq->curr = next;
3775 ++*switch_count;
3776
dd41f596 3777 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3778 /*
246d86b5
ON
3779 * The context switch have flipped the stack from under us
3780 * and restored the local variables which were saved when
3781 * this task called schedule() in the past. prev == current
3782 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3783 */
3784 cpu = smp_processor_id();
3785 rq = cpu_rq(cpu);
1da177e4 3786 } else
05fa785c 3787 raw_spin_unlock_irq(&rq->lock);
1da177e4 3788
3f029d3c 3789 post_schedule(rq);
1da177e4 3790
246d86b5 3791 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 3792 goto need_resched_nonpreemptible;
8f4d37ec 3793
1da177e4 3794 preempt_enable_no_resched();
ff743345 3795 if (need_resched())
1da177e4
LT
3796 goto need_resched;
3797}
1da177e4
LT
3798EXPORT_SYMBOL(schedule);
3799
c08f7829 3800#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3801/*
3802 * Look out! "owner" is an entirely speculative pointer
3803 * access and not reliable.
3804 */
3805int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3806{
3807 unsigned int cpu;
3808 struct rq *rq;
3809
3810 if (!sched_feat(OWNER_SPIN))
3811 return 0;
3812
3813#ifdef CONFIG_DEBUG_PAGEALLOC
3814 /*
3815 * Need to access the cpu field knowing that
3816 * DEBUG_PAGEALLOC could have unmapped it if
3817 * the mutex owner just released it and exited.
3818 */
3819 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3820 return 0;
0d66bf6d
PZ
3821#else
3822 cpu = owner->cpu;
3823#endif
3824
3825 /*
3826 * Even if the access succeeded (likely case),
3827 * the cpu field may no longer be valid.
3828 */
3829 if (cpu >= nr_cpumask_bits)
4b402210 3830 return 0;
0d66bf6d
PZ
3831
3832 /*
3833 * We need to validate that we can do a
3834 * get_cpu() and that we have the percpu area.
3835 */
3836 if (!cpu_online(cpu))
4b402210 3837 return 0;
0d66bf6d
PZ
3838
3839 rq = cpu_rq(cpu);
3840
3841 for (;;) {
3842 /*
3843 * Owner changed, break to re-assess state.
3844 */
3845 if (lock->owner != owner)
3846 break;
3847
3848 /*
3849 * Is that owner really running on that cpu?
3850 */
3851 if (task_thread_info(rq->curr) != owner || need_resched())
3852 return 0;
3853
3854 cpu_relax();
3855 }
4b402210 3856
0d66bf6d
PZ
3857 return 1;
3858}
3859#endif
3860
1da177e4
LT
3861#ifdef CONFIG_PREEMPT
3862/*
2ed6e34f 3863 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3864 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3865 * occur there and call schedule directly.
3866 */
3867asmlinkage void __sched preempt_schedule(void)
3868{
3869 struct thread_info *ti = current_thread_info();
6478d880 3870
1da177e4
LT
3871 /*
3872 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3873 * we do not want to preempt the current task. Just return..
1da177e4 3874 */
beed33a8 3875 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3876 return;
3877
3a5c359a
AK
3878 do {
3879 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3880 schedule();
3a5c359a 3881 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3882
3a5c359a
AK
3883 /*
3884 * Check again in case we missed a preemption opportunity
3885 * between schedule and now.
3886 */
3887 barrier();
5ed0cec0 3888 } while (need_resched());
1da177e4 3889}
1da177e4
LT
3890EXPORT_SYMBOL(preempt_schedule);
3891
3892/*
2ed6e34f 3893 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3894 * off of irq context.
3895 * Note, that this is called and return with irqs disabled. This will
3896 * protect us against recursive calling from irq.
3897 */
3898asmlinkage void __sched preempt_schedule_irq(void)
3899{
3900 struct thread_info *ti = current_thread_info();
6478d880 3901
2ed6e34f 3902 /* Catch callers which need to be fixed */
1da177e4
LT
3903 BUG_ON(ti->preempt_count || !irqs_disabled());
3904
3a5c359a
AK
3905 do {
3906 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3907 local_irq_enable();
3908 schedule();
3909 local_irq_disable();
3a5c359a 3910 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3911
3a5c359a
AK
3912 /*
3913 * Check again in case we missed a preemption opportunity
3914 * between schedule and now.
3915 */
3916 barrier();
5ed0cec0 3917 } while (need_resched());
1da177e4
LT
3918}
3919
3920#endif /* CONFIG_PREEMPT */
3921
63859d4f 3922int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3923 void *key)
1da177e4 3924{
63859d4f 3925 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3926}
1da177e4
LT
3927EXPORT_SYMBOL(default_wake_function);
3928
3929/*
41a2d6cf
IM
3930 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3931 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3932 * number) then we wake all the non-exclusive tasks and one exclusive task.
3933 *
3934 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3935 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3936 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3937 */
78ddb08f 3938static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3939 int nr_exclusive, int wake_flags, void *key)
1da177e4 3940{
2e45874c 3941 wait_queue_t *curr, *next;
1da177e4 3942
2e45874c 3943 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3944 unsigned flags = curr->flags;
3945
63859d4f 3946 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3947 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3948 break;
3949 }
3950}
3951
3952/**
3953 * __wake_up - wake up threads blocked on a waitqueue.
3954 * @q: the waitqueue
3955 * @mode: which threads
3956 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3957 * @key: is directly passed to the wakeup function
50fa610a
DH
3958 *
3959 * It may be assumed that this function implies a write memory barrier before
3960 * changing the task state if and only if any tasks are woken up.
1da177e4 3961 */
7ad5b3a5 3962void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3963 int nr_exclusive, void *key)
1da177e4
LT
3964{
3965 unsigned long flags;
3966
3967 spin_lock_irqsave(&q->lock, flags);
3968 __wake_up_common(q, mode, nr_exclusive, 0, key);
3969 spin_unlock_irqrestore(&q->lock, flags);
3970}
1da177e4
LT
3971EXPORT_SYMBOL(__wake_up);
3972
3973/*
3974 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3975 */
7ad5b3a5 3976void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3977{
3978 __wake_up_common(q, mode, 1, 0, NULL);
3979}
22c43c81 3980EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3981
4ede816a
DL
3982void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3983{
3984 __wake_up_common(q, mode, 1, 0, key);
3985}
3986
1da177e4 3987/**
4ede816a 3988 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3989 * @q: the waitqueue
3990 * @mode: which threads
3991 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3992 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3993 *
3994 * The sync wakeup differs that the waker knows that it will schedule
3995 * away soon, so while the target thread will be woken up, it will not
3996 * be migrated to another CPU - ie. the two threads are 'synchronized'
3997 * with each other. This can prevent needless bouncing between CPUs.
3998 *
3999 * On UP it can prevent extra preemption.
50fa610a
DH
4000 *
4001 * It may be assumed that this function implies a write memory barrier before
4002 * changing the task state if and only if any tasks are woken up.
1da177e4 4003 */
4ede816a
DL
4004void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4005 int nr_exclusive, void *key)
1da177e4
LT
4006{
4007 unsigned long flags;
7d478721 4008 int wake_flags = WF_SYNC;
1da177e4
LT
4009
4010 if (unlikely(!q))
4011 return;
4012
4013 if (unlikely(!nr_exclusive))
7d478721 4014 wake_flags = 0;
1da177e4
LT
4015
4016 spin_lock_irqsave(&q->lock, flags);
7d478721 4017 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4018 spin_unlock_irqrestore(&q->lock, flags);
4019}
4ede816a
DL
4020EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4021
4022/*
4023 * __wake_up_sync - see __wake_up_sync_key()
4024 */
4025void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4026{
4027 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4028}
1da177e4
LT
4029EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4030
65eb3dc6
KD
4031/**
4032 * complete: - signals a single thread waiting on this completion
4033 * @x: holds the state of this particular completion
4034 *
4035 * This will wake up a single thread waiting on this completion. Threads will be
4036 * awakened in the same order in which they were queued.
4037 *
4038 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4039 *
4040 * It may be assumed that this function implies a write memory barrier before
4041 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4042 */
b15136e9 4043void complete(struct completion *x)
1da177e4
LT
4044{
4045 unsigned long flags;
4046
4047 spin_lock_irqsave(&x->wait.lock, flags);
4048 x->done++;
d9514f6c 4049 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4050 spin_unlock_irqrestore(&x->wait.lock, flags);
4051}
4052EXPORT_SYMBOL(complete);
4053
65eb3dc6
KD
4054/**
4055 * complete_all: - signals all threads waiting on this completion
4056 * @x: holds the state of this particular completion
4057 *
4058 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4059 *
4060 * It may be assumed that this function implies a write memory barrier before
4061 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4062 */
b15136e9 4063void complete_all(struct completion *x)
1da177e4
LT
4064{
4065 unsigned long flags;
4066
4067 spin_lock_irqsave(&x->wait.lock, flags);
4068 x->done += UINT_MAX/2;
d9514f6c 4069 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4070 spin_unlock_irqrestore(&x->wait.lock, flags);
4071}
4072EXPORT_SYMBOL(complete_all);
4073
8cbbe86d
AK
4074static inline long __sched
4075do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4076{
1da177e4
LT
4077 if (!x->done) {
4078 DECLARE_WAITQUEUE(wait, current);
4079
a93d2f17 4080 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4081 do {
94d3d824 4082 if (signal_pending_state(state, current)) {
ea71a546
ON
4083 timeout = -ERESTARTSYS;
4084 break;
8cbbe86d
AK
4085 }
4086 __set_current_state(state);
1da177e4
LT
4087 spin_unlock_irq(&x->wait.lock);
4088 timeout = schedule_timeout(timeout);
4089 spin_lock_irq(&x->wait.lock);
ea71a546 4090 } while (!x->done && timeout);
1da177e4 4091 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4092 if (!x->done)
4093 return timeout;
1da177e4
LT
4094 }
4095 x->done--;
ea71a546 4096 return timeout ?: 1;
1da177e4 4097}
1da177e4 4098
8cbbe86d
AK
4099static long __sched
4100wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4101{
1da177e4
LT
4102 might_sleep();
4103
4104 spin_lock_irq(&x->wait.lock);
8cbbe86d 4105 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4106 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4107 return timeout;
4108}
1da177e4 4109
65eb3dc6
KD
4110/**
4111 * wait_for_completion: - waits for completion of a task
4112 * @x: holds the state of this particular completion
4113 *
4114 * This waits to be signaled for completion of a specific task. It is NOT
4115 * interruptible and there is no timeout.
4116 *
4117 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4118 * and interrupt capability. Also see complete().
4119 */
b15136e9 4120void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4121{
4122 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4123}
8cbbe86d 4124EXPORT_SYMBOL(wait_for_completion);
1da177e4 4125
65eb3dc6
KD
4126/**
4127 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4128 * @x: holds the state of this particular completion
4129 * @timeout: timeout value in jiffies
4130 *
4131 * This waits for either a completion of a specific task to be signaled or for a
4132 * specified timeout to expire. The timeout is in jiffies. It is not
4133 * interruptible.
4134 */
b15136e9 4135unsigned long __sched
8cbbe86d 4136wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4137{
8cbbe86d 4138 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4139}
8cbbe86d 4140EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4141
65eb3dc6
KD
4142/**
4143 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4144 * @x: holds the state of this particular completion
4145 *
4146 * This waits for completion of a specific task to be signaled. It is
4147 * interruptible.
4148 */
8cbbe86d 4149int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4150{
51e97990
AK
4151 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4152 if (t == -ERESTARTSYS)
4153 return t;
4154 return 0;
0fec171c 4155}
8cbbe86d 4156EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4157
65eb3dc6
KD
4158/**
4159 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4160 * @x: holds the state of this particular completion
4161 * @timeout: timeout value in jiffies
4162 *
4163 * This waits for either a completion of a specific task to be signaled or for a
4164 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4165 */
b15136e9 4166unsigned long __sched
8cbbe86d
AK
4167wait_for_completion_interruptible_timeout(struct completion *x,
4168 unsigned long timeout)
0fec171c 4169{
8cbbe86d 4170 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4171}
8cbbe86d 4172EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4173
65eb3dc6
KD
4174/**
4175 * wait_for_completion_killable: - waits for completion of a task (killable)
4176 * @x: holds the state of this particular completion
4177 *
4178 * This waits to be signaled for completion of a specific task. It can be
4179 * interrupted by a kill signal.
4180 */
009e577e
MW
4181int __sched wait_for_completion_killable(struct completion *x)
4182{
4183 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4184 if (t == -ERESTARTSYS)
4185 return t;
4186 return 0;
4187}
4188EXPORT_SYMBOL(wait_for_completion_killable);
4189
0aa12fb4
SW
4190/**
4191 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4192 * @x: holds the state of this particular completion
4193 * @timeout: timeout value in jiffies
4194 *
4195 * This waits for either a completion of a specific task to be
4196 * signaled or for a specified timeout to expire. It can be
4197 * interrupted by a kill signal. The timeout is in jiffies.
4198 */
4199unsigned long __sched
4200wait_for_completion_killable_timeout(struct completion *x,
4201 unsigned long timeout)
4202{
4203 return wait_for_common(x, timeout, TASK_KILLABLE);
4204}
4205EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4206
be4de352
DC
4207/**
4208 * try_wait_for_completion - try to decrement a completion without blocking
4209 * @x: completion structure
4210 *
4211 * Returns: 0 if a decrement cannot be done without blocking
4212 * 1 if a decrement succeeded.
4213 *
4214 * If a completion is being used as a counting completion,
4215 * attempt to decrement the counter without blocking. This
4216 * enables us to avoid waiting if the resource the completion
4217 * is protecting is not available.
4218 */
4219bool try_wait_for_completion(struct completion *x)
4220{
7539a3b3 4221 unsigned long flags;
be4de352
DC
4222 int ret = 1;
4223
7539a3b3 4224 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4225 if (!x->done)
4226 ret = 0;
4227 else
4228 x->done--;
7539a3b3 4229 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4230 return ret;
4231}
4232EXPORT_SYMBOL(try_wait_for_completion);
4233
4234/**
4235 * completion_done - Test to see if a completion has any waiters
4236 * @x: completion structure
4237 *
4238 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4239 * 1 if there are no waiters.
4240 *
4241 */
4242bool completion_done(struct completion *x)
4243{
7539a3b3 4244 unsigned long flags;
be4de352
DC
4245 int ret = 1;
4246
7539a3b3 4247 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4248 if (!x->done)
4249 ret = 0;
7539a3b3 4250 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4251 return ret;
4252}
4253EXPORT_SYMBOL(completion_done);
4254
8cbbe86d
AK
4255static long __sched
4256sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4257{
0fec171c
IM
4258 unsigned long flags;
4259 wait_queue_t wait;
4260
4261 init_waitqueue_entry(&wait, current);
1da177e4 4262
8cbbe86d 4263 __set_current_state(state);
1da177e4 4264
8cbbe86d
AK
4265 spin_lock_irqsave(&q->lock, flags);
4266 __add_wait_queue(q, &wait);
4267 spin_unlock(&q->lock);
4268 timeout = schedule_timeout(timeout);
4269 spin_lock_irq(&q->lock);
4270 __remove_wait_queue(q, &wait);
4271 spin_unlock_irqrestore(&q->lock, flags);
4272
4273 return timeout;
4274}
4275
4276void __sched interruptible_sleep_on(wait_queue_head_t *q)
4277{
4278 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4279}
1da177e4
LT
4280EXPORT_SYMBOL(interruptible_sleep_on);
4281
0fec171c 4282long __sched
95cdf3b7 4283interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4284{
8cbbe86d 4285 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4286}
1da177e4
LT
4287EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4288
0fec171c 4289void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4290{
8cbbe86d 4291 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4292}
1da177e4
LT
4293EXPORT_SYMBOL(sleep_on);
4294
0fec171c 4295long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4296{
8cbbe86d 4297 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4298}
1da177e4
LT
4299EXPORT_SYMBOL(sleep_on_timeout);
4300
b29739f9
IM
4301#ifdef CONFIG_RT_MUTEXES
4302
4303/*
4304 * rt_mutex_setprio - set the current priority of a task
4305 * @p: task
4306 * @prio: prio value (kernel-internal form)
4307 *
4308 * This function changes the 'effective' priority of a task. It does
4309 * not touch ->normal_prio like __setscheduler().
4310 *
4311 * Used by the rt_mutex code to implement priority inheritance logic.
4312 */
36c8b586 4313void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4314{
4315 unsigned long flags;
83b699ed 4316 int oldprio, on_rq, running;
70b97a7f 4317 struct rq *rq;
83ab0aa0 4318 const struct sched_class *prev_class;
b29739f9
IM
4319
4320 BUG_ON(prio < 0 || prio > MAX_PRIO);
4321
4322 rq = task_rq_lock(p, &flags);
4323
d5f9f942 4324 oldprio = p->prio;
83ab0aa0 4325 prev_class = p->sched_class;
dd41f596 4326 on_rq = p->se.on_rq;
051a1d1a 4327 running = task_current(rq, p);
0e1f3483 4328 if (on_rq)
69be72c1 4329 dequeue_task(rq, p, 0);
0e1f3483
HS
4330 if (running)
4331 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4332
4333 if (rt_prio(prio))
4334 p->sched_class = &rt_sched_class;
4335 else
4336 p->sched_class = &fair_sched_class;
4337
b29739f9
IM
4338 p->prio = prio;
4339
0e1f3483
HS
4340 if (running)
4341 p->sched_class->set_curr_task(rq);
dd41f596 4342 if (on_rq) {
371fd7e7 4343 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4344
4345 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4346 }
4347 task_rq_unlock(rq, &flags);
4348}
4349
4350#endif
4351
36c8b586 4352void set_user_nice(struct task_struct *p, long nice)
1da177e4 4353{
dd41f596 4354 int old_prio, delta, on_rq;
1da177e4 4355 unsigned long flags;
70b97a7f 4356 struct rq *rq;
1da177e4
LT
4357
4358 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4359 return;
4360 /*
4361 * We have to be careful, if called from sys_setpriority(),
4362 * the task might be in the middle of scheduling on another CPU.
4363 */
4364 rq = task_rq_lock(p, &flags);
4365 /*
4366 * The RT priorities are set via sched_setscheduler(), but we still
4367 * allow the 'normal' nice value to be set - but as expected
4368 * it wont have any effect on scheduling until the task is
dd41f596 4369 * SCHED_FIFO/SCHED_RR:
1da177e4 4370 */
e05606d3 4371 if (task_has_rt_policy(p)) {
1da177e4
LT
4372 p->static_prio = NICE_TO_PRIO(nice);
4373 goto out_unlock;
4374 }
dd41f596 4375 on_rq = p->se.on_rq;
c09595f6 4376 if (on_rq)
69be72c1 4377 dequeue_task(rq, p, 0);
1da177e4 4378
1da177e4 4379 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4380 set_load_weight(p);
b29739f9
IM
4381 old_prio = p->prio;
4382 p->prio = effective_prio(p);
4383 delta = p->prio - old_prio;
1da177e4 4384
dd41f596 4385 if (on_rq) {
371fd7e7 4386 enqueue_task(rq, p, 0);
1da177e4 4387 /*
d5f9f942
AM
4388 * If the task increased its priority or is running and
4389 * lowered its priority, then reschedule its CPU:
1da177e4 4390 */
d5f9f942 4391 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4392 resched_task(rq->curr);
4393 }
4394out_unlock:
4395 task_rq_unlock(rq, &flags);
4396}
1da177e4
LT
4397EXPORT_SYMBOL(set_user_nice);
4398
e43379f1
MM
4399/*
4400 * can_nice - check if a task can reduce its nice value
4401 * @p: task
4402 * @nice: nice value
4403 */
36c8b586 4404int can_nice(const struct task_struct *p, const int nice)
e43379f1 4405{
024f4747
MM
4406 /* convert nice value [19,-20] to rlimit style value [1,40] */
4407 int nice_rlim = 20 - nice;
48f24c4d 4408
78d7d407 4409 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4410 capable(CAP_SYS_NICE));
4411}
4412
1da177e4
LT
4413#ifdef __ARCH_WANT_SYS_NICE
4414
4415/*
4416 * sys_nice - change the priority of the current process.
4417 * @increment: priority increment
4418 *
4419 * sys_setpriority is a more generic, but much slower function that
4420 * does similar things.
4421 */
5add95d4 4422SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4423{
48f24c4d 4424 long nice, retval;
1da177e4
LT
4425
4426 /*
4427 * Setpriority might change our priority at the same moment.
4428 * We don't have to worry. Conceptually one call occurs first
4429 * and we have a single winner.
