sched: Remove rq argument from ttwu_stat()
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee
HC
233/*
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
2e084786 296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
3fe1698b
PZ
315#ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317#endif
6aa645ea
IM
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
4a55bd5e
PZ
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
ac53db59 329 struct sched_entity *curr, *next, *last, *skip;
ddc97297 330
5ac5c4d6 331 unsigned int nr_spread_over;
ddc97297 332
62160e3f 333#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
335
41a2d6cf
IM
336 /*
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
340 *
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
343 */
3d4b47b4 344 int on_list;
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857 362 /*
3b3d190e
PT
363 * Maintaining per-cpu shares distribution for group scheduling
364 *
365 * load_stamp is the last time we updated the load average
366 * load_last is the last time we updated the load average and saw load
367 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 368 */
2069dd75
PZ
369 u64 load_avg;
370 u64 load_period;
3b3d190e 371 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 372
2069dd75 373 unsigned long load_contribution;
c09595f6 374#endif
6aa645ea
IM
375#endif
376};
1da177e4 377
6aa645ea
IM
378/* Real-Time classes' related field in a runqueue: */
379struct rt_rq {
380 struct rt_prio_array active;
63489e45 381 unsigned long rt_nr_running;
052f1dc7 382#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
383 struct {
384 int curr; /* highest queued rt task prio */
398a153b 385#ifdef CONFIG_SMP
e864c499 386 int next; /* next highest */
398a153b 387#endif
e864c499 388 } highest_prio;
6f505b16 389#endif
fa85ae24 390#ifdef CONFIG_SMP
73fe6aae 391 unsigned long rt_nr_migratory;
a1ba4d8b 392 unsigned long rt_nr_total;
a22d7fc1 393 int overloaded;
917b627d 394 struct plist_head pushable_tasks;
fa85ae24 395#endif
6f505b16 396 int rt_throttled;
fa85ae24 397 u64 rt_time;
ac086bc2 398 u64 rt_runtime;
ea736ed5 399 /* Nests inside the rq lock: */
0986b11b 400 raw_spinlock_t rt_runtime_lock;
6f505b16 401
052f1dc7 402#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
403 unsigned long rt_nr_boosted;
404
6f505b16
PZ
405 struct rq *rq;
406 struct list_head leaf_rt_rq_list;
407 struct task_group *tg;
6f505b16 408#endif
6aa645ea
IM
409};
410
57d885fe
GH
411#ifdef CONFIG_SMP
412
413/*
414 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
415 * variables. Each exclusive cpuset essentially defines an island domain by
416 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
417 * exclusive cpuset is created, we also create and attach a new root-domain
418 * object.
419 *
57d885fe
GH
420 */
421struct root_domain {
422 atomic_t refcount;
c6c4927b
RR
423 cpumask_var_t span;
424 cpumask_var_t online;
637f5085 425
0eab9146 426 /*
637f5085
GH
427 * The "RT overload" flag: it gets set if a CPU has more than
428 * one runnable RT task.
429 */
c6c4927b 430 cpumask_var_t rto_mask;
0eab9146 431 atomic_t rto_count;
6e0534f2 432 struct cpupri cpupri;
57d885fe
GH
433};
434
dc938520
GH
435/*
436 * By default the system creates a single root-domain with all cpus as
437 * members (mimicking the global state we have today).
438 */
57d885fe
GH
439static struct root_domain def_root_domain;
440
ed2d372c 441#endif /* CONFIG_SMP */
57d885fe 442
1da177e4
LT
443/*
444 * This is the main, per-CPU runqueue data structure.
445 *
446 * Locking rule: those places that want to lock multiple runqueues
447 * (such as the load balancing or the thread migration code), lock
448 * acquire operations must be ordered by ascending &runqueue.
449 */
70b97a7f 450struct rq {
d8016491 451 /* runqueue lock: */
05fa785c 452 raw_spinlock_t lock;
1da177e4
LT
453
454 /*
455 * nr_running and cpu_load should be in the same cacheline because
456 * remote CPUs use both these fields when doing load calculation.
457 */
458 unsigned long nr_running;
6aa645ea
IM
459 #define CPU_LOAD_IDX_MAX 5
460 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 461 unsigned long last_load_update_tick;
46cb4b7c 462#ifdef CONFIG_NO_HZ
39c0cbe2 463 u64 nohz_stamp;
83cd4fe2 464 unsigned char nohz_balance_kick;
46cb4b7c 465#endif
a64692a3
MG
466 unsigned int skip_clock_update;
467
d8016491
IM
468 /* capture load from *all* tasks on this cpu: */
469 struct load_weight load;
6aa645ea
IM
470 unsigned long nr_load_updates;
471 u64 nr_switches;
472
473 struct cfs_rq cfs;
6f505b16 474 struct rt_rq rt;
6f505b16 475
6aa645ea 476#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
477 /* list of leaf cfs_rq on this cpu: */
478 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
479#endif
480#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 481 struct list_head leaf_rt_rq_list;
1da177e4 482#endif
1da177e4
LT
483
484 /*
485 * This is part of a global counter where only the total sum
486 * over all CPUs matters. A task can increase this counter on
487 * one CPU and if it got migrated afterwards it may decrease
488 * it on another CPU. Always updated under the runqueue lock:
489 */
490 unsigned long nr_uninterruptible;
491
34f971f6 492 struct task_struct *curr, *idle, *stop;
c9819f45 493 unsigned long next_balance;
1da177e4 494 struct mm_struct *prev_mm;
6aa645ea 495
3e51f33f 496 u64 clock;
305e6835 497 u64 clock_task;
6aa645ea 498
1da177e4
LT
499 atomic_t nr_iowait;
500
501#ifdef CONFIG_SMP
0eab9146 502 struct root_domain *rd;
1da177e4
LT
503 struct sched_domain *sd;
504
e51fd5e2
PZ
505 unsigned long cpu_power;
506
a0a522ce 507 unsigned char idle_at_tick;
1da177e4 508 /* For active balancing */
3f029d3c 509 int post_schedule;
1da177e4
LT
510 int active_balance;
511 int push_cpu;
969c7921 512 struct cpu_stop_work active_balance_work;
d8016491
IM
513 /* cpu of this runqueue: */
514 int cpu;
1f11eb6a 515 int online;
1da177e4 516
a8a51d5e 517 unsigned long avg_load_per_task;
1da177e4 518
e9e9250b
PZ
519 u64 rt_avg;
520 u64 age_stamp;
1b9508f6
MG
521 u64 idle_stamp;
522 u64 avg_idle;
1da177e4
LT
523#endif
524
aa483808
VP
525#ifdef CONFIG_IRQ_TIME_ACCOUNTING
526 u64 prev_irq_time;
527#endif
528
dce48a84
TG
529 /* calc_load related fields */
530 unsigned long calc_load_update;
531 long calc_load_active;
532
8f4d37ec 533#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
534#ifdef CONFIG_SMP
535 int hrtick_csd_pending;
536 struct call_single_data hrtick_csd;
537#endif
8f4d37ec
PZ
538 struct hrtimer hrtick_timer;
539#endif
540
1da177e4
LT
541#ifdef CONFIG_SCHEDSTATS
542 /* latency stats */
543 struct sched_info rq_sched_info;
9c2c4802
KC
544 unsigned long long rq_cpu_time;
545 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
546
547 /* sys_sched_yield() stats */
480b9434 548 unsigned int yld_count;
1da177e4
LT
549
550 /* schedule() stats */
480b9434
KC
551 unsigned int sched_switch;
552 unsigned int sched_count;
553 unsigned int sched_goidle;
1da177e4
LT
554
555 /* try_to_wake_up() stats */
480b9434
KC
556 unsigned int ttwu_count;
557 unsigned int ttwu_local;
1da177e4
LT
558#endif
559};
560
f34e3b61 561static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 562
a64692a3 563
1e5a7405 564static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 565
0a2966b4
CL
566static inline int cpu_of(struct rq *rq)
567{
568#ifdef CONFIG_SMP
569 return rq->cpu;
570#else
571 return 0;
572#endif
573}
574
497f0ab3 575#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
579
674311d5
NP
580/*
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 582 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
583 *
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
586 */
48f24c4d 587#define for_each_domain(cpu, __sd) \
497f0ab3 588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
589
590#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591#define this_rq() (&__get_cpu_var(runqueues))
592#define task_rq(p) cpu_rq(task_cpu(p))
593#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 594#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 595
dc61b1d6
PZ
596#ifdef CONFIG_CGROUP_SCHED
597
598/*
599 * Return the group to which this tasks belongs.
600 *
601 * We use task_subsys_state_check() and extend the RCU verification
0122ec5b 602 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
dc61b1d6
PZ
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
605 */
606static inline struct task_group *task_group(struct task_struct *p)
607{
5091faa4 608 struct task_group *tg;
dc61b1d6
PZ
609 struct cgroup_subsys_state *css;
610
611 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
0122ec5b 612 lockdep_is_held(&p->pi_lock));
5091faa4
MG
613 tg = container_of(css, struct task_group, css);
614
615 return autogroup_task_group(p, tg);
dc61b1d6
PZ
616}
617
618/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
619static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
620{
621#ifdef CONFIG_FAIR_GROUP_SCHED
622 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
623 p->se.parent = task_group(p)->se[cpu];
624#endif
625
626#ifdef CONFIG_RT_GROUP_SCHED
627 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
628 p->rt.parent = task_group(p)->rt_se[cpu];
629#endif
630}
631
632#else /* CONFIG_CGROUP_SCHED */
633
634static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
635static inline struct task_group *task_group(struct task_struct *p)
636{
637 return NULL;
638}
639
640#endif /* CONFIG_CGROUP_SCHED */
641
fe44d621 642static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 643
fe44d621 644static void update_rq_clock(struct rq *rq)
3e51f33f 645{
fe44d621 646 s64 delta;
305e6835 647
f26f9aff
MG
648 if (rq->skip_clock_update)
649 return;
aa483808 650
fe44d621
PZ
651 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
652 rq->clock += delta;
653 update_rq_clock_task(rq, delta);
3e51f33f
PZ
654}
655
bf5c91ba
IM
656/*
657 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
658 */
659#ifdef CONFIG_SCHED_DEBUG
660# define const_debug __read_mostly
661#else
662# define const_debug static const
663#endif
664
017730c1 665/**
1fd06bb1 666 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 667 * @cpu: the processor in question.
017730c1 668 *
017730c1
IM
669 * This interface allows printk to be called with the runqueue lock
670 * held and know whether or not it is OK to wake up the klogd.
671 */
89f19f04 672int runqueue_is_locked(int cpu)
017730c1 673{
05fa785c 674 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
675}
676
bf5c91ba
IM
677/*
678 * Debugging: various feature bits
679 */
f00b45c1
PZ
680
681#define SCHED_FEAT(name, enabled) \
682 __SCHED_FEAT_##name ,
683
bf5c91ba 684enum {
f00b45c1 685#include "sched_features.h"
bf5c91ba
IM
686};
687
f00b45c1
PZ
688#undef SCHED_FEAT
689
690#define SCHED_FEAT(name, enabled) \
691 (1UL << __SCHED_FEAT_##name) * enabled |
692
bf5c91ba 693const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
694#include "sched_features.h"
695 0;
696
697#undef SCHED_FEAT
698
699#ifdef CONFIG_SCHED_DEBUG
700#define SCHED_FEAT(name, enabled) \
701 #name ,
702
983ed7a6 703static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
704#include "sched_features.h"
705 NULL
706};
707
708#undef SCHED_FEAT
709
34f3a814 710static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 711{
f00b45c1
PZ
712 int i;
713
714 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
715 if (!(sysctl_sched_features & (1UL << i)))
716 seq_puts(m, "NO_");
717 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 718 }
34f3a814 719 seq_puts(m, "\n");
f00b45c1 720
34f3a814 721 return 0;
f00b45c1
PZ
722}
723
724static ssize_t
725sched_feat_write(struct file *filp, const char __user *ubuf,
726 size_t cnt, loff_t *ppos)
727{
728 char buf[64];
7740191c 729 char *cmp;
f00b45c1
PZ
730 int neg = 0;
731 int i;
732
733 if (cnt > 63)
734 cnt = 63;
735
736 if (copy_from_user(&buf, ubuf, cnt))
737 return -EFAULT;
738
739 buf[cnt] = 0;
7740191c 740 cmp = strstrip(buf);
f00b45c1 741
524429c3 742 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
743 neg = 1;
744 cmp += 3;
745 }
746
747 for (i = 0; sched_feat_names[i]; i++) {
7740191c 748 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
749 if (neg)
750 sysctl_sched_features &= ~(1UL << i);
751 else
752 sysctl_sched_features |= (1UL << i);
753 break;
754 }
755 }
756
757 if (!sched_feat_names[i])
758 return -EINVAL;
759
42994724 760 *ppos += cnt;
f00b45c1
PZ
761
762 return cnt;
763}
764
34f3a814
LZ
765static int sched_feat_open(struct inode *inode, struct file *filp)
766{
767 return single_open(filp, sched_feat_show, NULL);
768}
769
828c0950 770static const struct file_operations sched_feat_fops = {
34f3a814
LZ
771 .open = sched_feat_open,
772 .write = sched_feat_write,
773 .read = seq_read,
774 .llseek = seq_lseek,
775 .release = single_release,
f00b45c1
PZ
776};
777
778static __init int sched_init_debug(void)
779{
f00b45c1
PZ
780 debugfs_create_file("sched_features", 0644, NULL, NULL,
781 &sched_feat_fops);
782
783 return 0;
784}
785late_initcall(sched_init_debug);
786
787#endif
788
789#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 790
b82d9fdd
PZ
791/*
792 * Number of tasks to iterate in a single balance run.
793 * Limited because this is done with IRQs disabled.
794 */
795const_debug unsigned int sysctl_sched_nr_migrate = 32;
796
e9e9250b
PZ
797/*
798 * period over which we average the RT time consumption, measured
799 * in ms.
800 *
801 * default: 1s
802 */
803const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
804
fa85ae24 805/*
9f0c1e56 806 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
807 * default: 1s
808 */
9f0c1e56 809unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 810
6892b75e
IM
811static __read_mostly int scheduler_running;
812
9f0c1e56
PZ
813/*
814 * part of the period that we allow rt tasks to run in us.
815 * default: 0.95s
816 */
817int sysctl_sched_rt_runtime = 950000;
fa85ae24 818
d0b27fa7
PZ
819static inline u64 global_rt_period(void)
820{
821 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
822}
823
824static inline u64 global_rt_runtime(void)
825{
e26873bb 826 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
827 return RUNTIME_INF;
828
829 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
830}
fa85ae24 831
1da177e4 832#ifndef prepare_arch_switch
4866cde0
NP
833# define prepare_arch_switch(next) do { } while (0)
834#endif
835#ifndef finish_arch_switch
836# define finish_arch_switch(prev) do { } while (0)
837#endif
838
051a1d1a
DA
839static inline int task_current(struct rq *rq, struct task_struct *p)
840{
841 return rq->curr == p;
842}
843
70b97a7f 844static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 845{
3ca7a440
PZ
846#ifdef CONFIG_SMP
847 return p->on_cpu;
848#else
051a1d1a 849 return task_current(rq, p);
3ca7a440 850#endif
4866cde0
NP
851}
852
3ca7a440 853#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 854static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 855{
3ca7a440
PZ
856#ifdef CONFIG_SMP
857 /*
858 * We can optimise this out completely for !SMP, because the
859 * SMP rebalancing from interrupt is the only thing that cares
860 * here.
861 */
862 next->on_cpu = 1;
863#endif
4866cde0
NP
864}
865
70b97a7f 866static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 867{
3ca7a440
PZ
868#ifdef CONFIG_SMP
869 /*
870 * After ->on_cpu is cleared, the task can be moved to a different CPU.
871 * We must ensure this doesn't happen until the switch is completely
872 * finished.
873 */
874 smp_wmb();
875 prev->on_cpu = 0;
876#endif
da04c035
IM
877#ifdef CONFIG_DEBUG_SPINLOCK
878 /* this is a valid case when another task releases the spinlock */
879 rq->lock.owner = current;
880#endif
8a25d5de
IM
881 /*
882 * If we are tracking spinlock dependencies then we have to
883 * fix up the runqueue lock - which gets 'carried over' from
884 * prev into current:
885 */
886 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
887
05fa785c 888 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
889}
890
891#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 892static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
893{
894#ifdef CONFIG_SMP
895 /*
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
898 * here.
899 */
3ca7a440 900 next->on_cpu = 1;
4866cde0
NP
901#endif
902#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 903 raw_spin_unlock_irq(&rq->lock);
4866cde0 904#else
05fa785c 905 raw_spin_unlock(&rq->lock);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
3ca7a440 913 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
914 * We must ensure this doesn't happen until the switch is completely
915 * finished.
916 */
917 smp_wmb();
3ca7a440 918 prev->on_cpu = 0;
4866cde0
NP
919#endif
920#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
921 local_irq_enable();
1da177e4 922#endif
4866cde0
NP
923}
924#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 925
0970d299 926/*
0122ec5b 927 * __task_rq_lock - lock the rq @p resides on.
b29739f9 928 */
70b97a7f 929static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
930 __acquires(rq->lock)
931{
0970d299
PZ
932 struct rq *rq;
933
0122ec5b
PZ
934 lockdep_assert_held(&p->pi_lock);
935
3a5c359a 936 for (;;) {
0970d299 937 rq = task_rq(p);
05fa785c 938 raw_spin_lock(&rq->lock);
65cc8e48 939 if (likely(rq == task_rq(p)))
3a5c359a 940 return rq;
05fa785c 941 raw_spin_unlock(&rq->lock);
b29739f9 942 }
b29739f9
IM
943}
944
1da177e4 945/*
0122ec5b 946 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 947 */
70b97a7f 948static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 949 __acquires(p->pi_lock)
1da177e4
LT
950 __acquires(rq->lock)
951{
70b97a7f 952 struct rq *rq;
1da177e4 953
3a5c359a 954 for (;;) {
0122ec5b 955 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 956 rq = task_rq(p);
05fa785c 957 raw_spin_lock(&rq->lock);
65cc8e48 958 if (likely(rq == task_rq(p)))
3a5c359a 959 return rq;
0122ec5b
PZ
960 raw_spin_unlock(&rq->lock);
961 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 962 }
1da177e4
LT
963}
964
a9957449 965static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
966 __releases(rq->lock)
967{
05fa785c 968 raw_spin_unlock(&rq->lock);
b29739f9
IM
969}
970
0122ec5b
PZ
971static inline void
972task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 973 __releases(rq->lock)
0122ec5b 974 __releases(p->pi_lock)
1da177e4 975{
0122ec5b
PZ
976 raw_spin_unlock(&rq->lock);
977 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
978}
979
1da177e4 980/*
cc2a73b5 981 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 982 */
a9957449 983static struct rq *this_rq_lock(void)
1da177e4
LT
984 __acquires(rq->lock)
985{
70b97a7f 986 struct rq *rq;
1da177e4
LT
987
988 local_irq_disable();
989 rq = this_rq();
05fa785c 990 raw_spin_lock(&rq->lock);
1da177e4
LT
991
992 return rq;
993}
994
8f4d37ec
PZ
995#ifdef CONFIG_SCHED_HRTICK
996/*
997 * Use HR-timers to deliver accurate preemption points.
998 *
999 * Its all a bit involved since we cannot program an hrt while holding the
1000 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1001 * reschedule event.
1002 *
1003 * When we get rescheduled we reprogram the hrtick_timer outside of the
1004 * rq->lock.
1005 */
8f4d37ec
PZ
1006
1007/*
1008 * Use hrtick when:
1009 * - enabled by features
1010 * - hrtimer is actually high res
1011 */
1012static inline int hrtick_enabled(struct rq *rq)
1013{
1014 if (!sched_feat(HRTICK))
1015 return 0;
ba42059f 1016 if (!cpu_active(cpu_of(rq)))
b328ca18 1017 return 0;
8f4d37ec
PZ
1018 return hrtimer_is_hres_active(&rq->hrtick_timer);
1019}
1020
8f4d37ec
PZ
1021static void hrtick_clear(struct rq *rq)
1022{
1023 if (hrtimer_active(&rq->hrtick_timer))
1024 hrtimer_cancel(&rq->hrtick_timer);
1025}
1026
8f4d37ec
PZ
1027/*
1028 * High-resolution timer tick.
1029 * Runs from hardirq context with interrupts disabled.
1030 */
1031static enum hrtimer_restart hrtick(struct hrtimer *timer)
1032{
1033 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1034
1035 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1036
05fa785c 1037 raw_spin_lock(&rq->lock);
3e51f33f 1038 update_rq_clock(rq);
8f4d37ec 1039 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1040 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1041
1042 return HRTIMER_NORESTART;
1043}
1044
95e904c7 1045#ifdef CONFIG_SMP
31656519
PZ
1046/*
1047 * called from hardirq (IPI) context
1048 */
1049static void __hrtick_start(void *arg)
b328ca18 1050{
31656519 1051 struct rq *rq = arg;
b328ca18 1052
05fa785c 1053 raw_spin_lock(&rq->lock);
31656519
PZ
1054 hrtimer_restart(&rq->hrtick_timer);
1055 rq->hrtick_csd_pending = 0;
05fa785c 1056 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1057}
1058
31656519
PZ
1059/*
1060 * Called to set the hrtick timer state.
1061 *
1062 * called with rq->lock held and irqs disabled
1063 */
1064static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1065{
31656519
PZ
1066 struct hrtimer *timer = &rq->hrtick_timer;
1067 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1068
cc584b21 1069 hrtimer_set_expires(timer, time);
31656519
PZ
1070
1071 if (rq == this_rq()) {
1072 hrtimer_restart(timer);
1073 } else if (!rq->hrtick_csd_pending) {
6e275637 1074 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1075 rq->hrtick_csd_pending = 1;
1076 }
b328ca18
PZ
1077}
1078
1079static int
1080hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1081{
1082 int cpu = (int)(long)hcpu;
1083
1084 switch (action) {
1085 case CPU_UP_CANCELED:
1086 case CPU_UP_CANCELED_FROZEN:
1087 case CPU_DOWN_PREPARE:
1088 case CPU_DOWN_PREPARE_FROZEN:
1089 case CPU_DEAD:
1090 case CPU_DEAD_FROZEN:
31656519 1091 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1092 return NOTIFY_OK;
1093 }
1094
1095 return NOTIFY_DONE;
1096}
1097
fa748203 1098static __init void init_hrtick(void)
b328ca18
PZ
1099{
1100 hotcpu_notifier(hotplug_hrtick, 0);
1101}
31656519
PZ
1102#else
1103/*
1104 * Called to set the hrtick timer state.
1105 *
1106 * called with rq->lock held and irqs disabled
1107 */
1108static void hrtick_start(struct rq *rq, u64 delay)
1109{
7f1e2ca9 1110 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1111 HRTIMER_MODE_REL_PINNED, 0);
31656519 1112}
b328ca18 1113
006c75f1 1114static inline void init_hrtick(void)
8f4d37ec 1115{
8f4d37ec 1116}
31656519 1117#endif /* CONFIG_SMP */
8f4d37ec 1118
31656519 1119static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1120{
31656519
PZ
1121#ifdef CONFIG_SMP
1122 rq->hrtick_csd_pending = 0;
8f4d37ec 1123
31656519
PZ
1124 rq->hrtick_csd.flags = 0;
1125 rq->hrtick_csd.func = __hrtick_start;
1126 rq->hrtick_csd.info = rq;
1127#endif
8f4d37ec 1128
31656519
PZ
1129 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1130 rq->hrtick_timer.function = hrtick;
8f4d37ec 1131}
006c75f1 1132#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1133static inline void hrtick_clear(struct rq *rq)
1134{
1135}
1136
8f4d37ec
PZ
1137static inline void init_rq_hrtick(struct rq *rq)
1138{
1139}
1140
b328ca18
PZ
1141static inline void init_hrtick(void)
1142{
1143}
006c75f1 1144#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1145
c24d20db
IM
1146/*
1147 * resched_task - mark a task 'to be rescheduled now'.
1148 *
1149 * On UP this means the setting of the need_resched flag, on SMP it
1150 * might also involve a cross-CPU call to trigger the scheduler on
1151 * the target CPU.
1152 */
1153#ifdef CONFIG_SMP
1154
1155#ifndef tsk_is_polling
1156#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1157#endif
1158
31656519 1159static void resched_task(struct task_struct *p)
c24d20db
IM
1160{
1161 int cpu;
1162
05fa785c 1163 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1164
5ed0cec0 1165 if (test_tsk_need_resched(p))
c24d20db
IM
1166 return;
1167
5ed0cec0 1168 set_tsk_need_resched(p);
c24d20db
IM
1169
1170 cpu = task_cpu(p);
1171 if (cpu == smp_processor_id())
1172 return;
1173
1174 /* NEED_RESCHED must be visible before we test polling */
1175 smp_mb();
1176 if (!tsk_is_polling(p))
1177 smp_send_reschedule(cpu);
1178}
1179
1180static void resched_cpu(int cpu)
1181{
1182 struct rq *rq = cpu_rq(cpu);
1183 unsigned long flags;
1184
05fa785c 1185 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1186 return;
1187 resched_task(cpu_curr(cpu));
05fa785c 1188 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1189}
06d8308c
TG
1190
1191#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1192/*
1193 * In the semi idle case, use the nearest busy cpu for migrating timers
1194 * from an idle cpu. This is good for power-savings.
1195 *
1196 * We don't do similar optimization for completely idle system, as
1197 * selecting an idle cpu will add more delays to the timers than intended
1198 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1199 */
1200int get_nohz_timer_target(void)
1201{
1202 int cpu = smp_processor_id();
1203 int i;
1204 struct sched_domain *sd;
1205
1206 for_each_domain(cpu, sd) {
1207 for_each_cpu(i, sched_domain_span(sd))
1208 if (!idle_cpu(i))
1209 return i;
1210 }
1211 return cpu;
1212}
06d8308c
TG
1213/*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223void wake_up_idle_cpu(int cpu)
1224{
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
5ed0cec0 1245 set_tsk_need_resched(rq->idle);
06d8308c
TG
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251}
39c0cbe2 1252
6d6bc0ad 1253#endif /* CONFIG_NO_HZ */
06d8308c 1254
e9e9250b
PZ
1255static u64 sched_avg_period(void)
1256{
1257 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1258}
1259
1260static void sched_avg_update(struct rq *rq)
1261{
1262 s64 period = sched_avg_period();
1263
1264 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1265 /*
1266 * Inline assembly required to prevent the compiler
1267 * optimising this loop into a divmod call.
1268 * See __iter_div_u64_rem() for another example of this.
1269 */
1270 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1271 rq->age_stamp += period;
1272 rq->rt_avg /= 2;
1273 }
1274}
1275
1276static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1277{
1278 rq->rt_avg += rt_delta;
1279 sched_avg_update(rq);
1280}
1281
6d6bc0ad 1282#else /* !CONFIG_SMP */
31656519 1283static void resched_task(struct task_struct *p)
c24d20db 1284{
05fa785c 1285 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1286 set_tsk_need_resched(p);
c24d20db 1287}
e9e9250b
PZ
1288
1289static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1290{
1291}
da2b71ed
SS
1292
1293static void sched_avg_update(struct rq *rq)
1294{
1295}
6d6bc0ad 1296#endif /* CONFIG_SMP */
c24d20db 1297
45bf76df
IM
1298#if BITS_PER_LONG == 32
1299# define WMULT_CONST (~0UL)
1300#else
1301# define WMULT_CONST (1UL << 32)
1302#endif
1303
1304#define WMULT_SHIFT 32
1305
194081eb
IM
1306/*
1307 * Shift right and round:
1308 */
cf2ab469 1309#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1310
a7be37ac
PZ
1311/*
1312 * delta *= weight / lw
1313 */
cb1c4fc9 1314static unsigned long
45bf76df
IM
1315calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1316 struct load_weight *lw)
1317{
1318 u64 tmp;
1319
7a232e03
LJ
1320 if (!lw->inv_weight) {
1321 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1322 lw->inv_weight = 1;
1323 else
1324 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1325 / (lw->weight+1);
1326 }
45bf76df
IM
1327
1328 tmp = (u64)delta_exec * weight;
1329 /*
1330 * Check whether we'd overflow the 64-bit multiplication:
1331 */
194081eb 1332 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1333 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1334 WMULT_SHIFT/2);
1335 else
cf2ab469 1336 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1337
ecf691da 1338 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1339}
1340
1091985b 1341static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1342{
1343 lw->weight += inc;
e89996ae 1344 lw->inv_weight = 0;
45bf76df
IM
1345}
1346
1091985b 1347static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1348{
1349 lw->weight -= dec;
e89996ae 1350 lw->inv_weight = 0;
45bf76df
IM
1351}
1352
2069dd75
PZ
1353static inline void update_load_set(struct load_weight *lw, unsigned long w)
1354{
1355 lw->weight = w;
1356 lw->inv_weight = 0;
1357}
1358
2dd73a4f
PW
1359/*
1360 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1361 * of tasks with abnormal "nice" values across CPUs the contribution that
1362 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1363 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1364 * scaled version of the new time slice allocation that they receive on time
1365 * slice expiry etc.
1366 */
1367
cce7ade8
PZ
1368#define WEIGHT_IDLEPRIO 3
1369#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1370
1371/*
1372 * Nice levels are multiplicative, with a gentle 10% change for every
1373 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1374 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1375 * that remained on nice 0.
1376 *
1377 * The "10% effect" is relative and cumulative: from _any_ nice level,
1378 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1379 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1380 * If a task goes up by ~10% and another task goes down by ~10% then
1381 * the relative distance between them is ~25%.)
dd41f596
IM
1382 */
1383static const int prio_to_weight[40] = {
254753dc
IM
1384 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1385 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1386 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1387 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1388 /* 0 */ 1024, 820, 655, 526, 423,
1389 /* 5 */ 335, 272, 215, 172, 137,
1390 /* 10 */ 110, 87, 70, 56, 45,
1391 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1392};
1393
5714d2de
IM
1394/*
1395 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1396 *
1397 * In cases where the weight does not change often, we can use the
1398 * precalculated inverse to speed up arithmetics by turning divisions
1399 * into multiplications:
1400 */
dd41f596 1401static const u32 prio_to_wmult[40] = {
254753dc
IM
1402 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1403 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1404 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1405 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1406 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1407 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1408 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1409 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1410};
2dd73a4f 1411
ef12fefa
BR
1412/* Time spent by the tasks of the cpu accounting group executing in ... */
1413enum cpuacct_stat_index {
1414 CPUACCT_STAT_USER, /* ... user mode */
1415 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1416
1417 CPUACCT_STAT_NSTATS,
1418};
1419
d842de87
SV
1420#ifdef CONFIG_CGROUP_CPUACCT
1421static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1422static void cpuacct_update_stats(struct task_struct *tsk,
1423 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1424#else
1425static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1426static inline void cpuacct_update_stats(struct task_struct *tsk,
1427 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1428#endif
1429
18d95a28
PZ
1430static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1431{
1432 update_load_add(&rq->load, load);
1433}
1434
1435static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1436{
1437 update_load_sub(&rq->load, load);
1438}
1439
7940ca36 1440#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1441typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1442
1443/*
1444 * Iterate the full tree, calling @down when first entering a node and @up when
1445 * leaving it for the final time.
