Revert "x86, timers: Check for pending timers after (device) interrupts"
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
b9bf3121 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
57310a98
PZ
312#ifdef CONFIG_SMP
313static int root_task_group_empty(void)
314{
315 return list_empty(&root_task_group.children);
316}
317#endif
318
052f1dc7 319#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
320#ifdef CONFIG_USER_SCHED
321# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 322#else /* !CONFIG_USER_SCHED */
052f1dc7 323# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 324#endif /* CONFIG_USER_SCHED */
052f1dc7 325
cb4ad1ff 326/*
2e084786
LJ
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
cb4ad1ff
MX
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
18d95a28 334#define MIN_SHARES 2
2e084786 335#define MAX_SHARES (1UL << 18)
18d95a28 336
052f1dc7
PZ
337static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338#endif
339
29f59db3 340/* Default task group.
3a252015 341 * Every task in system belong to this group at bootup.
29f59db3 342 */
434d53b0 343struct task_group init_task_group;
29f59db3
SV
344
345/* return group to which a task belongs */
4cf86d77 346static inline struct task_group *task_group(struct task_struct *p)
29f59db3 347{
4cf86d77 348 struct task_group *tg;
9b5b7751 349
052f1dc7 350#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
052f1dc7 354#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
24e377a8 357#else
41a2d6cf 358 tg = &init_task_group;
24e377a8 359#endif
9b5b7751 360 return tg;
29f59db3
SV
361}
362
363/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 364static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 365{
052f1dc7 366#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
052f1dc7 369#endif
6f505b16 370
052f1dc7 371#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 374#endif
29f59db3
SV
375}
376
377#else
378
6f505b16 379static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
380static inline struct task_group *task_group(struct task_struct *p)
381{
382 return NULL;
383}
29f59db3 384
052f1dc7 385#endif /* CONFIG_GROUP_SCHED */
29f59db3 386
6aa645ea
IM
387/* CFS-related fields in a runqueue */
388struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
391
6aa645ea 392 u64 exec_clock;
e9acbff6 393 u64 min_vruntime;
6aa645ea
IM
394
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
4a55bd5e
PZ
397
398 struct list_head tasks;
399 struct list_head *balance_iterator;
400
401 /*
402 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
403 * It is set to NULL otherwise (i.e when none are currently running).
404 */
4793241b 405 struct sched_entity *curr, *next, *last;
ddc97297 406
5ac5c4d6 407 unsigned int nr_spread_over;
ddc97297 408
62160e3f 409#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
411
41a2d6cf
IM
412 /*
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
416 *
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
419 */
41a2d6cf
IM
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
422
423#ifdef CONFIG_SMP
c09595f6 424 /*
c8cba857 425 * the part of load.weight contributed by tasks
c09595f6 426 */
c8cba857 427 unsigned long task_weight;
c09595f6 428
c8cba857
PZ
429 /*
430 * h_load = weight * f(tg)
431 *
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
434 */
435 unsigned long h_load;
c09595f6 436
c8cba857
PZ
437 /*
438 * this cpu's part of tg->shares
439 */
440 unsigned long shares;
f1d239f7
PZ
441
442 /*
443 * load.weight at the time we set shares
444 */
445 unsigned long rq_weight;
c09595f6 446#endif
6aa645ea
IM
447#endif
448};
1da177e4 449
6aa645ea
IM
450/* Real-Time classes' related field in a runqueue: */
451struct rt_rq {
452 struct rt_prio_array active;
63489e45 453 unsigned long rt_nr_running;
052f1dc7 454#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
455 struct {
456 int curr; /* highest queued rt task prio */
398a153b 457#ifdef CONFIG_SMP
e864c499 458 int next; /* next highest */
398a153b 459#endif
e864c499 460 } highest_prio;
6f505b16 461#endif
fa85ae24 462#ifdef CONFIG_SMP
73fe6aae 463 unsigned long rt_nr_migratory;
a1ba4d8b 464 unsigned long rt_nr_total;
a22d7fc1 465 int overloaded;
917b627d 466 struct plist_head pushable_tasks;
fa85ae24 467#endif
6f505b16 468 int rt_throttled;
fa85ae24 469 u64 rt_time;
ac086bc2 470 u64 rt_runtime;
ea736ed5 471 /* Nests inside the rq lock: */
ac086bc2 472 spinlock_t rt_runtime_lock;
6f505b16 473
052f1dc7 474#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
475 unsigned long rt_nr_boosted;
476
6f505b16
PZ
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481#endif
6aa645ea
IM
482};
483
57d885fe
GH
484#ifdef CONFIG_SMP
485
486/*
487 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
492 *
57d885fe
GH
493 */
494struct root_domain {
495 atomic_t refcount;
c6c4927b
RR
496 cpumask_var_t span;
497 cpumask_var_t online;
637f5085 498
0eab9146 499 /*
637f5085
GH
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
502 */
c6c4927b 503 cpumask_var_t rto_mask;
0eab9146 504 atomic_t rto_count;
6e0534f2
GH
505#ifdef CONFIG_SMP
506 struct cpupri cpupri;
507#endif
57d885fe
GH
508};
509
dc938520
GH
510/*
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
513 */
57d885fe
GH
514static struct root_domain def_root_domain;
515
516#endif
517
1da177e4
LT
518/*
519 * This is the main, per-CPU runqueue data structure.
520 *
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
524 */
70b97a7f 525struct rq {
d8016491
IM
526 /* runqueue lock: */
527 spinlock_t lock;
1da177e4
LT
528
529 /*
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
532 */
533 unsigned long nr_running;
6aa645ea
IM
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 536#ifdef CONFIG_NO_HZ
15934a37 537 unsigned long last_tick_seen;
46cb4b7c
SS
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
23a185ca 544 u64 nr_migrations_in;
6aa645ea
IM
545
546 struct cfs_rq cfs;
6f505b16 547 struct rt_rq rt;
6f505b16 548
6aa645ea 549#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
552#endif
553#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 554 struct list_head leaf_rt_rq_list;
1da177e4 555#endif
1da177e4
LT
556
557 /*
558 * This is part of a global counter where only the total sum
559 * over all CPUs matters. A task can increase this counter on
560 * one CPU and if it got migrated afterwards it may decrease
561 * it on another CPU. Always updated under the runqueue lock:
562 */
563 unsigned long nr_uninterruptible;
564
36c8b586 565 struct task_struct *curr, *idle;
c9819f45 566 unsigned long next_balance;
1da177e4 567 struct mm_struct *prev_mm;
6aa645ea 568
3e51f33f 569 u64 clock;
6aa645ea 570
1da177e4
LT
571 atomic_t nr_iowait;
572
573#ifdef CONFIG_SMP
0eab9146 574 struct root_domain *rd;
1da177e4
LT
575 struct sched_domain *sd;
576
a0a522ce 577 unsigned char idle_at_tick;
1da177e4 578 /* For active balancing */
3f029d3c 579 int post_schedule;
1da177e4
LT
580 int active_balance;
581 int push_cpu;
d8016491
IM
582 /* cpu of this runqueue: */
583 int cpu;
1f11eb6a 584 int online;
1da177e4 585
a8a51d5e 586 unsigned long avg_load_per_task;
1da177e4 587
36c8b586 588 struct task_struct *migration_thread;
1da177e4 589 struct list_head migration_queue;
e9e9250b
PZ
590
591 u64 rt_avg;
592 u64 age_stamp;
1da177e4
LT
593#endif
594
dce48a84
TG
595 /* calc_load related fields */
596 unsigned long calc_load_update;
597 long calc_load_active;
598
8f4d37ec 599#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
600#ifdef CONFIG_SMP
601 int hrtick_csd_pending;
602 struct call_single_data hrtick_csd;
603#endif
8f4d37ec
PZ
604 struct hrtimer hrtick_timer;
605#endif
606
1da177e4
LT
607#ifdef CONFIG_SCHEDSTATS
608 /* latency stats */
609 struct sched_info rq_sched_info;
9c2c4802
KC
610 unsigned long long rq_cpu_time;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
612
613 /* sys_sched_yield() stats */
480b9434 614 unsigned int yld_count;
1da177e4
LT
615
616 /* schedule() stats */
480b9434
KC
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
1da177e4
LT
620
621 /* try_to_wake_up() stats */
480b9434
KC
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
b8efb561
IM
624
625 /* BKL stats */
480b9434 626 unsigned int bkl_count;
1da177e4
LT
627#endif
628};
629
f34e3b61 630static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 631
7d478721
PZ
632static inline
633void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 634{
7d478721 635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
636}
637
0a2966b4
CL
638static inline int cpu_of(struct rq *rq)
639{
640#ifdef CONFIG_SMP
641 return rq->cpu;
642#else
643 return 0;
644#endif
645}
646
674311d5
NP
647/*
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 649 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
650 *
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
653 */
48f24c4d
IM
654#define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
656
657#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658#define this_rq() (&__get_cpu_var(runqueues))
659#define task_rq(p) cpu_rq(task_cpu(p))
660#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 661#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 662
aa9c4c0f 663inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
664{
665 rq->clock = sched_clock_cpu(cpu_of(rq));
666}
667
bf5c91ba
IM
668/*
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
670 */
671#ifdef CONFIG_SCHED_DEBUG
672# define const_debug __read_mostly
673#else
674# define const_debug static const
675#endif
676
017730c1
IM
677/**
678 * runqueue_is_locked
679 *
680 * Returns true if the current cpu runqueue is locked.
681 * This interface allows printk to be called with the runqueue lock
682 * held and know whether or not it is OK to wake up the klogd.
683 */
89f19f04 684int runqueue_is_locked(int cpu)
017730c1 685{
89f19f04 686 return spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
687}
688
bf5c91ba
IM
689/*
690 * Debugging: various feature bits
691 */
f00b45c1
PZ
692
693#define SCHED_FEAT(name, enabled) \
694 __SCHED_FEAT_##name ,
695
bf5c91ba 696enum {
f00b45c1 697#include "sched_features.h"
bf5c91ba
IM
698};
699
f00b45c1
PZ
700#undef SCHED_FEAT
701
702#define SCHED_FEAT(name, enabled) \
703 (1UL << __SCHED_FEAT_##name) * enabled |
704
bf5c91ba 705const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
706#include "sched_features.h"
707 0;
708
709#undef SCHED_FEAT
710
711#ifdef CONFIG_SCHED_DEBUG
712#define SCHED_FEAT(name, enabled) \
713 #name ,
714
983ed7a6 715static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
716#include "sched_features.h"
717 NULL
718};
719
720#undef SCHED_FEAT
721
34f3a814 722static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 723{
f00b45c1
PZ
724 int i;
725
726 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
727 if (!(sysctl_sched_features & (1UL << i)))
728 seq_puts(m, "NO_");
729 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 730 }
34f3a814 731 seq_puts(m, "\n");
f00b45c1 732
34f3a814 733 return 0;
f00b45c1
PZ
734}
735
736static ssize_t
737sched_feat_write(struct file *filp, const char __user *ubuf,
738 size_t cnt, loff_t *ppos)
739{
740 char buf[64];
741 char *cmp = buf;
742 int neg = 0;
743 int i;
744
745 if (cnt > 63)
746 cnt = 63;
747
748 if (copy_from_user(&buf, ubuf, cnt))
749 return -EFAULT;
750
751 buf[cnt] = 0;
752
c24b7c52 753 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
754 neg = 1;
755 cmp += 3;
756 }
757
758 for (i = 0; sched_feat_names[i]; i++) {
759 int len = strlen(sched_feat_names[i]);
760
761 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
762 if (neg)
763 sysctl_sched_features &= ~(1UL << i);
764 else
765 sysctl_sched_features |= (1UL << i);
766 break;
767 }
768 }
769
770 if (!sched_feat_names[i])
771 return -EINVAL;
772
773 filp->f_pos += cnt;
774
775 return cnt;
776}
777
34f3a814
LZ
778static int sched_feat_open(struct inode *inode, struct file *filp)
779{
780 return single_open(filp, sched_feat_show, NULL);
781}
782
828c0950 783static const struct file_operations sched_feat_fops = {
34f3a814
LZ
784 .open = sched_feat_open,
785 .write = sched_feat_write,
786 .read = seq_read,
787 .llseek = seq_lseek,
788 .release = single_release,
f00b45c1
PZ
789};
790
791static __init int sched_init_debug(void)
792{
f00b45c1
PZ
793 debugfs_create_file("sched_features", 0644, NULL, NULL,
794 &sched_feat_fops);
795
796 return 0;
797}
798late_initcall(sched_init_debug);
799
800#endif
801
802#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 803
b82d9fdd
PZ
804/*
805 * Number of tasks to iterate in a single balance run.
806 * Limited because this is done with IRQs disabled.
807 */
808const_debug unsigned int sysctl_sched_nr_migrate = 32;
809
2398f2c6
PZ
810/*
811 * ratelimit for updating the group shares.
55cd5340 812 * default: 0.25ms
2398f2c6 813 */
55cd5340 814unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 815
ffda12a1
PZ
816/*
817 * Inject some fuzzyness into changing the per-cpu group shares
818 * this avoids remote rq-locks at the expense of fairness.
819 * default: 4
820 */
821unsigned int sysctl_sched_shares_thresh = 4;
822
e9e9250b
PZ
823/*
824 * period over which we average the RT time consumption, measured
825 * in ms.
826 *
827 * default: 1s
828 */
829const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
830
fa85ae24 831/*
9f0c1e56 832 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
833 * default: 1s
834 */
9f0c1e56 835unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 836
6892b75e
IM
837static __read_mostly int scheduler_running;
838
9f0c1e56
PZ
839/*
840 * part of the period that we allow rt tasks to run in us.
841 * default: 0.95s
842 */
843int sysctl_sched_rt_runtime = 950000;
fa85ae24 844
d0b27fa7
PZ
845static inline u64 global_rt_period(void)
846{
847 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
848}
849
850static inline u64 global_rt_runtime(void)
851{
e26873bb 852 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
853 return RUNTIME_INF;
854
855 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
856}
fa85ae24 857
1da177e4 858#ifndef prepare_arch_switch
4866cde0
NP
859# define prepare_arch_switch(next) do { } while (0)
860#endif
861#ifndef finish_arch_switch
862# define finish_arch_switch(prev) do { } while (0)
863#endif
864
051a1d1a
DA
865static inline int task_current(struct rq *rq, struct task_struct *p)
866{
867 return rq->curr == p;
868}
869
4866cde0 870#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 871static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 872{
051a1d1a 873 return task_current(rq, p);
4866cde0
NP
874}
875
70b97a7f 876static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
877{
878}
879
70b97a7f 880static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 881{
da04c035
IM
882#ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq->lock.owner = current;
885#endif
8a25d5de
IM
886 /*
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
889 * prev into current:
890 */
891 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
892
4866cde0
NP
893 spin_unlock_irq(&rq->lock);
894}
895
896#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 897static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
898{
899#ifdef CONFIG_SMP
900 return p->oncpu;
901#else
051a1d1a 902 return task_current(rq, p);
4866cde0
NP
903#endif
904}
905
70b97a7f 906static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
907{
908#ifdef CONFIG_SMP
909 /*
910 * We can optimise this out completely for !SMP, because the
911 * SMP rebalancing from interrupt is the only thing that cares
912 * here.
913 */
914 next->oncpu = 1;
915#endif
916#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 spin_unlock_irq(&rq->lock);
918#else
919 spin_unlock(&rq->lock);
920#endif
921}
922
70b97a7f 923static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
924{
925#ifdef CONFIG_SMP
926 /*
927 * After ->oncpu is cleared, the task can be moved to a different CPU.
928 * We must ensure this doesn't happen until the switch is completely
929 * finished.
930 */
931 smp_wmb();
932 prev->oncpu = 0;
933#endif
934#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
935 local_irq_enable();
1da177e4 936#endif
4866cde0
NP
937}
938#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 939
b29739f9
IM
940/*
941 * __task_rq_lock - lock the runqueue a given task resides on.
942 * Must be called interrupts disabled.
943 */
70b97a7f 944static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
945 __acquires(rq->lock)
946{
3a5c359a
AK
947 for (;;) {
948 struct rq *rq = task_rq(p);
949 spin_lock(&rq->lock);
950 if (likely(rq == task_rq(p)))
951 return rq;
b29739f9 952 spin_unlock(&rq->lock);
b29739f9 953 }
b29739f9
IM
954}
955
1da177e4
LT
956/*
957 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 958 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
959 * explicitly disabling preemption.
960 */
70b97a7f 961static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
962 __acquires(rq->lock)
963{
70b97a7f 964 struct rq *rq;
1da177e4 965
3a5c359a
AK
966 for (;;) {
967 local_irq_save(*flags);
968 rq = task_rq(p);
969 spin_lock(&rq->lock);
970 if (likely(rq == task_rq(p)))
971 return rq;
1da177e4 972 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 973 }
1da177e4
LT
974}
975
ad474cac
ON
976void task_rq_unlock_wait(struct task_struct *p)
977{
978 struct rq *rq = task_rq(p);
979
980 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
981 spin_unlock_wait(&rq->lock);
982}
983
a9957449 984static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
985 __releases(rq->lock)
986{
987 spin_unlock(&rq->lock);
988}
989
70b97a7f 990static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
991 __releases(rq->lock)
992{
993 spin_unlock_irqrestore(&rq->lock, *flags);
994}
995
1da177e4 996/*
cc2a73b5 997 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 998 */
a9957449 999static struct rq *this_rq_lock(void)
1da177e4
LT
1000 __acquires(rq->lock)
1001{
70b97a7f 1002 struct rq *rq;
1da177e4
LT
1003
1004 local_irq_disable();
1005 rq = this_rq();
1006 spin_lock(&rq->lock);
1007
1008 return rq;
1009}
1010
8f4d37ec
PZ
1011#ifdef CONFIG_SCHED_HRTICK
1012/*
1013 * Use HR-timers to deliver accurate preemption points.
1014 *
1015 * Its all a bit involved since we cannot program an hrt while holding the
1016 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1017 * reschedule event.
1018 *
1019 * When we get rescheduled we reprogram the hrtick_timer outside of the
1020 * rq->lock.
1021 */
8f4d37ec
PZ
1022
1023/*
1024 * Use hrtick when:
1025 * - enabled by features
1026 * - hrtimer is actually high res
1027 */
1028static inline int hrtick_enabled(struct rq *rq)
1029{
1030 if (!sched_feat(HRTICK))
1031 return 0;
ba42059f 1032 if (!cpu_active(cpu_of(rq)))
b328ca18 1033 return 0;
8f4d37ec
PZ
1034 return hrtimer_is_hres_active(&rq->hrtick_timer);
1035}
1036
8f4d37ec
PZ
1037static void hrtick_clear(struct rq *rq)
1038{
1039 if (hrtimer_active(&rq->hrtick_timer))
1040 hrtimer_cancel(&rq->hrtick_timer);
1041}
1042
8f4d37ec
PZ
1043/*
1044 * High-resolution timer tick.
1045 * Runs from hardirq context with interrupts disabled.
1046 */
1047static enum hrtimer_restart hrtick(struct hrtimer *timer)
1048{
1049 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1050
1051 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1052
1053 spin_lock(&rq->lock);
3e51f33f 1054 update_rq_clock(rq);
8f4d37ec
PZ
1055 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1056 spin_unlock(&rq->lock);
1057
1058 return HRTIMER_NORESTART;
1059}
1060
95e904c7 1061#ifdef CONFIG_SMP
31656519
PZ
1062/*
1063 * called from hardirq (IPI) context
1064 */
1065static void __hrtick_start(void *arg)
b328ca18 1066{
31656519 1067 struct rq *rq = arg;
b328ca18 1068
31656519
PZ
1069 spin_lock(&rq->lock);
1070 hrtimer_restart(&rq->hrtick_timer);
1071 rq->hrtick_csd_pending = 0;
1072 spin_unlock(&rq->lock);
b328ca18
PZ
1073}
1074
31656519
PZ
1075/*
1076 * Called to set the hrtick timer state.
1077 *
1078 * called with rq->lock held and irqs disabled
1079 */
1080static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1081{
31656519
PZ
1082 struct hrtimer *timer = &rq->hrtick_timer;
1083 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1084
cc584b21 1085 hrtimer_set_expires(timer, time);
31656519
PZ
1086
1087 if (rq == this_rq()) {
1088 hrtimer_restart(timer);
1089 } else if (!rq->hrtick_csd_pending) {
6e275637 1090 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1091 rq->hrtick_csd_pending = 1;
1092 }
b328ca18
PZ
1093}
1094
1095static int
1096hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1097{
1098 int cpu = (int)(long)hcpu;
1099
1100 switch (action) {
1101 case CPU_UP_CANCELED:
1102 case CPU_UP_CANCELED_FROZEN:
1103 case CPU_DOWN_PREPARE:
1104 case CPU_DOWN_PREPARE_FROZEN:
1105 case CPU_DEAD:
1106 case CPU_DEAD_FROZEN:
31656519 1107 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1108 return NOTIFY_OK;
1109 }
1110
1111 return NOTIFY_DONE;
1112}
1113
fa748203 1114static __init void init_hrtick(void)
b328ca18
PZ
1115{
1116 hotcpu_notifier(hotplug_hrtick, 0);
1117}
31656519
PZ
1118#else
1119/*
1120 * Called to set the hrtick timer state.
1121 *
1122 * called with rq->lock held and irqs disabled
1123 */
1124static void hrtick_start(struct rq *rq, u64 delay)
1125{
7f1e2ca9 1126 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1127 HRTIMER_MODE_REL_PINNED, 0);
31656519 1128}
b328ca18 1129
006c75f1 1130static inline void init_hrtick(void)
8f4d37ec 1131{
8f4d37ec 1132}
31656519 1133#endif /* CONFIG_SMP */
8f4d37ec 1134
31656519 1135static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1136{
31656519
PZ
1137#ifdef CONFIG_SMP
1138 rq->hrtick_csd_pending = 0;
8f4d37ec 1139
31656519
PZ
1140 rq->hrtick_csd.flags = 0;
1141 rq->hrtick_csd.func = __hrtick_start;
1142 rq->hrtick_csd.info = rq;
1143#endif
8f4d37ec 1144
31656519
PZ
1145 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1146 rq->hrtick_timer.function = hrtick;
8f4d37ec 1147}
006c75f1 1148#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1149static inline void hrtick_clear(struct rq *rq)
1150{
1151}
1152
8f4d37ec
PZ
1153static inline void init_rq_hrtick(struct rq *rq)
1154{
1155}
1156
b328ca18
PZ
1157static inline void init_hrtick(void)
1158{
1159}
006c75f1 1160#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1161
c24d20db
IM
1162/*
1163 * resched_task - mark a task 'to be rescheduled now'.
1164 *
1165 * On UP this means the setting of the need_resched flag, on SMP it
1166 * might also involve a cross-CPU call to trigger the scheduler on
1167 * the target CPU.
1168 */
1169#ifdef CONFIG_SMP
1170
1171#ifndef tsk_is_polling
1172#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1173#endif
1174
31656519 1175static void resched_task(struct task_struct *p)
c24d20db
IM
1176{
1177 int cpu;
1178
1179 assert_spin_locked(&task_rq(p)->lock);
1180
5ed0cec0 1181 if (test_tsk_need_resched(p))
c24d20db
IM
1182 return;
1183
5ed0cec0 1184 set_tsk_need_resched(p);
c24d20db
IM
1185
1186 cpu = task_cpu(p);
1187 if (cpu == smp_processor_id())
1188 return;
1189
1190 /* NEED_RESCHED must be visible before we test polling */
1191 smp_mb();
1192 if (!tsk_is_polling(p))
1193 smp_send_reschedule(cpu);
1194}
1195
1196static void resched_cpu(int cpu)
1197{
1198 struct rq *rq = cpu_rq(cpu);
1199 unsigned long flags;
1200
1201 if (!spin_trylock_irqsave(&rq->lock, flags))
1202 return;
1203 resched_task(cpu_curr(cpu));
1204 spin_unlock_irqrestore(&rq->lock, flags);
1205}
06d8308c
TG
1206
1207#ifdef CONFIG_NO_HZ
1208/*
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1217 */
1218void wake_up_idle_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221
1222 if (cpu == smp_processor_id())
1223 return;
1224
1225 /*
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1231 */
1232 if (rq->curr != rq->idle)
1233 return;
1234
1235 /*
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1239 */
5ed0cec0 1240 set_tsk_need_resched(rq->idle);
06d8308c
TG
1241
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1246}
6d6bc0ad 1247#endif /* CONFIG_NO_HZ */
06d8308c 1248
e9e9250b
PZ
1249static u64 sched_avg_period(void)
1250{
1251 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1252}
1253
1254static void sched_avg_update(struct rq *rq)
1255{
1256 s64 period = sched_avg_period();
1257
1258 while ((s64)(rq->clock - rq->age_stamp) > period) {
1259 rq->age_stamp += period;
1260 rq->rt_avg /= 2;
1261 }
1262}
1263
1264static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1265{
1266 rq->rt_avg += rt_delta;
1267 sched_avg_update(rq);
1268}
1269
6d6bc0ad 1270#else /* !CONFIG_SMP */
31656519 1271static void resched_task(struct task_struct *p)
c24d20db
IM
1272{
1273 assert_spin_locked(&task_rq(p)->lock);
31656519 1274 set_tsk_need_resched(p);
c24d20db 1275}
e9e9250b
PZ
1276
1277static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1278{
1279}
6d6bc0ad 1280#endif /* CONFIG_SMP */
c24d20db 1281
45bf76df
IM
1282#if BITS_PER_LONG == 32
1283# define WMULT_CONST (~0UL)
1284#else
1285# define WMULT_CONST (1UL << 32)
1286#endif
1287
1288#define WMULT_SHIFT 32
1289
194081eb
IM
1290/*
1291 * Shift right and round:
1292 */
cf2ab469 1293#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1294
a7be37ac
PZ
1295/*
1296 * delta *= weight / lw
1297 */
cb1c4fc9 1298static unsigned long
45bf76df
IM
1299calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1300 struct load_weight *lw)
1301{
1302 u64 tmp;
1303
7a232e03
LJ
1304 if (!lw->inv_weight) {
1305 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1306 lw->inv_weight = 1;
1307 else
1308 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1309 / (lw->weight+1);
1310 }
45bf76df
IM
1311
1312 tmp = (u64)delta_exec * weight;
1313 /*
1314 * Check whether we'd overflow the 64-bit multiplication:
1315 */
194081eb 1316 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1317 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1318 WMULT_SHIFT/2);
1319 else
cf2ab469 1320 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1321
ecf691da 1322 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1323}
1324
1091985b 1325static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1326{
1327 lw->weight += inc;
e89996ae 1328 lw->inv_weight = 0;
45bf76df
IM
1329}
1330
1091985b 1331static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1332{
1333 lw->weight -= dec;
e89996ae 1334 lw->inv_weight = 0;
45bf76df
IM
1335}
1336
2dd73a4f
PW
1337/*
1338 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1339 * of tasks with abnormal "nice" values across CPUs the contribution that
1340 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1341 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1342 * scaled version of the new time slice allocation that they receive on time
1343 * slice expiry etc.
1344 */
1345
cce7ade8
PZ
1346#define WEIGHT_IDLEPRIO 3
1347#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1348
1349/*
1350 * Nice levels are multiplicative, with a gentle 10% change for every
1351 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1352 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1353 * that remained on nice 0.
1354 *
1355 * The "10% effect" is relative and cumulative: from _any_ nice level,
1356 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1357 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1358 * If a task goes up by ~10% and another task goes down by ~10% then
1359 * the relative distance between them is ~25%.)
dd41f596
IM
1360 */
1361static const int prio_to_weight[40] = {
254753dc
IM
1362 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1363 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1364 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1365 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1366 /* 0 */ 1024, 820, 655, 526, 423,
1367 /* 5 */ 335, 272, 215, 172, 137,
1368 /* 10 */ 110, 87, 70, 56, 45,
1369 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1370};
1371
5714d2de
IM
1372/*
1373 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1374 *
1375 * In cases where the weight does not change often, we can use the
1376 * precalculated inverse to speed up arithmetics by turning divisions
1377 * into multiplications:
1378 */
dd41f596 1379static const u32 prio_to_wmult[40] = {
254753dc
IM
1380 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1381 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1382 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1383 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1384 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1385 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1386 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1387 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1388};
2dd73a4f 1389
dd41f596
IM
1390static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1391
1392/*
1393 * runqueue iterator, to support SMP load-balancing between different
1394 * scheduling classes, without having to expose their internal data
1395 * structures to the load-balancing proper:
1396 */
1397struct rq_iterator {
1398 void *arg;
1399 struct task_struct *(*start)(void *);
1400 struct task_struct *(*next)(void *);
1401};
1402
e1d1484f
PW
1403#ifdef CONFIG_SMP
1404static unsigned long
1405balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1406 unsigned long max_load_move, struct sched_domain *sd,
1407 enum cpu_idle_type idle, int *all_pinned,
1408 int *this_best_prio, struct rq_iterator *iterator);
1409
1410static int
1411iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 struct sched_domain *sd, enum cpu_idle_type idle,
1413 struct rq_iterator *iterator);
e1d1484f 1414#endif
dd41f596 1415
ef12fefa
BR
1416/* Time spent by the tasks of the cpu accounting group executing in ... */
1417enum cpuacct_stat_index {
1418 CPUACCT_STAT_USER, /* ... user mode */
1419 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1420
1421 CPUACCT_STAT_NSTATS,
1422};
1423
d842de87
SV
1424#ifdef CONFIG_CGROUP_CPUACCT
1425static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1426static void cpuacct_update_stats(struct task_struct *tsk,
1427 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1428#else
1429static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1430static inline void cpuacct_update_stats(struct task_struct *tsk,
1431 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1432#endif
1433
18d95a28
PZ
1434static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1435{
1436 update_load_add(&rq->load, load);
1437}
1438
1439static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_sub(&rq->load, load);
1442}
1443
7940ca36 1444#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1445typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1446
1447/*
1448 * Iterate the full tree, calling @down when first entering a node and @up when
1449 * leaving it for the final time.
1450 */
eb755805 1451static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1452{
1453 struct task_group *parent, *child;
eb755805 1454 int ret;
c09595f6
PZ
1455
1456 rcu_read_lock();
1457 parent = &root_task_group;
1458down:
eb755805
PZ
1459 ret = (*down)(parent, data);
1460 if (ret)
1461 goto out_unlock;
c09595f6
PZ
1462 list_for_each_entry_rcu(child, &parent->children, siblings) {
1463 parent = child;
1464 goto down;
1465
1466up:
1467 continue;
1468 }
eb755805
PZ
1469 ret = (*up)(parent, data);
1470 if (ret)
1471 goto out_unlock;
c09595f6
PZ
1472
1473 child = parent;
1474 parent = parent->parent;
1475 if (parent)
1476 goto up;
eb755805 1477out_unlock:
c09595f6 1478 rcu_read_unlock();
eb755805
PZ
1479
1480 return ret;
c09595f6
PZ
1481}
1482
eb755805
PZ
1483static int tg_nop(struct task_group *tg, void *data)
1484{
1485 return 0;
c09595f6 1486}
eb755805
PZ
1487#endif
1488
1489#ifdef CONFIG_SMP
f5f08f39
PZ
1490/* Used instead of source_load when we know the type == 0 */
1491static unsigned long weighted_cpuload(const int cpu)
1492{
1493 return cpu_rq(cpu)->load.weight;
1494}
1495
1496/*
1497 * Return a low guess at the load of a migration-source cpu weighted
1498 * according to the scheduling class and "nice" value.
1499 *
1500 * We want to under-estimate the load of migration sources, to
1501 * balance conservatively.
1502 */
1503static unsigned long source_load(int cpu, int type)
1504{
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long total = weighted_cpuload(cpu);
1507
1508 if (type == 0 || !sched_feat(LB_BIAS))
1509 return total;
1510
1511 return min(rq->cpu_load[type-1], total);
1512}
1513
1514/*
1515 * Return a high guess at the load of a migration-target cpu weighted
1516 * according to the scheduling class and "nice" value.
1517 */
1518static unsigned long target_load(int cpu, int type)
1519{
1520 struct rq *rq = cpu_rq(cpu);
1521 unsigned long total = weighted_cpuload(cpu);
1522
1523 if (type == 0 || !sched_feat(LB_BIAS))
1524 return total;
1525
1526 return max(rq->cpu_load[type-1], total);
1527}
1528
ae154be1
PZ
1529static struct sched_group *group_of(int cpu)
1530{
1531 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1532
1533 if (!sd)
1534 return NULL;
1535
1536 return sd->groups;
1537}
1538
1539static unsigned long power_of(int cpu)
1540{
1541 struct sched_group *group = group_of(cpu);
1542
1543 if (!group)
1544 return SCHED_LOAD_SCALE;
1545
1546 return group->cpu_power;
1547}
1548
eb755805
PZ
1549static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1550
1551static unsigned long cpu_avg_load_per_task(int cpu)
1552{
1553 struct rq *rq = cpu_rq(cpu);
af6d596f 1554 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1555
4cd42620
SR
1556 if (nr_running)
1557 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1558 else
1559 rq->avg_load_per_task = 0;
eb755805
PZ
1560
1561 return rq->avg_load_per_task;
1562}
1563
1564#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1565
34d76c41
PZ
1566struct update_shares_data {
1567 unsigned long rq_weight[NR_CPUS];
1568};
1569
1570static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1571
c09595f6
PZ
1572static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1573
1574/*
1575 * Calculate and set the cpu's group shares.
1576 */
34d76c41
PZ
1577static void update_group_shares_cpu(struct task_group *tg, int cpu,
1578 unsigned long sd_shares,
1579 unsigned long sd_rq_weight,
1580 struct update_shares_data *usd)
18d95a28 1581{
34d76c41 1582 unsigned long shares, rq_weight;
a5004278 1583 int boost = 0;
c09595f6 1584
34d76c41 1585 rq_weight = usd->rq_weight[cpu];
a5004278
PZ
1586 if (!rq_weight) {
1587 boost = 1;
1588 rq_weight = NICE_0_LOAD;
1589 }
c8cba857 1590
c09595f6 1591 /*
a8af7246
PZ
1592 * \Sum_j shares_j * rq_weight_i
1593 * shares_i = -----------------------------
1594 * \Sum_j rq_weight_j
c09595f6 1595 */
ec4e0e2f 1596 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1597 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1598
ffda12a1
PZ
1599 if (abs(shares - tg->se[cpu]->load.weight) >
1600 sysctl_sched_shares_thresh) {
1601 struct rq *rq = cpu_rq(cpu);
1602 unsigned long flags;
c09595f6 1603
ffda12a1 1604 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1605 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1606 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1607 __set_se_shares(tg->se[cpu], shares);
1608 spin_unlock_irqrestore(&rq->lock, flags);
1609 }
18d95a28 1610}
c09595f6
PZ
1611
1612/*
c8cba857
PZ
1613 * Re-compute the task group their per cpu shares over the given domain.
1614 * This needs to be done in a bottom-up fashion because the rq weight of a
1615 * parent group depends on the shares of its child groups.
c09595f6 1616 */
eb755805 1617static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1618{
34d76c41
PZ
1619 unsigned long weight, rq_weight = 0, shares = 0;
1620 struct update_shares_data *usd;
eb755805 1621 struct sched_domain *sd = data;
34d76c41 1622 unsigned long flags;
c8cba857 1623 int i;
c09595f6 1624
34d76c41
PZ
1625 if (!tg->se[0])
1626 return 0;
1627
1628 local_irq_save(flags);
1629 usd = &__get_cpu_var(update_shares_data);
1630
758b2cdc 1631 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41
PZ
1632 weight = tg->cfs_rq[i]->load.weight;
1633 usd->rq_weight[i] = weight;
1634
ec4e0e2f
KC
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
ec4e0e2f
KC
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
ec4e0e2f 1643 rq_weight += weight;
c8cba857 1644 shares += tg->cfs_rq[i]->shares;
c09595f6 1645 }
c09595f6 1646
c8cba857
PZ
1647 if ((!shares && rq_weight) || shares > tg->shares)
1648 shares = tg->shares;
1649
1650 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1651 shares = tg->shares;
c09595f6 1652
758b2cdc 1653 for_each_cpu(i, sched_domain_span(sd))
34d76c41
PZ
1654 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1655
1656 local_irq_restore(flags);
eb755805
PZ
1657
1658 return 0;
c09595f6
PZ
1659}
1660
1661/*
c8cba857
PZ
1662 * Compute the cpu's hierarchical load factor for each task group.
1663 * This needs to be done in a top-down fashion because the load of a child
1664 * group is a fraction of its parents load.
c09595f6 1665 */
eb755805 1666static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1667{
c8cba857 1668 unsigned long load;
eb755805 1669 long cpu = (long)data;
c09595f6 1670
c8cba857
PZ
1671 if (!tg->parent) {
1672 load = cpu_rq(cpu)->load.weight;
1673 } else {
1674 load = tg->parent->cfs_rq[cpu]->h_load;
1675 load *= tg->cfs_rq[cpu]->shares;
1676 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1677 }
c09595f6 1678
c8cba857 1679 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1680
eb755805 1681 return 0;
c09595f6
PZ
1682}
1683
c8cba857 1684static void update_shares(struct sched_domain *sd)
4d8d595d 1685{
e7097159
PZ
1686 s64 elapsed;
1687 u64 now;
1688
1689 if (root_task_group_empty())
1690 return;
1691
1692 now = cpu_clock(raw_smp_processor_id());
1693 elapsed = now - sd->last_update;
2398f2c6
PZ
1694
1695 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1696 sd->last_update = now;
eb755805 1697 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1698 }
4d8d595d
PZ
1699}
1700
3e5459b4
PZ
1701static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1702{
e7097159
PZ
1703 if (root_task_group_empty())
1704 return;
1705
3e5459b4
PZ
1706 spin_unlock(&rq->lock);
1707 update_shares(sd);
1708 spin_lock(&rq->lock);
1709}
1710
eb755805 1711static void update_h_load(long cpu)
c09595f6 1712{
e7097159
PZ
1713 if (root_task_group_empty())
1714 return;
1715
eb755805 1716 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1717}
1718
c09595f6
PZ
1719#else
1720
c8cba857 1721static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1722{
1723}
1724
3e5459b4
PZ
1725static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1726{
1727}
1728
18d95a28
PZ
1729#endif
1730
8f45e2b5
GH
1731#ifdef CONFIG_PREEMPT
1732
b78bb868
PZ
1733static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1734
70574a99 1735/*
8f45e2b5
GH
1736 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1737 * way at the expense of forcing extra atomic operations in all
1738 * invocations. This assures that the double_lock is acquired using the
1739 * same underlying policy as the spinlock_t on this architecture, which
1740 * reduces latency compared to the unfair variant below. However, it
1741 * also adds more overhead and therefore may reduce throughput.
70574a99 1742 */
8f45e2b5
GH
1743static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(this_rq->lock)
1745 __acquires(busiest->lock)
1746 __acquires(this_rq->lock)
1747{
1748 spin_unlock(&this_rq->lock);
1749 double_rq_lock(this_rq, busiest);
1750
1751 return 1;
1752}
1753
1754#else
1755/*
1756 * Unfair double_lock_balance: Optimizes throughput at the expense of
1757 * latency by eliminating extra atomic operations when the locks are
1758 * already in proper order on entry. This favors lower cpu-ids and will
1759 * grant the double lock to lower cpus over higher ids under contention,
1760 * regardless of entry order into the function.