4430 */
e43379f1
MM
4431 if (increment < -40)
4432 increment = -40;
1da177e4
LT
4433 if (increment > 40)
4434 increment = 40;
4435
2b8f836f 4436 nice = TASK_NICE(current) + increment;
1da177e4
LT
4437 if (nice < -20)
4438 nice = -20;
4439 if (nice > 19)
4440 nice = 19;
4441
e43379f1
MM
4442 if (increment < 0 && !can_nice(current, nice))
4443 return -EPERM;
4444
1da177e4
LT
4445 retval = security_task_setnice(current, nice);
4446 if (retval)
4447 return retval;
4448
4449 set_user_nice(current, nice);
4450 return 0;
4451}
4452
4453#endif
4454
4455/**
4456 * task_prio - return the priority value of a given task.
4457 * @p: the task in question.
4458 *
4459 * This is the priority value as seen by users in /proc.
4460 * RT tasks are offset by -200. Normal tasks are centered
4461 * around 0, value goes from -16 to +15.
4462 */
36c8b586 4463int task_prio(const struct task_struct *p)
1da177e4
LT
4464{
4465 return p->prio - MAX_RT_PRIO;
4466}
4467
4468/**
4469 * task_nice - return the nice value of a given task.
4470 * @p: the task in question.
4471 */
36c8b586 4472int task_nice(const struct task_struct *p)
1da177e4
LT
4473{
4474 return TASK_NICE(p);
4475}
150d8bed 4476EXPORT_SYMBOL(task_nice);
1da177e4
LT
4477
4478/**
4479 * idle_cpu - is a given cpu idle currently?
4480 * @cpu: the processor in question.
4481 */
4482int idle_cpu(int cpu)
4483{
4484 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4485}
4486
1da177e4
LT
4487/**
4488 * idle_task - return the idle task for a given cpu.
4489 * @cpu: the processor in question.
4490 */
36c8b586 4491struct task_struct *idle_task(int cpu)
1da177e4
LT
4492{
4493 return cpu_rq(cpu)->idle;
4494}
4495
4496/**
4497 * find_process_by_pid - find a process with a matching PID value.
4498 * @pid: the pid in question.
4499 */
a9957449 4500static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4501{
228ebcbe 4502 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4503}
4504
4505/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4506static void
4507__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4508{
dd41f596 4509 BUG_ON(p->se.on_rq);
48f24c4d 4510
1da177e4
LT
4511 p->policy = policy;
4512 p->rt_priority = prio;
b29739f9
IM
4513 p->normal_prio = normal_prio(p);
4514 /* we are holding p->pi_lock already */
4515 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4516 if (rt_prio(p->prio))
4517 p->sched_class = &rt_sched_class;
4518 else
4519 p->sched_class = &fair_sched_class;
2dd73a4f 4520 set_load_weight(p);
1da177e4
LT
4521}
4522
c69e8d9c
DH
4523/*
4524 * check the target process has a UID that matches the current process's
4525 */
4526static bool check_same_owner(struct task_struct *p)
4527{
4528 const struct cred *cred = current_cred(), *pcred;
4529 bool match;
4530
4531 rcu_read_lock();
4532 pcred = __task_cred(p);
4533 match = (cred->euid == pcred->euid ||
4534 cred->euid == pcred->uid);
4535 rcu_read_unlock();
4536 return match;
4537}
4538
961ccddd
RR
4539static int __sched_setscheduler(struct task_struct *p, int policy,
4540 struct sched_param *param, bool user)
1da177e4 4541{
83b699ed 4542 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4543 unsigned long flags;
83ab0aa0 4544 const struct sched_class *prev_class;
70b97a7f 4545 struct rq *rq;
ca94c442 4546 int reset_on_fork;
1da177e4 4547
66e5393a
SR
4548 /* may grab non-irq protected spin_locks */
4549 BUG_ON(in_interrupt());
1da177e4
LT
4550recheck:
4551 /* double check policy once rq lock held */
ca94c442
LP
4552 if (policy < 0) {
4553 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4554 policy = oldpolicy = p->policy;
ca94c442
LP
4555 } else {
4556 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4557 policy &= ~SCHED_RESET_ON_FORK;
4558
4559 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4560 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4561 policy != SCHED_IDLE)
4562 return -EINVAL;
4563 }
4564
1da177e4
LT
4565 /*
4566 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4567 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4568 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4569 */
4570 if (param->sched_priority < 0 ||
95cdf3b7 4571 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4572 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4573 return -EINVAL;
e05606d3 4574 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4575 return -EINVAL;
4576
37e4ab3f
OC
4577 /*
4578 * Allow unprivileged RT tasks to decrease priority:
4579 */
961ccddd 4580 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4581 if (rt_policy(policy)) {
8dc3e909 4582 unsigned long rlim_rtprio;
8dc3e909
ON
4583
4584 if (!lock_task_sighand(p, &flags))
4585 return -ESRCH;
78d7d407 4586 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4587 unlock_task_sighand(p, &flags);
4588
4589 /* can't set/change the rt policy */
4590 if (policy != p->policy && !rlim_rtprio)
4591 return -EPERM;
4592
4593 /* can't increase priority */
4594 if (param->sched_priority > p->rt_priority &&
4595 param->sched_priority > rlim_rtprio)
4596 return -EPERM;
4597 }
dd41f596
IM
4598 /*
4599 * Like positive nice levels, dont allow tasks to
4600 * move out of SCHED_IDLE either:
4601 */
4602 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4603 return -EPERM;
5fe1d75f 4604
37e4ab3f 4605 /* can't change other user's priorities */
c69e8d9c 4606 if (!check_same_owner(p))
37e4ab3f 4607 return -EPERM;
ca94c442
LP
4608
4609 /* Normal users shall not reset the sched_reset_on_fork flag */
4610 if (p->sched_reset_on_fork && !reset_on_fork)
4611 return -EPERM;
37e4ab3f 4612 }
1da177e4 4613
725aad24 4614 if (user) {
725aad24
JF
4615 retval = security_task_setscheduler(p, policy, param);
4616 if (retval)
4617 return retval;
4618 }
4619
b29739f9
IM
4620 /*
4621 * make sure no PI-waiters arrive (or leave) while we are
4622 * changing the priority of the task:
4623 */
1d615482 4624 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4625 /*
4626 * To be able to change p->policy safely, the apropriate
4627 * runqueue lock must be held.
4628 */
b29739f9 4629 rq = __task_rq_lock(p);
dc61b1d6
PZ
4630
4631#ifdef CONFIG_RT_GROUP_SCHED
4632 if (user) {
4633 /*
4634 * Do not allow realtime tasks into groups that have no runtime
4635 * assigned.
4636 */
4637 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4638 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4639 __task_rq_unlock(rq);
4640 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4641 return -EPERM;
4642 }
4643 }
4644#endif
4645
1da177e4
LT
4646 /* recheck policy now with rq lock held */
4647 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4648 policy = oldpolicy = -1;
b29739f9 4649 __task_rq_unlock(rq);
1d615482 4650 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4651 goto recheck;
4652 }
dd41f596 4653 on_rq = p->se.on_rq;
051a1d1a 4654 running = task_current(rq, p);
0e1f3483 4655 if (on_rq)
2e1cb74a 4656 deactivate_task(rq, p, 0);
0e1f3483
HS
4657 if (running)
4658 p->sched_class->put_prev_task(rq, p);
f6b53205 4659
ca94c442
LP
4660 p->sched_reset_on_fork = reset_on_fork;
4661
1da177e4 4662 oldprio = p->prio;
83ab0aa0 4663 prev_class = p->sched_class;
dd41f596 4664 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4665
0e1f3483
HS
4666 if (running)
4667 p->sched_class->set_curr_task(rq);
dd41f596
IM
4668 if (on_rq) {
4669 activate_task(rq, p, 0);
cb469845
SR
4670
4671 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4672 }
b29739f9 4673 __task_rq_unlock(rq);
1d615482 4674 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4675
95e02ca9
TG
4676 rt_mutex_adjust_pi(p);
4677
1da177e4
LT
4678 return 0;
4679}
961ccddd
RR
4680
4681/**
4682 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4683 * @p: the task in question.
4684 * @policy: new policy.
4685 * @param: structure containing the new RT priority.
4686 *
4687 * NOTE that the task may be already dead.
4688 */
4689int sched_setscheduler(struct task_struct *p, int policy,
4690 struct sched_param *param)
4691{
4692 return __sched_setscheduler(p, policy, param, true);
4693}
1da177e4
LT
4694EXPORT_SYMBOL_GPL(sched_setscheduler);
4695
961ccddd
RR
4696/**
4697 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4698 * @p: the task in question.
4699 * @policy: new policy.
4700 * @param: structure containing the new RT priority.
4701 *
4702 * Just like sched_setscheduler, only don't bother checking if the
4703 * current context has permission. For example, this is needed in
4704 * stop_machine(): we create temporary high priority worker threads,
4705 * but our caller might not have that capability.
4706 */
4707int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4708 struct sched_param *param)
4709{
4710 return __sched_setscheduler(p, policy, param, false);
4711}
4712
95cdf3b7
IM
4713static int
4714do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4715{
1da177e4
LT
4716 struct sched_param lparam;
4717 struct task_struct *p;
36c8b586 4718 int retval;
1da177e4
LT
4719
4720 if (!param || pid < 0)
4721 return -EINVAL;
4722 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4723 return -EFAULT;
5fe1d75f
ON
4724
4725 rcu_read_lock();
4726 retval = -ESRCH;
1da177e4 4727 p = find_process_by_pid(pid);
5fe1d75f
ON
4728 if (p != NULL)
4729 retval = sched_setscheduler(p, policy, &lparam);
4730 rcu_read_unlock();
36c8b586 4731
1da177e4
LT
4732 return retval;
4733}
4734
4735/**
4736 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4737 * @pid: the pid in question.
4738 * @policy: new policy.
4739 * @param: structure containing the new RT priority.
4740 */
5add95d4
HC
4741SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4742 struct sched_param __user *, param)
1da177e4 4743{
c21761f1
JB
4744 /* negative values for policy are not valid */
4745 if (policy < 0)
4746 return -EINVAL;
4747
1da177e4
LT
4748 return do_sched_setscheduler(pid, policy, param);
4749}
4750
4751/**
4752 * sys_sched_setparam - set/change the RT priority of a thread
4753 * @pid: the pid in question.
4754 * @param: structure containing the new RT priority.
4755 */
5add95d4 4756SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4757{
4758 return do_sched_setscheduler(pid, -1, param);
4759}
4760
4761/**
4762 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4763 * @pid: the pid in question.
4764 */
5add95d4 4765SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4766{
36c8b586 4767 struct task_struct *p;
3a5c359a 4768 int retval;
1da177e4
LT
4769
4770 if (pid < 0)
3a5c359a 4771 return -EINVAL;
1da177e4
LT
4772
4773 retval = -ESRCH;
5fe85be0 4774 rcu_read_lock();
1da177e4
LT
4775 p = find_process_by_pid(pid);
4776 if (p) {
4777 retval = security_task_getscheduler(p);
4778 if (!retval)
ca94c442
LP
4779 retval = p->policy
4780 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4781 }
5fe85be0 4782 rcu_read_unlock();
1da177e4
LT
4783 return retval;
4784}
4785
4786/**
ca94c442 4787 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4788 * @pid: the pid in question.
4789 * @param: structure containing the RT priority.
4790 */
5add95d4 4791SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4792{
4793 struct sched_param lp;
36c8b586 4794 struct task_struct *p;
3a5c359a 4795 int retval;
1da177e4
LT
4796
4797 if (!param || pid < 0)
3a5c359a 4798 return -EINVAL;
1da177e4 4799
5fe85be0 4800 rcu_read_lock();
1da177e4
LT
4801 p = find_process_by_pid(pid);
4802 retval = -ESRCH;
4803 if (!p)
4804 goto out_unlock;
4805
4806 retval = security_task_getscheduler(p);
4807 if (retval)
4808 goto out_unlock;
4809
4810 lp.sched_priority = p->rt_priority;
5fe85be0 4811 rcu_read_unlock();
1da177e4
LT
4812
4813 /*
4814 * This one might sleep, we cannot do it with a spinlock held ...
4815 */
4816 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4817
1da177e4
LT
4818 return retval;
4819
4820out_unlock:
5fe85be0 4821 rcu_read_unlock();
1da177e4
LT
4822 return retval;
4823}
4824
96f874e2 4825long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4826{
5a16f3d3 4827 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4828 struct task_struct *p;
4829 int retval;
1da177e4 4830
95402b38 4831 get_online_cpus();
23f5d142 4832 rcu_read_lock();
1da177e4
LT
4833
4834 p = find_process_by_pid(pid);
4835 if (!p) {
23f5d142 4836 rcu_read_unlock();
95402b38 4837 put_online_cpus();
1da177e4
LT
4838 return -ESRCH;
4839 }
4840
23f5d142 4841 /* Prevent p going away */
1da177e4 4842 get_task_struct(p);
23f5d142 4843 rcu_read_unlock();
1da177e4 4844
5a16f3d3
RR
4845 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4846 retval = -ENOMEM;
4847 goto out_put_task;
4848 }
4849 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4850 retval = -ENOMEM;
4851 goto out_free_cpus_allowed;
4852 }
1da177e4 4853 retval = -EPERM;
c69e8d9c 4854 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4855 goto out_unlock;
4856
e7834f8f
DQ
4857 retval = security_task_setscheduler(p, 0, NULL);
4858 if (retval)
4859 goto out_unlock;
4860
5a16f3d3
RR
4861 cpuset_cpus_allowed(p, cpus_allowed);
4862 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4863 again:
5a16f3d3 4864 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4865
8707d8b8 4866 if (!retval) {
5a16f3d3
RR
4867 cpuset_cpus_allowed(p, cpus_allowed);
4868 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4869 /*
4870 * We must have raced with a concurrent cpuset
4871 * update. Just reset the cpus_allowed to the
4872 * cpuset's cpus_allowed
4873 */
5a16f3d3 4874 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4875 goto again;
4876 }
4877 }
1da177e4 4878out_unlock:
5a16f3d3
RR
4879 free_cpumask_var(new_mask);
4880out_free_cpus_allowed:
4881 free_cpumask_var(cpus_allowed);
4882out_put_task:
1da177e4 4883 put_task_struct(p);
95402b38 4884 put_online_cpus();
1da177e4
LT
4885 return retval;
4886}
4887
4888static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4889 struct cpumask *new_mask)
1da177e4 4890{
96f874e2
RR
4891 if (len < cpumask_size())
4892 cpumask_clear(new_mask);
4893 else if (len > cpumask_size())
4894 len = cpumask_size();
4895
1da177e4
LT
4896 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4897}
4898
4899/**
4900 * sys_sched_setaffinity - set the cpu affinity of a process
4901 * @pid: pid of the process
4902 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4903 * @user_mask_ptr: user-space pointer to the new cpu mask
4904 */
5add95d4
HC
4905SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4906 unsigned long __user *, user_mask_ptr)
1da177e4 4907{
5a16f3d3 4908 cpumask_var_t new_mask;
1da177e4
LT
4909 int retval;
4910
5a16f3d3
RR
4911 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4912 return -ENOMEM;
1da177e4 4913
5a16f3d3
RR
4914 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4915 if (retval == 0)
4916 retval = sched_setaffinity(pid, new_mask);
4917 free_cpumask_var(new_mask);
4918 return retval;
1da177e4
LT
4919}
4920
96f874e2 4921long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4922{
36c8b586 4923 struct task_struct *p;
31605683
TG
4924 unsigned long flags;
4925 struct rq *rq;
1da177e4 4926 int retval;
1da177e4 4927
95402b38 4928 get_online_cpus();
23f5d142 4929 rcu_read_lock();
1da177e4
LT
4930
4931 retval = -ESRCH;
4932 p = find_process_by_pid(pid);
4933 if (!p)
4934 goto out_unlock;
4935
e7834f8f
DQ
4936 retval = security_task_getscheduler(p);
4937 if (retval)
4938 goto out_unlock;
4939
31605683 4940 rq = task_rq_lock(p, &flags);
96f874e2 4941 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4942 task_rq_unlock(rq, &flags);
1da177e4
LT
4943
4944out_unlock:
23f5d142 4945 rcu_read_unlock();
95402b38 4946 put_online_cpus();
1da177e4 4947
9531b62f 4948 return retval;
1da177e4
LT
4949}
4950
4951/**
4952 * sys_sched_getaffinity - get the cpu affinity of a process
4953 * @pid: pid of the process
4954 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4955 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4956 */
5add95d4
HC
4957SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4958 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4959{
4960 int ret;
f17c8607 4961 cpumask_var_t mask;
1da177e4 4962
84fba5ec 4963 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4964 return -EINVAL;
4965 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4966 return -EINVAL;
4967
f17c8607
RR
4968 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4969 return -ENOMEM;
1da177e4 4970
f17c8607
RR
4971 ret = sched_getaffinity(pid, mask);
4972 if (ret == 0) {
8bc037fb 4973 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4974
4975 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4976 ret = -EFAULT;
4977 else
cd3d8031 4978 ret = retlen;
f17c8607
RR
4979 }
4980 free_cpumask_var(mask);
1da177e4 4981
f17c8607 4982 return ret;
1da177e4
LT
4983}
4984
4985/**
4986 * sys_sched_yield - yield the current processor to other threads.
4987 *
dd41f596
IM
4988 * This function yields the current CPU to other tasks. If there are no
4989 * other threads running on this CPU then this function will return.
1da177e4 4990 */
5add95d4 4991SYSCALL_DEFINE0(sched_yield)
1da177e4 4992{
70b97a7f 4993 struct rq *rq = this_rq_lock();
1da177e4 4994
2d72376b 4995 schedstat_inc(rq, yld_count);
4530d7ab 4996 current->sched_class->yield_task(rq);
1da177e4
LT
4997
4998 /*
4999 * Since we are going to call schedule() anyway, there's
5000 * no need to preempt or enable interrupts:
5001 */
5002 __release(rq->lock);
8a25d5de 5003 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5004 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5005 preempt_enable_no_resched();
5006
5007 schedule();
5008
5009 return 0;
5010}
5011
d86ee480
PZ
5012static inline int should_resched(void)
5013{
5014 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5015}
5016
e7b38404 5017static void __cond_resched(void)
1da177e4 5018{
e7aaaa69
FW
5019 add_preempt_count(PREEMPT_ACTIVE);
5020 schedule();
5021 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5022}
5023
02b67cc3 5024int __sched _cond_resched(void)
1da177e4 5025{
d86ee480 5026 if (should_resched()) {
1da177e4
LT
5027 __cond_resched();
5028 return 1;
5029 }
5030 return 0;
5031}
02b67cc3 5032EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5033
5034/*
613afbf8 5035 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5036 * call schedule, and on return reacquire the lock.
5037 *
41a2d6cf 5038 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5039 * operations here to prevent schedule() from being called twice (once via
5040 * spin_unlock(), once by hand).
5041 */
613afbf8 5042int __cond_resched_lock(spinlock_t *lock)
1da177e4 5043{
d86ee480 5044 int resched = should_resched();
6df3cecb
JK
5045 int ret = 0;
5046
f607c668
PZ
5047 lockdep_assert_held(lock);
5048
95c354fe 5049 if (spin_needbreak(lock) || resched) {
1da177e4 5050 spin_unlock(lock);
d86ee480 5051 if (resched)
95c354fe
NP
5052 __cond_resched();
5053 else
5054 cpu_relax();
6df3cecb 5055 ret = 1;
1da177e4 5056 spin_lock(lock);
1da177e4 5057 }
6df3cecb 5058 return ret;
1da177e4 5059}
613afbf8 5060EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5061
613afbf8 5062int __sched __cond_resched_softirq(void)
1da177e4
LT
5063{
5064 BUG_ON(!in_softirq());
5065
d86ee480 5066 if (should_resched()) {
98d82567 5067 local_bh_enable();
1da177e4
LT
5068 __cond_resched();
5069 local_bh_disable();
5070 return 1;
5071 }
5072 return 0;
5073}
613afbf8 5074EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5075
1da177e4
LT
5076/**
5077 * yield - yield the current processor to other threads.
5078 *
72fd4a35 5079 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5080 * thread runnable and calls sys_sched_yield().
5081 */
5082void __sched yield(void)
5083{
5084 set_current_state(TASK_RUNNING);
5085 sys_sched_yield();
5086}
1da177e4
LT
5087EXPORT_SYMBOL(yield);
5088
5089/*
41a2d6cf 5090 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5091 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5092 */
5093void __sched io_schedule(void)
5094{
54d35f29 5095 struct rq *rq = raw_rq();
1da177e4 5096
0ff92245 5097 delayacct_blkio_start();
1da177e4 5098 atomic_inc(&rq->nr_iowait);
8f0dfc34 5099 current->in_iowait = 1;
1da177e4 5100 schedule();
8f0dfc34 5101 current->in_iowait = 0;
1da177e4 5102 atomic_dec(&rq->nr_iowait);
0ff92245 5103 delayacct_blkio_end();
1da177e4 5104}
1da177e4
LT
5105EXPORT_SYMBOL(io_schedule);
5106
5107long __sched io_schedule_timeout(long timeout)
5108{
54d35f29 5109 struct rq *rq = raw_rq();
1da177e4
LT
5110 long ret;
5111
0ff92245 5112 delayacct_blkio_start();
1da177e4 5113 atomic_inc(&rq->nr_iowait);
8f0dfc34 5114 current->in_iowait = 1;
1da177e4 5115 ret = schedule_timeout(timeout);
8f0dfc34 5116 current->in_iowait = 0;
1da177e4 5117 atomic_dec(&rq->nr_iowait);
0ff92245 5118 delayacct_blkio_end();
1da177e4
LT
5119 return ret;
5120}
5121
5122/**
5123 * sys_sched_get_priority_max - return maximum RT priority.