1446 */
eb755805 1447static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1448{
1449 struct task_group *parent, *child;
eb755805 1450 int ret;
c09595f6
PZ
1451
1452 rcu_read_lock();
1453 parent = &root_task_group;
1454down:
eb755805
PZ
1455 ret = (*down)(parent, data);
1456 if (ret)
1457 goto out_unlock;
c09595f6
PZ
1458 list_for_each_entry_rcu(child, &parent->children, siblings) {
1459 parent = child;
1460 goto down;
1461
1462up:
1463 continue;
1464 }
eb755805
PZ
1465 ret = (*up)(parent, data);
1466 if (ret)
1467 goto out_unlock;
c09595f6
PZ
1468
1469 child = parent;
1470 parent = parent->parent;
1471 if (parent)
1472 goto up;
eb755805 1473out_unlock:
c09595f6 1474 rcu_read_unlock();
eb755805
PZ
1475
1476 return ret;
c09595f6
PZ
1477}
1478
eb755805
PZ
1479static int tg_nop(struct task_group *tg, void *data)
1480{
1481 return 0;
c09595f6 1482}
eb755805
PZ
1483#endif
1484
1485#ifdef CONFIG_SMP
f5f08f39
PZ
1486/* Used instead of source_load when we know the type == 0 */
1487static unsigned long weighted_cpuload(const int cpu)
1488{
1489 return cpu_rq(cpu)->load.weight;
1490}
1491
1492/*
1493 * Return a low guess at the load of a migration-source cpu weighted
1494 * according to the scheduling class and "nice" value.
1495 *
1496 * We want to under-estimate the load of migration sources, to
1497 * balance conservatively.
1498 */
1499static unsigned long source_load(int cpu, int type)
1500{
1501 struct rq *rq = cpu_rq(cpu);
1502 unsigned long total = weighted_cpuload(cpu);
1503
1504 if (type == 0 || !sched_feat(LB_BIAS))
1505 return total;
1506
1507 return min(rq->cpu_load[type-1], total);
1508}
1509
1510/*
1511 * Return a high guess at the load of a migration-target cpu weighted
1512 * according to the scheduling class and "nice" value.
1513 */
1514static unsigned long target_load(int cpu, int type)
1515{
1516 struct rq *rq = cpu_rq(cpu);
1517 unsigned long total = weighted_cpuload(cpu);
1518
1519 if (type == 0 || !sched_feat(LB_BIAS))
1520 return total;
1521
1522 return max(rq->cpu_load[type-1], total);
1523}
1524
ae154be1
PZ
1525static unsigned long power_of(int cpu)
1526{
e51fd5e2 1527 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1528}
1529
eb755805
PZ
1530static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1531
1532static unsigned long cpu_avg_load_per_task(int cpu)
1533{
1534 struct rq *rq = cpu_rq(cpu);
af6d596f 1535 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1536
4cd42620
SR
1537 if (nr_running)
1538 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1539 else
1540 rq->avg_load_per_task = 0;
eb755805
PZ
1541
1542 return rq->avg_load_per_task;
1543}
1544
1545#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1546
c09595f6 1547/*
c8cba857
PZ
1548 * Compute the cpu's hierarchical load factor for each task group.
1549 * This needs to be done in a top-down fashion because the load of a child
1550 * group is a fraction of its parents load.
c09595f6 1551 */
eb755805 1552static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1553{
c8cba857 1554 unsigned long load;
eb755805 1555 long cpu = (long)data;
c09595f6 1556
c8cba857
PZ
1557 if (!tg->parent) {
1558 load = cpu_rq(cpu)->load.weight;
1559 } else {
1560 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1561 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1562 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1563 }
c09595f6 1564
c8cba857 1565 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1566
eb755805 1567 return 0;
c09595f6
PZ
1568}
1569
eb755805 1570static void update_h_load(long cpu)
c09595f6 1571{
eb755805 1572 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1573}
1574
18d95a28
PZ
1575#endif
1576
8f45e2b5
GH
1577#ifdef CONFIG_PREEMPT
1578
b78bb868
PZ
1579static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1580
70574a99 1581/*
8f45e2b5
GH
1582 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1583 * way at the expense of forcing extra atomic operations in all
1584 * invocations. This assures that the double_lock is acquired using the
1585 * same underlying policy as the spinlock_t on this architecture, which
1586 * reduces latency compared to the unfair variant below. However, it
1587 * also adds more overhead and therefore may reduce throughput.
70574a99 1588 */
8f45e2b5
GH
1589static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1590 __releases(this_rq->lock)
1591 __acquires(busiest->lock)
1592 __acquires(this_rq->lock)
1593{
05fa785c 1594 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1595 double_rq_lock(this_rq, busiest);
1596
1597 return 1;
1598}
1599
1600#else
1601/*
1602 * Unfair double_lock_balance: Optimizes throughput at the expense of
1603 * latency by eliminating extra atomic operations when the locks are
1604 * already in proper order on entry. This favors lower cpu-ids and will
1605 * grant the double lock to lower cpus over higher ids under contention,
1606 * regardless of entry order into the function.
1607 */
1608static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1609 __releases(this_rq->lock)
1610 __acquires(busiest->lock)
1611 __acquires(this_rq->lock)
1612{
1613 int ret = 0;
1614
05fa785c 1615 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1616 if (busiest < this_rq) {
05fa785c
TG
1617 raw_spin_unlock(&this_rq->lock);
1618 raw_spin_lock(&busiest->lock);
1619 raw_spin_lock_nested(&this_rq->lock,
1620 SINGLE_DEPTH_NESTING);
70574a99
AD
1621 ret = 1;
1622 } else
05fa785c
TG
1623 raw_spin_lock_nested(&busiest->lock,
1624 SINGLE_DEPTH_NESTING);
70574a99
AD
1625 }
1626 return ret;
1627}
1628
8f45e2b5
GH
1629#endif /* CONFIG_PREEMPT */
1630
1631/*
1632 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1633 */
1634static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1635{
1636 if (unlikely(!irqs_disabled())) {
1637 /* printk() doesn't work good under rq->lock */
05fa785c 1638 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1639 BUG_ON(1);
1640 }
1641
1642 return _double_lock_balance(this_rq, busiest);
1643}
1644
70574a99
AD
1645static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1646 __releases(busiest->lock)
1647{
05fa785c 1648 raw_spin_unlock(&busiest->lock);
70574a99
AD
1649 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1650}
1e3c88bd
PZ
1651
1652/*
1653 * double_rq_lock - safely lock two runqueues
1654 *
1655 * Note this does not disable interrupts like task_rq_lock,
1656 * you need to do so manually before calling.
1657 */
1658static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1659 __acquires(rq1->lock)
1660 __acquires(rq2->lock)
1661{
1662 BUG_ON(!irqs_disabled());
1663 if (rq1 == rq2) {
1664 raw_spin_lock(&rq1->lock);
1665 __acquire(rq2->lock); /* Fake it out ;) */
1666 } else {
1667 if (rq1 < rq2) {
1668 raw_spin_lock(&rq1->lock);
1669 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1670 } else {
1671 raw_spin_lock(&rq2->lock);
1672 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1673 }
1674 }
1e3c88bd
PZ
1675}
1676
1677/*
1678 * double_rq_unlock - safely unlock two runqueues
1679 *
1680 * Note this does not restore interrupts like task_rq_unlock,
1681 * you need to do so manually after calling.
1682 */
1683static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1684 __releases(rq1->lock)
1685 __releases(rq2->lock)
1686{
1687 raw_spin_unlock(&rq1->lock);
1688 if (rq1 != rq2)
1689 raw_spin_unlock(&rq2->lock);
1690 else
1691 __release(rq2->lock);
1692}
1693
d95f4122
MG
1694#else /* CONFIG_SMP */
1695
1696/*
1697 * double_rq_lock - safely lock two runqueues
1698 *
1699 * Note this does not disable interrupts like task_rq_lock,
1700 * you need to do so manually before calling.
1701 */
1702static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1703 __acquires(rq1->lock)
1704 __acquires(rq2->lock)
1705{
1706 BUG_ON(!irqs_disabled());
1707 BUG_ON(rq1 != rq2);
1708 raw_spin_lock(&rq1->lock);
1709 __acquire(rq2->lock); /* Fake it out ;) */
1710}
1711
1712/*
1713 * double_rq_unlock - safely unlock two runqueues
1714 *
1715 * Note this does not restore interrupts like task_rq_unlock,
1716 * you need to do so manually after calling.
1717 */
1718static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1719 __releases(rq1->lock)
1720 __releases(rq2->lock)
1721{
1722 BUG_ON(rq1 != rq2);
1723 raw_spin_unlock(&rq1->lock);
1724 __release(rq2->lock);
1725}
1726
18d95a28
PZ
1727#endif
1728
74f5187a 1729static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1730static void update_sysctl(void);
acb4a848 1731static int get_update_sysctl_factor(void);
fdf3e95d 1732static void update_cpu_load(struct rq *this_rq);
dce48a84 1733
cd29fe6f
PZ
1734static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1735{
1736 set_task_rq(p, cpu);
1737#ifdef CONFIG_SMP
1738 /*
1739 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1740 * successfuly executed on another CPU. We must ensure that updates of
1741 * per-task data have been completed by this moment.
1742 */
1743 smp_wmb();
1744 task_thread_info(p)->cpu = cpu;
1745#endif
1746}
dce48a84 1747
1e3c88bd 1748static const struct sched_class rt_sched_class;
dd41f596 1749
34f971f6 1750#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1751#define for_each_class(class) \
1752 for (class = sched_class_highest; class; class = class->next)
dd41f596 1753
1e3c88bd
PZ
1754#include "sched_stats.h"
1755
c09595f6 1756static void inc_nr_running(struct rq *rq)
9c217245
IM
1757{
1758 rq->nr_running++;
9c217245
IM
1759}
1760
c09595f6 1761static void dec_nr_running(struct rq *rq)
9c217245
IM
1762{
1763 rq->nr_running--;
9c217245
IM
1764}
1765
45bf76df
IM
1766static void set_load_weight(struct task_struct *p)
1767{
dd41f596
IM
1768 /*
1769 * SCHED_IDLE tasks get minimal weight:
1770 */
1771 if (p->policy == SCHED_IDLE) {
1772 p->se.load.weight = WEIGHT_IDLEPRIO;
1773 p->se.load.inv_weight = WMULT_IDLEPRIO;
1774 return;
1775 }
71f8bd46 1776
dd41f596
IM
1777 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1778 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1779}
1780
371fd7e7 1781static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1782{
a64692a3 1783 update_rq_clock(rq);
dd41f596 1784 sched_info_queued(p);
371fd7e7 1785 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1786}
1787
371fd7e7 1788static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1789{
a64692a3 1790 update_rq_clock(rq);
46ac22ba 1791 sched_info_dequeued(p);
371fd7e7 1792 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1793}
1794
1e3c88bd
PZ
1795/*
1796 * activate_task - move a task to the runqueue.
1797 */
371fd7e7 1798static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1799{
1800 if (task_contributes_to_load(p))
1801 rq->nr_uninterruptible--;
1802
371fd7e7 1803 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1804 inc_nr_running(rq);
1805}
1806
1807/*
1808 * deactivate_task - remove a task from the runqueue.
1809 */
371fd7e7 1810static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1811{
1812 if (task_contributes_to_load(p))
1813 rq->nr_uninterruptible++;
1814
371fd7e7 1815 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1816 dec_nr_running(rq);
1817}
1818
b52bfee4
VP
1819#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1820
305e6835
VP
1821/*
1822 * There are no locks covering percpu hardirq/softirq time.
1823 * They are only modified in account_system_vtime, on corresponding CPU
1824 * with interrupts disabled. So, writes are safe.
1825 * They are read and saved off onto struct rq in update_rq_clock().
1826 * This may result in other CPU reading this CPU's irq time and can
1827 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1828 * or new value with a side effect of accounting a slice of irq time to wrong
1829 * task when irq is in progress while we read rq->clock. That is a worthy
1830 * compromise in place of having locks on each irq in account_system_time.
305e6835 1831 */
b52bfee4
VP
1832static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1833static DEFINE_PER_CPU(u64, cpu_softirq_time);
1834
1835static DEFINE_PER_CPU(u64, irq_start_time);
1836static int sched_clock_irqtime;
1837
1838void enable_sched_clock_irqtime(void)
1839{
1840 sched_clock_irqtime = 1;
1841}
1842
1843void disable_sched_clock_irqtime(void)
1844{
1845 sched_clock_irqtime = 0;
1846}
1847
8e92c201
PZ
1848#ifndef CONFIG_64BIT
1849static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1850
1851static inline void irq_time_write_begin(void)
1852{
1853 __this_cpu_inc(irq_time_seq.sequence);
1854 smp_wmb();
1855}
1856
1857static inline void irq_time_write_end(void)
1858{
1859 smp_wmb();
1860 __this_cpu_inc(irq_time_seq.sequence);
1861}
1862
1863static inline u64 irq_time_read(int cpu)
1864{
1865 u64 irq_time;
1866 unsigned seq;
1867
1868 do {
1869 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1870 irq_time = per_cpu(cpu_softirq_time, cpu) +
1871 per_cpu(cpu_hardirq_time, cpu);
1872 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1873
1874 return irq_time;
1875}
1876#else /* CONFIG_64BIT */
1877static inline void irq_time_write_begin(void)
1878{
1879}
1880
1881static inline void irq_time_write_end(void)
1882{
1883}
1884
1885static inline u64 irq_time_read(int cpu)
305e6835 1886{
305e6835
VP
1887 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1888}
8e92c201 1889#endif /* CONFIG_64BIT */
305e6835 1890
fe44d621
PZ
1891/*
1892 * Called before incrementing preempt_count on {soft,}irq_enter
1893 * and before decrementing preempt_count on {soft,}irq_exit.
1894 */
b52bfee4
VP
1895void account_system_vtime(struct task_struct *curr)
1896{
1897 unsigned long flags;
fe44d621 1898 s64 delta;
b52bfee4 1899 int cpu;
b52bfee4
VP
1900
1901 if (!sched_clock_irqtime)
1902 return;
1903
1904 local_irq_save(flags);
1905
b52bfee4 1906 cpu = smp_processor_id();
fe44d621
PZ
1907 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1908 __this_cpu_add(irq_start_time, delta);
1909
8e92c201 1910 irq_time_write_begin();
b52bfee4
VP
1911 /*
1912 * We do not account for softirq time from ksoftirqd here.
1913 * We want to continue accounting softirq time to ksoftirqd thread
1914 * in that case, so as not to confuse scheduler with a special task
1915 * that do not consume any time, but still wants to run.
1916 */
1917 if (hardirq_count())
fe44d621 1918 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1919 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1920 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1921
8e92c201 1922 irq_time_write_end();
b52bfee4
VP
1923 local_irq_restore(flags);
1924}
b7dadc38 1925EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1926
fe44d621 1927static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1928{
fe44d621
PZ
1929 s64 irq_delta;
1930
8e92c201 1931 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1932
1933 /*
1934 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1935 * this case when a previous update_rq_clock() happened inside a
1936 * {soft,}irq region.
1937 *
1938 * When this happens, we stop ->clock_task and only update the
1939 * prev_irq_time stamp to account for the part that fit, so that a next
1940 * update will consume the rest. This ensures ->clock_task is
1941 * monotonic.
1942 *
1943 * It does however cause some slight miss-attribution of {soft,}irq
1944 * time, a more accurate solution would be to update the irq_time using
1945 * the current rq->clock timestamp, except that would require using
1946 * atomic ops.
1947 */
1948 if (irq_delta > delta)
1949 irq_delta = delta;
1950
1951 rq->prev_irq_time += irq_delta;
1952 delta -= irq_delta;
1953 rq->clock_task += delta;
1954
1955 if (irq_delta && sched_feat(NONIRQ_POWER))
1956 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1957}
1958
abb74cef
VP
1959static int irqtime_account_hi_update(void)
1960{
1961 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1962 unsigned long flags;
1963 u64 latest_ns;
1964 int ret = 0;
1965
1966 local_irq_save(flags);
1967 latest_ns = this_cpu_read(cpu_hardirq_time);
1968 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1969 ret = 1;
1970 local_irq_restore(flags);
1971 return ret;
1972}
1973
1974static int irqtime_account_si_update(void)
1975{
1976 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1977 unsigned long flags;
1978 u64 latest_ns;
1979 int ret = 0;
1980
1981 local_irq_save(flags);
1982 latest_ns = this_cpu_read(cpu_softirq_time);
1983 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1984 ret = 1;
1985 local_irq_restore(flags);
1986 return ret;
1987}
1988
fe44d621 1989#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1990
abb74cef
VP
1991#define sched_clock_irqtime (0)
1992
fe44d621 1993static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1994{
fe44d621 1995 rq->clock_task += delta;
305e6835
VP
1996}
1997
fe44d621 1998#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 1999
1e3c88bd
PZ
2000#include "sched_idletask.c"
2001#include "sched_fair.c"
2002#include "sched_rt.c"
5091faa4 2003#include "sched_autogroup.c"
34f971f6 2004#include "sched_stoptask.c"
1e3c88bd
PZ
2005#ifdef CONFIG_SCHED_DEBUG
2006# include "sched_debug.c"
2007#endif
2008
34f971f6
PZ
2009void sched_set_stop_task(int cpu, struct task_struct *stop)
2010{
2011 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2012 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2013
2014 if (stop) {
2015 /*
2016 * Make it appear like a SCHED_FIFO task, its something
2017 * userspace knows about and won't get confused about.
2018 *
2019 * Also, it will make PI more or less work without too
2020 * much confusion -- but then, stop work should not
2021 * rely on PI working anyway.
2022 */
2023 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2024
2025 stop->sched_class = &stop_sched_class;
2026 }
2027
2028 cpu_rq(cpu)->stop = stop;
2029
2030 if (old_stop) {
2031 /*
2032 * Reset it back to a normal scheduling class so that
2033 * it can die in pieces.
2034 */
2035 old_stop->sched_class = &rt_sched_class;
2036 }
2037}
2038
14531189 2039/*
dd41f596 2040 * __normal_prio - return the priority that is based on the static prio
14531189 2041 */
14531189
IM
2042static inline int __normal_prio(struct task_struct *p)
2043{
dd41f596 2044 return p->static_prio;
14531189
IM
2045}
2046
b29739f9
IM
2047/*
2048 * Calculate the expected normal priority: i.e. priority
2049 * without taking RT-inheritance into account. Might be
2050 * boosted by interactivity modifiers. Changes upon fork,
2051 * setprio syscalls, and whenever the interactivity
2052 * estimator recalculates.
2053 */
36c8b586 2054static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2055{
2056 int prio;
2057
e05606d3 2058 if (task_has_rt_policy(p))
b29739f9
IM
2059 prio = MAX_RT_PRIO-1 - p->rt_priority;
2060 else
2061 prio = __normal_prio(p);
2062 return prio;
2063}
2064
2065/*
2066 * Calculate the current priority, i.e. the priority
2067 * taken into account by the scheduler. This value might
2068 * be boosted by RT tasks, or might be boosted by
2069 * interactivity modifiers. Will be RT if the task got
2070 * RT-boosted. If not then it returns p->normal_prio.
2071 */
36c8b586 2072static int effective_prio(struct task_struct *p)
b29739f9
IM
2073{
2074 p->normal_prio = normal_prio(p);
2075 /*
2076 * If we are RT tasks or we were boosted to RT priority,
2077 * keep the priority unchanged. Otherwise, update priority
2078 * to the normal priority:
2079 */
2080 if (!rt_prio(p->prio))
2081 return p->normal_prio;
2082 return p->prio;
2083}
2084
1da177e4
LT
2085/**
2086 * task_curr - is this task currently executing on a CPU?
2087 * @p: the task in question.
2088 */
36c8b586 2089inline int task_curr(const struct task_struct *p)
1da177e4
LT
2090{
2091 return cpu_curr(task_cpu(p)) == p;
2092}
2093
cb469845
SR
2094static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2095 const struct sched_class *prev_class,
da7a735e 2096 int oldprio)
cb469845
SR
2097{
2098 if (prev_class != p->sched_class) {
2099 if (prev_class->switched_from)
da7a735e
PZ
2100 prev_class->switched_from(rq, p);
2101 p->sched_class->switched_to(rq, p);
2102 } else if (oldprio != p->prio)
2103 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2104}
2105
1e5a7405
PZ
2106static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2107{
2108 const struct sched_class *class;
2109
2110 if (p->sched_class == rq->curr->sched_class) {
2111 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2112 } else {
2113 for_each_class(class) {
2114 if (class == rq->curr->sched_class)
2115 break;
2116 if (class == p->sched_class) {
2117 resched_task(rq->curr);
2118 break;
2119 }
2120 }
2121 }
2122
2123 /*
2124 * A queue event has occurred, and we're going to schedule. In
2125 * this case, we can save a useless back to back clock update.
2126 */
fd2f4419 2127 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2128 rq->skip_clock_update = 1;
2129}
2130
1da177e4 2131#ifdef CONFIG_SMP
cc367732
IM
2132/*
2133 * Is this task likely cache-hot:
2134 */
e7693a36 2135static int
cc367732
IM
2136task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2137{
2138 s64 delta;
2139
e6c8fba7
PZ
2140 if (p->sched_class != &fair_sched_class)
2141 return 0;
2142
ef8002f6
NR
2143 if (unlikely(p->policy == SCHED_IDLE))
2144 return 0;
2145
f540a608
IM
2146 /*
2147 * Buddy candidates are cache hot:
2148 */
f685ceac 2149 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2150 (&p->se == cfs_rq_of(&p->se)->next ||
2151 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2152 return 1;
2153
6bc1665b
IM
2154 if (sysctl_sched_migration_cost == -1)
2155 return 1;
2156 if (sysctl_sched_migration_cost == 0)
2157 return 0;
2158
cc367732
IM
2159 delta = now - p->se.exec_start;
2160
2161 return delta < (s64)sysctl_sched_migration_cost;
2162}
2163
dd41f596 2164void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2165{
e2912009
PZ
2166#ifdef CONFIG_SCHED_DEBUG
2167 /*
2168 * We should never call set_task_cpu() on a blocked task,
2169 * ttwu() will sort out the placement.
2170 */
077614ee
PZ
2171 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2172 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2173
2174#ifdef CONFIG_LOCKDEP
2175 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2176 lockdep_is_held(&task_rq(p)->lock)));
2177#endif
e2912009
PZ
2178#endif
2179
de1d7286 2180 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2181
0c69774e
PZ
2182 if (task_cpu(p) != new_cpu) {
2183 p->se.nr_migrations++;
2184 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2185 }
dd41f596
IM
2186
2187 __set_task_cpu(p, new_cpu);
c65cc870
IM
2188}
2189
969c7921 2190struct migration_arg {
36c8b586 2191 struct task_struct *task;
1da177e4 2192 int dest_cpu;
70b97a7f 2193};
1da177e4 2194
969c7921
TH
2195static int migration_cpu_stop(void *data);
2196
1da177e4
LT
2197/*
2198 * The task's runqueue lock must be held.
2199 * Returns true if you have to wait for migration thread.
2200 */
7608dec2 2201static bool need_migrate_task(struct task_struct *p)
1da177e4 2202{
1da177e4
LT
2203 /*
2204 * If the task is not on a runqueue (and not running), then
e2912009 2205 * the next wake-up will properly place the task.
1da177e4 2206 */
7608dec2
PZ
2207 bool running = p->on_rq || p->on_cpu;
2208 smp_rmb(); /* finish_lock_switch() */
2209 return running;
1da177e4
LT
2210}
2211
2212/*
2213 * wait_task_inactive - wait for a thread to unschedule.
2214 *
85ba2d86
RM
2215 * If @match_state is nonzero, it's the @p->state value just checked and
2216 * not expected to change. If it changes, i.e. @p might have woken up,
2217 * then return zero. When we succeed in waiting for @p to be off its CPU,
2218 * we return a positive number (its total switch count). If a second call
2219 * a short while later returns the same number, the caller can be sure that
2220 * @p has remained unscheduled the whole time.
2221 *
1da177e4
LT
2222 * The caller must ensure that the task *will* unschedule sometime soon,
2223 * else this function might spin for a *long* time. This function can't
2224 * be called with interrupts off, or it may introduce deadlock with
2225 * smp_call_function() if an IPI is sent by the same process we are
2226 * waiting to become inactive.
2227 */
85ba2d86 2228unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2229{
2230 unsigned long flags;
dd41f596 2231 int running, on_rq;
85ba2d86 2232 unsigned long ncsw;
70b97a7f 2233 struct rq *rq;
1da177e4 2234
3a5c359a
AK
2235 for (;;) {
2236 /*
2237 * We do the initial early heuristics without holding
2238 * any task-queue locks at all. We'll only try to get
2239 * the runqueue lock when things look like they will
2240 * work out!
2241 */
2242 rq = task_rq(p);
fa490cfd 2243
3a5c359a
AK
2244 /*
2245 * If the task is actively running on another CPU
2246 * still, just relax and busy-wait without holding
2247 * any locks.
2248 *
2249 * NOTE! Since we don't hold any locks, it's not
2250 * even sure that "rq" stays as the right runqueue!
2251 * But we don't care, since "task_running()" will
2252 * return false if the runqueue has changed and p
2253 * is actually now running somewhere else!
2254 */
85ba2d86
RM
2255 while (task_running(rq, p)) {
2256 if (match_state && unlikely(p->state != match_state))
2257 return 0;
3a5c359a 2258 cpu_relax();
85ba2d86 2259 }
fa490cfd 2260
3a5c359a
AK
2261 /*
2262 * Ok, time to look more closely! We need the rq
2263 * lock now, to be *sure*. If we're wrong, we'll
2264 * just go back and repeat.
2265 */
2266 rq = task_rq_lock(p, &flags);
27a9da65 2267 trace_sched_wait_task(p);
3a5c359a 2268 running = task_running(rq, p);
fd2f4419 2269 on_rq = p->on_rq;
85ba2d86 2270 ncsw = 0;
f31e11d8 2271 if (!match_state || p->state == match_state)
93dcf55f 2272 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2273 task_rq_unlock(rq, p, &flags);
fa490cfd 2274
85ba2d86
RM
2275 /*
2276 * If it changed from the expected state, bail out now.
2277 */
2278 if (unlikely(!ncsw))
2279 break;
2280
3a5c359a
AK
2281 /*
2282 * Was it really running after all now that we
2283 * checked with the proper locks actually held?
2284 *
2285 * Oops. Go back and try again..
2286 */
2287 if (unlikely(running)) {
2288 cpu_relax();
2289 continue;
2290 }
fa490cfd 2291
3a5c359a
AK
2292 /*
2293 * It's not enough that it's not actively running,
2294 * it must be off the runqueue _entirely_, and not
2295 * preempted!
2296 *
80dd99b3 2297 * So if it was still runnable (but just not actively
3a5c359a
AK
2298 * running right now), it's preempted, and we should
2299 * yield - it could be a while.
2300 */
2301 if (unlikely(on_rq)) {
8eb90c30
TG
2302 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2303
2304 set_current_state(TASK_UNINTERRUPTIBLE);
2305 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2306 continue;
2307 }
fa490cfd 2308
3a5c359a
AK
2309 /*
2310 * Ahh, all good. It wasn't running, and it wasn't
2311 * runnable, which means that it will never become
2312 * running in the future either. We're all done!
2313 */
2314 break;
2315 }
85ba2d86
RM
2316
2317 return ncsw;
1da177e4
LT
2318}
2319
2320/***
2321 * kick_process - kick a running thread to enter/exit the kernel
2322 * @p: the to-be-kicked thread
2323 *
2324 * Cause a process which is running on another CPU to enter
2325 * kernel-mode, without any delay. (to get signals handled.)
2326 *
25985edc 2327 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2328 * because all it wants to ensure is that the remote task enters
2329 * the kernel. If the IPI races and the task has been migrated
2330 * to another CPU then no harm is done and the purpose has been
2331 * achieved as well.
2332 */
36c8b586 2333void kick_process(struct task_struct *p)
1da177e4
LT
2334{
2335 int cpu;
2336
2337 preempt_disable();
2338 cpu = task_cpu(p);
2339 if ((cpu != smp_processor_id()) && task_curr(p))
2340 smp_send_reschedule(cpu);
2341 preempt_enable();
2342}
b43e3521 2343EXPORT_SYMBOL_GPL(kick_process);
476d139c 2344#endif /* CONFIG_SMP */
1da177e4 2345
970b13ba 2346#ifdef CONFIG_SMP
30da688e 2347/*
013fdb80 2348 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2349 */
5da9a0fb
PZ
2350static int select_fallback_rq(int cpu, struct task_struct *p)
2351{
2352 int dest_cpu;
2353 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2354
2355 /* Look for allowed, online CPU in same node. */
2356 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2357 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2358 return dest_cpu;
2359
2360 /* Any allowed, online CPU? */
2361 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2362 if (dest_cpu < nr_cpu_ids)
2363 return dest_cpu;
2364
2365 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2366 dest_cpu = cpuset_cpus_allowed_fallback(p);
2367 /*
2368 * Don't tell them about moving exiting tasks or
2369 * kernel threads (both mm NULL), since they never
2370 * leave kernel.
2371 */
2372 if (p->mm && printk_ratelimit()) {
2373 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2374 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2375 }
2376
2377 return dest_cpu;
2378}
2379
e2912009 2380/*
013fdb80 2381 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2382 */
970b13ba 2383static inline
7608dec2 2384int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2385{
7608dec2 2386 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2387
2388 /*
2389 * In order not to call set_task_cpu() on a blocking task we need
2390 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2391 * cpu.
2392 *
2393 * Since this is common to all placement strategies, this lives here.