1761 */
1762static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1763 __releases(this_rq->lock)
1764 __acquires(busiest->lock)
1765 __acquires(this_rq->lock)
1766{
1767 int ret = 0;
1768
70574a99
AD
1769 if (unlikely(!spin_trylock(&busiest->lock))) {
1770 if (busiest < this_rq) {
1771 spin_unlock(&this_rq->lock);
1772 spin_lock(&busiest->lock);
1773 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1774 ret = 1;
1775 } else
1776 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1777 }
1778 return ret;
1779}
1780
8f45e2b5
GH
1781#endif /* CONFIG_PREEMPT */
1782
1783/*
1784 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1785 */
1786static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1787{
1788 if (unlikely(!irqs_disabled())) {
1789 /* printk() doesn't work good under rq->lock */
1790 spin_unlock(&this_rq->lock);
1791 BUG_ON(1);
1792 }
1793
1794 return _double_lock_balance(this_rq, busiest);
1795}
1796
70574a99
AD
1797static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1798 __releases(busiest->lock)
1799{
1800 spin_unlock(&busiest->lock);
1801 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1802}
18d95a28
PZ
1803#endif
1804
30432094 1805#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1806static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1807{
30432094 1808#ifdef CONFIG_SMP
34e83e85
IM
1809 cfs_rq->shares = shares;
1810#endif
1811}
30432094 1812#endif
e7693a36 1813
dce48a84
TG
1814static void calc_load_account_active(struct rq *this_rq);
1815
dd41f596 1816#include "sched_stats.h"
dd41f596 1817#include "sched_idletask.c"
5522d5d5
IM
1818#include "sched_fair.c"
1819#include "sched_rt.c"
dd41f596
IM
1820#ifdef CONFIG_SCHED_DEBUG
1821# include "sched_debug.c"
1822#endif
1823
1824#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1825#define for_each_class(class) \
1826 for (class = sched_class_highest; class; class = class->next)
dd41f596 1827
c09595f6 1828static void inc_nr_running(struct rq *rq)
9c217245
IM
1829{
1830 rq->nr_running++;
9c217245
IM
1831}
1832
c09595f6 1833static void dec_nr_running(struct rq *rq)
9c217245
IM
1834{
1835 rq->nr_running--;
9c217245
IM
1836}
1837
45bf76df
IM
1838static void set_load_weight(struct task_struct *p)
1839{
1840 if (task_has_rt_policy(p)) {
dd41f596
IM
1841 p->se.load.weight = prio_to_weight[0] * 2;
1842 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1843 return;
1844 }
45bf76df 1845
dd41f596
IM
1846 /*
1847 * SCHED_IDLE tasks get minimal weight:
1848 */
1849 if (p->policy == SCHED_IDLE) {
1850 p->se.load.weight = WEIGHT_IDLEPRIO;
1851 p->se.load.inv_weight = WMULT_IDLEPRIO;
1852 return;
1853 }
71f8bd46 1854
dd41f596
IM
1855 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1856 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1857}
1858
2087a1ad
GH
1859static void update_avg(u64 *avg, u64 sample)
1860{
1861 s64 diff = sample - *avg;
1862 *avg += diff >> 3;
1863}
1864
8159f87e 1865static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1866{
831451ac
PZ
1867 if (wakeup)
1868 p->se.start_runtime = p->se.sum_exec_runtime;
1869
dd41f596 1870 sched_info_queued(p);
fd390f6a 1871 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1872 p->se.on_rq = 1;
71f8bd46
IM
1873}
1874
69be72c1 1875static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1876{
831451ac
PZ
1877 if (sleep) {
1878 if (p->se.last_wakeup) {
1879 update_avg(&p->se.avg_overlap,
1880 p->se.sum_exec_runtime - p->se.last_wakeup);
1881 p->se.last_wakeup = 0;
1882 } else {
1883 update_avg(&p->se.avg_wakeup,
1884 sysctl_sched_wakeup_granularity);
1885 }
2087a1ad
GH
1886 }
1887
46ac22ba 1888 sched_info_dequeued(p);
f02231e5 1889 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1890 p->se.on_rq = 0;
71f8bd46
IM
1891}
1892
14531189 1893/*
dd41f596 1894 * __normal_prio - return the priority that is based on the static prio
14531189 1895 */
14531189
IM
1896static inline int __normal_prio(struct task_struct *p)
1897{
dd41f596 1898 return p->static_prio;
14531189
IM
1899}
1900
b29739f9
IM
1901/*
1902 * Calculate the expected normal priority: i.e. priority
1903 * without taking RT-inheritance into account. Might be
1904 * boosted by interactivity modifiers. Changes upon fork,
1905 * setprio syscalls, and whenever the interactivity
1906 * estimator recalculates.
1907 */
36c8b586 1908static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1909{
1910 int prio;
1911
e05606d3 1912 if (task_has_rt_policy(p))
b29739f9
IM
1913 prio = MAX_RT_PRIO-1 - p->rt_priority;
1914 else
1915 prio = __normal_prio(p);
1916 return prio;
1917}
1918
1919/*
1920 * Calculate the current priority, i.e. the priority
1921 * taken into account by the scheduler. This value might
1922 * be boosted by RT tasks, or might be boosted by
1923 * interactivity modifiers. Will be RT if the task got
1924 * RT-boosted. If not then it returns p->normal_prio.
1925 */
36c8b586 1926static int effective_prio(struct task_struct *p)
b29739f9
IM
1927{
1928 p->normal_prio = normal_prio(p);
1929 /*
1930 * If we are RT tasks or we were boosted to RT priority,
1931 * keep the priority unchanged. Otherwise, update priority
1932 * to the normal priority:
1933 */
1934 if (!rt_prio(p->prio))
1935 return p->normal_prio;
1936 return p->prio;
1937}
1938
1da177e4 1939/*
dd41f596 1940 * activate_task - move a task to the runqueue.
1da177e4 1941 */
dd41f596 1942static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1943{
d9514f6c 1944 if (task_contributes_to_load(p))
dd41f596 1945 rq->nr_uninterruptible--;
1da177e4 1946
8159f87e 1947 enqueue_task(rq, p, wakeup);
c09595f6 1948 inc_nr_running(rq);
1da177e4
LT
1949}
1950
1da177e4
LT
1951/*
1952 * deactivate_task - remove a task from the runqueue.
1953 */
2e1cb74a 1954static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1955{
d9514f6c 1956 if (task_contributes_to_load(p))
dd41f596
IM
1957 rq->nr_uninterruptible++;
1958
69be72c1 1959 dequeue_task(rq, p, sleep);
c09595f6 1960 dec_nr_running(rq);
1da177e4
LT
1961}
1962
1da177e4
LT
1963/**
1964 * task_curr - is this task currently executing on a CPU?
1965 * @p: the task in question.
1966 */
36c8b586 1967inline int task_curr(const struct task_struct *p)
1da177e4
LT
1968{
1969 return cpu_curr(task_cpu(p)) == p;
1970}
1971
dd41f596
IM
1972static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1973{
6f505b16 1974 set_task_rq(p, cpu);
dd41f596 1975#ifdef CONFIG_SMP
ce96b5ac
DA
1976 /*
1977 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1978 * successfuly executed on another CPU. We must ensure that updates of
1979 * per-task data have been completed by this moment.
1980 */
1981 smp_wmb();
dd41f596 1982 task_thread_info(p)->cpu = cpu;
dd41f596 1983#endif
2dd73a4f
PW
1984}
1985
cb469845
SR
1986static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1987 const struct sched_class *prev_class,
1988 int oldprio, int running)
1989{
1990 if (prev_class != p->sched_class) {
1991 if (prev_class->switched_from)
1992 prev_class->switched_from(rq, p, running);
1993 p->sched_class->switched_to(rq, p, running);
1994 } else
1995 p->sched_class->prio_changed(rq, p, oldprio, running);
1996}
1997
1da177e4 1998#ifdef CONFIG_SMP
cc367732
IM
1999/*
2000 * Is this task likely cache-hot:
2001 */
e7693a36 2002static int
cc367732
IM
2003task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2004{
2005 s64 delta;
2006
f540a608
IM
2007 /*
2008 * Buddy candidates are cache hot:
2009 */
4793241b
PZ
2010 if (sched_feat(CACHE_HOT_BUDDY) &&
2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2013 return 1;
2014
cc367732
IM
2015 if (p->sched_class != &fair_sched_class)
2016 return 0;
2017
6bc1665b
IM
2018 if (sysctl_sched_migration_cost == -1)
2019 return 1;
2020 if (sysctl_sched_migration_cost == 0)
2021 return 0;
2022
cc367732
IM
2023 delta = now - p->se.exec_start;
2024
2025 return delta < (s64)sysctl_sched_migration_cost;
2026}
2027
2028
dd41f596 2029void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2030{
dd41f596
IM
2031 int old_cpu = task_cpu(p);
2032 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2033 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2034 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2035 u64 clock_offset;
dd41f596
IM
2036
2037 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 2038
de1d7286 2039 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2040
6cfb0d5d
IM
2041#ifdef CONFIG_SCHEDSTATS
2042 if (p->se.wait_start)
2043 p->se.wait_start -= clock_offset;
dd41f596
IM
2044 if (p->se.sleep_start)
2045 p->se.sleep_start -= clock_offset;
2046 if (p->se.block_start)
2047 p->se.block_start -= clock_offset;
6c594c21 2048#endif
cc367732 2049 if (old_cpu != new_cpu) {
6c594c21 2050 p->se.nr_migrations++;
23a185ca 2051 new_rq->nr_migrations_in++;
6c594c21 2052#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2053 if (task_hot(p, old_rq->clock, NULL))
2054 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2055#endif
cdd6c482 2056 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2057 1, 1, NULL, 0);
6c594c21 2058 }
2830cf8c
SV
2059 p->se.vruntime -= old_cfsrq->min_vruntime -
2060 new_cfsrq->min_vruntime;
dd41f596
IM
2061
2062 __set_task_cpu(p, new_cpu);
c65cc870
IM
2063}
2064
70b97a7f 2065struct migration_req {
1da177e4 2066 struct list_head list;
1da177e4 2067
36c8b586 2068 struct task_struct *task;
1da177e4
LT
2069 int dest_cpu;
2070
1da177e4 2071 struct completion done;
70b97a7f 2072};
1da177e4
LT
2073
2074/*
2075 * The task's runqueue lock must be held.
2076 * Returns true if you have to wait for migration thread.
2077 */
36c8b586 2078static int
70b97a7f 2079migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2080{
70b97a7f 2081 struct rq *rq = task_rq(p);
1da177e4
LT
2082
2083 /*
2084 * If the task is not on a runqueue (and not running), then
2085 * it is sufficient to simply update the task's cpu field.
2086 */
dd41f596 2087 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2088 set_task_cpu(p, dest_cpu);
2089 return 0;
2090 }
2091
2092 init_completion(&req->done);
1da177e4
LT
2093 req->task = p;
2094 req->dest_cpu = dest_cpu;
2095 list_add(&req->list, &rq->migration_queue);
48f24c4d 2096
1da177e4
LT
2097 return 1;
2098}
2099
a26b89f0
MM
2100/*
2101 * wait_task_context_switch - wait for a thread to complete at least one
2102 * context switch.
2103 *
2104 * @p must not be current.
2105 */
2106void wait_task_context_switch(struct task_struct *p)
2107{
2108 unsigned long nvcsw, nivcsw, flags;
2109 int running;
2110 struct rq *rq;
2111
2112 nvcsw = p->nvcsw;
2113 nivcsw = p->nivcsw;
2114 for (;;) {
2115 /*
2116 * The runqueue is assigned before the actual context
2117 * switch. We need to take the runqueue lock.
2118 *
2119 * We could check initially without the lock but it is
2120 * very likely that we need to take the lock in every
2121 * iteration.
2122 */
2123 rq = task_rq_lock(p, &flags);
2124 running = task_running(rq, p);
2125 task_rq_unlock(rq, &flags);
2126
2127 if (likely(!running))
2128 break;
2129 /*
2130 * The switch count is incremented before the actual
2131 * context switch. We thus wait for two switches to be
2132 * sure at least one completed.
2133 */
2134 if ((p->nvcsw - nvcsw) > 1)
2135 break;
2136 if ((p->nivcsw - nivcsw) > 1)
2137 break;
2138
2139 cpu_relax();
2140 }
2141}
2142
1da177e4
LT
2143/*
2144 * wait_task_inactive - wait for a thread to unschedule.
2145 *
85ba2d86
RM
2146 * If @match_state is nonzero, it's the @p->state value just checked and
2147 * not expected to change. If it changes, i.e. @p might have woken up,
2148 * then return zero. When we succeed in waiting for @p to be off its CPU,
2149 * we return a positive number (its total switch count). If a second call
2150 * a short while later returns the same number, the caller can be sure that
2151 * @p has remained unscheduled the whole time.
2152 *
1da177e4
LT
2153 * The caller must ensure that the task *will* unschedule sometime soon,
2154 * else this function might spin for a *long* time. This function can't
2155 * be called with interrupts off, or it may introduce deadlock with
2156 * smp_call_function() if an IPI is sent by the same process we are
2157 * waiting to become inactive.
2158 */
85ba2d86 2159unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2160{
2161 unsigned long flags;
dd41f596 2162 int running, on_rq;
85ba2d86 2163 unsigned long ncsw;
70b97a7f 2164 struct rq *rq;
1da177e4 2165
3a5c359a
AK
2166 for (;;) {
2167 /*
2168 * We do the initial early heuristics without holding
2169 * any task-queue locks at all. We'll only try to get
2170 * the runqueue lock when things look like they will
2171 * work out!
2172 */
2173 rq = task_rq(p);
fa490cfd 2174
3a5c359a
AK
2175 /*
2176 * If the task is actively running on another CPU
2177 * still, just relax and busy-wait without holding
2178 * any locks.
2179 *
2180 * NOTE! Since we don't hold any locks, it's not
2181 * even sure that "rq" stays as the right runqueue!
2182 * But we don't care, since "task_running()" will
2183 * return false if the runqueue has changed and p
2184 * is actually now running somewhere else!
2185 */
85ba2d86
RM
2186 while (task_running(rq, p)) {
2187 if (match_state && unlikely(p->state != match_state))
2188 return 0;
3a5c359a 2189 cpu_relax();
85ba2d86 2190 }
fa490cfd 2191
3a5c359a
AK
2192 /*
2193 * Ok, time to look more closely! We need the rq
2194 * lock now, to be *sure*. If we're wrong, we'll
2195 * just go back and repeat.
2196 */
2197 rq = task_rq_lock(p, &flags);
0a16b607 2198 trace_sched_wait_task(rq, p);
3a5c359a
AK
2199 running = task_running(rq, p);
2200 on_rq = p->se.on_rq;
85ba2d86 2201 ncsw = 0;
f31e11d8 2202 if (!match_state || p->state == match_state)
93dcf55f 2203 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2204 task_rq_unlock(rq, &flags);
fa490cfd 2205
85ba2d86
RM
2206 /*
2207 * If it changed from the expected state, bail out now.
2208 */
2209 if (unlikely(!ncsw))
2210 break;
2211
3a5c359a
AK
2212 /*
2213 * Was it really running after all now that we
2214 * checked with the proper locks actually held?
2215 *
2216 * Oops. Go back and try again..
2217 */
2218 if (unlikely(running)) {
2219 cpu_relax();
2220 continue;
2221 }
fa490cfd 2222
3a5c359a
AK
2223 /*
2224 * It's not enough that it's not actively running,
2225 * it must be off the runqueue _entirely_, and not
2226 * preempted!
2227 *
80dd99b3 2228 * So if it was still runnable (but just not actively
3a5c359a
AK
2229 * running right now), it's preempted, and we should
2230 * yield - it could be a while.
2231 */
2232 if (unlikely(on_rq)) {
2233 schedule_timeout_uninterruptible(1);
2234 continue;
2235 }
fa490cfd 2236
3a5c359a
AK
2237 /*
2238 * Ahh, all good. It wasn't running, and it wasn't
2239 * runnable, which means that it will never become
2240 * running in the future either. We're all done!
2241 */
2242 break;
2243 }
85ba2d86
RM
2244
2245 return ncsw;
1da177e4
LT
2246}
2247
2248/***
2249 * kick_process - kick a running thread to enter/exit the kernel
2250 * @p: the to-be-kicked thread
2251 *
2252 * Cause a process which is running on another CPU to enter
2253 * kernel-mode, without any delay. (to get signals handled.)
2254 *
2255 * NOTE: this function doesnt have to take the runqueue lock,
2256 * because all it wants to ensure is that the remote task enters
2257 * the kernel. If the IPI races and the task has been migrated
2258 * to another CPU then no harm is done and the purpose has been
2259 * achieved as well.
2260 */
36c8b586 2261void kick_process(struct task_struct *p)
1da177e4
LT
2262{
2263 int cpu;
2264
2265 preempt_disable();
2266 cpu = task_cpu(p);
2267 if ((cpu != smp_processor_id()) && task_curr(p))
2268 smp_send_reschedule(cpu);
2269 preempt_enable();
2270}
b43e3521 2271EXPORT_SYMBOL_GPL(kick_process);
476d139c 2272#endif /* CONFIG_SMP */
1da177e4 2273
0793a61d
TG
2274/**
2275 * task_oncpu_function_call - call a function on the cpu on which a task runs
2276 * @p: the task to evaluate
2277 * @func: the function to be called
2278 * @info: the function call argument
2279 *
2280 * Calls the function @func when the task is currently running. This might
2281 * be on the current CPU, which just calls the function directly
2282 */
2283void task_oncpu_function_call(struct task_struct *p,
2284 void (*func) (void *info), void *info)
2285{
2286 int cpu;
2287
2288 preempt_disable();
2289 cpu = task_cpu(p);
2290 if (task_curr(p))
2291 smp_call_function_single(cpu, func, info, 1);
2292 preempt_enable();
2293}
2294
1da177e4
LT
2295/***
2296 * try_to_wake_up - wake up a thread
2297 * @p: the to-be-woken-up thread
2298 * @state: the mask of task states that can be woken
2299 * @sync: do a synchronous wakeup?
2300 *
2301 * Put it on the run-queue if it's not already there. The "current"
2302 * thread is always on the run-queue (except when the actual
2303 * re-schedule is in progress), and as such you're allowed to do
2304 * the simpler "current->state = TASK_RUNNING" to mark yourself
2305 * runnable without the overhead of this.
2306 *
2307 * returns failure only if the task is already active.
2308 */
7d478721
PZ
2309static int try_to_wake_up(struct task_struct *p, unsigned int state,
2310 int wake_flags)
1da177e4 2311{
cc367732 2312 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2313 unsigned long flags;
f5dc3753 2314 struct rq *rq, *orig_rq;
1da177e4 2315
b85d0667 2316 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2317 wake_flags &= ~WF_SYNC;
2398f2c6 2318
e9c84311 2319 this_cpu = get_cpu();
2398f2c6 2320
04e2f174 2321 smp_wmb();
f5dc3753 2322 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2323 update_rq_clock(rq);
e9c84311 2324 if (!(p->state & state))
1da177e4
LT
2325 goto out;
2326
dd41f596 2327 if (p->se.on_rq)
1da177e4
LT
2328 goto out_running;
2329
2330 cpu = task_cpu(p);
cc367732 2331 orig_cpu = cpu;
1da177e4
LT
2332
2333#ifdef CONFIG_SMP
2334 if (unlikely(task_running(rq, p)))
2335 goto out_activate;
2336
e9c84311
PZ
2337 /*
2338 * In order to handle concurrent wakeups and release the rq->lock
2339 * we put the task in TASK_WAKING state.
eb24073b
IM
2340 *
2341 * First fix up the nr_uninterruptible count:
e9c84311 2342 */
eb24073b
IM
2343 if (task_contributes_to_load(p))
2344 rq->nr_uninterruptible--;
e9c84311
PZ
2345 p->state = TASK_WAKING;
2346 task_rq_unlock(rq, &flags);
2347
7d478721 2348 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
e9c84311 2349 if (cpu != orig_cpu)
5d2f5a61 2350 set_task_cpu(p, cpu);
1da177e4 2351
e9c84311 2352 rq = task_rq_lock(p, &flags);
f5dc3753
MG
2353
2354 if (rq != orig_rq)
2355 update_rq_clock(rq);
2356
e9c84311
PZ
2357 WARN_ON(p->state != TASK_WAKING);
2358 cpu = task_cpu(p);
1da177e4 2359
e7693a36
GH
2360#ifdef CONFIG_SCHEDSTATS
2361 schedstat_inc(rq, ttwu_count);
2362 if (cpu == this_cpu)
2363 schedstat_inc(rq, ttwu_local);
2364 else {
2365 struct sched_domain *sd;
2366 for_each_domain(this_cpu, sd) {
758b2cdc 2367 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2368 schedstat_inc(sd, ttwu_wake_remote);
2369 break;
2370 }
2371 }
2372 }
6d6bc0ad 2373#endif /* CONFIG_SCHEDSTATS */
e7693a36 2374
1da177e4
LT
2375out_activate:
2376#endif /* CONFIG_SMP */
cc367732 2377 schedstat_inc(p, se.nr_wakeups);
7d478721 2378 if (wake_flags & WF_SYNC)
cc367732
IM
2379 schedstat_inc(p, se.nr_wakeups_sync);
2380 if (orig_cpu != cpu)
2381 schedstat_inc(p, se.nr_wakeups_migrate);
2382 if (cpu == this_cpu)
2383 schedstat_inc(p, se.nr_wakeups_local);
2384 else
2385 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2386 activate_task(rq, p, 1);
1da177e4
LT
2387 success = 1;
2388
831451ac
PZ
2389 /*
2390 * Only attribute actual wakeups done by this task.
2391 */
2392 if (!in_interrupt()) {
2393 struct sched_entity *se = &current->se;
2394 u64 sample = se->sum_exec_runtime;
2395
2396 if (se->last_wakeup)
2397 sample -= se->last_wakeup;
2398 else
2399 sample -= se->start_runtime;
2400 update_avg(&se->avg_wakeup, sample);
2401
2402 se->last_wakeup = se->sum_exec_runtime;
2403 }
2404
1da177e4 2405out_running:
468a15bb 2406 trace_sched_wakeup(rq, p, success);
7d478721 2407 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2408
1da177e4 2409 p->state = TASK_RUNNING;
9a897c5a
SR
2410#ifdef CONFIG_SMP
2411 if (p->sched_class->task_wake_up)
2412 p->sched_class->task_wake_up(rq, p);
2413#endif
1da177e4
LT
2414out:
2415 task_rq_unlock(rq, &flags);
e9c84311 2416 put_cpu();
1da177e4
LT
2417
2418 return success;
2419}
2420
50fa610a
DH
2421/**
2422 * wake_up_process - Wake up a specific process
2423 * @p: The process to be woken up.
2424 *
2425 * Attempt to wake up the nominated process and move it to the set of runnable
2426 * processes. Returns 1 if the process was woken up, 0 if it was already
2427 * running.
2428 *
2429 * It may be assumed that this function implies a write memory barrier before
2430 * changing the task state if and only if any tasks are woken up.
2431 */
7ad5b3a5 2432int wake_up_process(struct task_struct *p)
1da177e4 2433{
d9514f6c 2434 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2435}
1da177e4
LT
2436EXPORT_SYMBOL(wake_up_process);
2437
7ad5b3a5 2438int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2439{
2440 return try_to_wake_up(p, state, 0);
2441}
2442
1da177e4
LT
2443/*
2444 * Perform scheduler related setup for a newly forked process p.
2445 * p is forked by current.
dd41f596
IM
2446 *
2447 * __sched_fork() is basic setup used by init_idle() too:
2448 */
2449static void __sched_fork(struct task_struct *p)
2450{
dd41f596
IM
2451 p->se.exec_start = 0;
2452 p->se.sum_exec_runtime = 0;
f6cf891c 2453 p->se.prev_sum_exec_runtime = 0;
6c594c21 2454 p->se.nr_migrations = 0;
4ae7d5ce
IM
2455 p->se.last_wakeup = 0;
2456 p->se.avg_overlap = 0;
831451ac
PZ
2457 p->se.start_runtime = 0;
2458 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
ad4b78bb 2459 p->se.avg_running = 0;
6cfb0d5d
IM
2460
2461#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2462 p->se.wait_start = 0;
2463 p->se.wait_max = 0;
2464 p->se.wait_count = 0;
2465 p->se.wait_sum = 0;
2466
2467 p->se.sleep_start = 0;
2468 p->se.sleep_max = 0;
2469 p->se.sum_sleep_runtime = 0;
2470
2471 p->se.block_start = 0;
2472 p->se.block_max = 0;
2473 p->se.exec_max = 0;
2474 p->se.slice_max = 0;
2475
2476 p->se.nr_migrations_cold = 0;
2477 p->se.nr_failed_migrations_affine = 0;
2478 p->se.nr_failed_migrations_running = 0;
2479 p->se.nr_failed_migrations_hot = 0;
2480 p->se.nr_forced_migrations = 0;
2481 p->se.nr_forced2_migrations = 0;
2482
2483 p->se.nr_wakeups = 0;
2484 p->se.nr_wakeups_sync = 0;
2485 p->se.nr_wakeups_migrate = 0;
2486 p->se.nr_wakeups_local = 0;
2487 p->se.nr_wakeups_remote = 0;
2488 p->se.nr_wakeups_affine = 0;
2489 p->se.nr_wakeups_affine_attempts = 0;
2490 p->se.nr_wakeups_passive = 0;
2491 p->se.nr_wakeups_idle = 0;
2492
6cfb0d5d 2493#endif
476d139c 2494
fa717060 2495 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2496 p->se.on_rq = 0;
4a55bd5e 2497 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2498
e107be36
AK
2499#ifdef CONFIG_PREEMPT_NOTIFIERS
2500 INIT_HLIST_HEAD(&p->preempt_notifiers);
2501#endif
2502
1da177e4
LT
2503 /*
2504 * We mark the process as running here, but have not actually
2505 * inserted it onto the runqueue yet. This guarantees that
2506 * nobody will actually run it, and a signal or other external
2507 * event cannot wake it up and insert it on the runqueue either.
2508 */
2509 p->state = TASK_RUNNING;
dd41f596
IM
2510}
2511
2512/*
2513 * fork()/clone()-time setup:
2514 */
2515void sched_fork(struct task_struct *p, int clone_flags)
2516{
2517 int cpu = get_cpu();
2518
2519 __sched_fork(p);
2520
b9dc29e7
MG
2521 /*
2522 * Revert to default priority/policy on fork if requested.
2523 */
2524 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2525 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2526 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2527 p->normal_prio = p->static_prio;
2528 }
b9dc29e7 2529
6c697bdf
MG
2530 if (PRIO_TO_NICE(p->static_prio) < 0) {
2531 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2532 p->normal_prio = p->static_prio;
6c697bdf
MG
2533 set_load_weight(p);
2534 }
2535
b9dc29e7
MG
2536 /*
2537 * We don't need the reset flag anymore after the fork. It has
2538 * fulfilled its duty:
2539 */
2540 p->sched_reset_on_fork = 0;
2541 }
ca94c442 2542
f83f9ac2
PW
2543 /*
2544 * Make sure we do not leak PI boosting priority to the child.
2545 */
2546 p->prio = current->normal_prio;
2547
2ddbf952
HS
2548 if (!rt_prio(p->prio))
2549 p->sched_class = &fair_sched_class;
b29739f9 2550
5f3edc1b
PZ
2551#ifdef CONFIG_SMP
2552 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2553#endif
2554 set_task_cpu(p, cpu);
2555
52f17b6c 2556#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2557 if (likely(sched_info_on()))
52f17b6c 2558 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2559#endif
d6077cb8 2560#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2561 p->oncpu = 0;
2562#endif
1da177e4 2563#ifdef CONFIG_PREEMPT
4866cde0 2564 /* Want to start with kernel preemption disabled. */
a1261f54 2565 task_thread_info(p)->preempt_count = 1;
1da177e4 2566#endif
917b627d
GH
2567 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2568
476d139c 2569 put_cpu();
1da177e4
LT
2570}
2571
2572/*
2573 * wake_up_new_task - wake up a newly created task for the first time.
2574 *
2575 * This function will do some initial scheduler statistics housekeeping
2576 * that must be done for every newly created context, then puts the task
2577 * on the runqueue and wakes it.
2578 */
7ad5b3a5 2579void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2580{
2581 unsigned long flags;
dd41f596 2582 struct rq *rq;
1da177e4
LT
2583
2584 rq = task_rq_lock(p, &flags);
147cbb4b 2585 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2586 update_rq_clock(rq);
1da177e4 2587
b9dca1e0 2588 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2589 activate_task(rq, p, 0);
1da177e4 2590 } else {
1da177e4 2591 /*
dd41f596
IM
2592 * Let the scheduling class do new task startup
2593 * management (if any):
1da177e4 2594 */
ee0827d8 2595 p->sched_class->task_new(rq, p);
c09595f6 2596 inc_nr_running(rq);
1da177e4 2597 }
c71dd42d 2598 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2599 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2600#ifdef CONFIG_SMP
2601 if (p->sched_class->task_wake_up)
2602 p->sched_class->task_wake_up(rq, p);
2603#endif
dd41f596 2604 task_rq_unlock(rq, &flags);
1da177e4
LT
2605}
2606
e107be36
AK
2607#ifdef CONFIG_PREEMPT_NOTIFIERS
2608
2609/**
80dd99b3 2610 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2611 * @notifier: notifier struct to register
e107be36
AK
2612 */
2613void preempt_notifier_register(struct preempt_notifier *notifier)
2614{
2615 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2616}
2617EXPORT_SYMBOL_GPL(preempt_notifier_register);
2618
2619/**
2620 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2621 * @notifier: notifier struct to unregister
e107be36
AK
2622 *
2623 * This is safe to call from within a preemption notifier.
2624 */
2625void preempt_notifier_unregister(struct preempt_notifier *notifier)
2626{
2627 hlist_del(&notifier->link);
2628}
2629EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2630
2631static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2632{
2633 struct preempt_notifier *notifier;
2634 struct hlist_node *node;
2635
2636 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2637 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2638}
2639
2640static void
2641fire_sched_out_preempt_notifiers(struct task_struct *curr,
2642 struct task_struct *next)
2643{
2644 struct preempt_notifier *notifier;
2645 struct hlist_node *node;
2646
2647 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2648 notifier->ops->sched_out(notifier, next);
2649}
2650
6d6bc0ad 2651#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2652
2653static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2654{
2655}
2656
2657static void
2658fire_sched_out_preempt_notifiers(struct task_struct *curr,
2659 struct task_struct *next)
2660{
2661}
2662
6d6bc0ad 2663#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2664
4866cde0
NP
2665/**
2666 * prepare_task_switch - prepare to switch tasks
2667 * @rq: the runqueue preparing to switch
421cee29 2668 * @prev: the current task that is being switched out
4866cde0
NP
2669 * @next: the task we are going to switch to.
2670 *
2671 * This is called with the rq lock held and interrupts off. It must
2672 * be paired with a subsequent finish_task_switch after the context
2673 * switch.
2674 *
2675 * prepare_task_switch sets up locking and calls architecture specific
2676 * hooks.
2677 */
e107be36
AK
2678static inline void
2679prepare_task_switch(struct rq *rq, struct task_struct *prev,
2680 struct task_struct *next)
4866cde0 2681{
e107be36 2682 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2683 prepare_lock_switch(rq, next);
2684 prepare_arch_switch(next);
2685}
2686
1da177e4
LT
2687/**
2688 * finish_task_switch - clean up after a task-switch
344babaa 2689 * @rq: runqueue associated with task-switch
1da177e4
LT
2690 * @prev: the thread we just switched away from.
2691 *
4866cde0
NP
2692 * finish_task_switch must be called after the context switch, paired
2693 * with a prepare_task_switch call before the context switch.
2694 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2695 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2696 *
2697 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2698 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2699 * with the lock held can cause deadlocks; see schedule() for
2700 * details.)
2701 */
a9957449 2702static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2703 __releases(rq->lock)
2704{
1da177e4 2705 struct mm_struct *mm = rq->prev_mm;
55a101f8 2706 long prev_state;
1da177e4
LT
2707
2708 rq->prev_mm = NULL;
2709
2710 /*
2711 * A task struct has one reference for the use as "current".
c394cc9f 2712 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2713 * schedule one last time. The schedule call will never return, and
2714 * the scheduled task must drop that reference.
c394cc9f 2715 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2716 * still held, otherwise prev could be scheduled on another cpu, die
2717 * there before we look at prev->state, and then the reference would
2718 * be dropped twice.
2719 * Manfred Spraul <manfred@colorfullife.com>
2720 */
55a101f8 2721 prev_state = prev->state;
4866cde0 2722 finish_arch_switch(prev);
cdd6c482 2723 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2724 finish_lock_switch(rq, prev);
e8fa1362 2725
e107be36 2726 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2727 if (mm)
2728 mmdrop(mm);
c394cc9f 2729 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2730 /*
2731 * Remove function-return probe instances associated with this
2732 * task and put them back on the free list.
9761eea8 2733 */
c6fd91f0 2734 kprobe_flush_task(prev);
1da177e4 2735 put_task_struct(prev);
c6fd91f0 2736 }
1da177e4
LT
2737}
2738
3f029d3c
GH
2739#ifdef CONFIG_SMP
2740
2741/* assumes rq->lock is held */
2742static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2743{
2744 if (prev->sched_class->pre_schedule)
2745 prev->sched_class->pre_schedule(rq, prev);
2746}
2747
2748/* rq->lock is NOT held, but preemption is disabled */
2749static inline void post_schedule(struct rq *rq)
2750{
2751 if (rq->post_schedule) {
2752 unsigned long flags;
2753
2754 spin_lock_irqsave(&rq->lock, flags);
2755 if (rq->curr->sched_class->post_schedule)
2756 rq->curr->sched_class->post_schedule(rq);
2757 spin_unlock_irqrestore(&rq->lock, flags);
2758
2759 rq->post_schedule = 0;
2760 }
2761}
2762
2763#else
da19ab51 2764
3f029d3c
GH
2765static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2766{
2767}
2768
2769static inline void post_schedule(struct rq *rq)
2770{
1da177e4
LT
2771}
2772
3f029d3c
GH
2773#endif
2774
1da177e4
LT
2775/**
2776 * schedule_tail - first thing a freshly forked thread must call.
2777 * @prev: the thread we just switched away from.
2778 */
36c8b586 2779asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2780 __releases(rq->lock)
2781{
70b97a7f
IM
2782 struct rq *rq = this_rq();
2783
4866cde0 2784 finish_task_switch(rq, prev);
da19ab51 2785
3f029d3c
GH
2786 /*
2787 * FIXME: do we need to worry about rq being invalidated by the
2788 * task_switch?
2789 */
2790 post_schedule(rq);
70b97a7f 2791
4866cde0
NP
2792#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2793 /* In this case, finish_task_switch does not reenable preemption */
2794 preempt_enable();
2795#endif
1da177e4 2796 if (current->set_child_tid)
b488893a 2797 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2798}
2799
2800/*
2801 * context_switch - switch to the new MM and the new
2802 * thread's register state.
2803 */
dd41f596 2804static inline void
70b97a7f 2805context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2806 struct task_struct *next)
1da177e4 2807{
dd41f596 2808 struct mm_struct *mm, *oldmm;
1da177e4 2809
e107be36 2810 prepare_task_switch(rq, prev, next);
0a16b607 2811 trace_sched_switch(rq, prev, next);
dd41f596
IM
2812 mm = next->mm;
2813 oldmm = prev->active_mm;
9226d125
ZA
2814 /*
2815 * For paravirt, this is coupled with an exit in switch_to to
2816 * combine the page table reload and the switch backend into
2817 * one hypercall.
2818 */
224101ed 2819 arch_start_context_switch(prev);
9226d125 2820
dd41f596 2821 if (unlikely(!mm)) {
1da177e4
LT
2822 next->active_mm = oldmm;
2823 atomic_inc(&oldmm->mm_count);
2824 enter_lazy_tlb(oldmm, next);
2825 } else
2826 switch_mm(oldmm, mm, next);
2827
dd41f596 2828 if (unlikely(!prev->mm)) {
1da177e4 2829 prev->active_mm = NULL;
1da177e4
LT
2830 rq->prev_mm = oldmm;
2831 }
3a5f5e48
IM
2832 /*
2833 * Since the runqueue lock will be released by the next
2834 * task (which is an invalid locking op but in the case
2835 * of the scheduler it's an obvious special-case), so we
2836 * do an early lockdep release here:
2837 */
2838#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2839 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2840#endif
1da177e4
LT
2841
2842 /* Here we just switch the register state and the stack. */
2843 switch_to(prev, next, prev);
2844
dd41f596
IM
2845 barrier();
2846 /*
2847 * this_rq must be evaluated again because prev may have moved
2848 * CPUs since it called schedule(), thus the 'rq' on its stack
2849 * frame will be invalid.
2850 */
2851 finish_task_switch(this_rq(), prev);
1da177e4
LT
2852}
2853
2854/*
2855 * nr_running, nr_uninterruptible and nr_context_switches:
2856 *
2857 * externally visible scheduler statistics: current number of runnable
2858 * threads, current number of uninterruptible-sleeping threads, total
2859 * number of context switches performed since bootup.
2860 */
2861unsigned long nr_running(void)
2862{
2863 unsigned long i, sum = 0;
2864
2865 for_each_online_cpu(i)
2866 sum += cpu_rq(i)->nr_running;
2867
2868 return sum;
2869}
2870
2871unsigned long nr_uninterruptible(void)
2872{
2873 unsigned long i, sum = 0;
2874
0a945022 2875 for_each_possible_cpu(i)
1da177e4
LT
2876 sum += cpu_rq(i)->nr_uninterruptible;
2877
2878 /*
2879 * Since we read the counters lockless, it might be slightly
2880 * inaccurate. Do not allow it to go below zero though:
2881 */
2882 if (unlikely((long)sum < 0))
2883 sum = 0;
2884
2885 return sum;
2886}
2887
2888unsigned long long nr_context_switches(void)
2889{
cc94abfc
SR
2890 int i;
2891 unsigned long long sum = 0;
1da177e4 2892
0a945022 2893 for_each_possible_cpu(i)
1da177e4
LT
2894 sum += cpu_rq(i)->nr_switches;
2895
2896 return sum;
2897}
2898
2899unsigned long nr_iowait(void)
2900{
2901 unsigned long i, sum = 0;
2902
0a945022 2903 for_each_possible_cpu(i)
1da177e4
LT
2904 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2905
2906 return sum;
2907}
2908
69d25870
AV
2909unsigned long nr_iowait_cpu(void)
2910{
2911 struct rq *this = this_rq();
2912 return atomic_read(&this->nr_iowait);
2913}
2914
2915unsigned long this_cpu_load(void)
2916{
2917 struct rq *this = this_rq();
2918 return this->cpu_load[0];
2919}
2920
2921
dce48a84
TG
2922/* Variables and functions for calc_load */
2923static atomic_long_t calc_load_tasks;
2924static unsigned long calc_load_update;
2925unsigned long avenrun[3];
2926EXPORT_SYMBOL(avenrun);
2927
2d02494f
TG
2928/**
2929 * get_avenrun - get the load average array
2930 * @loads: pointer to dest load array
2931 * @offset: offset to add
2932 * @shift: shift count to shift the result left
2933 *
2934 * These values are estimates at best, so no need for locking.
2935 */
2936void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2937{
2938 loads[0] = (avenrun[0] + offset) << shift;
2939 loads[1] = (avenrun[1] + offset) << shift;
2940 loads[2] = (avenrun[2] + offset) << shift;
2941}
2942
dce48a84
TG
2943static unsigned long
2944calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2945{
dce48a84
TG
2946 load *= exp;
2947 load += active * (FIXED_1 - exp);
2948 return load >> FSHIFT;
2949}
db1b1fef 2950
dce48a84
TG
2951/*
2952 * calc_load - update the avenrun load estimates 10 ticks after the
2953 * CPUs have updated calc_load_tasks.
2954 */
2955void calc_global_load(void)
2956{
2957 unsigned long upd = calc_load_update + 10;
2958 long active;
2959
2960 if (time_before(jiffies, upd))
2961 return;
db1b1fef 2962
dce48a84
TG
2963 active = atomic_long_read(&calc_load_tasks);
2964 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2965
dce48a84
TG
2966 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2967 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2968 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2969
2970 calc_load_update += LOAD_FREQ;
2971}
2972
2973/*
2974 * Either called from update_cpu_load() or from a cpu going idle
2975 */
2976static void calc_load_account_active(struct rq *this_rq)
2977{
2978 long nr_active, delta;
2979
2980 nr_active = this_rq->nr_running;
2981 nr_active += (long) this_rq->nr_uninterruptible;
2982
2983 if (nr_active != this_rq->calc_load_active) {
2984 delta = nr_active - this_rq->calc_load_active;
2985 this_rq->calc_load_active = nr_active;
2986 atomic_long_add(delta, &calc_load_tasks);
2987 }
db1b1fef
JS
2988}
2989
23a185ca
PM
2990/*
2991 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
2992 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2993 */
23a185ca
PM
2994u64 cpu_nr_migrations(int cpu)
2995{
2996 return cpu_rq(cpu)->nr_migrations_in;
2997}
2998
48f24c4d 2999/*
dd41f596
IM
3000 * Update rq->cpu_load[] statistics. This function is usually called every
3001 * scheduler tick (TICK_NSEC).
48f24c4d 3002 */
dd41f596 3003static void update_cpu_load(struct rq *this_rq)
48f24c4d 3004{
495eca49 3005 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3006 int i, scale;
3007
3008 this_rq->nr_load_updates++;
dd41f596
IM
3009
3010 /* Update our load: */
3011 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3012 unsigned long old_load, new_load;
3013
3014 /* scale is effectively 1 << i now, and >> i divides by scale */
3015
3016 old_load = this_rq->cpu_load[i];
3017 new_load = this_load;
a25707f3
IM
3018 /*
3019 * Round up the averaging division if load is increasing. This
3020 * prevents us from getting stuck on 9 if the load is 10, for
3021 * example.
3022 */
3023 if (new_load > old_load)
3024 new_load += scale-1;
dd41f596
IM
3025 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3026 }
dce48a84
TG
3027
3028 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3029 this_rq->calc_load_update += LOAD_FREQ;
3030 calc_load_account_active(this_rq);
3031 }
48f24c4d
IM
3032}
3033
dd41f596
IM
3034#ifdef CONFIG_SMP
3035
1da177e4
LT
3036/*
3037 * double_rq_lock - safely lock two runqueues
3038 *
3039 * Note this does not disable interrupts like task_rq_lock,
3040 * you need to do so manually before calling.