5124 * @policy: scheduling class.
5125 *
5126 * this syscall returns the maximum rt_priority that can be used
5127 * by a given scheduling class.
5128 */
5add95d4 5129SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5130{
5131 int ret = -EINVAL;
5132
5133 switch (policy) {
5134 case SCHED_FIFO:
5135 case SCHED_RR:
5136 ret = MAX_USER_RT_PRIO-1;
5137 break;
5138 case SCHED_NORMAL:
b0a9499c 5139 case SCHED_BATCH:
dd41f596 5140 case SCHED_IDLE:
1da177e4
LT
5141 ret = 0;
5142 break;
5143 }
5144 return ret;
5145}
5146
5147/**
5148 * sys_sched_get_priority_min - return minimum RT priority.
5149 * @policy: scheduling class.
5150 *
5151 * this syscall returns the minimum rt_priority that can be used
5152 * by a given scheduling class.
5153 */
5add95d4 5154SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5155{
5156 int ret = -EINVAL;
5157
5158 switch (policy) {
5159 case SCHED_FIFO:
5160 case SCHED_RR:
5161 ret = 1;
5162 break;
5163 case SCHED_NORMAL:
b0a9499c 5164 case SCHED_BATCH:
dd41f596 5165 case SCHED_IDLE:
1da177e4
LT
5166 ret = 0;
5167 }
5168 return ret;
5169}
5170
5171/**
5172 * sys_sched_rr_get_interval - return the default timeslice of a process.
5173 * @pid: pid of the process.
5174 * @interval: userspace pointer to the timeslice value.
5175 *
5176 * this syscall writes the default timeslice value of a given process
5177 * into the user-space timespec buffer. A value of '0' means infinity.
5178 */
17da2bd9 5179SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5180 struct timespec __user *, interval)
1da177e4 5181{
36c8b586 5182 struct task_struct *p;
a4ec24b4 5183 unsigned int time_slice;
dba091b9
TG
5184 unsigned long flags;
5185 struct rq *rq;
3a5c359a 5186 int retval;
1da177e4 5187 struct timespec t;
1da177e4
LT
5188
5189 if (pid < 0)
3a5c359a 5190 return -EINVAL;
1da177e4
LT
5191
5192 retval = -ESRCH;
1a551ae7 5193 rcu_read_lock();
1da177e4
LT
5194 p = find_process_by_pid(pid);
5195 if (!p)
5196 goto out_unlock;
5197
5198 retval = security_task_getscheduler(p);
5199 if (retval)
5200 goto out_unlock;
5201
dba091b9
TG
5202 rq = task_rq_lock(p, &flags);
5203 time_slice = p->sched_class->get_rr_interval(rq, p);
5204 task_rq_unlock(rq, &flags);
a4ec24b4 5205
1a551ae7 5206 rcu_read_unlock();
a4ec24b4 5207 jiffies_to_timespec(time_slice, &t);
1da177e4 5208 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5209 return retval;
3a5c359a 5210
1da177e4 5211out_unlock:
1a551ae7 5212 rcu_read_unlock();
1da177e4
LT
5213 return retval;
5214}
5215
7c731e0a 5216static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5217
82a1fcb9 5218void sched_show_task(struct task_struct *p)
1da177e4 5219{
1da177e4 5220 unsigned long free = 0;
36c8b586 5221 unsigned state;
1da177e4 5222
1da177e4 5223 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5224 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5225 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5226#if BITS_PER_LONG == 32
1da177e4 5227 if (state == TASK_RUNNING)
3df0fc5b 5228 printk(KERN_CONT " running ");
1da177e4 5229 else
3df0fc5b 5230 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5231#else
5232 if (state == TASK_RUNNING)
3df0fc5b 5233 printk(KERN_CONT " running task ");
1da177e4 5234 else
3df0fc5b 5235 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5236#endif
5237#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5238 free = stack_not_used(p);
1da177e4 5239#endif
3df0fc5b 5240 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5241 task_pid_nr(p), task_pid_nr(p->real_parent),
5242 (unsigned long)task_thread_info(p)->flags);
1da177e4 5243
5fb5e6de 5244 show_stack(p, NULL);
1da177e4
LT
5245}
5246
e59e2ae2 5247void show_state_filter(unsigned long state_filter)
1da177e4 5248{
36c8b586 5249 struct task_struct *g, *p;
1da177e4 5250
4bd77321 5251#if BITS_PER_LONG == 32
3df0fc5b
PZ
5252 printk(KERN_INFO
5253 " task PC stack pid father\n");
1da177e4 5254#else
3df0fc5b
PZ
5255 printk(KERN_INFO
5256 " task PC stack pid father\n");
1da177e4
LT
5257#endif
5258 read_lock(&tasklist_lock);
5259 do_each_thread(g, p) {
5260 /*
5261 * reset the NMI-timeout, listing all files on a slow
5262 * console might take alot of time:
5263 */
5264 touch_nmi_watchdog();
39bc89fd 5265 if (!state_filter || (p->state & state_filter))
82a1fcb9 5266 sched_show_task(p);
1da177e4
LT
5267 } while_each_thread(g, p);
5268
04c9167f
JF
5269 touch_all_softlockup_watchdogs();
5270
dd41f596
IM
5271#ifdef CONFIG_SCHED_DEBUG
5272 sysrq_sched_debug_show();
5273#endif
1da177e4 5274 read_unlock(&tasklist_lock);
e59e2ae2
IM
5275 /*
5276 * Only show locks if all tasks are dumped:
5277 */
93335a21 5278 if (!state_filter)
e59e2ae2 5279 debug_show_all_locks();
1da177e4
LT
5280}
5281
1df21055
IM
5282void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5283{
dd41f596 5284 idle->sched_class = &idle_sched_class;
1df21055
IM
5285}
5286
f340c0d1
IM
5287/**
5288 * init_idle - set up an idle thread for a given CPU
5289 * @idle: task in question
5290 * @cpu: cpu the idle task belongs to
5291 *
5292 * NOTE: this function does not set the idle thread's NEED_RESCHED
5293 * flag, to make booting more robust.
5294 */
5c1e1767 5295void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5296{
70b97a7f 5297 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5298 unsigned long flags;
5299
05fa785c 5300 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5301
dd41f596 5302 __sched_fork(idle);
06b83b5f 5303 idle->state = TASK_RUNNING;
dd41f596
IM
5304 idle->se.exec_start = sched_clock();
5305
96f874e2 5306 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5307 __set_task_cpu(idle, cpu);
1da177e4 5308
1da177e4 5309 rq->curr = rq->idle = idle;
4866cde0
NP
5310#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5311 idle->oncpu = 1;
5312#endif
05fa785c 5313 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5314
5315 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5316#if defined(CONFIG_PREEMPT)
5317 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5318#else
a1261f54 5319 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5320#endif
dd41f596
IM
5321 /*
5322 * The idle tasks have their own, simple scheduling class:
5323 */
5324 idle->sched_class = &idle_sched_class;
fb52607a 5325 ftrace_graph_init_task(idle);
1da177e4
LT
5326}
5327
5328/*
5329 * In a system that switches off the HZ timer nohz_cpu_mask
5330 * indicates which cpus entered this state. This is used
5331 * in the rcu update to wait only for active cpus. For system
5332 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5333 * always be CPU_BITS_NONE.
1da177e4 5334 */
6a7b3dc3 5335cpumask_var_t nohz_cpu_mask;
1da177e4 5336
19978ca6
IM
5337/*
5338 * Increase the granularity value when there are more CPUs,
5339 * because with more CPUs the 'effective latency' as visible
5340 * to users decreases. But the relationship is not linear,
5341 * so pick a second-best guess by going with the log2 of the
5342 * number of CPUs.
5343 *
5344 * This idea comes from the SD scheduler of Con Kolivas:
5345 */
acb4a848 5346static int get_update_sysctl_factor(void)
19978ca6 5347{
4ca3ef71 5348 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5349 unsigned int factor;
5350
5351 switch (sysctl_sched_tunable_scaling) {
5352 case SCHED_TUNABLESCALING_NONE:
5353 factor = 1;
5354 break;
5355 case SCHED_TUNABLESCALING_LINEAR:
5356 factor = cpus;
5357 break;
5358 case SCHED_TUNABLESCALING_LOG:
5359 default:
5360 factor = 1 + ilog2(cpus);
5361 break;
5362 }
19978ca6 5363
acb4a848
CE
5364 return factor;
5365}
19978ca6 5366
acb4a848
CE
5367static void update_sysctl(void)
5368{
5369 unsigned int factor = get_update_sysctl_factor();
19978ca6 5370
0bcdcf28
CE
5371#define SET_SYSCTL(name) \
5372 (sysctl_##name = (factor) * normalized_sysctl_##name)
5373 SET_SYSCTL(sched_min_granularity);
5374 SET_SYSCTL(sched_latency);
5375 SET_SYSCTL(sched_wakeup_granularity);
5376 SET_SYSCTL(sched_shares_ratelimit);
5377#undef SET_SYSCTL
5378}
55cd5340 5379
0bcdcf28
CE
5380static inline void sched_init_granularity(void)
5381{
5382 update_sysctl();
19978ca6
IM
5383}
5384
1da177e4
LT
5385#ifdef CONFIG_SMP
5386/*
5387 * This is how migration works:
5388 *
969c7921
TH
5389 * 1) we invoke migration_cpu_stop() on the target CPU using
5390 * stop_one_cpu().
5391 * 2) stopper starts to run (implicitly forcing the migrated thread
5392 * off the CPU)
5393 * 3) it checks whether the migrated task is still in the wrong runqueue.
5394 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5395 * it and puts it into the right queue.
969c7921
TH
5396 * 5) stopper completes and stop_one_cpu() returns and the migration
5397 * is done.
1da177e4
LT
5398 */
5399
5400/*
5401 * Change a given task's CPU affinity. Migrate the thread to a
5402 * proper CPU and schedule it away if the CPU it's executing on
5403 * is removed from the allowed bitmask.
5404 *
5405 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5406 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5407 * call is not atomic; no spinlocks may be held.
5408 */
96f874e2 5409int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5410{
5411 unsigned long flags;
70b97a7f 5412 struct rq *rq;
969c7921 5413 unsigned int dest_cpu;
48f24c4d 5414 int ret = 0;
1da177e4 5415
65cc8e48
PZ
5416 /*
5417 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5418 * drop the rq->lock and still rely on ->cpus_allowed.
5419 */
5420again:
5421 while (task_is_waking(p))
5422 cpu_relax();
1da177e4 5423 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5424 if (task_is_waking(p)) {
5425 task_rq_unlock(rq, &flags);
5426 goto again;
5427 }
e2912009 5428
6ad4c188 5429 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5430 ret = -EINVAL;
5431 goto out;
5432 }
5433
9985b0ba 5434 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5435 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5436 ret = -EINVAL;
5437 goto out;
5438 }
5439
73fe6aae 5440 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5441 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5442 else {
96f874e2
RR
5443 cpumask_copy(&p->cpus_allowed, new_mask);
5444 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5445 }
5446
1da177e4 5447 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5448 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5449 goto out;
5450
969c7921
TH
5451 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5452 if (migrate_task(p, dest_cpu)) {
5453 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5454 /* Need help from migration thread: drop lock and wait. */
5455 task_rq_unlock(rq, &flags);
969c7921 5456 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5457 tlb_migrate_finish(p->mm);
5458 return 0;
5459 }
5460out:
5461 task_rq_unlock(rq, &flags);
48f24c4d 5462
1da177e4
LT
5463 return ret;
5464}
cd8ba7cd 5465EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5466
5467/*
41a2d6cf 5468 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5469 * this because either it can't run here any more (set_cpus_allowed()
5470 * away from this CPU, or CPU going down), or because we're
5471 * attempting to rebalance this task on exec (sched_exec).
5472 *
5473 * So we race with normal scheduler movements, but that's OK, as long
5474 * as the task is no longer on this CPU.
efc30814
KK
5475 *
5476 * Returns non-zero if task was successfully migrated.
1da177e4 5477 */
efc30814 5478static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5479{
70b97a7f 5480 struct rq *rq_dest, *rq_src;
e2912009 5481 int ret = 0;
1da177e4 5482
e761b772 5483 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5484 return ret;
1da177e4
LT
5485
5486 rq_src = cpu_rq(src_cpu);
5487 rq_dest = cpu_rq(dest_cpu);
5488
5489 double_rq_lock(rq_src, rq_dest);
5490 /* Already moved. */
5491 if (task_cpu(p) != src_cpu)
b1e38734 5492 goto done;
1da177e4 5493 /* Affinity changed (again). */
96f874e2 5494 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5495 goto fail;
1da177e4 5496
e2912009
PZ
5497 /*
5498 * If we're not on a rq, the next wake-up will ensure we're
5499 * placed properly.
5500 */
5501 if (p->se.on_rq) {
2e1cb74a 5502 deactivate_task(rq_src, p, 0);
e2912009 5503 set_task_cpu(p, dest_cpu);
dd41f596 5504 activate_task(rq_dest, p, 0);
15afe09b 5505 check_preempt_curr(rq_dest, p, 0);
1da177e4 5506 }
b1e38734 5507done:
efc30814 5508 ret = 1;
b1e38734 5509fail:
1da177e4 5510 double_rq_unlock(rq_src, rq_dest);
efc30814 5511 return ret;
1da177e4
LT
5512}
5513
5514/*
969c7921
TH
5515 * migration_cpu_stop - this will be executed by a highprio stopper thread
5516 * and performs thread migration by bumping thread off CPU then
5517 * 'pushing' onto another runqueue.
1da177e4 5518 */
969c7921 5519static int migration_cpu_stop(void *data)
1da177e4 5520{
969c7921 5521 struct migration_arg *arg = data;
f7b4cddc 5522
969c7921
TH
5523 /*
5524 * The original target cpu might have gone down and we might
5525 * be on another cpu but it doesn't matter.
5526 */
f7b4cddc 5527 local_irq_disable();
969c7921 5528 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5529 local_irq_enable();
1da177e4 5530 return 0;
f7b4cddc
ON
5531}
5532
1da177e4 5533#ifdef CONFIG_HOTPLUG_CPU
054b9108 5534/*
3a4fa0a2 5535 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5536 */
6a1bdc1b 5537void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5538{
1445c08d
ON
5539 struct rq *rq = cpu_rq(dead_cpu);
5540 int needs_cpu, uninitialized_var(dest_cpu);
5541 unsigned long flags;
e76bd8d9 5542
1445c08d 5543 local_irq_save(flags);
e76bd8d9 5544
1445c08d
ON
5545 raw_spin_lock(&rq->lock);
5546 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5547 if (needs_cpu)
5548 dest_cpu = select_fallback_rq(dead_cpu, p);
5549 raw_spin_unlock(&rq->lock);
c1804d54
ON
5550 /*
5551 * It can only fail if we race with set_cpus_allowed(),
5552 * in the racer should migrate the task anyway.
5553 */
1445c08d 5554 if (needs_cpu)
c1804d54 5555 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5556 local_irq_restore(flags);
1da177e4
LT
5557}
5558
5559/*
5560 * While a dead CPU has no uninterruptible tasks queued at this point,
5561 * it might still have a nonzero ->nr_uninterruptible counter, because
5562 * for performance reasons the counter is not stricly tracking tasks to
5563 * their home CPUs. So we just add the counter to another CPU's counter,
5564 * to keep the global sum constant after CPU-down:
5565 */
70b97a7f 5566static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5567{
6ad4c188 5568 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5569 unsigned long flags;
5570
5571 local_irq_save(flags);
5572 double_rq_lock(rq_src, rq_dest);
5573 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5574 rq_src->nr_uninterruptible = 0;
5575 double_rq_unlock(rq_src, rq_dest);
5576 local_irq_restore(flags);
5577}
5578
5579/* Run through task list and migrate tasks from the dead cpu. */
5580static void migrate_live_tasks(int src_cpu)
5581{
48f24c4d 5582 struct task_struct *p, *t;
1da177e4 5583
f7b4cddc 5584 read_lock(&tasklist_lock);
1da177e4 5585
48f24c4d
IM
5586 do_each_thread(t, p) {
5587 if (p == current)
1da177e4
LT
5588 continue;
5589
48f24c4d
IM
5590 if (task_cpu(p) == src_cpu)
5591 move_task_off_dead_cpu(src_cpu, p);
5592 } while_each_thread(t, p);
1da177e4 5593
f7b4cddc 5594 read_unlock(&tasklist_lock);
1da177e4
LT
5595}
5596
dd41f596
IM
5597/*
5598 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5599 * It does so by boosting its priority to highest possible.
5600 * Used by CPU offline code.
1da177e4
LT
5601 */
5602void sched_idle_next(void)
5603{
48f24c4d 5604 int this_cpu = smp_processor_id();
70b97a7f 5605 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5606 struct task_struct *p = rq->idle;
5607 unsigned long flags;
5608
5609 /* cpu has to be offline */
48f24c4d 5610 BUG_ON(cpu_online(this_cpu));
1da177e4 5611
48f24c4d
IM
5612 /*
5613 * Strictly not necessary since rest of the CPUs are stopped by now
5614 * and interrupts disabled on the current cpu.
1da177e4 5615 */
05fa785c 5616 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5617
dd41f596 5618 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5619
94bc9a7b 5620 activate_task(rq, p, 0);
1da177e4 5621
05fa785c 5622 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5623}
5624
48f24c4d
IM
5625/*
5626 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5627 * offline.
5628 */
5629void idle_task_exit(void)
5630{
5631 struct mm_struct *mm = current->active_mm;
5632
5633 BUG_ON(cpu_online(smp_processor_id()));
5634
5635 if (mm != &init_mm)
5636 switch_mm(mm, &init_mm, current);
5637 mmdrop(mm);
5638}
5639
054b9108 5640/* called under rq->lock with disabled interrupts */
36c8b586 5641static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5642{
70b97a7f 5643 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5644
5645 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5646 BUG_ON(!p->exit_state);
1da177e4
LT
5647
5648 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5649 BUG_ON(p->state == TASK_DEAD);
1da177e4 5650
48f24c4d 5651 get_task_struct(p);
1da177e4
LT
5652
5653 /*
5654 * Drop lock around migration; if someone else moves it,
41a2d6cf 5655 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5656 * fine.
5657 */
05fa785c 5658 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5659 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5660 raw_spin_lock_irq(&rq->lock);
1da177e4 5661
48f24c4d 5662 put_task_struct(p);
1da177e4
LT
5663}
5664
5665/* release_task() removes task from tasklist, so we won't find dead tasks. */
5666static void migrate_dead_tasks(unsigned int dead_cpu)
5667{
70b97a7f 5668 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5669 struct task_struct *next;
48f24c4d 5670
dd41f596
IM
5671 for ( ; ; ) {
5672 if (!rq->nr_running)
5673 break;
b67802ea 5674 next = pick_next_task(rq);
dd41f596
IM
5675 if (!next)
5676 break;
79c53799 5677 next->sched_class->put_prev_task(rq, next);
dd41f596 5678 migrate_dead(dead_cpu, next);
e692ab53 5679
1da177e4
LT
5680 }
5681}
dce48a84
TG
5682
5683/*
5684 * remove the tasks which were accounted by rq from calc_load_tasks.
5685 */
5686static void calc_global_load_remove(struct rq *rq)
5687{
5688 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5689 rq->calc_load_active = 0;
dce48a84 5690}
1da177e4
LT
5691#endif /* CONFIG_HOTPLUG_CPU */
5692
e692ab53
NP
5693#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5694
5695static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5696 {
5697 .procname = "sched_domain",
c57baf1e 5698 .mode = 0555,
e0361851 5699 },
56992309 5700 {}
e692ab53
NP
5701};
5702
5703static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5704 {
5705 .procname = "kernel",
c57baf1e 5706 .mode = 0555,
e0361851
AD
5707 .child = sd_ctl_dir,
5708 },
56992309 5709 {}
e692ab53
NP
5710};
5711
5712static struct ctl_table *sd_alloc_ctl_entry(int n)
5713{
5714 struct ctl_table *entry =
5cf9f062 5715 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5716
e692ab53
NP
5717 return entry;
5718}
5719
6382bc90
MM
5720static void sd_free_ctl_entry(struct ctl_table **tablep)
5721{
cd790076 5722 struct ctl_table *entry;
6382bc90 5723
cd790076
MM
5724 /*
5725 * In the intermediate directories, both the child directory and
5726 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5727 * will always be set. In the lowest directory the names are
cd790076
MM
5728 * static strings and all have proc handlers.