2394 *
2395 * [ this allows ->select_task() to simply return task_cpu(p) and
2396 * not worry about this generic constraint ]
2397 */
2398 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2399 !cpu_online(cpu)))
5da9a0fb 2400 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2401
2402 return cpu;
970b13ba 2403}
09a40af5
MG
2404
2405static void update_avg(u64 *avg, u64 sample)
2406{
2407 s64 diff = sample - *avg;
2408 *avg += diff >> 3;
2409}
970b13ba
PZ
2410#endif
2411
d7c01d27 2412static void
b84cb5df 2413ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2414{
d7c01d27 2415#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2416 struct rq *rq = this_rq();
2417
d7c01d27
PZ
2418#ifdef CONFIG_SMP
2419 int this_cpu = smp_processor_id();
2420
2421 if (cpu == this_cpu) {
2422 schedstat_inc(rq, ttwu_local);
2423 schedstat_inc(p, se.statistics.nr_wakeups_local);
2424 } else {
2425 struct sched_domain *sd;
2426
2427 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2428 for_each_domain(this_cpu, sd) {
2429 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2430 schedstat_inc(sd, ttwu_wake_remote);
2431 break;
2432 }
2433 }
2434 }
2435#endif /* CONFIG_SMP */
2436
2437 schedstat_inc(rq, ttwu_count);
9ed3811a 2438 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2439
2440 if (wake_flags & WF_SYNC)
9ed3811a 2441 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2442
2443 if (cpu != task_cpu(p))
9ed3811a 2444 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
9ed3811a 2445
d7c01d27
PZ
2446#endif /* CONFIG_SCHEDSTATS */
2447}
2448
2449static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2450{
9ed3811a 2451 activate_task(rq, p, en_flags);
fd2f4419 2452 p->on_rq = 1;
c2f7115e
PZ
2453
2454 /* if a worker is waking up, notify workqueue */
2455 if (p->flags & PF_WQ_WORKER)
2456 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2457}
2458
89363381
PZ
2459static void
2460ttwu_post_activation(struct task_struct *p, struct rq *rq, int wake_flags)
9ed3811a 2461{
89363381 2462 trace_sched_wakeup(p, true);
9ed3811a
TH
2463 check_preempt_curr(rq, p, wake_flags);
2464
2465 p->state = TASK_RUNNING;
2466#ifdef CONFIG_SMP
2467 if (p->sched_class->task_woken)
2468 p->sched_class->task_woken(rq, p);
2469
2470 if (unlikely(rq->idle_stamp)) {
2471 u64 delta = rq->clock - rq->idle_stamp;
2472 u64 max = 2*sysctl_sched_migration_cost;
2473
2474 if (delta > max)
2475 rq->avg_idle = max;
2476 else
2477 update_avg(&rq->avg_idle, delta);
2478 rq->idle_stamp = 0;
2479 }
2480#endif
2481}
2482
2483/**
1da177e4 2484 * try_to_wake_up - wake up a thread
9ed3811a 2485 * @p: the thread to be awakened
1da177e4 2486 * @state: the mask of task states that can be woken
9ed3811a 2487 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2488 *
2489 * Put it on the run-queue if it's not already there. The "current"
2490 * thread is always on the run-queue (except when the actual
2491 * re-schedule is in progress), and as such you're allowed to do
2492 * the simpler "current->state = TASK_RUNNING" to mark yourself
2493 * runnable without the overhead of this.
2494 *
9ed3811a
TH
2495 * Returns %true if @p was woken up, %false if it was already running
2496 * or @state didn't match @p's state.
1da177e4 2497 */
e4a52bcb
PZ
2498static int
2499try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2500{
e4a52bcb 2501 int cpu, this_cpu, success = 0;
1da177e4 2502 unsigned long flags;
ab3b3aa5 2503 struct rq *rq;
1da177e4 2504
e9c84311 2505 this_cpu = get_cpu();
2398f2c6 2506
04e2f174 2507 smp_wmb();
013fdb80 2508 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2509 if (!(p->state & state))
1da177e4
LT
2510 goto out;
2511
d7c01d27
PZ
2512 cpu = task_cpu(p);
2513
e4a52bcb
PZ
2514 if (p->on_rq) {
2515 rq = __task_rq_lock(p);
2516 if (p->on_rq)
2517 goto out_running;
2518 __task_rq_unlock(rq);
2519 }
1da177e4 2520
1da177e4 2521#ifdef CONFIG_SMP
e4a52bcb
PZ
2522 while (p->on_cpu) {
2523#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2524 /*
2525 * If called from interrupt context we could have landed in the
2526 * middle of schedule(), in this case we should take care not
2527 * to spin on ->on_cpu if p is current, since that would
2528 * deadlock.
2529 */
2530 if (p == current)
2531 goto out_activate;
2532#endif
2533 cpu_relax();
2534 }
2535 /*
2536 * Pairs with the smp_wmb() in finish_lock_switch().
2537 */
2538 smp_rmb();
1da177e4 2539
a8e4f2ea 2540 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2541 p->state = TASK_WAKING;
efbbd05a 2542
e4a52bcb 2543 if (p->sched_class->task_waking)
74f8e4b2 2544 p->sched_class->task_waking(p);
efbbd05a 2545
7608dec2 2546 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
e4a52bcb
PZ
2547#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2548out_activate:
2549#endif
2550#endif /* CONFIG_SMP */
ab19cb23 2551
0970d299
PZ
2552 rq = cpu_rq(cpu);
2553 raw_spin_lock(&rq->lock);
f5dc3753 2554
e4a52bcb
PZ
2555#ifdef CONFIG_SMP
2556 if (cpu != task_cpu(p))
2557 set_task_cpu(p, cpu);
1da177e4 2558
a8e4f2ea
PZ
2559 if (p->sched_contributes_to_load)
2560 rq->nr_uninterruptible--;
e4a52bcb 2561#endif
a8e4f2ea 2562
e4a52bcb 2563 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1da177e4 2564out_running:
89363381
PZ
2565 ttwu_post_activation(p, rq, wake_flags);
2566 success = 1;
013fdb80 2567 __task_rq_unlock(rq);
b84cb5df
PZ
2568
2569 ttwu_stat(p, cpu, wake_flags);
e4a52bcb 2570out:
013fdb80 2571 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
e9c84311 2572 put_cpu();
1da177e4
LT
2573
2574 return success;
2575}
2576
21aa9af0
TH
2577/**
2578 * try_to_wake_up_local - try to wake up a local task with rq lock held
2579 * @p: the thread to be awakened
2580 *
2acca55e 2581 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2582 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2583 * the current task.
21aa9af0
TH
2584 */
2585static void try_to_wake_up_local(struct task_struct *p)
2586{
2587 struct rq *rq = task_rq(p);
21aa9af0
TH
2588
2589 BUG_ON(rq != this_rq());
2590 BUG_ON(p == current);
2591 lockdep_assert_held(&rq->lock);
2592
2acca55e
PZ
2593 if (!raw_spin_trylock(&p->pi_lock)) {
2594 raw_spin_unlock(&rq->lock);
2595 raw_spin_lock(&p->pi_lock);
2596 raw_spin_lock(&rq->lock);
2597 }
2598
21aa9af0 2599 if (!(p->state & TASK_NORMAL))
2acca55e 2600 goto out;
21aa9af0 2601
fd2f4419 2602 if (!p->on_rq)
d7c01d27
PZ
2603 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2604
89363381 2605 ttwu_post_activation(p, rq, 0);
b84cb5df 2606 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2607out:
2608 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2609}
2610
50fa610a
DH
2611/**
2612 * wake_up_process - Wake up a specific process
2613 * @p: The process to be woken up.
2614 *
2615 * Attempt to wake up the nominated process and move it to the set of runnable
2616 * processes. Returns 1 if the process was woken up, 0 if it was already
2617 * running.
2618 *
2619 * It may be assumed that this function implies a write memory barrier before
2620 * changing the task state if and only if any tasks are woken up.
2621 */
7ad5b3a5 2622int wake_up_process(struct task_struct *p)
1da177e4 2623{
d9514f6c 2624 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2625}
1da177e4
LT
2626EXPORT_SYMBOL(wake_up_process);
2627
7ad5b3a5 2628int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2629{
2630 return try_to_wake_up(p, state, 0);
2631}
2632
1da177e4
LT
2633/*
2634 * Perform scheduler related setup for a newly forked process p.
2635 * p is forked by current.
dd41f596
IM
2636 *
2637 * __sched_fork() is basic setup used by init_idle() too:
2638 */
2639static void __sched_fork(struct task_struct *p)
2640{
fd2f4419
PZ
2641 p->on_rq = 0;
2642
2643 p->se.on_rq = 0;
dd41f596
IM
2644 p->se.exec_start = 0;
2645 p->se.sum_exec_runtime = 0;
f6cf891c 2646 p->se.prev_sum_exec_runtime = 0;
6c594c21 2647 p->se.nr_migrations = 0;
da7a735e 2648 p->se.vruntime = 0;
fd2f4419 2649 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2650
2651#ifdef CONFIG_SCHEDSTATS
41acab88 2652 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2653#endif
476d139c 2654
fa717060 2655 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2656
e107be36
AK
2657#ifdef CONFIG_PREEMPT_NOTIFIERS
2658 INIT_HLIST_HEAD(&p->preempt_notifiers);
2659#endif
dd41f596
IM
2660}
2661
2662/*
2663 * fork()/clone()-time setup:
2664 */
2665void sched_fork(struct task_struct *p, int clone_flags)
2666{
0122ec5b 2667 unsigned long flags;
dd41f596
IM
2668 int cpu = get_cpu();
2669
2670 __sched_fork(p);
06b83b5f 2671 /*
0017d735 2672 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2673 * nobody will actually run it, and a signal or other external
2674 * event cannot wake it up and insert it on the runqueue either.
2675 */
0017d735 2676 p->state = TASK_RUNNING;
dd41f596 2677
b9dc29e7
MG
2678 /*
2679 * Revert to default priority/policy on fork if requested.
2680 */
2681 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2682 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2683 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2684 p->normal_prio = p->static_prio;
2685 }
b9dc29e7 2686
6c697bdf
MG
2687 if (PRIO_TO_NICE(p->static_prio) < 0) {
2688 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2689 p->normal_prio = p->static_prio;
6c697bdf
MG
2690 set_load_weight(p);
2691 }
2692
b9dc29e7
MG
2693 /*
2694 * We don't need the reset flag anymore after the fork. It has
2695 * fulfilled its duty:
2696 */
2697 p->sched_reset_on_fork = 0;
2698 }
ca94c442 2699
f83f9ac2
PW
2700 /*
2701 * Make sure we do not leak PI boosting priority to the child.
2702 */
2703 p->prio = current->normal_prio;
2704
2ddbf952
HS
2705 if (!rt_prio(p->prio))
2706 p->sched_class = &fair_sched_class;
b29739f9 2707
cd29fe6f
PZ
2708 if (p->sched_class->task_fork)
2709 p->sched_class->task_fork(p);
2710
86951599
PZ
2711 /*
2712 * The child is not yet in the pid-hash so no cgroup attach races,
2713 * and the cgroup is pinned to this child due to cgroup_fork()
2714 * is ran before sched_fork().
2715 *
2716 * Silence PROVE_RCU.
2717 */
0122ec5b 2718 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2719 set_task_cpu(p, cpu);
0122ec5b 2720 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2721
52f17b6c 2722#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2723 if (likely(sched_info_on()))
52f17b6c 2724 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2725#endif
3ca7a440
PZ
2726#if defined(CONFIG_SMP)
2727 p->on_cpu = 0;
4866cde0 2728#endif
1da177e4 2729#ifdef CONFIG_PREEMPT
4866cde0 2730 /* Want to start with kernel preemption disabled. */
a1261f54 2731 task_thread_info(p)->preempt_count = 1;
1da177e4 2732#endif
806c09a7 2733#ifdef CONFIG_SMP
917b627d 2734 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2735#endif
917b627d 2736
476d139c 2737 put_cpu();
1da177e4
LT
2738}
2739
2740/*
2741 * wake_up_new_task - wake up a newly created task for the first time.
2742 *
2743 * This function will do some initial scheduler statistics housekeeping
2744 * that must be done for every newly created context, then puts the task
2745 * on the runqueue and wakes it.
2746 */
7ad5b3a5 2747void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2748{
2749 unsigned long flags;
dd41f596 2750 struct rq *rq;
fabf318e 2751
ab2515c4 2752 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2753#ifdef CONFIG_SMP
2754 /*
2755 * Fork balancing, do it here and not earlier because:
2756 * - cpus_allowed can change in the fork path
2757 * - any previously selected cpu might disappear through hotplug
fabf318e 2758 */
ab2515c4 2759 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
2760#endif
2761
ab2515c4 2762 rq = __task_rq_lock(p);
cd29fe6f 2763 activate_task(rq, p, 0);
fd2f4419 2764 p->on_rq = 1;
89363381 2765 trace_sched_wakeup_new(p, true);
a7558e01 2766 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2767#ifdef CONFIG_SMP
efbbd05a
PZ
2768 if (p->sched_class->task_woken)
2769 p->sched_class->task_woken(rq, p);
9a897c5a 2770#endif
0122ec5b 2771 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2772}
2773
e107be36
AK
2774#ifdef CONFIG_PREEMPT_NOTIFIERS
2775
2776/**
80dd99b3 2777 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2778 * @notifier: notifier struct to register
e107be36
AK
2779 */
2780void preempt_notifier_register(struct preempt_notifier *notifier)
2781{
2782 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2783}
2784EXPORT_SYMBOL_GPL(preempt_notifier_register);
2785
2786/**
2787 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2788 * @notifier: notifier struct to unregister
e107be36
AK
2789 *
2790 * This is safe to call from within a preemption notifier.
2791 */
2792void preempt_notifier_unregister(struct preempt_notifier *notifier)
2793{
2794 hlist_del(&notifier->link);
2795}
2796EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2797
2798static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2799{
2800 struct preempt_notifier *notifier;
2801 struct hlist_node *node;
2802
2803 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2804 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2805}
2806
2807static void
2808fire_sched_out_preempt_notifiers(struct task_struct *curr,
2809 struct task_struct *next)
2810{
2811 struct preempt_notifier *notifier;
2812 struct hlist_node *node;
2813
2814 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2815 notifier->ops->sched_out(notifier, next);
2816}
2817
6d6bc0ad 2818#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2819
2820static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2821{
2822}
2823
2824static void
2825fire_sched_out_preempt_notifiers(struct task_struct *curr,
2826 struct task_struct *next)
2827{
2828}
2829
6d6bc0ad 2830#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2831
4866cde0
NP
2832/**
2833 * prepare_task_switch - prepare to switch tasks
2834 * @rq: the runqueue preparing to switch
421cee29 2835 * @prev: the current task that is being switched out
4866cde0
NP
2836 * @next: the task we are going to switch to.
2837 *
2838 * This is called with the rq lock held and interrupts off. It must
2839 * be paired with a subsequent finish_task_switch after the context
2840 * switch.
2841 *
2842 * prepare_task_switch sets up locking and calls architecture specific
2843 * hooks.
2844 */
e107be36
AK
2845static inline void
2846prepare_task_switch(struct rq *rq, struct task_struct *prev,
2847 struct task_struct *next)
4866cde0 2848{
fe4b04fa
PZ
2849 sched_info_switch(prev, next);
2850 perf_event_task_sched_out(prev, next);
e107be36 2851 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2852 prepare_lock_switch(rq, next);
2853 prepare_arch_switch(next);
fe4b04fa 2854 trace_sched_switch(prev, next);
4866cde0
NP
2855}
2856
1da177e4
LT
2857/**
2858 * finish_task_switch - clean up after a task-switch
344babaa 2859 * @rq: runqueue associated with task-switch
1da177e4
LT
2860 * @prev: the thread we just switched away from.
2861 *
4866cde0
NP
2862 * finish_task_switch must be called after the context switch, paired
2863 * with a prepare_task_switch call before the context switch.
2864 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2865 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2866 *
2867 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2868 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2869 * with the lock held can cause deadlocks; see schedule() for
2870 * details.)
2871 */
a9957449 2872static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2873 __releases(rq->lock)
2874{
1da177e4 2875 struct mm_struct *mm = rq->prev_mm;
55a101f8 2876 long prev_state;
1da177e4
LT
2877
2878 rq->prev_mm = NULL;
2879
2880 /*
2881 * A task struct has one reference for the use as "current".
c394cc9f 2882 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2883 * schedule one last time. The schedule call will never return, and
2884 * the scheduled task must drop that reference.
c394cc9f 2885 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2886 * still held, otherwise prev could be scheduled on another cpu, die
2887 * there before we look at prev->state, and then the reference would
2888 * be dropped twice.
2889 * Manfred Spraul <manfred@colorfullife.com>
2890 */
55a101f8 2891 prev_state = prev->state;
4866cde0 2892 finish_arch_switch(prev);
8381f65d
JI
2893#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2894 local_irq_disable();
2895#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2896 perf_event_task_sched_in(current);
8381f65d
JI
2897#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2898 local_irq_enable();
2899#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2900 finish_lock_switch(rq, prev);
e8fa1362 2901
e107be36 2902 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2903 if (mm)
2904 mmdrop(mm);
c394cc9f 2905 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2906 /*
2907 * Remove function-return probe instances associated with this
2908 * task and put them back on the free list.
9761eea8 2909 */
c6fd91f0 2910 kprobe_flush_task(prev);
1da177e4 2911 put_task_struct(prev);
c6fd91f0 2912 }
1da177e4
LT
2913}
2914
3f029d3c
GH
2915#ifdef CONFIG_SMP
2916
2917/* assumes rq->lock is held */
2918static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2919{
2920 if (prev->sched_class->pre_schedule)
2921 prev->sched_class->pre_schedule(rq, prev);
2922}
2923
2924/* rq->lock is NOT held, but preemption is disabled */
2925static inline void post_schedule(struct rq *rq)
2926{
2927 if (rq->post_schedule) {
2928 unsigned long flags;
2929
05fa785c 2930 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2931 if (rq->curr->sched_class->post_schedule)
2932 rq->curr->sched_class->post_schedule(rq);
05fa785c 2933 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2934
2935 rq->post_schedule = 0;
2936 }
2937}
2938
2939#else
da19ab51 2940
3f029d3c
GH
2941static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2942{
2943}
2944
2945static inline void post_schedule(struct rq *rq)
2946{
1da177e4
LT
2947}
2948
3f029d3c
GH
2949#endif
2950
1da177e4
LT
2951/**
2952 * schedule_tail - first thing a freshly forked thread must call.
2953 * @prev: the thread we just switched away from.
2954 */
36c8b586 2955asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2956 __releases(rq->lock)
2957{
70b97a7f
IM
2958 struct rq *rq = this_rq();
2959
4866cde0 2960 finish_task_switch(rq, prev);
da19ab51 2961
3f029d3c
GH
2962 /*
2963 * FIXME: do we need to worry about rq being invalidated by the
2964 * task_switch?
2965 */
2966 post_schedule(rq);
70b97a7f 2967
4866cde0
NP
2968#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2969 /* In this case, finish_task_switch does not reenable preemption */
2970 preempt_enable();
2971#endif
1da177e4 2972 if (current->set_child_tid)
b488893a 2973 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2974}
2975
2976/*
2977 * context_switch - switch to the new MM and the new
2978 * thread's register state.
2979 */
dd41f596 2980static inline void
70b97a7f 2981context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2982 struct task_struct *next)
1da177e4 2983{
dd41f596 2984 struct mm_struct *mm, *oldmm;
1da177e4 2985
e107be36 2986 prepare_task_switch(rq, prev, next);
fe4b04fa 2987
dd41f596
IM
2988 mm = next->mm;
2989 oldmm = prev->active_mm;
9226d125
ZA
2990 /*
2991 * For paravirt, this is coupled with an exit in switch_to to
2992 * combine the page table reload and the switch backend into
2993 * one hypercall.
2994 */
224101ed 2995 arch_start_context_switch(prev);
9226d125 2996
31915ab4 2997 if (!mm) {
1da177e4
LT
2998 next->active_mm = oldmm;
2999 atomic_inc(&oldmm->mm_count);
3000 enter_lazy_tlb(oldmm, next);
3001 } else
3002 switch_mm(oldmm, mm, next);
3003
31915ab4 3004 if (!prev->mm) {
1da177e4 3005 prev->active_mm = NULL;
1da177e4
LT
3006 rq->prev_mm = oldmm;
3007 }
3a5f5e48
IM
3008 /*
3009 * Since the runqueue lock will be released by the next
3010 * task (which is an invalid locking op but in the case
3011 * of the scheduler it's an obvious special-case), so we
3012 * do an early lockdep release here:
3013 */
3014#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3015 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3016#endif
1da177e4
LT
3017
3018 /* Here we just switch the register state and the stack. */
3019 switch_to(prev, next, prev);
3020
dd41f596
IM
3021 barrier();
3022 /*
3023 * this_rq must be evaluated again because prev may have moved
3024 * CPUs since it called schedule(), thus the 'rq' on its stack
3025 * frame will be invalid.
3026 */
3027 finish_task_switch(this_rq(), prev);
1da177e4
LT
3028}
3029
3030/*
3031 * nr_running, nr_uninterruptible and nr_context_switches:
3032 *
3033 * externally visible scheduler statistics: current number of runnable
3034 * threads, current number of uninterruptible-sleeping threads, total
3035 * number of context switches performed since bootup.
3036 */
3037unsigned long nr_running(void)
3038{
3039 unsigned long i, sum = 0;
3040
3041 for_each_online_cpu(i)
3042 sum += cpu_rq(i)->nr_running;
3043
3044 return sum;
f711f609 3045}
1da177e4
LT
3046
3047unsigned long nr_uninterruptible(void)
f711f609 3048{
1da177e4 3049 unsigned long i, sum = 0;
f711f609 3050
0a945022 3051 for_each_possible_cpu(i)
1da177e4 3052 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3053
3054 /*
1da177e4
LT
3055 * Since we read the counters lockless, it might be slightly
3056 * inaccurate. Do not allow it to go below zero though:
f711f609 3057 */
1da177e4
LT
3058 if (unlikely((long)sum < 0))
3059 sum = 0;
f711f609 3060
1da177e4 3061 return sum;
f711f609 3062}
f711f609 3063
1da177e4 3064unsigned long long nr_context_switches(void)
46cb4b7c 3065{
cc94abfc
SR
3066 int i;
3067 unsigned long long sum = 0;
46cb4b7c 3068
0a945022 3069 for_each_possible_cpu(i)
1da177e4 3070 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3071
1da177e4
LT
3072 return sum;
3073}
483b4ee6 3074
1da177e4
LT
3075unsigned long nr_iowait(void)
3076{
3077 unsigned long i, sum = 0;
483b4ee6 3078
0a945022 3079 for_each_possible_cpu(i)
1da177e4 3080 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3081
1da177e4
LT
3082 return sum;
3083}
483b4ee6 3084
8c215bd3 3085unsigned long nr_iowait_cpu(int cpu)
69d25870 3086{
8c215bd3 3087 struct rq *this = cpu_rq(cpu);
69d25870
AV
3088 return atomic_read(&this->nr_iowait);
3089}
46cb4b7c 3090
69d25870
AV
3091unsigned long this_cpu_load(void)
3092{
3093 struct rq *this = this_rq();
3094 return this->cpu_load[0];
3095}
e790fb0b 3096
46cb4b7c 3097
dce48a84
TG
3098/* Variables and functions for calc_load */
3099static atomic_long_t calc_load_tasks;
3100static unsigned long calc_load_update;
3101unsigned long avenrun[3];
3102EXPORT_SYMBOL(avenrun);
46cb4b7c 3103
74f5187a
PZ
3104static long calc_load_fold_active(struct rq *this_rq)
3105{
3106 long nr_active, delta = 0;
3107
3108 nr_active = this_rq->nr_running;
3109 nr_active += (long) this_rq->nr_uninterruptible;
3110
3111 if (nr_active != this_rq->calc_load_active) {
3112 delta = nr_active - this_rq->calc_load_active;
3113 this_rq->calc_load_active = nr_active;
3114 }
3115
3116 return delta;
3117}
3118
0f004f5a
PZ
3119static unsigned long
3120calc_load(unsigned long load, unsigned long exp, unsigned long active)
3121{
3122 load *= exp;
3123 load += active * (FIXED_1 - exp);
3124 load += 1UL << (FSHIFT - 1);
3125 return load >> FSHIFT;
3126}
3127
74f5187a
PZ
3128#ifdef CONFIG_NO_HZ
3129/*
3130 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3131 *
3132 * When making the ILB scale, we should try to pull this in as well.
3133 */
3134static atomic_long_t calc_load_tasks_idle;
3135
3136static void calc_load_account_idle(struct rq *this_rq)
3137{
3138 long delta;
3139
3140 delta = calc_load_fold_active(this_rq);
3141 if (delta)
3142 atomic_long_add(delta, &calc_load_tasks_idle);
3143}
3144
3145static long calc_load_fold_idle(void)
3146{
3147 long delta = 0;
3148
3149 /*
3150 * Its got a race, we don't care...
3151 */
3152 if (atomic_long_read(&calc_load_tasks_idle))
3153 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3154
3155 return delta;
3156}
0f004f5a
PZ
3157
3158/**
3159 * fixed_power_int - compute: x^n, in O(log n) time
3160 *
3161 * @x: base of the power
3162 * @frac_bits: fractional bits of @x
3163 * @n: power to raise @x to.
3164 *
3165 * By exploiting the relation between the definition of the natural power
3166 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3167 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3168 * (where: n_i \elem {0, 1}, the binary vector representing n),
3169 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3170 * of course trivially computable in O(log_2 n), the length of our binary
3171 * vector.
3172 */
3173static unsigned long
3174fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3175{
3176 unsigned long result = 1UL << frac_bits;
3177
3178 if (n) for (;;) {
3179 if (n & 1) {
3180 result *= x;
3181 result += 1UL << (frac_bits - 1);
3182 result >>= frac_bits;
3183 }
3184 n >>= 1;
3185 if (!n)
3186 break;
3187 x *= x;
3188 x += 1UL << (frac_bits - 1);
3189 x >>= frac_bits;
3190 }
3191
3192 return result;
3193}
3194
3195/*
3196 * a1 = a0 * e + a * (1 - e)
3197 *
3198 * a2 = a1 * e + a * (1 - e)
3199 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3200 * = a0 * e^2 + a * (1 - e) * (1 + e)
3201 *
3202 * a3 = a2 * e + a * (1 - e)
3203 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3204 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3205 *
3206 * ...
3207 *
3208 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3209 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3210 * = a0 * e^n + a * (1 - e^n)
3211 *
3212 * [1] application of the geometric series:
3213 *
3214 * n 1 - x^(n+1)
3215 * S_n := \Sum x^i = -------------
3216 * i=0 1 - x
3217 */
3218static unsigned long
3219calc_load_n(unsigned long load, unsigned long exp,
3220 unsigned long active, unsigned int n)
3221{
3222
3223 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3224}
3225
3226/*
3227 * NO_HZ can leave us missing all per-cpu ticks calling
3228 * calc_load_account_active(), but since an idle CPU folds its delta into
3229 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3230 * in the pending idle delta if our idle period crossed a load cycle boundary.
3231 *
3232 * Once we've updated the global active value, we need to apply the exponential
3233 * weights adjusted to the number of cycles missed.
3234 */
3235static void calc_global_nohz(unsigned long ticks)
3236{
3237 long delta, active, n;
3238
3239 if (time_before(jiffies, calc_load_update))
3240 return;
3241
3242 /*
3243 * If we crossed a calc_load_update boundary, make sure to fold
3244 * any pending idle changes, the respective CPUs might have
3245 * missed the tick driven calc_load_account_active() update
3246 * due to NO_HZ.
3247 */
3248 delta = calc_load_fold_idle();
3249 if (delta)
3250 atomic_long_add(delta, &calc_load_tasks);
3251
3252 /*
3253 * If we were idle for multiple load cycles, apply them.
3254 */
3255 if (ticks >= LOAD_FREQ) {
3256 n = ticks / LOAD_FREQ;
3257
3258 active = atomic_long_read(&calc_load_tasks);
3259 active = active > 0 ? active * FIXED_1 : 0;
3260
3261 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3262 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3263 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3264
3265 calc_load_update += n * LOAD_FREQ;
3266 }
3267
3268 /*
3269 * Its possible the remainder of the above division also crosses
3270 * a LOAD_FREQ period, the regular check in calc_global_load()
3271 * which comes after this will take care of that.
3272 *
3273 * Consider us being 11 ticks before a cycle completion, and us
3274 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3275 * age us 4 cycles, and the test in calc_global_load() will
3276 * pick up the final one.
3277 */
3278}
74f5187a
PZ
3279#else
3280static void calc_load_account_idle(struct rq *this_rq)
3281{
3282}
3283
3284static inline long calc_load_fold_idle(void)
3285{
3286 return 0;
3287}
0f004f5a
PZ
3288
3289static void calc_global_nohz(unsigned long ticks)
3290{
3291}
74f5187a
PZ
3292#endif
3293
2d02494f
TG
3294/**
3295 * get_avenrun - get the load average array
3296 * @loads: pointer to dest load array
3297 * @offset: offset to add
3298 * @shift: shift count to shift the result left
3299 *
3300 * These values are estimates at best, so no need for locking.
3301 */
3302void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3303{
3304 loads[0] = (avenrun[0] + offset) << shift;
3305 loads[1] = (avenrun[1] + offset) << shift;
3306 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3307}
46cb4b7c 3308
46cb4b7c 3309/*
dce48a84
TG
3310 * calc_load - update the avenrun load estimates 10 ticks after the
3311 * CPUs have updated calc_load_tasks.
7835b98b 3312 */
0f004f5a 3313void calc_global_load(unsigned long ticks)
7835b98b 3314{
dce48a84 3315 long active;
1da177e4 3316
0f004f5a
PZ
3317 calc_global_nohz(ticks);
3318
3319 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3320 return;
1da177e4 3321
dce48a84
TG
3322 active = atomic_long_read(&calc_load_tasks);
3323 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3324
dce48a84
TG
3325 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3326 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3327 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3328
dce48a84
TG
3329 calc_load_update += LOAD_FREQ;
3330}
1da177e4 3331
dce48a84 3332/*
74f5187a
PZ
3333 * Called from update_cpu_load() to periodically update this CPU's
3334 * active count.
dce48a84
TG
3335 */
3336static void calc_load_account_active(struct rq *this_rq)
3337{
74f5187a 3338 long delta;
08c183f3 3339
74f5187a
PZ
3340 if (time_before(jiffies, this_rq->calc_load_update))
3341 return;
783609c6 3342
74f5187a
PZ
3343 delta = calc_load_fold_active(this_rq);
3344 delta += calc_load_fold_idle();
3345 if (delta)
dce48a84 3346 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3347
3348 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3349}
3350
fdf3e95d
VP
3351/*
3352 * The exact cpuload at various idx values, calculated at every tick would be
3353 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3354 *
3355 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3356 * on nth tick when cpu may be busy, then we have:
3357 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3358 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3359 *
3360 * decay_load_missed() below does efficient calculation of
3361 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3362 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3363 *
3364 * The calculation is approximated on a 128 point scale.
3365 * degrade_zero_ticks is the number of ticks after which load at any
3366 * particular idx is approximated to be zero.
3367 * degrade_factor is a precomputed table, a row for each load idx.
3368 * Each column corresponds to degradation factor for a power of two ticks,
3369 * based on 128 point scale.
3370 * Example:
3371 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3372 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3373 *
3374 * With this power of 2 load factors, we can degrade the load n times
3375 * by looking at 1 bits in n and doing as many mult/shift instead of
3376 * n mult/shifts needed by the exact degradation.
3377 */
3378#define DEGRADE_SHIFT 7
3379static const unsigned char
3380 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3381static const unsigned char
3382 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3383 {0, 0, 0, 0, 0, 0, 0, 0},
3384 {64, 32, 8, 0, 0, 0, 0, 0},
3385 {96, 72, 40, 12, 1, 0, 0},
3386 {112, 98, 75, 43, 15, 1, 0},
3387 {120, 112, 98, 76, 45, 16, 2} };
3388
3389/*
3390 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3391 * would be when CPU is idle and so we just decay the old load without
3392 * adding any new load.
3393 */
3394static unsigned long
3395decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3396{
3397 int j = 0;
3398
3399 if (!missed_updates)
3400 return load;
3401
3402 if (missed_updates >= degrade_zero_ticks[idx])
3403 return 0;
3404
3405 if (idx == 1)
3406 return load >> missed_updates;
3407
3408 while (missed_updates) {
3409 if (missed_updates % 2)
3410 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3411
3412 missed_updates >>= 1;
3413 j++;
3414 }
3415 return load;
3416}
3417
46cb4b7c 3418/*
dd41f596 3419 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3420 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3421 * every tick. We fix it up based on jiffies.