3041 */
70b97a7f 3042static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3043 __acquires(rq1->lock)
3044 __acquires(rq2->lock)
3045{
054b9108 3046 BUG_ON(!irqs_disabled());
1da177e4
LT
3047 if (rq1 == rq2) {
3048 spin_lock(&rq1->lock);
3049 __acquire(rq2->lock); /* Fake it out ;) */
3050 } else {
c96d145e 3051 if (rq1 < rq2) {
1da177e4 3052 spin_lock(&rq1->lock);
5e710e37 3053 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3054 } else {
3055 spin_lock(&rq2->lock);
5e710e37 3056 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3057 }
3058 }
6e82a3be
IM
3059 update_rq_clock(rq1);
3060 update_rq_clock(rq2);
1da177e4
LT
3061}
3062
3063/*
3064 * double_rq_unlock - safely unlock two runqueues
3065 *
3066 * Note this does not restore interrupts like task_rq_unlock,
3067 * you need to do so manually after calling.
3068 */
70b97a7f 3069static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3070 __releases(rq1->lock)
3071 __releases(rq2->lock)
3072{
3073 spin_unlock(&rq1->lock);
3074 if (rq1 != rq2)
3075 spin_unlock(&rq2->lock);
3076 else
3077 __release(rq2->lock);
3078}
3079
1da177e4
LT
3080/*
3081 * If dest_cpu is allowed for this process, migrate the task to it.
3082 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3083 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3084 * the cpu_allowed mask is restored.
3085 */
36c8b586 3086static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3087{
70b97a7f 3088 struct migration_req req;
1da177e4 3089 unsigned long flags;
70b97a7f 3090 struct rq *rq;
1da177e4
LT
3091
3092 rq = task_rq_lock(p, &flags);
96f874e2 3093 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3094 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3095 goto out;
3096
3097 /* force the process onto the specified CPU */
3098 if (migrate_task(p, dest_cpu, &req)) {
3099 /* Need to wait for migration thread (might exit: take ref). */
3100 struct task_struct *mt = rq->migration_thread;
36c8b586 3101
1da177e4
LT
3102 get_task_struct(mt);
3103 task_rq_unlock(rq, &flags);
3104 wake_up_process(mt);
3105 put_task_struct(mt);
3106 wait_for_completion(&req.done);
36c8b586 3107
1da177e4
LT
3108 return;
3109 }
3110out:
3111 task_rq_unlock(rq, &flags);
3112}
3113
3114/*
476d139c
NP
3115 * sched_exec - execve() is a valuable balancing opportunity, because at
3116 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3117 */
3118void sched_exec(void)
3119{
1da177e4 3120 int new_cpu, this_cpu = get_cpu();
5f3edc1b 3121 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3122 put_cpu();
476d139c
NP
3123 if (new_cpu != this_cpu)
3124 sched_migrate_task(current, new_cpu);
1da177e4
LT
3125}
3126
3127/*
3128 * pull_task - move a task from a remote runqueue to the local runqueue.
3129 * Both runqueues must be locked.
3130 */
dd41f596
IM
3131static void pull_task(struct rq *src_rq, struct task_struct *p,
3132 struct rq *this_rq, int this_cpu)
1da177e4 3133{
2e1cb74a 3134 deactivate_task(src_rq, p, 0);
1da177e4 3135 set_task_cpu(p, this_cpu);
dd41f596 3136 activate_task(this_rq, p, 0);
1da177e4
LT
3137 /*
3138 * Note that idle threads have a prio of MAX_PRIO, for this test
3139 * to be always true for them.
3140 */
15afe09b 3141 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3142}
3143
3144/*
3145 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3146 */
858119e1 3147static
70b97a7f 3148int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3149 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3150 int *all_pinned)
1da177e4 3151{
708dc512 3152 int tsk_cache_hot = 0;
1da177e4
LT
3153 /*
3154 * We do not migrate tasks that are:
3155 * 1) running (obviously), or
3156 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3157 * 3) are cache-hot on their current CPU.
3158 */
96f874e2 3159 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3160 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3161 return 0;
cc367732 3162 }
81026794
NP
3163 *all_pinned = 0;
3164
cc367732
IM
3165 if (task_running(rq, p)) {
3166 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3167 return 0;
cc367732 3168 }
1da177e4 3169
da84d961
IM
3170 /*
3171 * Aggressive migration if:
3172 * 1) task is cache cold, or
3173 * 2) too many balance attempts have failed.
3174 */
3175
708dc512
LH
3176 tsk_cache_hot = task_hot(p, rq->clock, sd);
3177 if (!tsk_cache_hot ||
3178 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3179#ifdef CONFIG_SCHEDSTATS
708dc512 3180 if (tsk_cache_hot) {
da84d961 3181 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3182 schedstat_inc(p, se.nr_forced_migrations);
3183 }
da84d961
IM
3184#endif
3185 return 1;
3186 }
3187
708dc512 3188 if (tsk_cache_hot) {
cc367732 3189 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3190 return 0;
cc367732 3191 }
1da177e4
LT
3192 return 1;
3193}
3194
e1d1484f
PW
3195static unsigned long
3196balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3197 unsigned long max_load_move, struct sched_domain *sd,
3198 enum cpu_idle_type idle, int *all_pinned,
3199 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3200{
051c6764 3201 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3202 struct task_struct *p;
3203 long rem_load_move = max_load_move;
1da177e4 3204
e1d1484f 3205 if (max_load_move == 0)
1da177e4
LT
3206 goto out;
3207
81026794
NP
3208 pinned = 1;
3209
1da177e4 3210 /*
dd41f596 3211 * Start the load-balancing iterator:
1da177e4 3212 */
dd41f596
IM
3213 p = iterator->start(iterator->arg);
3214next:
b82d9fdd 3215 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3216 goto out;
051c6764
PZ
3217
3218 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3219 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3220 p = iterator->next(iterator->arg);
3221 goto next;
1da177e4
LT
3222 }
3223
dd41f596 3224 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3225 pulled++;
dd41f596 3226 rem_load_move -= p->se.load.weight;
1da177e4 3227
7e96fa58
GH
3228#ifdef CONFIG_PREEMPT
3229 /*
3230 * NEWIDLE balancing is a source of latency, so preemptible kernels
3231 * will stop after the first task is pulled to minimize the critical
3232 * section.
3233 */
3234 if (idle == CPU_NEWLY_IDLE)
3235 goto out;
3236#endif
3237
2dd73a4f 3238 /*
b82d9fdd 3239 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3240 */
e1d1484f 3241 if (rem_load_move > 0) {
a4ac01c3
PW
3242 if (p->prio < *this_best_prio)
3243 *this_best_prio = p->prio;
dd41f596
IM
3244 p = iterator->next(iterator->arg);
3245 goto next;
1da177e4
LT
3246 }
3247out:
3248 /*
e1d1484f 3249 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3250 * so we can safely collect pull_task() stats here rather than
3251 * inside pull_task().
3252 */
3253 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3254
3255 if (all_pinned)
3256 *all_pinned = pinned;
e1d1484f
PW
3257
3258 return max_load_move - rem_load_move;
1da177e4
LT
3259}
3260
dd41f596 3261/*
43010659
PW
3262 * move_tasks tries to move up to max_load_move weighted load from busiest to
3263 * this_rq, as part of a balancing operation within domain "sd".
3264 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3265 *
3266 * Called with both runqueues locked.
3267 */
3268static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3269 unsigned long max_load_move,
dd41f596
IM
3270 struct sched_domain *sd, enum cpu_idle_type idle,
3271 int *all_pinned)
3272{
5522d5d5 3273 const struct sched_class *class = sched_class_highest;
43010659 3274 unsigned long total_load_moved = 0;
a4ac01c3 3275 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3276
3277 do {
43010659
PW
3278 total_load_moved +=
3279 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3280 max_load_move - total_load_moved,
a4ac01c3 3281 sd, idle, all_pinned, &this_best_prio);
dd41f596 3282 class = class->next;
c4acb2c0 3283
7e96fa58
GH
3284#ifdef CONFIG_PREEMPT
3285 /*
3286 * NEWIDLE balancing is a source of latency, so preemptible
3287 * kernels will stop after the first task is pulled to minimize
3288 * the critical section.
3289 */
c4acb2c0
GH
3290 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3291 break;
7e96fa58 3292#endif
43010659 3293 } while (class && max_load_move > total_load_moved);
dd41f596 3294
43010659
PW
3295 return total_load_moved > 0;
3296}
3297
e1d1484f
PW
3298static int
3299iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3300 struct sched_domain *sd, enum cpu_idle_type idle,
3301 struct rq_iterator *iterator)
3302{
3303 struct task_struct *p = iterator->start(iterator->arg);
3304 int pinned = 0;
3305
3306 while (p) {
3307 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3308 pull_task(busiest, p, this_rq, this_cpu);
3309 /*
3310 * Right now, this is only the second place pull_task()
3311 * is called, so we can safely collect pull_task()
3312 * stats here rather than inside pull_task().
3313 */
3314 schedstat_inc(sd, lb_gained[idle]);
3315
3316 return 1;
3317 }
3318 p = iterator->next(iterator->arg);
3319 }
3320
3321 return 0;
3322}
3323
43010659
PW
3324/*
3325 * move_one_task tries to move exactly one task from busiest to this_rq, as
3326 * part of active balancing operations within "domain".
3327 * Returns 1 if successful and 0 otherwise.
3328 *
3329 * Called with both runqueues locked.
3330 */
3331static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3332 struct sched_domain *sd, enum cpu_idle_type idle)
3333{
5522d5d5 3334 const struct sched_class *class;
43010659 3335
cde7e5ca 3336 for_each_class(class) {
e1d1484f 3337 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3338 return 1;
cde7e5ca 3339 }
43010659
PW
3340
3341 return 0;
dd41f596 3342}
67bb6c03 3343/********** Helpers for find_busiest_group ************************/
1da177e4 3344/*
222d656d
GS
3345 * sd_lb_stats - Structure to store the statistics of a sched_domain
3346 * during load balancing.
1da177e4 3347 */
222d656d
GS
3348struct sd_lb_stats {
3349 struct sched_group *busiest; /* Busiest group in this sd */
3350 struct sched_group *this; /* Local group in this sd */
3351 unsigned long total_load; /* Total load of all groups in sd */
3352 unsigned long total_pwr; /* Total power of all groups in sd */
3353 unsigned long avg_load; /* Average load across all groups in sd */
3354
3355 /** Statistics of this group */
3356 unsigned long this_load;
3357 unsigned long this_load_per_task;
3358 unsigned long this_nr_running;
3359
3360 /* Statistics of the busiest group */
3361 unsigned long max_load;
3362 unsigned long busiest_load_per_task;
3363 unsigned long busiest_nr_running;
3364
3365 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3366#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3367 int power_savings_balance; /* Is powersave balance needed for this sd */
3368 struct sched_group *group_min; /* Least loaded group in sd */
3369 struct sched_group *group_leader; /* Group which relieves group_min */
3370 unsigned long min_load_per_task; /* load_per_task in group_min */
3371 unsigned long leader_nr_running; /* Nr running of group_leader */
3372 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3373#endif
222d656d 3374};
1da177e4 3375
d5ac537e 3376/*
381be78f
GS
3377 * sg_lb_stats - stats of a sched_group required for load_balancing
3378 */
3379struct sg_lb_stats {
3380 unsigned long avg_load; /*Avg load across the CPUs of the group */
3381 unsigned long group_load; /* Total load over the CPUs of the group */
3382 unsigned long sum_nr_running; /* Nr tasks running in the group */
3383 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3384 unsigned long group_capacity;
3385 int group_imb; /* Is there an imbalance in the group ? */
3386};
408ed066 3387
67bb6c03
GS
3388/**
3389 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3390 * @group: The group whose first cpu is to be returned.
3391 */
3392static inline unsigned int group_first_cpu(struct sched_group *group)
3393{
3394 return cpumask_first(sched_group_cpus(group));
3395}
3396
3397/**
3398 * get_sd_load_idx - Obtain the load index for a given sched domain.
3399 * @sd: The sched_domain whose load_idx is to be obtained.
3400 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3401 */
3402static inline int get_sd_load_idx(struct sched_domain *sd,
3403 enum cpu_idle_type idle)
3404{
3405 int load_idx;
3406
3407 switch (idle) {
3408 case CPU_NOT_IDLE:
7897986b 3409 load_idx = sd->busy_idx;
67bb6c03
GS
3410 break;
3411
3412 case CPU_NEWLY_IDLE:
7897986b 3413 load_idx = sd->newidle_idx;
67bb6c03
GS
3414 break;
3415 default:
7897986b 3416 load_idx = sd->idle_idx;
67bb6c03
GS
3417 break;
3418 }
1da177e4 3419
67bb6c03
GS
3420 return load_idx;
3421}
1da177e4 3422
1da177e4 3423
c071df18
GS
3424#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3425/**
3426 * init_sd_power_savings_stats - Initialize power savings statistics for
3427 * the given sched_domain, during load balancing.
3428 *
3429 * @sd: Sched domain whose power-savings statistics are to be initialized.
3430 * @sds: Variable containing the statistics for sd.
3431 * @idle: Idle status of the CPU at which we're performing load-balancing.
3432 */
3433static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3434 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3435{
3436 /*
3437 * Busy processors will not participate in power savings
3438 * balance.
3439 */
3440 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3441 sds->power_savings_balance = 0;
3442 else {
3443 sds->power_savings_balance = 1;
3444 sds->min_nr_running = ULONG_MAX;
3445 sds->leader_nr_running = 0;
3446 }
3447}
783609c6 3448
c071df18
GS
3449/**
3450 * update_sd_power_savings_stats - Update the power saving stats for a
3451 * sched_domain while performing load balancing.
3452 *
3453 * @group: sched_group belonging to the sched_domain under consideration.
3454 * @sds: Variable containing the statistics of the sched_domain
3455 * @local_group: Does group contain the CPU for which we're performing
3456 * load balancing ?
3457 * @sgs: Variable containing the statistics of the group.
3458 */
3459static inline void update_sd_power_savings_stats(struct sched_group *group,
3460 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3461{
408ed066 3462
c071df18
GS
3463 if (!sds->power_savings_balance)
3464 return;
1da177e4 3465
c071df18
GS
3466 /*
3467 * If the local group is idle or completely loaded
3468 * no need to do power savings balance at this domain
3469 */
3470 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3471 !sds->this_nr_running))
3472 sds->power_savings_balance = 0;
2dd73a4f 3473
c071df18
GS
3474 /*
3475 * If a group is already running at full capacity or idle,
3476 * don't include that group in power savings calculations
3477 */
3478 if (!sds->power_savings_balance ||
3479 sgs->sum_nr_running >= sgs->group_capacity ||
3480 !sgs->sum_nr_running)
3481 return;
5969fe06 3482
c071df18
GS
3483 /*
3484 * Calculate the group which has the least non-idle load.
3485 * This is the group from where we need to pick up the load
3486 * for saving power
3487 */
3488 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3489 (sgs->sum_nr_running == sds->min_nr_running &&
3490 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3491 sds->group_min = group;
3492 sds->min_nr_running = sgs->sum_nr_running;
3493 sds->min_load_per_task = sgs->sum_weighted_load /
3494 sgs->sum_nr_running;
3495 }
783609c6 3496
c071df18
GS
3497 /*
3498 * Calculate the group which is almost near its
3499 * capacity but still has some space to pick up some load
3500 * from other group and save more power
3501 */
d899a789 3502 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3503 return;
1da177e4 3504
c071df18
GS
3505 if (sgs->sum_nr_running > sds->leader_nr_running ||
3506 (sgs->sum_nr_running == sds->leader_nr_running &&
3507 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3508 sds->group_leader = group;
3509 sds->leader_nr_running = sgs->sum_nr_running;
3510 }
3511}
408ed066 3512
c071df18 3513/**
d5ac537e 3514 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3515 * @sds: Variable containing the statistics of the sched_domain
3516 * under consideration.
3517 * @this_cpu: Cpu at which we're currently performing load-balancing.
3518 * @imbalance: Variable to store the imbalance.
3519 *
d5ac537e
RD
3520 * Description:
3521 * Check if we have potential to perform some power-savings balance.
3522 * If yes, set the busiest group to be the least loaded group in the
3523 * sched_domain, so that it's CPUs can be put to idle.
3524 *
c071df18
GS
3525 * Returns 1 if there is potential to perform power-savings balance.
3526 * Else returns 0.
3527 */
3528static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3529 int this_cpu, unsigned long *imbalance)
3530{
3531 if (!sds->power_savings_balance)
3532 return 0;
1da177e4 3533
c071df18
GS
3534 if (sds->this != sds->group_leader ||
3535 sds->group_leader == sds->group_min)
3536 return 0;
783609c6 3537
c071df18
GS
3538 *imbalance = sds->min_load_per_task;
3539 sds->busiest = sds->group_min;
1da177e4 3540
c071df18 3541 return 1;
1da177e4 3542
c071df18
GS
3543}
3544#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3545static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3546 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3547{
3548 return;
3549}
408ed066 3550
c071df18
GS
3551static inline void update_sd_power_savings_stats(struct sched_group *group,
3552 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3553{
3554 return;
3555}
3556
3557static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3558 int this_cpu, unsigned long *imbalance)
3559{
3560 return 0;
3561}
3562#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3563
d6a59aa3
PZ
3564
3565unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3566{
3567 return SCHED_LOAD_SCALE;
3568}
3569
3570unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3571{
3572 return default_scale_freq_power(sd, cpu);
3573}
3574
3575unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3576{
3577 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3578 unsigned long smt_gain = sd->smt_gain;
3579
3580 smt_gain /= weight;
3581
3582 return smt_gain;
3583}
3584
d6a59aa3
PZ
3585unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3586{
3587 return default_scale_smt_power(sd, cpu);
3588}
3589
e9e9250b
PZ
3590unsigned long scale_rt_power(int cpu)
3591{
3592 struct rq *rq = cpu_rq(cpu);
3593 u64 total, available;
3594
3595 sched_avg_update(rq);
3596
3597 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3598 available = total - rq->rt_avg;
3599
3600 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3601 total = SCHED_LOAD_SCALE;
3602
3603 total >>= SCHED_LOAD_SHIFT;
3604
3605 return div_u64(available, total);
3606}
3607
ab29230e
PZ
3608static void update_cpu_power(struct sched_domain *sd, int cpu)
3609{
3610 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3611 unsigned long power = SCHED_LOAD_SCALE;
3612 struct sched_group *sdg = sd->groups;
ab29230e 3613
8e6598af
PZ
3614 if (sched_feat(ARCH_POWER))
3615 power *= arch_scale_freq_power(sd, cpu);
3616 else
3617 power *= default_scale_freq_power(sd, cpu);
3618
d6a59aa3 3619 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3620
3621 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3622 if (sched_feat(ARCH_POWER))
3623 power *= arch_scale_smt_power(sd, cpu);
3624 else
3625 power *= default_scale_smt_power(sd, cpu);
3626
ab29230e
PZ
3627 power >>= SCHED_LOAD_SHIFT;
3628 }
3629
e9e9250b
PZ
3630 power *= scale_rt_power(cpu);
3631 power >>= SCHED_LOAD_SHIFT;
3632
3633 if (!power)
3634 power = 1;
ab29230e 3635
18a3885f 3636 sdg->cpu_power = power;
ab29230e
PZ
3637}
3638
3639static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3640{
3641 struct sched_domain *child = sd->child;
3642 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3643 unsigned long power;
cc9fba7d
PZ
3644
3645 if (!child) {
ab29230e 3646 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3647 return;
3648 }
3649
d7ea17a7 3650 power = 0;
cc9fba7d
PZ
3651
3652 group = child->groups;
3653 do {
d7ea17a7 3654 power += group->cpu_power;
cc9fba7d
PZ
3655 group = group->next;
3656 } while (group != child->groups);
d7ea17a7
IM
3657
3658 sdg->cpu_power = power;
cc9fba7d 3659}
c071df18 3660
1f8c553d
GS
3661/**
3662 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3663 * @group: sched_group whose statistics are to be updated.
3664 * @this_cpu: Cpu for which load balance is currently performed.
3665 * @idle: Idle status of this_cpu
3666 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3667 * @sd_idle: Idle status of the sched_domain containing group.
3668 * @local_group: Does group contain this_cpu.
3669 * @cpus: Set of cpus considered for load balancing.
3670 * @balance: Should we balance.
3671 * @sgs: variable to hold the statistics for this group.
3672 */
cc9fba7d
PZ
3673static inline void update_sg_lb_stats(struct sched_domain *sd,
3674 struct sched_group *group, int this_cpu,
1f8c553d
GS
3675 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3676 int local_group, const struct cpumask *cpus,
3677 int *balance, struct sg_lb_stats *sgs)
3678{
3679 unsigned long load, max_cpu_load, min_cpu_load;
3680 int i;
3681 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3682 unsigned long sum_avg_load_per_task;
3683 unsigned long avg_load_per_task;
3684
cc9fba7d 3685 if (local_group) {
1f8c553d 3686 balance_cpu = group_first_cpu(group);
cc9fba7d 3687 if (balance_cpu == this_cpu)
ab29230e 3688 update_group_power(sd, this_cpu);
cc9fba7d 3689 }
1f8c553d
GS
3690
3691 /* Tally up the load of all CPUs in the group */
3692 sum_avg_load_per_task = avg_load_per_task = 0;
3693 max_cpu_load = 0;
3694 min_cpu_load = ~0UL;
408ed066 3695
1f8c553d
GS
3696 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3697 struct rq *rq = cpu_rq(i);
908a7c1b 3698
1f8c553d
GS
3699 if (*sd_idle && rq->nr_running)
3700 *sd_idle = 0;
5c45bf27 3701
1f8c553d 3702 /* Bias balancing toward cpus of our domain */
1da177e4 3703 if (local_group) {
1f8c553d
GS
3704 if (idle_cpu(i) && !first_idle_cpu) {
3705 first_idle_cpu = 1;
3706 balance_cpu = i;
3707 }
3708
3709 load = target_load(i, load_idx);
3710 } else {
3711 load = source_load(i, load_idx);
3712 if (load > max_cpu_load)
3713 max_cpu_load = load;
3714 if (min_cpu_load > load)
3715 min_cpu_load = load;
1da177e4 3716 }
5c45bf27 3717
1f8c553d
GS
3718 sgs->group_load += load;
3719 sgs->sum_nr_running += rq->nr_running;
3720 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3721
1f8c553d
GS
3722 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3723 }
5c45bf27 3724
1f8c553d
GS
3725 /*
3726 * First idle cpu or the first cpu(busiest) in this sched group
3727 * is eligible for doing load balancing at this and above
3728 * domains. In the newly idle case, we will allow all the cpu's
3729 * to do the newly idle load balance.
3730 */
3731 if (idle != CPU_NEWLY_IDLE && local_group &&
3732 balance_cpu != this_cpu && balance) {
3733 *balance = 0;
3734 return;
3735 }
5c45bf27 3736
1f8c553d 3737 /* Adjust by relative CPU power of the group */
18a3885f 3738 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3739
1f8c553d
GS
3740
3741 /*
3742 * Consider the group unbalanced when the imbalance is larger
3743 * than the average weight of two tasks.
3744 *
3745 * APZ: with cgroup the avg task weight can vary wildly and
3746 * might not be a suitable number - should we keep a
3747 * normalized nr_running number somewhere that negates
3748 * the hierarchy?
3749 */
18a3885f
PZ
3750 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3751 group->cpu_power;
1f8c553d
GS
3752
3753 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3754 sgs->group_imb = 1;
3755
bdb94aa5 3756 sgs->group_capacity =
18a3885f 3757 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3758}
dd41f596 3759
37abe198
GS
3760/**
3761 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3762 * @sd: sched_domain whose statistics are to be updated.
3763 * @this_cpu: Cpu for which load balance is currently performed.
3764 * @idle: Idle status of this_cpu
3765 * @sd_idle: Idle status of the sched_domain containing group.
3766 * @cpus: Set of cpus considered for load balancing.
3767 * @balance: Should we balance.
3768 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3769 */
37abe198
GS
3770static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3771 enum cpu_idle_type idle, int *sd_idle,
3772 const struct cpumask *cpus, int *balance,
3773 struct sd_lb_stats *sds)
1da177e4 3774{
b5d978e0 3775 struct sched_domain *child = sd->child;
222d656d 3776 struct sched_group *group = sd->groups;
37abe198 3777 struct sg_lb_stats sgs;
b5d978e0
PZ
3778 int load_idx, prefer_sibling = 0;
3779
3780 if (child && child->flags & SD_PREFER_SIBLING)
3781 prefer_sibling = 1;
222d656d 3782
c071df18 3783 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3784 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3785
3786 do {
1da177e4 3787 int local_group;
1da177e4 3788
758b2cdc
RR
3789 local_group = cpumask_test_cpu(this_cpu,
3790 sched_group_cpus(group));
381be78f 3791 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3792 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3793 local_group, cpus, balance, &sgs);
1da177e4 3794
37abe198
GS
3795 if (local_group && balance && !(*balance))
3796 return;
783609c6 3797
37abe198 3798 sds->total_load += sgs.group_load;
18a3885f 3799 sds->total_pwr += group->cpu_power;
1da177e4 3800
b5d978e0
PZ
3801 /*
3802 * In case the child domain prefers tasks go to siblings
3803 * first, lower the group capacity to one so that we'll try
3804 * and move all the excess tasks away.
3805 */
3806 if (prefer_sibling)
bdb94aa5 3807 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3808
1da177e4 3809 if (local_group) {
37abe198
GS
3810 sds->this_load = sgs.avg_load;
3811 sds->this = group;
3812 sds->this_nr_running = sgs.sum_nr_running;
3813 sds->this_load_per_task = sgs.sum_weighted_load;
3814 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3815 (sgs.sum_nr_running > sgs.group_capacity ||
3816 sgs.group_imb)) {
37abe198
GS
3817 sds->max_load = sgs.avg_load;
3818 sds->busiest = group;
3819 sds->busiest_nr_running = sgs.sum_nr_running;
3820 sds->busiest_load_per_task = sgs.sum_weighted_load;
3821 sds->group_imb = sgs.group_imb;
48f24c4d 3822 }
5c45bf27 3823
c071df18 3824 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3825 group = group->next;
3826 } while (group != sd->groups);
37abe198 3827}
1da177e4 3828
2e6f44ae
GS
3829/**
3830 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3831 * amongst the groups of a sched_domain, during
3832 * load balancing.
2e6f44ae
GS
3833 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3834 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3835 * @imbalance: Variable to store the imbalance.
3836 */
3837static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3838 int this_cpu, unsigned long *imbalance)
3839{
3840 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3841 unsigned int imbn = 2;
3842
3843 if (sds->this_nr_running) {
3844 sds->this_load_per_task /= sds->this_nr_running;
3845 if (sds->busiest_load_per_task >
3846 sds->this_load_per_task)
3847 imbn = 1;
3848 } else
3849 sds->this_load_per_task =
3850 cpu_avg_load_per_task(this_cpu);
1da177e4 3851
2e6f44ae
GS
3852 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3853 sds->busiest_load_per_task * imbn) {
3854 *imbalance = sds->busiest_load_per_task;
3855 return;
3856 }
908a7c1b 3857
1da177e4 3858 /*
2e6f44ae
GS
3859 * OK, we don't have enough imbalance to justify moving tasks,
3860 * however we may be able to increase total CPU power used by
3861 * moving them.
1da177e4 3862 */
2dd73a4f 3863
18a3885f 3864 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3865 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3866 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3867 min(sds->this_load_per_task, sds->this_load);
3868 pwr_now /= SCHED_LOAD_SCALE;
3869
3870 /* Amount of load we'd subtract */
18a3885f
PZ
3871 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3872 sds->busiest->cpu_power;
2e6f44ae 3873 if (sds->max_load > tmp)
18a3885f 3874 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3875 min(sds->busiest_load_per_task, sds->max_load - tmp);
3876
3877 /* Amount of load we'd add */
18a3885f 3878 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3879 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3880 tmp = (sds->max_load * sds->busiest->cpu_power) /
3881 sds->this->cpu_power;
2e6f44ae 3882 else
18a3885f
PZ
3883 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3884 sds->this->cpu_power;
3885 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3886 min(sds->this_load_per_task, sds->this_load + tmp);
3887 pwr_move /= SCHED_LOAD_SCALE;
3888
3889 /* Move if we gain throughput */
3890 if (pwr_move > pwr_now)
3891 *imbalance = sds->busiest_load_per_task;
3892}
dbc523a3
GS
3893
3894/**
3895 * calculate_imbalance - Calculate the amount of imbalance present within the
3896 * groups of a given sched_domain during load balance.
3897 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3898 * @this_cpu: Cpu for which currently load balance is being performed.
3899 * @imbalance: The variable to store the imbalance.
3900 */
3901static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3902 unsigned long *imbalance)
3903{
3904 unsigned long max_pull;
2dd73a4f
PW
3905 /*
3906 * In the presence of smp nice balancing, certain scenarios can have
3907 * max load less than avg load(as we skip the groups at or below
3908 * its cpu_power, while calculating max_load..)
3909 */
dbc523a3 3910 if (sds->max_load < sds->avg_load) {
2dd73a4f 3911 *imbalance = 0;
dbc523a3 3912 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3913 }
0c117f1b
SS
3914
3915 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3916 max_pull = min(sds->max_load - sds->avg_load,
3917 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3918
1da177e4 3919 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3920 *imbalance = min(max_pull * sds->busiest->cpu_power,
3921 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3922 / SCHED_LOAD_SCALE;
3923
2dd73a4f
PW
3924 /*
3925 * if *imbalance is less than the average load per runnable task
3926 * there is no gaurantee that any tasks will be moved so we'll have
3927 * a think about bumping its value to force at least one task to be
3928 * moved
3929 */
dbc523a3
GS
3930 if (*imbalance < sds->busiest_load_per_task)
3931 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3932
dbc523a3 3933}
37abe198 3934/******* find_busiest_group() helpers end here *********************/
1da177e4 3935
b7bb4c9b
GS
3936/**
3937 * find_busiest_group - Returns the busiest group within the sched_domain
3938 * if there is an imbalance. If there isn't an imbalance, and
3939 * the user has opted for power-savings, it returns a group whose
3940 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3941 * such a group exists.
3942 *
3943 * Also calculates the amount of weighted load which should be moved
3944 * to restore balance.
3945 *
3946 * @sd: The sched_domain whose busiest group is to be returned.
3947 * @this_cpu: The cpu for which load balancing is currently being performed.
3948 * @imbalance: Variable which stores amount of weighted load which should
3949 * be moved to restore balance/put a group to idle.
3950 * @idle: The idle status of this_cpu.
3951 * @sd_idle: The idleness of sd
3952 * @cpus: The set of CPUs under consideration for load-balancing.
3953 * @balance: Pointer to a variable indicating if this_cpu
3954 * is the appropriate cpu to perform load balancing at this_level.
3955 *
3956 * Returns: - the busiest group if imbalance exists.
3957 * - If no imbalance and user has opted for power-savings balance,
3958 * return the least loaded group whose CPUs can be
3959 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3960 */
3961static struct sched_group *
3962find_busiest_group(struct sched_domain *sd, int this_cpu,
3963 unsigned long *imbalance, enum cpu_idle_type idle,
3964 int *sd_idle, const struct cpumask *cpus, int *balance)
3965{
3966 struct sd_lb_stats sds;
1da177e4 3967
37abe198 3968 memset(&sds, 0, sizeof(sds));
1da177e4 3969
37abe198
GS
3970 /*
3971 * Compute the various statistics relavent for load balancing at
3972 * this level.
3973 */
3974 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3975 balance, &sds);
3976
b7bb4c9b
GS
3977 /* Cases where imbalance does not exist from POV of this_cpu */
3978 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3979 * at this level.
3980 * 2) There is no busy sibling group to pull from.
3981 * 3) This group is the busiest group.
3982 * 4) This group is more busy than the avg busieness at this
3983 * sched_domain.
3984 * 5) The imbalance is within the specified limit.
3985 * 6) Any rebalance would lead to ping-pong
3986 */
37abe198
GS
3987 if (balance && !(*balance))
3988 goto ret;
1da177e4 3989
b7bb4c9b
GS
3990 if (!sds.busiest || sds.busiest_nr_running == 0)
3991 goto out_balanced;
1da177e4 3992
b7bb4c9b 3993 if (sds.this_load >= sds.max_load)
1da177e4 3994 goto out_balanced;
1da177e4 3995
222d656d 3996 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3997
b7bb4c9b
GS
3998 if (sds.this_load >= sds.avg_load)
3999 goto out_balanced;
4000
4001 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4002 goto out_balanced;
4003
222d656d
GS
4004 sds.busiest_load_per_task /= sds.busiest_nr_running;
4005 if (sds.group_imb)
4006 sds.busiest_load_per_task =
4007 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4008
1da177e4
LT
4009 /*
4010 * We're trying to get all the cpus to the average_load, so we don't
4011 * want to push ourselves above the average load, nor do we wish to
4012 * reduce the max loaded cpu below the average load, as either of these
4013 * actions would just result in more rebalancing later, and ping-pong
4014 * tasks around. Thus we look for the minimum possible imbalance.
4015 * Negative imbalances (*we* are more loaded than anyone else) will
4016 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4017 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4018 * appear as very large values with unsigned longs.
4019 */
222d656d 4020 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4021 goto out_balanced;
4022
dbc523a3
GS
4023 /* Looks like there is an imbalance. Compute it */
4024 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4025 return sds.busiest;
1da177e4
LT
4026
4027out_balanced:
c071df18
GS
4028 /*
4029 * There is no obvious imbalance. But check if we can do some balancing
4030 * to save power.
4031 */
4032 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4033 return sds.busiest;
783609c6 4034ret:
1da177e4
LT
4035 *imbalance = 0;
4036 return NULL;
4037}
4038
4039/*
4040 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4041 */
70b97a7f 4042static struct rq *
d15bcfdb 4043find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4044 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4045{
70b97a7f 4046 struct rq *busiest = NULL, *rq;
2dd73a4f 4047 unsigned long max_load = 0;
1da177e4
LT
4048 int i;
4049
758b2cdc 4050 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4051 unsigned long power = power_of(i);
4052 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4053 unsigned long wl;
0a2966b4 4054
96f874e2 4055 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4056 continue;
4057
48f24c4d 4058 rq = cpu_rq(i);
bdb94aa5
PZ
4059 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4060 wl /= power;
2dd73a4f 4061
bdb94aa5 4062 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4063 continue;
1da177e4 4064
dd41f596
IM
4065 if (wl > max_load) {
4066 max_load = wl;
48f24c4d 4067 busiest = rq;
1da177e4
LT
4068 }
4069 }
4070
4071 return busiest;
4072}
4073
77391d71
NP
4074/*
4075 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4076 * so long as it is large enough.
4077 */
4078#define MAX_PINNED_INTERVAL 512
4079
df7c8e84
RR
4080/* Working cpumask for load_balance and load_balance_newidle. */
4081static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4082
1da177e4
LT
4083/*
4084 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4085 * tasks if there is an imbalance.
1da177e4 4086 */
70b97a7f 4087static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4088 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4089 int *balance)
1da177e4 4090{
43010659 4091 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4092 struct sched_group *group;
1da177e4 4093 unsigned long imbalance;
70b97a7f 4094 struct rq *busiest;
fe2eea3f 4095 unsigned long flags;
df7c8e84 4096 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4097
96f874e2 4098 cpumask_setall(cpus);
7c16ec58 4099
89c4710e
SS
4100 /*
4101 * When power savings policy is enabled for the parent domain, idle
4102 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4103 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4104 * portraying it as CPU_NOT_IDLE.
89c4710e 4105 */
d15bcfdb 4106 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4107 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4108 sd_idle = 1;
1da177e4 4109
2d72376b 4110 schedstat_inc(sd, lb_count[idle]);
1da177e4 4111
0a2966b4 4112redo:
c8cba857 4113 update_shares(sd);
0a2966b4 4114 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4115 cpus, balance);
783609c6 4116
06066714 4117 if (*balance == 0)
783609c6 4118 goto out_balanced;
783609c6 4119
1da177e4
LT
4120 if (!group) {
4121 schedstat_inc(sd, lb_nobusyg[idle]);
4122 goto out_balanced;
4123 }
4124
7c16ec58 4125 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4126 if (!busiest) {
4127 schedstat_inc(sd, lb_nobusyq[idle]);
4128 goto out_balanced;
4129 }
4130
db935dbd 4131 BUG_ON(busiest == this_rq);
1da177e4
LT
4132
4133 schedstat_add(sd, lb_imbalance[idle], imbalance);
4134
43010659 4135 ld_moved = 0;
1da177e4
LT
4136 if (busiest->nr_running > 1) {
4137 /*
4138 * Attempt to move tasks. If find_busiest_group has found
4139 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4140 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4141 * correctly treated as an imbalance.
4142 */
fe2eea3f 4143 local_irq_save(flags);
e17224bf 4144 double_rq_lock(this_rq, busiest);
43010659 4145 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4146 imbalance, sd, idle, &all_pinned);
e17224bf 4147 double_rq_unlock(this_rq, busiest);
fe2eea3f 4148 local_irq_restore(flags);
81026794 4149
46cb4b7c
SS
4150 /*
4151 * some other cpu did the load balance for us.
4152 */
43010659 4153 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4154 resched_cpu(this_cpu);
4155
81026794 4156 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4157 if (unlikely(all_pinned)) {
96f874e2
RR
4158 cpumask_clear_cpu(cpu_of(busiest), cpus);
4159 if (!cpumask_empty(cpus))
0a2966b4 4160 goto redo;
81026794 4161 goto out_balanced;
0a2966b4 4162 }
1da177e4 4163 }
81026794 4164
43010659 4165 if (!ld_moved) {
1da177e4
LT
4166 schedstat_inc(sd, lb_failed[idle]);
4167 sd->nr_balance_failed++;
4168
4169 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4170
fe2eea3f 4171 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4172
4173 /* don't kick the migration_thread, if the curr
4174 * task on busiest cpu can't be moved to this_cpu
4175 */
96f874e2
RR
4176 if (!cpumask_test_cpu(this_cpu,
4177 &busiest->curr->cpus_allowed)) {
fe2eea3f 4178 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4179 all_pinned = 1;
4180 goto out_one_pinned;
4181 }
4182
1da177e4
LT
4183 if (!busiest->active_balance) {
4184 busiest->active_balance = 1;
4185 busiest->push_cpu = this_cpu;
81026794 4186 active_balance = 1;
1da177e4 4187 }
fe2eea3f 4188 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4189 if (active_balance)
1da177e4
LT
4190 wake_up_process(busiest->migration_thread);
4191
4192 /*
4193 * We've kicked active balancing, reset the failure
4194 * counter.
4195 */
39507451 4196 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4197 }
81026794 4198 } else
1da177e4
LT
4199 sd->nr_balance_failed = 0;
4200
81026794 4201 if (likely(!active_balance)) {
1da177e4
LT
4202 /* We were unbalanced, so reset the balancing interval */
4203 sd->balance_interval = sd->min_interval;
81026794
NP
4204 } else {
4205 /*
4206 * If we've begun active balancing, start to back off. This
4207 * case may not be covered by the all_pinned logic if there
4208 * is only 1 task on the busy runqueue (because we don't call
4209 * move_tasks).
4210 */
4211 if (sd->balance_interval < sd->max_interval)
4212 sd->balance_interval *= 2;
1da177e4
LT
4213 }
4214
43010659 4215 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4216 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4217 ld_moved = -1;
4218
4219 goto out;
1da177e4
LT
4220
4221out_balanced:
1da177e4
LT
4222 schedstat_inc(sd, lb_balanced[idle]);
4223
16cfb1c0 4224 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4225
4226out_one_pinned:
1da177e4 4227 /* tune up the balancing interval */
77391d71
NP
4228 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4229 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4230 sd->balance_interval *= 2;
4231
48f24c4d 4232 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4233 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4234 ld_moved = -1;
4235 else
4236 ld_moved = 0;
4237out:
c8cba857
PZ
4238 if (ld_moved)
4239 update_shares(sd);
c09595f6 4240 return ld_moved;
1da177e4
LT
4241}
4242
4243/*
4244 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4245 * tasks if there is an imbalance.
4246 *
d15bcfdb 4247 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4248 * this_rq is locked.