5729 */
5730 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5731 if (entry->child)
5732 sd_free_ctl_entry(&entry->child);
cd790076
MM
5733 if (entry->proc_handler == NULL)
5734 kfree(entry->procname);
5735 }
6382bc90
MM
5736
5737 kfree(*tablep);
5738 *tablep = NULL;
5739}
5740
e692ab53 5741static void
e0361851 5742set_table_entry(struct ctl_table *entry,
e692ab53
NP
5743 const char *procname, void *data, int maxlen,
5744 mode_t mode, proc_handler *proc_handler)
5745{
e692ab53
NP
5746 entry->procname = procname;
5747 entry->data = data;
5748 entry->maxlen = maxlen;
5749 entry->mode = mode;
5750 entry->proc_handler = proc_handler;
5751}
5752
5753static struct ctl_table *
5754sd_alloc_ctl_domain_table(struct sched_domain *sd)
5755{
a5d8c348 5756 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5757
ad1cdc1d
MM
5758 if (table == NULL)
5759 return NULL;
5760
e0361851 5761 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5762 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5763 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5764 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5765 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5766 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5767 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5768 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5769 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5770 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5771 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5772 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5773 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5774 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5775 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5776 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5777 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5778 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5779 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5780 &sd->cache_nice_tries,
5781 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5782 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5783 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5784 set_table_entry(&table[11], "name", sd->name,
5785 CORENAME_MAX_SIZE, 0444, proc_dostring);
5786 /* &table[12] is terminator */
e692ab53
NP
5787
5788 return table;
5789}
5790
9a4e7159 5791static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5792{
5793 struct ctl_table *entry, *table;
5794 struct sched_domain *sd;
5795 int domain_num = 0, i;
5796 char buf[32];
5797
5798 for_each_domain(cpu, sd)
5799 domain_num++;
5800 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5801 if (table == NULL)
5802 return NULL;
e692ab53
NP
5803
5804 i = 0;
5805 for_each_domain(cpu, sd) {
5806 snprintf(buf, 32, "domain%d", i);
e692ab53 5807 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5808 entry->mode = 0555;
e692ab53
NP
5809 entry->child = sd_alloc_ctl_domain_table(sd);
5810 entry++;
5811 i++;
5812 }
5813 return table;
5814}
5815
5816static struct ctl_table_header *sd_sysctl_header;
6382bc90 5817static void register_sched_domain_sysctl(void)
e692ab53 5818{
6ad4c188 5819 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5820 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5821 char buf[32];
5822
7378547f
MM
5823 WARN_ON(sd_ctl_dir[0].child);
5824 sd_ctl_dir[0].child = entry;
5825
ad1cdc1d
MM
5826 if (entry == NULL)
5827 return;
5828
6ad4c188 5829 for_each_possible_cpu(i) {
e692ab53 5830 snprintf(buf, 32, "cpu%d", i);
e692ab53 5831 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5832 entry->mode = 0555;
e692ab53 5833 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5834 entry++;
e692ab53 5835 }
7378547f
MM
5836
5837 WARN_ON(sd_sysctl_header);
e692ab53
NP
5838 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5839}
6382bc90 5840
7378547f 5841/* may be called multiple times per register */
6382bc90
MM
5842static void unregister_sched_domain_sysctl(void)
5843{
7378547f
MM
5844 if (sd_sysctl_header)
5845 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5846 sd_sysctl_header = NULL;
7378547f
MM
5847 if (sd_ctl_dir[0].child)
5848 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5849}
e692ab53 5850#else
6382bc90
MM
5851static void register_sched_domain_sysctl(void)
5852{
5853}
5854static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5855{
5856}
5857#endif
5858
1f11eb6a
GH
5859static void set_rq_online(struct rq *rq)
5860{
5861 if (!rq->online) {
5862 const struct sched_class *class;
5863
c6c4927b 5864 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5865 rq->online = 1;
5866
5867 for_each_class(class) {
5868 if (class->rq_online)
5869 class->rq_online(rq);
5870 }
5871 }
5872}
5873
5874static void set_rq_offline(struct rq *rq)
5875{
5876 if (rq->online) {
5877 const struct sched_class *class;
5878
5879 for_each_class(class) {
5880 if (class->rq_offline)
5881 class->rq_offline(rq);
5882 }
5883
c6c4927b 5884 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5885 rq->online = 0;
5886 }
5887}
5888
1da177e4
LT
5889/*
5890 * migration_call - callback that gets triggered when a CPU is added.
5891 * Here we can start up the necessary migration thread for the new CPU.
5892 */
48f24c4d
IM
5893static int __cpuinit
5894migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5895{
48f24c4d 5896 int cpu = (long)hcpu;
1da177e4 5897 unsigned long flags;
969c7921 5898 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5899
5900 switch (action) {
5be9361c 5901
1da177e4 5902 case CPU_UP_PREPARE:
8bb78442 5903 case CPU_UP_PREPARE_FROZEN:
a468d389 5904 rq->calc_load_update = calc_load_update;
1da177e4 5905 break;
48f24c4d 5906
1da177e4 5907 case CPU_ONLINE:
8bb78442 5908 case CPU_ONLINE_FROZEN:
1f94ef59 5909 /* Update our root-domain */
05fa785c 5910 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5911 if (rq->rd) {
c6c4927b 5912 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5913
5914 set_rq_online(rq);
1f94ef59 5915 }
05fa785c 5916 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5917 break;
48f24c4d 5918
1da177e4 5919#ifdef CONFIG_HOTPLUG_CPU
1da177e4 5920 case CPU_DEAD:
8bb78442 5921 case CPU_DEAD_FROZEN:
1da177e4 5922 migrate_live_tasks(cpu);
1da177e4 5923 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5924 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5925 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5926 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5927 rq->idle->sched_class = &idle_sched_class;
1da177e4 5928 migrate_dead_tasks(cpu);
05fa785c 5929 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5930 migrate_nr_uninterruptible(rq);
5931 BUG_ON(rq->nr_running != 0);
dce48a84 5932 calc_global_load_remove(rq);
1da177e4 5933 break;
57d885fe 5934
08f503b0
GH
5935 case CPU_DYING:
5936 case CPU_DYING_FROZEN:
57d885fe 5937 /* Update our root-domain */
05fa785c 5938 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5939 if (rq->rd) {
c6c4927b 5940 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5941 set_rq_offline(rq);
57d885fe 5942 }
05fa785c 5943 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5944 break;
1da177e4
LT
5945#endif
5946 }
5947 return NOTIFY_OK;
5948}
5949
f38b0820
PM
5950/*
5951 * Register at high priority so that task migration (migrate_all_tasks)
5952 * happens before everything else. This has to be lower priority than
cdd6c482 5953 * the notifier in the perf_event subsystem, though.
1da177e4 5954 */
26c2143b 5955static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5956 .notifier_call = migration_call,
50a323b7 5957 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5958};
5959
3a101d05
TH
5960static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5961 unsigned long action, void *hcpu)
5962{
5963 switch (action & ~CPU_TASKS_FROZEN) {
5964 case CPU_ONLINE:
5965 case CPU_DOWN_FAILED:
5966 set_cpu_active((long)hcpu, true);
5967 return NOTIFY_OK;
5968 default:
5969 return NOTIFY_DONE;
5970 }
5971}
5972
5973static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5974 unsigned long action, void *hcpu)
5975{
5976 switch (action & ~CPU_TASKS_FROZEN) {
5977 case CPU_DOWN_PREPARE:
5978 set_cpu_active((long)hcpu, false);
5979 return NOTIFY_OK;
5980 default:
5981 return NOTIFY_DONE;
5982 }
5983}
5984
7babe8db 5985static int __init migration_init(void)
1da177e4
LT
5986{
5987 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5988 int err;
48f24c4d 5989
3a101d05 5990 /* Initialize migration for the boot CPU */
07dccf33
AM
5991 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5992 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5993 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5994 register_cpu_notifier(&migration_notifier);
7babe8db 5995
3a101d05
TH
5996 /* Register cpu active notifiers */
5997 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5998 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5999
a004cd42 6000 return 0;
1da177e4 6001}
7babe8db 6002early_initcall(migration_init);
1da177e4
LT
6003#endif
6004
6005#ifdef CONFIG_SMP
476f3534 6006
3e9830dc 6007#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6008
f6630114
MT
6009static __read_mostly int sched_domain_debug_enabled;
6010
6011static int __init sched_domain_debug_setup(char *str)
6012{
6013 sched_domain_debug_enabled = 1;
6014
6015 return 0;
6016}
6017early_param("sched_debug", sched_domain_debug_setup);
6018
7c16ec58 6019static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6020 struct cpumask *groupmask)
1da177e4 6021{
4dcf6aff 6022 struct sched_group *group = sd->groups;
434d53b0 6023 char str[256];
1da177e4 6024
968ea6d8 6025 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6026 cpumask_clear(groupmask);
4dcf6aff
IM
6027
6028 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6029
6030 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6031 printk("does not load-balance\n");
4dcf6aff 6032 if (sd->parent)
3df0fc5b
PZ
6033 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6034 " has parent");
4dcf6aff 6035 return -1;
41c7ce9a
NP
6036 }
6037
3df0fc5b 6038 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6039
758b2cdc 6040 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6041 printk(KERN_ERR "ERROR: domain->span does not contain "
6042 "CPU%d\n", cpu);
4dcf6aff 6043 }
758b2cdc 6044 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6045 printk(KERN_ERR "ERROR: domain->groups does not contain"
6046 " CPU%d\n", cpu);
4dcf6aff 6047 }
1da177e4 6048
4dcf6aff 6049 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6050 do {
4dcf6aff 6051 if (!group) {
3df0fc5b
PZ
6052 printk("\n");
6053 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6054 break;
6055 }
6056
18a3885f 6057 if (!group->cpu_power) {
3df0fc5b
PZ
6058 printk(KERN_CONT "\n");
6059 printk(KERN_ERR "ERROR: domain->cpu_power not "
6060 "set\n");
4dcf6aff
IM
6061 break;
6062 }
1da177e4 6063
758b2cdc 6064 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6065 printk(KERN_CONT "\n");
6066 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6067 break;
6068 }
1da177e4 6069
758b2cdc 6070 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6071 printk(KERN_CONT "\n");
6072 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6073 break;
6074 }
1da177e4 6075
758b2cdc 6076 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6077
968ea6d8 6078 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6079
3df0fc5b 6080 printk(KERN_CONT " %s", str);
18a3885f 6081 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6082 printk(KERN_CONT " (cpu_power = %d)",
6083 group->cpu_power);
381512cf 6084 }
1da177e4 6085
4dcf6aff
IM
6086 group = group->next;
6087 } while (group != sd->groups);
3df0fc5b 6088 printk(KERN_CONT "\n");
1da177e4 6089
758b2cdc 6090 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6091 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6092
758b2cdc
RR
6093 if (sd->parent &&
6094 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6095 printk(KERN_ERR "ERROR: parent span is not a superset "
6096 "of domain->span\n");
4dcf6aff
IM
6097 return 0;
6098}
1da177e4 6099
4dcf6aff
IM
6100static void sched_domain_debug(struct sched_domain *sd, int cpu)
6101{
d5dd3db1 6102 cpumask_var_t groupmask;
4dcf6aff 6103 int level = 0;
1da177e4 6104
f6630114
MT
6105 if (!sched_domain_debug_enabled)
6106 return;
6107
4dcf6aff
IM
6108 if (!sd) {
6109 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6110 return;
6111 }
1da177e4 6112
4dcf6aff
IM
6113 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6114
d5dd3db1 6115 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6116 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6117 return;
6118 }
6119
4dcf6aff 6120 for (;;) {
7c16ec58 6121 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6122 break;
1da177e4
LT
6123 level++;
6124 sd = sd->parent;
33859f7f 6125 if (!sd)
4dcf6aff
IM
6126 break;
6127 }
d5dd3db1 6128 free_cpumask_var(groupmask);
1da177e4 6129}
6d6bc0ad 6130#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6131# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6132#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6133
1a20ff27 6134static int sd_degenerate(struct sched_domain *sd)
245af2c7 6135{
758b2cdc 6136 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6137 return 1;
6138
6139 /* Following flags need at least 2 groups */
6140 if (sd->flags & (SD_LOAD_BALANCE |
6141 SD_BALANCE_NEWIDLE |
6142 SD_BALANCE_FORK |
89c4710e
SS
6143 SD_BALANCE_EXEC |
6144 SD_SHARE_CPUPOWER |
6145 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6146 if (sd->groups != sd->groups->next)
6147 return 0;
6148 }
6149
6150 /* Following flags don't use groups */
c88d5910 6151 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6152 return 0;
6153
6154 return 1;
6155}
6156
48f24c4d
IM
6157static int
6158sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6159{
6160 unsigned long cflags = sd->flags, pflags = parent->flags;
6161
6162 if (sd_degenerate(parent))
6163 return 1;
6164
758b2cdc 6165 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6166 return 0;
6167
245af2c7
SS
6168 /* Flags needing groups don't count if only 1 group in parent */
6169 if (parent->groups == parent->groups->next) {
6170 pflags &= ~(SD_LOAD_BALANCE |
6171 SD_BALANCE_NEWIDLE |
6172 SD_BALANCE_FORK |
89c4710e
SS
6173 SD_BALANCE_EXEC |
6174 SD_SHARE_CPUPOWER |
6175 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6176 if (nr_node_ids == 1)
6177 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6178 }
6179 if (~cflags & pflags)
6180 return 0;
6181
6182 return 1;
6183}
6184
c6c4927b
RR
6185static void free_rootdomain(struct root_domain *rd)
6186{
047106ad
PZ
6187 synchronize_sched();
6188
68e74568
RR
6189 cpupri_cleanup(&rd->cpupri);
6190
c6c4927b
RR
6191 free_cpumask_var(rd->rto_mask);
6192 free_cpumask_var(rd->online);
6193 free_cpumask_var(rd->span);
6194 kfree(rd);
6195}
6196
57d885fe
GH
6197static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6198{
a0490fa3 6199 struct root_domain *old_rd = NULL;
57d885fe 6200 unsigned long flags;
57d885fe 6201
05fa785c 6202 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6203
6204 if (rq->rd) {
a0490fa3 6205 old_rd = rq->rd;
57d885fe 6206
c6c4927b 6207 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6208 set_rq_offline(rq);
57d885fe 6209
c6c4927b 6210 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6211
a0490fa3
IM
6212 /*
6213 * If we dont want to free the old_rt yet then
6214 * set old_rd to NULL to skip the freeing later
6215 * in this function:
6216 */
6217 if (!atomic_dec_and_test(&old_rd->refcount))
6218 old_rd = NULL;
57d885fe
GH
6219 }
6220
6221 atomic_inc(&rd->refcount);
6222 rq->rd = rd;
6223
c6c4927b 6224 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6225 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6226 set_rq_online(rq);
57d885fe 6227
05fa785c 6228 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6229
6230 if (old_rd)
6231 free_rootdomain(old_rd);
57d885fe
GH
6232}
6233
fd5e1b5d 6234static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6235{
36b7b6d4
PE
6236 gfp_t gfp = GFP_KERNEL;
6237
57d885fe
GH
6238 memset(rd, 0, sizeof(*rd));
6239
36b7b6d4
PE
6240 if (bootmem)
6241 gfp = GFP_NOWAIT;
c6c4927b 6242
36b7b6d4 6243 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6244 goto out;
36b7b6d4 6245 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6246 goto free_span;
36b7b6d4 6247 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6248 goto free_online;
6e0534f2 6249
0fb53029 6250 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6251 goto free_rto_mask;
c6c4927b 6252 return 0;
6e0534f2 6253
68e74568
RR
6254free_rto_mask:
6255 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6256free_online:
6257 free_cpumask_var(rd->online);
6258free_span:
6259 free_cpumask_var(rd->span);
0c910d28 6260out:
c6c4927b 6261 return -ENOMEM;
57d885fe
GH
6262}
6263
6264static void init_defrootdomain(void)
6265{
c6c4927b
RR
6266 init_rootdomain(&def_root_domain, true);
6267
57d885fe
GH
6268 atomic_set(&def_root_domain.refcount, 1);
6269}
6270
dc938520 6271static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6272{
6273 struct root_domain *rd;
6274
6275 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6276 if (!rd)
6277 return NULL;
6278
c6c4927b
RR
6279 if (init_rootdomain(rd, false) != 0) {
6280 kfree(rd);
6281 return NULL;
6282 }
57d885fe
GH
6283
6284 return rd;
6285}
6286
1da177e4 6287/*
0eab9146 6288 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6289 * hold the hotplug lock.
6290 */
0eab9146
IM
6291static void
6292cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6293{
70b97a7f 6294 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6295 struct sched_domain *tmp;
6296
669c55e9
PZ
6297 for (tmp = sd; tmp; tmp = tmp->parent)
6298 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6299
245af2c7 6300 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6301 for (tmp = sd; tmp; ) {
245af2c7
SS
6302 struct sched_domain *parent = tmp->parent;
6303 if (!parent)
6304 break;
f29c9b1c 6305
1a848870 6306 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6307 tmp->parent = parent->parent;
1a848870
SS
6308 if (parent->parent)
6309 parent->parent->child = tmp;
f29c9b1c
LZ
6310 } else
6311 tmp = tmp->parent;
245af2c7
SS
6312 }
6313
1a848870 6314 if (sd && sd_degenerate(sd)) {
245af2c7 6315 sd = sd->parent;
1a848870
SS
6316 if (sd)
6317 sd->child = NULL;
6318 }
1da177e4
LT
6319
6320 sched_domain_debug(sd, cpu);
6321
57d885fe 6322 rq_attach_root(rq, rd);
674311d5 6323 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6324}
6325
6326/* cpus with isolated domains */
dcc30a35 6327static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6328
6329/* Setup the mask of cpus configured for isolated domains */
6330static int __init isolated_cpu_setup(char *str)
6331{
bdddd296 6332 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6333 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6334 return 1;
6335}
6336
8927f494 6337__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6338
6339/*
6711cab4
SS
6340 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6341 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6342 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6343 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6344 *
6345 * init_sched_build_groups will build a circular linked list of the groups
6346 * covered by the given span, and will set each group's ->cpumask correctly,
6347 * and ->cpu_power to 0.
6348 */
a616058b 6349static void
96f874e2
RR
6350init_sched_build_groups(const struct cpumask *span,
6351 const struct cpumask *cpu_map,
6352 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6353 struct sched_group **sg,
96f874e2
RR
6354 struct cpumask *tmpmask),
6355 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6356{
6357 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6358 int i;
6359
96f874e2 6360 cpumask_clear(covered);
7c16ec58 6361
abcd083a 6362 for_each_cpu(i, span) {
6711cab4 6363 struct sched_group *sg;
7c16ec58 6364 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6365 int j;
6366
758b2cdc 6367 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6368 continue;
6369
758b2cdc 6370 cpumask_clear(sched_group_cpus(sg));
18a3885f 6371 sg->cpu_power = 0;
1da177e4 6372
abcd083a 6373 for_each_cpu(j, span) {
7c16ec58 6374 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6375 continue;
6376
96f874e2 6377 cpumask_set_cpu(j, covered);
758b2cdc 6378 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6379 }
6380 if (!first)
6381 first = sg;
6382 if (last)
6383 last->next = sg;
6384 last = sg;
6385 }
6386 last->next = first;
6387}
6388
9c1cfda2 6389#define SD_NODES_PER_DOMAIN 16
1da177e4 6390
9c1cfda2 6391#ifdef CONFIG_NUMA
198e2f18 6392
9c1cfda2
JH
6393/**
6394 * find_next_best_node - find the next node to include in a sched_domain
6395 * @node: node whose sched_domain we're building
6396 * @used_nodes: nodes already in the sched_domain
6397 *
41a2d6cf 6398 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6399 * finds the closest node not already in the @used_nodes map.
6400 *
6401 * Should use nodemask_t.
6402 */
c5f59f08 6403static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6404{
6405 int i, n, val, min_val, best_node = 0;
6406
6407 min_val = INT_MAX;
6408
076ac2af 6409 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6410 /* Start at @node */
076ac2af 6411 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6412
6413 if (!nr_cpus_node(n))
6414 continue;
6415
6416 /* Skip already used nodes */
c5f59f08 6417 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6418 continue;
6419
6420 /* Simple min distance search */
6421 val = node_distance(node, n);
6422
6423 if (val < min_val) {
6424 min_val = val;
6425 best_node = n;
6426 }
6427 }
6428
c5f59f08 6429 node_set(best_node, *used_nodes);
9c1cfda2
JH
6430 return best_node;
6431}
6432
6433/**
6434 * sched_domain_node_span - get a cpumask for a node's sched_domain
6435 * @node: node whose cpumask we're constructing
73486722 6436 * @span: resulting cpumask
9c1cfda2 6437 *
41a2d6cf 6438 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6439 * should be one that prevents unnecessary balancing, but also spreads tasks
6440 * out optimally.