46cb4b7c 3422 */
dd41f596 3423static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3424{
495eca49 3425 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3426 unsigned long curr_jiffies = jiffies;
3427 unsigned long pending_updates;
dd41f596 3428 int i, scale;
46cb4b7c 3429
dd41f596 3430 this_rq->nr_load_updates++;
46cb4b7c 3431
fdf3e95d
VP
3432 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3433 if (curr_jiffies == this_rq->last_load_update_tick)
3434 return;
3435
3436 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3437 this_rq->last_load_update_tick = curr_jiffies;
3438
dd41f596 3439 /* Update our load: */
fdf3e95d
VP
3440 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3441 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3442 unsigned long old_load, new_load;
7d1e6a9b 3443
dd41f596 3444 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3445
dd41f596 3446 old_load = this_rq->cpu_load[i];
fdf3e95d 3447 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3448 new_load = this_load;
a25707f3
IM
3449 /*
3450 * Round up the averaging division if load is increasing. This
3451 * prevents us from getting stuck on 9 if the load is 10, for
3452 * example.
3453 */
3454 if (new_load > old_load)
fdf3e95d
VP
3455 new_load += scale - 1;
3456
3457 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3458 }
da2b71ed
SS
3459
3460 sched_avg_update(this_rq);
fdf3e95d
VP
3461}
3462
3463static void update_cpu_load_active(struct rq *this_rq)
3464{
3465 update_cpu_load(this_rq);
46cb4b7c 3466
74f5187a 3467 calc_load_account_active(this_rq);
46cb4b7c
SS
3468}
3469
dd41f596 3470#ifdef CONFIG_SMP
8a0be9ef 3471
46cb4b7c 3472/*
38022906
PZ
3473 * sched_exec - execve() is a valuable balancing opportunity, because at
3474 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3475 */
38022906 3476void sched_exec(void)
46cb4b7c 3477{
38022906 3478 struct task_struct *p = current;
1da177e4 3479 unsigned long flags;
0017d735 3480 int dest_cpu;
46cb4b7c 3481
8f42ced9 3482 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3483 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3484 if (dest_cpu == smp_processor_id())
3485 goto unlock;
38022906 3486
8f42ced9 3487 if (likely(cpu_active(dest_cpu))) {
969c7921 3488 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3489
8f42ced9
PZ
3490 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3491 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3492 return;
3493 }
0017d735 3494unlock:
8f42ced9 3495 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3496}
dd41f596 3497
1da177e4
LT
3498#endif
3499
1da177e4
LT
3500DEFINE_PER_CPU(struct kernel_stat, kstat);
3501
3502EXPORT_PER_CPU_SYMBOL(kstat);
3503
3504/*
c5f8d995 3505 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3506 * @p in case that task is currently running.
c5f8d995
HS
3507 *
3508 * Called with task_rq_lock() held on @rq.
1da177e4 3509 */
c5f8d995
HS
3510static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3511{
3512 u64 ns = 0;
3513
3514 if (task_current(rq, p)) {
3515 update_rq_clock(rq);
305e6835 3516 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3517 if ((s64)ns < 0)
3518 ns = 0;
3519 }
3520
3521 return ns;
3522}
3523
bb34d92f 3524unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3525{
1da177e4 3526 unsigned long flags;
41b86e9c 3527 struct rq *rq;
bb34d92f 3528 u64 ns = 0;
48f24c4d 3529
41b86e9c 3530 rq = task_rq_lock(p, &flags);
c5f8d995 3531 ns = do_task_delta_exec(p, rq);
0122ec5b 3532 task_rq_unlock(rq, p, &flags);
1508487e 3533
c5f8d995
HS
3534 return ns;
3535}
f06febc9 3536
c5f8d995
HS
3537/*
3538 * Return accounted runtime for the task.
3539 * In case the task is currently running, return the runtime plus current's
3540 * pending runtime that have not been accounted yet.
3541 */
3542unsigned long long task_sched_runtime(struct task_struct *p)
3543{
3544 unsigned long flags;
3545 struct rq *rq;
3546 u64 ns = 0;
3547
3548 rq = task_rq_lock(p, &flags);
3549 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3550 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3551
3552 return ns;
3553}
48f24c4d 3554
c5f8d995
HS
3555/*
3556 * Return sum_exec_runtime for the thread group.
3557 * In case the task is currently running, return the sum plus current's
3558 * pending runtime that have not been accounted yet.
3559 *
3560 * Note that the thread group might have other running tasks as well,
3561 * so the return value not includes other pending runtime that other
3562 * running tasks might have.
3563 */
3564unsigned long long thread_group_sched_runtime(struct task_struct *p)
3565{
3566 struct task_cputime totals;
3567 unsigned long flags;
3568 struct rq *rq;
3569 u64 ns;
3570
3571 rq = task_rq_lock(p, &flags);
3572 thread_group_cputime(p, &totals);
3573 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3574 task_rq_unlock(rq, p, &flags);
48f24c4d 3575
1da177e4
LT
3576 return ns;
3577}
3578
1da177e4
LT
3579/*
3580 * Account user cpu time to a process.
3581 * @p: the process that the cpu time gets accounted to
1da177e4 3582 * @cputime: the cpu time spent in user space since the last update
457533a7 3583 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3584 */
457533a7
MS
3585void account_user_time(struct task_struct *p, cputime_t cputime,
3586 cputime_t cputime_scaled)
1da177e4
LT
3587{
3588 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3589 cputime64_t tmp;
3590
457533a7 3591 /* Add user time to process. */
1da177e4 3592 p->utime = cputime_add(p->utime, cputime);
457533a7 3593 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3594 account_group_user_time(p, cputime);
1da177e4
LT
3595
3596 /* Add user time to cpustat. */
3597 tmp = cputime_to_cputime64(cputime);
3598 if (TASK_NICE(p) > 0)
3599 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3600 else
3601 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3602
3603 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3604 /* Account for user time used */
3605 acct_update_integrals(p);
1da177e4
LT
3606}
3607
94886b84
LV
3608/*
3609 * Account guest cpu time to a process.
3610 * @p: the process that the cpu time gets accounted to
3611 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3612 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3613 */
457533a7
MS
3614static void account_guest_time(struct task_struct *p, cputime_t cputime,
3615 cputime_t cputime_scaled)
94886b84
LV
3616{
3617 cputime64_t tmp;
3618 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3619
3620 tmp = cputime_to_cputime64(cputime);
3621
457533a7 3622 /* Add guest time to process. */
94886b84 3623 p->utime = cputime_add(p->utime, cputime);
457533a7 3624 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3625 account_group_user_time(p, cputime);
94886b84
LV
3626 p->gtime = cputime_add(p->gtime, cputime);
3627
457533a7 3628 /* Add guest time to cpustat. */
ce0e7b28
RO
3629 if (TASK_NICE(p) > 0) {
3630 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3631 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3632 } else {
3633 cpustat->user = cputime64_add(cpustat->user, tmp);
3634 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3635 }
94886b84
LV
3636}
3637
70a89a66
VP
3638/*
3639 * Account system cpu time to a process and desired cpustat field
3640 * @p: the process that the cpu time gets accounted to
3641 * @cputime: the cpu time spent in kernel space since the last update
3642 * @cputime_scaled: cputime scaled by cpu frequency
3643 * @target_cputime64: pointer to cpustat field that has to be updated
3644 */
3645static inline
3646void __account_system_time(struct task_struct *p, cputime_t cputime,
3647 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3648{
3649 cputime64_t tmp = cputime_to_cputime64(cputime);
3650
3651 /* Add system time to process. */
3652 p->stime = cputime_add(p->stime, cputime);
3653 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3654 account_group_system_time(p, cputime);
3655
3656 /* Add system time to cpustat. */
3657 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3658 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3659
3660 /* Account for system time used */
3661 acct_update_integrals(p);
3662}
3663
1da177e4
LT
3664/*
3665 * Account system cpu time to a process.
3666 * @p: the process that the cpu time gets accounted to
3667 * @hardirq_offset: the offset to subtract from hardirq_count()
3668 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3669 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3670 */
3671void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3672 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3673{
3674 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3675 cputime64_t *target_cputime64;
1da177e4 3676
983ed7a6 3677 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3678 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3679 return;
3680 }
94886b84 3681
1da177e4 3682 if (hardirq_count() - hardirq_offset)
70a89a66 3683 target_cputime64 = &cpustat->irq;
75e1056f 3684 else if (in_serving_softirq())
70a89a66 3685 target_cputime64 = &cpustat->softirq;
1da177e4 3686 else
70a89a66 3687 target_cputime64 = &cpustat->system;
ef12fefa 3688
70a89a66 3689 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3690}
3691
c66f08be 3692/*
1da177e4 3693 * Account for involuntary wait time.
544b4a1f 3694 * @cputime: the cpu time spent in involuntary wait
c66f08be 3695 */
79741dd3 3696void account_steal_time(cputime_t cputime)
c66f08be 3697{
79741dd3
MS
3698 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3699 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3700
3701 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3702}
3703
1da177e4 3704/*
79741dd3
MS
3705 * Account for idle time.
3706 * @cputime: the cpu time spent in idle wait
1da177e4 3707 */
79741dd3 3708void account_idle_time(cputime_t cputime)
1da177e4
LT
3709{
3710 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3711 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3712 struct rq *rq = this_rq();
1da177e4 3713
79741dd3
MS
3714 if (atomic_read(&rq->nr_iowait) > 0)
3715 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3716 else
3717 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3718}
3719
79741dd3
MS
3720#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3721
abb74cef
VP
3722#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3723/*
3724 * Account a tick to a process and cpustat
3725 * @p: the process that the cpu time gets accounted to
3726 * @user_tick: is the tick from userspace
3727 * @rq: the pointer to rq
3728 *
3729 * Tick demultiplexing follows the order
3730 * - pending hardirq update
3731 * - pending softirq update
3732 * - user_time
3733 * - idle_time
3734 * - system time
3735 * - check for guest_time
3736 * - else account as system_time
3737 *
3738 * Check for hardirq is done both for system and user time as there is
3739 * no timer going off while we are on hardirq and hence we may never get an
3740 * opportunity to update it solely in system time.
3741 * p->stime and friends are only updated on system time and not on irq
3742 * softirq as those do not count in task exec_runtime any more.
3743 */
3744static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3745 struct rq *rq)
3746{
3747 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3748 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3749 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3750
3751 if (irqtime_account_hi_update()) {
3752 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3753 } else if (irqtime_account_si_update()) {
3754 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3755 } else if (this_cpu_ksoftirqd() == p) {
3756 /*
3757 * ksoftirqd time do not get accounted in cpu_softirq_time.
3758 * So, we have to handle it separately here.
3759 * Also, p->stime needs to be updated for ksoftirqd.
3760 */
3761 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3762 &cpustat->softirq);
abb74cef
VP
3763 } else if (user_tick) {
3764 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3765 } else if (p == rq->idle) {
3766 account_idle_time(cputime_one_jiffy);
3767 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3768 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3769 } else {
3770 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3771 &cpustat->system);
3772 }
3773}
3774
3775static void irqtime_account_idle_ticks(int ticks)
3776{
3777 int i;
3778 struct rq *rq = this_rq();
3779
3780 for (i = 0; i < ticks; i++)
3781 irqtime_account_process_tick(current, 0, rq);
3782}
544b4a1f 3783#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3784static void irqtime_account_idle_ticks(int ticks) {}
3785static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3786 struct rq *rq) {}
544b4a1f 3787#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3788
3789/*
3790 * Account a single tick of cpu time.
3791 * @p: the process that the cpu time gets accounted to
3792 * @user_tick: indicates if the tick is a user or a system tick
3793 */
3794void account_process_tick(struct task_struct *p, int user_tick)
3795{
a42548a1 3796 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3797 struct rq *rq = this_rq();
3798
abb74cef
VP
3799 if (sched_clock_irqtime) {
3800 irqtime_account_process_tick(p, user_tick, rq);
3801 return;
3802 }
3803
79741dd3 3804 if (user_tick)
a42548a1 3805 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3806 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3807 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3808 one_jiffy_scaled);
3809 else
a42548a1 3810 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3811}
3812
3813/*
3814 * Account multiple ticks of steal time.
3815 * @p: the process from which the cpu time has been stolen
3816 * @ticks: number of stolen ticks
3817 */
3818void account_steal_ticks(unsigned long ticks)
3819{
3820 account_steal_time(jiffies_to_cputime(ticks));
3821}
3822
3823/*
3824 * Account multiple ticks of idle time.
3825 * @ticks: number of stolen ticks
3826 */
3827void account_idle_ticks(unsigned long ticks)
3828{
abb74cef
VP
3829
3830 if (sched_clock_irqtime) {
3831 irqtime_account_idle_ticks(ticks);
3832 return;
3833 }
3834
79741dd3 3835 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3836}
3837
79741dd3
MS
3838#endif
3839
49048622
BS
3840/*
3841 * Use precise platform statistics if available:
3842 */
3843#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3844void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3845{
d99ca3b9
HS
3846 *ut = p->utime;
3847 *st = p->stime;
49048622
BS
3848}
3849
0cf55e1e 3850void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3851{
0cf55e1e
HS
3852 struct task_cputime cputime;
3853
3854 thread_group_cputime(p, &cputime);
3855
3856 *ut = cputime.utime;
3857 *st = cputime.stime;
49048622
BS
3858}
3859#else
761b1d26
HS
3860
3861#ifndef nsecs_to_cputime
b7b20df9 3862# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3863#endif
3864
d180c5bc 3865void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3866{
d99ca3b9 3867 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3868
3869 /*
3870 * Use CFS's precise accounting:
3871 */
d180c5bc 3872 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3873
3874 if (total) {
e75e863d 3875 u64 temp = rtime;
d180c5bc 3876
e75e863d 3877 temp *= utime;
49048622 3878 do_div(temp, total);
d180c5bc
HS
3879 utime = (cputime_t)temp;
3880 } else
3881 utime = rtime;
49048622 3882
d180c5bc
HS
3883 /*
3884 * Compare with previous values, to keep monotonicity:
3885 */
761b1d26 3886 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3887 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3888
d99ca3b9
HS
3889 *ut = p->prev_utime;
3890 *st = p->prev_stime;
49048622
BS
3891}
3892
0cf55e1e
HS
3893/*
3894 * Must be called with siglock held.
3895 */
3896void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3897{
0cf55e1e
HS
3898 struct signal_struct *sig = p->signal;
3899 struct task_cputime cputime;
3900 cputime_t rtime, utime, total;
49048622 3901
0cf55e1e 3902 thread_group_cputime(p, &cputime);
49048622 3903
0cf55e1e
HS
3904 total = cputime_add(cputime.utime, cputime.stime);
3905 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3906
0cf55e1e 3907 if (total) {
e75e863d 3908 u64 temp = rtime;
49048622 3909
e75e863d 3910 temp *= cputime.utime;
0cf55e1e
HS
3911 do_div(temp, total);
3912 utime = (cputime_t)temp;
3913 } else
3914 utime = rtime;
3915
3916 sig->prev_utime = max(sig->prev_utime, utime);
3917 sig->prev_stime = max(sig->prev_stime,
3918 cputime_sub(rtime, sig->prev_utime));
3919
3920 *ut = sig->prev_utime;
3921 *st = sig->prev_stime;
49048622 3922}
49048622 3923#endif
49048622 3924
7835b98b
CL
3925/*
3926 * This function gets called by the timer code, with HZ frequency.
3927 * We call it with interrupts disabled.
3928 *
3929 * It also gets called by the fork code, when changing the parent's
3930 * timeslices.
3931 */
3932void scheduler_tick(void)
3933{
7835b98b
CL
3934 int cpu = smp_processor_id();
3935 struct rq *rq = cpu_rq(cpu);
dd41f596 3936 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3937
3938 sched_clock_tick();
dd41f596 3939
05fa785c 3940 raw_spin_lock(&rq->lock);
3e51f33f 3941 update_rq_clock(rq);
fdf3e95d 3942 update_cpu_load_active(rq);
fa85ae24 3943 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3944 raw_spin_unlock(&rq->lock);
7835b98b 3945
e9d2b064 3946 perf_event_task_tick();
e220d2dc 3947
e418e1c2 3948#ifdef CONFIG_SMP
dd41f596
IM
3949 rq->idle_at_tick = idle_cpu(cpu);
3950 trigger_load_balance(rq, cpu);
e418e1c2 3951#endif
1da177e4
LT
3952}
3953
132380a0 3954notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3955{
3956 if (in_lock_functions(addr)) {
3957 addr = CALLER_ADDR2;
3958 if (in_lock_functions(addr))
3959 addr = CALLER_ADDR3;
3960 }
3961 return addr;
3962}
1da177e4 3963
7e49fcce
SR
3964#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3965 defined(CONFIG_PREEMPT_TRACER))
3966
43627582 3967void __kprobes add_preempt_count(int val)
1da177e4 3968{
6cd8a4bb 3969#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3970 /*
3971 * Underflow?
3972 */
9a11b49a
IM
3973 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3974 return;
6cd8a4bb 3975#endif
1da177e4 3976 preempt_count() += val;
6cd8a4bb 3977#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3978 /*
3979 * Spinlock count overflowing soon?
3980 */
33859f7f
MOS
3981 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3982 PREEMPT_MASK - 10);
6cd8a4bb
SR
3983#endif
3984 if (preempt_count() == val)
3985 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3986}
3987EXPORT_SYMBOL(add_preempt_count);
3988
43627582 3989void __kprobes sub_preempt_count(int val)
1da177e4 3990{
6cd8a4bb 3991#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3992 /*
3993 * Underflow?
3994 */
01e3eb82 3995 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3996 return;
1da177e4
LT
3997 /*
3998 * Is the spinlock portion underflowing?
3999 */
9a11b49a
IM
4000 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4001 !(preempt_count() & PREEMPT_MASK)))
4002 return;
6cd8a4bb 4003#endif
9a11b49a 4004
6cd8a4bb
SR
4005 if (preempt_count() == val)
4006 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4007 preempt_count() -= val;
4008}
4009EXPORT_SYMBOL(sub_preempt_count);
4010
4011#endif
4012
4013/*
dd41f596 4014 * Print scheduling while atomic bug:
1da177e4 4015 */
dd41f596 4016static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4017{
838225b4
SS
4018 struct pt_regs *regs = get_irq_regs();
4019
3df0fc5b
PZ
4020 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4021 prev->comm, prev->pid, preempt_count());
838225b4 4022
dd41f596 4023 debug_show_held_locks(prev);
e21f5b15 4024 print_modules();
dd41f596
IM
4025 if (irqs_disabled())
4026 print_irqtrace_events(prev);
838225b4
SS
4027
4028 if (regs)
4029 show_regs(regs);
4030 else
4031 dump_stack();
dd41f596 4032}
1da177e4 4033
dd41f596
IM
4034/*
4035 * Various schedule()-time debugging checks and statistics:
4036 */
4037static inline void schedule_debug(struct task_struct *prev)
4038{
1da177e4 4039 /*
41a2d6cf 4040 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4041 * schedule() atomically, we ignore that path for now.
4042 * Otherwise, whine if we are scheduling when we should not be.
4043 */
3f33a7ce 4044 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4045 __schedule_bug(prev);
4046
1da177e4
LT
4047 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4048
2d72376b 4049 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4050#ifdef CONFIG_SCHEDSTATS
4051 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4052 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4053 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4054 }
4055#endif
dd41f596
IM
4056}
4057
6cecd084 4058static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4059{
fd2f4419 4060 if (prev->on_rq)
a64692a3 4061 update_rq_clock(rq);
6cecd084 4062 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4063}
4064
dd41f596
IM
4065/*
4066 * Pick up the highest-prio task:
4067 */
4068static inline struct task_struct *
b67802ea 4069pick_next_task(struct rq *rq)
dd41f596 4070{
5522d5d5 4071 const struct sched_class *class;
dd41f596 4072 struct task_struct *p;
1da177e4
LT
4073
4074 /*
dd41f596
IM
4075 * Optimization: we know that if all tasks are in
4076 * the fair class we can call that function directly:
1da177e4 4077 */
dd41f596 4078 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4079 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4080 if (likely(p))
4081 return p;
1da177e4
LT
4082 }
4083
34f971f6 4084 for_each_class(class) {
fb8d4724 4085 p = class->pick_next_task(rq);
dd41f596
IM
4086 if (p)
4087 return p;
dd41f596 4088 }
34f971f6
PZ
4089
4090 BUG(); /* the idle class will always have a runnable task */
dd41f596 4091}
1da177e4 4092
dd41f596
IM
4093/*
4094 * schedule() is the main scheduler function.
4095 */
ff743345 4096asmlinkage void __sched schedule(void)
dd41f596
IM
4097{
4098 struct task_struct *prev, *next;
67ca7bde 4099 unsigned long *switch_count;
dd41f596 4100 struct rq *rq;
31656519 4101 int cpu;
dd41f596 4102
ff743345
PZ
4103need_resched:
4104 preempt_disable();
dd41f596
IM
4105 cpu = smp_processor_id();
4106 rq = cpu_rq(cpu);
25502a6c 4107 rcu_note_context_switch(cpu);
dd41f596 4108 prev = rq->curr;
dd41f596 4109
dd41f596 4110 schedule_debug(prev);
1da177e4 4111
31656519 4112 if (sched_feat(HRTICK))
f333fdc9 4113 hrtick_clear(rq);
8f4d37ec 4114
05fa785c 4115 raw_spin_lock_irq(&rq->lock);
1da177e4 4116
246d86b5 4117 switch_count = &prev->nivcsw;
1da177e4 4118 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4119 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4120 prev->state = TASK_RUNNING;
21aa9af0 4121 } else {
2acca55e
PZ
4122 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4123 prev->on_rq = 0;
4124
21aa9af0 4125 /*
2acca55e
PZ
4126 * If a worker went to sleep, notify and ask workqueue
4127 * whether it wants to wake up a task to maintain
4128 * concurrency.
21aa9af0
TH
4129 */
4130 if (prev->flags & PF_WQ_WORKER) {
4131 struct task_struct *to_wakeup;
4132
4133 to_wakeup = wq_worker_sleeping(prev, cpu);
4134 if (to_wakeup)
4135 try_to_wake_up_local(to_wakeup);
4136 }
fd2f4419 4137
6631e635 4138 /*
2acca55e
PZ
4139 * If we are going to sleep and we have plugged IO
4140 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4141 */
4142 if (blk_needs_flush_plug(prev)) {
4143 raw_spin_unlock(&rq->lock);
4144 blk_flush_plug(prev);
4145 raw_spin_lock(&rq->lock);
4146 }
21aa9af0 4147 }
dd41f596 4148 switch_count = &prev->nvcsw;
1da177e4
LT
4149 }
4150
3f029d3c 4151 pre_schedule(rq, prev);
f65eda4f 4152
dd41f596 4153 if (unlikely(!rq->nr_running))
1da177e4 4154 idle_balance(cpu, rq);
1da177e4 4155
df1c99d4 4156 put_prev_task(rq, prev);
b67802ea 4157 next = pick_next_task(rq);
f26f9aff
MG
4158 clear_tsk_need_resched(prev);
4159 rq->skip_clock_update = 0;
1da177e4 4160
1da177e4 4161 if (likely(prev != next)) {
1da177e4
LT
4162 rq->nr_switches++;
4163 rq->curr = next;
4164 ++*switch_count;
4165
dd41f596 4166 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4167 /*
246d86b5
ON
4168 * The context switch have flipped the stack from under us
4169 * and restored the local variables which were saved when
4170 * this task called schedule() in the past. prev == current
4171 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4172 */
4173 cpu = smp_processor_id();
4174 rq = cpu_rq(cpu);
1da177e4 4175 } else
05fa785c 4176 raw_spin_unlock_irq(&rq->lock);
1da177e4 4177
3f029d3c 4178 post_schedule(rq);
1da177e4 4179
1da177e4 4180 preempt_enable_no_resched();
ff743345 4181 if (need_resched())
1da177e4
LT
4182 goto need_resched;
4183}
1da177e4
LT
4184EXPORT_SYMBOL(schedule);
4185
c08f7829 4186#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4187
c6eb3dda
PZ
4188static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4189{
4190 bool ret = false;
0d66bf6d 4191
c6eb3dda
PZ
4192 rcu_read_lock();
4193 if (lock->owner != owner)
4194 goto fail;
0d66bf6d
PZ
4195
4196 /*
c6eb3dda
PZ
4197 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4198 * lock->owner still matches owner, if that fails, owner might
4199 * point to free()d memory, if it still matches, the rcu_read_lock()
4200 * ensures the memory stays valid.
0d66bf6d 4201 */
c6eb3dda 4202 barrier();
0d66bf6d 4203
c6eb3dda
PZ
4204 ret = owner->on_cpu;
4205fail:
4206 rcu_read_unlock();
0d66bf6d 4207
c6eb3dda
PZ
4208 return ret;
4209}
0d66bf6d 4210
c6eb3dda
PZ
4211/*
4212 * Look out! "owner" is an entirely speculative pointer
4213 * access and not reliable.
4214 */
4215int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4216{
4217 if (!sched_feat(OWNER_SPIN))
4218 return 0;
0d66bf6d 4219
c6eb3dda
PZ
4220 while (owner_running(lock, owner)) {
4221 if (need_resched())
0d66bf6d
PZ
4222 return 0;
4223
335d7afb 4224 arch_mutex_cpu_relax();
0d66bf6d 4225 }
4b402210 4226
c6eb3dda
PZ
4227 /*
4228 * If the owner changed to another task there is likely
4229 * heavy contention, stop spinning.
4230 */
4231 if (lock->owner)
4232 return 0;
4233
0d66bf6d
PZ
4234 return 1;
4235}
4236#endif
4237
1da177e4
LT
4238#ifdef CONFIG_PREEMPT
4239/*
2ed6e34f 4240 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4241 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4242 * occur there and call schedule directly.
4243 */
d1f74e20 4244asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4245{
4246 struct thread_info *ti = current_thread_info();
6478d880 4247
1da177e4
LT
4248 /*
4249 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4250 * we do not want to preempt the current task. Just return..
1da177e4 4251 */
beed33a8 4252 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4253 return;
4254
3a5c359a 4255 do {
d1f74e20 4256 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4257 schedule();
d1f74e20 4258 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4259
3a5c359a
AK
4260 /*
4261 * Check again in case we missed a preemption opportunity
4262 * between schedule and now.
4263 */
4264 barrier();
5ed0cec0 4265 } while (need_resched());
1da177e4 4266}
1da177e4
LT
4267EXPORT_SYMBOL(preempt_schedule);
4268
4269/*
2ed6e34f 4270 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4271 * off of irq context.
4272 * Note, that this is called and return with irqs disabled. This will
4273 * protect us against recursive calling from irq.
4274 */
4275asmlinkage void __sched preempt_schedule_irq(void)
4276{
4277 struct thread_info *ti = current_thread_info();
6478d880 4278
2ed6e34f 4279 /* Catch callers which need to be fixed */
1da177e4
LT
4280 BUG_ON(ti->preempt_count || !irqs_disabled());
4281
3a5c359a
AK
4282 do {
4283 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4284 local_irq_enable();
4285 schedule();
4286 local_irq_disable();
3a5c359a 4287 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4288
3a5c359a
AK
4289 /*
4290 * Check again in case we missed a preemption opportunity
4291 * between schedule and now.
4292 */
4293 barrier();
5ed0cec0 4294 } while (need_resched());
1da177e4
LT
4295}
4296
4297#endif /* CONFIG_PREEMPT */
4298
63859d4f 4299int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4300 void *key)
1da177e4 4301{
63859d4f 4302 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4303}
1da177e4
LT
4304EXPORT_SYMBOL(default_wake_function);
4305
4306/*
41a2d6cf
IM
4307 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4308 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4309 * number) then we wake all the non-exclusive tasks and one exclusive task.
4310 *
4311 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4312 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4313 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4314 */
78ddb08f 4315static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4316 int nr_exclusive, int wake_flags, void *key)
1da177e4 4317{
2e45874c 4318 wait_queue_t *curr, *next;
1da177e4 4319
2e45874c 4320 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4321 unsigned flags = curr->flags;
4322
63859d4f 4323 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4324 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4325 break;
4326 }
4327}
4328
4329/**
4330 * __wake_up - wake up threads blocked on a waitqueue.
4331 * @q: the waitqueue
4332 * @mode: which threads
4333 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4334 * @key: is directly passed to the wakeup function
50fa610a
DH
4335 *
4336 * It may be assumed that this function implies a write memory barrier before
4337 * changing the task state if and only if any tasks are woken up.
1da177e4 4338 */
7ad5b3a5 4339void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4340 int nr_exclusive, void *key)
1da177e4
LT
4341{
4342 unsigned long flags;
4343
4344 spin_lock_irqsave(&q->lock, flags);
4345 __wake_up_common(q, mode, nr_exclusive, 0, key);
4346 spin_unlock_irqrestore(&q->lock, flags);
4347}
1da177e4
LT
4348EXPORT_SYMBOL(__wake_up);
4349
4350/*
4351 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4352 */
7ad5b3a5 4353void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4354{
4355 __wake_up_common(q, mode, 1, 0, NULL);
4356}
22c43c81 4357EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4358
4ede816a
DL
4359void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4360{
4361 __wake_up_common(q, mode, 1, 0, key);
4362}
bf294b41 4363EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4364
1da177e4 4365/**
4ede816a 4366 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4367 * @q: the waitqueue
4368 * @mode: which threads
4369 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4370 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4371 *
4372 * The sync wakeup differs that the waker knows that it will schedule
4373 * away soon, so while the target thread will be woken up, it will not
4374 * be migrated to another CPU - ie. the two threads are 'synchronized'
4375 * with each other. This can prevent needless bouncing between CPUs.
4376 *
4377 * On UP it can prevent extra preemption.
50fa610a
DH
4378 *
4379 * It may be assumed that this function implies a write memory barrier before
4380 * changing the task state if and only if any tasks are woken up.
1da177e4 4381 */
4ede816a
DL
4382void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4383 int nr_exclusive, void *key)
1da177e4
LT
4384{
4385 unsigned long flags;
7d478721 4386 int wake_flags = WF_SYNC;
1da177e4
LT
4387
4388 if (unlikely(!q))
4389 return;
4390
4391 if (unlikely(!nr_exclusive))
7d478721 4392 wake_flags = 0;
1da177e4
LT
4393
4394 spin_lock_irqsave(&q->lock, flags);
7d478721 4395 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4396 spin_unlock_irqrestore(&q->lock, flags);
4397}
4ede816a
DL
4398EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4399
4400/*
4401 * __wake_up_sync - see __wake_up_sync_key()
4402 */
4403void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4404{
4405 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4406}
1da177e4
LT
4407EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4408
65eb3dc6
KD
4409/**
4410 * complete: - signals a single thread waiting on this completion
4411 * @x: holds the state of this particular completion
4412 *
4413 * This will wake up a single thread waiting on this completion. Threads will be
4414 * awakened in the same order in which they were queued.