4249 */
48f24c4d 4250static int
df7c8e84 4251load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4252{
4253 struct sched_group *group;
70b97a7f 4254 struct rq *busiest = NULL;
1da177e4 4255 unsigned long imbalance;
43010659 4256 int ld_moved = 0;
5969fe06 4257 int sd_idle = 0;
969bb4e4 4258 int all_pinned = 0;
df7c8e84 4259 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4260
96f874e2 4261 cpumask_setall(cpus);
5969fe06 4262
89c4710e
SS
4263 /*
4264 * When power savings policy is enabled for the parent domain, idle
4265 * sibling can pick up load irrespective of busy siblings. In this case,
4266 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4267 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4268 */
4269 if (sd->flags & SD_SHARE_CPUPOWER &&
4270 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4271 sd_idle = 1;
1da177e4 4272
2d72376b 4273 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4274redo:
3e5459b4 4275 update_shares_locked(this_rq, sd);
d15bcfdb 4276 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4277 &sd_idle, cpus, NULL);
1da177e4 4278 if (!group) {
d15bcfdb 4279 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4280 goto out_balanced;
1da177e4
LT
4281 }
4282
7c16ec58 4283 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4284 if (!busiest) {
d15bcfdb 4285 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4286 goto out_balanced;
1da177e4
LT
4287 }
4288
db935dbd
NP
4289 BUG_ON(busiest == this_rq);
4290
d15bcfdb 4291 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4292
43010659 4293 ld_moved = 0;
d6d5cfaf
NP
4294 if (busiest->nr_running > 1) {
4295 /* Attempt to move tasks */
4296 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4297 /* this_rq->clock is already updated */
4298 update_rq_clock(busiest);
43010659 4299 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4300 imbalance, sd, CPU_NEWLY_IDLE,
4301 &all_pinned);
1b12bbc7 4302 double_unlock_balance(this_rq, busiest);
0a2966b4 4303
969bb4e4 4304 if (unlikely(all_pinned)) {
96f874e2
RR
4305 cpumask_clear_cpu(cpu_of(busiest), cpus);
4306 if (!cpumask_empty(cpus))
0a2966b4
CL
4307 goto redo;
4308 }
d6d5cfaf
NP
4309 }
4310
43010659 4311 if (!ld_moved) {
36dffab6 4312 int active_balance = 0;
ad273b32 4313
d15bcfdb 4314 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4315 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4316 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4317 return -1;
ad273b32
VS
4318
4319 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4320 return -1;
4321
4322 if (sd->nr_balance_failed++ < 2)
4323 return -1;
4324
4325 /*
4326 * The only task running in a non-idle cpu can be moved to this
4327 * cpu in an attempt to completely freeup the other CPU
4328 * package. The same method used to move task in load_balance()
4329 * have been extended for load_balance_newidle() to speedup
4330 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4331 *
4332 * The package power saving logic comes from
4333 * find_busiest_group(). If there are no imbalance, then
4334 * f_b_g() will return NULL. However when sched_mc={1,2} then
4335 * f_b_g() will select a group from which a running task may be
4336 * pulled to this cpu in order to make the other package idle.
4337 * If there is no opportunity to make a package idle and if
4338 * there are no imbalance, then f_b_g() will return NULL and no
4339 * action will be taken in load_balance_newidle().
4340 *
4341 * Under normal task pull operation due to imbalance, there
4342 * will be more than one task in the source run queue and
4343 * move_tasks() will succeed. ld_moved will be true and this
4344 * active balance code will not be triggered.
4345 */
4346
4347 /* Lock busiest in correct order while this_rq is held */
4348 double_lock_balance(this_rq, busiest);
4349
4350 /*
4351 * don't kick the migration_thread, if the curr
4352 * task on busiest cpu can't be moved to this_cpu
4353 */
6ca09dfc 4354 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4355 double_unlock_balance(this_rq, busiest);
4356 all_pinned = 1;
4357 return ld_moved;
4358 }
4359
4360 if (!busiest->active_balance) {
4361 busiest->active_balance = 1;
4362 busiest->push_cpu = this_cpu;
4363 active_balance = 1;
4364 }
4365
4366 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4367 /*
4368 * Should not call ttwu while holding a rq->lock
4369 */
4370 spin_unlock(&this_rq->lock);
ad273b32
VS
4371 if (active_balance)
4372 wake_up_process(busiest->migration_thread);
da8d5089 4373 spin_lock(&this_rq->lock);
ad273b32 4374
5969fe06 4375 } else
16cfb1c0 4376 sd->nr_balance_failed = 0;
1da177e4 4377
3e5459b4 4378 update_shares_locked(this_rq, sd);
43010659 4379 return ld_moved;
16cfb1c0
NP
4380
4381out_balanced:
d15bcfdb 4382 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4383 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4384 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4385 return -1;
16cfb1c0 4386 sd->nr_balance_failed = 0;
48f24c4d 4387
16cfb1c0 4388 return 0;
1da177e4
LT
4389}
4390
4391/*
4392 * idle_balance is called by schedule() if this_cpu is about to become
4393 * idle. Attempts to pull tasks from other CPUs.
4394 */
70b97a7f 4395static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4396{
4397 struct sched_domain *sd;
efbe027e 4398 int pulled_task = 0;
dd41f596 4399 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4400
4401 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4402 unsigned long interval;
4403
4404 if (!(sd->flags & SD_LOAD_BALANCE))
4405 continue;
4406
4407 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4408 /* If we've pulled tasks over stop searching: */
7c16ec58 4409 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4410 sd);
92c4ca5c
CL
4411
4412 interval = msecs_to_jiffies(sd->balance_interval);
4413 if (time_after(next_balance, sd->last_balance + interval))
4414 next_balance = sd->last_balance + interval;
4415 if (pulled_task)
4416 break;
1da177e4 4417 }
dd41f596 4418 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4419 /*
4420 * We are going idle. next_balance may be set based on
4421 * a busy processor. So reset next_balance.
4422 */
4423 this_rq->next_balance = next_balance;
dd41f596 4424 }
1da177e4
LT
4425}
4426
4427/*
4428 * active_load_balance is run by migration threads. It pushes running tasks
4429 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4430 * running on each physical CPU where possible, and avoids physical /
4431 * logical imbalances.
4432 *
4433 * Called with busiest_rq locked.
4434 */
70b97a7f 4435static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4436{
39507451 4437 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4438 struct sched_domain *sd;
4439 struct rq *target_rq;
39507451 4440
48f24c4d 4441 /* Is there any task to move? */
39507451 4442 if (busiest_rq->nr_running <= 1)
39507451
NP
4443 return;
4444
4445 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4446
4447 /*
39507451 4448 * This condition is "impossible", if it occurs
41a2d6cf 4449 * we need to fix it. Originally reported by
39507451 4450 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4451 */
39507451 4452 BUG_ON(busiest_rq == target_rq);
1da177e4 4453
39507451
NP
4454 /* move a task from busiest_rq to target_rq */
4455 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4456 update_rq_clock(busiest_rq);
4457 update_rq_clock(target_rq);
39507451
NP
4458
4459 /* Search for an sd spanning us and the target CPU. */
c96d145e 4460 for_each_domain(target_cpu, sd) {
39507451 4461 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4462 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4463 break;
c96d145e 4464 }
39507451 4465
48f24c4d 4466 if (likely(sd)) {
2d72376b 4467 schedstat_inc(sd, alb_count);
39507451 4468
43010659
PW
4469 if (move_one_task(target_rq, target_cpu, busiest_rq,
4470 sd, CPU_IDLE))
48f24c4d
IM
4471 schedstat_inc(sd, alb_pushed);
4472 else
4473 schedstat_inc(sd, alb_failed);
4474 }
1b12bbc7 4475 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4476}
4477
46cb4b7c
SS
4478#ifdef CONFIG_NO_HZ
4479static struct {
4480 atomic_t load_balancer;
7d1e6a9b 4481 cpumask_var_t cpu_mask;
f711f609 4482 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4483} nohz ____cacheline_aligned = {
4484 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4485};
4486
eea08f32
AB
4487int get_nohz_load_balancer(void)
4488{
4489 return atomic_read(&nohz.load_balancer);
4490}
4491
f711f609
GS
4492#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4493/**
4494 * lowest_flag_domain - Return lowest sched_domain containing flag.
4495 * @cpu: The cpu whose lowest level of sched domain is to
4496 * be returned.
4497 * @flag: The flag to check for the lowest sched_domain
4498 * for the given cpu.
4499 *
4500 * Returns the lowest sched_domain of a cpu which contains the given flag.
4501 */
4502static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4503{
4504 struct sched_domain *sd;
4505
4506 for_each_domain(cpu, sd)
4507 if (sd && (sd->flags & flag))
4508 break;
4509
4510 return sd;
4511}
4512
4513/**
4514 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4515 * @cpu: The cpu whose domains we're iterating over.
4516 * @sd: variable holding the value of the power_savings_sd
4517 * for cpu.
4518 * @flag: The flag to filter the sched_domains to be iterated.
4519 *
4520 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4521 * set, starting from the lowest sched_domain to the highest.
4522 */
4523#define for_each_flag_domain(cpu, sd, flag) \
4524 for (sd = lowest_flag_domain(cpu, flag); \
4525 (sd && (sd->flags & flag)); sd = sd->parent)
4526
4527/**
4528 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4529 * @ilb_group: group to be checked for semi-idleness
4530 *
4531 * Returns: 1 if the group is semi-idle. 0 otherwise.
4532 *
4533 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4534 * and atleast one non-idle CPU. This helper function checks if the given
4535 * sched_group is semi-idle or not.
4536 */
4537static inline int is_semi_idle_group(struct sched_group *ilb_group)
4538{
4539 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4540 sched_group_cpus(ilb_group));
4541
4542 /*
4543 * A sched_group is semi-idle when it has atleast one busy cpu
4544 * and atleast one idle cpu.
4545 */
4546 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4547 return 0;
4548
4549 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4550 return 0;
4551
4552 return 1;
4553}
4554/**
4555 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4556 * @cpu: The cpu which is nominating a new idle_load_balancer.
4557 *
4558 * Returns: Returns the id of the idle load balancer if it exists,
4559 * Else, returns >= nr_cpu_ids.
4560 *
4561 * This algorithm picks the idle load balancer such that it belongs to a
4562 * semi-idle powersavings sched_domain. The idea is to try and avoid
4563 * completely idle packages/cores just for the purpose of idle load balancing
4564 * when there are other idle cpu's which are better suited for that job.
4565 */
4566static int find_new_ilb(int cpu)
4567{
4568 struct sched_domain *sd;
4569 struct sched_group *ilb_group;
4570
4571 /*
4572 * Have idle load balancer selection from semi-idle packages only
4573 * when power-aware load balancing is enabled
4574 */
4575 if (!(sched_smt_power_savings || sched_mc_power_savings))
4576 goto out_done;
4577
4578 /*
4579 * Optimize for the case when we have no idle CPUs or only one
4580 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4581 */
4582 if (cpumask_weight(nohz.cpu_mask) < 2)
4583 goto out_done;
4584
4585 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4586 ilb_group = sd->groups;
4587
4588 do {
4589 if (is_semi_idle_group(ilb_group))
4590 return cpumask_first(nohz.ilb_grp_nohz_mask);
4591
4592 ilb_group = ilb_group->next;
4593
4594 } while (ilb_group != sd->groups);
4595 }
4596
4597out_done:
4598 return cpumask_first(nohz.cpu_mask);
4599}
4600#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4601static inline int find_new_ilb(int call_cpu)
4602{
6e29ec57 4603 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4604}
4605#endif
4606
7835b98b 4607/*
46cb4b7c
SS
4608 * This routine will try to nominate the ilb (idle load balancing)
4609 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4610 * load balancing on behalf of all those cpus. If all the cpus in the system
4611 * go into this tickless mode, then there will be no ilb owner (as there is
4612 * no need for one) and all the cpus will sleep till the next wakeup event
4613 * arrives...
4614 *
4615 * For the ilb owner, tick is not stopped. And this tick will be used
4616 * for idle load balancing. ilb owner will still be part of
4617 * nohz.cpu_mask..
7835b98b 4618 *
46cb4b7c
SS
4619 * While stopping the tick, this cpu will become the ilb owner if there
4620 * is no other owner. And will be the owner till that cpu becomes busy
4621 * or if all cpus in the system stop their ticks at which point
4622 * there is no need for ilb owner.
4623 *
4624 * When the ilb owner becomes busy, it nominates another owner, during the
4625 * next busy scheduler_tick()
4626 */
4627int select_nohz_load_balancer(int stop_tick)
4628{
4629 int cpu = smp_processor_id();
4630
4631 if (stop_tick) {
46cb4b7c
SS
4632 cpu_rq(cpu)->in_nohz_recently = 1;
4633
483b4ee6
SS
4634 if (!cpu_active(cpu)) {
4635 if (atomic_read(&nohz.load_balancer) != cpu)
4636 return 0;
4637
4638 /*
4639 * If we are going offline and still the leader,
4640 * give up!
4641 */
46cb4b7c
SS
4642 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4643 BUG();
483b4ee6 4644
46cb4b7c
SS
4645 return 0;
4646 }
4647
483b4ee6
SS
4648 cpumask_set_cpu(cpu, nohz.cpu_mask);
4649
46cb4b7c 4650 /* time for ilb owner also to sleep */
7d1e6a9b 4651 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4652 if (atomic_read(&nohz.load_balancer) == cpu)
4653 atomic_set(&nohz.load_balancer, -1);
4654 return 0;
4655 }
4656
4657 if (atomic_read(&nohz.load_balancer) == -1) {
4658 /* make me the ilb owner */
4659 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4660 return 1;
e790fb0b
GS
4661 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4662 int new_ilb;
4663
4664 if (!(sched_smt_power_savings ||
4665 sched_mc_power_savings))
4666 return 1;
4667 /*
4668 * Check to see if there is a more power-efficient
4669 * ilb.
4670 */
4671 new_ilb = find_new_ilb(cpu);
4672 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4673 atomic_set(&nohz.load_balancer, -1);
4674 resched_cpu(new_ilb);
4675 return 0;
4676 }
46cb4b7c 4677 return 1;
e790fb0b 4678 }
46cb4b7c 4679 } else {
7d1e6a9b 4680 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4681 return 0;
4682
7d1e6a9b 4683 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4684
4685 if (atomic_read(&nohz.load_balancer) == cpu)
4686 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4687 BUG();
4688 }
4689 return 0;
4690}
4691#endif
4692
4693static DEFINE_SPINLOCK(balancing);
4694
4695/*
7835b98b
CL
4696 * It checks each scheduling domain to see if it is due to be balanced,
4697 * and initiates a balancing operation if so.
4698 *
4699 * Balancing parameters are set up in arch_init_sched_domains.
4700 */
a9957449 4701static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4702{
46cb4b7c
SS
4703 int balance = 1;
4704 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4705 unsigned long interval;
4706 struct sched_domain *sd;
46cb4b7c 4707 /* Earliest time when we have to do rebalance again */
c9819f45 4708 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4709 int update_next_balance = 0;
d07355f5 4710 int need_serialize;
1da177e4 4711
46cb4b7c 4712 for_each_domain(cpu, sd) {
1da177e4
LT
4713 if (!(sd->flags & SD_LOAD_BALANCE))
4714 continue;
4715
4716 interval = sd->balance_interval;
d15bcfdb 4717 if (idle != CPU_IDLE)
1da177e4
LT
4718 interval *= sd->busy_factor;
4719
4720 /* scale ms to jiffies */
4721 interval = msecs_to_jiffies(interval);
4722 if (unlikely(!interval))
4723 interval = 1;
dd41f596
IM
4724 if (interval > HZ*NR_CPUS/10)
4725 interval = HZ*NR_CPUS/10;
4726
d07355f5 4727 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4728
d07355f5 4729 if (need_serialize) {
08c183f3
CL
4730 if (!spin_trylock(&balancing))
4731 goto out;
4732 }
4733
c9819f45 4734 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4735 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4736 /*
4737 * We've pulled tasks over so either we're no
5969fe06
NP
4738 * longer idle, or one of our SMT siblings is
4739 * not idle.
4740 */
d15bcfdb 4741 idle = CPU_NOT_IDLE;
1da177e4 4742 }
1bd77f2d 4743 sd->last_balance = jiffies;
1da177e4 4744 }
d07355f5 4745 if (need_serialize)
08c183f3
CL
4746 spin_unlock(&balancing);
4747out:
f549da84 4748 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4749 next_balance = sd->last_balance + interval;
f549da84
SS
4750 update_next_balance = 1;
4751 }
783609c6
SS
4752
4753 /*
4754 * Stop the load balance at this level. There is another
4755 * CPU in our sched group which is doing load balancing more
4756 * actively.
4757 */
4758 if (!balance)
4759 break;
1da177e4 4760 }
f549da84
SS
4761
4762 /*
4763 * next_balance will be updated only when there is a need.
4764 * When the cpu is attached to null domain for ex, it will not be
4765 * updated.
4766 */
4767 if (likely(update_next_balance))
4768 rq->next_balance = next_balance;
46cb4b7c
SS
4769}
4770
4771/*
4772 * run_rebalance_domains is triggered when needed from the scheduler tick.
4773 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4774 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4775 */
4776static void run_rebalance_domains(struct softirq_action *h)
4777{
dd41f596
IM
4778 int this_cpu = smp_processor_id();
4779 struct rq *this_rq = cpu_rq(this_cpu);
4780 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4781 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4782
dd41f596 4783 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4784
4785#ifdef CONFIG_NO_HZ
4786 /*
4787 * If this cpu is the owner for idle load balancing, then do the
4788 * balancing on behalf of the other idle cpus whose ticks are
4789 * stopped.
4790 */
dd41f596
IM
4791 if (this_rq->idle_at_tick &&
4792 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4793 struct rq *rq;
4794 int balance_cpu;
4795
7d1e6a9b
RR
4796 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4797 if (balance_cpu == this_cpu)
4798 continue;
4799
46cb4b7c
SS
4800 /*
4801 * If this cpu gets work to do, stop the load balancing
4802 * work being done for other cpus. Next load
4803 * balancing owner will pick it up.
4804 */
4805 if (need_resched())
4806 break;
4807
de0cf899 4808 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4809
4810 rq = cpu_rq(balance_cpu);
dd41f596
IM
4811 if (time_after(this_rq->next_balance, rq->next_balance))
4812 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4813 }
4814 }
4815#endif
4816}
4817
8a0be9ef
FW
4818static inline int on_null_domain(int cpu)
4819{
4820 return !rcu_dereference(cpu_rq(cpu)->sd);
4821}
4822
46cb4b7c
SS
4823/*
4824 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4825 *
4826 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4827 * idle load balancing owner or decide to stop the periodic load balancing,
4828 * if the whole system is idle.
4829 */
dd41f596 4830static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4831{
46cb4b7c
SS
4832#ifdef CONFIG_NO_HZ
4833 /*
4834 * If we were in the nohz mode recently and busy at the current
4835 * scheduler tick, then check if we need to nominate new idle
4836 * load balancer.
4837 */
4838 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4839 rq->in_nohz_recently = 0;
4840
4841 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4842 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4843 atomic_set(&nohz.load_balancer, -1);
4844 }
4845
4846 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4847 int ilb = find_new_ilb(cpu);
46cb4b7c 4848
434d53b0 4849 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4850 resched_cpu(ilb);
4851 }
4852 }
4853
4854 /*
4855 * If this cpu is idle and doing idle load balancing for all the
4856 * cpus with ticks stopped, is it time for that to stop?
4857 */
4858 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4859 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4860 resched_cpu(cpu);
4861 return;
4862 }
4863
4864 /*
4865 * If this cpu is idle and the idle load balancing is done by
4866 * someone else, then no need raise the SCHED_SOFTIRQ
4867 */
4868 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4869 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4870 return;
4871#endif
8a0be9ef
FW
4872 /* Don't need to rebalance while attached to NULL domain */
4873 if (time_after_eq(jiffies, rq->next_balance) &&
4874 likely(!on_null_domain(cpu)))
46cb4b7c 4875 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4876}
dd41f596
IM
4877
4878#else /* CONFIG_SMP */
4879
1da177e4
LT
4880/*
4881 * on UP we do not need to balance between CPUs:
4882 */
70b97a7f 4883static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4884{
4885}
dd41f596 4886
1da177e4
LT
4887#endif
4888
1da177e4
LT
4889DEFINE_PER_CPU(struct kernel_stat, kstat);
4890
4891EXPORT_PER_CPU_SYMBOL(kstat);
4892
4893/*
c5f8d995 4894 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4895 * @p in case that task is currently running.
c5f8d995
HS
4896 *
4897 * Called with task_rq_lock() held on @rq.
1da177e4 4898 */
c5f8d995
HS
4899static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4900{
4901 u64 ns = 0;
4902
4903 if (task_current(rq, p)) {
4904 update_rq_clock(rq);
4905 ns = rq->clock - p->se.exec_start;
4906 if ((s64)ns < 0)
4907 ns = 0;
4908 }
4909
4910 return ns;
4911}
4912
bb34d92f 4913unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4914{
1da177e4 4915 unsigned long flags;
41b86e9c 4916 struct rq *rq;
bb34d92f 4917 u64 ns = 0;
48f24c4d 4918
41b86e9c 4919 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4920 ns = do_task_delta_exec(p, rq);
4921 task_rq_unlock(rq, &flags);
1508487e 4922
c5f8d995
HS
4923 return ns;
4924}
f06febc9 4925
c5f8d995
HS
4926/*
4927 * Return accounted runtime for the task.
4928 * In case the task is currently running, return the runtime plus current's
4929 * pending runtime that have not been accounted yet.
4930 */
4931unsigned long long task_sched_runtime(struct task_struct *p)
4932{
4933 unsigned long flags;
4934 struct rq *rq;
4935 u64 ns = 0;
4936
4937 rq = task_rq_lock(p, &flags);
4938 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4939 task_rq_unlock(rq, &flags);
4940
4941 return ns;
4942}
48f24c4d 4943
c5f8d995
HS
4944/*
4945 * Return sum_exec_runtime for the thread group.
4946 * In case the task is currently running, return the sum plus current's
4947 * pending runtime that have not been accounted yet.
4948 *
4949 * Note that the thread group might have other running tasks as well,
4950 * so the return value not includes other pending runtime that other
4951 * running tasks might have.
4952 */
4953unsigned long long thread_group_sched_runtime(struct task_struct *p)
4954{
4955 struct task_cputime totals;
4956 unsigned long flags;
4957 struct rq *rq;
4958 u64 ns;
4959
4960 rq = task_rq_lock(p, &flags);
4961 thread_group_cputime(p, &totals);
4962 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4963 task_rq_unlock(rq, &flags);
48f24c4d 4964
1da177e4
LT
4965 return ns;
4966}
4967
1da177e4
LT
4968/*
4969 * Account user cpu time to a process.
4970 * @p: the process that the cpu time gets accounted to
1da177e4 4971 * @cputime: the cpu time spent in user space since the last update
457533a7 4972 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4973 */
457533a7
MS
4974void account_user_time(struct task_struct *p, cputime_t cputime,
4975 cputime_t cputime_scaled)
1da177e4
LT
4976{
4977 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4978 cputime64_t tmp;
4979
457533a7 4980 /* Add user time to process. */
1da177e4 4981 p->utime = cputime_add(p->utime, cputime);
457533a7 4982 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4983 account_group_user_time(p, cputime);
1da177e4
LT
4984
4985 /* Add user time to cpustat. */
4986 tmp = cputime_to_cputime64(cputime);
4987 if (TASK_NICE(p) > 0)
4988 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4989 else
4990 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4991
4992 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4993 /* Account for user time used */
4994 acct_update_integrals(p);
1da177e4
LT
4995}
4996
94886b84
LV
4997/*
4998 * Account guest cpu time to a process.
4999 * @p: the process that the cpu time gets accounted to
5000 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5001 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5002 */
457533a7
MS
5003static void account_guest_time(struct task_struct *p, cputime_t cputime,
5004 cputime_t cputime_scaled)
94886b84
LV
5005{
5006 cputime64_t tmp;
5007 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5008
5009 tmp = cputime_to_cputime64(cputime);
5010
457533a7 5011 /* Add guest time to process. */
94886b84 5012 p->utime = cputime_add(p->utime, cputime);
457533a7 5013 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5014 account_group_user_time(p, cputime);
94886b84
LV
5015 p->gtime = cputime_add(p->gtime, cputime);
5016
457533a7 5017 /* Add guest time to cpustat. */
94886b84
LV
5018 cpustat->user = cputime64_add(cpustat->user, tmp);
5019 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5020}
5021
1da177e4
LT
5022/*
5023 * Account system cpu time to a process.
5024 * @p: the process that the cpu time gets accounted to
5025 * @hardirq_offset: the offset to subtract from hardirq_count()
5026 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5027 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5028 */
5029void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5030 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5031{
5032 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5033 cputime64_t tmp;
5034
983ed7a6 5035 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5036 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5037 return;
5038 }
94886b84 5039
457533a7 5040 /* Add system time to process. */
1da177e4 5041 p->stime = cputime_add(p->stime, cputime);
457533a7 5042 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5043 account_group_system_time(p, cputime);
1da177e4
LT
5044
5045 /* Add system time to cpustat. */
5046 tmp = cputime_to_cputime64(cputime);
5047 if (hardirq_count() - hardirq_offset)
5048 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5049 else if (softirq_count())
5050 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5051 else
79741dd3
MS
5052 cpustat->system = cputime64_add(cpustat->system, tmp);
5053
ef12fefa
BR
5054 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5055
1da177e4
LT
5056 /* Account for system time used */
5057 acct_update_integrals(p);
1da177e4
LT
5058}
5059
c66f08be 5060/*
1da177e4 5061 * Account for involuntary wait time.
1da177e4 5062 * @steal: the cpu time spent in involuntary wait
c66f08be 5063 */
79741dd3 5064void account_steal_time(cputime_t cputime)
c66f08be 5065{
79741dd3
MS
5066 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5067 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5068
5069 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5070}
5071
1da177e4 5072/*
79741dd3
MS
5073 * Account for idle time.
5074 * @cputime: the cpu time spent in idle wait
1da177e4 5075 */
79741dd3 5076void account_idle_time(cputime_t cputime)
1da177e4
LT
5077{
5078 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5079 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5080 struct rq *rq = this_rq();
1da177e4 5081
79741dd3
MS
5082 if (atomic_read(&rq->nr_iowait) > 0)
5083 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5084 else
5085 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5086}
5087
79741dd3
MS
5088#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5089
5090/*
5091 * Account a single tick of cpu time.
5092 * @p: the process that the cpu time gets accounted to
5093 * @user_tick: indicates if the tick is a user or a system tick
5094 */
5095void account_process_tick(struct task_struct *p, int user_tick)
5096{
a42548a1 5097 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5098 struct rq *rq = this_rq();
5099
5100 if (user_tick)
a42548a1 5101 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5102 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5103 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5104 one_jiffy_scaled);
5105 else
a42548a1 5106 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5107}
5108
5109/*
5110 * Account multiple ticks of steal time.
5111 * @p: the process from which the cpu time has been stolen
5112 * @ticks: number of stolen ticks
5113 */
5114void account_steal_ticks(unsigned long ticks)
5115{
5116 account_steal_time(jiffies_to_cputime(ticks));
5117}
5118
5119/*
5120 * Account multiple ticks of idle time.
5121 * @ticks: number of stolen ticks
5122 */
5123void account_idle_ticks(unsigned long ticks)
5124{
5125 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5126}
5127
79741dd3
MS
5128#endif
5129
49048622
BS
5130/*
5131 * Use precise platform statistics if available:
5132 */
5133#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5134cputime_t task_utime(struct task_struct *p)
5135{
5136 return p->utime;
5137}
5138
5139cputime_t task_stime(struct task_struct *p)
5140{
5141 return p->stime;
5142}
5143#else
5144cputime_t task_utime(struct task_struct *p)
5145{
5146 clock_t utime = cputime_to_clock_t(p->utime),
5147 total = utime + cputime_to_clock_t(p->stime);
5148 u64 temp;
5149
5150 /*
5151 * Use CFS's precise accounting:
5152 */
5153 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5154
5155 if (total) {
5156 temp *= utime;
5157 do_div(temp, total);
5158 }
5159 utime = (clock_t)temp;
5160
5161 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5162 return p->prev_utime;
5163}
5164
5165cputime_t task_stime(struct task_struct *p)
5166{
5167 clock_t stime;
5168
5169 /*
5170 * Use CFS's precise accounting. (we subtract utime from
5171 * the total, to make sure the total observed by userspace
5172 * grows monotonically - apps rely on that):
5173 */
5174 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5175 cputime_to_clock_t(task_utime(p));
5176
5177 if (stime >= 0)
5178 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5179
5180 return p->prev_stime;
5181}
5182#endif
5183
5184inline cputime_t task_gtime(struct task_struct *p)
5185{
5186 return p->gtime;
5187}
5188
7835b98b
CL
5189/*
5190 * This function gets called by the timer code, with HZ frequency.
5191 * We call it with interrupts disabled.
5192 *
5193 * It also gets called by the fork code, when changing the parent's
5194 * timeslices.
5195 */
5196void scheduler_tick(void)
5197{
7835b98b
CL
5198 int cpu = smp_processor_id();
5199 struct rq *rq = cpu_rq(cpu);
dd41f596 5200 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5201
5202 sched_clock_tick();
dd41f596
IM
5203
5204 spin_lock(&rq->lock);
3e51f33f 5205 update_rq_clock(rq);
f1a438d8 5206 update_cpu_load(rq);
fa85ae24 5207 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5208 spin_unlock(&rq->lock);
7835b98b 5209
cdd6c482 5210 perf_event_task_tick(curr, cpu);
e220d2dc 5211
e418e1c2 5212#ifdef CONFIG_SMP
dd41f596
IM
5213 rq->idle_at_tick = idle_cpu(cpu);
5214 trigger_load_balance(rq, cpu);
e418e1c2 5215#endif
1da177e4
LT
5216}
5217
132380a0 5218notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5219{
5220 if (in_lock_functions(addr)) {
5221 addr = CALLER_ADDR2;
5222 if (in_lock_functions(addr))
5223 addr = CALLER_ADDR3;
5224 }
5225 return addr;
5226}
1da177e4 5227
7e49fcce
SR
5228#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5229 defined(CONFIG_PREEMPT_TRACER))
5230
43627582 5231void __kprobes add_preempt_count(int val)
1da177e4 5232{
6cd8a4bb 5233#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5234 /*
5235 * Underflow?
5236 */
9a11b49a
IM
5237 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5238 return;
6cd8a4bb 5239#endif
1da177e4 5240 preempt_count() += val;
6cd8a4bb 5241#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5242 /*
5243 * Spinlock count overflowing soon?
5244 */
33859f7f
MOS
5245 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5246 PREEMPT_MASK - 10);
6cd8a4bb
SR
5247#endif
5248 if (preempt_count() == val)
5249 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5250}
5251EXPORT_SYMBOL(add_preempt_count);
5252
43627582 5253void __kprobes sub_preempt_count(int val)
1da177e4 5254{
6cd8a4bb 5255#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5256 /*
5257 * Underflow?
5258 */
01e3eb82 5259 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5260 return;
1da177e4
LT
5261 /*
5262 * Is the spinlock portion underflowing?
5263 */
9a11b49a
IM
5264 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5265 !(preempt_count() & PREEMPT_MASK)))
5266 return;
6cd8a4bb 5267#endif
9a11b49a 5268
6cd8a4bb
SR
5269 if (preempt_count() == val)
5270 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5271 preempt_count() -= val;
5272}
5273EXPORT_SYMBOL(sub_preempt_count);
5274
5275#endif
5276
5277/*
dd41f596 5278 * Print scheduling while atomic bug:
1da177e4 5279 */
dd41f596 5280static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5281{
838225b4
SS
5282 struct pt_regs *regs = get_irq_regs();
5283
5284 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5285 prev->comm, prev->pid, preempt_count());
5286
dd41f596 5287 debug_show_held_locks(prev);
e21f5b15 5288 print_modules();
dd41f596
IM
5289 if (irqs_disabled())
5290 print_irqtrace_events(prev);
838225b4
SS
5291
5292 if (regs)
5293 show_regs(regs);
5294 else
5295 dump_stack();
dd41f596 5296}
1da177e4 5297
dd41f596
IM
5298/*
5299 * Various schedule()-time debugging checks and statistics:
5300 */
5301static inline void schedule_debug(struct task_struct *prev)
5302{
1da177e4 5303 /*
41a2d6cf 5304 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5305 * schedule() atomically, we ignore that path for now.
5306 * Otherwise, whine if we are scheduling when we should not be.
5307 */
3f33a7ce 5308 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5309 __schedule_bug(prev);
5310
1da177e4
LT
5311 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5312
2d72376b 5313 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5314#ifdef CONFIG_SCHEDSTATS
5315 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5316 schedstat_inc(this_rq(), bkl_count);
5317 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5318 }
5319#endif
dd41f596
IM
5320}
5321
ad4b78bb 5322static void put_prev_task(struct rq *rq, struct task_struct *p)
df1c99d4 5323{
ad4b78bb 5324 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
df1c99d4 5325
ad4b78bb 5326 update_avg(&p->se.avg_running, runtime);
df1c99d4 5327
ad4b78bb 5328 if (p->state == TASK_RUNNING) {
df1c99d4
MG
5329 /*
5330 * In order to avoid avg_overlap growing stale when we are
5331 * indeed overlapping and hence not getting put to sleep, grow
5332 * the avg_overlap on preemption.
5333 *
5334 * We use the average preemption runtime because that
5335 * correlates to the amount of cache footprint a task can
5336 * build up.
5337 */
ad4b78bb
PZ
5338 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5339 update_avg(&p->se.avg_overlap, runtime);
5340 } else {
5341 update_avg(&p->se.avg_running, 0);
df1c99d4 5342 }
ad4b78bb 5343 p->sched_class->put_prev_task(rq, p);
df1c99d4
MG
5344}
5345
dd41f596
IM
5346/*
5347 * Pick up the highest-prio task:
5348 */
5349static inline struct task_struct *
b67802ea 5350pick_next_task(struct rq *rq)
dd41f596 5351{
5522d5d5 5352 const struct sched_class *class;
dd41f596 5353 struct task_struct *p;
1da177e4
LT
5354
5355 /*
dd41f596
IM
5356 * Optimization: we know that if all tasks are in
5357 * the fair class we can call that function directly:
1da177e4 5358 */
dd41f596 5359 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5360 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5361 if (likely(p))
5362 return p;
1da177e4
LT
5363 }
5364
dd41f596
IM
5365 class = sched_class_highest;
5366 for ( ; ; ) {
fb8d4724 5367 p = class->pick_next_task(rq);
dd41f596
IM
5368 if (p)
5369 return p;
5370 /*
5371 * Will never be NULL as the idle class always
5372 * returns a non-NULL p:
5373 */
5374 class = class->next;
5375 }
5376}
1da177e4 5377
dd41f596
IM
5378/*
5379 * schedule() is the main scheduler function.
5380 */
ff743345 5381asmlinkage void __sched schedule(void)
dd41f596
IM
5382{
5383 struct task_struct *prev, *next;
67ca7bde 5384 unsigned long *switch_count;
dd41f596 5385 struct rq *rq;
31656519 5386 int cpu;
dd41f596 5387
ff743345
PZ
5388need_resched:
5389 preempt_disable();
dd41f596
IM
5390 cpu = smp_processor_id();
5391 rq = cpu_rq(cpu);
d6714c22 5392 rcu_sched_qs(cpu);
dd41f596
IM
5393 prev = rq->curr;
5394 switch_count = &prev->nivcsw;
5395
5396 release_kernel_lock(prev);
5397need_resched_nonpreemptible:
5398
5399 schedule_debug(prev);
1da177e4 5400
31656519 5401 if (sched_feat(HRTICK))
f333fdc9 5402 hrtick_clear(rq);
8f4d37ec 5403
8cd162ce 5404 spin_lock_irq(&rq->lock);
3e51f33f 5405 update_rq_clock(rq);
1e819950 5406 clear_tsk_need_resched(prev);
1da177e4 5407
1da177e4 5408 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5409 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5410 prev->state = TASK_RUNNING;
16882c1e 5411 else
2e1cb74a 5412 deactivate_task(rq, prev, 1);
dd41f596 5413 switch_count = &prev->nvcsw;
1da177e4
LT
5414 }
5415
3f029d3c 5416 pre_schedule(rq, prev);
f65eda4f 5417
dd41f596 5418 if (unlikely(!rq->nr_running))
1da177e4 5419 idle_balance(cpu, rq);
1da177e4 5420
df1c99d4 5421 put_prev_task(rq, prev);
b67802ea 5422 next = pick_next_task(rq);
1da177e4 5423
1da177e4 5424 if (likely(prev != next)) {
673a90a1 5425 sched_info_switch(prev, next);
cdd6c482 5426 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5427
1da177e4
LT
5428 rq->nr_switches++;
5429 rq->curr = next;
5430 ++*switch_count;
5431
dd41f596 5432 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5433 /*
5434 * the context switch might have flipped the stack from under
5435 * us, hence refresh the local variables.
5436 */
5437 cpu = smp_processor_id();
5438 rq = cpu_rq(cpu);
1da177e4
LT
5439 } else
5440 spin_unlock_irq(&rq->lock);
5441
3f029d3c 5442 post_schedule(rq);
1da177e4 5443
8f4d37ec 5444 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5445 goto need_resched_nonpreemptible;
8f4d37ec 5446
1da177e4 5447 preempt_enable_no_resched();
ff743345 5448 if (need_resched())
1da177e4
LT
5449 goto need_resched;
5450}
1da177e4
LT
5451EXPORT_SYMBOL(schedule);
5452
0d66bf6d
PZ
5453#ifdef CONFIG_SMP
5454/*
5455 * Look out! "owner" is an entirely speculative pointer
5456 * access and not reliable.
5457 */
5458int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5459{
5460 unsigned int cpu;
5461 struct rq *rq;
5462
5463 if (!sched_feat(OWNER_SPIN))
5464 return 0;
5465
5466#ifdef CONFIG_DEBUG_PAGEALLOC
5467 /*
5468 * Need to access the cpu field knowing that
5469 * DEBUG_PAGEALLOC could have unmapped it if
5470 * the mutex owner just released it and exited.
5471 */
5472 if (probe_kernel_address(&owner->cpu, cpu))
5473 goto out;
5474#else
5475 cpu = owner->cpu;
5476#endif
5477
5478 /*
5479 * Even if the access succeeded (likely case),
5480 * the cpu field may no longer be valid.
5481 */
5482 if (cpu >= nr_cpumask_bits)
5483 goto out;
5484
5485 /*
5486 * We need to validate that we can do a
5487 * get_cpu() and that we have the percpu area.
5488 */
5489 if (!cpu_online(cpu))
5490 goto out;
5491
5492 rq = cpu_rq(cpu);
5493
5494 for (;;) {
5495 /*
5496 * Owner changed, break to re-assess state.
5497 */
5498 if (lock->owner != owner)
5499 break;
5500
5501 /*
5502 * Is that owner really running on that cpu?
5503 */
5504 if (task_thread_info(rq->curr) != owner || need_resched())
5505 return 0;
5506
5507 cpu_relax();
5508 }
5509out:
5510 return 1;
5511}
5512#endif
5513
1da177e4
LT
5514#ifdef CONFIG_PREEMPT
5515/*
2ed6e34f 5516 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5517 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5518 * occur there and call schedule directly.
5519 */
5520asmlinkage void __sched preempt_schedule(void)
5521{
5522 struct thread_info *ti = current_thread_info();
6478d880 5523
1da177e4
LT
5524 /*
5525 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5526 * we do not want to preempt the current task. Just return..
1da177e4 5527 */
beed33a8 5528 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5529 return;
5530
3a5c359a
AK
5531 do {
5532 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5533 schedule();
3a5c359a 5534 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5535
3a5c359a
AK
5536 /*
5537 * Check again in case we missed a preemption opportunity
5538 * between schedule and now.
5539 */
5540 barrier();
5ed0cec0 5541 } while (need_resched());
1da177e4 5542}
1da177e4
LT
5543EXPORT_SYMBOL(preempt_schedule);
5544
5545/*
2ed6e34f 5546 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5547 * off of irq context.
5548 * Note, that this is called and return with irqs disabled. This will
5549 * protect us against recursive calling from irq.
5550 */
5551asmlinkage void __sched preempt_schedule_irq(void)
5552{
5553 struct thread_info *ti = current_thread_info();
6478d880 5554
2ed6e34f 5555 /* Catch callers which need to be fixed */
1da177e4
LT
5556 BUG_ON(ti->preempt_count || !irqs_disabled());
5557
3a5c359a
AK
5558 do {
5559 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5560 local_irq_enable();
5561 schedule();
5562 local_irq_disable();
3a5c359a 5563 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5564
3a5c359a
AK
5565 /*
5566 * Check again in case we missed a preemption opportunity
5567 * between schedule and now.
5568 */
5569 barrier();
5ed0cec0 5570 } while (need_resched());
1da177e4
LT
5571}
5572
5573#endif /* CONFIG_PREEMPT */
5574
63859d4f 5575int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5576 void *key)
1da177e4 5577{
63859d4f 5578 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5579}
1da177e4
LT
5580EXPORT_SYMBOL(default_wake_function);
5581
5582/*
41a2d6cf
IM
5583 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5584 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5585 * number) then we wake all the non-exclusive tasks and one exclusive task.
5586 *
5587 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5588 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5589 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5590 */
78ddb08f 5591static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5592 int nr_exclusive, int wake_flags, void *key)
1da177e4 5593{
2e45874c 5594 wait_queue_t *curr, *next;
1da177e4 5595
2e45874c 5596 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5597 unsigned flags = curr->flags;
5598
63859d4f 5599 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5600 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5601 break;
5602 }
5603}
5604
5605/**
5606 * __wake_up - wake up threads blocked on a waitqueue.