6441 */
96f874e2 6442static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6443{
c5f59f08 6444 nodemask_t used_nodes;
48f24c4d 6445 int i;
9c1cfda2 6446
6ca09dfc 6447 cpumask_clear(span);
c5f59f08 6448 nodes_clear(used_nodes);
9c1cfda2 6449
6ca09dfc 6450 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6451 node_set(node, used_nodes);
9c1cfda2
JH
6452
6453 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6454 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6455
6ca09dfc 6456 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6457 }
9c1cfda2 6458}
6d6bc0ad 6459#endif /* CONFIG_NUMA */
9c1cfda2 6460
5c45bf27 6461int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6462
6c99e9ad
RR
6463/*
6464 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6465 *
6466 * ( See the the comments in include/linux/sched.h:struct sched_group
6467 * and struct sched_domain. )
6c99e9ad
RR
6468 */
6469struct static_sched_group {
6470 struct sched_group sg;
6471 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6472};
6473
6474struct static_sched_domain {
6475 struct sched_domain sd;
6476 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6477};
6478
49a02c51
AH
6479struct s_data {
6480#ifdef CONFIG_NUMA
6481 int sd_allnodes;
6482 cpumask_var_t domainspan;
6483 cpumask_var_t covered;
6484 cpumask_var_t notcovered;
6485#endif
6486 cpumask_var_t nodemask;
6487 cpumask_var_t this_sibling_map;
6488 cpumask_var_t this_core_map;
6489 cpumask_var_t send_covered;
6490 cpumask_var_t tmpmask;
6491 struct sched_group **sched_group_nodes;
6492 struct root_domain *rd;
6493};
6494
2109b99e
AH
6495enum s_alloc {
6496 sa_sched_groups = 0,
6497 sa_rootdomain,
6498 sa_tmpmask,
6499 sa_send_covered,
6500 sa_this_core_map,
6501 sa_this_sibling_map,
6502 sa_nodemask,
6503 sa_sched_group_nodes,
6504#ifdef CONFIG_NUMA
6505 sa_notcovered,
6506 sa_covered,
6507 sa_domainspan,
6508#endif
6509 sa_none,
6510};
6511
9c1cfda2 6512/*
48f24c4d 6513 * SMT sched-domains:
9c1cfda2 6514 */
1da177e4 6515#ifdef CONFIG_SCHED_SMT
6c99e9ad 6516static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6517static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6518
41a2d6cf 6519static int
96f874e2
RR
6520cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6521 struct sched_group **sg, struct cpumask *unused)
1da177e4 6522{
6711cab4 6523 if (sg)
1871e52c 6524 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6525 return cpu;
6526}
6d6bc0ad 6527#endif /* CONFIG_SCHED_SMT */
1da177e4 6528
48f24c4d
IM
6529/*
6530 * multi-core sched-domains:
6531 */
1e9f28fa 6532#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6533static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6534static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6535#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6536
6537#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6538static int
96f874e2
RR
6539cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6540 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6541{
6711cab4 6542 int group;
7c16ec58 6543
c69fc56d 6544 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6545 group = cpumask_first(mask);
6711cab4 6546 if (sg)
6c99e9ad 6547 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6548 return group;
1e9f28fa
SS
6549}
6550#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6551static int
96f874e2
RR
6552cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6553 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6554{
6711cab4 6555 if (sg)
6c99e9ad 6556 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6557 return cpu;
6558}
6559#endif
6560
6c99e9ad
RR
6561static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6562static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6563
41a2d6cf 6564static int
96f874e2
RR
6565cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6566 struct sched_group **sg, struct cpumask *mask)
1da177e4 6567{
6711cab4 6568 int group;
48f24c4d 6569#ifdef CONFIG_SCHED_MC
6ca09dfc 6570 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6571 group = cpumask_first(mask);
1e9f28fa 6572#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6573 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6574 group = cpumask_first(mask);
1da177e4 6575#else
6711cab4 6576 group = cpu;
1da177e4 6577#endif
6711cab4 6578 if (sg)
6c99e9ad 6579 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6580 return group;
1da177e4
LT
6581}
6582
6583#ifdef CONFIG_NUMA
1da177e4 6584/*
9c1cfda2
JH
6585 * The init_sched_build_groups can't handle what we want to do with node
6586 * groups, so roll our own. Now each node has its own list of groups which
6587 * gets dynamically allocated.
1da177e4 6588 */
62ea9ceb 6589static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6590static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6591
62ea9ceb 6592static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6593static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6594
96f874e2
RR
6595static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6596 struct sched_group **sg,
6597 struct cpumask *nodemask)
9c1cfda2 6598{
6711cab4
SS
6599 int group;
6600
6ca09dfc 6601 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6602 group = cpumask_first(nodemask);
6711cab4
SS
6603
6604 if (sg)
6c99e9ad 6605 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6606 return group;
1da177e4 6607}
6711cab4 6608
08069033
SS
6609static void init_numa_sched_groups_power(struct sched_group *group_head)
6610{
6611 struct sched_group *sg = group_head;
6612 int j;
6613
6614 if (!sg)
6615 return;
3a5c359a 6616 do {
758b2cdc 6617 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6618 struct sched_domain *sd;
08069033 6619
6c99e9ad 6620 sd = &per_cpu(phys_domains, j).sd;
13318a71 6621 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6622 /*
6623 * Only add "power" once for each
6624 * physical package.
6625 */
6626 continue;
6627 }
08069033 6628
18a3885f 6629 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6630 }
6631 sg = sg->next;
6632 } while (sg != group_head);
08069033 6633}
0601a88d
AH
6634
6635static int build_numa_sched_groups(struct s_data *d,
6636 const struct cpumask *cpu_map, int num)
6637{
6638 struct sched_domain *sd;
6639 struct sched_group *sg, *prev;
6640 int n, j;
6641
6642 cpumask_clear(d->covered);
6643 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6644 if (cpumask_empty(d->nodemask)) {
6645 d->sched_group_nodes[num] = NULL;
6646 goto out;
6647 }
6648
6649 sched_domain_node_span(num, d->domainspan);
6650 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6651
6652 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6653 GFP_KERNEL, num);
6654 if (!sg) {
3df0fc5b
PZ
6655 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6656 num);
0601a88d
AH
6657 return -ENOMEM;
6658 }
6659 d->sched_group_nodes[num] = sg;
6660
6661 for_each_cpu(j, d->nodemask) {
6662 sd = &per_cpu(node_domains, j).sd;
6663 sd->groups = sg;
6664 }
6665
18a3885f 6666 sg->cpu_power = 0;
0601a88d
AH
6667 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6668 sg->next = sg;
6669 cpumask_or(d->covered, d->covered, d->nodemask);
6670
6671 prev = sg;
6672 for (j = 0; j < nr_node_ids; j++) {
6673 n = (num + j) % nr_node_ids;
6674 cpumask_complement(d->notcovered, d->covered);
6675 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6676 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6677 if (cpumask_empty(d->tmpmask))
6678 break;
6679 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6680 if (cpumask_empty(d->tmpmask))
6681 continue;
6682 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6683 GFP_KERNEL, num);
6684 if (!sg) {
3df0fc5b
PZ
6685 printk(KERN_WARNING
6686 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6687 return -ENOMEM;
6688 }
18a3885f 6689 sg->cpu_power = 0;
0601a88d
AH
6690 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6691 sg->next = prev->next;
6692 cpumask_or(d->covered, d->covered, d->tmpmask);
6693 prev->next = sg;
6694 prev = sg;
6695 }
6696out:
6697 return 0;
6698}
6d6bc0ad 6699#endif /* CONFIG_NUMA */
1da177e4 6700
a616058b 6701#ifdef CONFIG_NUMA
51888ca2 6702/* Free memory allocated for various sched_group structures */
96f874e2
RR
6703static void free_sched_groups(const struct cpumask *cpu_map,
6704 struct cpumask *nodemask)
51888ca2 6705{
a616058b 6706 int cpu, i;
51888ca2 6707
abcd083a 6708 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6709 struct sched_group **sched_group_nodes
6710 = sched_group_nodes_bycpu[cpu];
6711
51888ca2
SV
6712 if (!sched_group_nodes)
6713 continue;
6714
076ac2af 6715 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6716 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6717
6ca09dfc 6718 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6719 if (cpumask_empty(nodemask))
51888ca2
SV
6720 continue;
6721
6722 if (sg == NULL)
6723 continue;
6724 sg = sg->next;
6725next_sg:
6726 oldsg = sg;
6727 sg = sg->next;
6728 kfree(oldsg);
6729 if (oldsg != sched_group_nodes[i])
6730 goto next_sg;
6731 }
6732 kfree(sched_group_nodes);
6733 sched_group_nodes_bycpu[cpu] = NULL;
6734 }
51888ca2 6735}
6d6bc0ad 6736#else /* !CONFIG_NUMA */
96f874e2
RR
6737static void free_sched_groups(const struct cpumask *cpu_map,
6738 struct cpumask *nodemask)
a616058b
SS
6739{
6740}
6d6bc0ad 6741#endif /* CONFIG_NUMA */
51888ca2 6742
89c4710e
SS
6743/*
6744 * Initialize sched groups cpu_power.
6745 *
6746 * cpu_power indicates the capacity of sched group, which is used while
6747 * distributing the load between different sched groups in a sched domain.
6748 * Typically cpu_power for all the groups in a sched domain will be same unless
6749 * there are asymmetries in the topology. If there are asymmetries, group
6750 * having more cpu_power will pickup more load compared to the group having
6751 * less cpu_power.
89c4710e
SS
6752 */
6753static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6754{
6755 struct sched_domain *child;
6756 struct sched_group *group;
f93e65c1
PZ
6757 long power;
6758 int weight;
89c4710e
SS
6759
6760 WARN_ON(!sd || !sd->groups);
6761
13318a71 6762 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6763 return;
6764
6765 child = sd->child;
6766
18a3885f 6767 sd->groups->cpu_power = 0;
5517d86b 6768
f93e65c1
PZ
6769 if (!child) {
6770 power = SCHED_LOAD_SCALE;
6771 weight = cpumask_weight(sched_domain_span(sd));
6772 /*
6773 * SMT siblings share the power of a single core.
a52bfd73
PZ
6774 * Usually multiple threads get a better yield out of
6775 * that one core than a single thread would have,
6776 * reflect that in sd->smt_gain.
f93e65c1 6777 */
a52bfd73
PZ
6778 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6779 power *= sd->smt_gain;
f93e65c1 6780 power /= weight;
a52bfd73
PZ
6781 power >>= SCHED_LOAD_SHIFT;
6782 }
18a3885f 6783 sd->groups->cpu_power += power;
89c4710e
SS
6784 return;
6785 }
6786
89c4710e 6787 /*
f93e65c1 6788 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6789 */
6790 group = child->groups;
6791 do {
18a3885f 6792 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6793 group = group->next;
6794 } while (group != child->groups);
6795}
6796
7c16ec58
MT
6797/*
6798 * Initializers for schedule domains
6799 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6800 */
6801
a5d8c348
IM
6802#ifdef CONFIG_SCHED_DEBUG
6803# define SD_INIT_NAME(sd, type) sd->name = #type
6804#else
6805# define SD_INIT_NAME(sd, type) do { } while (0)
6806#endif
6807
7c16ec58 6808#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6809
7c16ec58
MT
6810#define SD_INIT_FUNC(type) \
6811static noinline void sd_init_##type(struct sched_domain *sd) \
6812{ \
6813 memset(sd, 0, sizeof(*sd)); \
6814 *sd = SD_##type##_INIT; \
1d3504fc 6815 sd->level = SD_LV_##type; \
a5d8c348 6816 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6817}
6818
6819SD_INIT_FUNC(CPU)
6820#ifdef CONFIG_NUMA
6821 SD_INIT_FUNC(ALLNODES)
6822 SD_INIT_FUNC(NODE)
6823#endif
6824#ifdef CONFIG_SCHED_SMT
6825 SD_INIT_FUNC(SIBLING)
6826#endif
6827#ifdef CONFIG_SCHED_MC
6828 SD_INIT_FUNC(MC)
6829#endif
6830
1d3504fc
HS
6831static int default_relax_domain_level = -1;
6832
6833static int __init setup_relax_domain_level(char *str)
6834{
30e0e178
LZ
6835 unsigned long val;
6836
6837 val = simple_strtoul(str, NULL, 0);
6838 if (val < SD_LV_MAX)
6839 default_relax_domain_level = val;
6840
1d3504fc
HS
6841 return 1;
6842}
6843__setup("relax_domain_level=", setup_relax_domain_level);
6844
6845static void set_domain_attribute(struct sched_domain *sd,
6846 struct sched_domain_attr *attr)
6847{
6848 int request;
6849
6850 if (!attr || attr->relax_domain_level < 0) {
6851 if (default_relax_domain_level < 0)
6852 return;
6853 else
6854 request = default_relax_domain_level;
6855 } else
6856 request = attr->relax_domain_level;
6857 if (request < sd->level) {
6858 /* turn off idle balance on this domain */
c88d5910 6859 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6860 } else {
6861 /* turn on idle balance on this domain */
c88d5910 6862 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6863 }
6864}
6865
2109b99e
AH
6866static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6867 const struct cpumask *cpu_map)
6868{
6869 switch (what) {
6870 case sa_sched_groups:
6871 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6872 d->sched_group_nodes = NULL;
6873 case sa_rootdomain:
6874 free_rootdomain(d->rd); /* fall through */
6875 case sa_tmpmask:
6876 free_cpumask_var(d->tmpmask); /* fall through */
6877 case sa_send_covered:
6878 free_cpumask_var(d->send_covered); /* fall through */
6879 case sa_this_core_map:
6880 free_cpumask_var(d->this_core_map); /* fall through */
6881 case sa_this_sibling_map:
6882 free_cpumask_var(d->this_sibling_map); /* fall through */
6883 case sa_nodemask:
6884 free_cpumask_var(d->nodemask); /* fall through */
6885 case sa_sched_group_nodes:
d1b55138 6886#ifdef CONFIG_NUMA
2109b99e
AH
6887 kfree(d->sched_group_nodes); /* fall through */
6888 case sa_notcovered:
6889 free_cpumask_var(d->notcovered); /* fall through */
6890 case sa_covered:
6891 free_cpumask_var(d->covered); /* fall through */
6892 case sa_domainspan:
6893 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6894#endif
2109b99e
AH
6895 case sa_none:
6896 break;
6897 }
6898}
3404c8d9 6899
2109b99e
AH
6900static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6901 const struct cpumask *cpu_map)
6902{
3404c8d9 6903#ifdef CONFIG_NUMA
2109b99e
AH
6904 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6905 return sa_none;
6906 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6907 return sa_domainspan;
6908 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6909 return sa_covered;
6910 /* Allocate the per-node list of sched groups */
6911 d->sched_group_nodes = kcalloc(nr_node_ids,
6912 sizeof(struct sched_group *), GFP_KERNEL);
6913 if (!d->sched_group_nodes) {
3df0fc5b 6914 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6915 return sa_notcovered;
d1b55138 6916 }
2109b99e 6917 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6918#endif
2109b99e
AH
6919 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6920 return sa_sched_group_nodes;
6921 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6922 return sa_nodemask;
6923 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6924 return sa_this_sibling_map;
6925 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6926 return sa_this_core_map;
6927 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6928 return sa_send_covered;
6929 d->rd = alloc_rootdomain();
6930 if (!d->rd) {
3df0fc5b 6931 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6932 return sa_tmpmask;
57d885fe 6933 }
2109b99e
AH
6934 return sa_rootdomain;
6935}
57d885fe 6936
7f4588f3
AH
6937static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6938 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6939{
6940 struct sched_domain *sd = NULL;
7c16ec58 6941#ifdef CONFIG_NUMA
7f4588f3 6942 struct sched_domain *parent;
1da177e4 6943
7f4588f3
AH
6944 d->sd_allnodes = 0;
6945 if (cpumask_weight(cpu_map) >
6946 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6947 sd = &per_cpu(allnodes_domains, i).sd;
6948 SD_INIT(sd, ALLNODES);
1d3504fc 6949 set_domain_attribute(sd, attr);
7f4588f3
AH
6950 cpumask_copy(sched_domain_span(sd), cpu_map);
6951 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6952 d->sd_allnodes = 1;
6953 }
6954 parent = sd;
6955
6956 sd = &per_cpu(node_domains, i).sd;
6957 SD_INIT(sd, NODE);
6958 set_domain_attribute(sd, attr);
6959 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6960 sd->parent = parent;
6961 if (parent)
6962 parent->child = sd;
6963 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6964#endif
7f4588f3
AH
6965 return sd;
6966}
1da177e4 6967
87cce662
AH
6968static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6969 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6970 struct sched_domain *parent, int i)
6971{
6972 struct sched_domain *sd;
6973 sd = &per_cpu(phys_domains, i).sd;
6974 SD_INIT(sd, CPU);
6975 set_domain_attribute(sd, attr);
6976 cpumask_copy(sched_domain_span(sd), d->nodemask);
6977 sd->parent = parent;
6978 if (parent)
6979 parent->child = sd;
6980 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6981 return sd;
6982}
1da177e4 6983
410c4081
AH
6984static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6985 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6986 struct sched_domain *parent, int i)
6987{
6988 struct sched_domain *sd = parent;
1e9f28fa 6989#ifdef CONFIG_SCHED_MC
410c4081
AH
6990 sd = &per_cpu(core_domains, i).sd;
6991 SD_INIT(sd, MC);
6992 set_domain_attribute(sd, attr);
6993 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6994 sd->parent = parent;
6995 parent->child = sd;
6996 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6997#endif
410c4081
AH
6998 return sd;
6999}
1e9f28fa 7000
d8173535
AH
7001static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7002 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7003 struct sched_domain *parent, int i)
7004{
7005 struct sched_domain *sd = parent;
1da177e4 7006#ifdef CONFIG_SCHED_SMT
d8173535
AH
7007 sd = &per_cpu(cpu_domains, i).sd;
7008 SD_INIT(sd, SIBLING);
7009 set_domain_attribute(sd, attr);
7010 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7011 sd->parent = parent;
7012 parent->child = sd;
7013 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7014#endif
d8173535
AH
7015 return sd;
7016}
1da177e4 7017
0e8e85c9
AH
7018static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7019 const struct cpumask *cpu_map, int cpu)
7020{
7021 switch (l) {
1da177e4 7022#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7023 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7024 cpumask_and(d->this_sibling_map, cpu_map,
7025 topology_thread_cpumask(cpu));
7026 if (cpu == cpumask_first(d->this_sibling_map))
7027 init_sched_build_groups(d->this_sibling_map, cpu_map,
7028 &cpu_to_cpu_group,
7029 d->send_covered, d->tmpmask);
7030 break;
1da177e4 7031#endif
1e9f28fa 7032#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7033 case SD_LV_MC: /* set up multi-core groups */
7034 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7035 if (cpu == cpumask_first(d->this_core_map))
7036 init_sched_build_groups(d->this_core_map, cpu_map,
7037 &cpu_to_core_group,
7038 d->send_covered, d->tmpmask);
7039 break;
1e9f28fa 7040#endif
86548096
AH
7041 case SD_LV_CPU: /* set up physical groups */
7042 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7043 if (!cpumask_empty(d->nodemask))
7044 init_sched_build_groups(d->nodemask, cpu_map,
7045 &cpu_to_phys_group,
7046 d->send_covered, d->tmpmask);
7047 break;
1da177e4 7048#ifdef CONFIG_NUMA
de616e36
AH
7049 case SD_LV_ALLNODES:
7050 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7051 d->send_covered, d->tmpmask);
7052 break;
7053#endif
0e8e85c9
AH
7054 default:
7055 break;
7c16ec58 7056 }
0e8e85c9 7057}
9c1cfda2 7058
2109b99e
AH
7059/*
7060 * Build sched domains for a given set of cpus and attach the sched domains
7061 * to the individual cpus
7062 */
7063static int __build_sched_domains(const struct cpumask *cpu_map,
7064 struct sched_domain_attr *attr)
7065{
7066 enum s_alloc alloc_state = sa_none;
7067 struct s_data d;
294b0c96 7068 struct sched_domain *sd;
2109b99e 7069 int i;
7c16ec58 7070#ifdef CONFIG_NUMA
2109b99e 7071 d.sd_allnodes = 0;
7c16ec58 7072#endif
9c1cfda2 7073
2109b99e
AH
7074 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7075 if (alloc_state != sa_rootdomain)
7076 goto error;
7077 alloc_state = sa_sched_groups;
9c1cfda2 7078
1da177e4 7079 /*
1a20ff27 7080 * Set up domains for cpus specified by the cpu_map.