4415 *
4416 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4417 *
4418 * It may be assumed that this function implies a write memory barrier before
4419 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4420 */
b15136e9 4421void complete(struct completion *x)
1da177e4
LT
4422{
4423 unsigned long flags;
4424
4425 spin_lock_irqsave(&x->wait.lock, flags);
4426 x->done++;
d9514f6c 4427 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4428 spin_unlock_irqrestore(&x->wait.lock, flags);
4429}
4430EXPORT_SYMBOL(complete);
4431
65eb3dc6
KD
4432/**
4433 * complete_all: - signals all threads waiting on this completion
4434 * @x: holds the state of this particular completion
4435 *
4436 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4437 *
4438 * It may be assumed that this function implies a write memory barrier before
4439 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4440 */
b15136e9 4441void complete_all(struct completion *x)
1da177e4
LT
4442{
4443 unsigned long flags;
4444
4445 spin_lock_irqsave(&x->wait.lock, flags);
4446 x->done += UINT_MAX/2;
d9514f6c 4447 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4448 spin_unlock_irqrestore(&x->wait.lock, flags);
4449}
4450EXPORT_SYMBOL(complete_all);
4451
8cbbe86d
AK
4452static inline long __sched
4453do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4454{
1da177e4
LT
4455 if (!x->done) {
4456 DECLARE_WAITQUEUE(wait, current);
4457
a93d2f17 4458 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4459 do {
94d3d824 4460 if (signal_pending_state(state, current)) {
ea71a546
ON
4461 timeout = -ERESTARTSYS;
4462 break;
8cbbe86d
AK
4463 }
4464 __set_current_state(state);
1da177e4
LT
4465 spin_unlock_irq(&x->wait.lock);
4466 timeout = schedule_timeout(timeout);
4467 spin_lock_irq(&x->wait.lock);
ea71a546 4468 } while (!x->done && timeout);
1da177e4 4469 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4470 if (!x->done)
4471 return timeout;
1da177e4
LT
4472 }
4473 x->done--;
ea71a546 4474 return timeout ?: 1;
1da177e4 4475}
1da177e4 4476
8cbbe86d
AK
4477static long __sched
4478wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4479{
1da177e4
LT
4480 might_sleep();
4481
4482 spin_lock_irq(&x->wait.lock);
8cbbe86d 4483 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4484 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4485 return timeout;
4486}
1da177e4 4487
65eb3dc6
KD
4488/**
4489 * wait_for_completion: - waits for completion of a task
4490 * @x: holds the state of this particular completion
4491 *
4492 * This waits to be signaled for completion of a specific task. It is NOT
4493 * interruptible and there is no timeout.
4494 *
4495 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4496 * and interrupt capability. Also see complete().
4497 */
b15136e9 4498void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4499{
4500 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4501}
8cbbe86d 4502EXPORT_SYMBOL(wait_for_completion);
1da177e4 4503
65eb3dc6
KD
4504/**
4505 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4506 * @x: holds the state of this particular completion
4507 * @timeout: timeout value in jiffies
4508 *
4509 * This waits for either a completion of a specific task to be signaled or for a
4510 * specified timeout to expire. The timeout is in jiffies. It is not
4511 * interruptible.
4512 */
b15136e9 4513unsigned long __sched
8cbbe86d 4514wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4515{
8cbbe86d 4516 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4517}
8cbbe86d 4518EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4519
65eb3dc6
KD
4520/**
4521 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4522 * @x: holds the state of this particular completion
4523 *
4524 * This waits for completion of a specific task to be signaled. It is
4525 * interruptible.
4526 */
8cbbe86d 4527int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4528{
51e97990
AK
4529 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4530 if (t == -ERESTARTSYS)
4531 return t;
4532 return 0;
0fec171c 4533}
8cbbe86d 4534EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4535
65eb3dc6
KD
4536/**
4537 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4538 * @x: holds the state of this particular completion
4539 * @timeout: timeout value in jiffies
4540 *
4541 * This waits for either a completion of a specific task to be signaled or for a
4542 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4543 */
6bf41237 4544long __sched
8cbbe86d
AK
4545wait_for_completion_interruptible_timeout(struct completion *x,
4546 unsigned long timeout)
0fec171c 4547{
8cbbe86d 4548 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4549}
8cbbe86d 4550EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4551
65eb3dc6
KD
4552/**
4553 * wait_for_completion_killable: - waits for completion of a task (killable)
4554 * @x: holds the state of this particular completion
4555 *
4556 * This waits to be signaled for completion of a specific task. It can be
4557 * interrupted by a kill signal.
4558 */
009e577e
MW
4559int __sched wait_for_completion_killable(struct completion *x)
4560{
4561 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4562 if (t == -ERESTARTSYS)
4563 return t;
4564 return 0;
4565}
4566EXPORT_SYMBOL(wait_for_completion_killable);
4567
0aa12fb4
SW
4568/**
4569 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4570 * @x: holds the state of this particular completion
4571 * @timeout: timeout value in jiffies
4572 *
4573 * This waits for either a completion of a specific task to be
4574 * signaled or for a specified timeout to expire. It can be
4575 * interrupted by a kill signal. The timeout is in jiffies.
4576 */
6bf41237 4577long __sched
0aa12fb4
SW
4578wait_for_completion_killable_timeout(struct completion *x,
4579 unsigned long timeout)
4580{
4581 return wait_for_common(x, timeout, TASK_KILLABLE);
4582}
4583EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4584
be4de352
DC
4585/**
4586 * try_wait_for_completion - try to decrement a completion without blocking
4587 * @x: completion structure
4588 *
4589 * Returns: 0 if a decrement cannot be done without blocking
4590 * 1 if a decrement succeeded.
4591 *
4592 * If a completion is being used as a counting completion,
4593 * attempt to decrement the counter without blocking. This
4594 * enables us to avoid waiting if the resource the completion
4595 * is protecting is not available.
4596 */
4597bool try_wait_for_completion(struct completion *x)
4598{
7539a3b3 4599 unsigned long flags;
be4de352
DC
4600 int ret = 1;
4601
7539a3b3 4602 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4603 if (!x->done)
4604 ret = 0;
4605 else
4606 x->done--;
7539a3b3 4607 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4608 return ret;
4609}
4610EXPORT_SYMBOL(try_wait_for_completion);
4611
4612/**
4613 * completion_done - Test to see if a completion has any waiters
4614 * @x: completion structure
4615 *
4616 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4617 * 1 if there are no waiters.
4618 *
4619 */
4620bool completion_done(struct completion *x)
4621{
7539a3b3 4622 unsigned long flags;
be4de352
DC
4623 int ret = 1;
4624
7539a3b3 4625 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4626 if (!x->done)
4627 ret = 0;
7539a3b3 4628 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4629 return ret;
4630}
4631EXPORT_SYMBOL(completion_done);
4632
8cbbe86d
AK
4633static long __sched
4634sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4635{
0fec171c
IM
4636 unsigned long flags;
4637 wait_queue_t wait;
4638
4639 init_waitqueue_entry(&wait, current);
1da177e4 4640
8cbbe86d 4641 __set_current_state(state);
1da177e4 4642
8cbbe86d
AK
4643 spin_lock_irqsave(&q->lock, flags);
4644 __add_wait_queue(q, &wait);
4645 spin_unlock(&q->lock);
4646 timeout = schedule_timeout(timeout);
4647 spin_lock_irq(&q->lock);
4648 __remove_wait_queue(q, &wait);
4649 spin_unlock_irqrestore(&q->lock, flags);
4650
4651 return timeout;
4652}
4653
4654void __sched interruptible_sleep_on(wait_queue_head_t *q)
4655{
4656 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4657}
1da177e4
LT
4658EXPORT_SYMBOL(interruptible_sleep_on);
4659
0fec171c 4660long __sched
95cdf3b7 4661interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4662{
8cbbe86d 4663 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4664}
1da177e4
LT
4665EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4666
0fec171c 4667void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4668{
8cbbe86d 4669 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4670}
1da177e4
LT
4671EXPORT_SYMBOL(sleep_on);
4672
0fec171c 4673long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4674{
8cbbe86d 4675 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4676}
1da177e4
LT
4677EXPORT_SYMBOL(sleep_on_timeout);
4678
b29739f9
IM
4679#ifdef CONFIG_RT_MUTEXES
4680
4681/*
4682 * rt_mutex_setprio - set the current priority of a task
4683 * @p: task
4684 * @prio: prio value (kernel-internal form)
4685 *
4686 * This function changes the 'effective' priority of a task. It does
4687 * not touch ->normal_prio like __setscheduler().
4688 *
4689 * Used by the rt_mutex code to implement priority inheritance logic.
4690 */
36c8b586 4691void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4692{
83b699ed 4693 int oldprio, on_rq, running;
70b97a7f 4694 struct rq *rq;
83ab0aa0 4695 const struct sched_class *prev_class;
b29739f9
IM
4696
4697 BUG_ON(prio < 0 || prio > MAX_PRIO);
4698
0122ec5b 4699 rq = __task_rq_lock(p);
b29739f9 4700
a8027073 4701 trace_sched_pi_setprio(p, prio);
d5f9f942 4702 oldprio = p->prio;
83ab0aa0 4703 prev_class = p->sched_class;
fd2f4419 4704 on_rq = p->on_rq;
051a1d1a 4705 running = task_current(rq, p);
0e1f3483 4706 if (on_rq)
69be72c1 4707 dequeue_task(rq, p, 0);
0e1f3483
HS
4708 if (running)
4709 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4710
4711 if (rt_prio(prio))
4712 p->sched_class = &rt_sched_class;
4713 else
4714 p->sched_class = &fair_sched_class;
4715
b29739f9
IM
4716 p->prio = prio;
4717
0e1f3483
HS
4718 if (running)
4719 p->sched_class->set_curr_task(rq);
da7a735e 4720 if (on_rq)
371fd7e7 4721 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4722
da7a735e 4723 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4724 __task_rq_unlock(rq);
b29739f9
IM
4725}
4726
4727#endif
4728
36c8b586 4729void set_user_nice(struct task_struct *p, long nice)
1da177e4 4730{
dd41f596 4731 int old_prio, delta, on_rq;
1da177e4 4732 unsigned long flags;
70b97a7f 4733 struct rq *rq;
1da177e4
LT
4734
4735 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4736 return;
4737 /*
4738 * We have to be careful, if called from sys_setpriority(),
4739 * the task might be in the middle of scheduling on another CPU.
4740 */
4741 rq = task_rq_lock(p, &flags);
4742 /*
4743 * The RT priorities are set via sched_setscheduler(), but we still
4744 * allow the 'normal' nice value to be set - but as expected
4745 * it wont have any effect on scheduling until the task is
dd41f596 4746 * SCHED_FIFO/SCHED_RR:
1da177e4 4747 */
e05606d3 4748 if (task_has_rt_policy(p)) {
1da177e4
LT
4749 p->static_prio = NICE_TO_PRIO(nice);
4750 goto out_unlock;
4751 }
fd2f4419 4752 on_rq = p->on_rq;
c09595f6 4753 if (on_rq)
69be72c1 4754 dequeue_task(rq, p, 0);
1da177e4 4755
1da177e4 4756 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4757 set_load_weight(p);
b29739f9
IM
4758 old_prio = p->prio;
4759 p->prio = effective_prio(p);
4760 delta = p->prio - old_prio;
1da177e4 4761
dd41f596 4762 if (on_rq) {
371fd7e7 4763 enqueue_task(rq, p, 0);
1da177e4 4764 /*
d5f9f942
AM
4765 * If the task increased its priority or is running and
4766 * lowered its priority, then reschedule its CPU:
1da177e4 4767 */
d5f9f942 4768 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4769 resched_task(rq->curr);
4770 }
4771out_unlock:
0122ec5b 4772 task_rq_unlock(rq, p, &flags);
1da177e4 4773}
1da177e4
LT
4774EXPORT_SYMBOL(set_user_nice);
4775
e43379f1
MM
4776/*
4777 * can_nice - check if a task can reduce its nice value
4778 * @p: task
4779 * @nice: nice value
4780 */
36c8b586 4781int can_nice(const struct task_struct *p, const int nice)
e43379f1 4782{
024f4747
MM
4783 /* convert nice value [19,-20] to rlimit style value [1,40] */
4784 int nice_rlim = 20 - nice;
48f24c4d 4785
78d7d407 4786 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4787 capable(CAP_SYS_NICE));
4788}
4789
1da177e4
LT
4790#ifdef __ARCH_WANT_SYS_NICE
4791
4792/*
4793 * sys_nice - change the priority of the current process.
4794 * @increment: priority increment
4795 *
4796 * sys_setpriority is a more generic, but much slower function that
4797 * does similar things.
4798 */
5add95d4 4799SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4800{
48f24c4d 4801 long nice, retval;
1da177e4
LT
4802
4803 /*
4804 * Setpriority might change our priority at the same moment.
4805 * We don't have to worry. Conceptually one call occurs first
4806 * and we have a single winner.
4807 */
e43379f1
MM
4808 if (increment < -40)
4809 increment = -40;
1da177e4
LT
4810 if (increment > 40)
4811 increment = 40;
4812
2b8f836f 4813 nice = TASK_NICE(current) + increment;
1da177e4
LT
4814 if (nice < -20)
4815 nice = -20;
4816 if (nice > 19)
4817 nice = 19;
4818
e43379f1
MM
4819 if (increment < 0 && !can_nice(current, nice))
4820 return -EPERM;
4821
1da177e4
LT
4822 retval = security_task_setnice(current, nice);
4823 if (retval)
4824 return retval;
4825
4826 set_user_nice(current, nice);
4827 return 0;
4828}
4829
4830#endif
4831
4832/**
4833 * task_prio - return the priority value of a given task.
4834 * @p: the task in question.
4835 *
4836 * This is the priority value as seen by users in /proc.
4837 * RT tasks are offset by -200. Normal tasks are centered
4838 * around 0, value goes from -16 to +15.
4839 */
36c8b586 4840int task_prio(const struct task_struct *p)
1da177e4
LT
4841{
4842 return p->prio - MAX_RT_PRIO;
4843}
4844
4845/**
4846 * task_nice - return the nice value of a given task.
4847 * @p: the task in question.
4848 */
36c8b586 4849int task_nice(const struct task_struct *p)
1da177e4
LT
4850{
4851 return TASK_NICE(p);
4852}
150d8bed 4853EXPORT_SYMBOL(task_nice);
1da177e4
LT
4854
4855/**
4856 * idle_cpu - is a given cpu idle currently?
4857 * @cpu: the processor in question.
4858 */
4859int idle_cpu(int cpu)
4860{
4861 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4862}
4863
1da177e4
LT
4864/**
4865 * idle_task - return the idle task for a given cpu.
4866 * @cpu: the processor in question.
4867 */
36c8b586 4868struct task_struct *idle_task(int cpu)
1da177e4
LT
4869{
4870 return cpu_rq(cpu)->idle;
4871}
4872
4873/**
4874 * find_process_by_pid - find a process with a matching PID value.
4875 * @pid: the pid in question.
4876 */
a9957449 4877static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4878{
228ebcbe 4879 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4880}
4881
4882/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4883static void
4884__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4885{
1da177e4
LT
4886 p->policy = policy;
4887 p->rt_priority = prio;
b29739f9
IM
4888 p->normal_prio = normal_prio(p);
4889 /* we are holding p->pi_lock already */
4890 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4891 if (rt_prio(p->prio))
4892 p->sched_class = &rt_sched_class;
4893 else
4894 p->sched_class = &fair_sched_class;
2dd73a4f 4895 set_load_weight(p);
1da177e4
LT
4896}
4897
c69e8d9c
DH
4898/*
4899 * check the target process has a UID that matches the current process's
4900 */
4901static bool check_same_owner(struct task_struct *p)
4902{
4903 const struct cred *cred = current_cred(), *pcred;
4904 bool match;
4905
4906 rcu_read_lock();
4907 pcred = __task_cred(p);
b0e77598
SH
4908 if (cred->user->user_ns == pcred->user->user_ns)
4909 match = (cred->euid == pcred->euid ||
4910 cred->euid == pcred->uid);
4911 else
4912 match = false;
c69e8d9c
DH
4913 rcu_read_unlock();
4914 return match;
4915}
4916
961ccddd 4917static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4918 const struct sched_param *param, bool user)
1da177e4 4919{
83b699ed 4920 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4921 unsigned long flags;
83ab0aa0 4922 const struct sched_class *prev_class;
70b97a7f 4923 struct rq *rq;
ca94c442 4924 int reset_on_fork;
1da177e4 4925
66e5393a
SR
4926 /* may grab non-irq protected spin_locks */
4927 BUG_ON(in_interrupt());
1da177e4
LT
4928recheck:
4929 /* double check policy once rq lock held */
ca94c442
LP
4930 if (policy < 0) {
4931 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4932 policy = oldpolicy = p->policy;
ca94c442
LP
4933 } else {
4934 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4935 policy &= ~SCHED_RESET_ON_FORK;
4936
4937 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4938 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4939 policy != SCHED_IDLE)
4940 return -EINVAL;
4941 }
4942
1da177e4
LT
4943 /*
4944 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4945 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4946 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4947 */
4948 if (param->sched_priority < 0 ||
95cdf3b7 4949 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4950 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4951 return -EINVAL;
e05606d3 4952 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4953 return -EINVAL;
4954
37e4ab3f
OC
4955 /*
4956 * Allow unprivileged RT tasks to decrease priority:
4957 */
961ccddd 4958 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4959 if (rt_policy(policy)) {
a44702e8
ON
4960 unsigned long rlim_rtprio =
4961 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4962
4963 /* can't set/change the rt policy */
4964 if (policy != p->policy && !rlim_rtprio)
4965 return -EPERM;
4966
4967 /* can't increase priority */
4968 if (param->sched_priority > p->rt_priority &&
4969 param->sched_priority > rlim_rtprio)
4970 return -EPERM;
4971 }
c02aa73b 4972
dd41f596 4973 /*
c02aa73b
DH
4974 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4975 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4976 */
c02aa73b
DH
4977 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4978 if (!can_nice(p, TASK_NICE(p)))
4979 return -EPERM;
4980 }
5fe1d75f 4981
37e4ab3f 4982 /* can't change other user's priorities */
c69e8d9c 4983 if (!check_same_owner(p))
37e4ab3f 4984 return -EPERM;
ca94c442
LP
4985
4986 /* Normal users shall not reset the sched_reset_on_fork flag */
4987 if (p->sched_reset_on_fork && !reset_on_fork)
4988 return -EPERM;
37e4ab3f 4989 }
1da177e4 4990
725aad24 4991 if (user) {
b0ae1981 4992 retval = security_task_setscheduler(p);
725aad24
JF
4993 if (retval)
4994 return retval;
4995 }
4996
b29739f9
IM
4997 /*
4998 * make sure no PI-waiters arrive (or leave) while we are
4999 * changing the priority of the task:
0122ec5b 5000 *
25985edc 5001 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5002 * runqueue lock must be held.
5003 */
0122ec5b 5004 rq = task_rq_lock(p, &flags);
dc61b1d6 5005
34f971f6
PZ
5006 /*
5007 * Changing the policy of the stop threads its a very bad idea
5008 */
5009 if (p == rq->stop) {
0122ec5b 5010 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5011 return -EINVAL;
5012 }
5013
a51e9198
DF
5014 /*
5015 * If not changing anything there's no need to proceed further:
5016 */
5017 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5018 param->sched_priority == p->rt_priority))) {
5019
5020 __task_rq_unlock(rq);
5021 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5022 return 0;
5023 }
5024
dc61b1d6
PZ
5025#ifdef CONFIG_RT_GROUP_SCHED
5026 if (user) {
5027 /*
5028 * Do not allow realtime tasks into groups that have no runtime
5029 * assigned.
5030 */
5031 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5032 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5033 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5034 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5035 return -EPERM;
5036 }
5037 }
5038#endif
5039
1da177e4
LT
5040 /* recheck policy now with rq lock held */
5041 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5042 policy = oldpolicy = -1;
0122ec5b 5043 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5044 goto recheck;
5045 }
fd2f4419 5046 on_rq = p->on_rq;
051a1d1a 5047 running = task_current(rq, p);
0e1f3483 5048 if (on_rq)
2e1cb74a 5049 deactivate_task(rq, p, 0);
0e1f3483
HS
5050 if (running)
5051 p->sched_class->put_prev_task(rq, p);
f6b53205 5052
ca94c442
LP
5053 p->sched_reset_on_fork = reset_on_fork;
5054
1da177e4 5055 oldprio = p->prio;
83ab0aa0 5056 prev_class = p->sched_class;
dd41f596 5057 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5058
0e1f3483
HS
5059 if (running)
5060 p->sched_class->set_curr_task(rq);
da7a735e 5061 if (on_rq)
dd41f596 5062 activate_task(rq, p, 0);
cb469845 5063
da7a735e 5064 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5065 task_rq_unlock(rq, p, &flags);
b29739f9 5066
95e02ca9
TG
5067 rt_mutex_adjust_pi(p);
5068
1da177e4
LT
5069 return 0;
5070}
961ccddd
RR
5071
5072/**
5073 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5074 * @p: the task in question.
5075 * @policy: new policy.
5076 * @param: structure containing the new RT priority.
5077 *
5078 * NOTE that the task may be already dead.
5079 */
5080int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5081 const struct sched_param *param)
961ccddd
RR
5082{
5083 return __sched_setscheduler(p, policy, param, true);
5084}
1da177e4
LT
5085EXPORT_SYMBOL_GPL(sched_setscheduler);
5086
961ccddd
RR
5087/**
5088 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5089 * @p: the task in question.
5090 * @policy: new policy.
5091 * @param: structure containing the new RT priority.
5092 *
5093 * Just like sched_setscheduler, only don't bother checking if the
5094 * current context has permission. For example, this is needed in
5095 * stop_machine(): we create temporary high priority worker threads,
5096 * but our caller might not have that capability.
5097 */
5098int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5099 const struct sched_param *param)
961ccddd
RR
5100{
5101 return __sched_setscheduler(p, policy, param, false);
5102}
5103
95cdf3b7
IM
5104static int
5105do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5106{
1da177e4
LT
5107 struct sched_param lparam;
5108 struct task_struct *p;
36c8b586 5109 int retval;
1da177e4
LT
5110
5111 if (!param || pid < 0)
5112 return -EINVAL;
5113 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5114 return -EFAULT;
5fe1d75f
ON
5115
5116 rcu_read_lock();
5117 retval = -ESRCH;
1da177e4 5118 p = find_process_by_pid(pid);
5fe1d75f
ON
5119 if (p != NULL)
5120 retval = sched_setscheduler(p, policy, &lparam);
5121 rcu_read_unlock();
36c8b586 5122
1da177e4
LT
5123 return retval;
5124}
5125
5126/**
5127 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5128 * @pid: the pid in question.
5129 * @policy: new policy.
5130 * @param: structure containing the new RT priority.
5131 */
5add95d4
HC
5132SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5133 struct sched_param __user *, param)
1da177e4 5134{
c21761f1
JB
5135 /* negative values for policy are not valid */
5136 if (policy < 0)
5137 return -EINVAL;
5138
1da177e4
LT
5139 return do_sched_setscheduler(pid, policy, param);
5140}
5141
5142/**
5143 * sys_sched_setparam - set/change the RT priority of a thread
5144 * @pid: the pid in question.
5145 * @param: structure containing the new RT priority.
5146 */
5add95d4 5147SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5148{
5149 return do_sched_setscheduler(pid, -1, param);
5150}
5151
5152/**
5153 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5154 * @pid: the pid in question.
5155 */
5add95d4 5156SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5157{
36c8b586 5158 struct task_struct *p;
3a5c359a 5159 int retval;
1da177e4
LT
5160
5161 if (pid < 0)
3a5c359a 5162 return -EINVAL;
1da177e4
LT
5163
5164 retval = -ESRCH;
5fe85be0 5165 rcu_read_lock();
1da177e4
LT
5166 p = find_process_by_pid(pid);
5167 if (p) {
5168 retval = security_task_getscheduler(p);
5169 if (!retval)
ca94c442
LP
5170 retval = p->policy
5171 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5172 }
5fe85be0 5173 rcu_read_unlock();
1da177e4
LT
5174 return retval;
5175}
5176
5177/**
ca94c442 5178 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5179 * @pid: the pid in question.
5180 * @param: structure containing the RT priority.
5181 */
5add95d4 5182SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5183{
5184 struct sched_param lp;
36c8b586 5185 struct task_struct *p;
3a5c359a 5186 int retval;
1da177e4
LT
5187
5188 if (!param || pid < 0)
3a5c359a 5189 return -EINVAL;
1da177e4 5190
5fe85be0 5191 rcu_read_lock();
1da177e4
LT
5192 p = find_process_by_pid(pid);
5193 retval = -ESRCH;
5194 if (!p)
5195 goto out_unlock;
5196
5197 retval = security_task_getscheduler(p);
5198 if (retval)
5199 goto out_unlock;
5200
5201 lp.sched_priority = p->rt_priority;
5fe85be0 5202 rcu_read_unlock();
1da177e4
LT
5203
5204 /*
5205 * This one might sleep, we cannot do it with a spinlock held ...
5206 */
5207 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5208
1da177e4
LT
5209 return retval;
5210
5211out_unlock:
5fe85be0 5212 rcu_read_unlock();
1da177e4
LT
5213 return retval;
5214}
5215
96f874e2 5216long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5217{
5a16f3d3 5218 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5219 struct task_struct *p;
5220 int retval;
1da177e4 5221
95402b38 5222 get_online_cpus();
23f5d142 5223 rcu_read_lock();
1da177e4
LT
5224
5225 p = find_process_by_pid(pid);
5226 if (!p) {
23f5d142 5227 rcu_read_unlock();
95402b38 5228 put_online_cpus();
1da177e4
LT
5229 return -ESRCH;
5230 }
5231
23f5d142 5232 /* Prevent p going away */
1da177e4 5233 get_task_struct(p);
23f5d142 5234 rcu_read_unlock();
1da177e4 5235
5a16f3d3
RR
5236 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5237 retval = -ENOMEM;
5238 goto out_put_task;
5239 }
5240 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5241 retval = -ENOMEM;
5242 goto out_free_cpus_allowed;
5243 }
1da177e4 5244 retval = -EPERM;
b0e77598 5245 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5246 goto out_unlock;
5247
b0ae1981 5248 retval = security_task_setscheduler(p);
e7834f8f
DQ
5249 if (retval)
5250 goto out_unlock;
5251
5a16f3d3
RR
5252 cpuset_cpus_allowed(p, cpus_allowed);
5253 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5254again:
5a16f3d3 5255 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5256
8707d8b8 5257 if (!retval) {
5a16f3d3
RR
5258 cpuset_cpus_allowed(p, cpus_allowed);
5259 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5260 /*
5261 * We must have raced with a concurrent cpuset
5262 * update. Just reset the cpus_allowed to the
5263 * cpuset's cpus_allowed
5264 */
5a16f3d3 5265 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5266 goto again;
5267 }
5268 }
1da177e4 5269out_unlock:
5a16f3d3
RR
5270 free_cpumask_var(new_mask);
5271out_free_cpus_allowed:
5272 free_cpumask_var(cpus_allowed);
5273out_put_task:
1da177e4 5274 put_task_struct(p);
95402b38 5275 put_online_cpus();
1da177e4
LT
5276 return retval;
5277}
5278
5279static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5280 struct cpumask *new_mask)
1da177e4 5281{
96f874e2
RR
5282 if (len < cpumask_size())
5283 cpumask_clear(new_mask);
5284 else if (len > cpumask_size())
5285 len = cpumask_size();
5286
1da177e4
LT
5287 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5288}
5289
5290/**
5291 * sys_sched_setaffinity - set the cpu affinity of a process
5292 * @pid: pid of the process
5293 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5294 * @user_mask_ptr: user-space pointer to the new cpu mask
5295 */
5add95d4
HC
5296SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5297 unsigned long __user *, user_mask_ptr)
1da177e4 5298{
5a16f3d3 5299 cpumask_var_t new_mask;
1da177e4
LT
5300 int retval;
5301
5a16f3d3
RR
5302 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5303 return -ENOMEM;
1da177e4 5304
5a16f3d3
RR
5305 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5306 if (retval == 0)
5307 retval = sched_setaffinity(pid, new_mask);
5308 free_cpumask_var(new_mask);
5309 return retval;
1da177e4
LT
5310}
5311
96f874e2 5312long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5313{
36c8b586 5314 struct task_struct *p;
31605683 5315 unsigned long flags;
1da177e4 5316 int retval;
1da177e4 5317
95402b38 5318 get_online_cpus();
23f5d142 5319 rcu_read_lock();
1da177e4
LT
5320
5321 retval = -ESRCH;
5322 p = find_process_by_pid(pid);
5323 if (!p)
5324 goto out_unlock;
5325
e7834f8f
DQ
5326 retval = security_task_getscheduler(p);
5327 if (retval)
5328 goto out_unlock;
5329
013fdb80 5330 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5331 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5332 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5333
5334out_unlock:
23f5d142 5335 rcu_read_unlock();
95402b38 5336 put_online_cpus();
1da177e4 5337
9531b62f 5338 return retval;
1da177e4
LT
5339}
5340
5341/**
5342 * sys_sched_getaffinity - get the cpu affinity of a process
5343 * @pid: pid of the process
5344 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5345 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5346 */
5add95d4
HC
5347SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5348 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5349{
5350 int ret;
f17c8607 5351 cpumask_var_t mask;
1da177e4 5352
84fba5ec 5353 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5354 return -EINVAL;
5355 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5356 return -EINVAL;
5357
f17c8607
RR
5358 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5359 return -ENOMEM;
1da177e4 5360
f17c8607
RR
5361 ret = sched_getaffinity(pid, mask);
5362 if (ret == 0) {
8bc037fb 5363 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5364
5365 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5366 ret = -EFAULT;
5367 else
cd3d8031 5368 ret = retlen;
f17c8607
RR
5369 }
5370 free_cpumask_var(mask);
1da177e4 5371
f17c8607 5372 return ret;
1da177e4
LT
5373}
5374
5375/**
5376 * sys_sched_yield - yield the current processor to other threads.
5377 *
dd41f596
IM
5378 * This function yields the current CPU to other tasks. If there are no
5379 * other threads running on this CPU then this function will return.
1da177e4 5380 */
5add95d4 5381SYSCALL_DEFINE0(sched_yield)
1da177e4 5382{
70b97a7f 5383 struct rq *rq = this_rq_lock();
1da177e4 5384
2d72376b 5385 schedstat_inc(rq, yld_count);
4530d7ab 5386 current->sched_class->yield_task(rq);
1da177e4
LT
5387
5388 /*
5389 * Since we are going to call schedule() anyway, there's
5390 * no need to preempt or enable interrupts:
5391 */
5392 __release(rq->lock);
8a25d5de 5393 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5394 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5395 preempt_enable_no_resched();
5396
5397 schedule();
5398
5399 return 0;
5400}
5401
d86ee480
PZ
5402static inline int should_resched(void)
5403{
5404 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5405}
5406
e7b38404 5407static void __cond_resched(void)
1da177e4 5408{
e7aaaa69
FW
5409 add_preempt_count(PREEMPT_ACTIVE);
5410 schedule();
5411 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5412}
5413
02b67cc3 5414int __sched _cond_resched(void)
1da177e4 5415{
d86ee480 5416 if (should_resched()) {
1da177e4
LT
5417 __cond_resched();
5418 return 1;
5419 }
5420 return 0;
5421}
02b67cc3 5422EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5423
5424/*
613afbf8 5425 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5426 * call schedule, and on return reacquire the lock.