5607 * @q: the waitqueue
5608 * @mode: which threads
5609 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5610 * @key: is directly passed to the wakeup function
50fa610a
DH
5611 *
5612 * It may be assumed that this function implies a write memory barrier before
5613 * changing the task state if and only if any tasks are woken up.
1da177e4 5614 */
7ad5b3a5 5615void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5616 int nr_exclusive, void *key)
1da177e4
LT
5617{
5618 unsigned long flags;
5619
5620 spin_lock_irqsave(&q->lock, flags);
5621 __wake_up_common(q, mode, nr_exclusive, 0, key);
5622 spin_unlock_irqrestore(&q->lock, flags);
5623}
1da177e4
LT
5624EXPORT_SYMBOL(__wake_up);
5625
5626/*
5627 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5628 */
7ad5b3a5 5629void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5630{
5631 __wake_up_common(q, mode, 1, 0, NULL);
5632}
5633
4ede816a
DL
5634void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5635{
5636 __wake_up_common(q, mode, 1, 0, key);
5637}
5638
1da177e4 5639/**
4ede816a 5640 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5641 * @q: the waitqueue
5642 * @mode: which threads
5643 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5644 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5645 *
5646 * The sync wakeup differs that the waker knows that it will schedule
5647 * away soon, so while the target thread will be woken up, it will not
5648 * be migrated to another CPU - ie. the two threads are 'synchronized'
5649 * with each other. This can prevent needless bouncing between CPUs.
5650 *
5651 * On UP it can prevent extra preemption.
50fa610a
DH
5652 *
5653 * It may be assumed that this function implies a write memory barrier before
5654 * changing the task state if and only if any tasks are woken up.
1da177e4 5655 */
4ede816a
DL
5656void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5657 int nr_exclusive, void *key)
1da177e4
LT
5658{
5659 unsigned long flags;
7d478721 5660 int wake_flags = WF_SYNC;
1da177e4
LT
5661
5662 if (unlikely(!q))
5663 return;
5664
5665 if (unlikely(!nr_exclusive))
7d478721 5666 wake_flags = 0;
1da177e4
LT
5667
5668 spin_lock_irqsave(&q->lock, flags);
7d478721 5669 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5670 spin_unlock_irqrestore(&q->lock, flags);
5671}
4ede816a
DL
5672EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5673
5674/*
5675 * __wake_up_sync - see __wake_up_sync_key()
5676 */
5677void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5678{
5679 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5680}
1da177e4
LT
5681EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5682
65eb3dc6
KD
5683/**
5684 * complete: - signals a single thread waiting on this completion
5685 * @x: holds the state of this particular completion
5686 *
5687 * This will wake up a single thread waiting on this completion. Threads will be
5688 * awakened in the same order in which they were queued.
5689 *
5690 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5691 *
5692 * It may be assumed that this function implies a write memory barrier before
5693 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5694 */
b15136e9 5695void complete(struct completion *x)
1da177e4
LT
5696{
5697 unsigned long flags;
5698
5699 spin_lock_irqsave(&x->wait.lock, flags);
5700 x->done++;
d9514f6c 5701 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5702 spin_unlock_irqrestore(&x->wait.lock, flags);
5703}
5704EXPORT_SYMBOL(complete);
5705
65eb3dc6
KD
5706/**
5707 * complete_all: - signals all threads waiting on this completion
5708 * @x: holds the state of this particular completion
5709 *
5710 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5711 *
5712 * It may be assumed that this function implies a write memory barrier before
5713 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5714 */
b15136e9 5715void complete_all(struct completion *x)
1da177e4
LT
5716{
5717 unsigned long flags;
5718
5719 spin_lock_irqsave(&x->wait.lock, flags);
5720 x->done += UINT_MAX/2;
d9514f6c 5721 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5722 spin_unlock_irqrestore(&x->wait.lock, flags);
5723}
5724EXPORT_SYMBOL(complete_all);
5725
8cbbe86d
AK
5726static inline long __sched
5727do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5728{
1da177e4
LT
5729 if (!x->done) {
5730 DECLARE_WAITQUEUE(wait, current);
5731
5732 wait.flags |= WQ_FLAG_EXCLUSIVE;
5733 __add_wait_queue_tail(&x->wait, &wait);
5734 do {
94d3d824 5735 if (signal_pending_state(state, current)) {
ea71a546
ON
5736 timeout = -ERESTARTSYS;
5737 break;
8cbbe86d
AK
5738 }
5739 __set_current_state(state);
1da177e4
LT
5740 spin_unlock_irq(&x->wait.lock);
5741 timeout = schedule_timeout(timeout);
5742 spin_lock_irq(&x->wait.lock);
ea71a546 5743 } while (!x->done && timeout);
1da177e4 5744 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5745 if (!x->done)
5746 return timeout;
1da177e4
LT
5747 }
5748 x->done--;
ea71a546 5749 return timeout ?: 1;
1da177e4 5750}
1da177e4 5751
8cbbe86d
AK
5752static long __sched
5753wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5754{
1da177e4
LT
5755 might_sleep();
5756
5757 spin_lock_irq(&x->wait.lock);
8cbbe86d 5758 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5759 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5760 return timeout;
5761}
1da177e4 5762
65eb3dc6
KD
5763/**
5764 * wait_for_completion: - waits for completion of a task
5765 * @x: holds the state of this particular completion
5766 *
5767 * This waits to be signaled for completion of a specific task. It is NOT
5768 * interruptible and there is no timeout.
5769 *
5770 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5771 * and interrupt capability. Also see complete().
5772 */
b15136e9 5773void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5774{
5775 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5776}
8cbbe86d 5777EXPORT_SYMBOL(wait_for_completion);
1da177e4 5778
65eb3dc6
KD
5779/**
5780 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5781 * @x: holds the state of this particular completion
5782 * @timeout: timeout value in jiffies
5783 *
5784 * This waits for either a completion of a specific task to be signaled or for a
5785 * specified timeout to expire. The timeout is in jiffies. It is not
5786 * interruptible.
5787 */
b15136e9 5788unsigned long __sched
8cbbe86d 5789wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5790{
8cbbe86d 5791 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5792}
8cbbe86d 5793EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5794
65eb3dc6
KD
5795/**
5796 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5797 * @x: holds the state of this particular completion
5798 *
5799 * This waits for completion of a specific task to be signaled. It is
5800 * interruptible.
5801 */
8cbbe86d 5802int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5803{
51e97990
AK
5804 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5805 if (t == -ERESTARTSYS)
5806 return t;
5807 return 0;
0fec171c 5808}
8cbbe86d 5809EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5810
65eb3dc6
KD
5811/**
5812 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5813 * @x: holds the state of this particular completion
5814 * @timeout: timeout value in jiffies
5815 *
5816 * This waits for either a completion of a specific task to be signaled or for a
5817 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5818 */
b15136e9 5819unsigned long __sched
8cbbe86d
AK
5820wait_for_completion_interruptible_timeout(struct completion *x,
5821 unsigned long timeout)
0fec171c 5822{
8cbbe86d 5823 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5824}
8cbbe86d 5825EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5826
65eb3dc6
KD
5827/**
5828 * wait_for_completion_killable: - waits for completion of a task (killable)
5829 * @x: holds the state of this particular completion
5830 *
5831 * This waits to be signaled for completion of a specific task. It can be
5832 * interrupted by a kill signal.
5833 */
009e577e
MW
5834int __sched wait_for_completion_killable(struct completion *x)
5835{
5836 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5837 if (t == -ERESTARTSYS)
5838 return t;
5839 return 0;
5840}
5841EXPORT_SYMBOL(wait_for_completion_killable);
5842
be4de352
DC
5843/**
5844 * try_wait_for_completion - try to decrement a completion without blocking
5845 * @x: completion structure
5846 *
5847 * Returns: 0 if a decrement cannot be done without blocking
5848 * 1 if a decrement succeeded.
5849 *
5850 * If a completion is being used as a counting completion,
5851 * attempt to decrement the counter without blocking. This
5852 * enables us to avoid waiting if the resource the completion
5853 * is protecting is not available.
5854 */
5855bool try_wait_for_completion(struct completion *x)
5856{
5857 int ret = 1;
5858
5859 spin_lock_irq(&x->wait.lock);
5860 if (!x->done)
5861 ret = 0;
5862 else
5863 x->done--;
5864 spin_unlock_irq(&x->wait.lock);
5865 return ret;
5866}
5867EXPORT_SYMBOL(try_wait_for_completion);
5868
5869/**
5870 * completion_done - Test to see if a completion has any waiters
5871 * @x: completion structure
5872 *
5873 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5874 * 1 if there are no waiters.
5875 *
5876 */
5877bool completion_done(struct completion *x)
5878{
5879 int ret = 1;
5880
5881 spin_lock_irq(&x->wait.lock);
5882 if (!x->done)
5883 ret = 0;
5884 spin_unlock_irq(&x->wait.lock);
5885 return ret;
5886}
5887EXPORT_SYMBOL(completion_done);
5888
8cbbe86d
AK
5889static long __sched
5890sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5891{
0fec171c
IM
5892 unsigned long flags;
5893 wait_queue_t wait;
5894
5895 init_waitqueue_entry(&wait, current);
1da177e4 5896
8cbbe86d 5897 __set_current_state(state);
1da177e4 5898
8cbbe86d
AK
5899 spin_lock_irqsave(&q->lock, flags);
5900 __add_wait_queue(q, &wait);
5901 spin_unlock(&q->lock);
5902 timeout = schedule_timeout(timeout);
5903 spin_lock_irq(&q->lock);
5904 __remove_wait_queue(q, &wait);
5905 spin_unlock_irqrestore(&q->lock, flags);
5906
5907 return timeout;
5908}
5909
5910void __sched interruptible_sleep_on(wait_queue_head_t *q)
5911{
5912 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5913}
1da177e4
LT
5914EXPORT_SYMBOL(interruptible_sleep_on);
5915
0fec171c 5916long __sched
95cdf3b7 5917interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5918{
8cbbe86d 5919 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5920}
1da177e4
LT
5921EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5922
0fec171c 5923void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5924{
8cbbe86d 5925 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5926}
1da177e4
LT
5927EXPORT_SYMBOL(sleep_on);
5928
0fec171c 5929long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5930{
8cbbe86d 5931 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5932}
1da177e4
LT
5933EXPORT_SYMBOL(sleep_on_timeout);
5934
b29739f9
IM
5935#ifdef CONFIG_RT_MUTEXES
5936
5937/*
5938 * rt_mutex_setprio - set the current priority of a task
5939 * @p: task
5940 * @prio: prio value (kernel-internal form)
5941 *
5942 * This function changes the 'effective' priority of a task. It does
5943 * not touch ->normal_prio like __setscheduler().
5944 *
5945 * Used by the rt_mutex code to implement priority inheritance logic.
5946 */
36c8b586 5947void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5948{
5949 unsigned long flags;
83b699ed 5950 int oldprio, on_rq, running;
70b97a7f 5951 struct rq *rq;
cb469845 5952 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5953
5954 BUG_ON(prio < 0 || prio > MAX_PRIO);
5955
5956 rq = task_rq_lock(p, &flags);
a8e504d2 5957 update_rq_clock(rq);
b29739f9 5958
d5f9f942 5959 oldprio = p->prio;
dd41f596 5960 on_rq = p->se.on_rq;
051a1d1a 5961 running = task_current(rq, p);
0e1f3483 5962 if (on_rq)
69be72c1 5963 dequeue_task(rq, p, 0);
0e1f3483
HS
5964 if (running)
5965 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5966
5967 if (rt_prio(prio))
5968 p->sched_class = &rt_sched_class;
5969 else
5970 p->sched_class = &fair_sched_class;
5971
b29739f9
IM
5972 p->prio = prio;
5973
0e1f3483
HS
5974 if (running)
5975 p->sched_class->set_curr_task(rq);
dd41f596 5976 if (on_rq) {
8159f87e 5977 enqueue_task(rq, p, 0);
cb469845
SR
5978
5979 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5980 }
5981 task_rq_unlock(rq, &flags);
5982}
5983
5984#endif
5985
36c8b586 5986void set_user_nice(struct task_struct *p, long nice)
1da177e4 5987{
dd41f596 5988 int old_prio, delta, on_rq;
1da177e4 5989 unsigned long flags;
70b97a7f 5990 struct rq *rq;
1da177e4
LT
5991
5992 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5993 return;
5994 /*
5995 * We have to be careful, if called from sys_setpriority(),
5996 * the task might be in the middle of scheduling on another CPU.
5997 */
5998 rq = task_rq_lock(p, &flags);
a8e504d2 5999 update_rq_clock(rq);
1da177e4
LT
6000 /*
6001 * The RT priorities are set via sched_setscheduler(), but we still
6002 * allow the 'normal' nice value to be set - but as expected
6003 * it wont have any effect on scheduling until the task is
dd41f596 6004 * SCHED_FIFO/SCHED_RR:
1da177e4 6005 */
e05606d3 6006 if (task_has_rt_policy(p)) {
1da177e4
LT
6007 p->static_prio = NICE_TO_PRIO(nice);
6008 goto out_unlock;
6009 }
dd41f596 6010 on_rq = p->se.on_rq;
c09595f6 6011 if (on_rq)
69be72c1 6012 dequeue_task(rq, p, 0);
1da177e4 6013
1da177e4 6014 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6015 set_load_weight(p);
b29739f9
IM
6016 old_prio = p->prio;
6017 p->prio = effective_prio(p);
6018 delta = p->prio - old_prio;
1da177e4 6019
dd41f596 6020 if (on_rq) {
8159f87e 6021 enqueue_task(rq, p, 0);
1da177e4 6022 /*
d5f9f942
AM
6023 * If the task increased its priority or is running and
6024 * lowered its priority, then reschedule its CPU:
1da177e4 6025 */
d5f9f942 6026 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6027 resched_task(rq->curr);
6028 }
6029out_unlock:
6030 task_rq_unlock(rq, &flags);
6031}
1da177e4
LT
6032EXPORT_SYMBOL(set_user_nice);
6033
e43379f1
MM
6034/*
6035 * can_nice - check if a task can reduce its nice value
6036 * @p: task
6037 * @nice: nice value
6038 */
36c8b586 6039int can_nice(const struct task_struct *p, const int nice)
e43379f1 6040{
024f4747
MM
6041 /* convert nice value [19,-20] to rlimit style value [1,40] */
6042 int nice_rlim = 20 - nice;
48f24c4d 6043
e43379f1
MM
6044 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6045 capable(CAP_SYS_NICE));
6046}
6047
1da177e4
LT
6048#ifdef __ARCH_WANT_SYS_NICE
6049
6050/*
6051 * sys_nice - change the priority of the current process.
6052 * @increment: priority increment
6053 *
6054 * sys_setpriority is a more generic, but much slower function that
6055 * does similar things.
6056 */
5add95d4 6057SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6058{
48f24c4d 6059 long nice, retval;
1da177e4
LT
6060
6061 /*
6062 * Setpriority might change our priority at the same moment.
6063 * We don't have to worry. Conceptually one call occurs first
6064 * and we have a single winner.
6065 */
e43379f1
MM
6066 if (increment < -40)
6067 increment = -40;
1da177e4
LT
6068 if (increment > 40)
6069 increment = 40;
6070
2b8f836f 6071 nice = TASK_NICE(current) + increment;
1da177e4
LT
6072 if (nice < -20)
6073 nice = -20;
6074 if (nice > 19)
6075 nice = 19;
6076
e43379f1
MM
6077 if (increment < 0 && !can_nice(current, nice))
6078 return -EPERM;
6079
1da177e4
LT
6080 retval = security_task_setnice(current, nice);
6081 if (retval)
6082 return retval;
6083
6084 set_user_nice(current, nice);
6085 return 0;
6086}
6087
6088#endif
6089
6090/**
6091 * task_prio - return the priority value of a given task.
6092 * @p: the task in question.
6093 *
6094 * This is the priority value as seen by users in /proc.
6095 * RT tasks are offset by -200. Normal tasks are centered
6096 * around 0, value goes from -16 to +15.
6097 */
36c8b586 6098int task_prio(const struct task_struct *p)
1da177e4
LT
6099{
6100 return p->prio - MAX_RT_PRIO;
6101}
6102
6103/**
6104 * task_nice - return the nice value of a given task.
6105 * @p: the task in question.
6106 */
36c8b586 6107int task_nice(const struct task_struct *p)
1da177e4
LT
6108{
6109 return TASK_NICE(p);
6110}
150d8bed 6111EXPORT_SYMBOL(task_nice);
1da177e4
LT
6112
6113/**
6114 * idle_cpu - is a given cpu idle currently?
6115 * @cpu: the processor in question.
6116 */
6117int idle_cpu(int cpu)
6118{
6119 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6120}
6121
1da177e4
LT
6122/**
6123 * idle_task - return the idle task for a given cpu.
6124 * @cpu: the processor in question.
6125 */
36c8b586 6126struct task_struct *idle_task(int cpu)
1da177e4
LT
6127{
6128 return cpu_rq(cpu)->idle;
6129}
6130
6131/**
6132 * find_process_by_pid - find a process with a matching PID value.
6133 * @pid: the pid in question.
6134 */
a9957449 6135static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6136{
228ebcbe 6137 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6138}
6139
6140/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6141static void
6142__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6143{
dd41f596 6144 BUG_ON(p->se.on_rq);
48f24c4d 6145
1da177e4 6146 p->policy = policy;
dd41f596
IM
6147 switch (p->policy) {
6148 case SCHED_NORMAL:
6149 case SCHED_BATCH:
6150 case SCHED_IDLE:
6151 p->sched_class = &fair_sched_class;
6152 break;
6153 case SCHED_FIFO:
6154 case SCHED_RR:
6155 p->sched_class = &rt_sched_class;
6156 break;
6157 }
6158
1da177e4 6159 p->rt_priority = prio;
b29739f9
IM
6160 p->normal_prio = normal_prio(p);
6161 /* we are holding p->pi_lock already */
6162 p->prio = rt_mutex_getprio(p);
2dd73a4f 6163 set_load_weight(p);
1da177e4
LT
6164}
6165
c69e8d9c
DH
6166/*
6167 * check the target process has a UID that matches the current process's
6168 */
6169static bool check_same_owner(struct task_struct *p)
6170{
6171 const struct cred *cred = current_cred(), *pcred;
6172 bool match;
6173
6174 rcu_read_lock();
6175 pcred = __task_cred(p);
6176 match = (cred->euid == pcred->euid ||
6177 cred->euid == pcred->uid);
6178 rcu_read_unlock();
6179 return match;
6180}
6181
961ccddd
RR
6182static int __sched_setscheduler(struct task_struct *p, int policy,
6183 struct sched_param *param, bool user)
1da177e4 6184{
83b699ed 6185 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6186 unsigned long flags;
cb469845 6187 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6188 struct rq *rq;
ca94c442 6189 int reset_on_fork;
1da177e4 6190
66e5393a
SR
6191 /* may grab non-irq protected spin_locks */
6192 BUG_ON(in_interrupt());
1da177e4
LT
6193recheck:
6194 /* double check policy once rq lock held */
ca94c442
LP
6195 if (policy < 0) {
6196 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6197 policy = oldpolicy = p->policy;
ca94c442
LP
6198 } else {
6199 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6200 policy &= ~SCHED_RESET_ON_FORK;
6201
6202 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6203 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6204 policy != SCHED_IDLE)
6205 return -EINVAL;
6206 }
6207
1da177e4
LT
6208 /*
6209 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6210 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6211 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6212 */
6213 if (param->sched_priority < 0 ||
95cdf3b7 6214 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6215 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6216 return -EINVAL;
e05606d3 6217 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6218 return -EINVAL;
6219
37e4ab3f
OC
6220 /*
6221 * Allow unprivileged RT tasks to decrease priority:
6222 */
961ccddd 6223 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6224 if (rt_policy(policy)) {
8dc3e909 6225 unsigned long rlim_rtprio;
8dc3e909
ON
6226
6227 if (!lock_task_sighand(p, &flags))
6228 return -ESRCH;
6229 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6230 unlock_task_sighand(p, &flags);
6231
6232 /* can't set/change the rt policy */
6233 if (policy != p->policy && !rlim_rtprio)
6234 return -EPERM;
6235
6236 /* can't increase priority */
6237 if (param->sched_priority > p->rt_priority &&
6238 param->sched_priority > rlim_rtprio)
6239 return -EPERM;
6240 }
dd41f596
IM
6241 /*
6242 * Like positive nice levels, dont allow tasks to
6243 * move out of SCHED_IDLE either:
6244 */
6245 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6246 return -EPERM;
5fe1d75f 6247
37e4ab3f 6248 /* can't change other user's priorities */
c69e8d9c 6249 if (!check_same_owner(p))
37e4ab3f 6250 return -EPERM;
ca94c442
LP
6251
6252 /* Normal users shall not reset the sched_reset_on_fork flag */
6253 if (p->sched_reset_on_fork && !reset_on_fork)
6254 return -EPERM;
37e4ab3f 6255 }
1da177e4 6256
725aad24 6257 if (user) {
b68aa230 6258#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6259 /*
6260 * Do not allow realtime tasks into groups that have no runtime
6261 * assigned.
6262 */
9a7e0b18
PZ
6263 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6264 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6265 return -EPERM;
b68aa230
PZ
6266#endif
6267
725aad24
JF
6268 retval = security_task_setscheduler(p, policy, param);
6269 if (retval)
6270 return retval;
6271 }
6272
b29739f9
IM
6273 /*
6274 * make sure no PI-waiters arrive (or leave) while we are
6275 * changing the priority of the task:
6276 */
6277 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6278 /*
6279 * To be able to change p->policy safely, the apropriate
6280 * runqueue lock must be held.
6281 */
b29739f9 6282 rq = __task_rq_lock(p);
1da177e4
LT
6283 /* recheck policy now with rq lock held */
6284 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6285 policy = oldpolicy = -1;
b29739f9
IM
6286 __task_rq_unlock(rq);
6287 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6288 goto recheck;
6289 }
2daa3577 6290 update_rq_clock(rq);
dd41f596 6291 on_rq = p->se.on_rq;
051a1d1a 6292 running = task_current(rq, p);
0e1f3483 6293 if (on_rq)
2e1cb74a 6294 deactivate_task(rq, p, 0);
0e1f3483
HS
6295 if (running)
6296 p->sched_class->put_prev_task(rq, p);
f6b53205 6297
ca94c442
LP
6298 p->sched_reset_on_fork = reset_on_fork;
6299
1da177e4 6300 oldprio = p->prio;
dd41f596 6301 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6302
0e1f3483
HS
6303 if (running)
6304 p->sched_class->set_curr_task(rq);
dd41f596
IM
6305 if (on_rq) {
6306 activate_task(rq, p, 0);
cb469845
SR
6307
6308 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6309 }
b29739f9
IM
6310 __task_rq_unlock(rq);
6311 spin_unlock_irqrestore(&p->pi_lock, flags);
6312
95e02ca9
TG
6313 rt_mutex_adjust_pi(p);
6314
1da177e4
LT
6315 return 0;
6316}
961ccddd
RR
6317
6318/**
6319 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6320 * @p: the task in question.
6321 * @policy: new policy.
6322 * @param: structure containing the new RT priority.
6323 *
6324 * NOTE that the task may be already dead.
6325 */
6326int sched_setscheduler(struct task_struct *p, int policy,
6327 struct sched_param *param)
6328{
6329 return __sched_setscheduler(p, policy, param, true);
6330}
1da177e4
LT
6331EXPORT_SYMBOL_GPL(sched_setscheduler);
6332
961ccddd
RR
6333/**
6334 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6335 * @p: the task in question.
6336 * @policy: new policy.
6337 * @param: structure containing the new RT priority.
6338 *
6339 * Just like sched_setscheduler, only don't bother checking if the
6340 * current context has permission. For example, this is needed in
6341 * stop_machine(): we create temporary high priority worker threads,
6342 * but our caller might not have that capability.
6343 */
6344int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6345 struct sched_param *param)
6346{
6347 return __sched_setscheduler(p, policy, param, false);
6348}
6349
95cdf3b7
IM
6350static int
6351do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6352{
1da177e4
LT
6353 struct sched_param lparam;
6354 struct task_struct *p;
36c8b586 6355 int retval;
1da177e4
LT
6356
6357 if (!param || pid < 0)
6358 return -EINVAL;
6359 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6360 return -EFAULT;
5fe1d75f
ON
6361
6362 rcu_read_lock();
6363 retval = -ESRCH;
1da177e4 6364 p = find_process_by_pid(pid);
5fe1d75f
ON
6365 if (p != NULL)
6366 retval = sched_setscheduler(p, policy, &lparam);
6367 rcu_read_unlock();
36c8b586 6368
1da177e4
LT
6369 return retval;
6370}
6371
6372/**
6373 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6374 * @pid: the pid in question.
6375 * @policy: new policy.
6376 * @param: structure containing the new RT priority.
6377 */
5add95d4
HC
6378SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6379 struct sched_param __user *, param)
1da177e4 6380{
c21761f1
JB
6381 /* negative values for policy are not valid */
6382 if (policy < 0)
6383 return -EINVAL;
6384
1da177e4
LT
6385 return do_sched_setscheduler(pid, policy, param);
6386}
6387
6388/**
6389 * sys_sched_setparam - set/change the RT priority of a thread
6390 * @pid: the pid in question.
6391 * @param: structure containing the new RT priority.
6392 */
5add95d4 6393SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6394{
6395 return do_sched_setscheduler(pid, -1, param);
6396}
6397
6398/**
6399 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6400 * @pid: the pid in question.
6401 */
5add95d4 6402SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6403{
36c8b586 6404 struct task_struct *p;
3a5c359a 6405 int retval;
1da177e4
LT
6406
6407 if (pid < 0)
3a5c359a 6408 return -EINVAL;
1da177e4
LT
6409
6410 retval = -ESRCH;
6411 read_lock(&tasklist_lock);
6412 p = find_process_by_pid(pid);
6413 if (p) {
6414 retval = security_task_getscheduler(p);
6415 if (!retval)
ca94c442
LP
6416 retval = p->policy
6417 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6418 }
6419 read_unlock(&tasklist_lock);
1da177e4
LT
6420 return retval;
6421}
6422
6423/**
ca94c442 6424 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6425 * @pid: the pid in question.
6426 * @param: structure containing the RT priority.
6427 */
5add95d4 6428SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6429{
6430 struct sched_param lp;
36c8b586 6431 struct task_struct *p;
3a5c359a 6432 int retval;
1da177e4
LT
6433
6434 if (!param || pid < 0)
3a5c359a 6435 return -EINVAL;
1da177e4
LT
6436
6437 read_lock(&tasklist_lock);
6438 p = find_process_by_pid(pid);
6439 retval = -ESRCH;
6440 if (!p)
6441 goto out_unlock;
6442
6443 retval = security_task_getscheduler(p);
6444 if (retval)
6445 goto out_unlock;
6446
6447 lp.sched_priority = p->rt_priority;
6448 read_unlock(&tasklist_lock);
6449
6450 /*
6451 * This one might sleep, we cannot do it with a spinlock held ...
6452 */
6453 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6454
1da177e4
LT
6455 return retval;
6456
6457out_unlock:
6458 read_unlock(&tasklist_lock);
6459 return retval;
6460}
6461
96f874e2 6462long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6463{
5a16f3d3 6464 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6465 struct task_struct *p;
6466 int retval;
1da177e4 6467
95402b38 6468 get_online_cpus();
1da177e4
LT
6469 read_lock(&tasklist_lock);
6470
6471 p = find_process_by_pid(pid);
6472 if (!p) {
6473 read_unlock(&tasklist_lock);
95402b38 6474 put_online_cpus();
1da177e4
LT
6475 return -ESRCH;
6476 }
6477
6478 /*
6479 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6480 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6481 * usage count and then drop tasklist_lock.
6482 */
6483 get_task_struct(p);
6484 read_unlock(&tasklist_lock);
6485
5a16f3d3
RR
6486 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6487 retval = -ENOMEM;
6488 goto out_put_task;
6489 }
6490 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6491 retval = -ENOMEM;
6492 goto out_free_cpus_allowed;
6493 }
1da177e4 6494 retval = -EPERM;
c69e8d9c 6495 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6496 goto out_unlock;
6497
e7834f8f
DQ
6498 retval = security_task_setscheduler(p, 0, NULL);
6499 if (retval)
6500 goto out_unlock;
6501
5a16f3d3
RR
6502 cpuset_cpus_allowed(p, cpus_allowed);
6503 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6504 again:
5a16f3d3 6505 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6506
8707d8b8 6507 if (!retval) {
5a16f3d3
RR
6508 cpuset_cpus_allowed(p, cpus_allowed);
6509 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6510 /*
6511 * We must have raced with a concurrent cpuset
6512 * update. Just reset the cpus_allowed to the
6513 * cpuset's cpus_allowed
6514 */
5a16f3d3 6515 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6516 goto again;
6517 }
6518 }
1da177e4 6519out_unlock:
5a16f3d3
RR
6520 free_cpumask_var(new_mask);
6521out_free_cpus_allowed:
6522 free_cpumask_var(cpus_allowed);
6523out_put_task:
1da177e4 6524 put_task_struct(p);
95402b38 6525 put_online_cpus();
1da177e4
LT
6526 return retval;
6527}
6528
6529static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6530 struct cpumask *new_mask)
1da177e4 6531{
96f874e2
RR
6532 if (len < cpumask_size())
6533 cpumask_clear(new_mask);
6534 else if (len > cpumask_size())
6535 len = cpumask_size();
6536
1da177e4
LT
6537 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6538}
6539
6540/**
6541 * sys_sched_setaffinity - set the cpu affinity of a process
6542 * @pid: pid of the process
6543 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6544 * @user_mask_ptr: user-space pointer to the new cpu mask
6545 */
5add95d4
HC
6546SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6547 unsigned long __user *, user_mask_ptr)
1da177e4 6548{
5a16f3d3 6549 cpumask_var_t new_mask;
1da177e4
LT
6550 int retval;
6551
5a16f3d3
RR
6552 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6553 return -ENOMEM;
1da177e4 6554
5a16f3d3
RR
6555 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6556 if (retval == 0)
6557 retval = sched_setaffinity(pid, new_mask);
6558 free_cpumask_var(new_mask);
6559 return retval;
1da177e4
LT
6560}
6561
96f874e2 6562long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6563{
36c8b586 6564 struct task_struct *p;
1da177e4 6565 int retval;
1da177e4 6566
95402b38 6567 get_online_cpus();
1da177e4
LT
6568 read_lock(&tasklist_lock);
6569
6570 retval = -ESRCH;
6571 p = find_process_by_pid(pid);
6572 if (!p)
6573 goto out_unlock;
6574
e7834f8f
DQ
6575 retval = security_task_getscheduler(p);
6576 if (retval)
6577 goto out_unlock;
6578
96f874e2 6579 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6580
6581out_unlock:
6582 read_unlock(&tasklist_lock);
95402b38 6583 put_online_cpus();
1da177e4 6584
9531b62f 6585 return retval;
1da177e4
LT
6586}
6587
6588/**
6589 * sys_sched_getaffinity - get the cpu affinity of a process
6590 * @pid: pid of the process
6591 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6592 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6593 */
5add95d4
HC
6594SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6595 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6596{
6597 int ret;
f17c8607 6598 cpumask_var_t mask;
1da177e4 6599
f17c8607 6600 if (len < cpumask_size())
1da177e4
LT
6601 return -EINVAL;
6602
f17c8607
RR
6603 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6604 return -ENOMEM;
1da177e4 6605
f17c8607
RR
6606 ret = sched_getaffinity(pid, mask);
6607 if (ret == 0) {
6608 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6609 ret = -EFAULT;
6610 else
6611 ret = cpumask_size();
6612 }
6613 free_cpumask_var(mask);
1da177e4 6614
f17c8607 6615 return ret;
1da177e4
LT
6616}
6617
6618/**
6619 * sys_sched_yield - yield the current processor to other threads.
6620 *
dd41f596
IM
6621 * This function yields the current CPU to other tasks. If there are no
6622 * other threads running on this CPU then this function will return.
1da177e4 6623 */
5add95d4 6624SYSCALL_DEFINE0(sched_yield)
1da177e4 6625{
70b97a7f 6626 struct rq *rq = this_rq_lock();
1da177e4 6627
2d72376b 6628 schedstat_inc(rq, yld_count);
4530d7ab 6629 current->sched_class->yield_task(rq);
1da177e4
LT
6630
6631 /*
6632 * Since we are going to call schedule() anyway, there's
6633 * no need to preempt or enable interrupts:
6634 */
6635 __release(rq->lock);
8a25d5de 6636 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6637 _raw_spin_unlock(&rq->lock);
6638 preempt_enable_no_resched();
6639
6640 schedule();
6641
6642 return 0;
6643}
6644
d86ee480
PZ
6645static inline int should_resched(void)
6646{
6647 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6648}
6649
e7b38404 6650static void __cond_resched(void)
1da177e4 6651{
e7aaaa69
FW
6652 add_preempt_count(PREEMPT_ACTIVE);
6653 schedule();
6654 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6655}
6656
02b67cc3 6657int __sched _cond_resched(void)
1da177e4 6658{
d86ee480 6659 if (should_resched()) {
1da177e4
LT
6660 __cond_resched();
6661 return 1;
6662 }
6663 return 0;
6664}
02b67cc3 6665EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6666
6667/*
613afbf8 6668 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6669 * call schedule, and on return reacquire the lock.
6670 *
41a2d6cf 6671 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6672 * operations here to prevent schedule() from being called twice (once via
6673 * spin_unlock(), once by hand).
6674 */
613afbf8 6675int __cond_resched_lock(spinlock_t *lock)
1da177e4 6676{
d86ee480 6677 int resched = should_resched();
6df3cecb
JK
6678 int ret = 0;
6679
f607c668
PZ
6680 lockdep_assert_held(lock);
6681
95c354fe 6682 if (spin_needbreak(lock) || resched) {
1da177e4 6683 spin_unlock(lock);
d86ee480 6684 if (resched)
95c354fe
NP
6685 __cond_resched();
6686 else
6687 cpu_relax();
6df3cecb 6688 ret = 1;
1da177e4 6689 spin_lock(lock);
1da177e4 6690 }
6df3cecb 6691 return ret;
1da177e4 6692}
613afbf8 6693EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6694
613afbf8 6695int __sched __cond_resched_softirq(void)
1da177e4
LT
6696{
6697 BUG_ON(!in_softirq());
6698
d86ee480 6699 if (should_resched()) {
98d82567 6700 local_bh_enable();
1da177e4
LT
6701 __cond_resched();
6702 local_bh_disable();
6703 return 1;
6704 }
6705 return 0;
6706}
613afbf8 6707EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6708
1da177e4
LT
6709/**
6710 * yield - yield the current processor to other threads.
6711 *
72fd4a35 6712 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6713 * thread runnable and calls sys_sched_yield().
6714 */
6715void __sched yield(void)
6716{
6717 set_current_state(TASK_RUNNING);
6718 sys_sched_yield();
6719}
1da177e4
LT
6720EXPORT_SYMBOL(yield);
6721
6722/*
41a2d6cf 6723 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6724 * that process accounting knows that this is a task in IO wait state.
6725 *
6726 * But don't do that if it is a deliberate, throttling IO wait (this task
6727 * has set its backing_dev_info: the queue against which it should throttle)
6728 */
6729void __sched io_schedule(void)
6730{
54d35f29 6731 struct rq *rq = raw_rq();
1da177e4 6732
0ff92245 6733 delayacct_blkio_start();
1da177e4 6734 atomic_inc(&rq->nr_iowait);
8f0dfc34 6735 current->in_iowait = 1;
1da177e4 6736 schedule();
8f0dfc34 6737 current->in_iowait = 0;
1da177e4 6738 atomic_dec(&rq->nr_iowait);
0ff92245 6739 delayacct_blkio_end();
1da177e4 6740}
1da177e4
LT
6741EXPORT_SYMBOL(io_schedule);
6742
6743long __sched io_schedule_timeout(long timeout)
6744{
54d35f29 6745 struct rq *rq = raw_rq();
1da177e4
LT
6746 long ret;
6747
0ff92245 6748 delayacct_blkio_start();
1da177e4 6749 atomic_inc(&rq->nr_iowait);
8f0dfc34 6750 current->in_iowait = 1;
1da177e4 6751 ret = schedule_timeout(timeout);
8f0dfc34 6752 current->in_iowait = 0;
1da177e4 6753 atomic_dec(&rq->nr_iowait);
0ff92245 6754 delayacct_blkio_end();
1da177e4
LT
6755 return ret;
6756}
6757
6758/**
6759 * sys_sched_get_priority_max - return maximum RT priority.
6760 * @policy: scheduling class.
6761 *
6762 * this syscall returns the maximum rt_priority that can be used
6763 * by a given scheduling class.
6764 */
5add95d4 6765SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6766{
6767 int ret = -EINVAL;
6768
6769 switch (policy) {
6770 case SCHED_FIFO:
6771 case SCHED_RR:
6772 ret = MAX_USER_RT_PRIO-1;
6773 break;
6774 case SCHED_NORMAL:
b0a9499c 6775 case SCHED_BATCH:
dd41f596 6776 case SCHED_IDLE:
1da177e4
LT
6777 ret = 0;
6778 break;
6779 }
6780 return ret;
6781}
6782
6783/**
6784 * sys_sched_get_priority_min - return minimum RT priority.
6785 * @policy: scheduling class.
6786 *
6787 * this syscall returns the minimum rt_priority that can be used
6788 * by a given scheduling class.
6789 */
5add95d4 6790SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6791{
6792 int ret = -EINVAL;
6793
6794 switch (policy) {
6795 case SCHED_FIFO:
6796 case SCHED_RR:
6797 ret = 1;
6798 break;
6799 case SCHED_NORMAL:
b0a9499c 6800 case SCHED_BATCH:
dd41f596 6801 case SCHED_IDLE:
1da177e4
LT
6802 ret = 0;
6803 }
6804 return ret;
6805}
6806
6807/**
6808 * sys_sched_rr_get_interval - return the default timeslice of a process.
6809 * @pid: pid of the process.
6810 * @interval: userspace pointer to the timeslice value.
6811 *
6812 * this syscall writes the default timeslice value of a given process
6813 * into the user-space timespec buffer. A value of '0' means infinity.
6814 */
17da2bd9 6815SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6816 struct timespec __user *, interval)
1da177e4 6817{
36c8b586 6818 struct task_struct *p;
a4ec24b4 6819 unsigned int time_slice;
3a5c359a 6820 int retval;
1da177e4 6821 struct timespec t;
1da177e4
LT
6822
6823 if (pid < 0)
3a5c359a 6824 return -EINVAL;
1da177e4
LT
6825
6826 retval = -ESRCH;
6827 read_lock(&tasklist_lock);
6828 p = find_process_by_pid(pid);
6829 if (!p)
6830 goto out_unlock;
6831
6832 retval = security_task_getscheduler(p);
6833 if (retval)
6834 goto out_unlock;
6835
0d721cea 6836 time_slice = p->sched_class->get_rr_interval(p);
a4ec24b4 6837
1da177e4 6838 read_unlock(&tasklist_lock);
a4ec24b4 6839 jiffies_to_timespec(time_slice, &t);
1da177e4 6840 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6841 return retval;
3a5c359a 6842
1da177e4
LT
6843out_unlock:
6844 read_unlock(&tasklist_lock);
6845 return retval;
6846}
6847
7c731e0a 6848static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6849
82a1fcb9 6850void sched_show_task(struct task_struct *p)
1da177e4 6851{
1da177e4 6852 unsigned long free = 0;
36c8b586 6853 unsigned state;
1da177e4 6854
1da177e4 6855 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6856 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6857 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6858#if BITS_PER_LONG == 32
1da177e4 6859 if (state == TASK_RUNNING)
cc4ea795 6860 printk(KERN_CONT " running ");
1da177e4 6861 else
cc4ea795 6862 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6863#else
6864 if (state == TASK_RUNNING)
cc4ea795 6865 printk(KERN_CONT " running task ");
1da177e4 6866 else
cc4ea795 6867 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6868#endif
6869#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6870 free = stack_not_used(p);
1da177e4 6871#endif
aa47b7e0
DR
6872 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6873 task_pid_nr(p), task_pid_nr(p->real_parent),
6874 (unsigned long)task_thread_info(p)->flags);
1da177e4 6875
5fb5e6de 6876 show_stack(p, NULL);
1da177e4
LT
6877}
6878
e59e2ae2 6879void show_state_filter(unsigned long state_filter)
1da177e4 6880{
36c8b586 6881 struct task_struct *g, *p;
1da177e4 6882
4bd77321
IM
6883#if BITS_PER_LONG == 32
6884 printk(KERN_INFO
6885 " task PC stack pid father\n");
1da177e4 6886#else
4bd77321
IM
6887 printk(KERN_INFO
6888 " task PC stack pid father\n");
1da177e4
LT
6889#endif
6890 read_lock(&tasklist_lock);
6891 do_each_thread(g, p) {
6892 /*
6893 * reset the NMI-timeout, listing all files on a slow
6894 * console might take alot of time:
6895 */
6896 touch_nmi_watchdog();
39bc89fd 6897 if (!state_filter || (p->state & state_filter))
82a1fcb9 6898 sched_show_task(p);
1da177e4
LT
6899 } while_each_thread(g, p);
6900
04c9167f
JF
6901 touch_all_softlockup_watchdogs();
6902
dd41f596
IM
6903#ifdef CONFIG_SCHED_DEBUG
6904 sysrq_sched_debug_show();
6905#endif
1da177e4 6906 read_unlock(&tasklist_lock);
e59e2ae2
IM
6907 /*
6908 * Only show locks if all tasks are dumped:
6909 */
6910 if (state_filter == -1)
6911 debug_show_all_locks();
1da177e4
LT
6912}
6913
1df21055
IM
6914void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6915{
dd41f596 6916 idle->sched_class = &idle_sched_class;
1df21055
IM
6917}
6918
f340c0d1
IM
6919/**
6920 * init_idle - set up an idle thread for a given CPU
6921 * @idle: task in question
6922 * @cpu: cpu the idle task belongs to
6923 *
6924 * NOTE: this function does not set the idle thread's NEED_RESCHED
6925 * flag, to make booting more robust.