1da177e4 7081 */
abcd083a 7082 for_each_cpu(i, cpu_map) {
49a02c51
AH
7083 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7084 cpu_map);
9761eea8 7085
7f4588f3 7086 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7087 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7088 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7089 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7090 }
9c1cfda2 7091
abcd083a 7092 for_each_cpu(i, cpu_map) {
0e8e85c9 7093 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7094 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7095 }
9c1cfda2 7096
1da177e4 7097 /* Set up physical groups */
86548096
AH
7098 for (i = 0; i < nr_node_ids; i++)
7099 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7100
1da177e4
LT
7101#ifdef CONFIG_NUMA
7102 /* Set up node groups */
de616e36
AH
7103 if (d.sd_allnodes)
7104 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7105
0601a88d
AH
7106 for (i = 0; i < nr_node_ids; i++)
7107 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7108 goto error;
1da177e4
LT
7109#endif
7110
7111 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7112#ifdef CONFIG_SCHED_SMT
abcd083a 7113 for_each_cpu(i, cpu_map) {
294b0c96 7114 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7115 init_sched_groups_power(i, sd);
5c45bf27 7116 }
1da177e4 7117#endif
1e9f28fa 7118#ifdef CONFIG_SCHED_MC
abcd083a 7119 for_each_cpu(i, cpu_map) {
294b0c96 7120 sd = &per_cpu(core_domains, i).sd;
89c4710e 7121 init_sched_groups_power(i, sd);
5c45bf27
SS
7122 }
7123#endif
1e9f28fa 7124
abcd083a 7125 for_each_cpu(i, cpu_map) {
294b0c96 7126 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7127 init_sched_groups_power(i, sd);
1da177e4
LT
7128 }
7129
9c1cfda2 7130#ifdef CONFIG_NUMA
076ac2af 7131 for (i = 0; i < nr_node_ids; i++)
49a02c51 7132 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7133
49a02c51 7134 if (d.sd_allnodes) {
6711cab4 7135 struct sched_group *sg;
f712c0c7 7136
96f874e2 7137 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7138 d.tmpmask);
f712c0c7
SS
7139 init_numa_sched_groups_power(sg);
7140 }
9c1cfda2
JH
7141#endif
7142
1da177e4 7143 /* Attach the domains */
abcd083a 7144 for_each_cpu(i, cpu_map) {
1da177e4 7145#ifdef CONFIG_SCHED_SMT
6c99e9ad 7146 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7147#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7148 sd = &per_cpu(core_domains, i).sd;
1da177e4 7149#else
6c99e9ad 7150 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7151#endif
49a02c51 7152 cpu_attach_domain(sd, d.rd, i);
1da177e4 7153 }
51888ca2 7154
2109b99e
AH
7155 d.sched_group_nodes = NULL; /* don't free this we still need it */
7156 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7157 return 0;
51888ca2 7158
51888ca2 7159error:
2109b99e
AH
7160 __free_domain_allocs(&d, alloc_state, cpu_map);
7161 return -ENOMEM;
1da177e4 7162}
029190c5 7163
96f874e2 7164static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7165{
7166 return __build_sched_domains(cpu_map, NULL);
7167}
7168
acc3f5d7 7169static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7170static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7171static struct sched_domain_attr *dattr_cur;
7172 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7173
7174/*
7175 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7176 * cpumask) fails, then fallback to a single sched domain,
7177 * as determined by the single cpumask fallback_doms.
029190c5 7178 */
4212823f 7179static cpumask_var_t fallback_doms;
029190c5 7180
ee79d1bd
HC
7181/*
7182 * arch_update_cpu_topology lets virtualized architectures update the
7183 * cpu core maps. It is supposed to return 1 if the topology changed
7184 * or 0 if it stayed the same.
7185 */
7186int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7187{
ee79d1bd 7188 return 0;
22e52b07
HC
7189}
7190
acc3f5d7
RR
7191cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7192{
7193 int i;
7194 cpumask_var_t *doms;
7195
7196 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7197 if (!doms)
7198 return NULL;
7199 for (i = 0; i < ndoms; i++) {
7200 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7201 free_sched_domains(doms, i);
7202 return NULL;
7203 }
7204 }
7205 return doms;
7206}
7207
7208void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7209{
7210 unsigned int i;
7211 for (i = 0; i < ndoms; i++)
7212 free_cpumask_var(doms[i]);
7213 kfree(doms);
7214}
7215
1a20ff27 7216/*
41a2d6cf 7217 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7218 * For now this just excludes isolated cpus, but could be used to
7219 * exclude other special cases in the future.
1a20ff27 7220 */
96f874e2 7221static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7222{
7378547f
MM
7223 int err;
7224
22e52b07 7225 arch_update_cpu_topology();
029190c5 7226 ndoms_cur = 1;
acc3f5d7 7227 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7228 if (!doms_cur)
acc3f5d7
RR
7229 doms_cur = &fallback_doms;
7230 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7231 dattr_cur = NULL;
acc3f5d7 7232 err = build_sched_domains(doms_cur[0]);
6382bc90 7233 register_sched_domain_sysctl();
7378547f
MM
7234
7235 return err;
1a20ff27
DG
7236}
7237
96f874e2
RR
7238static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7239 struct cpumask *tmpmask)
1da177e4 7240{
7c16ec58 7241 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7242}
1da177e4 7243
1a20ff27
DG
7244/*
7245 * Detach sched domains from a group of cpus specified in cpu_map
7246 * These cpus will now be attached to the NULL domain
7247 */
96f874e2 7248static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7249{
96f874e2
RR
7250 /* Save because hotplug lock held. */
7251 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7252 int i;
7253
abcd083a 7254 for_each_cpu(i, cpu_map)
57d885fe 7255 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7256 synchronize_sched();
96f874e2 7257 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7258}
7259
1d3504fc
HS
7260/* handle null as "default" */
7261static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7262 struct sched_domain_attr *new, int idx_new)
7263{
7264 struct sched_domain_attr tmp;
7265
7266 /* fast path */
7267 if (!new && !cur)
7268 return 1;
7269
7270 tmp = SD_ATTR_INIT;
7271 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7272 new ? (new + idx_new) : &tmp,
7273 sizeof(struct sched_domain_attr));
7274}
7275
029190c5
PJ
7276/*
7277 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7278 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7279 * doms_new[] to the current sched domain partitioning, doms_cur[].
7280 * It destroys each deleted domain and builds each new domain.
7281 *
acc3f5d7 7282 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7283 * The masks don't intersect (don't overlap.) We should setup one
7284 * sched domain for each mask. CPUs not in any of the cpumasks will
7285 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7286 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7287 * it as it is.
7288 *
acc3f5d7
RR
7289 * The passed in 'doms_new' should be allocated using
7290 * alloc_sched_domains. This routine takes ownership of it and will
7291 * free_sched_domains it when done with it. If the caller failed the
7292 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7293 * and partition_sched_domains() will fallback to the single partition
7294 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7295 *
96f874e2 7296 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7297 * ndoms_new == 0 is a special case for destroying existing domains,
7298 * and it will not create the default domain.
dfb512ec 7299 *
029190c5
PJ
7300 * Call with hotplug lock held
7301 */
acc3f5d7 7302void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7303 struct sched_domain_attr *dattr_new)
029190c5 7304{
dfb512ec 7305 int i, j, n;
d65bd5ec 7306 int new_topology;
029190c5 7307
712555ee 7308 mutex_lock(&sched_domains_mutex);
a1835615 7309
7378547f
MM
7310 /* always unregister in case we don't destroy any domains */
7311 unregister_sched_domain_sysctl();
7312
d65bd5ec
HC
7313 /* Let architecture update cpu core mappings. */
7314 new_topology = arch_update_cpu_topology();
7315
dfb512ec 7316 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7317
7318 /* Destroy deleted domains */
7319 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7320 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7321 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7322 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7323 goto match1;
7324 }
7325 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7326 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7327match1:
7328 ;
7329 }
7330
e761b772
MK
7331 if (doms_new == NULL) {
7332 ndoms_cur = 0;
acc3f5d7 7333 doms_new = &fallback_doms;
6ad4c188 7334 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7335 WARN_ON_ONCE(dattr_new);
e761b772
MK
7336 }
7337
029190c5
PJ
7338 /* Build new domains */
7339 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7340 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7341 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7342 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7343 goto match2;
7344 }
7345 /* no match - add a new doms_new */
acc3f5d7 7346 __build_sched_domains(doms_new[i],
1d3504fc 7347 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7348match2:
7349 ;
7350 }
7351
7352 /* Remember the new sched domains */
acc3f5d7
RR
7353 if (doms_cur != &fallback_doms)
7354 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7355 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7356 doms_cur = doms_new;
1d3504fc 7357 dattr_cur = dattr_new;
029190c5 7358 ndoms_cur = ndoms_new;
7378547f
MM
7359
7360 register_sched_domain_sysctl();
a1835615 7361
712555ee 7362 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7363}
7364
5c45bf27 7365#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7366static void arch_reinit_sched_domains(void)
5c45bf27 7367{
95402b38 7368 get_online_cpus();
dfb512ec
MK
7369
7370 /* Destroy domains first to force the rebuild */
7371 partition_sched_domains(0, NULL, NULL);
7372
e761b772 7373 rebuild_sched_domains();
95402b38 7374 put_online_cpus();
5c45bf27
SS
7375}
7376
7377static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7378{
afb8a9b7 7379 unsigned int level = 0;
5c45bf27 7380
afb8a9b7
GS
7381 if (sscanf(buf, "%u", &level) != 1)
7382 return -EINVAL;
7383
7384 /*
7385 * level is always be positive so don't check for
7386 * level < POWERSAVINGS_BALANCE_NONE which is 0
7387 * What happens on 0 or 1 byte write,
7388 * need to check for count as well?
7389 */
7390
7391 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7392 return -EINVAL;
7393
7394 if (smt)
afb8a9b7 7395 sched_smt_power_savings = level;
5c45bf27 7396 else
afb8a9b7 7397 sched_mc_power_savings = level;
5c45bf27 7398
c70f22d2 7399 arch_reinit_sched_domains();
5c45bf27 7400
c70f22d2 7401 return count;
5c45bf27
SS
7402}
7403
5c45bf27 7404#ifdef CONFIG_SCHED_MC
f718cd4a 7405static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7406 struct sysdev_class_attribute *attr,
f718cd4a 7407 char *page)
5c45bf27
SS
7408{
7409 return sprintf(page, "%u\n", sched_mc_power_savings);
7410}
f718cd4a 7411static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7412 struct sysdev_class_attribute *attr,
48f24c4d 7413 const char *buf, size_t count)
5c45bf27
SS
7414{
7415 return sched_power_savings_store(buf, count, 0);
7416}
f718cd4a
AK
7417static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7418 sched_mc_power_savings_show,
7419 sched_mc_power_savings_store);
5c45bf27
SS
7420#endif
7421
7422#ifdef CONFIG_SCHED_SMT
f718cd4a 7423static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7424 struct sysdev_class_attribute *attr,
f718cd4a 7425 char *page)
5c45bf27
SS
7426{
7427 return sprintf(page, "%u\n", sched_smt_power_savings);
7428}
f718cd4a 7429static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7430 struct sysdev_class_attribute *attr,
48f24c4d 7431 const char *buf, size_t count)
5c45bf27
SS
7432{
7433 return sched_power_savings_store(buf, count, 1);
7434}
f718cd4a
AK
7435static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7436 sched_smt_power_savings_show,
6707de00
AB
7437 sched_smt_power_savings_store);
7438#endif
7439
39aac648 7440int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7441{
7442 int err = 0;
7443
7444#ifdef CONFIG_SCHED_SMT
7445 if (smt_capable())
7446 err = sysfs_create_file(&cls->kset.kobj,
7447 &attr_sched_smt_power_savings.attr);
7448#endif
7449#ifdef CONFIG_SCHED_MC
7450 if (!err && mc_capable())
7451 err = sysfs_create_file(&cls->kset.kobj,
7452 &attr_sched_mc_power_savings.attr);
7453#endif
7454 return err;
7455}
6d6bc0ad 7456#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7457
1da177e4 7458/*
3a101d05
TH
7459 * Update cpusets according to cpu_active mask. If cpusets are
7460 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7461 * around partition_sched_domains().
1da177e4 7462 */
3a101d05
TH
7463static int __cpuexit cpuset_cpu_active(struct notifier_block *nfb,
7464 unsigned long action, void *hcpu)
e761b772 7465{
3a101d05 7466 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7467 case CPU_ONLINE:
6ad4c188 7468 case CPU_DOWN_FAILED:
3a101d05 7469 cpuset_update_active_cpus();
e761b772 7470 return NOTIFY_OK;
3a101d05
TH
7471 default:
7472 return NOTIFY_DONE;
7473 }
7474}
e761b772 7475
3a101d05
TH
7476static int __cpuexit cpuset_cpu_inactive(struct notifier_block *nfb,
7477 unsigned long action, void *hcpu)
7478{
7479 switch (action & ~CPU_TASKS_FROZEN) {
7480 case CPU_DOWN_PREPARE:
7481 cpuset_update_active_cpus();
7482 return NOTIFY_OK;
e761b772
MK
7483 default:
7484 return NOTIFY_DONE;
7485 }
7486}
e761b772
MK
7487
7488static int update_runtime(struct notifier_block *nfb,
7489 unsigned long action, void *hcpu)
1da177e4 7490{
7def2be1
PZ
7491 int cpu = (int)(long)hcpu;
7492
1da177e4 7493 switch (action) {
1da177e4 7494 case CPU_DOWN_PREPARE:
8bb78442 7495 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7496 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7497 return NOTIFY_OK;
7498
1da177e4 7499 case CPU_DOWN_FAILED:
8bb78442 7500 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7501 case CPU_ONLINE:
8bb78442 7502 case CPU_ONLINE_FROZEN:
7def2be1 7503 enable_runtime(cpu_rq(cpu));
e761b772
MK
7504 return NOTIFY_OK;
7505
1da177e4
LT
7506 default:
7507 return NOTIFY_DONE;
7508 }
1da177e4 7509}
1da177e4
LT
7510
7511void __init sched_init_smp(void)
7512{
dcc30a35
RR
7513 cpumask_var_t non_isolated_cpus;
7514
7515 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7516 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7517
434d53b0
MT
7518#if defined(CONFIG_NUMA)
7519 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7520 GFP_KERNEL);
7521 BUG_ON(sched_group_nodes_bycpu == NULL);
7522#endif
95402b38 7523 get_online_cpus();
712555ee 7524 mutex_lock(&sched_domains_mutex);
6ad4c188 7525 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7526 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7527 if (cpumask_empty(non_isolated_cpus))
7528 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7529 mutex_unlock(&sched_domains_mutex);
95402b38 7530 put_online_cpus();
e761b772 7531
3a101d05
TH
7532 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7533 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7534
7535 /* RT runtime code needs to handle some hotplug events */
7536 hotcpu_notifier(update_runtime, 0);
7537
b328ca18 7538 init_hrtick();
5c1e1767
NP
7539
7540 /* Move init over to a non-isolated CPU */
dcc30a35 7541 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7542 BUG();
19978ca6 7543 sched_init_granularity();
dcc30a35 7544 free_cpumask_var(non_isolated_cpus);
4212823f 7545
0e3900e6 7546 init_sched_rt_class();
1da177e4
LT
7547}
7548#else
7549void __init sched_init_smp(void)
7550{
19978ca6 7551 sched_init_granularity();
1da177e4
LT
7552}
7553#endif /* CONFIG_SMP */
7554
cd1bb94b
AB
7555const_debug unsigned int sysctl_timer_migration = 1;
7556
1da177e4
LT
7557int in_sched_functions(unsigned long addr)
7558{
1da177e4
LT
7559 return in_lock_functions(addr) ||
7560 (addr >= (unsigned long)__sched_text_start
7561 && addr < (unsigned long)__sched_text_end);
7562}
7563
a9957449 7564static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7565{
7566 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7567 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7568#ifdef CONFIG_FAIR_GROUP_SCHED
7569 cfs_rq->rq = rq;
7570#endif
67e9fb2a 7571 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7572}
7573
fa85ae24
PZ
7574static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7575{
7576 struct rt_prio_array *array;
7577 int i;
7578
7579 array = &rt_rq->active;
7580 for (i = 0; i < MAX_RT_PRIO; i++) {
7581 INIT_LIST_HEAD(array->queue + i);
7582 __clear_bit(i, array->bitmap);
7583 }
7584 /* delimiter for bitsearch: */
7585 __set_bit(MAX_RT_PRIO, array->bitmap);
7586
052f1dc7 7587#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7588 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7589#ifdef CONFIG_SMP
e864c499 7590 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7591#endif
48d5e258 7592#endif
fa85ae24
PZ
7593#ifdef CONFIG_SMP
7594 rt_rq->rt_nr_migratory = 0;
fa85ae24 7595 rt_rq->overloaded = 0;
05fa785c 7596 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7597#endif
7598
7599 rt_rq->rt_time = 0;
7600 rt_rq->rt_throttled = 0;
ac086bc2 7601 rt_rq->rt_runtime = 0;
0986b11b 7602 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7603
052f1dc7 7604#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7605 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7606 rt_rq->rq = rq;
7607#endif
fa85ae24
PZ
7608}
7609
6f505b16 7610#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7611static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7612 struct sched_entity *se, int cpu, int add,
7613 struct sched_entity *parent)
6f505b16 7614{
ec7dc8ac 7615 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7616 tg->cfs_rq[cpu] = cfs_rq;
7617 init_cfs_rq(cfs_rq, rq);
7618 cfs_rq->tg = tg;
7619 if (add)
7620 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7621
7622 tg->se[cpu] = se;
354d60c2
DG
7623 /* se could be NULL for init_task_group */
7624 if (!se)
7625 return;
7626
ec7dc8ac
DG
7627 if (!parent)
7628 se->cfs_rq = &rq->cfs;
7629 else
7630 se->cfs_rq = parent->my_q;
7631
6f505b16
PZ
7632 se->my_q = cfs_rq;
7633 se->load.weight = tg->shares;
e05510d0 7634 se->load.inv_weight = 0;
ec7dc8ac 7635 se->parent = parent;
6f505b16 7636}
052f1dc7 7637#endif
6f505b16 7638
052f1dc7 7639#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7640static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7641 struct sched_rt_entity *rt_se, int cpu, int add,
7642 struct sched_rt_entity *parent)
6f505b16 7643{
ec7dc8ac
DG
7644 struct rq *rq = cpu_rq(cpu);
7645
6f505b16
PZ
7646 tg->rt_rq[cpu] = rt_rq;
7647 init_rt_rq(rt_rq, rq);
7648 rt_rq->tg = tg;
ac086bc2 7649 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7650 if (add)
7651 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7652
7653 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7654 if (!rt_se)
7655 return;
7656
ec7dc8ac
DG
7657 if (!parent)
7658 rt_se->rt_rq = &rq->rt;
7659 else
7660 rt_se->rt_rq = parent->my_q;
7661
6f505b16 7662 rt_se->my_q = rt_rq;
ec7dc8ac 7663 rt_se->parent = parent;
6f505b16
PZ
7664 INIT_LIST_HEAD(&rt_se->run_list);
7665}
7666#endif
7667
1da177e4
LT
7668void __init sched_init(void)
7669{
dd41f596 7670 int i, j;
434d53b0
MT
7671 unsigned long alloc_size = 0, ptr;
7672
7673#ifdef CONFIG_FAIR_GROUP_SCHED
7674 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7675#endif
7676#ifdef CONFIG_RT_GROUP_SCHED
7677 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7678#endif
df7c8e84 7679#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7680 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7681#endif
434d53b0 7682 if (alloc_size) {
36b7b6d4 7683 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7684
7685#ifdef CONFIG_FAIR_GROUP_SCHED
7686 init_task_group.se = (struct sched_entity **)ptr;
7687 ptr += nr_cpu_ids * sizeof(void **);
7688
7689 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7690 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7691
6d6bc0ad 7692#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7693#ifdef CONFIG_RT_GROUP_SCHED
7694 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7695 ptr += nr_cpu_ids * sizeof(void **);
7696
7697 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7698 ptr += nr_cpu_ids * sizeof(void **);
7699
6d6bc0ad 7700#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7701#ifdef CONFIG_CPUMASK_OFFSTACK
7702 for_each_possible_cpu(i) {
7703 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7704 ptr += cpumask_size();
7705 }
7706#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7707 }
dd41f596 7708
57d885fe
GH
7709#ifdef CONFIG_SMP
7710 init_defrootdomain();
7711#endif
7712
d0b27fa7
PZ
7713 init_rt_bandwidth(&def_rt_bandwidth,
7714 global_rt_period(), global_rt_runtime());
7715
7716#ifdef CONFIG_RT_GROUP_SCHED
7717 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7718 global_rt_period(), global_rt_runtime());
6d6bc0ad 7719#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7720
7c941438 7721#ifdef CONFIG_CGROUP_SCHED
6f505b16 7722 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7723 INIT_LIST_HEAD(&init_task_group.children);
7724
7c941438 7725#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7726
4a6cc4bd
JK
7727#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7728 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7729 __alignof__(unsigned long));
7730#endif
0a945022 7731 for_each_possible_cpu(i) {
70b97a7f 7732 struct rq *rq;
1da177e4
LT
7733
7734 rq = cpu_rq(i);
05fa785c 7735 raw_spin_lock_init(&rq->lock);
7897986b 7736 rq->nr_running = 0;
dce48a84
TG
7737 rq->calc_load_active = 0;
7738 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7739 init_cfs_rq(&rq->cfs, rq);
6f505b16 7740 init_rt_rq(&rq->rt, rq);
dd41f596 7741#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7742 init_task_group.shares = init_task_group_load;
6f505b16 7743 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7744#ifdef CONFIG_CGROUP_SCHED
7745 /*
7746 * How much cpu bandwidth does init_task_group get?