5427 *
41a2d6cf 5428 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5429 * operations here to prevent schedule() from being called twice (once via
5430 * spin_unlock(), once by hand).
5431 */
613afbf8 5432int __cond_resched_lock(spinlock_t *lock)
1da177e4 5433{
d86ee480 5434 int resched = should_resched();
6df3cecb
JK
5435 int ret = 0;
5436
f607c668
PZ
5437 lockdep_assert_held(lock);
5438
95c354fe 5439 if (spin_needbreak(lock) || resched) {
1da177e4 5440 spin_unlock(lock);
d86ee480 5441 if (resched)
95c354fe
NP
5442 __cond_resched();
5443 else
5444 cpu_relax();
6df3cecb 5445 ret = 1;
1da177e4 5446 spin_lock(lock);
1da177e4 5447 }
6df3cecb 5448 return ret;
1da177e4 5449}
613afbf8 5450EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5451
613afbf8 5452int __sched __cond_resched_softirq(void)
1da177e4
LT
5453{
5454 BUG_ON(!in_softirq());
5455
d86ee480 5456 if (should_resched()) {
98d82567 5457 local_bh_enable();
1da177e4
LT
5458 __cond_resched();
5459 local_bh_disable();
5460 return 1;
5461 }
5462 return 0;
5463}
613afbf8 5464EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5465
1da177e4
LT
5466/**
5467 * yield - yield the current processor to other threads.
5468 *
72fd4a35 5469 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5470 * thread runnable and calls sys_sched_yield().
5471 */
5472void __sched yield(void)
5473{
5474 set_current_state(TASK_RUNNING);
5475 sys_sched_yield();
5476}
1da177e4
LT
5477EXPORT_SYMBOL(yield);
5478
d95f4122
MG
5479/**
5480 * yield_to - yield the current processor to another thread in
5481 * your thread group, or accelerate that thread toward the
5482 * processor it's on.
16addf95
RD
5483 * @p: target task
5484 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5485 *
5486 * It's the caller's job to ensure that the target task struct
5487 * can't go away on us before we can do any checks.
5488 *
5489 * Returns true if we indeed boosted the target task.
5490 */
5491bool __sched yield_to(struct task_struct *p, bool preempt)
5492{
5493 struct task_struct *curr = current;
5494 struct rq *rq, *p_rq;
5495 unsigned long flags;
5496 bool yielded = 0;
5497
5498 local_irq_save(flags);
5499 rq = this_rq();
5500
5501again:
5502 p_rq = task_rq(p);
5503 double_rq_lock(rq, p_rq);
5504 while (task_rq(p) != p_rq) {
5505 double_rq_unlock(rq, p_rq);
5506 goto again;
5507 }
5508
5509 if (!curr->sched_class->yield_to_task)
5510 goto out;
5511
5512 if (curr->sched_class != p->sched_class)
5513 goto out;
5514
5515 if (task_running(p_rq, p) || p->state)
5516 goto out;
5517
5518 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5519 if (yielded) {
d95f4122 5520 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5521 /*
5522 * Make p's CPU reschedule; pick_next_entity takes care of
5523 * fairness.
5524 */
5525 if (preempt && rq != p_rq)
5526 resched_task(p_rq->curr);
5527 }
d95f4122
MG
5528
5529out:
5530 double_rq_unlock(rq, p_rq);
5531 local_irq_restore(flags);
5532
5533 if (yielded)
5534 schedule();
5535
5536 return yielded;
5537}
5538EXPORT_SYMBOL_GPL(yield_to);
5539
1da177e4 5540/*
41a2d6cf 5541 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5542 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5543 */
5544void __sched io_schedule(void)
5545{
54d35f29 5546 struct rq *rq = raw_rq();
1da177e4 5547
0ff92245 5548 delayacct_blkio_start();
1da177e4 5549 atomic_inc(&rq->nr_iowait);
73c10101 5550 blk_flush_plug(current);
8f0dfc34 5551 current->in_iowait = 1;
1da177e4 5552 schedule();
8f0dfc34 5553 current->in_iowait = 0;
1da177e4 5554 atomic_dec(&rq->nr_iowait);
0ff92245 5555 delayacct_blkio_end();
1da177e4 5556}
1da177e4
LT
5557EXPORT_SYMBOL(io_schedule);
5558
5559long __sched io_schedule_timeout(long timeout)
5560{
54d35f29 5561 struct rq *rq = raw_rq();
1da177e4
LT
5562 long ret;
5563
0ff92245 5564 delayacct_blkio_start();
1da177e4 5565 atomic_inc(&rq->nr_iowait);
73c10101 5566 blk_flush_plug(current);
8f0dfc34 5567 current->in_iowait = 1;
1da177e4 5568 ret = schedule_timeout(timeout);
8f0dfc34 5569 current->in_iowait = 0;
1da177e4 5570 atomic_dec(&rq->nr_iowait);
0ff92245 5571 delayacct_blkio_end();
1da177e4
LT
5572 return ret;
5573}
5574
5575/**
5576 * sys_sched_get_priority_max - return maximum RT priority.
5577 * @policy: scheduling class.
5578 *
5579 * this syscall returns the maximum rt_priority that can be used
5580 * by a given scheduling class.
5581 */
5add95d4 5582SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5583{
5584 int ret = -EINVAL;
5585
5586 switch (policy) {
5587 case SCHED_FIFO:
5588 case SCHED_RR:
5589 ret = MAX_USER_RT_PRIO-1;
5590 break;
5591 case SCHED_NORMAL:
b0a9499c 5592 case SCHED_BATCH:
dd41f596 5593 case SCHED_IDLE:
1da177e4
LT
5594 ret = 0;
5595 break;
5596 }
5597 return ret;
5598}
5599
5600/**
5601 * sys_sched_get_priority_min - return minimum RT priority.
5602 * @policy: scheduling class.
5603 *
5604 * this syscall returns the minimum rt_priority that can be used
5605 * by a given scheduling class.
5606 */
5add95d4 5607SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5608{
5609 int ret = -EINVAL;
5610
5611 switch (policy) {
5612 case SCHED_FIFO:
5613 case SCHED_RR:
5614 ret = 1;
5615 break;
5616 case SCHED_NORMAL:
b0a9499c 5617 case SCHED_BATCH:
dd41f596 5618 case SCHED_IDLE:
1da177e4
LT
5619 ret = 0;
5620 }
5621 return ret;
5622}
5623
5624/**
5625 * sys_sched_rr_get_interval - return the default timeslice of a process.
5626 * @pid: pid of the process.
5627 * @interval: userspace pointer to the timeslice value.
5628 *
5629 * this syscall writes the default timeslice value of a given process
5630 * into the user-space timespec buffer. A value of '0' means infinity.
5631 */
17da2bd9 5632SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5633 struct timespec __user *, interval)
1da177e4 5634{
36c8b586 5635 struct task_struct *p;
a4ec24b4 5636 unsigned int time_slice;
dba091b9
TG
5637 unsigned long flags;
5638 struct rq *rq;
3a5c359a 5639 int retval;
1da177e4 5640 struct timespec t;
1da177e4
LT
5641
5642 if (pid < 0)
3a5c359a 5643 return -EINVAL;
1da177e4
LT
5644
5645 retval = -ESRCH;
1a551ae7 5646 rcu_read_lock();
1da177e4
LT
5647 p = find_process_by_pid(pid);
5648 if (!p)
5649 goto out_unlock;
5650
5651 retval = security_task_getscheduler(p);
5652 if (retval)
5653 goto out_unlock;
5654
dba091b9
TG
5655 rq = task_rq_lock(p, &flags);
5656 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5657 task_rq_unlock(rq, p, &flags);
a4ec24b4 5658
1a551ae7 5659 rcu_read_unlock();
a4ec24b4 5660 jiffies_to_timespec(time_slice, &t);
1da177e4 5661 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5662 return retval;
3a5c359a 5663
1da177e4 5664out_unlock:
1a551ae7 5665 rcu_read_unlock();
1da177e4
LT
5666 return retval;
5667}
5668
7c731e0a 5669static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5670
82a1fcb9 5671void sched_show_task(struct task_struct *p)
1da177e4 5672{
1da177e4 5673 unsigned long free = 0;
36c8b586 5674 unsigned state;
1da177e4 5675
1da177e4 5676 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5677 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5678 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5679#if BITS_PER_LONG == 32
1da177e4 5680 if (state == TASK_RUNNING)
3df0fc5b 5681 printk(KERN_CONT " running ");
1da177e4 5682 else
3df0fc5b 5683 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5684#else
5685 if (state == TASK_RUNNING)
3df0fc5b 5686 printk(KERN_CONT " running task ");
1da177e4 5687 else
3df0fc5b 5688 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5689#endif
5690#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5691 free = stack_not_used(p);
1da177e4 5692#endif
3df0fc5b 5693 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5694 task_pid_nr(p), task_pid_nr(p->real_parent),
5695 (unsigned long)task_thread_info(p)->flags);
1da177e4 5696
5fb5e6de 5697 show_stack(p, NULL);
1da177e4
LT
5698}
5699
e59e2ae2 5700void show_state_filter(unsigned long state_filter)
1da177e4 5701{
36c8b586 5702 struct task_struct *g, *p;
1da177e4 5703
4bd77321 5704#if BITS_PER_LONG == 32
3df0fc5b
PZ
5705 printk(KERN_INFO
5706 " task PC stack pid father\n");
1da177e4 5707#else
3df0fc5b
PZ
5708 printk(KERN_INFO
5709 " task PC stack pid father\n");
1da177e4
LT
5710#endif
5711 read_lock(&tasklist_lock);
5712 do_each_thread(g, p) {
5713 /*
5714 * reset the NMI-timeout, listing all files on a slow
25985edc 5715 * console might take a lot of time:
1da177e4
LT
5716 */
5717 touch_nmi_watchdog();
39bc89fd 5718 if (!state_filter || (p->state & state_filter))
82a1fcb9 5719 sched_show_task(p);
1da177e4
LT
5720 } while_each_thread(g, p);
5721
04c9167f
JF
5722 touch_all_softlockup_watchdogs();
5723
dd41f596
IM
5724#ifdef CONFIG_SCHED_DEBUG
5725 sysrq_sched_debug_show();
5726#endif
1da177e4 5727 read_unlock(&tasklist_lock);
e59e2ae2
IM
5728 /*
5729 * Only show locks if all tasks are dumped:
5730 */
93335a21 5731 if (!state_filter)
e59e2ae2 5732 debug_show_all_locks();
1da177e4
LT
5733}
5734
1df21055
IM
5735void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5736{
dd41f596 5737 idle->sched_class = &idle_sched_class;
1df21055
IM
5738}
5739
f340c0d1
IM
5740/**
5741 * init_idle - set up an idle thread for a given CPU
5742 * @idle: task in question
5743 * @cpu: cpu the idle task belongs to
5744 *
5745 * NOTE: this function does not set the idle thread's NEED_RESCHED
5746 * flag, to make booting more robust.
5747 */
5c1e1767 5748void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5749{
70b97a7f 5750 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5751 unsigned long flags;
5752
05fa785c 5753 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5754
dd41f596 5755 __sched_fork(idle);
06b83b5f 5756 idle->state = TASK_RUNNING;
dd41f596
IM
5757 idle->se.exec_start = sched_clock();
5758
96f874e2 5759 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5760 /*
5761 * We're having a chicken and egg problem, even though we are
5762 * holding rq->lock, the cpu isn't yet set to this cpu so the
5763 * lockdep check in task_group() will fail.
5764 *
5765 * Similar case to sched_fork(). / Alternatively we could
5766 * use task_rq_lock() here and obtain the other rq->lock.
5767 *
5768 * Silence PROVE_RCU
5769 */
5770 rcu_read_lock();
dd41f596 5771 __set_task_cpu(idle, cpu);
6506cf6c 5772 rcu_read_unlock();
1da177e4 5773
1da177e4 5774 rq->curr = rq->idle = idle;
3ca7a440
PZ
5775#if defined(CONFIG_SMP)
5776 idle->on_cpu = 1;
4866cde0 5777#endif
05fa785c 5778 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5779
5780 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5781#if defined(CONFIG_PREEMPT)
5782 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5783#else
a1261f54 5784 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5785#endif
dd41f596
IM
5786 /*
5787 * The idle tasks have their own, simple scheduling class:
5788 */
5789 idle->sched_class = &idle_sched_class;
868baf07 5790 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5791}
5792
5793/*
5794 * In a system that switches off the HZ timer nohz_cpu_mask
5795 * indicates which cpus entered this state. This is used
5796 * in the rcu update to wait only for active cpus. For system
5797 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5798 * always be CPU_BITS_NONE.
1da177e4 5799 */
6a7b3dc3 5800cpumask_var_t nohz_cpu_mask;
1da177e4 5801
19978ca6
IM
5802/*
5803 * Increase the granularity value when there are more CPUs,
5804 * because with more CPUs the 'effective latency' as visible
5805 * to users decreases. But the relationship is not linear,
5806 * so pick a second-best guess by going with the log2 of the
5807 * number of CPUs.
5808 *
5809 * This idea comes from the SD scheduler of Con Kolivas:
5810 */
acb4a848 5811static int get_update_sysctl_factor(void)
19978ca6 5812{
4ca3ef71 5813 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5814 unsigned int factor;
5815
5816 switch (sysctl_sched_tunable_scaling) {
5817 case SCHED_TUNABLESCALING_NONE:
5818 factor = 1;
5819 break;
5820 case SCHED_TUNABLESCALING_LINEAR:
5821 factor = cpus;
5822 break;
5823 case SCHED_TUNABLESCALING_LOG:
5824 default:
5825 factor = 1 + ilog2(cpus);
5826 break;
5827 }
19978ca6 5828
acb4a848
CE
5829 return factor;
5830}
19978ca6 5831
acb4a848
CE
5832static void update_sysctl(void)
5833{
5834 unsigned int factor = get_update_sysctl_factor();
19978ca6 5835
0bcdcf28
CE
5836#define SET_SYSCTL(name) \
5837 (sysctl_##name = (factor) * normalized_sysctl_##name)
5838 SET_SYSCTL(sched_min_granularity);
5839 SET_SYSCTL(sched_latency);
5840 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5841#undef SET_SYSCTL
5842}
55cd5340 5843
0bcdcf28
CE
5844static inline void sched_init_granularity(void)
5845{
5846 update_sysctl();
19978ca6
IM
5847}
5848
1da177e4
LT
5849#ifdef CONFIG_SMP
5850/*
5851 * This is how migration works:
5852 *
969c7921
TH
5853 * 1) we invoke migration_cpu_stop() on the target CPU using
5854 * stop_one_cpu().
5855 * 2) stopper starts to run (implicitly forcing the migrated thread
5856 * off the CPU)
5857 * 3) it checks whether the migrated task is still in the wrong runqueue.
5858 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5859 * it and puts it into the right queue.
969c7921
TH
5860 * 5) stopper completes and stop_one_cpu() returns and the migration
5861 * is done.
1da177e4
LT
5862 */
5863
5864/*
5865 * Change a given task's CPU affinity. Migrate the thread to a
5866 * proper CPU and schedule it away if the CPU it's executing on
5867 * is removed from the allowed bitmask.
5868 *
5869 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5870 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5871 * call is not atomic; no spinlocks may be held.
5872 */
96f874e2 5873int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5874{
5875 unsigned long flags;
70b97a7f 5876 struct rq *rq;
969c7921 5877 unsigned int dest_cpu;
48f24c4d 5878 int ret = 0;
1da177e4 5879
0122ec5b 5880 rq = task_rq_lock(p, &flags);
e2912009 5881
6ad4c188 5882 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5883 ret = -EINVAL;
5884 goto out;
5885 }
5886
9985b0ba 5887 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5888 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5889 ret = -EINVAL;
5890 goto out;
5891 }
5892
73fe6aae 5893 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5894 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5895 else {
96f874e2
RR
5896 cpumask_copy(&p->cpus_allowed, new_mask);
5897 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5898 }
5899
1da177e4 5900 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5901 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5902 goto out;
5903
969c7921 5904 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
7608dec2 5905 if (need_migrate_task(p)) {
969c7921 5906 struct migration_arg arg = { p, dest_cpu };
1da177e4 5907 /* Need help from migration thread: drop lock and wait. */
0122ec5b 5908 task_rq_unlock(rq, p, &flags);
969c7921 5909 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5910 tlb_migrate_finish(p->mm);
5911 return 0;
5912 }
5913out:
0122ec5b 5914 task_rq_unlock(rq, p, &flags);
48f24c4d 5915
1da177e4
LT
5916 return ret;
5917}
cd8ba7cd 5918EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5919
5920/*
41a2d6cf 5921 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5922 * this because either it can't run here any more (set_cpus_allowed()
5923 * away from this CPU, or CPU going down), or because we're
5924 * attempting to rebalance this task on exec (sched_exec).
5925 *
5926 * So we race with normal scheduler movements, but that's OK, as long
5927 * as the task is no longer on this CPU.
efc30814
KK
5928 *
5929 * Returns non-zero if task was successfully migrated.
1da177e4 5930 */
efc30814 5931static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5932{
70b97a7f 5933 struct rq *rq_dest, *rq_src;
e2912009 5934 int ret = 0;
1da177e4 5935
e761b772 5936 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5937 return ret;
1da177e4
LT
5938
5939 rq_src = cpu_rq(src_cpu);
5940 rq_dest = cpu_rq(dest_cpu);
5941
0122ec5b 5942 raw_spin_lock(&p->pi_lock);
1da177e4
LT
5943 double_rq_lock(rq_src, rq_dest);
5944 /* Already moved. */
5945 if (task_cpu(p) != src_cpu)
b1e38734 5946 goto done;
1da177e4 5947 /* Affinity changed (again). */
96f874e2 5948 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5949 goto fail;
1da177e4 5950
e2912009
PZ
5951 /*
5952 * If we're not on a rq, the next wake-up will ensure we're
5953 * placed properly.
5954 */
fd2f4419 5955 if (p->on_rq) {
2e1cb74a 5956 deactivate_task(rq_src, p, 0);
e2912009 5957 set_task_cpu(p, dest_cpu);
dd41f596 5958 activate_task(rq_dest, p, 0);
15afe09b 5959 check_preempt_curr(rq_dest, p, 0);
1da177e4 5960 }
b1e38734 5961done:
efc30814 5962 ret = 1;
b1e38734 5963fail:
1da177e4 5964 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5965 raw_spin_unlock(&p->pi_lock);
efc30814 5966 return ret;
1da177e4
LT
5967}
5968
5969/*
969c7921
TH
5970 * migration_cpu_stop - this will be executed by a highprio stopper thread
5971 * and performs thread migration by bumping thread off CPU then
5972 * 'pushing' onto another runqueue.
1da177e4 5973 */
969c7921 5974static int migration_cpu_stop(void *data)
1da177e4 5975{
969c7921 5976 struct migration_arg *arg = data;
f7b4cddc 5977
969c7921
TH
5978 /*
5979 * The original target cpu might have gone down and we might
5980 * be on another cpu but it doesn't matter.
5981 */
f7b4cddc 5982 local_irq_disable();
969c7921 5983 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5984 local_irq_enable();
1da177e4 5985 return 0;
f7b4cddc
ON
5986}
5987
1da177e4 5988#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5989
054b9108 5990/*
48c5ccae
PZ
5991 * Ensures that the idle task is using init_mm right before its cpu goes
5992 * offline.
054b9108 5993 */
48c5ccae 5994void idle_task_exit(void)
1da177e4 5995{
48c5ccae 5996 struct mm_struct *mm = current->active_mm;
e76bd8d9 5997
48c5ccae 5998 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5999
48c5ccae
PZ
6000 if (mm != &init_mm)
6001 switch_mm(mm, &init_mm, current);
6002 mmdrop(mm);
1da177e4
LT
6003}
6004
6005/*
6006 * While a dead CPU has no uninterruptible tasks queued at this point,
6007 * it might still have a nonzero ->nr_uninterruptible counter, because
6008 * for performance reasons the counter is not stricly tracking tasks to
6009 * their home CPUs. So we just add the counter to another CPU's counter,
6010 * to keep the global sum constant after CPU-down:
6011 */
70b97a7f 6012static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6013{
6ad4c188 6014 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6015
1da177e4
LT
6016 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6017 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6018}
6019
dd41f596 6020/*
48c5ccae 6021 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6022 */
48c5ccae 6023static void calc_global_load_remove(struct rq *rq)
1da177e4 6024{
48c5ccae
PZ
6025 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6026 rq->calc_load_active = 0;
1da177e4
LT
6027}
6028
48f24c4d 6029/*
48c5ccae
PZ
6030 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6031 * try_to_wake_up()->select_task_rq().
6032 *
6033 * Called with rq->lock held even though we'er in stop_machine() and
6034 * there's no concurrency possible, we hold the required locks anyway
6035 * because of lock validation efforts.
1da177e4 6036 */
48c5ccae 6037static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6038{
70b97a7f 6039 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6040 struct task_struct *next, *stop = rq->stop;
6041 int dest_cpu;
1da177e4
LT
6042
6043 /*
48c5ccae
PZ
6044 * Fudge the rq selection such that the below task selection loop
6045 * doesn't get stuck on the currently eligible stop task.
6046 *
6047 * We're currently inside stop_machine() and the rq is either stuck
6048 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6049 * either way we should never end up calling schedule() until we're
6050 * done here.
1da177e4 6051 */
48c5ccae 6052 rq->stop = NULL;
48f24c4d 6053
dd41f596 6054 for ( ; ; ) {
48c5ccae
PZ
6055 /*
6056 * There's this thread running, bail when that's the only
6057 * remaining thread.
6058 */
6059 if (rq->nr_running == 1)
dd41f596 6060 break;
48c5ccae 6061
b67802ea 6062 next = pick_next_task(rq);
48c5ccae 6063 BUG_ON(!next);
79c53799 6064 next->sched_class->put_prev_task(rq, next);
e692ab53 6065
48c5ccae
PZ
6066 /* Find suitable destination for @next, with force if needed. */
6067 dest_cpu = select_fallback_rq(dead_cpu, next);
6068 raw_spin_unlock(&rq->lock);
6069
6070 __migrate_task(next, dead_cpu, dest_cpu);
6071
6072 raw_spin_lock(&rq->lock);
1da177e4 6073 }
dce48a84 6074
48c5ccae 6075 rq->stop = stop;
dce48a84 6076}
48c5ccae 6077
1da177e4
LT
6078#endif /* CONFIG_HOTPLUG_CPU */
6079
e692ab53
NP
6080#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6081
6082static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6083 {
6084 .procname = "sched_domain",
c57baf1e 6085 .mode = 0555,
e0361851 6086 },
56992309 6087 {}
e692ab53
NP
6088};
6089
6090static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6091 {
6092 .procname = "kernel",
c57baf1e 6093 .mode = 0555,
e0361851
AD
6094 .child = sd_ctl_dir,
6095 },
56992309 6096 {}
e692ab53
NP
6097};
6098
6099static struct ctl_table *sd_alloc_ctl_entry(int n)
6100{
6101 struct ctl_table *entry =
5cf9f062 6102 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6103
e692ab53
NP
6104 return entry;
6105}
6106
6382bc90
MM
6107static void sd_free_ctl_entry(struct ctl_table **tablep)
6108{
cd790076 6109 struct ctl_table *entry;
6382bc90 6110
cd790076
MM
6111 /*
6112 * In the intermediate directories, both the child directory and
6113 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6114 * will always be set. In the lowest directory the names are
cd790076
MM
6115 * static strings and all have proc handlers.
6116 */
6117 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6118 if (entry->child)
6119 sd_free_ctl_entry(&entry->child);
cd790076
MM
6120 if (entry->proc_handler == NULL)
6121 kfree(entry->procname);
6122 }
6382bc90
MM
6123
6124 kfree(*tablep);
6125 *tablep = NULL;
6126}
6127
e692ab53 6128static void
e0361851 6129set_table_entry(struct ctl_table *entry,
e692ab53
NP
6130 const char *procname, void *data, int maxlen,
6131 mode_t mode, proc_handler *proc_handler)
6132{
e692ab53
NP
6133 entry->procname = procname;
6134 entry->data = data;
6135 entry->maxlen = maxlen;
6136 entry->mode = mode;
6137 entry->proc_handler = proc_handler;
6138}
6139
6140static struct ctl_table *
6141sd_alloc_ctl_domain_table(struct sched_domain *sd)
6142{
a5d8c348 6143 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6144
ad1cdc1d
MM
6145 if (table == NULL)
6146 return NULL;
6147
e0361851 6148 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6149 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6150 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6151 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6152 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6153 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6154 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6155 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6156 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6157 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6158 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6159 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6160 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6161 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6162 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6163 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6164 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6165 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6166 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6167 &sd->cache_nice_tries,
6168 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6169 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6170 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6171 set_table_entry(&table[11], "name", sd->name,
6172 CORENAME_MAX_SIZE, 0444, proc_dostring);
6173 /* &table[12] is terminator */
e692ab53
NP
6174
6175 return table;
6176}
6177
9a4e7159 6178static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6179{
6180 struct ctl_table *entry, *table;
6181 struct sched_domain *sd;
6182 int domain_num = 0, i;
6183 char buf[32];
6184
6185 for_each_domain(cpu, sd)
6186 domain_num++;
6187 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6188 if (table == NULL)
6189 return NULL;
e692ab53
NP
6190
6191 i = 0;
6192 for_each_domain(cpu, sd) {
6193 snprintf(buf, 32, "domain%d", i);
e692ab53 6194 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6195 entry->mode = 0555;
e692ab53
NP
6196 entry->child = sd_alloc_ctl_domain_table(sd);
6197 entry++;
6198 i++;
6199 }
6200 return table;
6201}
6202
6203static struct ctl_table_header *sd_sysctl_header;
6382bc90 6204static void register_sched_domain_sysctl(void)
e692ab53 6205{
6ad4c188 6206 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6207 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6208 char buf[32];
6209
7378547f
MM
6210 WARN_ON(sd_ctl_dir[0].child);
6211 sd_ctl_dir[0].child = entry;
6212
ad1cdc1d
MM
6213 if (entry == NULL)
6214 return;
6215
6ad4c188 6216 for_each_possible_cpu(i) {
e692ab53 6217 snprintf(buf, 32, "cpu%d", i);
e692ab53 6218 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6219 entry->mode = 0555;
e692ab53 6220 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6221 entry++;
e692ab53 6222 }
7378547f
MM
6223
6224 WARN_ON(sd_sysctl_header);
e692ab53
NP
6225 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6226}
6382bc90 6227
7378547f 6228/* may be called multiple times per register */
6382bc90
MM
6229static void unregister_sched_domain_sysctl(void)
6230{
7378547f
MM
6231 if (sd_sysctl_header)
6232 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6233 sd_sysctl_header = NULL;
7378547f
MM
6234 if (sd_ctl_dir[0].child)
6235 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6236}
e692ab53 6237#else
6382bc90
MM
6238static void register_sched_domain_sysctl(void)
6239{
6240}
6241static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6242{
6243}
6244#endif
6245
1f11eb6a
GH
6246static void set_rq_online(struct rq *rq)
6247{
6248 if (!rq->online) {
6249 const struct sched_class *class;
6250
c6c4927b 6251 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6252 rq->online = 1;
6253
6254 for_each_class(class) {
6255 if (class->rq_online)
6256 class->rq_online(rq);
6257 }
6258 }
6259}
6260
6261static void set_rq_offline(struct rq *rq)
6262{
6263 if (rq->online) {
6264 const struct sched_class *class;
6265
6266 for_each_class(class) {
6267 if (class->rq_offline)
6268 class->rq_offline(rq);
6269 }
6270
c6c4927b 6271 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6272 rq->online = 0;
6273 }
6274}
6275
1da177e4
LT
6276/*
6277 * migration_call - callback that gets triggered when a CPU is added.
6278 * Here we can start up the necessary migration thread for the new CPU.
6279 */
48f24c4d
IM
6280static int __cpuinit
6281migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6282{
48f24c4d 6283 int cpu = (long)hcpu;
1da177e4 6284 unsigned long flags;
969c7921 6285 struct rq *rq = cpu_rq(cpu);
1da177e4 6286
48c5ccae 6287 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6288
1da177e4 6289 case CPU_UP_PREPARE:
a468d389 6290 rq->calc_load_update = calc_load_update;
1da177e4 6291 break;
48f24c4d 6292
1da177e4 6293 case CPU_ONLINE:
1f94ef59 6294 /* Update our root-domain */
05fa785c 6295 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6296 if (rq->rd) {
c6c4927b 6297 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6298
6299 set_rq_online(rq);
1f94ef59 6300 }
05fa785c 6301 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6302 break;
48f24c4d 6303
1da177e4 6304#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6305 case CPU_DYING:
57d885fe 6306 /* Update our root-domain */
05fa785c 6307 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6308 if (rq->rd) {
c6c4927b 6309 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6310 set_rq_offline(rq);
57d885fe 6311 }
48c5ccae
PZ
6312 migrate_tasks(cpu);
6313 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6314 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6315
6316 migrate_nr_uninterruptible(rq);
6317 calc_global_load_remove(rq);
57d885fe 6318 break;
1da177e4
LT
6319#endif
6320 }
49c022e6
PZ
6321
6322 update_max_interval();
6323
1da177e4
LT
6324 return NOTIFY_OK;
6325}
6326
f38b0820
PM
6327/*
6328 * Register at high priority so that task migration (migrate_all_tasks)
6329 * happens before everything else. This has to be lower priority than
cdd6c482 6330 * the notifier in the perf_event subsystem, though.