6926 */
5c1e1767 6927void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6928{
70b97a7f 6929 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6930 unsigned long flags;
6931
5cbd54ef
IM
6932 spin_lock_irqsave(&rq->lock, flags);
6933
dd41f596
IM
6934 __sched_fork(idle);
6935 idle->se.exec_start = sched_clock();
6936
b29739f9 6937 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6938 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6939 __set_task_cpu(idle, cpu);
1da177e4 6940
1da177e4 6941 rq->curr = rq->idle = idle;
4866cde0
NP
6942#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6943 idle->oncpu = 1;
6944#endif
1da177e4
LT
6945 spin_unlock_irqrestore(&rq->lock, flags);
6946
6947 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6948#if defined(CONFIG_PREEMPT)
6949 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6950#else
a1261f54 6951 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6952#endif
dd41f596
IM
6953 /*
6954 * The idle tasks have their own, simple scheduling class:
6955 */
6956 idle->sched_class = &idle_sched_class;
fb52607a 6957 ftrace_graph_init_task(idle);
1da177e4
LT
6958}
6959
6960/*
6961 * In a system that switches off the HZ timer nohz_cpu_mask
6962 * indicates which cpus entered this state. This is used
6963 * in the rcu update to wait only for active cpus. For system
6964 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6965 * always be CPU_BITS_NONE.
1da177e4 6966 */
6a7b3dc3 6967cpumask_var_t nohz_cpu_mask;
1da177e4 6968
19978ca6
IM
6969/*
6970 * Increase the granularity value when there are more CPUs,
6971 * because with more CPUs the 'effective latency' as visible
6972 * to users decreases. But the relationship is not linear,
6973 * so pick a second-best guess by going with the log2 of the
6974 * number of CPUs.
6975 *
6976 * This idea comes from the SD scheduler of Con Kolivas:
6977 */
6978static inline void sched_init_granularity(void)
6979{
6980 unsigned int factor = 1 + ilog2(num_online_cpus());
6981 const unsigned long limit = 200000000;
6982
6983 sysctl_sched_min_granularity *= factor;
6984 if (sysctl_sched_min_granularity > limit)
6985 sysctl_sched_min_granularity = limit;
6986
6987 sysctl_sched_latency *= factor;
6988 if (sysctl_sched_latency > limit)
6989 sysctl_sched_latency = limit;
6990
6991 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6992
6993 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6994}
6995
1da177e4
LT
6996#ifdef CONFIG_SMP
6997/*
6998 * This is how migration works:
6999 *
70b97a7f 7000 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7001 * runqueue and wake up that CPU's migration thread.
7002 * 2) we down() the locked semaphore => thread blocks.
7003 * 3) migration thread wakes up (implicitly it forces the migrated
7004 * thread off the CPU)
7005 * 4) it gets the migration request and checks whether the migrated
7006 * task is still in the wrong runqueue.
7007 * 5) if it's in the wrong runqueue then the migration thread removes
7008 * it and puts it into the right queue.
7009 * 6) migration thread up()s the semaphore.
7010 * 7) we wake up and the migration is done.
7011 */
7012
7013/*
7014 * Change a given task's CPU affinity. Migrate the thread to a
7015 * proper CPU and schedule it away if the CPU it's executing on
7016 * is removed from the allowed bitmask.
7017 *
7018 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7019 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7020 * call is not atomic; no spinlocks may be held.
7021 */
96f874e2 7022int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7023{
70b97a7f 7024 struct migration_req req;
1da177e4 7025 unsigned long flags;
70b97a7f 7026 struct rq *rq;
48f24c4d 7027 int ret = 0;
1da177e4
LT
7028
7029 rq = task_rq_lock(p, &flags);
96f874e2 7030 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7031 ret = -EINVAL;
7032 goto out;
7033 }
7034
9985b0ba 7035 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7036 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7037 ret = -EINVAL;
7038 goto out;
7039 }
7040
73fe6aae 7041 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7042 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7043 else {
96f874e2
RR
7044 cpumask_copy(&p->cpus_allowed, new_mask);
7045 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7046 }
7047
1da177e4 7048 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7049 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7050 goto out;
7051
1e5ce4f4 7052 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7053 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7054 struct task_struct *mt = rq->migration_thread;
7055
7056 get_task_struct(mt);
1da177e4
LT
7057 task_rq_unlock(rq, &flags);
7058 wake_up_process(rq->migration_thread);
693525e3 7059 put_task_struct(mt);
1da177e4
LT
7060 wait_for_completion(&req.done);
7061 tlb_migrate_finish(p->mm);
7062 return 0;
7063 }
7064out:
7065 task_rq_unlock(rq, &flags);
48f24c4d 7066
1da177e4
LT
7067 return ret;
7068}
cd8ba7cd 7069EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7070
7071/*
41a2d6cf 7072 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7073 * this because either it can't run here any more (set_cpus_allowed()
7074 * away from this CPU, or CPU going down), or because we're
7075 * attempting to rebalance this task on exec (sched_exec).
7076 *
7077 * So we race with normal scheduler movements, but that's OK, as long
7078 * as the task is no longer on this CPU.
efc30814
KK
7079 *
7080 * Returns non-zero if task was successfully migrated.
1da177e4 7081 */
efc30814 7082static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7083{
70b97a7f 7084 struct rq *rq_dest, *rq_src;
dd41f596 7085 int ret = 0, on_rq;
1da177e4 7086
e761b772 7087 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7088 return ret;
1da177e4
LT
7089
7090 rq_src = cpu_rq(src_cpu);
7091 rq_dest = cpu_rq(dest_cpu);
7092
7093 double_rq_lock(rq_src, rq_dest);
7094 /* Already moved. */
7095 if (task_cpu(p) != src_cpu)
b1e38734 7096 goto done;
1da177e4 7097 /* Affinity changed (again). */
96f874e2 7098 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7099 goto fail;
1da177e4 7100
dd41f596 7101 on_rq = p->se.on_rq;
6e82a3be 7102 if (on_rq)
2e1cb74a 7103 deactivate_task(rq_src, p, 0);
6e82a3be 7104
1da177e4 7105 set_task_cpu(p, dest_cpu);
dd41f596
IM
7106 if (on_rq) {
7107 activate_task(rq_dest, p, 0);
15afe09b 7108 check_preempt_curr(rq_dest, p, 0);
1da177e4 7109 }
b1e38734 7110done:
efc30814 7111 ret = 1;
b1e38734 7112fail:
1da177e4 7113 double_rq_unlock(rq_src, rq_dest);
efc30814 7114 return ret;
1da177e4
LT
7115}
7116
03b042bf
PM
7117#define RCU_MIGRATION_IDLE 0
7118#define RCU_MIGRATION_NEED_QS 1
7119#define RCU_MIGRATION_GOT_QS 2
7120#define RCU_MIGRATION_MUST_SYNC 3
7121
1da177e4
LT
7122/*
7123 * migration_thread - this is a highprio system thread that performs
7124 * thread migration by bumping thread off CPU then 'pushing' onto
7125 * another runqueue.
7126 */
95cdf3b7 7127static int migration_thread(void *data)
1da177e4 7128{
03b042bf 7129 int badcpu;
1da177e4 7130 int cpu = (long)data;
70b97a7f 7131 struct rq *rq;
1da177e4
LT
7132
7133 rq = cpu_rq(cpu);
7134 BUG_ON(rq->migration_thread != current);
7135
7136 set_current_state(TASK_INTERRUPTIBLE);
7137 while (!kthread_should_stop()) {
70b97a7f 7138 struct migration_req *req;
1da177e4 7139 struct list_head *head;
1da177e4 7140
1da177e4
LT
7141 spin_lock_irq(&rq->lock);
7142
7143 if (cpu_is_offline(cpu)) {
7144 spin_unlock_irq(&rq->lock);
371cbb38 7145 break;
1da177e4
LT
7146 }
7147
7148 if (rq->active_balance) {
7149 active_load_balance(rq, cpu);
7150 rq->active_balance = 0;
7151 }
7152
7153 head = &rq->migration_queue;
7154
7155 if (list_empty(head)) {
7156 spin_unlock_irq(&rq->lock);
7157 schedule();
7158 set_current_state(TASK_INTERRUPTIBLE);
7159 continue;
7160 }
70b97a7f 7161 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7162 list_del_init(head->next);
7163
03b042bf
PM
7164 if (req->task != NULL) {
7165 spin_unlock(&rq->lock);
7166 __migrate_task(req->task, cpu, req->dest_cpu);
7167 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7168 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7169 spin_unlock(&rq->lock);
7170 } else {
7171 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7172 spin_unlock(&rq->lock);
7173 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7174 }
674311d5 7175 local_irq_enable();
1da177e4
LT
7176
7177 complete(&req->done);
7178 }
7179 __set_current_state(TASK_RUNNING);
1da177e4 7180
1da177e4
LT
7181 return 0;
7182}
7183
7184#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7185
7186static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7187{
7188 int ret;
7189
7190 local_irq_disable();
7191 ret = __migrate_task(p, src_cpu, dest_cpu);
7192 local_irq_enable();
7193 return ret;
7194}
7195
054b9108 7196/*
3a4fa0a2 7197 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7198 */
48f24c4d 7199static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7200{
70b97a7f 7201 int dest_cpu;
6ca09dfc 7202 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7203
7204again:
7205 /* Look for allowed, online CPU in same node. */
7206 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7207 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7208 goto move;
7209
7210 /* Any allowed, online CPU? */
7211 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7212 if (dest_cpu < nr_cpu_ids)
7213 goto move;
7214
7215 /* No more Mr. Nice Guy. */
7216 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7217 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7218 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7219
e76bd8d9
RR
7220 /*
7221 * Don't tell them about moving exiting tasks or
7222 * kernel threads (both mm NULL), since they never
7223 * leave kernel.
7224 */
7225 if (p->mm && printk_ratelimit()) {
7226 printk(KERN_INFO "process %d (%s) no "
7227 "longer affine to cpu%d\n",
7228 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7229 }
e76bd8d9
RR
7230 }
7231
7232move:
7233 /* It can have affinity changed while we were choosing. */
7234 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7235 goto again;
1da177e4
LT
7236}
7237
7238/*
7239 * While a dead CPU has no uninterruptible tasks queued at this point,
7240 * it might still have a nonzero ->nr_uninterruptible counter, because
7241 * for performance reasons the counter is not stricly tracking tasks to
7242 * their home CPUs. So we just add the counter to another CPU's counter,
7243 * to keep the global sum constant after CPU-down:
7244 */
70b97a7f 7245static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7246{
1e5ce4f4 7247 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7248 unsigned long flags;
7249
7250 local_irq_save(flags);
7251 double_rq_lock(rq_src, rq_dest);
7252 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7253 rq_src->nr_uninterruptible = 0;
7254 double_rq_unlock(rq_src, rq_dest);
7255 local_irq_restore(flags);
7256}
7257
7258/* Run through task list and migrate tasks from the dead cpu. */
7259static void migrate_live_tasks(int src_cpu)
7260{
48f24c4d 7261 struct task_struct *p, *t;
1da177e4 7262
f7b4cddc 7263 read_lock(&tasklist_lock);
1da177e4 7264
48f24c4d
IM
7265 do_each_thread(t, p) {
7266 if (p == current)
1da177e4
LT
7267 continue;
7268
48f24c4d
IM
7269 if (task_cpu(p) == src_cpu)
7270 move_task_off_dead_cpu(src_cpu, p);
7271 } while_each_thread(t, p);
1da177e4 7272
f7b4cddc 7273 read_unlock(&tasklist_lock);
1da177e4
LT
7274}
7275
dd41f596
IM
7276/*
7277 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7278 * It does so by boosting its priority to highest possible.
7279 * Used by CPU offline code.
1da177e4
LT
7280 */
7281void sched_idle_next(void)
7282{
48f24c4d 7283 int this_cpu = smp_processor_id();
70b97a7f 7284 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7285 struct task_struct *p = rq->idle;
7286 unsigned long flags;
7287
7288 /* cpu has to be offline */
48f24c4d 7289 BUG_ON(cpu_online(this_cpu));
1da177e4 7290
48f24c4d
IM
7291 /*
7292 * Strictly not necessary since rest of the CPUs are stopped by now
7293 * and interrupts disabled on the current cpu.
1da177e4
LT
7294 */
7295 spin_lock_irqsave(&rq->lock, flags);
7296
dd41f596 7297 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7298
94bc9a7b
DA
7299 update_rq_clock(rq);
7300 activate_task(rq, p, 0);
1da177e4
LT
7301
7302 spin_unlock_irqrestore(&rq->lock, flags);
7303}
7304
48f24c4d
IM
7305/*
7306 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7307 * offline.
7308 */
7309void idle_task_exit(void)
7310{
7311 struct mm_struct *mm = current->active_mm;
7312
7313 BUG_ON(cpu_online(smp_processor_id()));
7314
7315 if (mm != &init_mm)
7316 switch_mm(mm, &init_mm, current);
7317 mmdrop(mm);
7318}
7319
054b9108 7320/* called under rq->lock with disabled interrupts */
36c8b586 7321static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7322{
70b97a7f 7323 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7324
7325 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7326 BUG_ON(!p->exit_state);
1da177e4
LT
7327
7328 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7329 BUG_ON(p->state == TASK_DEAD);
1da177e4 7330
48f24c4d 7331 get_task_struct(p);
1da177e4
LT
7332
7333 /*
7334 * Drop lock around migration; if someone else moves it,
41a2d6cf 7335 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7336 * fine.
7337 */
f7b4cddc 7338 spin_unlock_irq(&rq->lock);
48f24c4d 7339 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7340 spin_lock_irq(&rq->lock);
1da177e4 7341
48f24c4d 7342 put_task_struct(p);
1da177e4
LT
7343}
7344
7345/* release_task() removes task from tasklist, so we won't find dead tasks. */
7346static void migrate_dead_tasks(unsigned int dead_cpu)
7347{
70b97a7f 7348 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7349 struct task_struct *next;
48f24c4d 7350
dd41f596
IM
7351 for ( ; ; ) {
7352 if (!rq->nr_running)
7353 break;
a8e504d2 7354 update_rq_clock(rq);
b67802ea 7355 next = pick_next_task(rq);
dd41f596
IM
7356 if (!next)
7357 break;
79c53799 7358 next->sched_class->put_prev_task(rq, next);
dd41f596 7359 migrate_dead(dead_cpu, next);
e692ab53 7360
1da177e4
LT
7361 }
7362}
dce48a84
TG
7363
7364/*
7365 * remove the tasks which were accounted by rq from calc_load_tasks.
7366 */
7367static void calc_global_load_remove(struct rq *rq)
7368{
7369 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7370 rq->calc_load_active = 0;
dce48a84 7371}
1da177e4
LT
7372#endif /* CONFIG_HOTPLUG_CPU */
7373
e692ab53
NP
7374#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7375
7376static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7377 {
7378 .procname = "sched_domain",
c57baf1e 7379 .mode = 0555,
e0361851 7380 },
38605cae 7381 {0, },
e692ab53
NP
7382};
7383
7384static struct ctl_table sd_ctl_root[] = {
e0361851 7385 {
c57baf1e 7386 .ctl_name = CTL_KERN,
e0361851 7387 .procname = "kernel",
c57baf1e 7388 .mode = 0555,
e0361851
AD
7389 .child = sd_ctl_dir,
7390 },
38605cae 7391 {0, },
e692ab53
NP
7392};
7393
7394static struct ctl_table *sd_alloc_ctl_entry(int n)
7395{
7396 struct ctl_table *entry =
5cf9f062 7397 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7398
e692ab53
NP
7399 return entry;
7400}
7401
6382bc90
MM
7402static void sd_free_ctl_entry(struct ctl_table **tablep)
7403{
cd790076 7404 struct ctl_table *entry;
6382bc90 7405
cd790076
MM
7406 /*
7407 * In the intermediate directories, both the child directory and
7408 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7409 * will always be set. In the lowest directory the names are
cd790076
MM
7410 * static strings and all have proc handlers.
7411 */
7412 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7413 if (entry->child)
7414 sd_free_ctl_entry(&entry->child);
cd790076
MM
7415 if (entry->proc_handler == NULL)
7416 kfree(entry->procname);
7417 }
6382bc90
MM
7418
7419 kfree(*tablep);
7420 *tablep = NULL;
7421}
7422
e692ab53 7423static void
e0361851 7424set_table_entry(struct ctl_table *entry,
e692ab53
NP
7425 const char *procname, void *data, int maxlen,
7426 mode_t mode, proc_handler *proc_handler)
7427{
e692ab53
NP
7428 entry->procname = procname;
7429 entry->data = data;
7430 entry->maxlen = maxlen;
7431 entry->mode = mode;
7432 entry->proc_handler = proc_handler;
7433}
7434
7435static struct ctl_table *
7436sd_alloc_ctl_domain_table(struct sched_domain *sd)
7437{
a5d8c348 7438 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7439
ad1cdc1d
MM
7440 if (table == NULL)
7441 return NULL;
7442
e0361851 7443 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7444 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7445 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7446 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7447 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7448 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7449 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7450 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7451 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7452 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7453 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7454 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7455 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7456 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7457 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7458 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7459 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7460 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7461 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7462 &sd->cache_nice_tries,
7463 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7464 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7465 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7466 set_table_entry(&table[11], "name", sd->name,
7467 CORENAME_MAX_SIZE, 0444, proc_dostring);
7468 /* &table[12] is terminator */
e692ab53
NP
7469
7470 return table;
7471}
7472
9a4e7159 7473static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7474{
7475 struct ctl_table *entry, *table;
7476 struct sched_domain *sd;
7477 int domain_num = 0, i;
7478 char buf[32];
7479
7480 for_each_domain(cpu, sd)
7481 domain_num++;
7482 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7483 if (table == NULL)
7484 return NULL;
e692ab53
NP
7485
7486 i = 0;
7487 for_each_domain(cpu, sd) {
7488 snprintf(buf, 32, "domain%d", i);
e692ab53 7489 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7490 entry->mode = 0555;
e692ab53
NP
7491 entry->child = sd_alloc_ctl_domain_table(sd);
7492 entry++;
7493 i++;
7494 }
7495 return table;
7496}
7497
7498static struct ctl_table_header *sd_sysctl_header;
6382bc90 7499static void register_sched_domain_sysctl(void)
e692ab53
NP
7500{
7501 int i, cpu_num = num_online_cpus();
7502 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7503 char buf[32];
7504
7378547f
MM
7505 WARN_ON(sd_ctl_dir[0].child);
7506 sd_ctl_dir[0].child = entry;
7507
ad1cdc1d
MM
7508 if (entry == NULL)
7509 return;
7510
97b6ea7b 7511 for_each_online_cpu(i) {
e692ab53 7512 snprintf(buf, 32, "cpu%d", i);
e692ab53 7513 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7514 entry->mode = 0555;
e692ab53 7515 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7516 entry++;
e692ab53 7517 }
7378547f
MM
7518
7519 WARN_ON(sd_sysctl_header);
e692ab53
NP
7520 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7521}
6382bc90 7522
7378547f 7523/* may be called multiple times per register */
6382bc90
MM
7524static void unregister_sched_domain_sysctl(void)
7525{
7378547f
MM
7526 if (sd_sysctl_header)
7527 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7528 sd_sysctl_header = NULL;
7378547f
MM
7529 if (sd_ctl_dir[0].child)
7530 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7531}
e692ab53 7532#else
6382bc90
MM
7533static void register_sched_domain_sysctl(void)
7534{
7535}
7536static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7537{
7538}
7539#endif
7540
1f11eb6a
GH
7541static void set_rq_online(struct rq *rq)
7542{
7543 if (!rq->online) {
7544 const struct sched_class *class;
7545
c6c4927b 7546 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7547 rq->online = 1;
7548
7549 for_each_class(class) {
7550 if (class->rq_online)
7551 class->rq_online(rq);
7552 }
7553 }
7554}
7555
7556static void set_rq_offline(struct rq *rq)
7557{
7558 if (rq->online) {
7559 const struct sched_class *class;
7560
7561 for_each_class(class) {
7562 if (class->rq_offline)
7563 class->rq_offline(rq);
7564 }
7565
c6c4927b 7566 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7567 rq->online = 0;
7568 }
7569}
7570
1da177e4
LT
7571/*
7572 * migration_call - callback that gets triggered when a CPU is added.
7573 * Here we can start up the necessary migration thread for the new CPU.
7574 */
48f24c4d
IM
7575static int __cpuinit
7576migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7577{
1da177e4 7578 struct task_struct *p;
48f24c4d 7579 int cpu = (long)hcpu;
1da177e4 7580 unsigned long flags;
70b97a7f 7581 struct rq *rq;
1da177e4
LT
7582
7583 switch (action) {
5be9361c 7584
1da177e4 7585 case CPU_UP_PREPARE:
8bb78442 7586 case CPU_UP_PREPARE_FROZEN:
dd41f596 7587 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7588 if (IS_ERR(p))
7589 return NOTIFY_BAD;
1da177e4
LT
7590 kthread_bind(p, cpu);
7591 /* Must be high prio: stop_machine expects to yield to it. */
7592 rq = task_rq_lock(p, &flags);
dd41f596 7593 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7594 task_rq_unlock(rq, &flags);
371cbb38 7595 get_task_struct(p);
1da177e4 7596 cpu_rq(cpu)->migration_thread = p;
a468d389 7597 rq->calc_load_update = calc_load_update;
1da177e4 7598 break;
48f24c4d 7599
1da177e4 7600 case CPU_ONLINE:
8bb78442 7601 case CPU_ONLINE_FROZEN:
3a4fa0a2 7602 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7603 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7604
7605 /* Update our root-domain */
7606 rq = cpu_rq(cpu);
7607 spin_lock_irqsave(&rq->lock, flags);
7608 if (rq->rd) {
c6c4927b 7609 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7610
7611 set_rq_online(rq);
1f94ef59
GH
7612 }
7613 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7614 break;
48f24c4d 7615
1da177e4
LT
7616#ifdef CONFIG_HOTPLUG_CPU
7617 case CPU_UP_CANCELED:
8bb78442 7618 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7619 if (!cpu_rq(cpu)->migration_thread)
7620 break;
41a2d6cf 7621 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7622 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7623 cpumask_any(cpu_online_mask));
1da177e4 7624 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7625 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7626 cpu_rq(cpu)->migration_thread = NULL;
7627 break;
48f24c4d 7628
1da177e4 7629 case CPU_DEAD:
8bb78442 7630 case CPU_DEAD_FROZEN:
470fd646 7631 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7632 migrate_live_tasks(cpu);
7633 rq = cpu_rq(cpu);
7634 kthread_stop(rq->migration_thread);
371cbb38 7635 put_task_struct(rq->migration_thread);
1da177e4
LT
7636 rq->migration_thread = NULL;
7637 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7638 spin_lock_irq(&rq->lock);
a8e504d2 7639 update_rq_clock(rq);
2e1cb74a 7640 deactivate_task(rq, rq->idle, 0);
1da177e4 7641 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7642 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7643 rq->idle->sched_class = &idle_sched_class;
1da177e4 7644 migrate_dead_tasks(cpu);
d2da272a 7645 spin_unlock_irq(&rq->lock);
470fd646 7646 cpuset_unlock();
1da177e4
LT
7647 migrate_nr_uninterruptible(rq);
7648 BUG_ON(rq->nr_running != 0);
dce48a84 7649 calc_global_load_remove(rq);
41a2d6cf
IM
7650 /*
7651 * No need to migrate the tasks: it was best-effort if
7652 * they didn't take sched_hotcpu_mutex. Just wake up
7653 * the requestors.
7654 */
1da177e4
LT
7655 spin_lock_irq(&rq->lock);
7656 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7657 struct migration_req *req;
7658
1da177e4 7659 req = list_entry(rq->migration_queue.next,
70b97a7f 7660 struct migration_req, list);
1da177e4 7661 list_del_init(&req->list);
9a2bd244 7662 spin_unlock_irq(&rq->lock);
1da177e4 7663 complete(&req->done);
9a2bd244 7664 spin_lock_irq(&rq->lock);
1da177e4
LT
7665 }
7666 spin_unlock_irq(&rq->lock);
7667 break;
57d885fe 7668
08f503b0
GH
7669 case CPU_DYING:
7670 case CPU_DYING_FROZEN:
57d885fe
GH
7671 /* Update our root-domain */
7672 rq = cpu_rq(cpu);
7673 spin_lock_irqsave(&rq->lock, flags);
7674 if (rq->rd) {
c6c4927b 7675 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7676 set_rq_offline(rq);
57d885fe
GH
7677 }
7678 spin_unlock_irqrestore(&rq->lock, flags);
7679 break;
1da177e4
LT
7680#endif
7681 }
7682 return NOTIFY_OK;
7683}
7684
f38b0820
PM
7685/*
7686 * Register at high priority so that task migration (migrate_all_tasks)
7687 * happens before everything else. This has to be lower priority than
cdd6c482 7688 * the notifier in the perf_event subsystem, though.
1da177e4 7689 */
26c2143b 7690static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7691 .notifier_call = migration_call,
7692 .priority = 10
7693};
7694
7babe8db 7695static int __init migration_init(void)
1da177e4
LT
7696{
7697 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7698 int err;
48f24c4d
IM
7699
7700 /* Start one for the boot CPU: */
07dccf33
AM
7701 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7702 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7703 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7704 register_cpu_notifier(&migration_notifier);
7babe8db 7705
a004cd42 7706 return 0;
1da177e4 7707}
7babe8db 7708early_initcall(migration_init);
1da177e4
LT
7709#endif
7710
7711#ifdef CONFIG_SMP
476f3534 7712
3e9830dc 7713#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7714
7c16ec58 7715static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7716 struct cpumask *groupmask)
1da177e4 7717{
4dcf6aff 7718 struct sched_group *group = sd->groups;
434d53b0 7719 char str[256];
1da177e4 7720
968ea6d8 7721 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7722 cpumask_clear(groupmask);
4dcf6aff
IM
7723
7724 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7725
7726 if (!(sd->flags & SD_LOAD_BALANCE)) {
7727 printk("does not load-balance\n");
7728 if (sd->parent)
7729 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7730 " has parent");
7731 return -1;
41c7ce9a
NP
7732 }
7733
eefd796a 7734 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7735
758b2cdc 7736 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7737 printk(KERN_ERR "ERROR: domain->span does not contain "
7738 "CPU%d\n", cpu);
7739 }
758b2cdc 7740 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7741 printk(KERN_ERR "ERROR: domain->groups does not contain"
7742 " CPU%d\n", cpu);
7743 }
1da177e4 7744
4dcf6aff 7745 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7746 do {
4dcf6aff
IM
7747 if (!group) {
7748 printk("\n");
7749 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7750 break;
7751 }
7752
18a3885f 7753 if (!group->cpu_power) {
4dcf6aff
IM
7754 printk(KERN_CONT "\n");
7755 printk(KERN_ERR "ERROR: domain->cpu_power not "
7756 "set\n");
7757 break;
7758 }
1da177e4 7759
758b2cdc 7760 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7761 printk(KERN_CONT "\n");
7762 printk(KERN_ERR "ERROR: empty group\n");
7763 break;
7764 }
1da177e4 7765
758b2cdc 7766 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7767 printk(KERN_CONT "\n");
7768 printk(KERN_ERR "ERROR: repeated CPUs\n");
7769 break;
7770 }
1da177e4 7771
758b2cdc 7772 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7773
968ea6d8 7774 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7775
7776 printk(KERN_CONT " %s", str);
18a3885f
PZ
7777 if (group->cpu_power != SCHED_LOAD_SCALE) {
7778 printk(KERN_CONT " (cpu_power = %d)",
7779 group->cpu_power);
381512cf 7780 }
1da177e4 7781
4dcf6aff
IM
7782 group = group->next;
7783 } while (group != sd->groups);
7784 printk(KERN_CONT "\n");
1da177e4 7785
758b2cdc 7786 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7787 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7788
758b2cdc
RR
7789 if (sd->parent &&
7790 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7791 printk(KERN_ERR "ERROR: parent span is not a superset "
7792 "of domain->span\n");
7793 return 0;
7794}
1da177e4 7795
4dcf6aff
IM
7796static void sched_domain_debug(struct sched_domain *sd, int cpu)
7797{
d5dd3db1 7798 cpumask_var_t groupmask;
4dcf6aff 7799 int level = 0;
1da177e4 7800
4dcf6aff
IM
7801 if (!sd) {
7802 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7803 return;
7804 }
1da177e4 7805
4dcf6aff
IM
7806 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7807
d5dd3db1 7808 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7809 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7810 return;
7811 }
7812
4dcf6aff 7813 for (;;) {
7c16ec58 7814 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7815 break;
1da177e4
LT
7816 level++;
7817 sd = sd->parent;
33859f7f 7818 if (!sd)
4dcf6aff
IM
7819 break;
7820 }
d5dd3db1 7821 free_cpumask_var(groupmask);
1da177e4 7822}
6d6bc0ad 7823#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7824# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7825#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7826
1a20ff27 7827static int sd_degenerate(struct sched_domain *sd)
245af2c7 7828{
758b2cdc 7829 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7830 return 1;
7831
7832 /* Following flags need at least 2 groups */
7833 if (sd->flags & (SD_LOAD_BALANCE |
7834 SD_BALANCE_NEWIDLE |
7835 SD_BALANCE_FORK |
89c4710e
SS
7836 SD_BALANCE_EXEC |
7837 SD_SHARE_CPUPOWER |
7838 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7839 if (sd->groups != sd->groups->next)
7840 return 0;
7841 }
7842
7843 /* Following flags don't use groups */
c88d5910 7844 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7845 return 0;
7846
7847 return 1;
7848}
7849
48f24c4d
IM
7850static int
7851sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7852{
7853 unsigned long cflags = sd->flags, pflags = parent->flags;
7854
7855 if (sd_degenerate(parent))
7856 return 1;
7857
758b2cdc 7858 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7859 return 0;
7860
245af2c7
SS
7861 /* Flags needing groups don't count if only 1 group in parent */
7862 if (parent->groups == parent->groups->next) {
7863 pflags &= ~(SD_LOAD_BALANCE |
7864 SD_BALANCE_NEWIDLE |
7865 SD_BALANCE_FORK |
89c4710e
SS
7866 SD_BALANCE_EXEC |
7867 SD_SHARE_CPUPOWER |
7868 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7869 if (nr_node_ids == 1)
7870 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7871 }
7872 if (~cflags & pflags)
7873 return 0;
7874
7875 return 1;
7876}
7877
c6c4927b
RR
7878static void free_rootdomain(struct root_domain *rd)
7879{
68e74568
RR
7880 cpupri_cleanup(&rd->cpupri);
7881
c6c4927b
RR
7882 free_cpumask_var(rd->rto_mask);
7883 free_cpumask_var(rd->online);
7884 free_cpumask_var(rd->span);
7885 kfree(rd);
7886}
7887
57d885fe
GH
7888static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7889{
a0490fa3 7890 struct root_domain *old_rd = NULL;
57d885fe 7891 unsigned long flags;
57d885fe
GH
7892
7893 spin_lock_irqsave(&rq->lock, flags);
7894
7895 if (rq->rd) {
a0490fa3 7896 old_rd = rq->rd;
57d885fe 7897
c6c4927b 7898 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7899 set_rq_offline(rq);
57d885fe 7900
c6c4927b 7901 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7902
a0490fa3
IM
7903 /*
7904 * If we dont want to free the old_rt yet then
7905 * set old_rd to NULL to skip the freeing later
7906 * in this function:
7907 */
7908 if (!atomic_dec_and_test(&old_rd->refcount))
7909 old_rd = NULL;
57d885fe
GH
7910 }
7911
7912 atomic_inc(&rd->refcount);
7913 rq->rd = rd;
7914
c6c4927b 7915 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7916 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7917 set_rq_online(rq);
57d885fe
GH
7918
7919 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7920
7921 if (old_rd)
7922 free_rootdomain(old_rd);
57d885fe
GH
7923}
7924
fd5e1b5d 7925static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7926{
36b7b6d4
PE
7927 gfp_t gfp = GFP_KERNEL;
7928
57d885fe
GH
7929 memset(rd, 0, sizeof(*rd));
7930
36b7b6d4
PE
7931 if (bootmem)
7932 gfp = GFP_NOWAIT;
c6c4927b 7933
36b7b6d4 7934 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7935 goto out;
36b7b6d4 7936 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7937 goto free_span;
36b7b6d4 7938 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7939 goto free_online;
6e0534f2 7940
0fb53029 7941 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7942 goto free_rto_mask;
c6c4927b 7943 return 0;
6e0534f2 7944
68e74568
RR
7945free_rto_mask:
7946 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7947free_online:
7948 free_cpumask_var(rd->online);
7949free_span:
7950 free_cpumask_var(rd->span);
0c910d28 7951out:
c6c4927b 7952 return -ENOMEM;
57d885fe
GH
7953}
7954
7955static void init_defrootdomain(void)
7956{
c6c4927b
RR
7957 init_rootdomain(&def_root_domain, true);
7958
57d885fe
GH
7959 atomic_set(&def_root_domain.refcount, 1);
7960}
7961
dc938520 7962static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7963{
7964 struct root_domain *rd;
7965
7966 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7967 if (!rd)
7968 return NULL;
7969
c6c4927b
RR
7970 if (init_rootdomain(rd, false) != 0) {
7971 kfree(rd);
7972 return NULL;
7973 }
57d885fe
GH
7974
7975 return rd;
7976}
7977
1da177e4 7978/*
0eab9146 7979 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7980 * hold the hotplug lock.
7981 */
0eab9146
IM
7982static void
7983cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7984{
70b97a7f 7985 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7986 struct sched_domain *tmp;
7987
7988 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7989 for (tmp = sd; tmp; ) {
245af2c7
SS
7990 struct sched_domain *parent = tmp->parent;
7991 if (!parent)
7992 break;
f29c9b1c 7993
1a848870 7994 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7995 tmp->parent = parent->parent;
1a848870
SS
7996 if (parent->parent)
7997 parent->parent->child = tmp;
f29c9b1c
LZ
7998 } else
7999 tmp = tmp->parent;
245af2c7
SS
8000 }
8001
1a848870 8002 if (sd && sd_degenerate(sd)) {
245af2c7 8003 sd = sd->parent;
1a848870
SS
8004 if (sd)
8005 sd->child = NULL;
8006 }
1da177e4
LT
8007
8008 sched_domain_debug(sd, cpu);
8009
57d885fe 8010 rq_attach_root(rq, rd);
674311d5 8011 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8012}
8013
8014/* cpus with isolated domains */
dcc30a35 8015static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8016
8017/* Setup the mask of cpus configured for isolated domains */
8018static int __init isolated_cpu_setup(char *str)
8019{
968ea6d8 8020 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8021 return 1;
8022}
8023
8927f494 8024__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8025
8026/*
6711cab4
SS
8027 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8028 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8029 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8030 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8031 *
8032 * init_sched_build_groups will build a circular linked list of the groups
8033 * covered by the given span, and will set each group's ->cpumask correctly,
8034 * and ->cpu_power to 0.
8035 */
a616058b 8036static void
96f874e2
RR
8037init_sched_build_groups(const struct cpumask *span,
8038 const struct cpumask *cpu_map,
8039 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8040 struct sched_group **sg,
96f874e2
RR
8041 struct cpumask *tmpmask),
8042 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8043{
8044 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8045 int i;
8046
96f874e2 8047 cpumask_clear(covered);
7c16ec58 8048
abcd083a 8049 for_each_cpu(i, span) {
6711cab4 8050 struct sched_group *sg;
7c16ec58 8051 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8052 int j;
8053
758b2cdc 8054 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8055 continue;
8056
758b2cdc 8057 cpumask_clear(sched_group_cpus(sg));
18a3885f 8058 sg->cpu_power = 0;
1da177e4 8059
abcd083a 8060 for_each_cpu(j, span) {
7c16ec58 8061 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8062 continue;
8063
96f874e2 8064 cpumask_set_cpu(j, covered);
758b2cdc 8065 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8066 }
8067 if (!first)
8068 first = sg;
8069 if (last)
8070 last->next = sg;
8071 last = sg;
8072 }
8073 last->next = first;
8074}
8075
9c1cfda2 8076#define SD_NODES_PER_DOMAIN 16
1da177e4 8077
9c1cfda2 8078#ifdef CONFIG_NUMA
198e2f18 8079
9c1cfda2
JH
8080/**
8081 * find_next_best_node - find the next node to include in a sched_domain
8082 * @node: node whose sched_domain we're building
8083 * @used_nodes: nodes already in the sched_domain
8084 *
41a2d6cf 8085 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8086 * finds the closest node not already in the @used_nodes map.
8087 *
8088 * Should use nodemask_t.
8089 */
c5f59f08 8090static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8091{
8092 int i, n, val, min_val, best_node = 0;
8093
8094 min_val = INT_MAX;
8095
076ac2af 8096 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8097 /* Start at @node */
076ac2af 8098 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8099
8100 if (!nr_cpus_node(n))
8101 continue;
8102
8103 /* Skip already used nodes */
c5f59f08 8104 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8105 continue;
8106
8107 /* Simple min distance search */
8108 val = node_distance(node, n);
8109
8110 if (val < min_val) {
8111 min_val = val;
8112 best_node = n;
8113 }
8114 }
8115
c5f59f08 8116 node_set(best_node, *used_nodes);
9c1cfda2
JH
8117 return best_node;
8118}
8119
8120/**
8121 * sched_domain_node_span - get a cpumask for a node's sched_domain
8122 * @node: node whose cpumask we're constructing
73486722 8123 * @span: resulting cpumask
9c1cfda2 8124 *
41a2d6cf 8125 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8126 * should be one that prevents unnecessary balancing, but also spreads tasks
8127 * out optimally.