7747 *
7748 * In case of task-groups formed thr' the cgroup filesystem, it
7749 * gets 100% of the cpu resources in the system. This overall
7750 * system cpu resource is divided among the tasks of
7751 * init_task_group and its child task-groups in a fair manner,
7752 * based on each entity's (task or task-group's) weight
7753 * (se->load.weight).
7754 *
7755 * In other words, if init_task_group has 10 tasks of weight
7756 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7757 * then A0's share of the cpu resource is:
7758 *
0d905bca 7759 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7760 *
7761 * We achieve this by letting init_task_group's tasks sit
7762 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7763 */
ec7dc8ac 7764 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7765#endif
354d60c2
DG
7766#endif /* CONFIG_FAIR_GROUP_SCHED */
7767
7768 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7769#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7770 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7771#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7772 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7773#endif
dd41f596 7774#endif
1da177e4 7775
dd41f596
IM
7776 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7777 rq->cpu_load[j] = 0;
fdf3e95d
VP
7778
7779 rq->last_load_update_tick = jiffies;
7780
1da177e4 7781#ifdef CONFIG_SMP
41c7ce9a 7782 rq->sd = NULL;
57d885fe 7783 rq->rd = NULL;
e51fd5e2 7784 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7785 rq->post_schedule = 0;
1da177e4 7786 rq->active_balance = 0;
dd41f596 7787 rq->next_balance = jiffies;
1da177e4 7788 rq->push_cpu = 0;
0a2966b4 7789 rq->cpu = i;
1f11eb6a 7790 rq->online = 0;
eae0c9df
MG
7791 rq->idle_stamp = 0;
7792 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7793 rq_attach_root(rq, &def_root_domain);
1da177e4 7794#endif
8f4d37ec 7795 init_rq_hrtick(rq);
1da177e4 7796 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7797 }
7798
2dd73a4f 7799 set_load_weight(&init_task);
b50f60ce 7800
e107be36
AK
7801#ifdef CONFIG_PREEMPT_NOTIFIERS
7802 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7803#endif
7804
c9819f45 7805#ifdef CONFIG_SMP
962cf36c 7806 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7807#endif
7808
b50f60ce 7809#ifdef CONFIG_RT_MUTEXES
1d615482 7810 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7811#endif
7812
1da177e4
LT
7813 /*
7814 * The boot idle thread does lazy MMU switching as well:
7815 */
7816 atomic_inc(&init_mm.mm_count);
7817 enter_lazy_tlb(&init_mm, current);
7818
7819 /*
7820 * Make us the idle thread. Technically, schedule() should not be
7821 * called from this thread, however somewhere below it might be,
7822 * but because we are the idle thread, we just pick up running again
7823 * when this runqueue becomes "idle".
7824 */
7825 init_idle(current, smp_processor_id());
dce48a84
TG
7826
7827 calc_load_update = jiffies + LOAD_FREQ;
7828
dd41f596
IM
7829 /*
7830 * During early bootup we pretend to be a normal task:
7831 */
7832 current->sched_class = &fair_sched_class;
6892b75e 7833
6a7b3dc3 7834 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7835 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7836#ifdef CONFIG_SMP
7d1e6a9b 7837#ifdef CONFIG_NO_HZ
49557e62 7838 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7839 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7840#endif
bdddd296
RR
7841 /* May be allocated at isolcpus cmdline parse time */
7842 if (cpu_isolated_map == NULL)
7843 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7844#endif /* SMP */
6a7b3dc3 7845
cdd6c482 7846 perf_event_init();
0d905bca 7847
6892b75e 7848 scheduler_running = 1;
1da177e4
LT
7849}
7850
7851#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7852static inline int preempt_count_equals(int preempt_offset)
7853{
234da7bc 7854 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7855
7856 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7857}
7858
d894837f 7859void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7860{
48f24c4d 7861#ifdef in_atomic
1da177e4
LT
7862 static unsigned long prev_jiffy; /* ratelimiting */
7863
e4aafea2
FW
7864 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7865 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7866 return;
7867 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7868 return;
7869 prev_jiffy = jiffies;
7870
3df0fc5b
PZ
7871 printk(KERN_ERR
7872 "BUG: sleeping function called from invalid context at %s:%d\n",
7873 file, line);
7874 printk(KERN_ERR
7875 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7876 in_atomic(), irqs_disabled(),
7877 current->pid, current->comm);
aef745fc
IM
7878
7879 debug_show_held_locks(current);
7880 if (irqs_disabled())
7881 print_irqtrace_events(current);
7882 dump_stack();
1da177e4
LT
7883#endif
7884}
7885EXPORT_SYMBOL(__might_sleep);
7886#endif
7887
7888#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7889static void normalize_task(struct rq *rq, struct task_struct *p)
7890{
7891 int on_rq;
3e51f33f 7892
3a5e4dc1
AK
7893 on_rq = p->se.on_rq;
7894 if (on_rq)
7895 deactivate_task(rq, p, 0);
7896 __setscheduler(rq, p, SCHED_NORMAL, 0);
7897 if (on_rq) {
7898 activate_task(rq, p, 0);
7899 resched_task(rq->curr);
7900 }
7901}
7902
1da177e4
LT
7903void normalize_rt_tasks(void)
7904{
a0f98a1c 7905 struct task_struct *g, *p;
1da177e4 7906 unsigned long flags;
70b97a7f 7907 struct rq *rq;
1da177e4 7908
4cf5d77a 7909 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7910 do_each_thread(g, p) {
178be793
IM
7911 /*
7912 * Only normalize user tasks:
7913 */
7914 if (!p->mm)
7915 continue;
7916
6cfb0d5d 7917 p->se.exec_start = 0;
6cfb0d5d 7918#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7919 p->se.statistics.wait_start = 0;
7920 p->se.statistics.sleep_start = 0;
7921 p->se.statistics.block_start = 0;
6cfb0d5d 7922#endif
dd41f596
IM
7923
7924 if (!rt_task(p)) {
7925 /*
7926 * Renice negative nice level userspace
7927 * tasks back to 0:
7928 */
7929 if (TASK_NICE(p) < 0 && p->mm)
7930 set_user_nice(p, 0);
1da177e4 7931 continue;
dd41f596 7932 }
1da177e4 7933
1d615482 7934 raw_spin_lock(&p->pi_lock);
b29739f9 7935 rq = __task_rq_lock(p);
1da177e4 7936
178be793 7937 normalize_task(rq, p);
3a5e4dc1 7938
b29739f9 7939 __task_rq_unlock(rq);
1d615482 7940 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7941 } while_each_thread(g, p);
7942
4cf5d77a 7943 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7944}
7945
7946#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7947
67fc4e0c 7948#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7949/*
67fc4e0c 7950 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7951 *
7952 * They can only be called when the whole system has been
7953 * stopped - every CPU needs to be quiescent, and no scheduling
7954 * activity can take place. Using them for anything else would
7955 * be a serious bug, and as a result, they aren't even visible
7956 * under any other configuration.
7957 */
7958
7959/**
7960 * curr_task - return the current task for a given cpu.
7961 * @cpu: the processor in question.
7962 *
7963 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7964 */
36c8b586 7965struct task_struct *curr_task(int cpu)
1df5c10a
LT
7966{
7967 return cpu_curr(cpu);
7968}
7969
67fc4e0c
JW
7970#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7971
7972#ifdef CONFIG_IA64
1df5c10a
LT
7973/**
7974 * set_curr_task - set the current task for a given cpu.
7975 * @cpu: the processor in question.
7976 * @p: the task pointer to set.
7977 *
7978 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7979 * are serviced on a separate stack. It allows the architecture to switch the
7980 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7981 * must be called with all CPU's synchronized, and interrupts disabled, the
7982 * and caller must save the original value of the current task (see
7983 * curr_task() above) and restore that value before reenabling interrupts and
7984 * re-starting the system.
7985 *
7986 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7987 */
36c8b586 7988void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7989{
7990 cpu_curr(cpu) = p;
7991}
7992
7993#endif
29f59db3 7994
bccbe08a
PZ
7995#ifdef CONFIG_FAIR_GROUP_SCHED
7996static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7997{
7998 int i;
7999
8000 for_each_possible_cpu(i) {
8001 if (tg->cfs_rq)
8002 kfree(tg->cfs_rq[i]);
8003 if (tg->se)
8004 kfree(tg->se[i]);
6f505b16
PZ
8005 }
8006
8007 kfree(tg->cfs_rq);
8008 kfree(tg->se);
6f505b16
PZ
8009}
8010
ec7dc8ac
DG
8011static
8012int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8013{
29f59db3 8014 struct cfs_rq *cfs_rq;
eab17229 8015 struct sched_entity *se;
9b5b7751 8016 struct rq *rq;
29f59db3
SV
8017 int i;
8018
434d53b0 8019 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8020 if (!tg->cfs_rq)
8021 goto err;
434d53b0 8022 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8023 if (!tg->se)
8024 goto err;
052f1dc7
PZ
8025
8026 tg->shares = NICE_0_LOAD;
29f59db3
SV
8027
8028 for_each_possible_cpu(i) {
9b5b7751 8029 rq = cpu_rq(i);
29f59db3 8030
eab17229
LZ
8031 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8032 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8033 if (!cfs_rq)
8034 goto err;
8035
eab17229
LZ
8036 se = kzalloc_node(sizeof(struct sched_entity),
8037 GFP_KERNEL, cpu_to_node(i));
29f59db3 8038 if (!se)
dfc12eb2 8039 goto err_free_rq;
29f59db3 8040
eab17229 8041 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8042 }
8043
8044 return 1;
8045
dfc12eb2
PC
8046 err_free_rq:
8047 kfree(cfs_rq);
bccbe08a
PZ
8048 err:
8049 return 0;
8050}
8051
8052static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8053{
8054 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8055 &cpu_rq(cpu)->leaf_cfs_rq_list);
8056}
8057
8058static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8059{
8060 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8061}
6d6bc0ad 8062#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8063static inline void free_fair_sched_group(struct task_group *tg)
8064{
8065}
8066
ec7dc8ac
DG
8067static inline
8068int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8069{
8070 return 1;
8071}
8072
8073static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8074{
8075}
8076
8077static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8078{
8079}
6d6bc0ad 8080#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8081
8082#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8083static void free_rt_sched_group(struct task_group *tg)
8084{
8085 int i;
8086
d0b27fa7
PZ
8087 destroy_rt_bandwidth(&tg->rt_bandwidth);
8088
bccbe08a
PZ
8089 for_each_possible_cpu(i) {
8090 if (tg->rt_rq)
8091 kfree(tg->rt_rq[i]);
8092 if (tg->rt_se)
8093 kfree(tg->rt_se[i]);
8094 }
8095
8096 kfree(tg->rt_rq);
8097 kfree(tg->rt_se);
8098}
8099
ec7dc8ac
DG
8100static
8101int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8102{
8103 struct rt_rq *rt_rq;
eab17229 8104 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8105 struct rq *rq;
8106 int i;
8107
434d53b0 8108 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8109 if (!tg->rt_rq)
8110 goto err;
434d53b0 8111 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8112 if (!tg->rt_se)
8113 goto err;
8114
d0b27fa7
PZ
8115 init_rt_bandwidth(&tg->rt_bandwidth,
8116 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8117
8118 for_each_possible_cpu(i) {
8119 rq = cpu_rq(i);
8120
eab17229
LZ
8121 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8122 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8123 if (!rt_rq)
8124 goto err;
29f59db3 8125
eab17229
LZ
8126 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8127 GFP_KERNEL, cpu_to_node(i));
6f505b16 8128 if (!rt_se)
dfc12eb2 8129 goto err_free_rq;
29f59db3 8130
eab17229 8131 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8132 }
8133
bccbe08a
PZ
8134 return 1;
8135
dfc12eb2
PC
8136 err_free_rq:
8137 kfree(rt_rq);
bccbe08a
PZ
8138 err:
8139 return 0;
8140}
8141
8142static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8143{
8144 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8145 &cpu_rq(cpu)->leaf_rt_rq_list);
8146}
8147
8148static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8149{
8150 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8151}
6d6bc0ad 8152#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8153static inline void free_rt_sched_group(struct task_group *tg)
8154{
8155}
8156
ec7dc8ac
DG
8157static inline
8158int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8159{
8160 return 1;
8161}
8162
8163static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8164{
8165}
8166
8167static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8168{
8169}
6d6bc0ad 8170#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8171
7c941438 8172#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8173static void free_sched_group(struct task_group *tg)
8174{
8175 free_fair_sched_group(tg);
8176 free_rt_sched_group(tg);
8177 kfree(tg);
8178}
8179
8180/* allocate runqueue etc for a new task group */
ec7dc8ac 8181struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8182{
8183 struct task_group *tg;
8184 unsigned long flags;
8185 int i;
8186
8187 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8188 if (!tg)
8189 return ERR_PTR(-ENOMEM);
8190
ec7dc8ac 8191 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8192 goto err;
8193
ec7dc8ac 8194 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8195 goto err;
8196
8ed36996 8197 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8198 for_each_possible_cpu(i) {
bccbe08a
PZ
8199 register_fair_sched_group(tg, i);
8200 register_rt_sched_group(tg, i);
9b5b7751 8201 }
6f505b16 8202 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8203
8204 WARN_ON(!parent); /* root should already exist */
8205
8206 tg->parent = parent;
f473aa5e 8207 INIT_LIST_HEAD(&tg->children);
09f2724a 8208 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8209 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8210
9b5b7751 8211 return tg;
29f59db3
SV
8212
8213err:
6f505b16 8214 free_sched_group(tg);
29f59db3
SV
8215 return ERR_PTR(-ENOMEM);
8216}
8217
9b5b7751 8218/* rcu callback to free various structures associated with a task group */
6f505b16 8219static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8220{
29f59db3 8221 /* now it should be safe to free those cfs_rqs */
6f505b16 8222 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8223}
8224
9b5b7751 8225/* Destroy runqueue etc associated with a task group */
4cf86d77 8226void sched_destroy_group(struct task_group *tg)
29f59db3 8227{
8ed36996 8228 unsigned long flags;
9b5b7751 8229 int i;
29f59db3 8230
8ed36996 8231 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8232 for_each_possible_cpu(i) {
bccbe08a
PZ
8233 unregister_fair_sched_group(tg, i);
8234 unregister_rt_sched_group(tg, i);
9b5b7751 8235 }
6f505b16 8236 list_del_rcu(&tg->list);
f473aa5e 8237 list_del_rcu(&tg->siblings);
8ed36996 8238 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8239
9b5b7751 8240 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8241 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8242}
8243
9b5b7751 8244/* change task's runqueue when it moves between groups.
3a252015
IM
8245 * The caller of this function should have put the task in its new group
8246 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8247 * reflect its new group.
9b5b7751
SV
8248 */
8249void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8250{
8251 int on_rq, running;
8252 unsigned long flags;
8253 struct rq *rq;
8254
8255 rq = task_rq_lock(tsk, &flags);
8256
051a1d1a 8257 running = task_current(rq, tsk);
29f59db3
SV
8258 on_rq = tsk->se.on_rq;
8259
0e1f3483 8260 if (on_rq)
29f59db3 8261 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8262 if (unlikely(running))
8263 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8264
6f505b16 8265 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8266
810b3817
PZ
8267#ifdef CONFIG_FAIR_GROUP_SCHED
8268 if (tsk->sched_class->moved_group)
88ec22d3 8269 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8270#endif
8271
0e1f3483
HS
8272 if (unlikely(running))
8273 tsk->sched_class->set_curr_task(rq);
8274 if (on_rq)
371fd7e7 8275 enqueue_task(rq, tsk, 0);
29f59db3 8276
29f59db3
SV
8277 task_rq_unlock(rq, &flags);
8278}
7c941438 8279#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8280
052f1dc7 8281#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8282static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8283{
8284 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8285 int on_rq;
8286
29f59db3 8287 on_rq = se->on_rq;
62fb1851 8288 if (on_rq)
29f59db3
SV
8289 dequeue_entity(cfs_rq, se, 0);
8290
8291 se->load.weight = shares;
e05510d0 8292 se->load.inv_weight = 0;
29f59db3 8293
62fb1851 8294 if (on_rq)
29f59db3 8295 enqueue_entity(cfs_rq, se, 0);
c09595f6 8296}
62fb1851 8297
c09595f6
PZ
8298static void set_se_shares(struct sched_entity *se, unsigned long shares)
8299{
8300 struct cfs_rq *cfs_rq = se->cfs_rq;
8301 struct rq *rq = cfs_rq->rq;
8302 unsigned long flags;
8303
05fa785c 8304 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8305 __set_se_shares(se, shares);
05fa785c 8306 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8307}
8308
8ed36996
PZ
8309static DEFINE_MUTEX(shares_mutex);
8310
4cf86d77 8311int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8312{
8313 int i;
8ed36996 8314 unsigned long flags;
c61935fd 8315
ec7dc8ac
DG
8316 /*
8317 * We can't change the weight of the root cgroup.
8318 */
8319 if (!tg->se[0])
8320 return -EINVAL;
8321
18d95a28
PZ
8322 if (shares < MIN_SHARES)
8323 shares = MIN_SHARES;
cb4ad1ff
MX
8324 else if (shares > MAX_SHARES)
8325 shares = MAX_SHARES;
62fb1851 8326
8ed36996 8327 mutex_lock(&shares_mutex);
9b5b7751 8328 if (tg->shares == shares)
5cb350ba 8329 goto done;
29f59db3 8330
8ed36996 8331 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8332 for_each_possible_cpu(i)
8333 unregister_fair_sched_group(tg, i);
f473aa5e 8334 list_del_rcu(&tg->siblings);
8ed36996 8335 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8336
8337 /* wait for any ongoing reference to this group to finish */
8338 synchronize_sched();
8339
8340 /*
8341 * Now we are free to modify the group's share on each cpu
8342 * w/o tripping rebalance_share or load_balance_fair.
8343 */
9b5b7751 8344 tg->shares = shares;
c09595f6
PZ
8345 for_each_possible_cpu(i) {
8346 /*
8347 * force a rebalance
8348 */
8349 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8350 set_se_shares(tg->se[i], shares);
c09595f6 8351 }
29f59db3 8352
6b2d7700
SV
8353 /*
8354 * Enable load balance activity on this group, by inserting it back on
8355 * each cpu's rq->leaf_cfs_rq_list.
8356 */
8ed36996 8357 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8358 for_each_possible_cpu(i)
8359 register_fair_sched_group(tg, i);
f473aa5e 8360 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8361 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8362done:
8ed36996 8363 mutex_unlock(&shares_mutex);
9b5b7751 8364 return 0;
29f59db3
SV
8365}
8366
5cb350ba
DG
8367unsigned long sched_group_shares(struct task_group *tg)
8368{
8369 return tg->shares;
8370}
052f1dc7 8371#endif
5cb350ba 8372
052f1dc7 8373#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8374/*
9f0c1e56 8375 * Ensure that the real time constraints are schedulable.
6f505b16 8376 */
9f0c1e56
PZ
8377static DEFINE_MUTEX(rt_constraints_mutex);
8378
8379static unsigned long to_ratio(u64 period, u64 runtime)
8380{
8381 if (runtime == RUNTIME_INF)
9a7e0b18 8382 return 1ULL << 20;
9f0c1e56 8383
9a7e0b18 8384 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8385}
8386
9a7e0b18
PZ
8387/* Must be called with tasklist_lock held */
8388static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8389{
9a7e0b18 8390 struct task_struct *g, *p;
b40b2e8e 8391
9a7e0b18
PZ
8392 do_each_thread(g, p) {
8393 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8394 return 1;
8395 } while_each_thread(g, p);
b40b2e8e 8396
9a7e0b18
PZ
8397 return 0;
8398}
b40b2e8e 8399
9a7e0b18
PZ
8400struct rt_schedulable_data {
8401 struct task_group *tg;
8402 u64 rt_period;
8403 u64 rt_runtime;
8404};
b40b2e8e 8405
9a7e0b18
PZ
8406static int tg_schedulable(struct task_group *tg, void *data)
8407{
8408 struct rt_schedulable_data *d = data;
8409 struct task_group *child;
8410 unsigned long total, sum = 0;
8411 u64 period, runtime;
b40b2e8e 8412
9a7e0b18
PZ
8413 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8414 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8415
9a7e0b18
PZ
8416 if (tg == d->tg) {
8417 period = d->rt_period;
8418 runtime = d->rt_runtime;
b40b2e8e 8419 }
b40b2e8e 8420
4653f803
PZ
8421 /*
8422 * Cannot have more runtime than the period.