1da177e4 6331 */
26c2143b 6332static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6333 .notifier_call = migration_call,
50a323b7 6334 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6335};
6336
3a101d05
TH
6337static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6338 unsigned long action, void *hcpu)
6339{
6340 switch (action & ~CPU_TASKS_FROZEN) {
6341 case CPU_ONLINE:
6342 case CPU_DOWN_FAILED:
6343 set_cpu_active((long)hcpu, true);
6344 return NOTIFY_OK;
6345 default:
6346 return NOTIFY_DONE;
6347 }
6348}
6349
6350static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6351 unsigned long action, void *hcpu)
6352{
6353 switch (action & ~CPU_TASKS_FROZEN) {
6354 case CPU_DOWN_PREPARE:
6355 set_cpu_active((long)hcpu, false);
6356 return NOTIFY_OK;
6357 default:
6358 return NOTIFY_DONE;
6359 }
6360}
6361
7babe8db 6362static int __init migration_init(void)
1da177e4
LT
6363{
6364 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6365 int err;
48f24c4d 6366
3a101d05 6367 /* Initialize migration for the boot CPU */
07dccf33
AM
6368 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6369 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6370 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6371 register_cpu_notifier(&migration_notifier);
7babe8db 6372
3a101d05
TH
6373 /* Register cpu active notifiers */
6374 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6375 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6376
a004cd42 6377 return 0;
1da177e4 6378}
7babe8db 6379early_initcall(migration_init);
1da177e4
LT
6380#endif
6381
6382#ifdef CONFIG_SMP
476f3534 6383
3e9830dc 6384#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6385
f6630114
MT
6386static __read_mostly int sched_domain_debug_enabled;
6387
6388static int __init sched_domain_debug_setup(char *str)
6389{
6390 sched_domain_debug_enabled = 1;
6391
6392 return 0;
6393}
6394early_param("sched_debug", sched_domain_debug_setup);
6395
7c16ec58 6396static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6397 struct cpumask *groupmask)
1da177e4 6398{
4dcf6aff 6399 struct sched_group *group = sd->groups;
434d53b0 6400 char str[256];
1da177e4 6401
968ea6d8 6402 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6403 cpumask_clear(groupmask);
4dcf6aff
IM
6404
6405 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6406
6407 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6408 printk("does not load-balance\n");
4dcf6aff 6409 if (sd->parent)
3df0fc5b
PZ
6410 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6411 " has parent");
4dcf6aff 6412 return -1;
41c7ce9a
NP
6413 }
6414
3df0fc5b 6415 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6416
758b2cdc 6417 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6418 printk(KERN_ERR "ERROR: domain->span does not contain "
6419 "CPU%d\n", cpu);
4dcf6aff 6420 }
758b2cdc 6421 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6422 printk(KERN_ERR "ERROR: domain->groups does not contain"
6423 " CPU%d\n", cpu);
4dcf6aff 6424 }
1da177e4 6425
4dcf6aff 6426 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6427 do {
4dcf6aff 6428 if (!group) {
3df0fc5b
PZ
6429 printk("\n");
6430 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6431 break;
6432 }
6433
18a3885f 6434 if (!group->cpu_power) {
3df0fc5b
PZ
6435 printk(KERN_CONT "\n");
6436 printk(KERN_ERR "ERROR: domain->cpu_power not "
6437 "set\n");
4dcf6aff
IM
6438 break;
6439 }
1da177e4 6440
758b2cdc 6441 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6442 printk(KERN_CONT "\n");
6443 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6444 break;
6445 }
1da177e4 6446
758b2cdc 6447 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6448 printk(KERN_CONT "\n");
6449 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6450 break;
6451 }
1da177e4 6452
758b2cdc 6453 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6454
968ea6d8 6455 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6456
3df0fc5b 6457 printk(KERN_CONT " %s", str);
18a3885f 6458 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6459 printk(KERN_CONT " (cpu_power = %d)",
6460 group->cpu_power);
381512cf 6461 }
1da177e4 6462
4dcf6aff
IM
6463 group = group->next;
6464 } while (group != sd->groups);
3df0fc5b 6465 printk(KERN_CONT "\n");
1da177e4 6466
758b2cdc 6467 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6468 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6469
758b2cdc
RR
6470 if (sd->parent &&
6471 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6472 printk(KERN_ERR "ERROR: parent span is not a superset "
6473 "of domain->span\n");
4dcf6aff
IM
6474 return 0;
6475}
1da177e4 6476
4dcf6aff
IM
6477static void sched_domain_debug(struct sched_domain *sd, int cpu)
6478{
d5dd3db1 6479 cpumask_var_t groupmask;
4dcf6aff 6480 int level = 0;
1da177e4 6481
f6630114
MT
6482 if (!sched_domain_debug_enabled)
6483 return;
6484
4dcf6aff
IM
6485 if (!sd) {
6486 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6487 return;
6488 }
1da177e4 6489
4dcf6aff
IM
6490 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6491
d5dd3db1 6492 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6493 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6494 return;
6495 }
6496
4dcf6aff 6497 for (;;) {
7c16ec58 6498 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6499 break;
1da177e4
LT
6500 level++;
6501 sd = sd->parent;
33859f7f 6502 if (!sd)
4dcf6aff
IM
6503 break;
6504 }
d5dd3db1 6505 free_cpumask_var(groupmask);
1da177e4 6506}
6d6bc0ad 6507#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6508# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6509#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6510
1a20ff27 6511static int sd_degenerate(struct sched_domain *sd)
245af2c7 6512{
758b2cdc 6513 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6514 return 1;
6515
6516 /* Following flags need at least 2 groups */
6517 if (sd->flags & (SD_LOAD_BALANCE |
6518 SD_BALANCE_NEWIDLE |
6519 SD_BALANCE_FORK |
89c4710e
SS
6520 SD_BALANCE_EXEC |
6521 SD_SHARE_CPUPOWER |
6522 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6523 if (sd->groups != sd->groups->next)
6524 return 0;
6525 }
6526
6527 /* Following flags don't use groups */
c88d5910 6528 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6529 return 0;
6530
6531 return 1;
6532}
6533
48f24c4d
IM
6534static int
6535sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6536{
6537 unsigned long cflags = sd->flags, pflags = parent->flags;
6538
6539 if (sd_degenerate(parent))
6540 return 1;
6541
758b2cdc 6542 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6543 return 0;
6544
245af2c7
SS
6545 /* Flags needing groups don't count if only 1 group in parent */
6546 if (parent->groups == parent->groups->next) {
6547 pflags &= ~(SD_LOAD_BALANCE |
6548 SD_BALANCE_NEWIDLE |
6549 SD_BALANCE_FORK |
89c4710e
SS
6550 SD_BALANCE_EXEC |
6551 SD_SHARE_CPUPOWER |
6552 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6553 if (nr_node_ids == 1)
6554 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6555 }
6556 if (~cflags & pflags)
6557 return 0;
6558
6559 return 1;
6560}
6561
c6c4927b
RR
6562static void free_rootdomain(struct root_domain *rd)
6563{
047106ad
PZ
6564 synchronize_sched();
6565
68e74568
RR
6566 cpupri_cleanup(&rd->cpupri);
6567
c6c4927b
RR
6568 free_cpumask_var(rd->rto_mask);
6569 free_cpumask_var(rd->online);
6570 free_cpumask_var(rd->span);
6571 kfree(rd);
6572}
6573
57d885fe
GH
6574static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6575{
a0490fa3 6576 struct root_domain *old_rd = NULL;
57d885fe 6577 unsigned long flags;
57d885fe 6578
05fa785c 6579 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6580
6581 if (rq->rd) {
a0490fa3 6582 old_rd = rq->rd;
57d885fe 6583
c6c4927b 6584 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6585 set_rq_offline(rq);
57d885fe 6586
c6c4927b 6587 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6588
a0490fa3
IM
6589 /*
6590 * If we dont want to free the old_rt yet then
6591 * set old_rd to NULL to skip the freeing later
6592 * in this function:
6593 */
6594 if (!atomic_dec_and_test(&old_rd->refcount))
6595 old_rd = NULL;
57d885fe
GH
6596 }
6597
6598 atomic_inc(&rd->refcount);
6599 rq->rd = rd;
6600
c6c4927b 6601 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6602 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6603 set_rq_online(rq);
57d885fe 6604
05fa785c 6605 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6606
6607 if (old_rd)
6608 free_rootdomain(old_rd);
57d885fe
GH
6609}
6610
68c38fc3 6611static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6612{
6613 memset(rd, 0, sizeof(*rd));
6614
68c38fc3 6615 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6616 goto out;
68c38fc3 6617 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6618 goto free_span;
68c38fc3 6619 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6620 goto free_online;
6e0534f2 6621
68c38fc3 6622 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6623 goto free_rto_mask;
c6c4927b 6624 return 0;
6e0534f2 6625
68e74568
RR
6626free_rto_mask:
6627 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6628free_online:
6629 free_cpumask_var(rd->online);
6630free_span:
6631 free_cpumask_var(rd->span);
0c910d28 6632out:
c6c4927b 6633 return -ENOMEM;
57d885fe
GH
6634}
6635
6636static void init_defrootdomain(void)
6637{
68c38fc3 6638 init_rootdomain(&def_root_domain);
c6c4927b 6639
57d885fe
GH
6640 atomic_set(&def_root_domain.refcount, 1);
6641}
6642
dc938520 6643static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6644{
6645 struct root_domain *rd;
6646
6647 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6648 if (!rd)
6649 return NULL;
6650
68c38fc3 6651 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6652 kfree(rd);
6653 return NULL;
6654 }
57d885fe
GH
6655
6656 return rd;
6657}
6658
1da177e4 6659/*
0eab9146 6660 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6661 * hold the hotplug lock.
6662 */
0eab9146
IM
6663static void
6664cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6665{
70b97a7f 6666 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6667 struct sched_domain *tmp;
6668
669c55e9
PZ
6669 for (tmp = sd; tmp; tmp = tmp->parent)
6670 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6671
245af2c7 6672 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6673 for (tmp = sd; tmp; ) {
245af2c7
SS
6674 struct sched_domain *parent = tmp->parent;
6675 if (!parent)
6676 break;
f29c9b1c 6677
1a848870 6678 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6679 tmp->parent = parent->parent;
1a848870
SS
6680 if (parent->parent)
6681 parent->parent->child = tmp;
f29c9b1c
LZ
6682 } else
6683 tmp = tmp->parent;
245af2c7
SS
6684 }
6685
1a848870 6686 if (sd && sd_degenerate(sd)) {
245af2c7 6687 sd = sd->parent;
1a848870
SS
6688 if (sd)
6689 sd->child = NULL;
6690 }
1da177e4
LT
6691
6692 sched_domain_debug(sd, cpu);
6693
57d885fe 6694 rq_attach_root(rq, rd);
674311d5 6695 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6696}
6697
6698/* cpus with isolated domains */
dcc30a35 6699static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6700
6701/* Setup the mask of cpus configured for isolated domains */
6702static int __init isolated_cpu_setup(char *str)
6703{
bdddd296 6704 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6705 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6706 return 1;
6707}
6708
8927f494 6709__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6710
6711/*
6711cab4
SS
6712 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6713 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6714 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6715 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6716 *
6717 * init_sched_build_groups will build a circular linked list of the groups
6718 * covered by the given span, and will set each group's ->cpumask correctly,
6719 * and ->cpu_power to 0.
6720 */
a616058b 6721static void
96f874e2
RR
6722init_sched_build_groups(const struct cpumask *span,
6723 const struct cpumask *cpu_map,
6724 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6725 struct sched_group **sg,
96f874e2
RR
6726 struct cpumask *tmpmask),
6727 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6728{
6729 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6730 int i;
6731
96f874e2 6732 cpumask_clear(covered);
7c16ec58 6733
abcd083a 6734 for_each_cpu(i, span) {
6711cab4 6735 struct sched_group *sg;
7c16ec58 6736 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6737 int j;
6738
758b2cdc 6739 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6740 continue;
6741
758b2cdc 6742 cpumask_clear(sched_group_cpus(sg));
18a3885f 6743 sg->cpu_power = 0;
1da177e4 6744
abcd083a 6745 for_each_cpu(j, span) {
7c16ec58 6746 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6747 continue;
6748
96f874e2 6749 cpumask_set_cpu(j, covered);
758b2cdc 6750 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6751 }
6752 if (!first)
6753 first = sg;
6754 if (last)
6755 last->next = sg;
6756 last = sg;
6757 }
6758 last->next = first;
6759}
6760
9c1cfda2 6761#define SD_NODES_PER_DOMAIN 16
1da177e4 6762
9c1cfda2 6763#ifdef CONFIG_NUMA
198e2f18 6764
9c1cfda2
JH
6765/**
6766 * find_next_best_node - find the next node to include in a sched_domain
6767 * @node: node whose sched_domain we're building
6768 * @used_nodes: nodes already in the sched_domain
6769 *
41a2d6cf 6770 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6771 * finds the closest node not already in the @used_nodes map.
6772 *
6773 * Should use nodemask_t.
6774 */
c5f59f08 6775static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6776{
6777 int i, n, val, min_val, best_node = 0;
6778
6779 min_val = INT_MAX;
6780
076ac2af 6781 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6782 /* Start at @node */
076ac2af 6783 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6784
6785 if (!nr_cpus_node(n))
6786 continue;
6787
6788 /* Skip already used nodes */
c5f59f08 6789 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6790 continue;
6791
6792 /* Simple min distance search */
6793 val = node_distance(node, n);
6794
6795 if (val < min_val) {
6796 min_val = val;
6797 best_node = n;
6798 }
6799 }
6800
c5f59f08 6801 node_set(best_node, *used_nodes);
9c1cfda2
JH
6802 return best_node;
6803}
6804
6805/**
6806 * sched_domain_node_span - get a cpumask for a node's sched_domain
6807 * @node: node whose cpumask we're constructing
73486722 6808 * @span: resulting cpumask
9c1cfda2 6809 *
41a2d6cf 6810 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6811 * should be one that prevents unnecessary balancing, but also spreads tasks
6812 * out optimally.
6813 */
96f874e2 6814static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6815{
c5f59f08 6816 nodemask_t used_nodes;
48f24c4d 6817 int i;
9c1cfda2 6818
6ca09dfc 6819 cpumask_clear(span);
c5f59f08 6820 nodes_clear(used_nodes);
9c1cfda2 6821
6ca09dfc 6822 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6823 node_set(node, used_nodes);
9c1cfda2
JH
6824
6825 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6826 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6827
6ca09dfc 6828 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6829 }
9c1cfda2 6830}
6d6bc0ad 6831#endif /* CONFIG_NUMA */
9c1cfda2 6832
5c45bf27 6833int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6834
6c99e9ad
RR
6835/*
6836 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6837 *
6838 * ( See the the comments in include/linux/sched.h:struct sched_group
6839 * and struct sched_domain. )
6c99e9ad
RR
6840 */
6841struct static_sched_group {
6842 struct sched_group sg;
6843 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6844};
6845
6846struct static_sched_domain {
6847 struct sched_domain sd;
6848 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6849};
6850
49a02c51
AH
6851struct s_data {
6852#ifdef CONFIG_NUMA
6853 int sd_allnodes;
6854 cpumask_var_t domainspan;
6855 cpumask_var_t covered;
6856 cpumask_var_t notcovered;
6857#endif
6858 cpumask_var_t nodemask;
6859 cpumask_var_t this_sibling_map;
6860 cpumask_var_t this_core_map;
01a08546 6861 cpumask_var_t this_book_map;
49a02c51
AH
6862 cpumask_var_t send_covered;
6863 cpumask_var_t tmpmask;
6864 struct sched_group **sched_group_nodes;
6865 struct root_domain *rd;
6866};
6867
2109b99e
AH
6868enum s_alloc {
6869 sa_sched_groups = 0,
6870 sa_rootdomain,
6871 sa_tmpmask,
6872 sa_send_covered,
01a08546 6873 sa_this_book_map,
2109b99e
AH
6874 sa_this_core_map,
6875 sa_this_sibling_map,
6876 sa_nodemask,
6877 sa_sched_group_nodes,
6878#ifdef CONFIG_NUMA
6879 sa_notcovered,
6880 sa_covered,
6881 sa_domainspan,
6882#endif
6883 sa_none,
6884};
6885
9c1cfda2 6886/*
48f24c4d 6887 * SMT sched-domains:
9c1cfda2 6888 */
1da177e4 6889#ifdef CONFIG_SCHED_SMT
6c99e9ad 6890static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6891static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6892
41a2d6cf 6893static int
96f874e2
RR
6894cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6895 struct sched_group **sg, struct cpumask *unused)
1da177e4 6896{
6711cab4 6897 if (sg)
1871e52c 6898 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6899 return cpu;
6900}
6d6bc0ad 6901#endif /* CONFIG_SCHED_SMT */
1da177e4 6902
48f24c4d
IM
6903/*
6904 * multi-core sched-domains:
6905 */
1e9f28fa 6906#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6907static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6908static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6909
41a2d6cf 6910static int
96f874e2
RR
6911cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6912 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6913{
6711cab4 6914 int group;
f269893c 6915#ifdef CONFIG_SCHED_SMT
c69fc56d 6916 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6917 group = cpumask_first(mask);
f269893c
HC
6918#else
6919 group = cpu;
6920#endif
6711cab4 6921 if (sg)
6c99e9ad 6922 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6923 return group;
1e9f28fa 6924}
f269893c 6925#endif /* CONFIG_SCHED_MC */
1e9f28fa 6926
01a08546
HC
6927/*
6928 * book sched-domains:
6929 */
6930#ifdef CONFIG_SCHED_BOOK
6931static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6932static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6933
41a2d6cf 6934static int
01a08546
HC
6935cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6936 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6937{
01a08546
HC
6938 int group = cpu;
6939#ifdef CONFIG_SCHED_MC
6940 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6941 group = cpumask_first(mask);
6942#elif defined(CONFIG_SCHED_SMT)
6943 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6944 group = cpumask_first(mask);
6945#endif
6711cab4 6946 if (sg)
01a08546
HC
6947 *sg = &per_cpu(sched_group_book, group).sg;
6948 return group;
1e9f28fa 6949}
01a08546 6950#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6951
6c99e9ad
RR
6952static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6953static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6954
41a2d6cf 6955static int
96f874e2
RR
6956cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6957 struct sched_group **sg, struct cpumask *mask)
1da177e4 6958{
6711cab4 6959 int group;
01a08546
HC
6960#ifdef CONFIG_SCHED_BOOK
6961 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6962 group = cpumask_first(mask);
6963#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6964 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6965 group = cpumask_first(mask);
1e9f28fa 6966#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6967 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6968 group = cpumask_first(mask);
1da177e4 6969#else
6711cab4 6970 group = cpu;
1da177e4 6971#endif
6711cab4 6972 if (sg)
6c99e9ad 6973 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6974 return group;
1da177e4
LT
6975}
6976
6977#ifdef CONFIG_NUMA
1da177e4 6978/*
9c1cfda2
JH
6979 * The init_sched_build_groups can't handle what we want to do with node
6980 * groups, so roll our own. Now each node has its own list of groups which
6981 * gets dynamically allocated.
1da177e4 6982 */
62ea9ceb 6983static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6984static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6985
62ea9ceb 6986static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6987static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6988
96f874e2
RR
6989static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6990 struct sched_group **sg,
6991 struct cpumask *nodemask)
9c1cfda2 6992{
6711cab4
SS
6993 int group;
6994
6ca09dfc 6995 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6996 group = cpumask_first(nodemask);
6711cab4
SS
6997
6998 if (sg)
6c99e9ad 6999 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7000 return group;
1da177e4 7001}
6711cab4 7002
08069033
SS
7003static void init_numa_sched_groups_power(struct sched_group *group_head)
7004{
7005 struct sched_group *sg = group_head;
7006 int j;
7007
7008 if (!sg)
7009 return;
3a5c359a 7010 do {
758b2cdc 7011 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7012 struct sched_domain *sd;
08069033 7013
6c99e9ad 7014 sd = &per_cpu(phys_domains, j).sd;
13318a71 7015 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
7016 /*
7017 * Only add "power" once for each
7018 * physical package.
7019 */
7020 continue;
7021 }
08069033 7022
18a3885f 7023 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
7024 }
7025 sg = sg->next;
7026 } while (sg != group_head);
08069033 7027}
0601a88d
AH
7028
7029static int build_numa_sched_groups(struct s_data *d,
7030 const struct cpumask *cpu_map, int num)
7031{
7032 struct sched_domain *sd;
7033 struct sched_group *sg, *prev;
7034 int n, j;
7035
7036 cpumask_clear(d->covered);
7037 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7038 if (cpumask_empty(d->nodemask)) {
7039 d->sched_group_nodes[num] = NULL;
7040 goto out;
7041 }
7042
7043 sched_domain_node_span(num, d->domainspan);
7044 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7045
7046 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7047 GFP_KERNEL, num);
7048 if (!sg) {
3df0fc5b
PZ
7049 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7050 num);
0601a88d
AH
7051 return -ENOMEM;
7052 }
7053 d->sched_group_nodes[num] = sg;
7054
7055 for_each_cpu(j, d->nodemask) {
7056 sd = &per_cpu(node_domains, j).sd;
7057 sd->groups = sg;
7058 }
7059
18a3885f 7060 sg->cpu_power = 0;
0601a88d
AH
7061 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7062 sg->next = sg;
7063 cpumask_or(d->covered, d->covered, d->nodemask);
7064
7065 prev = sg;
7066 for (j = 0; j < nr_node_ids; j++) {
7067 n = (num + j) % nr_node_ids;
7068 cpumask_complement(d->notcovered, d->covered);
7069 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7070 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7071 if (cpumask_empty(d->tmpmask))
7072 break;
7073 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7074 if (cpumask_empty(d->tmpmask))
7075 continue;
7076 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7077 GFP_KERNEL, num);
7078 if (!sg) {
3df0fc5b
PZ
7079 printk(KERN_WARNING
7080 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
7081 return -ENOMEM;
7082 }
18a3885f 7083 sg->cpu_power = 0;
0601a88d
AH
7084 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7085 sg->next = prev->next;
7086 cpumask_or(d->covered, d->covered, d->tmpmask);
7087 prev->next = sg;
7088 prev = sg;
7089 }
7090out:
7091 return 0;
7092}
6d6bc0ad 7093#endif /* CONFIG_NUMA */
1da177e4 7094
a616058b 7095#ifdef CONFIG_NUMA
51888ca2 7096/* Free memory allocated for various sched_group structures */
96f874e2
RR
7097static void free_sched_groups(const struct cpumask *cpu_map,
7098 struct cpumask *nodemask)
51888ca2 7099{
a616058b 7100 int cpu, i;
51888ca2 7101
abcd083a 7102 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7103 struct sched_group **sched_group_nodes
7104 = sched_group_nodes_bycpu[cpu];
7105
51888ca2
SV
7106 if (!sched_group_nodes)
7107 continue;
7108
076ac2af 7109 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7110 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7111
6ca09dfc 7112 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7113 if (cpumask_empty(nodemask))
51888ca2
SV
7114 continue;
7115
7116 if (sg == NULL)
7117 continue;
7118 sg = sg->next;
7119next_sg:
7120 oldsg = sg;
7121 sg = sg->next;
7122 kfree(oldsg);
7123 if (oldsg != sched_group_nodes[i])
7124 goto next_sg;
7125 }
7126 kfree(sched_group_nodes);
7127 sched_group_nodes_bycpu[cpu] = NULL;
7128 }
51888ca2 7129}
6d6bc0ad 7130#else /* !CONFIG_NUMA */
96f874e2
RR
7131static void free_sched_groups(const struct cpumask *cpu_map,
7132 struct cpumask *nodemask)
a616058b
SS
7133{
7134}
6d6bc0ad 7135#endif /* CONFIG_NUMA */
51888ca2 7136
89c4710e
SS
7137/*
7138 * Initialize sched groups cpu_power.
7139 *
7140 * cpu_power indicates the capacity of sched group, which is used while
7141 * distributing the load between different sched groups in a sched domain.
7142 * Typically cpu_power for all the groups in a sched domain will be same unless
7143 * there are asymmetries in the topology. If there are asymmetries, group
7144 * having more cpu_power will pickup more load compared to the group having
7145 * less cpu_power.
89c4710e
SS
7146 */
7147static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7148{
7149 struct sched_domain *child;
7150 struct sched_group *group;
f93e65c1
PZ
7151 long power;
7152 int weight;
89c4710e
SS
7153
7154 WARN_ON(!sd || !sd->groups);
7155
13318a71 7156 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7157 return;
7158
aae6d3dd
SS
7159 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7160
89c4710e
SS
7161 child = sd->child;
7162
18a3885f 7163 sd->groups->cpu_power = 0;
5517d86b 7164
f93e65c1
PZ
7165 if (!child) {
7166 power = SCHED_LOAD_SCALE;
7167 weight = cpumask_weight(sched_domain_span(sd));
7168 /*
7169 * SMT siblings share the power of a single core.
a52bfd73
PZ
7170 * Usually multiple threads get a better yield out of
7171 * that one core than a single thread would have,
7172 * reflect that in sd->smt_gain.
f93e65c1 7173 */
a52bfd73
PZ
7174 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7175 power *= sd->smt_gain;
f93e65c1 7176 power /= weight;
a52bfd73
PZ
7177 power >>= SCHED_LOAD_SHIFT;
7178 }
18a3885f 7179 sd->groups->cpu_power += power;
89c4710e
SS
7180 return;
7181 }
7182
89c4710e 7183 /*
f93e65c1 7184 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7185 */
7186 group = child->groups;
7187 do {
18a3885f 7188 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7189 group = group->next;
7190 } while (group != child->groups);
7191}
7192
7c16ec58
MT
7193/*
7194 * Initializers for schedule domains
7195 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7196 */
7197
a5d8c348
IM
7198#ifdef CONFIG_SCHED_DEBUG
7199# define SD_INIT_NAME(sd, type) sd->name = #type
7200#else
7201# define SD_INIT_NAME(sd, type) do { } while (0)
7202#endif
7203
7c16ec58 7204#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7205
7c16ec58
MT
7206#define SD_INIT_FUNC(type) \
7207static noinline void sd_init_##type(struct sched_domain *sd) \
7208{ \
7209 memset(sd, 0, sizeof(*sd)); \
7210 *sd = SD_##type##_INIT; \
1d3504fc 7211 sd->level = SD_LV_##type; \
a5d8c348 7212 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7213}
7214
7215SD_INIT_FUNC(CPU)
7216#ifdef CONFIG_NUMA
7217 SD_INIT_FUNC(ALLNODES)
7218 SD_INIT_FUNC(NODE)
7219#endif
7220#ifdef CONFIG_SCHED_SMT
7221 SD_INIT_FUNC(SIBLING)
7222#endif
7223#ifdef CONFIG_SCHED_MC
7224 SD_INIT_FUNC(MC)
7225#endif
01a08546
HC
7226#ifdef CONFIG_SCHED_BOOK
7227 SD_INIT_FUNC(BOOK)
7228#endif
7c16ec58 7229
1d3504fc
HS
7230static int default_relax_domain_level = -1;
7231
7232static int __init setup_relax_domain_level(char *str)
7233{
30e0e178
LZ
7234 unsigned long val;
7235
7236 val = simple_strtoul(str, NULL, 0);
7237 if (val < SD_LV_MAX)
7238 default_relax_domain_level = val;
7239
1d3504fc
HS
7240 return 1;
7241}
7242__setup("relax_domain_level=", setup_relax_domain_level);
7243
7244static void set_domain_attribute(struct sched_domain *sd,
7245 struct sched_domain_attr *attr)
7246{
7247 int request;
7248
7249 if (!attr || attr->relax_domain_level < 0) {
7250 if (default_relax_domain_level < 0)
7251 return;
7252 else
7253 request = default_relax_domain_level;
7254 } else
7255 request = attr->relax_domain_level;
7256 if (request < sd->level) {
7257 /* turn off idle balance on this domain */
c88d5910 7258 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7259 } else {
7260 /* turn on idle balance on this domain */
c88d5910 7261 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7262 }
7263}
7264
2109b99e
AH
7265static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7266 const struct cpumask *cpu_map)
7267{
7268 switch (what) {
7269 case sa_sched_groups:
7270 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7271 d->sched_group_nodes = NULL;
7272 case sa_rootdomain:
7273 free_rootdomain(d->rd); /* fall through */
7274 case sa_tmpmask:
7275 free_cpumask_var(d->tmpmask); /* fall through */
7276 case sa_send_covered:
7277 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7278 case sa_this_book_map:
7279 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7280 case sa_this_core_map:
7281 free_cpumask_var(d->this_core_map); /* fall through */
7282 case sa_this_sibling_map:
7283 free_cpumask_var(d->this_sibling_map); /* fall through */
7284 case sa_nodemask:
7285 free_cpumask_var(d->nodemask); /* fall through */
7286 case sa_sched_group_nodes:
d1b55138 7287#ifdef CONFIG_NUMA
2109b99e
AH
7288 kfree(d->sched_group_nodes); /* fall through */
7289 case sa_notcovered:
7290 free_cpumask_var(d->notcovered); /* fall through */
7291 case sa_covered:
7292 free_cpumask_var(d->covered); /* fall through */
7293 case sa_domainspan:
7294 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7295#endif
2109b99e
AH
7296 case sa_none:
7297 break;
7298 }
7299}
3404c8d9 7300
2109b99e
AH
7301static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7302 const struct cpumask *cpu_map)
7303{
3404c8d9 7304#ifdef CONFIG_NUMA
2109b99e
AH
7305 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7306 return sa_none;
7307 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7308 return sa_domainspan;
7309 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7310 return sa_covered;
7311 /* Allocate the per-node list of sched groups */
7312 d->sched_group_nodes = kcalloc(nr_node_ids,
7313 sizeof(struct sched_group *), GFP_KERNEL);
7314 if (!d->sched_group_nodes) {
3df0fc5b 7315 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7316 return sa_notcovered;
d1b55138 7317 }
2109b99e 7318 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7319#endif
2109b99e
AH
7320 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7321 return sa_sched_group_nodes;
7322 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7323 return sa_nodemask;
7324 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7325 return sa_this_sibling_map;
01a08546 7326 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7327 return sa_this_core_map;
01a08546
HC
7328 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7329 return sa_this_book_map;
2109b99e
AH
7330 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7331 return sa_send_covered;
7332 d->rd = alloc_rootdomain();
7333 if (!d->rd) {
3df0fc5b 7334 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7335 return sa_tmpmask;
57d885fe 7336 }
2109b99e
AH
7337 return sa_rootdomain;
7338}
57d885fe 7339
7f4588f3
AH
7340static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7341 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7342{
7343 struct sched_domain *sd = NULL;
7c16ec58 7344#ifdef CONFIG_NUMA
7f4588f3 7345 struct sched_domain *parent;
1da177e4 7346
7f4588f3
AH
7347 d->sd_allnodes = 0;
7348 if (cpumask_weight(cpu_map) >
7349 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7350 sd = &per_cpu(allnodes_domains, i).sd;
7351 SD_INIT(sd, ALLNODES);
1d3504fc 7352 set_domain_attribute(sd, attr);
7f4588f3
AH
7353 cpumask_copy(sched_domain_span(sd), cpu_map);
7354 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7355 d->sd_allnodes = 1;
7356 }
7357 parent = sd;
7358
7359 sd = &per_cpu(node_domains, i).sd;
7360 SD_INIT(sd, NODE);
7361 set_domain_attribute(sd, attr);
7362 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7363 sd->parent = parent;
7364 if (parent)
7365 parent->child = sd;
7366 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7367#endif
7f4588f3
AH
7368 return sd;
7369}
1da177e4 7370
87cce662
AH
7371static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7372 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7373 struct sched_domain *parent, int i)
7374{
7375 struct sched_domain *sd;
7376 sd = &per_cpu(phys_domains, i).sd;
7377 SD_INIT(sd, CPU);
7378 set_domain_attribute(sd, attr);
7379 cpumask_copy(sched_domain_span(sd), d->nodemask);
7380 sd->parent = parent;
7381 if (parent)
7382 parent->child = sd;
7383 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7384 return sd;
7385}
1da177e4 7386
01a08546
HC
7387static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7388 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7389 struct sched_domain *parent, int i)
7390{
7391 struct sched_domain *sd = parent;
7392#ifdef CONFIG_SCHED_BOOK
7393 sd = &per_cpu(book_domains, i).sd;
7394 SD_INIT(sd, BOOK);
7395 set_domain_attribute(sd, attr);
7396 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7397 sd->parent = parent;
7398 parent->child = sd;
7399 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7400#endif
7401 return sd;
7402}
7403
410c4081
AH
7404static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7405 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7406 struct sched_domain *parent, int i)
7407{
7408 struct sched_domain *sd = parent;
1e9f28fa 7409#ifdef CONFIG_SCHED_MC
410c4081
AH
7410 sd = &per_cpu(core_domains, i).sd;
7411 SD_INIT(sd, MC);
7412 set_domain_attribute(sd, attr);
7413 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7414 sd->parent = parent;
7415 parent->child = sd;
7416 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7417#endif
410c4081
AH
7418 return sd;
7419}
1e9f28fa 7420
d8173535
AH
7421static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7422 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7423 struct sched_domain *parent, int i)
7424{
7425 struct sched_domain *sd = parent;
1da177e4 7426#ifdef CONFIG_SCHED_SMT
d8173535
AH
7427 sd = &per_cpu(cpu_domains, i).sd;
7428 SD_INIT(sd, SIBLING);
7429 set_domain_attribute(sd, attr);
7430 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7431 sd->parent = parent;
7432 parent->child = sd;
7433 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7434#endif
d8173535
AH
7435 return sd;
7436}
1da177e4 7437
0e8e85c9
AH
7438static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7439 const struct cpumask *cpu_map, int cpu)
7440{
7441 switch (l) {
1da177e4 7442#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7443 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7444 cpumask_and(d->this_sibling_map, cpu_map,
7445 topology_thread_cpumask(cpu));
7446 if (cpu == cpumask_first(d->this_sibling_map))
7447 init_sched_build_groups(d->this_sibling_map, cpu_map,
7448 &cpu_to_cpu_group,
7449 d->send_covered, d->tmpmask);
7450 break;
1da177e4 7451#endif
1e9f28fa 7452#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7453 case SD_LV_MC: /* set up multi-core groups */
7454 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7455 if (cpu == cpumask_first(d->this_core_map))
7456 init_sched_build_groups(d->this_core_map, cpu_map,
7457 &cpu_to_core_group,
7458 d->send_covered, d->tmpmask);
7459 break;
01a08546
HC
7460#endif
7461#ifdef CONFIG_SCHED_BOOK
7462 case SD_LV_BOOK: /* set up book groups */
7463 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7464 if (cpu == cpumask_first(d->this_book_map))
7465 init_sched_build_groups(d->this_book_map, cpu_map,
7466 &cpu_to_book_group,
7467 d->send_covered, d->tmpmask);
7468 break;
1e9f28fa 7469#endif
86548096
AH
7470 case SD_LV_CPU: /* set up physical groups */
7471 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7472 if (!cpumask_empty(d->nodemask))
7473 init_sched_build_groups(d->nodemask, cpu_map,
7474 &cpu_to_phys_group,
7475 d->send_covered, d->tmpmask);
7476 break;
1da177e4 7477#ifdef CONFIG_NUMA
de616e36
AH
7478 case SD_LV_ALLNODES:
7479 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7480 d->send_covered, d->tmpmask);
7481 break;
7482#endif
0e8e85c9
AH
7483 default:
7484 break;
7c16ec58 7485 }
0e8e85c9 7486}
9c1cfda2 7487
2109b99e
AH
7488/*
7489 * Build sched domains for a given set of cpus and attach the sched domains
7490 * to the individual cpus
7491 */
7492static int __build_sched_domains(const struct cpumask *cpu_map,
7493 struct sched_domain_attr *attr)
7494{
7495 enum s_alloc alloc_state = sa_none;
7496 struct s_data d;
294b0c96 7497 struct sched_domain *sd;
2109b99e 7498 int i;
7c16ec58 7499#ifdef CONFIG_NUMA
2109b99e 7500 d.sd_allnodes = 0;
7c16ec58 7501#endif
9c1cfda2 7502
2109b99e
AH
7503 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7504 if (alloc_state != sa_rootdomain)
7505 goto error;
7506 alloc_state = sa_sched_groups;
9c1cfda2 7507
1da177e4 7508 /*
1a20ff27 7509 * Set up domains for cpus specified by the cpu_map.