8128 */
96f874e2 8129static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8130{
c5f59f08 8131 nodemask_t used_nodes;
48f24c4d 8132 int i;
9c1cfda2 8133
6ca09dfc 8134 cpumask_clear(span);
c5f59f08 8135 nodes_clear(used_nodes);
9c1cfda2 8136
6ca09dfc 8137 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8138 node_set(node, used_nodes);
9c1cfda2
JH
8139
8140 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8141 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8142
6ca09dfc 8143 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8144 }
9c1cfda2 8145}
6d6bc0ad 8146#endif /* CONFIG_NUMA */
9c1cfda2 8147
5c45bf27 8148int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8149
6c99e9ad
RR
8150/*
8151 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8152 *
8153 * ( See the the comments in include/linux/sched.h:struct sched_group
8154 * and struct sched_domain. )
6c99e9ad
RR
8155 */
8156struct static_sched_group {
8157 struct sched_group sg;
8158 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8159};
8160
8161struct static_sched_domain {
8162 struct sched_domain sd;
8163 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8164};
8165
49a02c51
AH
8166struct s_data {
8167#ifdef CONFIG_NUMA
8168 int sd_allnodes;
8169 cpumask_var_t domainspan;
8170 cpumask_var_t covered;
8171 cpumask_var_t notcovered;
8172#endif
8173 cpumask_var_t nodemask;
8174 cpumask_var_t this_sibling_map;
8175 cpumask_var_t this_core_map;
8176 cpumask_var_t send_covered;
8177 cpumask_var_t tmpmask;
8178 struct sched_group **sched_group_nodes;
8179 struct root_domain *rd;
8180};
8181
2109b99e
AH
8182enum s_alloc {
8183 sa_sched_groups = 0,
8184 sa_rootdomain,
8185 sa_tmpmask,
8186 sa_send_covered,
8187 sa_this_core_map,
8188 sa_this_sibling_map,
8189 sa_nodemask,
8190 sa_sched_group_nodes,
8191#ifdef CONFIG_NUMA
8192 sa_notcovered,
8193 sa_covered,
8194 sa_domainspan,
8195#endif
8196 sa_none,
8197};
8198
9c1cfda2 8199/*
48f24c4d 8200 * SMT sched-domains:
9c1cfda2 8201 */
1da177e4 8202#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8203static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8204static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8205
41a2d6cf 8206static int
96f874e2
RR
8207cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8208 struct sched_group **sg, struct cpumask *unused)
1da177e4 8209{
6711cab4 8210 if (sg)
6c99e9ad 8211 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8212 return cpu;
8213}
6d6bc0ad 8214#endif /* CONFIG_SCHED_SMT */
1da177e4 8215
48f24c4d
IM
8216/*
8217 * multi-core sched-domains:
8218 */
1e9f28fa 8219#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8220static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8221static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8222#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8223
8224#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8225static int
96f874e2
RR
8226cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8227 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8228{
6711cab4 8229 int group;
7c16ec58 8230
c69fc56d 8231 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8232 group = cpumask_first(mask);
6711cab4 8233 if (sg)
6c99e9ad 8234 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8235 return group;
1e9f28fa
SS
8236}
8237#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8238static int
96f874e2
RR
8239cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8240 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8241{
6711cab4 8242 if (sg)
6c99e9ad 8243 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8244 return cpu;
8245}
8246#endif
8247
6c99e9ad
RR
8248static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8249static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8250
41a2d6cf 8251static int
96f874e2
RR
8252cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8253 struct sched_group **sg, struct cpumask *mask)
1da177e4 8254{
6711cab4 8255 int group;
48f24c4d 8256#ifdef CONFIG_SCHED_MC
6ca09dfc 8257 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8258 group = cpumask_first(mask);
1e9f28fa 8259#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8260 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8261 group = cpumask_first(mask);
1da177e4 8262#else
6711cab4 8263 group = cpu;
1da177e4 8264#endif
6711cab4 8265 if (sg)
6c99e9ad 8266 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8267 return group;
1da177e4
LT
8268}
8269
8270#ifdef CONFIG_NUMA
1da177e4 8271/*
9c1cfda2
JH
8272 * The init_sched_build_groups can't handle what we want to do with node
8273 * groups, so roll our own. Now each node has its own list of groups which
8274 * gets dynamically allocated.
1da177e4 8275 */
62ea9ceb 8276static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8277static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8278
62ea9ceb 8279static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8280static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8281
96f874e2
RR
8282static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8283 struct sched_group **sg,
8284 struct cpumask *nodemask)
9c1cfda2 8285{
6711cab4
SS
8286 int group;
8287
6ca09dfc 8288 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8289 group = cpumask_first(nodemask);
6711cab4
SS
8290
8291 if (sg)
6c99e9ad 8292 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8293 return group;
1da177e4 8294}
6711cab4 8295
08069033
SS
8296static void init_numa_sched_groups_power(struct sched_group *group_head)
8297{
8298 struct sched_group *sg = group_head;
8299 int j;
8300
8301 if (!sg)
8302 return;
3a5c359a 8303 do {
758b2cdc 8304 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8305 struct sched_domain *sd;
08069033 8306
6c99e9ad 8307 sd = &per_cpu(phys_domains, j).sd;
13318a71 8308 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8309 /*
8310 * Only add "power" once for each
8311 * physical package.
8312 */
8313 continue;
8314 }
08069033 8315
18a3885f 8316 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8317 }
8318 sg = sg->next;
8319 } while (sg != group_head);
08069033 8320}
0601a88d
AH
8321
8322static int build_numa_sched_groups(struct s_data *d,
8323 const struct cpumask *cpu_map, int num)
8324{
8325 struct sched_domain *sd;
8326 struct sched_group *sg, *prev;
8327 int n, j;
8328
8329 cpumask_clear(d->covered);
8330 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8331 if (cpumask_empty(d->nodemask)) {
8332 d->sched_group_nodes[num] = NULL;
8333 goto out;
8334 }
8335
8336 sched_domain_node_span(num, d->domainspan);
8337 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8338
8339 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8340 GFP_KERNEL, num);
8341 if (!sg) {
8342 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8343 num);
8344 return -ENOMEM;
8345 }
8346 d->sched_group_nodes[num] = sg;
8347
8348 for_each_cpu(j, d->nodemask) {
8349 sd = &per_cpu(node_domains, j).sd;
8350 sd->groups = sg;
8351 }
8352
18a3885f 8353 sg->cpu_power = 0;
0601a88d
AH
8354 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8355 sg->next = sg;
8356 cpumask_or(d->covered, d->covered, d->nodemask);
8357
8358 prev = sg;
8359 for (j = 0; j < nr_node_ids; j++) {
8360 n = (num + j) % nr_node_ids;
8361 cpumask_complement(d->notcovered, d->covered);
8362 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8363 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8364 if (cpumask_empty(d->tmpmask))
8365 break;
8366 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8367 if (cpumask_empty(d->tmpmask))
8368 continue;
8369 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8370 GFP_KERNEL, num);
8371 if (!sg) {
8372 printk(KERN_WARNING
8373 "Can not alloc domain group for node %d\n", j);
8374 return -ENOMEM;
8375 }
18a3885f 8376 sg->cpu_power = 0;
0601a88d
AH
8377 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8378 sg->next = prev->next;
8379 cpumask_or(d->covered, d->covered, d->tmpmask);
8380 prev->next = sg;
8381 prev = sg;
8382 }
8383out:
8384 return 0;
8385}
6d6bc0ad 8386#endif /* CONFIG_NUMA */
1da177e4 8387
a616058b 8388#ifdef CONFIG_NUMA
51888ca2 8389/* Free memory allocated for various sched_group structures */
96f874e2
RR
8390static void free_sched_groups(const struct cpumask *cpu_map,
8391 struct cpumask *nodemask)
51888ca2 8392{
a616058b 8393 int cpu, i;
51888ca2 8394
abcd083a 8395 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8396 struct sched_group **sched_group_nodes
8397 = sched_group_nodes_bycpu[cpu];
8398
51888ca2
SV
8399 if (!sched_group_nodes)
8400 continue;
8401
076ac2af 8402 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8403 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8404
6ca09dfc 8405 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8406 if (cpumask_empty(nodemask))
51888ca2
SV
8407 continue;
8408
8409 if (sg == NULL)
8410 continue;
8411 sg = sg->next;
8412next_sg:
8413 oldsg = sg;
8414 sg = sg->next;
8415 kfree(oldsg);
8416 if (oldsg != sched_group_nodes[i])
8417 goto next_sg;
8418 }
8419 kfree(sched_group_nodes);
8420 sched_group_nodes_bycpu[cpu] = NULL;
8421 }
51888ca2 8422}
6d6bc0ad 8423#else /* !CONFIG_NUMA */
96f874e2
RR
8424static void free_sched_groups(const struct cpumask *cpu_map,
8425 struct cpumask *nodemask)
a616058b
SS
8426{
8427}
6d6bc0ad 8428#endif /* CONFIG_NUMA */
51888ca2 8429
89c4710e
SS
8430/*
8431 * Initialize sched groups cpu_power.
8432 *
8433 * cpu_power indicates the capacity of sched group, which is used while
8434 * distributing the load between different sched groups in a sched domain.
8435 * Typically cpu_power for all the groups in a sched domain will be same unless
8436 * there are asymmetries in the topology. If there are asymmetries, group
8437 * having more cpu_power will pickup more load compared to the group having
8438 * less cpu_power.
89c4710e
SS
8439 */
8440static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8441{
8442 struct sched_domain *child;
8443 struct sched_group *group;
f93e65c1
PZ
8444 long power;
8445 int weight;
89c4710e
SS
8446
8447 WARN_ON(!sd || !sd->groups);
8448
13318a71 8449 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8450 return;
8451
8452 child = sd->child;
8453
18a3885f 8454 sd->groups->cpu_power = 0;
5517d86b 8455
f93e65c1
PZ
8456 if (!child) {
8457 power = SCHED_LOAD_SCALE;
8458 weight = cpumask_weight(sched_domain_span(sd));
8459 /*
8460 * SMT siblings share the power of a single core.
a52bfd73
PZ
8461 * Usually multiple threads get a better yield out of
8462 * that one core than a single thread would have,
8463 * reflect that in sd->smt_gain.
f93e65c1 8464 */
a52bfd73
PZ
8465 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8466 power *= sd->smt_gain;
f93e65c1 8467 power /= weight;
a52bfd73
PZ
8468 power >>= SCHED_LOAD_SHIFT;
8469 }
18a3885f 8470 sd->groups->cpu_power += power;
89c4710e
SS
8471 return;
8472 }
8473
89c4710e 8474 /*
f93e65c1 8475 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8476 */
8477 group = child->groups;
8478 do {
18a3885f 8479 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8480 group = group->next;
8481 } while (group != child->groups);
8482}
8483
7c16ec58
MT
8484/*
8485 * Initializers for schedule domains
8486 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8487 */
8488
a5d8c348
IM
8489#ifdef CONFIG_SCHED_DEBUG
8490# define SD_INIT_NAME(sd, type) sd->name = #type
8491#else
8492# define SD_INIT_NAME(sd, type) do { } while (0)
8493#endif
8494
7c16ec58 8495#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8496
7c16ec58
MT
8497#define SD_INIT_FUNC(type) \
8498static noinline void sd_init_##type(struct sched_domain *sd) \
8499{ \
8500 memset(sd, 0, sizeof(*sd)); \
8501 *sd = SD_##type##_INIT; \
1d3504fc 8502 sd->level = SD_LV_##type; \
a5d8c348 8503 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8504}
8505
8506SD_INIT_FUNC(CPU)
8507#ifdef CONFIG_NUMA
8508 SD_INIT_FUNC(ALLNODES)
8509 SD_INIT_FUNC(NODE)
8510#endif
8511#ifdef CONFIG_SCHED_SMT
8512 SD_INIT_FUNC(SIBLING)
8513#endif
8514#ifdef CONFIG_SCHED_MC
8515 SD_INIT_FUNC(MC)
8516#endif
8517
1d3504fc
HS
8518static int default_relax_domain_level = -1;
8519
8520static int __init setup_relax_domain_level(char *str)
8521{
30e0e178
LZ
8522 unsigned long val;
8523
8524 val = simple_strtoul(str, NULL, 0);
8525 if (val < SD_LV_MAX)
8526 default_relax_domain_level = val;
8527
1d3504fc
HS
8528 return 1;
8529}
8530__setup("relax_domain_level=", setup_relax_domain_level);
8531
8532static void set_domain_attribute(struct sched_domain *sd,
8533 struct sched_domain_attr *attr)
8534{
8535 int request;
8536
8537 if (!attr || attr->relax_domain_level < 0) {
8538 if (default_relax_domain_level < 0)
8539 return;
8540 else
8541 request = default_relax_domain_level;
8542 } else
8543 request = attr->relax_domain_level;
8544 if (request < sd->level) {
8545 /* turn off idle balance on this domain */
c88d5910 8546 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8547 } else {
8548 /* turn on idle balance on this domain */
c88d5910 8549 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8550 }
8551}
8552
2109b99e
AH
8553static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8554 const struct cpumask *cpu_map)
8555{
8556 switch (what) {
8557 case sa_sched_groups:
8558 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8559 d->sched_group_nodes = NULL;
8560 case sa_rootdomain:
8561 free_rootdomain(d->rd); /* fall through */
8562 case sa_tmpmask:
8563 free_cpumask_var(d->tmpmask); /* fall through */
8564 case sa_send_covered:
8565 free_cpumask_var(d->send_covered); /* fall through */
8566 case sa_this_core_map:
8567 free_cpumask_var(d->this_core_map); /* fall through */
8568 case sa_this_sibling_map:
8569 free_cpumask_var(d->this_sibling_map); /* fall through */
8570 case sa_nodemask:
8571 free_cpumask_var(d->nodemask); /* fall through */
8572 case sa_sched_group_nodes:
d1b55138 8573#ifdef CONFIG_NUMA
2109b99e
AH
8574 kfree(d->sched_group_nodes); /* fall through */
8575 case sa_notcovered:
8576 free_cpumask_var(d->notcovered); /* fall through */
8577 case sa_covered:
8578 free_cpumask_var(d->covered); /* fall through */
8579 case sa_domainspan:
8580 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8581#endif
2109b99e
AH
8582 case sa_none:
8583 break;
8584 }
8585}
3404c8d9 8586
2109b99e
AH
8587static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8588 const struct cpumask *cpu_map)
8589{
3404c8d9 8590#ifdef CONFIG_NUMA
2109b99e
AH
8591 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8592 return sa_none;
8593 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8594 return sa_domainspan;
8595 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8596 return sa_covered;
8597 /* Allocate the per-node list of sched groups */
8598 d->sched_group_nodes = kcalloc(nr_node_ids,
8599 sizeof(struct sched_group *), GFP_KERNEL);
8600 if (!d->sched_group_nodes) {
d1b55138 8601 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8602 return sa_notcovered;
d1b55138 8603 }
2109b99e 8604 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8605#endif
2109b99e
AH
8606 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8607 return sa_sched_group_nodes;
8608 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8609 return sa_nodemask;
8610 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8611 return sa_this_sibling_map;
8612 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8613 return sa_this_core_map;
8614 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8615 return sa_send_covered;
8616 d->rd = alloc_rootdomain();
8617 if (!d->rd) {
57d885fe 8618 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8619 return sa_tmpmask;
57d885fe 8620 }
2109b99e
AH
8621 return sa_rootdomain;
8622}
57d885fe 8623
7f4588f3
AH
8624static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8625 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8626{
8627 struct sched_domain *sd = NULL;
7c16ec58 8628#ifdef CONFIG_NUMA
7f4588f3 8629 struct sched_domain *parent;
1da177e4 8630
7f4588f3
AH
8631 d->sd_allnodes = 0;
8632 if (cpumask_weight(cpu_map) >
8633 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8634 sd = &per_cpu(allnodes_domains, i).sd;
8635 SD_INIT(sd, ALLNODES);
1d3504fc 8636 set_domain_attribute(sd, attr);
7f4588f3
AH
8637 cpumask_copy(sched_domain_span(sd), cpu_map);
8638 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8639 d->sd_allnodes = 1;
8640 }
8641 parent = sd;
8642
8643 sd = &per_cpu(node_domains, i).sd;
8644 SD_INIT(sd, NODE);
8645 set_domain_attribute(sd, attr);
8646 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8647 sd->parent = parent;
8648 if (parent)
8649 parent->child = sd;
8650 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8651#endif
7f4588f3
AH
8652 return sd;
8653}
1da177e4 8654
87cce662
AH
8655static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8656 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8657 struct sched_domain *parent, int i)
8658{
8659 struct sched_domain *sd;
8660 sd = &per_cpu(phys_domains, i).sd;
8661 SD_INIT(sd, CPU);
8662 set_domain_attribute(sd, attr);
8663 cpumask_copy(sched_domain_span(sd), d->nodemask);
8664 sd->parent = parent;
8665 if (parent)
8666 parent->child = sd;
8667 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8668 return sd;
8669}
1da177e4 8670
410c4081
AH
8671static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8672 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8673 struct sched_domain *parent, int i)
8674{
8675 struct sched_domain *sd = parent;
1e9f28fa 8676#ifdef CONFIG_SCHED_MC
410c4081
AH
8677 sd = &per_cpu(core_domains, i).sd;
8678 SD_INIT(sd, MC);
8679 set_domain_attribute(sd, attr);
8680 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8681 sd->parent = parent;
8682 parent->child = sd;
8683 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8684#endif
410c4081
AH
8685 return sd;
8686}
1e9f28fa 8687
d8173535
AH
8688static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8689 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8690 struct sched_domain *parent, int i)
8691{
8692 struct sched_domain *sd = parent;
1da177e4 8693#ifdef CONFIG_SCHED_SMT
d8173535
AH
8694 sd = &per_cpu(cpu_domains, i).sd;
8695 SD_INIT(sd, SIBLING);
8696 set_domain_attribute(sd, attr);
8697 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8698 sd->parent = parent;
8699 parent->child = sd;
8700 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8701#endif
d8173535
AH
8702 return sd;
8703}
1da177e4 8704
0e8e85c9
AH
8705static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8706 const struct cpumask *cpu_map, int cpu)
8707{
8708 switch (l) {
1da177e4 8709#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8710 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8711 cpumask_and(d->this_sibling_map, cpu_map,
8712 topology_thread_cpumask(cpu));
8713 if (cpu == cpumask_first(d->this_sibling_map))
8714 init_sched_build_groups(d->this_sibling_map, cpu_map,
8715 &cpu_to_cpu_group,
8716 d->send_covered, d->tmpmask);
8717 break;
1da177e4 8718#endif
1e9f28fa 8719#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8720 case SD_LV_MC: /* set up multi-core groups */
8721 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8722 if (cpu == cpumask_first(d->this_core_map))
8723 init_sched_build_groups(d->this_core_map, cpu_map,
8724 &cpu_to_core_group,
8725 d->send_covered, d->tmpmask);
8726 break;
1e9f28fa 8727#endif
86548096
AH
8728 case SD_LV_CPU: /* set up physical groups */
8729 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8730 if (!cpumask_empty(d->nodemask))
8731 init_sched_build_groups(d->nodemask, cpu_map,
8732 &cpu_to_phys_group,
8733 d->send_covered, d->tmpmask);
8734 break;
1da177e4 8735#ifdef CONFIG_NUMA
de616e36
AH
8736 case SD_LV_ALLNODES:
8737 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8738 d->send_covered, d->tmpmask);
8739 break;
8740#endif
0e8e85c9
AH
8741 default:
8742 break;
7c16ec58 8743 }
0e8e85c9 8744}
9c1cfda2 8745
2109b99e
AH
8746/*
8747 * Build sched domains for a given set of cpus and attach the sched domains
8748 * to the individual cpus
8749 */
8750static int __build_sched_domains(const struct cpumask *cpu_map,
8751 struct sched_domain_attr *attr)
8752{
8753 enum s_alloc alloc_state = sa_none;
8754 struct s_data d;
294b0c96 8755 struct sched_domain *sd;
2109b99e 8756 int i;
7c16ec58 8757#ifdef CONFIG_NUMA
2109b99e 8758 d.sd_allnodes = 0;
7c16ec58 8759#endif
9c1cfda2 8760
2109b99e
AH
8761 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8762 if (alloc_state != sa_rootdomain)
8763 goto error;
8764 alloc_state = sa_sched_groups;
9c1cfda2 8765
1da177e4 8766 /*
1a20ff27 8767 * Set up domains for cpus specified by the cpu_map.
1da177e4 8768 */
abcd083a 8769 for_each_cpu(i, cpu_map) {
49a02c51
AH
8770 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8771 cpu_map);
9761eea8 8772
7f4588f3 8773 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8774 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8775 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8776 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8777 }
9c1cfda2 8778
abcd083a 8779 for_each_cpu(i, cpu_map) {
0e8e85c9 8780 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8781 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8782 }
9c1cfda2 8783
1da177e4 8784 /* Set up physical groups */
86548096
AH
8785 for (i = 0; i < nr_node_ids; i++)
8786 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8787
1da177e4
LT
8788#ifdef CONFIG_NUMA
8789 /* Set up node groups */
de616e36
AH
8790 if (d.sd_allnodes)
8791 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8792
0601a88d
AH
8793 for (i = 0; i < nr_node_ids; i++)
8794 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8795 goto error;
1da177e4
LT
8796#endif
8797
8798 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8799#ifdef CONFIG_SCHED_SMT
abcd083a 8800 for_each_cpu(i, cpu_map) {
294b0c96 8801 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8802 init_sched_groups_power(i, sd);
5c45bf27 8803 }
1da177e4 8804#endif
1e9f28fa 8805#ifdef CONFIG_SCHED_MC
abcd083a 8806 for_each_cpu(i, cpu_map) {
294b0c96 8807 sd = &per_cpu(core_domains, i).sd;
89c4710e 8808 init_sched_groups_power(i, sd);
5c45bf27
SS
8809 }
8810#endif
1e9f28fa 8811
abcd083a 8812 for_each_cpu(i, cpu_map) {
294b0c96 8813 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8814 init_sched_groups_power(i, sd);
1da177e4
LT
8815 }
8816
9c1cfda2 8817#ifdef CONFIG_NUMA
076ac2af 8818 for (i = 0; i < nr_node_ids; i++)
49a02c51 8819 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8820
49a02c51 8821 if (d.sd_allnodes) {
6711cab4 8822 struct sched_group *sg;
f712c0c7 8823
96f874e2 8824 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8825 d.tmpmask);
f712c0c7
SS
8826 init_numa_sched_groups_power(sg);
8827 }
9c1cfda2
JH
8828#endif
8829
1da177e4 8830 /* Attach the domains */
abcd083a 8831 for_each_cpu(i, cpu_map) {
1da177e4 8832#ifdef CONFIG_SCHED_SMT
6c99e9ad 8833 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8834#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8835 sd = &per_cpu(core_domains, i).sd;
1da177e4 8836#else
6c99e9ad 8837 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8838#endif
49a02c51 8839 cpu_attach_domain(sd, d.rd, i);
1da177e4 8840 }
51888ca2 8841
2109b99e
AH
8842 d.sched_group_nodes = NULL; /* don't free this we still need it */
8843 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8844 return 0;
51888ca2 8845
51888ca2 8846error:
2109b99e
AH
8847 __free_domain_allocs(&d, alloc_state, cpu_map);
8848 return -ENOMEM;
1da177e4 8849}
029190c5 8850
96f874e2 8851static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8852{
8853 return __build_sched_domains(cpu_map, NULL);
8854}
8855
96f874e2 8856static struct cpumask *doms_cur; /* current sched domains */
029190c5 8857static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8858static struct sched_domain_attr *dattr_cur;
8859 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8860
8861/*
8862 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8863 * cpumask) fails, then fallback to a single sched domain,
8864 * as determined by the single cpumask fallback_doms.
029190c5 8865 */
4212823f 8866static cpumask_var_t fallback_doms;
029190c5 8867
ee79d1bd
HC
8868/*
8869 * arch_update_cpu_topology lets virtualized architectures update the
8870 * cpu core maps. It is supposed to return 1 if the topology changed
8871 * or 0 if it stayed the same.
8872 */
8873int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8874{
ee79d1bd 8875 return 0;
22e52b07
HC
8876}
8877
1a20ff27 8878/*
41a2d6cf 8879 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8880 * For now this just excludes isolated cpus, but could be used to
8881 * exclude other special cases in the future.
1a20ff27 8882 */
96f874e2 8883static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8884{
7378547f
MM
8885 int err;
8886
22e52b07 8887 arch_update_cpu_topology();
029190c5 8888 ndoms_cur = 1;
96f874e2 8889 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8890 if (!doms_cur)
4212823f 8891 doms_cur = fallback_doms;
dcc30a35 8892 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8893 dattr_cur = NULL;
7378547f 8894 err = build_sched_domains(doms_cur);
6382bc90 8895 register_sched_domain_sysctl();
7378547f
MM
8896
8897 return err;
1a20ff27
DG
8898}
8899
96f874e2
RR
8900static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8901 struct cpumask *tmpmask)
1da177e4 8902{
7c16ec58 8903 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8904}
1da177e4 8905
1a20ff27
DG
8906/*
8907 * Detach sched domains from a group of cpus specified in cpu_map
8908 * These cpus will now be attached to the NULL domain
8909 */
96f874e2 8910static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8911{
96f874e2
RR
8912 /* Save because hotplug lock held. */
8913 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8914 int i;
8915
abcd083a 8916 for_each_cpu(i, cpu_map)
57d885fe 8917 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8918 synchronize_sched();
96f874e2 8919 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8920}
8921
1d3504fc
HS
8922/* handle null as "default" */
8923static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8924 struct sched_domain_attr *new, int idx_new)
8925{
8926 struct sched_domain_attr tmp;
8927
8928 /* fast path */
8929 if (!new && !cur)
8930 return 1;
8931
8932 tmp = SD_ATTR_INIT;
8933 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8934 new ? (new + idx_new) : &tmp,
8935 sizeof(struct sched_domain_attr));
8936}
8937
029190c5
PJ
8938/*
8939 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8940 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8941 * doms_new[] to the current sched domain partitioning, doms_cur[].
8942 * It destroys each deleted domain and builds each new domain.
8943 *
96f874e2 8944 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8945 * The masks don't intersect (don't overlap.) We should setup one
8946 * sched domain for each mask. CPUs not in any of the cpumasks will
8947 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8948 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8949 * it as it is.
8950 *
41a2d6cf
IM
8951 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8952 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8953 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8954 * ndoms_new == 1, and partition_sched_domains() will fallback to
8955 * the single partition 'fallback_doms', it also forces the domains
8956 * to be rebuilt.
029190c5 8957 *
96f874e2 8958 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8959 * ndoms_new == 0 is a special case for destroying existing domains,
8960 * and it will not create the default domain.
dfb512ec 8961 *
029190c5
PJ
8962 * Call with hotplug lock held
8963 */
96f874e2
RR
8964/* FIXME: Change to struct cpumask *doms_new[] */
8965void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8966 struct sched_domain_attr *dattr_new)
029190c5 8967{
dfb512ec 8968 int i, j, n;
d65bd5ec 8969 int new_topology;
029190c5 8970
712555ee 8971 mutex_lock(&sched_domains_mutex);
a1835615 8972
7378547f
MM
8973 /* always unregister in case we don't destroy any domains */
8974 unregister_sched_domain_sysctl();
8975
d65bd5ec
HC
8976 /* Let architecture update cpu core mappings. */
8977 new_topology = arch_update_cpu_topology();
8978
dfb512ec 8979 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8980
8981 /* Destroy deleted domains */
8982 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8983 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8984 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8985 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8986 goto match1;
8987 }
8988 /* no match - a current sched domain not in new doms_new[] */
8989 detach_destroy_domains(doms_cur + i);
8990match1:
8991 ;
8992 }
8993
e761b772
MK
8994 if (doms_new == NULL) {
8995 ndoms_cur = 0;
4212823f 8996 doms_new = fallback_doms;
dcc30a35 8997 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8998 WARN_ON_ONCE(dattr_new);
e761b772
MK
8999 }
9000
029190c5
PJ
9001 /* Build new domains */
9002 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9003 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 9004 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 9005 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9006 goto match2;
9007 }
9008 /* no match - add a new doms_new */
1d3504fc
HS
9009 __build_sched_domains(doms_new + i,
9010 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9011match2:
9012 ;
9013 }
9014
9015 /* Remember the new sched domains */
4212823f 9016 if (doms_cur != fallback_doms)
029190c5 9017 kfree(doms_cur);
1d3504fc 9018 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9019 doms_cur = doms_new;
1d3504fc 9020 dattr_cur = dattr_new;
029190c5 9021 ndoms_cur = ndoms_new;
7378547f
MM
9022
9023 register_sched_domain_sysctl();
a1835615 9024
712555ee 9025 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9026}
9027
5c45bf27 9028#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9029static void arch_reinit_sched_domains(void)
5c45bf27 9030{
95402b38 9031 get_online_cpus();
dfb512ec
MK
9032
9033 /* Destroy domains first to force the rebuild */
9034 partition_sched_domains(0, NULL, NULL);
9035
e761b772 9036 rebuild_sched_domains();
95402b38 9037 put_online_cpus();
5c45bf27
SS
9038}
9039
9040static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9041{
afb8a9b7 9042 unsigned int level = 0;
5c45bf27 9043
afb8a9b7
GS
9044 if (sscanf(buf, "%u", &level) != 1)
9045 return -EINVAL;
9046
9047 /*
9048 * level is always be positive so don't check for
9049 * level < POWERSAVINGS_BALANCE_NONE which is 0
9050 * What happens on 0 or 1 byte write,
9051 * need to check for count as well?
9052 */
9053
9054 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9055 return -EINVAL;
9056
9057 if (smt)
afb8a9b7 9058 sched_smt_power_savings = level;
5c45bf27 9059 else
afb8a9b7 9060 sched_mc_power_savings = level;
5c45bf27 9061
c70f22d2 9062 arch_reinit_sched_domains();
5c45bf27 9063
c70f22d2 9064 return count;
5c45bf27
SS
9065}
9066
5c45bf27 9067#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9068static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9069 char *page)
5c45bf27
SS
9070{
9071 return sprintf(page, "%u\n", sched_mc_power_savings);
9072}
f718cd4a 9073static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9074 const char *buf, size_t count)
5c45bf27
SS
9075{
9076 return sched_power_savings_store(buf, count, 0);
9077}
f718cd4a
AK
9078static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9079 sched_mc_power_savings_show,
9080 sched_mc_power_savings_store);
5c45bf27
SS
9081#endif
9082
9083#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9084static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9085 char *page)
5c45bf27
SS
9086{
9087 return sprintf(page, "%u\n", sched_smt_power_savings);
9088}
f718cd4a 9089static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9090 const char *buf, size_t count)
5c45bf27
SS
9091{
9092 return sched_power_savings_store(buf, count, 1);
9093}
f718cd4a
AK
9094static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9095 sched_smt_power_savings_show,
6707de00
AB
9096 sched_smt_power_savings_store);
9097#endif
9098
39aac648 9099int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9100{
9101 int err = 0;
9102
9103#ifdef CONFIG_SCHED_SMT
9104 if (smt_capable())
9105 err = sysfs_create_file(&cls->kset.kobj,
9106 &attr_sched_smt_power_savings.attr);
9107#endif
9108#ifdef CONFIG_SCHED_MC
9109 if (!err && mc_capable())
9110 err = sysfs_create_file(&cls->kset.kobj,
9111 &attr_sched_mc_power_savings.attr);
9112#endif
9113 return err;
9114}
6d6bc0ad 9115#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9116
e761b772 9117#ifndef CONFIG_CPUSETS
1da177e4 9118/*
e761b772
MK
9119 * Add online and remove offline CPUs from the scheduler domains.
9120 * When cpusets are enabled they take over this function.
1da177e4
LT
9121 */
9122static int update_sched_domains(struct notifier_block *nfb,
9123 unsigned long action, void *hcpu)
e761b772
MK
9124{
9125 switch (action) {
9126 case CPU_ONLINE:
9127 case CPU_ONLINE_FROZEN:
9128 case CPU_DEAD:
9129 case CPU_DEAD_FROZEN:
dfb512ec 9130 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9131 return NOTIFY_OK;
9132
9133 default:
9134 return NOTIFY_DONE;
9135 }
9136}
9137#endif
9138
9139static int update_runtime(struct notifier_block *nfb,
9140 unsigned long action, void *hcpu)
1da177e4 9141{
7def2be1
PZ
9142 int cpu = (int)(long)hcpu;
9143
1da177e4 9144 switch (action) {
1da177e4 9145 case CPU_DOWN_PREPARE:
8bb78442 9146 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9147 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9148 return NOTIFY_OK;
9149
1da177e4 9150 case CPU_DOWN_FAILED:
8bb78442 9151 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9152 case CPU_ONLINE:
8bb78442 9153 case CPU_ONLINE_FROZEN:
7def2be1 9154 enable_runtime(cpu_rq(cpu));
e761b772
MK
9155 return NOTIFY_OK;
9156
1da177e4
LT
9157 default:
9158 return NOTIFY_DONE;
9159 }
1da177e4 9160}
1da177e4
LT
9161
9162void __init sched_init_smp(void)
9163{
dcc30a35
RR
9164 cpumask_var_t non_isolated_cpus;
9165
9166 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9167 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9168
434d53b0
MT
9169#if defined(CONFIG_NUMA)
9170 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9171 GFP_KERNEL);
9172 BUG_ON(sched_group_nodes_bycpu == NULL);
9173#endif
95402b38 9174 get_online_cpus();
712555ee 9175 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9176 arch_init_sched_domains(cpu_online_mask);
9177 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9178 if (cpumask_empty(non_isolated_cpus))
9179 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9180 mutex_unlock(&sched_domains_mutex);
95402b38 9181 put_online_cpus();
e761b772
MK
9182
9183#ifndef CONFIG_CPUSETS
1da177e4
LT
9184 /* XXX: Theoretical race here - CPU may be hotplugged now */
9185 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9186#endif
9187
9188 /* RT runtime code needs to handle some hotplug events */
9189 hotcpu_notifier(update_runtime, 0);
9190
b328ca18 9191 init_hrtick();
5c1e1767
NP
9192
9193 /* Move init over to a non-isolated CPU */
dcc30a35 9194 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9195 BUG();
19978ca6 9196 sched_init_granularity();
dcc30a35 9197 free_cpumask_var(non_isolated_cpus);
4212823f 9198
0e3900e6 9199 init_sched_rt_class();
1da177e4
LT
9200}
9201#else
9202void __init sched_init_smp(void)
9203{
19978ca6 9204 sched_init_granularity();
1da177e4
LT
9205}
9206#endif /* CONFIG_SMP */
9207
cd1bb94b
AB
9208const_debug unsigned int sysctl_timer_migration = 1;
9209
1da177e4
LT
9210int in_sched_functions(unsigned long addr)
9211{
1da177e4
LT
9212 return in_lock_functions(addr) ||
9213 (addr >= (unsigned long)__sched_text_start
9214 && addr < (unsigned long)__sched_text_end);
9215}
9216
a9957449 9217static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9218{
9219 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9220 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9221#ifdef CONFIG_FAIR_GROUP_SCHED
9222 cfs_rq->rq = rq;
9223#endif
67e9fb2a 9224 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9225}
9226
fa85ae24
PZ
9227static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9228{
9229 struct rt_prio_array *array;
9230 int i;
9231
9232 array = &rt_rq->active;
9233 for (i = 0; i < MAX_RT_PRIO; i++) {
9234 INIT_LIST_HEAD(array->queue + i);
9235 __clear_bit(i, array->bitmap);
9236 }
9237 /* delimiter for bitsearch: */
9238 __set_bit(MAX_RT_PRIO, array->bitmap);
9239
052f1dc7 9240#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9241 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9242#ifdef CONFIG_SMP
e864c499 9243 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9244#endif
48d5e258 9245#endif
fa85ae24
PZ
9246#ifdef CONFIG_SMP
9247 rt_rq->rt_nr_migratory = 0;
fa85ae24 9248 rt_rq->overloaded = 0;
c20b08e3 9249 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9250#endif
9251
9252 rt_rq->rt_time = 0;
9253 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9254 rt_rq->rt_runtime = 0;
9255 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9256
052f1dc7 9257#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9258 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9259 rt_rq->rq = rq;
9260#endif
fa85ae24
PZ
9261}
9262
6f505b16 9263#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9264static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9265 struct sched_entity *se, int cpu, int add,
9266 struct sched_entity *parent)
6f505b16 9267{
ec7dc8ac 9268 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9269 tg->cfs_rq[cpu] = cfs_rq;
9270 init_cfs_rq(cfs_rq, rq);
9271 cfs_rq->tg = tg;
9272 if (add)
9273 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9274
9275 tg->se[cpu] = se;
354d60c2
DG
9276 /* se could be NULL for init_task_group */
9277 if (!se)
9278 return;
9279
ec7dc8ac
DG
9280 if (!parent)
9281 se->cfs_rq = &rq->cfs;
9282 else
9283 se->cfs_rq = parent->my_q;
9284
6f505b16
PZ
9285 se->my_q = cfs_rq;
9286 se->load.weight = tg->shares;
e05510d0 9287 se->load.inv_weight = 0;
ec7dc8ac 9288 se->parent = parent;
6f505b16 9289}
052f1dc7 9290#endif
6f505b16 9291
052f1dc7 9292#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9293static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9294 struct sched_rt_entity *rt_se, int cpu, int add,
9295 struct sched_rt_entity *parent)
6f505b16 9296{
ec7dc8ac
DG
9297 struct rq *rq = cpu_rq(cpu);
9298
6f505b16
PZ
9299 tg->rt_rq[cpu] = rt_rq;
9300 init_rt_rq(rt_rq, rq);
9301 rt_rq->tg = tg;
9302 rt_rq->rt_se = rt_se;
ac086bc2 9303 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9304 if (add)
9305 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9306
9307 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9308 if (!rt_se)
9309 return;
9310
ec7dc8ac
DG
9311 if (!parent)
9312 rt_se->rt_rq = &rq->rt;
9313 else
9314 rt_se->rt_rq = parent->my_q;
9315
6f505b16 9316 rt_se->my_q = rt_rq;
ec7dc8ac 9317 rt_se->parent = parent;
6f505b16
PZ
9318 INIT_LIST_HEAD(&rt_se->run_list);
9319}
9320#endif
9321
1da177e4
LT
9322void __init sched_init(void)
9323{
dd41f596 9324 int i, j;
434d53b0
MT
9325 unsigned long alloc_size = 0, ptr;
9326
9327#ifdef CONFIG_FAIR_GROUP_SCHED
9328 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9329#endif
9330#ifdef CONFIG_RT_GROUP_SCHED
9331 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9332#endif
9333#ifdef CONFIG_USER_SCHED
9334 alloc_size *= 2;
df7c8e84
RR
9335#endif
9336#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9337 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9338#endif
9339 /*
9340 * As sched_init() is called before page_alloc is setup,
9341 * we use alloc_bootmem().
9342 */
9343 if (alloc_size) {
36b7b6d4 9344 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9345
9346#ifdef CONFIG_FAIR_GROUP_SCHED
9347 init_task_group.se = (struct sched_entity **)ptr;
9348 ptr += nr_cpu_ids * sizeof(void **);
9349
9350 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9351 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9352
9353#ifdef CONFIG_USER_SCHED
9354 root_task_group.se = (struct sched_entity **)ptr;
9355 ptr += nr_cpu_ids * sizeof(void **);
9356
9357 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9358 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9359#endif /* CONFIG_USER_SCHED */
9360#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9361#ifdef CONFIG_RT_GROUP_SCHED
9362 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9363 ptr += nr_cpu_ids * sizeof(void **);
9364
9365 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9366 ptr += nr_cpu_ids * sizeof(void **);
9367
9368#ifdef CONFIG_USER_SCHED
9369 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9370 ptr += nr_cpu_ids * sizeof(void **);
9371
9372 root_task_group.rt_rq = (struct rt_rq **)ptr;
9373 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9374#endif /* CONFIG_USER_SCHED */
9375#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9376#ifdef CONFIG_CPUMASK_OFFSTACK
9377 for_each_possible_cpu(i) {
9378 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9379 ptr += cpumask_size();
9380 }
9381#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9382 }
dd41f596 9383
57d885fe
GH
9384#ifdef CONFIG_SMP
9385 init_defrootdomain();
9386#endif
9387
d0b27fa7
PZ
9388 init_rt_bandwidth(&def_rt_bandwidth,
9389 global_rt_period(), global_rt_runtime());
9390
9391#ifdef CONFIG_RT_GROUP_SCHED
9392 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9393 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9394#ifdef CONFIG_USER_SCHED
9395 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9396 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9397#endif /* CONFIG_USER_SCHED */
9398#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9399
052f1dc7 9400#ifdef CONFIG_GROUP_SCHED
6f505b16 9401 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9402 INIT_LIST_HEAD(&init_task_group.children);
9403
9404#ifdef CONFIG_USER_SCHED
9405 INIT_LIST_HEAD(&root_task_group.children);
9406 init_task_group.parent = &root_task_group;
9407 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9408#endif /* CONFIG_USER_SCHED */
9409#endif /* CONFIG_GROUP_SCHED */
6f505b16 9410
0a945022 9411 for_each_possible_cpu(i) {
70b97a7f 9412 struct rq *rq;
1da177e4
LT
9413
9414 rq = cpu_rq(i);
9415 spin_lock_init(&rq->lock);
7897986b 9416 rq->nr_running = 0;
dce48a84
TG
9417 rq->calc_load_active = 0;
9418 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9419 init_cfs_rq(&rq->cfs, rq);
6f505b16 9420 init_rt_rq(&rq->rt, rq);
dd41f596 9421#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9422 init_task_group.shares = init_task_group_load;
6f505b16 9423 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9424#ifdef CONFIG_CGROUP_SCHED
9425 /*
9426 * How much cpu bandwidth does init_task_group get?
9427 *
9428 * In case of task-groups formed thr' the cgroup filesystem, it
9429 * gets 100% of the cpu resources in the system. This overall
9430 * system cpu resource is divided among the tasks of
9431 * init_task_group and its child task-groups in a fair manner,
9432 * based on each entity's (task or task-group's) weight
9433 * (se->load.weight).
9434 *
9435 * In other words, if init_task_group has 10 tasks of weight
9436 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9437 * then A0's share of the cpu resource is:
9438 *
0d905bca 9439 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9440 *
9441 * We achieve this by letting init_task_group's tasks sit
9442 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9443 */
ec7dc8ac 9444 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9445#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9446 root_task_group.shares = NICE_0_LOAD;
9447 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9448 /*
9449 * In case of task-groups formed thr' the user id of tasks,
9450 * init_task_group represents tasks belonging to root user.
9451 * Hence it forms a sibling of all subsequent groups formed.