8423 */
8424 if (runtime > period && runtime != RUNTIME_INF)
8425 return -EINVAL;
6f505b16 8426
4653f803
PZ
8427 /*
8428 * Ensure we don't starve existing RT tasks.
8429 */
9a7e0b18
PZ
8430 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8431 return -EBUSY;
6f505b16 8432
9a7e0b18 8433 total = to_ratio(period, runtime);
6f505b16 8434
4653f803
PZ
8435 /*
8436 * Nobody can have more than the global setting allows.
8437 */
8438 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8439 return -EINVAL;
6f505b16 8440
4653f803
PZ
8441 /*
8442 * The sum of our children's runtime should not exceed our own.
8443 */
9a7e0b18
PZ
8444 list_for_each_entry_rcu(child, &tg->children, siblings) {
8445 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8446 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8447
9a7e0b18
PZ
8448 if (child == d->tg) {
8449 period = d->rt_period;
8450 runtime = d->rt_runtime;
8451 }
6f505b16 8452
9a7e0b18 8453 sum += to_ratio(period, runtime);
9f0c1e56 8454 }
6f505b16 8455
9a7e0b18
PZ
8456 if (sum > total)
8457 return -EINVAL;
8458
8459 return 0;
6f505b16
PZ
8460}
8461
9a7e0b18 8462static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8463{
9a7e0b18
PZ
8464 struct rt_schedulable_data data = {
8465 .tg = tg,
8466 .rt_period = period,
8467 .rt_runtime = runtime,
8468 };
8469
8470 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8471}
8472
d0b27fa7
PZ
8473static int tg_set_bandwidth(struct task_group *tg,
8474 u64 rt_period, u64 rt_runtime)
6f505b16 8475{
ac086bc2 8476 int i, err = 0;
9f0c1e56 8477
9f0c1e56 8478 mutex_lock(&rt_constraints_mutex);
521f1a24 8479 read_lock(&tasklist_lock);
9a7e0b18
PZ
8480 err = __rt_schedulable(tg, rt_period, rt_runtime);
8481 if (err)
9f0c1e56 8482 goto unlock;
ac086bc2 8483
0986b11b 8484 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8485 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8486 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8487
8488 for_each_possible_cpu(i) {
8489 struct rt_rq *rt_rq = tg->rt_rq[i];
8490
0986b11b 8491 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8492 rt_rq->rt_runtime = rt_runtime;
0986b11b 8493 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8494 }
0986b11b 8495 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8496 unlock:
521f1a24 8497 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8498 mutex_unlock(&rt_constraints_mutex);
8499
8500 return err;
6f505b16
PZ
8501}
8502
d0b27fa7
PZ
8503int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8504{
8505 u64 rt_runtime, rt_period;
8506
8507 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8508 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8509 if (rt_runtime_us < 0)
8510 rt_runtime = RUNTIME_INF;
8511
8512 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8513}
8514
9f0c1e56
PZ
8515long sched_group_rt_runtime(struct task_group *tg)
8516{
8517 u64 rt_runtime_us;
8518
d0b27fa7 8519 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8520 return -1;
8521
d0b27fa7 8522 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8523 do_div(rt_runtime_us, NSEC_PER_USEC);
8524 return rt_runtime_us;
8525}
d0b27fa7
PZ
8526
8527int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8528{
8529 u64 rt_runtime, rt_period;
8530
8531 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8532 rt_runtime = tg->rt_bandwidth.rt_runtime;
8533
619b0488
R
8534 if (rt_period == 0)
8535 return -EINVAL;
8536
d0b27fa7
PZ
8537 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8538}
8539
8540long sched_group_rt_period(struct task_group *tg)
8541{
8542 u64 rt_period_us;
8543
8544 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8545 do_div(rt_period_us, NSEC_PER_USEC);
8546 return rt_period_us;
8547}
8548
8549static int sched_rt_global_constraints(void)
8550{
4653f803 8551 u64 runtime, period;
d0b27fa7
PZ
8552 int ret = 0;
8553
ec5d4989
HS
8554 if (sysctl_sched_rt_period <= 0)
8555 return -EINVAL;
8556
4653f803
PZ
8557 runtime = global_rt_runtime();
8558 period = global_rt_period();
8559
8560 /*
8561 * Sanity check on the sysctl variables.
8562 */
8563 if (runtime > period && runtime != RUNTIME_INF)
8564 return -EINVAL;
10b612f4 8565
d0b27fa7 8566 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8567 read_lock(&tasklist_lock);
4653f803 8568 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8569 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8570 mutex_unlock(&rt_constraints_mutex);
8571
8572 return ret;
8573}
54e99124
DG
8574
8575int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8576{
8577 /* Don't accept realtime tasks when there is no way for them to run */
8578 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8579 return 0;
8580
8581 return 1;
8582}
8583
6d6bc0ad 8584#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8585static int sched_rt_global_constraints(void)
8586{
ac086bc2
PZ
8587 unsigned long flags;
8588 int i;
8589
ec5d4989
HS
8590 if (sysctl_sched_rt_period <= 0)
8591 return -EINVAL;
8592
60aa605d
PZ
8593 /*
8594 * There's always some RT tasks in the root group
8595 * -- migration, kstopmachine etc..
8596 */
8597 if (sysctl_sched_rt_runtime == 0)
8598 return -EBUSY;
8599
0986b11b 8600 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8601 for_each_possible_cpu(i) {
8602 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8603
0986b11b 8604 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8605 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8606 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8607 }
0986b11b 8608 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8609
d0b27fa7
PZ
8610 return 0;
8611}
6d6bc0ad 8612#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8613
8614int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8615 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8616 loff_t *ppos)
8617{
8618 int ret;
8619 int old_period, old_runtime;
8620 static DEFINE_MUTEX(mutex);
8621
8622 mutex_lock(&mutex);
8623 old_period = sysctl_sched_rt_period;
8624 old_runtime = sysctl_sched_rt_runtime;
8625
8d65af78 8626 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8627
8628 if (!ret && write) {
8629 ret = sched_rt_global_constraints();
8630 if (ret) {
8631 sysctl_sched_rt_period = old_period;
8632 sysctl_sched_rt_runtime = old_runtime;
8633 } else {
8634 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8635 def_rt_bandwidth.rt_period =
8636 ns_to_ktime(global_rt_period());
8637 }
8638 }
8639 mutex_unlock(&mutex);
8640
8641 return ret;
8642}
68318b8e 8643
052f1dc7 8644#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8645
8646/* return corresponding task_group object of a cgroup */
2b01dfe3 8647static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8648{
2b01dfe3
PM
8649 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8650 struct task_group, css);
68318b8e
SV
8651}
8652
8653static struct cgroup_subsys_state *
2b01dfe3 8654cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8655{
ec7dc8ac 8656 struct task_group *tg, *parent;
68318b8e 8657
2b01dfe3 8658 if (!cgrp->parent) {
68318b8e 8659 /* This is early initialization for the top cgroup */
68318b8e
SV
8660 return &init_task_group.css;
8661 }
8662
ec7dc8ac
DG
8663 parent = cgroup_tg(cgrp->parent);
8664 tg = sched_create_group(parent);
68318b8e
SV
8665 if (IS_ERR(tg))
8666 return ERR_PTR(-ENOMEM);
8667
68318b8e
SV
8668 return &tg->css;
8669}
8670
41a2d6cf
IM
8671static void
8672cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8673{
2b01dfe3 8674 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8675
8676 sched_destroy_group(tg);
8677}
8678
41a2d6cf 8679static int
be367d09 8680cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8681{
b68aa230 8682#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8683 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8684 return -EINVAL;
8685#else
68318b8e
SV
8686 /* We don't support RT-tasks being in separate groups */
8687 if (tsk->sched_class != &fair_sched_class)
8688 return -EINVAL;
b68aa230 8689#endif
be367d09
BB
8690 return 0;
8691}
68318b8e 8692
be367d09
BB
8693static int
8694cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8695 struct task_struct *tsk, bool threadgroup)
8696{
8697 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8698 if (retval)
8699 return retval;
8700 if (threadgroup) {
8701 struct task_struct *c;
8702 rcu_read_lock();
8703 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8704 retval = cpu_cgroup_can_attach_task(cgrp, c);
8705 if (retval) {
8706 rcu_read_unlock();
8707 return retval;
8708 }
8709 }
8710 rcu_read_unlock();
8711 }
68318b8e
SV
8712 return 0;
8713}
8714
8715static void
2b01dfe3 8716cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8717 struct cgroup *old_cont, struct task_struct *tsk,
8718 bool threadgroup)
68318b8e
SV
8719{
8720 sched_move_task(tsk);
be367d09
BB
8721 if (threadgroup) {
8722 struct task_struct *c;
8723 rcu_read_lock();
8724 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8725 sched_move_task(c);
8726 }
8727 rcu_read_unlock();
8728 }
68318b8e
SV
8729}
8730
052f1dc7 8731#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8732static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8733 u64 shareval)
68318b8e 8734{
2b01dfe3 8735 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8736}
8737
f4c753b7 8738static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8739{
2b01dfe3 8740 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8741
8742 return (u64) tg->shares;
8743}
6d6bc0ad 8744#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8745
052f1dc7 8746#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8747static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8748 s64 val)
6f505b16 8749{
06ecb27c 8750 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8751}
8752
06ecb27c 8753static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8754{
06ecb27c 8755 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8756}
d0b27fa7
PZ
8757
8758static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8759 u64 rt_period_us)
8760{
8761 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8762}
8763
8764static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8765{
8766 return sched_group_rt_period(cgroup_tg(cgrp));
8767}
6d6bc0ad 8768#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8769
fe5c7cc2 8770static struct cftype cpu_files[] = {
052f1dc7 8771#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8772 {
8773 .name = "shares",
f4c753b7
PM
8774 .read_u64 = cpu_shares_read_u64,
8775 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8776 },
052f1dc7
PZ
8777#endif
8778#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8779 {
9f0c1e56 8780 .name = "rt_runtime_us",
06ecb27c
PM
8781 .read_s64 = cpu_rt_runtime_read,
8782 .write_s64 = cpu_rt_runtime_write,
6f505b16 8783 },
d0b27fa7
PZ
8784 {
8785 .name = "rt_period_us",
f4c753b7
PM
8786 .read_u64 = cpu_rt_period_read_uint,
8787 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8788 },
052f1dc7 8789#endif
68318b8e
SV
8790};
8791
8792static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8793{
fe5c7cc2 8794 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8795}
8796
8797struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8798 .name = "cpu",
8799 .create = cpu_cgroup_create,
8800 .destroy = cpu_cgroup_destroy,
8801 .can_attach = cpu_cgroup_can_attach,
8802 .attach = cpu_cgroup_attach,
8803 .populate = cpu_cgroup_populate,
8804 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8805 .early_init = 1,
8806};
8807
052f1dc7 8808#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8809
8810#ifdef CONFIG_CGROUP_CPUACCT
8811
8812/*
8813 * CPU accounting code for task groups.
8814 *
8815 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8816 * (balbir@in.ibm.com).
8817 */
8818
934352f2 8819/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8820struct cpuacct {
8821 struct cgroup_subsys_state css;
8822 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8823 u64 __percpu *cpuusage;
ef12fefa 8824 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8825 struct cpuacct *parent;
d842de87
SV
8826};
8827
8828struct cgroup_subsys cpuacct_subsys;
8829
8830/* return cpu accounting group corresponding to this container */
32cd756a 8831static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8832{
32cd756a 8833 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8834 struct cpuacct, css);
8835}
8836
8837/* return cpu accounting group to which this task belongs */
8838static inline struct cpuacct *task_ca(struct task_struct *tsk)
8839{
8840 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8841 struct cpuacct, css);
8842}
8843
8844/* create a new cpu accounting group */
8845static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8846 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8847{
8848 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8849 int i;
d842de87
SV
8850
8851 if (!ca)
ef12fefa 8852 goto out;
d842de87
SV
8853
8854 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8855 if (!ca->cpuusage)
8856 goto out_free_ca;
8857
8858 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8859 if (percpu_counter_init(&ca->cpustat[i], 0))
8860 goto out_free_counters;
d842de87 8861
934352f2
BR
8862 if (cgrp->parent)
8863 ca->parent = cgroup_ca(cgrp->parent);
8864
d842de87 8865 return &ca->css;
ef12fefa
BR
8866
8867out_free_counters:
8868 while (--i >= 0)
8869 percpu_counter_destroy(&ca->cpustat[i]);
8870 free_percpu(ca->cpuusage);
8871out_free_ca:
8872 kfree(ca);
8873out:
8874 return ERR_PTR(-ENOMEM);
d842de87
SV
8875}
8876
8877/* destroy an existing cpu accounting group */
41a2d6cf 8878static void
32cd756a 8879cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8880{
32cd756a 8881 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8882 int i;
d842de87 8883
ef12fefa
BR
8884 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8885 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8886 free_percpu(ca->cpuusage);
8887 kfree(ca);
8888}
8889
720f5498
KC
8890static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8891{
b36128c8 8892 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8893 u64 data;
8894
8895#ifndef CONFIG_64BIT
8896 /*
8897 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8898 */
05fa785c 8899 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8900 data = *cpuusage;
05fa785c 8901 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8902#else
8903 data = *cpuusage;
8904#endif
8905
8906 return data;
8907}
8908
8909static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8910{
b36128c8 8911 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8912
8913#ifndef CONFIG_64BIT
8914 /*
8915 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8916 */
05fa785c 8917 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8918 *cpuusage = val;
05fa785c 8919 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8920#else
8921 *cpuusage = val;
8922#endif
8923}
8924
d842de87 8925/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8926static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8927{
32cd756a 8928 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8929 u64 totalcpuusage = 0;
8930 int i;
8931
720f5498
KC
8932 for_each_present_cpu(i)
8933 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8934
8935 return totalcpuusage;
8936}
8937
0297b803
DG
8938static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8939 u64 reset)
8940{
8941 struct cpuacct *ca = cgroup_ca(cgrp);
8942 int err = 0;
8943 int i;
8944
8945 if (reset) {
8946 err = -EINVAL;
8947 goto out;
8948 }
8949
720f5498
KC
8950 for_each_present_cpu(i)
8951 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8952
0297b803
DG
8953out:
8954 return err;
8955}
8956
e9515c3c
KC
8957static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8958 struct seq_file *m)
8959{
8960 struct cpuacct *ca = cgroup_ca(cgroup);
8961 u64 percpu;
8962 int i;
8963
8964 for_each_present_cpu(i) {
8965 percpu = cpuacct_cpuusage_read(ca, i);
8966 seq_printf(m, "%llu ", (unsigned long long) percpu);
8967 }
8968 seq_printf(m, "\n");
8969 return 0;
8970}
8971
ef12fefa
BR
8972static const char *cpuacct_stat_desc[] = {
8973 [CPUACCT_STAT_USER] = "user",
8974 [CPUACCT_STAT_SYSTEM] = "system",
8975};
8976
8977static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8978 struct cgroup_map_cb *cb)
8979{
8980 struct cpuacct *ca = cgroup_ca(cgrp);
8981 int i;
8982
8983 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8984 s64 val = percpu_counter_read(&ca->cpustat[i]);
8985 val = cputime64_to_clock_t(val);
8986 cb->fill(cb, cpuacct_stat_desc[i], val);
8987 }
8988 return 0;
8989}
8990
d842de87
SV
8991static struct cftype files[] = {
8992 {
8993 .name = "usage",
f4c753b7
PM
8994 .read_u64 = cpuusage_read,
8995 .write_u64 = cpuusage_write,
d842de87 8996 },
e9515c3c
KC
8997 {
8998 .name = "usage_percpu",
8999 .read_seq_string = cpuacct_percpu_seq_read,
9000 },
ef12fefa
BR
9001 {
9002 .name = "stat",
9003 .read_map = cpuacct_stats_show,
9004 },
d842de87
SV
9005};
9006
32cd756a 9007static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9008{
32cd756a 9009 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9010}
9011
9012/*
9013 * charge this task's execution time to its accounting group.
9014 *
9015 * called with rq->lock held.
9016 */
9017static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9018{
9019 struct cpuacct *ca;
934352f2 9020 int cpu;
d842de87 9021
c40c6f85 9022 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9023 return;
9024
934352f2 9025 cpu = task_cpu(tsk);
a18b83b7
BR
9026
9027 rcu_read_lock();
9028
d842de87 9029 ca = task_ca(tsk);
d842de87 9030
934352f2 9031 for (; ca; ca = ca->parent) {
b36128c8 9032 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9033 *cpuusage += cputime;
9034 }
a18b83b7
BR
9035
9036 rcu_read_unlock();
d842de87
SV
9037}
9038
fa535a77
AB
9039/*
9040 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9041 * in cputime_t units. As a result, cpuacct_update_stats calls
9042 * percpu_counter_add with values large enough to always overflow the
9043 * per cpu batch limit causing bad SMP scalability.
9044 *
9045 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9046 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9047 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9048 */
9049#ifdef CONFIG_SMP
9050#define CPUACCT_BATCH \
9051 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9052#else
9053#define CPUACCT_BATCH 0
9054#endif
9055
ef12fefa
BR
9056/*
9057 * Charge the system/user time to the task's accounting group.
9058 */
9059static void cpuacct_update_stats(struct task_struct *tsk,
9060 enum cpuacct_stat_index idx, cputime_t val)
9061{
9062 struct cpuacct *ca;
fa535a77 9063 int batch = CPUACCT_BATCH;
ef12fefa
BR
9064
9065 if (unlikely(!cpuacct_subsys.active))
9066 return;
9067
9068 rcu_read_lock();
9069 ca = task_ca(tsk);
9070
9071 do {
fa535a77 9072 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9073 ca = ca->parent;
9074 } while (ca);
9075 rcu_read_unlock();
9076}
9077
d842de87
SV
9078struct cgroup_subsys cpuacct_subsys = {
9079 .name = "cpuacct",
9080 .create = cpuacct_create,
9081 .destroy = cpuacct_destroy,
9082 .populate = cpuacct_populate,
9083 .subsys_id = cpuacct_subsys_id,
9084};
9085#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9086
9087#ifndef CONFIG_SMP
9088
03b042bf
PM
9089void synchronize_sched_expedited(void)
9090{
fc390cde 9091 barrier();
03b042bf
PM
9092}
9093EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9094
9095#else /* #ifndef CONFIG_SMP */
9096
cc631fb7 9097static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 9098
cc631fb7 9099static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 9100{
969c7921
TH
9101 /*
9102 * There must be a full memory barrier on each affected CPU
9103 * between the time that try_stop_cpus() is called and the
9104 * time that it returns.
9105 *
9106 * In the current initial implementation of cpu_stop, the
9107 * above condition is already met when the control reaches
9108 * this point and the following smp_mb() is not strictly
9109 * necessary. Do smp_mb() anyway for documentation and
9110 * robustness against future implementation changes.
9111 */
cc631fb7 9112 smp_mb(); /* See above comment block. */
969c7921 9113 return 0;
03b042bf 9114}
03b042bf
PM
9115
9116/*
9117 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9118 * approach to force grace period to end quickly. This consumes
9119 * significant time on all CPUs, and is thus not recommended for
9120 * any sort of common-case code.
9121 *
9122 * Note that it is illegal to call this function while holding any
9123 * lock that is acquired by a CPU-hotplug notifier. Failing to
9124 * observe this restriction will result in deadlock.
9125 */
9126void synchronize_sched_expedited(void)
9127{
969c7921 9128 int snap, trycount = 0;
03b042bf
PM
9129
9130 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 9131 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 9132 get_online_cpus();
969c7921
TH
9133 while (try_stop_cpus(cpu_online_mask,
9134 synchronize_sched_expedited_cpu_stop,
94458d5e 9135 NULL) == -EAGAIN) {
03b042bf
PM
9136 put_online_cpus();
9137 if (trycount++ < 10)
9138 udelay(trycount * num_online_cpus());
9139 else {
9140 synchronize_sched();
9141 return;
9142 }
969c7921 9143 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
9144 smp_mb(); /* ensure test happens before caller kfree */
9145 return;
9146 }
9147 get_online_cpus();
9148 }
969c7921 9149 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 9150 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 9151 put_online_cpus();
03b042bf
PM
9152}
9153EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9154
9155#endif /* #else #ifndef CONFIG_SMP */