9452 * In this case, init_task_group gets only a fraction of overall
9453 * system cpu resource, based on the weight assigned to root
9454 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9455 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9456 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9457 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9458 */
ec7dc8ac 9459 init_tg_cfs_entry(&init_task_group,
84e9dabf 9460 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9461 &per_cpu(init_sched_entity, i), i, 1,
9462 root_task_group.se[i]);
6f505b16 9463
052f1dc7 9464#endif
354d60c2
DG
9465#endif /* CONFIG_FAIR_GROUP_SCHED */
9466
9467 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9468#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9469 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9470#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9471 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9472#elif defined CONFIG_USER_SCHED
eff766a6 9473 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9474 init_tg_rt_entry(&init_task_group,
6f505b16 9475 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9476 &per_cpu(init_sched_rt_entity, i), i, 1,
9477 root_task_group.rt_se[i]);
354d60c2 9478#endif
dd41f596 9479#endif
1da177e4 9480
dd41f596
IM
9481 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9482 rq->cpu_load[j] = 0;
1da177e4 9483#ifdef CONFIG_SMP
41c7ce9a 9484 rq->sd = NULL;
57d885fe 9485 rq->rd = NULL;
3f029d3c 9486 rq->post_schedule = 0;
1da177e4 9487 rq->active_balance = 0;
dd41f596 9488 rq->next_balance = jiffies;
1da177e4 9489 rq->push_cpu = 0;
0a2966b4 9490 rq->cpu = i;
1f11eb6a 9491 rq->online = 0;
1da177e4
LT
9492 rq->migration_thread = NULL;
9493 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9494 rq_attach_root(rq, &def_root_domain);
1da177e4 9495#endif
8f4d37ec 9496 init_rq_hrtick(rq);
1da177e4 9497 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9498 }
9499
2dd73a4f 9500 set_load_weight(&init_task);
b50f60ce 9501
e107be36
AK
9502#ifdef CONFIG_PREEMPT_NOTIFIERS
9503 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9504#endif
9505
c9819f45 9506#ifdef CONFIG_SMP
962cf36c 9507 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9508#endif
9509
b50f60ce
HC
9510#ifdef CONFIG_RT_MUTEXES
9511 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9512#endif
9513
1da177e4
LT
9514 /*
9515 * The boot idle thread does lazy MMU switching as well:
9516 */
9517 atomic_inc(&init_mm.mm_count);
9518 enter_lazy_tlb(&init_mm, current);
9519
9520 /*
9521 * Make us the idle thread. Technically, schedule() should not be
9522 * called from this thread, however somewhere below it might be,
9523 * but because we are the idle thread, we just pick up running again
9524 * when this runqueue becomes "idle".
9525 */
9526 init_idle(current, smp_processor_id());
dce48a84
TG
9527
9528 calc_load_update = jiffies + LOAD_FREQ;
9529
dd41f596
IM
9530 /*
9531 * During early bootup we pretend to be a normal task:
9532 */
9533 current->sched_class = &fair_sched_class;
6892b75e 9534
6a7b3dc3 9535 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9536 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9537#ifdef CONFIG_SMP
7d1e6a9b 9538#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9539 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9540 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9541#endif
4bdddf8f 9542 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9543#endif /* SMP */
6a7b3dc3 9544
cdd6c482 9545 perf_event_init();
0d905bca 9546
6892b75e 9547 scheduler_running = 1;
1da177e4
LT
9548}
9549
9550#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9551static inline int preempt_count_equals(int preempt_offset)
9552{
9553 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9554
9555 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9556}
9557
9558void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9559{
48f24c4d 9560#ifdef in_atomic
1da177e4
LT
9561 static unsigned long prev_jiffy; /* ratelimiting */
9562
e4aafea2
FW
9563 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9564 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9565 return;
9566 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9567 return;
9568 prev_jiffy = jiffies;
9569
9570 printk(KERN_ERR
9571 "BUG: sleeping function called from invalid context at %s:%d\n",
9572 file, line);
9573 printk(KERN_ERR
9574 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9575 in_atomic(), irqs_disabled(),
9576 current->pid, current->comm);
9577
9578 debug_show_held_locks(current);
9579 if (irqs_disabled())
9580 print_irqtrace_events(current);
9581 dump_stack();
1da177e4
LT
9582#endif
9583}
9584EXPORT_SYMBOL(__might_sleep);
9585#endif
9586
9587#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9588static void normalize_task(struct rq *rq, struct task_struct *p)
9589{
9590 int on_rq;
3e51f33f 9591
3a5e4dc1
AK
9592 update_rq_clock(rq);
9593 on_rq = p->se.on_rq;
9594 if (on_rq)
9595 deactivate_task(rq, p, 0);
9596 __setscheduler(rq, p, SCHED_NORMAL, 0);
9597 if (on_rq) {
9598 activate_task(rq, p, 0);
9599 resched_task(rq->curr);
9600 }
9601}
9602
1da177e4
LT
9603void normalize_rt_tasks(void)
9604{
a0f98a1c 9605 struct task_struct *g, *p;
1da177e4 9606 unsigned long flags;
70b97a7f 9607 struct rq *rq;
1da177e4 9608
4cf5d77a 9609 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9610 do_each_thread(g, p) {
178be793
IM
9611 /*
9612 * Only normalize user tasks:
9613 */
9614 if (!p->mm)
9615 continue;
9616
6cfb0d5d 9617 p->se.exec_start = 0;
6cfb0d5d 9618#ifdef CONFIG_SCHEDSTATS
dd41f596 9619 p->se.wait_start = 0;
dd41f596 9620 p->se.sleep_start = 0;
dd41f596 9621 p->se.block_start = 0;
6cfb0d5d 9622#endif
dd41f596
IM
9623
9624 if (!rt_task(p)) {
9625 /*
9626 * Renice negative nice level userspace
9627 * tasks back to 0:
9628 */
9629 if (TASK_NICE(p) < 0 && p->mm)
9630 set_user_nice(p, 0);
1da177e4 9631 continue;
dd41f596 9632 }
1da177e4 9633
4cf5d77a 9634 spin_lock(&p->pi_lock);
b29739f9 9635 rq = __task_rq_lock(p);
1da177e4 9636
178be793 9637 normalize_task(rq, p);
3a5e4dc1 9638
b29739f9 9639 __task_rq_unlock(rq);
4cf5d77a 9640 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9641 } while_each_thread(g, p);
9642
4cf5d77a 9643 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9644}
9645
9646#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9647
9648#ifdef CONFIG_IA64
9649/*
9650 * These functions are only useful for the IA64 MCA handling.
9651 *
9652 * They can only be called when the whole system has been
9653 * stopped - every CPU needs to be quiescent, and no scheduling
9654 * activity can take place. Using them for anything else would
9655 * be a serious bug, and as a result, they aren't even visible
9656 * under any other configuration.
9657 */
9658
9659/**
9660 * curr_task - return the current task for a given cpu.
9661 * @cpu: the processor in question.
9662 *
9663 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9664 */
36c8b586 9665struct task_struct *curr_task(int cpu)
1df5c10a
LT
9666{
9667 return cpu_curr(cpu);
9668}
9669
9670/**
9671 * set_curr_task - set the current task for a given cpu.
9672 * @cpu: the processor in question.
9673 * @p: the task pointer to set.
9674 *
9675 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9676 * are serviced on a separate stack. It allows the architecture to switch the
9677 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9678 * must be called with all CPU's synchronized, and interrupts disabled, the
9679 * and caller must save the original value of the current task (see
9680 * curr_task() above) and restore that value before reenabling interrupts and
9681 * re-starting the system.
9682 *
9683 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9684 */
36c8b586 9685void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9686{
9687 cpu_curr(cpu) = p;
9688}
9689
9690#endif
29f59db3 9691
bccbe08a
PZ
9692#ifdef CONFIG_FAIR_GROUP_SCHED
9693static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9694{
9695 int i;
9696
9697 for_each_possible_cpu(i) {
9698 if (tg->cfs_rq)
9699 kfree(tg->cfs_rq[i]);
9700 if (tg->se)
9701 kfree(tg->se[i]);
6f505b16
PZ
9702 }
9703
9704 kfree(tg->cfs_rq);
9705 kfree(tg->se);
6f505b16
PZ
9706}
9707
ec7dc8ac
DG
9708static
9709int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9710{
29f59db3 9711 struct cfs_rq *cfs_rq;
eab17229 9712 struct sched_entity *se;
9b5b7751 9713 struct rq *rq;
29f59db3
SV
9714 int i;
9715
434d53b0 9716 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9717 if (!tg->cfs_rq)
9718 goto err;
434d53b0 9719 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9720 if (!tg->se)
9721 goto err;
052f1dc7
PZ
9722
9723 tg->shares = NICE_0_LOAD;
29f59db3
SV
9724
9725 for_each_possible_cpu(i) {
9b5b7751 9726 rq = cpu_rq(i);
29f59db3 9727
eab17229
LZ
9728 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9729 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9730 if (!cfs_rq)
9731 goto err;
9732
eab17229
LZ
9733 se = kzalloc_node(sizeof(struct sched_entity),
9734 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9735 if (!se)
9736 goto err;
9737
eab17229 9738 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9739 }
9740
9741 return 1;
9742
9743 err:
9744 return 0;
9745}
9746
9747static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9748{
9749 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9750 &cpu_rq(cpu)->leaf_cfs_rq_list);
9751}
9752
9753static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9754{
9755 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9756}
6d6bc0ad 9757#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9758static inline void free_fair_sched_group(struct task_group *tg)
9759{
9760}
9761
ec7dc8ac
DG
9762static inline
9763int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9764{
9765 return 1;
9766}
9767
9768static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9769{
9770}
9771
9772static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9773{
9774}
6d6bc0ad 9775#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9776
9777#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9778static void free_rt_sched_group(struct task_group *tg)
9779{
9780 int i;
9781
d0b27fa7
PZ
9782 destroy_rt_bandwidth(&tg->rt_bandwidth);
9783
bccbe08a
PZ
9784 for_each_possible_cpu(i) {
9785 if (tg->rt_rq)
9786 kfree(tg->rt_rq[i]);
9787 if (tg->rt_se)
9788 kfree(tg->rt_se[i]);
9789 }
9790
9791 kfree(tg->rt_rq);
9792 kfree(tg->rt_se);
9793}
9794
ec7dc8ac
DG
9795static
9796int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9797{
9798 struct rt_rq *rt_rq;
eab17229 9799 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9800 struct rq *rq;
9801 int i;
9802
434d53b0 9803 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9804 if (!tg->rt_rq)
9805 goto err;
434d53b0 9806 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9807 if (!tg->rt_se)
9808 goto err;
9809
d0b27fa7
PZ
9810 init_rt_bandwidth(&tg->rt_bandwidth,
9811 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9812
9813 for_each_possible_cpu(i) {
9814 rq = cpu_rq(i);
9815
eab17229
LZ
9816 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9817 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9818 if (!rt_rq)
9819 goto err;
29f59db3 9820
eab17229
LZ
9821 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9822 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9823 if (!rt_se)
9824 goto err;
29f59db3 9825
eab17229 9826 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9827 }
9828
bccbe08a
PZ
9829 return 1;
9830
9831 err:
9832 return 0;
9833}
9834
9835static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9836{
9837 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9838 &cpu_rq(cpu)->leaf_rt_rq_list);
9839}
9840
9841static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9842{
9843 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9844}
6d6bc0ad 9845#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9846static inline void free_rt_sched_group(struct task_group *tg)
9847{
9848}
9849
ec7dc8ac
DG
9850static inline
9851int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9852{
9853 return 1;
9854}
9855
9856static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9857{
9858}
9859
9860static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9861{
9862}
6d6bc0ad 9863#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9864
d0b27fa7 9865#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9866static void free_sched_group(struct task_group *tg)
9867{
9868 free_fair_sched_group(tg);
9869 free_rt_sched_group(tg);
9870 kfree(tg);
9871}
9872
9873/* allocate runqueue etc for a new task group */
ec7dc8ac 9874struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9875{
9876 struct task_group *tg;
9877 unsigned long flags;
9878 int i;
9879
9880 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9881 if (!tg)
9882 return ERR_PTR(-ENOMEM);
9883
ec7dc8ac 9884 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9885 goto err;
9886
ec7dc8ac 9887 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9888 goto err;
9889
8ed36996 9890 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9891 for_each_possible_cpu(i) {
bccbe08a
PZ
9892 register_fair_sched_group(tg, i);
9893 register_rt_sched_group(tg, i);
9b5b7751 9894 }
6f505b16 9895 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9896
9897 WARN_ON(!parent); /* root should already exist */
9898
9899 tg->parent = parent;
f473aa5e 9900 INIT_LIST_HEAD(&tg->children);
09f2724a 9901 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9902 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9903
9b5b7751 9904 return tg;
29f59db3
SV
9905
9906err:
6f505b16 9907 free_sched_group(tg);
29f59db3
SV
9908 return ERR_PTR(-ENOMEM);
9909}
9910
9b5b7751 9911/* rcu callback to free various structures associated with a task group */
6f505b16 9912static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9913{
29f59db3 9914 /* now it should be safe to free those cfs_rqs */
6f505b16 9915 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9916}
9917
9b5b7751 9918/* Destroy runqueue etc associated with a task group */
4cf86d77 9919void sched_destroy_group(struct task_group *tg)
29f59db3 9920{
8ed36996 9921 unsigned long flags;
9b5b7751 9922 int i;
29f59db3 9923
8ed36996 9924 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9925 for_each_possible_cpu(i) {
bccbe08a
PZ
9926 unregister_fair_sched_group(tg, i);
9927 unregister_rt_sched_group(tg, i);
9b5b7751 9928 }
6f505b16 9929 list_del_rcu(&tg->list);
f473aa5e 9930 list_del_rcu(&tg->siblings);
8ed36996 9931 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9932
9b5b7751 9933 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9934 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9935}
9936
9b5b7751 9937/* change task's runqueue when it moves between groups.
3a252015
IM
9938 * The caller of this function should have put the task in its new group
9939 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9940 * reflect its new group.
9b5b7751
SV
9941 */
9942void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9943{
9944 int on_rq, running;
9945 unsigned long flags;
9946 struct rq *rq;
9947
9948 rq = task_rq_lock(tsk, &flags);
9949
29f59db3
SV
9950 update_rq_clock(rq);
9951
051a1d1a 9952 running = task_current(rq, tsk);
29f59db3
SV
9953 on_rq = tsk->se.on_rq;
9954
0e1f3483 9955 if (on_rq)
29f59db3 9956 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9957 if (unlikely(running))
9958 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9959
6f505b16 9960 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9961
810b3817
PZ
9962#ifdef CONFIG_FAIR_GROUP_SCHED
9963 if (tsk->sched_class->moved_group)
9964 tsk->sched_class->moved_group(tsk);
9965#endif
9966
0e1f3483
HS
9967 if (unlikely(running))
9968 tsk->sched_class->set_curr_task(rq);
9969 if (on_rq)
7074badb 9970 enqueue_task(rq, tsk, 0);
29f59db3 9971
29f59db3
SV
9972 task_rq_unlock(rq, &flags);
9973}
6d6bc0ad 9974#endif /* CONFIG_GROUP_SCHED */
29f59db3 9975
052f1dc7 9976#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9977static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9978{
9979 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9980 int on_rq;
9981
29f59db3 9982 on_rq = se->on_rq;
62fb1851 9983 if (on_rq)
29f59db3
SV
9984 dequeue_entity(cfs_rq, se, 0);
9985
9986 se->load.weight = shares;
e05510d0 9987 se->load.inv_weight = 0;
29f59db3 9988
62fb1851 9989 if (on_rq)
29f59db3 9990 enqueue_entity(cfs_rq, se, 0);
c09595f6 9991}
62fb1851 9992
c09595f6
PZ
9993static void set_se_shares(struct sched_entity *se, unsigned long shares)
9994{
9995 struct cfs_rq *cfs_rq = se->cfs_rq;
9996 struct rq *rq = cfs_rq->rq;
9997 unsigned long flags;
9998
9999 spin_lock_irqsave(&rq->lock, flags);
10000 __set_se_shares(se, shares);
10001 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10002}
10003
8ed36996
PZ
10004static DEFINE_MUTEX(shares_mutex);
10005
4cf86d77 10006int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10007{
10008 int i;
8ed36996 10009 unsigned long flags;
c61935fd 10010
ec7dc8ac
DG
10011 /*
10012 * We can't change the weight of the root cgroup.
10013 */
10014 if (!tg->se[0])
10015 return -EINVAL;
10016
18d95a28
PZ
10017 if (shares < MIN_SHARES)
10018 shares = MIN_SHARES;
cb4ad1ff
MX
10019 else if (shares > MAX_SHARES)
10020 shares = MAX_SHARES;
62fb1851 10021
8ed36996 10022 mutex_lock(&shares_mutex);
9b5b7751 10023 if (tg->shares == shares)
5cb350ba 10024 goto done;
29f59db3 10025
8ed36996 10026 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10027 for_each_possible_cpu(i)
10028 unregister_fair_sched_group(tg, i);
f473aa5e 10029 list_del_rcu(&tg->siblings);
8ed36996 10030 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10031
10032 /* wait for any ongoing reference to this group to finish */
10033 synchronize_sched();
10034
10035 /*
10036 * Now we are free to modify the group's share on each cpu
10037 * w/o tripping rebalance_share or load_balance_fair.
10038 */
9b5b7751 10039 tg->shares = shares;
c09595f6
PZ
10040 for_each_possible_cpu(i) {
10041 /*
10042 * force a rebalance
10043 */
10044 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10045 set_se_shares(tg->se[i], shares);
c09595f6 10046 }
29f59db3 10047
6b2d7700
SV
10048 /*
10049 * Enable load balance activity on this group, by inserting it back on
10050 * each cpu's rq->leaf_cfs_rq_list.
10051 */
8ed36996 10052 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10053 for_each_possible_cpu(i)
10054 register_fair_sched_group(tg, i);
f473aa5e 10055 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10056 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10057done:
8ed36996 10058 mutex_unlock(&shares_mutex);
9b5b7751 10059 return 0;
29f59db3
SV
10060}
10061
5cb350ba
DG
10062unsigned long sched_group_shares(struct task_group *tg)
10063{
10064 return tg->shares;
10065}
052f1dc7 10066#endif
5cb350ba 10067
052f1dc7 10068#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10069/*
9f0c1e56 10070 * Ensure that the real time constraints are schedulable.
6f505b16 10071 */
9f0c1e56
PZ
10072static DEFINE_MUTEX(rt_constraints_mutex);
10073
10074static unsigned long to_ratio(u64 period, u64 runtime)
10075{
10076 if (runtime == RUNTIME_INF)
9a7e0b18 10077 return 1ULL << 20;
9f0c1e56 10078
9a7e0b18 10079 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10080}
10081
9a7e0b18
PZ
10082/* Must be called with tasklist_lock held */
10083static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10084{
9a7e0b18 10085 struct task_struct *g, *p;
b40b2e8e 10086
9a7e0b18
PZ
10087 do_each_thread(g, p) {
10088 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10089 return 1;
10090 } while_each_thread(g, p);
b40b2e8e 10091
9a7e0b18
PZ
10092 return 0;
10093}
b40b2e8e 10094
9a7e0b18
PZ
10095struct rt_schedulable_data {
10096 struct task_group *tg;
10097 u64 rt_period;
10098 u64 rt_runtime;
10099};
b40b2e8e 10100
9a7e0b18
PZ
10101static int tg_schedulable(struct task_group *tg, void *data)
10102{
10103 struct rt_schedulable_data *d = data;
10104 struct task_group *child;
10105 unsigned long total, sum = 0;
10106 u64 period, runtime;
b40b2e8e 10107
9a7e0b18
PZ
10108 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10109 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10110
9a7e0b18
PZ
10111 if (tg == d->tg) {
10112 period = d->rt_period;
10113 runtime = d->rt_runtime;
b40b2e8e 10114 }
b40b2e8e 10115
98a4826b
PZ
10116#ifdef CONFIG_USER_SCHED
10117 if (tg == &root_task_group) {
10118 period = global_rt_period();
10119 runtime = global_rt_runtime();
10120 }
10121#endif
10122
4653f803
PZ
10123 /*
10124 * Cannot have more runtime than the period.
10125 */
10126 if (runtime > period && runtime != RUNTIME_INF)
10127 return -EINVAL;
6f505b16 10128
4653f803
PZ
10129 /*
10130 * Ensure we don't starve existing RT tasks.
10131 */
9a7e0b18
PZ
10132 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10133 return -EBUSY;
6f505b16 10134
9a7e0b18 10135 total = to_ratio(period, runtime);
6f505b16 10136
4653f803
PZ
10137 /*
10138 * Nobody can have more than the global setting allows.
10139 */
10140 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10141 return -EINVAL;
6f505b16 10142
4653f803
PZ
10143 /*
10144 * The sum of our children's runtime should not exceed our own.
10145 */
9a7e0b18
PZ
10146 list_for_each_entry_rcu(child, &tg->children, siblings) {
10147 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10148 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10149
9a7e0b18
PZ
10150 if (child == d->tg) {
10151 period = d->rt_period;
10152 runtime = d->rt_runtime;
10153 }
6f505b16 10154
9a7e0b18 10155 sum += to_ratio(period, runtime);
9f0c1e56 10156 }
6f505b16 10157
9a7e0b18
PZ
10158 if (sum > total)
10159 return -EINVAL;
10160
10161 return 0;
6f505b16
PZ
10162}
10163
9a7e0b18 10164static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10165{
9a7e0b18
PZ
10166 struct rt_schedulable_data data = {
10167 .tg = tg,
10168 .rt_period = period,
10169 .rt_runtime = runtime,
10170 };
10171
10172 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10173}
10174
d0b27fa7
PZ
10175static int tg_set_bandwidth(struct task_group *tg,
10176 u64 rt_period, u64 rt_runtime)
6f505b16 10177{
ac086bc2 10178 int i, err = 0;
9f0c1e56 10179
9f0c1e56 10180 mutex_lock(&rt_constraints_mutex);
521f1a24 10181 read_lock(&tasklist_lock);
9a7e0b18
PZ
10182 err = __rt_schedulable(tg, rt_period, rt_runtime);
10183 if (err)
9f0c1e56 10184 goto unlock;
ac086bc2
PZ
10185
10186 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10187 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10188 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10189
10190 for_each_possible_cpu(i) {
10191 struct rt_rq *rt_rq = tg->rt_rq[i];
10192
10193 spin_lock(&rt_rq->rt_runtime_lock);
10194 rt_rq->rt_runtime = rt_runtime;
10195 spin_unlock(&rt_rq->rt_runtime_lock);
10196 }
10197 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10198 unlock:
521f1a24 10199 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10200 mutex_unlock(&rt_constraints_mutex);
10201
10202 return err;
6f505b16
PZ
10203}
10204
d0b27fa7
PZ
10205int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10206{
10207 u64 rt_runtime, rt_period;
10208
10209 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10210 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10211 if (rt_runtime_us < 0)
10212 rt_runtime = RUNTIME_INF;
10213
10214 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10215}
10216
9f0c1e56
PZ
10217long sched_group_rt_runtime(struct task_group *tg)
10218{
10219 u64 rt_runtime_us;
10220
d0b27fa7 10221 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10222 return -1;
10223
d0b27fa7 10224 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10225 do_div(rt_runtime_us, NSEC_PER_USEC);
10226 return rt_runtime_us;
10227}
d0b27fa7
PZ
10228
10229int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10230{
10231 u64 rt_runtime, rt_period;
10232
10233 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10234 rt_runtime = tg->rt_bandwidth.rt_runtime;
10235
619b0488
R
10236 if (rt_period == 0)
10237 return -EINVAL;
10238
d0b27fa7
PZ
10239 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10240}
10241
10242long sched_group_rt_period(struct task_group *tg)
10243{
10244 u64 rt_period_us;
10245
10246 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10247 do_div(rt_period_us, NSEC_PER_USEC);
10248 return rt_period_us;
10249}
10250
10251static int sched_rt_global_constraints(void)
10252{
4653f803 10253 u64 runtime, period;
d0b27fa7
PZ
10254 int ret = 0;
10255
ec5d4989
HS
10256 if (sysctl_sched_rt_period <= 0)
10257 return -EINVAL;
10258
4653f803
PZ
10259 runtime = global_rt_runtime();
10260 period = global_rt_period();
10261
10262 /*
10263 * Sanity check on the sysctl variables.
10264 */
10265 if (runtime > period && runtime != RUNTIME_INF)
10266 return -EINVAL;
10b612f4 10267
d0b27fa7 10268 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10269 read_lock(&tasklist_lock);
4653f803 10270 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10271 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10272 mutex_unlock(&rt_constraints_mutex);
10273
10274 return ret;
10275}
54e99124
DG
10276
10277int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10278{
10279 /* Don't accept realtime tasks when there is no way for them to run */
10280 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10281 return 0;
10282
10283 return 1;
10284}
10285
6d6bc0ad 10286#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10287static int sched_rt_global_constraints(void)
10288{
ac086bc2
PZ
10289 unsigned long flags;
10290 int i;
10291
ec5d4989
HS
10292 if (sysctl_sched_rt_period <= 0)
10293 return -EINVAL;
10294
60aa605d
PZ
10295 /*
10296 * There's always some RT tasks in the root group
10297 * -- migration, kstopmachine etc..
10298 */
10299 if (sysctl_sched_rt_runtime == 0)
10300 return -EBUSY;
10301
ac086bc2
PZ
10302 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10303 for_each_possible_cpu(i) {
10304 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10305
10306 spin_lock(&rt_rq->rt_runtime_lock);
10307 rt_rq->rt_runtime = global_rt_runtime();
10308 spin_unlock(&rt_rq->rt_runtime_lock);
10309 }
10310 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10311
d0b27fa7
PZ
10312 return 0;
10313}
6d6bc0ad 10314#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10315
10316int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10317 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10318 loff_t *ppos)
10319{
10320 int ret;
10321 int old_period, old_runtime;
10322 static DEFINE_MUTEX(mutex);
10323
10324 mutex_lock(&mutex);
10325 old_period = sysctl_sched_rt_period;
10326 old_runtime = sysctl_sched_rt_runtime;
10327
8d65af78 10328 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10329
10330 if (!ret && write) {
10331 ret = sched_rt_global_constraints();
10332 if (ret) {
10333 sysctl_sched_rt_period = old_period;
10334 sysctl_sched_rt_runtime = old_runtime;
10335 } else {
10336 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10337 def_rt_bandwidth.rt_period =
10338 ns_to_ktime(global_rt_period());
10339 }
10340 }
10341 mutex_unlock(&mutex);
10342
10343 return ret;
10344}
68318b8e 10345
052f1dc7 10346#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10347
10348/* return corresponding task_group object of a cgroup */
2b01dfe3 10349static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10350{
2b01dfe3
PM
10351 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10352 struct task_group, css);
68318b8e
SV
10353}
10354
10355static struct cgroup_subsys_state *
2b01dfe3 10356cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10357{
ec7dc8ac 10358 struct task_group *tg, *parent;
68318b8e 10359
2b01dfe3 10360 if (!cgrp->parent) {
68318b8e 10361 /* This is early initialization for the top cgroup */
68318b8e
SV
10362 return &init_task_group.css;
10363 }
10364
ec7dc8ac
DG
10365 parent = cgroup_tg(cgrp->parent);
10366 tg = sched_create_group(parent);
68318b8e
SV
10367 if (IS_ERR(tg))
10368 return ERR_PTR(-ENOMEM);
10369
68318b8e
SV
10370 return &tg->css;
10371}
10372
41a2d6cf
IM
10373static void
10374cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10375{
2b01dfe3 10376 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10377
10378 sched_destroy_group(tg);
10379}
10380
41a2d6cf 10381static int
be367d09 10382cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10383{
b68aa230 10384#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10385 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10386 return -EINVAL;
10387#else
68318b8e
SV
10388 /* We don't support RT-tasks being in separate groups */
10389 if (tsk->sched_class != &fair_sched_class)
10390 return -EINVAL;
b68aa230 10391#endif
be367d09
BB
10392 return 0;
10393}
68318b8e 10394
be367d09
BB
10395static int
10396cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10397 struct task_struct *tsk, bool threadgroup)
10398{
10399 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10400 if (retval)
10401 return retval;
10402 if (threadgroup) {
10403 struct task_struct *c;
10404 rcu_read_lock();
10405 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10406 retval = cpu_cgroup_can_attach_task(cgrp, c);
10407 if (retval) {
10408 rcu_read_unlock();
10409 return retval;
10410 }
10411 }
10412 rcu_read_unlock();
10413 }
68318b8e
SV
10414 return 0;
10415}
10416
10417static void
2b01dfe3 10418cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10419 struct cgroup *old_cont, struct task_struct *tsk,
10420 bool threadgroup)
68318b8e
SV
10421{
10422 sched_move_task(tsk);
be367d09
BB
10423 if (threadgroup) {
10424 struct task_struct *c;
10425 rcu_read_lock();
10426 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10427 sched_move_task(c);
10428 }
10429 rcu_read_unlock();
10430 }
68318b8e
SV
10431}
10432
052f1dc7 10433#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10434static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10435 u64 shareval)
68318b8e 10436{
2b01dfe3 10437 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10438}
10439
f4c753b7 10440static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10441{
2b01dfe3 10442 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10443
10444 return (u64) tg->shares;
10445}
6d6bc0ad 10446#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10447
052f1dc7 10448#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10449static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10450 s64 val)
6f505b16 10451{
06ecb27c 10452 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10453}
10454
06ecb27c 10455static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10456{
06ecb27c 10457 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10458}
d0b27fa7
PZ
10459
10460static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10461 u64 rt_period_us)
10462{
10463 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10464}
10465
10466static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10467{
10468 return sched_group_rt_period(cgroup_tg(cgrp));
10469}
6d6bc0ad 10470#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10471
fe5c7cc2 10472static struct cftype cpu_files[] = {
052f1dc7 10473#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10474 {
10475 .name = "shares",
f4c753b7
PM
10476 .read_u64 = cpu_shares_read_u64,
10477 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10478 },
052f1dc7
PZ
10479#endif
10480#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10481 {
9f0c1e56 10482 .name = "rt_runtime_us",
06ecb27c
PM
10483 .read_s64 = cpu_rt_runtime_read,
10484 .write_s64 = cpu_rt_runtime_write,
6f505b16 10485 },
d0b27fa7
PZ
10486 {
10487 .name = "rt_period_us",
f4c753b7
PM
10488 .read_u64 = cpu_rt_period_read_uint,
10489 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10490 },
052f1dc7 10491#endif
68318b8e
SV
10492};
10493
10494static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10495{
fe5c7cc2 10496 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10497}
10498
10499struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10500 .name = "cpu",
10501 .create = cpu_cgroup_create,
10502 .destroy = cpu_cgroup_destroy,
10503 .can_attach = cpu_cgroup_can_attach,
10504 .attach = cpu_cgroup_attach,
10505 .populate = cpu_cgroup_populate,
10506 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10507 .early_init = 1,
10508};
10509
052f1dc7 10510#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10511
10512#ifdef CONFIG_CGROUP_CPUACCT
10513
10514/*
10515 * CPU accounting code for task groups.
10516 *
10517 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10518 * (balbir@in.ibm.com).
10519 */
10520
934352f2 10521/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10522struct cpuacct {
10523 struct cgroup_subsys_state css;
10524 /* cpuusage holds pointer to a u64-type object on every cpu */
10525 u64 *cpuusage;
ef12fefa 10526 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10527 struct cpuacct *parent;
d842de87
SV
10528};
10529
10530struct cgroup_subsys cpuacct_subsys;
10531
10532/* return cpu accounting group corresponding to this container */
32cd756a 10533static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10534{
32cd756a 10535 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10536 struct cpuacct, css);
10537}
10538
10539/* return cpu accounting group to which this task belongs */
10540static inline struct cpuacct *task_ca(struct task_struct *tsk)
10541{
10542 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10543 struct cpuacct, css);
10544}
10545
10546/* create a new cpu accounting group */
10547static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10548 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10549{
10550 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10551 int i;
d842de87
SV
10552
10553 if (!ca)
ef12fefa 10554 goto out;
d842de87
SV
10555
10556 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10557 if (!ca->cpuusage)
10558 goto out_free_ca;
10559
10560 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10561 if (percpu_counter_init(&ca->cpustat[i], 0))
10562 goto out_free_counters;
d842de87 10563
934352f2
BR
10564 if (cgrp->parent)
10565 ca->parent = cgroup_ca(cgrp->parent);
10566
d842de87 10567 return &ca->css;
ef12fefa
BR
10568
10569out_free_counters:
10570 while (--i >= 0)
10571 percpu_counter_destroy(&ca->cpustat[i]);
10572 free_percpu(ca->cpuusage);
10573out_free_ca:
10574 kfree(ca);
10575out:
10576 return ERR_PTR(-ENOMEM);
d842de87
SV
10577}
10578
10579/* destroy an existing cpu accounting group */
41a2d6cf 10580static void
32cd756a 10581cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10582{
32cd756a 10583 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10584 int i;
d842de87 10585
ef12fefa
BR
10586 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10587 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10588 free_percpu(ca->cpuusage);
10589 kfree(ca);
10590}
10591
720f5498
KC
10592static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10593{
b36128c8 10594 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10595 u64 data;
10596
10597#ifndef CONFIG_64BIT
10598 /*
10599 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10600 */
10601 spin_lock_irq(&cpu_rq(cpu)->lock);
10602 data = *cpuusage;
10603 spin_unlock_irq(&cpu_rq(cpu)->lock);
10604#else
10605 data = *cpuusage;
10606#endif
10607
10608 return data;
10609}
10610
10611static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10612{
b36128c8 10613 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10614
10615#ifndef CONFIG_64BIT
10616 /*
10617 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10618 */
10619 spin_lock_irq(&cpu_rq(cpu)->lock);
10620 *cpuusage = val;
10621 spin_unlock_irq(&cpu_rq(cpu)->lock);
10622#else
10623 *cpuusage = val;
10624#endif
10625}
10626
d842de87 10627/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10628static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10629{
32cd756a 10630 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10631 u64 totalcpuusage = 0;
10632 int i;
10633
720f5498
KC
10634 for_each_present_cpu(i)
10635 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10636
10637 return totalcpuusage;
10638}
10639
0297b803
DG
10640static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10641 u64 reset)
10642{
10643 struct cpuacct *ca = cgroup_ca(cgrp);
10644 int err = 0;
10645 int i;
10646
10647 if (reset) {
10648 err = -EINVAL;
10649 goto out;
10650 }
10651
720f5498
KC
10652 for_each_present_cpu(i)
10653 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10654
0297b803
DG
10655out:
10656 return err;
10657}
10658
e9515c3c
KC
10659static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10660 struct seq_file *m)
10661{
10662 struct cpuacct *ca = cgroup_ca(cgroup);
10663 u64 percpu;
10664 int i;
10665
10666 for_each_present_cpu(i) {
10667 percpu = cpuacct_cpuusage_read(ca, i);
10668 seq_printf(m, "%llu ", (unsigned long long) percpu);
10669 }
10670 seq_printf(m, "\n");
10671 return 0;
10672}
10673
ef12fefa
BR
10674static const char *cpuacct_stat_desc[] = {
10675 [CPUACCT_STAT_USER] = "user",
10676 [CPUACCT_STAT_SYSTEM] = "system",
10677};
10678
10679static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10680 struct cgroup_map_cb *cb)
10681{
10682 struct cpuacct *ca = cgroup_ca(cgrp);
10683 int i;
10684
10685 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10686 s64 val = percpu_counter_read(&ca->cpustat[i]);
10687 val = cputime64_to_clock_t(val);
10688 cb->fill(cb, cpuacct_stat_desc[i], val);
10689 }
10690 return 0;
10691}
10692
d842de87
SV
10693static struct cftype files[] = {
10694 {
10695 .name = "usage",
f4c753b7
PM
10696 .read_u64 = cpuusage_read,
10697 .write_u64 = cpuusage_write,
d842de87 10698 },
e9515c3c
KC
10699 {
10700 .name = "usage_percpu",
10701 .read_seq_string = cpuacct_percpu_seq_read,
10702 },
ef12fefa
BR
10703 {
10704 .name = "stat",
10705 .read_map = cpuacct_stats_show,
10706 },
d842de87
SV
10707};
10708
32cd756a 10709static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10710{
32cd756a 10711 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10712}
10713
10714/*
10715 * charge this task's execution time to its accounting group.
10716 *
10717 * called with rq->lock held.
10718 */
10719static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10720{
10721 struct cpuacct *ca;
934352f2 10722 int cpu;
d842de87 10723
c40c6f85 10724 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10725 return;
10726
934352f2 10727 cpu = task_cpu(tsk);
a18b83b7
BR
10728
10729 rcu_read_lock();
10730
d842de87 10731 ca = task_ca(tsk);
d842de87 10732
934352f2 10733 for (; ca; ca = ca->parent) {
b36128c8 10734 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10735 *cpuusage += cputime;
10736 }
a18b83b7
BR
10737
10738 rcu_read_unlock();
d842de87
SV
10739}
10740
ef12fefa
BR
10741/*
10742 * Charge the system/user time to the task's accounting group.
10743 */
10744static void cpuacct_update_stats(struct task_struct *tsk,
10745 enum cpuacct_stat_index idx, cputime_t val)
10746{
10747 struct cpuacct *ca;
10748
10749 if (unlikely(!cpuacct_subsys.active))
10750 return;
10751
10752 rcu_read_lock();
10753 ca = task_ca(tsk);
10754
10755 do {
10756 percpu_counter_add(&ca->cpustat[idx], val);
10757 ca = ca->parent;
10758 } while (ca);
10759 rcu_read_unlock();
10760}
10761
d842de87
SV
10762struct cgroup_subsys cpuacct_subsys = {
10763 .name = "cpuacct",
10764 .create = cpuacct_create,
10765 .destroy = cpuacct_destroy,
10766 .populate = cpuacct_populate,
10767 .subsys_id = cpuacct_subsys_id,
10768};
10769#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10770
10771#ifndef CONFIG_SMP
10772
10773int rcu_expedited_torture_stats(char *page)
10774{
10775 return 0;
10776}
10777EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10778
10779void synchronize_sched_expedited(void)
10780{
10781}
10782EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10783
10784#else /* #ifndef CONFIG_SMP */
10785
10786static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10787static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10788
10789#define RCU_EXPEDITED_STATE_POST -2
10790#define RCU_EXPEDITED_STATE_IDLE -1
10791
10792static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10793
10794int rcu_expedited_torture_stats(char *page)
10795{
10796 int cnt = 0;
10797 int cpu;
10798
10799 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10800 for_each_online_cpu(cpu) {
10801 cnt += sprintf(&page[cnt], " %d:%d",
10802 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10803 }
10804 cnt += sprintf(&page[cnt], "\n");
10805 return cnt;
10806}
10807EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10808
10809static long synchronize_sched_expedited_count;
10810
10811/*
10812 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10813 * approach to force grace period to end quickly. This consumes
10814 * significant time on all CPUs, and is thus not recommended for
10815 * any sort of common-case code.
10816 *
10817 * Note that it is illegal to call this function while holding any
10818 * lock that is acquired by a CPU-hotplug notifier. Failing to
10819 * observe this restriction will result in deadlock.
10820 */
10821void synchronize_sched_expedited(void)
10822{
10823 int cpu;
10824 unsigned long flags;
10825 bool need_full_sync = 0;
10826 struct rq *rq;
10827 struct migration_req *req;
10828 long snap;
10829 int trycount = 0;
10830
10831 smp_mb(); /* ensure prior mod happens before capturing snap. */
10832 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10833 get_online_cpus();
10834 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10835 put_online_cpus();
10836 if (trycount++ < 10)
10837 udelay(trycount * num_online_cpus());
10838 else {
10839 synchronize_sched();
10840 return;
10841 }
10842 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10843 smp_mb(); /* ensure test happens before caller kfree */
10844 return;
10845 }
10846 get_online_cpus();
10847 }
10848 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10849 for_each_online_cpu(cpu) {
10850 rq = cpu_rq(cpu);
10851 req = &per_cpu(rcu_migration_req, cpu);
10852 init_completion(&req->done);
10853 req->task = NULL;
10854 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10855 spin_lock_irqsave(&rq->lock, flags);
10856 list_add(&req->list, &rq->migration_queue);
10857 spin_unlock_irqrestore(&rq->lock, flags);
10858 wake_up_process(rq->migration_thread);
10859 }
10860 for_each_online_cpu(cpu) {
10861 rcu_expedited_state = cpu;
10862 req = &per_cpu(rcu_migration_req, cpu);
10863 rq = cpu_rq(cpu);
10864 wait_for_completion(&req->done);
10865 spin_lock_irqsave(&rq->lock, flags);
10866 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10867 need_full_sync = 1;
10868 req->dest_cpu = RCU_MIGRATION_IDLE;
10869 spin_unlock_irqrestore(&rq->lock, flags);
10870 }
10871 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10872 mutex_unlock(&rcu_sched_expedited_mutex);
10873 put_online_cpus();
10874 if (need_full_sync)
10875 synchronize_sched();
10876}
10877EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10878
10879#endif /* #else #ifndef CONFIG_SMP */