1da177e4 7510 */
abcd083a 7511 for_each_cpu(i, cpu_map) {
49a02c51
AH
7512 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7513 cpu_map);
9761eea8 7514
7f4588f3 7515 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7516 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7517 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7518 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7519 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7520 }
9c1cfda2 7521
abcd083a 7522 for_each_cpu(i, cpu_map) {
0e8e85c9 7523 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7524 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7525 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7526 }
9c1cfda2 7527
1da177e4 7528 /* Set up physical groups */
86548096
AH
7529 for (i = 0; i < nr_node_ids; i++)
7530 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7531
1da177e4
LT
7532#ifdef CONFIG_NUMA
7533 /* Set up node groups */
de616e36
AH
7534 if (d.sd_allnodes)
7535 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7536
0601a88d
AH
7537 for (i = 0; i < nr_node_ids; i++)
7538 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7539 goto error;
1da177e4
LT
7540#endif
7541
7542 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7543#ifdef CONFIG_SCHED_SMT
abcd083a 7544 for_each_cpu(i, cpu_map) {
294b0c96 7545 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7546 init_sched_groups_power(i, sd);
5c45bf27 7547 }
1da177e4 7548#endif
1e9f28fa 7549#ifdef CONFIG_SCHED_MC
abcd083a 7550 for_each_cpu(i, cpu_map) {
294b0c96 7551 sd = &per_cpu(core_domains, i).sd;
89c4710e 7552 init_sched_groups_power(i, sd);
5c45bf27
SS
7553 }
7554#endif
01a08546
HC
7555#ifdef CONFIG_SCHED_BOOK
7556 for_each_cpu(i, cpu_map) {
7557 sd = &per_cpu(book_domains, i).sd;
7558 init_sched_groups_power(i, sd);
7559 }
7560#endif
1e9f28fa 7561
abcd083a 7562 for_each_cpu(i, cpu_map) {
294b0c96 7563 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7564 init_sched_groups_power(i, sd);
1da177e4
LT
7565 }
7566
9c1cfda2 7567#ifdef CONFIG_NUMA
076ac2af 7568 for (i = 0; i < nr_node_ids; i++)
49a02c51 7569 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7570
49a02c51 7571 if (d.sd_allnodes) {
6711cab4 7572 struct sched_group *sg;
f712c0c7 7573
96f874e2 7574 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7575 d.tmpmask);
f712c0c7
SS
7576 init_numa_sched_groups_power(sg);
7577 }
9c1cfda2
JH
7578#endif
7579
1da177e4 7580 /* Attach the domains */
abcd083a 7581 for_each_cpu(i, cpu_map) {
1da177e4 7582#ifdef CONFIG_SCHED_SMT
6c99e9ad 7583 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7584#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7585 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7586#elif defined(CONFIG_SCHED_BOOK)
7587 sd = &per_cpu(book_domains, i).sd;
1da177e4 7588#else
6c99e9ad 7589 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7590#endif
49a02c51 7591 cpu_attach_domain(sd, d.rd, i);
1da177e4 7592 }
51888ca2 7593
2109b99e
AH
7594 d.sched_group_nodes = NULL; /* don't free this we still need it */
7595 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7596 return 0;
51888ca2 7597
51888ca2 7598error:
2109b99e
AH
7599 __free_domain_allocs(&d, alloc_state, cpu_map);
7600 return -ENOMEM;
1da177e4 7601}
029190c5 7602
96f874e2 7603static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7604{
7605 return __build_sched_domains(cpu_map, NULL);
7606}
7607
acc3f5d7 7608static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7609static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7610static struct sched_domain_attr *dattr_cur;
7611 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7612
7613/*
7614 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7615 * cpumask) fails, then fallback to a single sched domain,
7616 * as determined by the single cpumask fallback_doms.
029190c5 7617 */
4212823f 7618static cpumask_var_t fallback_doms;
029190c5 7619
ee79d1bd
HC
7620/*
7621 * arch_update_cpu_topology lets virtualized architectures update the
7622 * cpu core maps. It is supposed to return 1 if the topology changed
7623 * or 0 if it stayed the same.
7624 */
7625int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7626{
ee79d1bd 7627 return 0;
22e52b07
HC
7628}
7629
acc3f5d7
RR
7630cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7631{
7632 int i;
7633 cpumask_var_t *doms;
7634
7635 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7636 if (!doms)
7637 return NULL;
7638 for (i = 0; i < ndoms; i++) {
7639 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7640 free_sched_domains(doms, i);
7641 return NULL;
7642 }
7643 }
7644 return doms;
7645}
7646
7647void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7648{
7649 unsigned int i;
7650 for (i = 0; i < ndoms; i++)
7651 free_cpumask_var(doms[i]);
7652 kfree(doms);
7653}
7654
1a20ff27 7655/*
41a2d6cf 7656 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7657 * For now this just excludes isolated cpus, but could be used to
7658 * exclude other special cases in the future.
1a20ff27 7659 */
96f874e2 7660static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7661{
7378547f
MM
7662 int err;
7663
22e52b07 7664 arch_update_cpu_topology();
029190c5 7665 ndoms_cur = 1;
acc3f5d7 7666 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7667 if (!doms_cur)
acc3f5d7
RR
7668 doms_cur = &fallback_doms;
7669 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7670 dattr_cur = NULL;
acc3f5d7 7671 err = build_sched_domains(doms_cur[0]);
6382bc90 7672 register_sched_domain_sysctl();
7378547f
MM
7673
7674 return err;
1a20ff27
DG
7675}
7676
96f874e2
RR
7677static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7678 struct cpumask *tmpmask)
1da177e4 7679{
7c16ec58 7680 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7681}
1da177e4 7682
1a20ff27
DG
7683/*
7684 * Detach sched domains from a group of cpus specified in cpu_map
7685 * These cpus will now be attached to the NULL domain
7686 */
96f874e2 7687static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7688{
96f874e2
RR
7689 /* Save because hotplug lock held. */
7690 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7691 int i;
7692
abcd083a 7693 for_each_cpu(i, cpu_map)
57d885fe 7694 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7695 synchronize_sched();
96f874e2 7696 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7697}
7698
1d3504fc
HS
7699/* handle null as "default" */
7700static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7701 struct sched_domain_attr *new, int idx_new)
7702{
7703 struct sched_domain_attr tmp;
7704
7705 /* fast path */
7706 if (!new && !cur)
7707 return 1;
7708
7709 tmp = SD_ATTR_INIT;
7710 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7711 new ? (new + idx_new) : &tmp,
7712 sizeof(struct sched_domain_attr));
7713}
7714
029190c5
PJ
7715/*
7716 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7717 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7718 * doms_new[] to the current sched domain partitioning, doms_cur[].
7719 * It destroys each deleted domain and builds each new domain.
7720 *
acc3f5d7 7721 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7722 * The masks don't intersect (don't overlap.) We should setup one
7723 * sched domain for each mask. CPUs not in any of the cpumasks will
7724 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7725 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7726 * it as it is.
7727 *
acc3f5d7
RR
7728 * The passed in 'doms_new' should be allocated using
7729 * alloc_sched_domains. This routine takes ownership of it and will
7730 * free_sched_domains it when done with it. If the caller failed the
7731 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7732 * and partition_sched_domains() will fallback to the single partition
7733 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7734 *
96f874e2 7735 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7736 * ndoms_new == 0 is a special case for destroying existing domains,
7737 * and it will not create the default domain.
dfb512ec 7738 *
029190c5
PJ
7739 * Call with hotplug lock held
7740 */
acc3f5d7 7741void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7742 struct sched_domain_attr *dattr_new)
029190c5 7743{
dfb512ec 7744 int i, j, n;
d65bd5ec 7745 int new_topology;
029190c5 7746
712555ee 7747 mutex_lock(&sched_domains_mutex);
a1835615 7748
7378547f
MM
7749 /* always unregister in case we don't destroy any domains */
7750 unregister_sched_domain_sysctl();
7751
d65bd5ec
HC
7752 /* Let architecture update cpu core mappings. */
7753 new_topology = arch_update_cpu_topology();
7754
dfb512ec 7755 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7756
7757 /* Destroy deleted domains */
7758 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7759 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7760 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7761 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7762 goto match1;
7763 }
7764 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7765 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7766match1:
7767 ;
7768 }
7769
e761b772
MK
7770 if (doms_new == NULL) {
7771 ndoms_cur = 0;
acc3f5d7 7772 doms_new = &fallback_doms;
6ad4c188 7773 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7774 WARN_ON_ONCE(dattr_new);
e761b772
MK
7775 }
7776
029190c5
PJ
7777 /* Build new domains */
7778 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7779 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7780 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7781 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7782 goto match2;
7783 }
7784 /* no match - add a new doms_new */
acc3f5d7 7785 __build_sched_domains(doms_new[i],
1d3504fc 7786 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7787match2:
7788 ;
7789 }
7790
7791 /* Remember the new sched domains */
acc3f5d7
RR
7792 if (doms_cur != &fallback_doms)
7793 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7794 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7795 doms_cur = doms_new;
1d3504fc 7796 dattr_cur = dattr_new;
029190c5 7797 ndoms_cur = ndoms_new;
7378547f
MM
7798
7799 register_sched_domain_sysctl();
a1835615 7800
712555ee 7801 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7802}
7803
5c45bf27 7804#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7805static void arch_reinit_sched_domains(void)
5c45bf27 7806{
95402b38 7807 get_online_cpus();
dfb512ec
MK
7808
7809 /* Destroy domains first to force the rebuild */
7810 partition_sched_domains(0, NULL, NULL);
7811
e761b772 7812 rebuild_sched_domains();
95402b38 7813 put_online_cpus();
5c45bf27
SS
7814}
7815
7816static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7817{
afb8a9b7 7818 unsigned int level = 0;
5c45bf27 7819
afb8a9b7
GS
7820 if (sscanf(buf, "%u", &level) != 1)
7821 return -EINVAL;
7822
7823 /*
7824 * level is always be positive so don't check for
7825 * level < POWERSAVINGS_BALANCE_NONE which is 0
7826 * What happens on 0 or 1 byte write,
7827 * need to check for count as well?
7828 */
7829
7830 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7831 return -EINVAL;
7832
7833 if (smt)
afb8a9b7 7834 sched_smt_power_savings = level;
5c45bf27 7835 else
afb8a9b7 7836 sched_mc_power_savings = level;
5c45bf27 7837
c70f22d2 7838 arch_reinit_sched_domains();
5c45bf27 7839
c70f22d2 7840 return count;
5c45bf27
SS
7841}
7842
5c45bf27 7843#ifdef CONFIG_SCHED_MC
f718cd4a 7844static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7845 struct sysdev_class_attribute *attr,
f718cd4a 7846 char *page)
5c45bf27
SS
7847{
7848 return sprintf(page, "%u\n", sched_mc_power_savings);
7849}
f718cd4a 7850static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7851 struct sysdev_class_attribute *attr,
48f24c4d 7852 const char *buf, size_t count)
5c45bf27
SS
7853{
7854 return sched_power_savings_store(buf, count, 0);
7855}
f718cd4a
AK
7856static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7857 sched_mc_power_savings_show,
7858 sched_mc_power_savings_store);
5c45bf27
SS
7859#endif
7860
7861#ifdef CONFIG_SCHED_SMT
f718cd4a 7862static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7863 struct sysdev_class_attribute *attr,
f718cd4a 7864 char *page)
5c45bf27
SS
7865{
7866 return sprintf(page, "%u\n", sched_smt_power_savings);
7867}
f718cd4a 7868static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7869 struct sysdev_class_attribute *attr,
48f24c4d 7870 const char *buf, size_t count)
5c45bf27
SS
7871{
7872 return sched_power_savings_store(buf, count, 1);
7873}
f718cd4a
AK
7874static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7875 sched_smt_power_savings_show,
6707de00
AB
7876 sched_smt_power_savings_store);
7877#endif
7878
39aac648 7879int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7880{
7881 int err = 0;
7882
7883#ifdef CONFIG_SCHED_SMT
7884 if (smt_capable())
7885 err = sysfs_create_file(&cls->kset.kobj,
7886 &attr_sched_smt_power_savings.attr);
7887#endif
7888#ifdef CONFIG_SCHED_MC
7889 if (!err && mc_capable())
7890 err = sysfs_create_file(&cls->kset.kobj,
7891 &attr_sched_mc_power_savings.attr);
7892#endif
7893 return err;
7894}
6d6bc0ad 7895#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7896
1da177e4 7897/*
3a101d05
TH
7898 * Update cpusets according to cpu_active mask. If cpusets are
7899 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7900 * around partition_sched_domains().
1da177e4 7901 */
0b2e918a
TH
7902static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7903 void *hcpu)
e761b772 7904{
3a101d05 7905 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7906 case CPU_ONLINE:
6ad4c188 7907 case CPU_DOWN_FAILED:
3a101d05 7908 cpuset_update_active_cpus();
e761b772 7909 return NOTIFY_OK;
3a101d05
TH
7910 default:
7911 return NOTIFY_DONE;
7912 }
7913}
e761b772 7914
0b2e918a
TH
7915static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7916 void *hcpu)
3a101d05
TH
7917{
7918 switch (action & ~CPU_TASKS_FROZEN) {
7919 case CPU_DOWN_PREPARE:
7920 cpuset_update_active_cpus();
7921 return NOTIFY_OK;
e761b772
MK
7922 default:
7923 return NOTIFY_DONE;
7924 }
7925}
e761b772
MK
7926
7927static int update_runtime(struct notifier_block *nfb,
7928 unsigned long action, void *hcpu)
1da177e4 7929{
7def2be1
PZ
7930 int cpu = (int)(long)hcpu;
7931
1da177e4 7932 switch (action) {
1da177e4 7933 case CPU_DOWN_PREPARE:
8bb78442 7934 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7935 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7936 return NOTIFY_OK;
7937
1da177e4 7938 case CPU_DOWN_FAILED:
8bb78442 7939 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7940 case CPU_ONLINE:
8bb78442 7941 case CPU_ONLINE_FROZEN:
7def2be1 7942 enable_runtime(cpu_rq(cpu));
e761b772
MK
7943 return NOTIFY_OK;
7944
1da177e4
LT
7945 default:
7946 return NOTIFY_DONE;
7947 }
1da177e4 7948}
1da177e4
LT
7949
7950void __init sched_init_smp(void)
7951{
dcc30a35
RR
7952 cpumask_var_t non_isolated_cpus;
7953
7954 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7955 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7956
434d53b0
MT
7957#if defined(CONFIG_NUMA)
7958 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7959 GFP_KERNEL);
7960 BUG_ON(sched_group_nodes_bycpu == NULL);
7961#endif
95402b38 7962 get_online_cpus();
712555ee 7963 mutex_lock(&sched_domains_mutex);
6ad4c188 7964 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7965 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7966 if (cpumask_empty(non_isolated_cpus))
7967 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7968 mutex_unlock(&sched_domains_mutex);
95402b38 7969 put_online_cpus();
e761b772 7970
3a101d05
TH
7971 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7972 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7973
7974 /* RT runtime code needs to handle some hotplug events */
7975 hotcpu_notifier(update_runtime, 0);
7976
b328ca18 7977 init_hrtick();
5c1e1767
NP
7978
7979 /* Move init over to a non-isolated CPU */
dcc30a35 7980 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7981 BUG();
19978ca6 7982 sched_init_granularity();
dcc30a35 7983 free_cpumask_var(non_isolated_cpus);
4212823f 7984
0e3900e6 7985 init_sched_rt_class();
1da177e4
LT
7986}
7987#else
7988void __init sched_init_smp(void)
7989{
19978ca6 7990 sched_init_granularity();
1da177e4
LT
7991}
7992#endif /* CONFIG_SMP */
7993
cd1bb94b
AB
7994const_debug unsigned int sysctl_timer_migration = 1;
7995
1da177e4
LT
7996int in_sched_functions(unsigned long addr)
7997{
1da177e4
LT
7998 return in_lock_functions(addr) ||
7999 (addr >= (unsigned long)__sched_text_start
8000 && addr < (unsigned long)__sched_text_end);
8001}
8002
a9957449 8003static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8004{
8005 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8006 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8007#ifdef CONFIG_FAIR_GROUP_SCHED
8008 cfs_rq->rq = rq;
f07333bf 8009 /* allow initial update_cfs_load() to truncate */
6ea72f12 8010#ifdef CONFIG_SMP
f07333bf 8011 cfs_rq->load_stamp = 1;
6ea72f12 8012#endif
dd41f596 8013#endif
67e9fb2a 8014 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8015}
8016
fa85ae24
PZ
8017static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8018{
8019 struct rt_prio_array *array;
8020 int i;
8021
8022 array = &rt_rq->active;
8023 for (i = 0; i < MAX_RT_PRIO; i++) {
8024 INIT_LIST_HEAD(array->queue + i);
8025 __clear_bit(i, array->bitmap);
8026 }
8027 /* delimiter for bitsearch: */
8028 __set_bit(MAX_RT_PRIO, array->bitmap);
8029
052f1dc7 8030#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8031 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8032#ifdef CONFIG_SMP
e864c499 8033 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8034#endif
48d5e258 8035#endif
fa85ae24
PZ
8036#ifdef CONFIG_SMP
8037 rt_rq->rt_nr_migratory = 0;
fa85ae24 8038 rt_rq->overloaded = 0;
05fa785c 8039 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
8040#endif
8041
8042 rt_rq->rt_time = 0;
8043 rt_rq->rt_throttled = 0;
ac086bc2 8044 rt_rq->rt_runtime = 0;
0986b11b 8045 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8046
052f1dc7 8047#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8048 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8049 rt_rq->rq = rq;
8050#endif
fa85ae24
PZ
8051}
8052
6f505b16 8053#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8054static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8055 struct sched_entity *se, int cpu,
ec7dc8ac 8056 struct sched_entity *parent)
6f505b16 8057{
ec7dc8ac 8058 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8059 tg->cfs_rq[cpu] = cfs_rq;
8060 init_cfs_rq(cfs_rq, rq);
8061 cfs_rq->tg = tg;
6f505b16
PZ
8062
8063 tg->se[cpu] = se;
07e06b01 8064 /* se could be NULL for root_task_group */
354d60c2
DG
8065 if (!se)
8066 return;
8067
ec7dc8ac
DG
8068 if (!parent)
8069 se->cfs_rq = &rq->cfs;
8070 else
8071 se->cfs_rq = parent->my_q;
8072
6f505b16 8073 se->my_q = cfs_rq;
9437178f 8074 update_load_set(&se->load, 0);
ec7dc8ac 8075 se->parent = parent;
6f505b16 8076}
052f1dc7 8077#endif
6f505b16 8078
052f1dc7 8079#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8080static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8081 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8082 struct sched_rt_entity *parent)
6f505b16 8083{
ec7dc8ac
DG
8084 struct rq *rq = cpu_rq(cpu);
8085
6f505b16
PZ
8086 tg->rt_rq[cpu] = rt_rq;
8087 init_rt_rq(rt_rq, rq);
8088 rt_rq->tg = tg;
ac086bc2 8089 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8090
8091 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8092 if (!rt_se)
8093 return;
8094
ec7dc8ac
DG
8095 if (!parent)
8096 rt_se->rt_rq = &rq->rt;
8097 else
8098 rt_se->rt_rq = parent->my_q;
8099
6f505b16 8100 rt_se->my_q = rt_rq;
ec7dc8ac 8101 rt_se->parent = parent;
6f505b16
PZ
8102 INIT_LIST_HEAD(&rt_se->run_list);
8103}
8104#endif
8105
1da177e4
LT
8106void __init sched_init(void)
8107{
dd41f596 8108 int i, j;
434d53b0
MT
8109 unsigned long alloc_size = 0, ptr;
8110
8111#ifdef CONFIG_FAIR_GROUP_SCHED
8112 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8113#endif
8114#ifdef CONFIG_RT_GROUP_SCHED
8115 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8116#endif
df7c8e84 8117#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8118 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8119#endif
434d53b0 8120 if (alloc_size) {
36b7b6d4 8121 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8122
8123#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8124 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8125 ptr += nr_cpu_ids * sizeof(void **);
8126
07e06b01 8127 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8128 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8129
6d6bc0ad 8130#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8131#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8132 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8133 ptr += nr_cpu_ids * sizeof(void **);
8134
07e06b01 8135 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8136 ptr += nr_cpu_ids * sizeof(void **);
8137
6d6bc0ad 8138#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8139#ifdef CONFIG_CPUMASK_OFFSTACK
8140 for_each_possible_cpu(i) {
8141 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8142 ptr += cpumask_size();
8143 }
8144#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8145 }
dd41f596 8146
57d885fe
GH
8147#ifdef CONFIG_SMP
8148 init_defrootdomain();
8149#endif
8150
d0b27fa7
PZ
8151 init_rt_bandwidth(&def_rt_bandwidth,
8152 global_rt_period(), global_rt_runtime());
8153
8154#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8155 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8156 global_rt_period(), global_rt_runtime());
6d6bc0ad 8157#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8158
7c941438 8159#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8160 list_add(&root_task_group.list, &task_groups);
8161 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8162 autogroup_init(&init_task);
7c941438 8163#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8164
0a945022 8165 for_each_possible_cpu(i) {
70b97a7f 8166 struct rq *rq;
1da177e4
LT
8167
8168 rq = cpu_rq(i);
05fa785c 8169 raw_spin_lock_init(&rq->lock);
7897986b 8170 rq->nr_running = 0;
dce48a84
TG
8171 rq->calc_load_active = 0;
8172 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8173 init_cfs_rq(&rq->cfs, rq);
6f505b16 8174 init_rt_rq(&rq->rt, rq);
dd41f596 8175#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8176 root_task_group.shares = root_task_group_load;
6f505b16 8177 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8178 /*
07e06b01 8179 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8180 *
8181 * In case of task-groups formed thr' the cgroup filesystem, it
8182 * gets 100% of the cpu resources in the system. This overall
8183 * system cpu resource is divided among the tasks of
07e06b01 8184 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8185 * based on each entity's (task or task-group's) weight
8186 * (se->load.weight).
8187 *
07e06b01 8188 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8189 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8190 * then A0's share of the cpu resource is:
8191 *
0d905bca 8192 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8193 *
07e06b01
YZ
8194 * We achieve this by letting root_task_group's tasks sit
8195 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8196 */
07e06b01 8197 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8198#endif /* CONFIG_FAIR_GROUP_SCHED */
8199
8200 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8201#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8202 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8203 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8204#endif
1da177e4 8205
dd41f596
IM
8206 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8207 rq->cpu_load[j] = 0;
fdf3e95d
VP
8208
8209 rq->last_load_update_tick = jiffies;
8210
1da177e4 8211#ifdef CONFIG_SMP
41c7ce9a 8212 rq->sd = NULL;
57d885fe 8213 rq->rd = NULL;
e51fd5e2 8214 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8215 rq->post_schedule = 0;
1da177e4 8216 rq->active_balance = 0;
dd41f596 8217 rq->next_balance = jiffies;
1da177e4 8218 rq->push_cpu = 0;
0a2966b4 8219 rq->cpu = i;
1f11eb6a 8220 rq->online = 0;
eae0c9df
MG
8221 rq->idle_stamp = 0;
8222 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8223 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8224#ifdef CONFIG_NO_HZ
8225 rq->nohz_balance_kick = 0;
8226 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8227#endif
1da177e4 8228#endif
8f4d37ec 8229 init_rq_hrtick(rq);
1da177e4 8230 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8231 }
8232
2dd73a4f 8233 set_load_weight(&init_task);
b50f60ce 8234
e107be36
AK
8235#ifdef CONFIG_PREEMPT_NOTIFIERS
8236 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8237#endif
8238
c9819f45 8239#ifdef CONFIG_SMP
962cf36c 8240 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8241#endif
8242
b50f60ce 8243#ifdef CONFIG_RT_MUTEXES
1d615482 8244 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8245#endif
8246
1da177e4
LT
8247 /*
8248 * The boot idle thread does lazy MMU switching as well:
8249 */
8250 atomic_inc(&init_mm.mm_count);
8251 enter_lazy_tlb(&init_mm, current);
8252
8253 /*
8254 * Make us the idle thread. Technically, schedule() should not be
8255 * called from this thread, however somewhere below it might be,
8256 * but because we are the idle thread, we just pick up running again
8257 * when this runqueue becomes "idle".
8258 */
8259 init_idle(current, smp_processor_id());
dce48a84
TG
8260
8261 calc_load_update = jiffies + LOAD_FREQ;
8262
dd41f596
IM
8263 /*
8264 * During early bootup we pretend to be a normal task:
8265 */
8266 current->sched_class = &fair_sched_class;
6892b75e 8267
6a7b3dc3 8268 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8269 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8270#ifdef CONFIG_SMP
7d1e6a9b 8271#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8272 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8273 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8274 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8275 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8276 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8277#endif
bdddd296
RR
8278 /* May be allocated at isolcpus cmdline parse time */
8279 if (cpu_isolated_map == NULL)
8280 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8281#endif /* SMP */
6a7b3dc3 8282
6892b75e 8283 scheduler_running = 1;
1da177e4
LT
8284}
8285
8286#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8287static inline int preempt_count_equals(int preempt_offset)
8288{
234da7bc 8289 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8290
4ba8216c 8291 return (nested == preempt_offset);
e4aafea2
FW
8292}
8293
d894837f 8294void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8295{
48f24c4d 8296#ifdef in_atomic
1da177e4
LT
8297 static unsigned long prev_jiffy; /* ratelimiting */
8298
e4aafea2
FW
8299 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8300 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8301 return;
8302 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8303 return;
8304 prev_jiffy = jiffies;
8305
3df0fc5b
PZ
8306 printk(KERN_ERR
8307 "BUG: sleeping function called from invalid context at %s:%d\n",
8308 file, line);
8309 printk(KERN_ERR
8310 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8311 in_atomic(), irqs_disabled(),
8312 current->pid, current->comm);
aef745fc
IM
8313
8314 debug_show_held_locks(current);
8315 if (irqs_disabled())
8316 print_irqtrace_events(current);
8317 dump_stack();
1da177e4
LT
8318#endif
8319}
8320EXPORT_SYMBOL(__might_sleep);
8321#endif
8322
8323#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8324static void normalize_task(struct rq *rq, struct task_struct *p)
8325{
da7a735e
PZ
8326 const struct sched_class *prev_class = p->sched_class;
8327 int old_prio = p->prio;
3a5e4dc1 8328 int on_rq;
3e51f33f 8329
fd2f4419 8330 on_rq = p->on_rq;
3a5e4dc1
AK
8331 if (on_rq)
8332 deactivate_task(rq, p, 0);
8333 __setscheduler(rq, p, SCHED_NORMAL, 0);
8334 if (on_rq) {
8335 activate_task(rq, p, 0);
8336 resched_task(rq->curr);
8337 }
da7a735e
PZ
8338
8339 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8340}
8341
1da177e4
LT
8342void normalize_rt_tasks(void)
8343{
a0f98a1c 8344 struct task_struct *g, *p;
1da177e4 8345 unsigned long flags;
70b97a7f 8346 struct rq *rq;
1da177e4 8347
4cf5d77a 8348 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8349 do_each_thread(g, p) {
178be793
IM
8350 /*
8351 * Only normalize user tasks:
8352 */
8353 if (!p->mm)
8354 continue;
8355
6cfb0d5d 8356 p->se.exec_start = 0;
6cfb0d5d 8357#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8358 p->se.statistics.wait_start = 0;
8359 p->se.statistics.sleep_start = 0;
8360 p->se.statistics.block_start = 0;
6cfb0d5d 8361#endif
dd41f596
IM
8362
8363 if (!rt_task(p)) {
8364 /*
8365 * Renice negative nice level userspace
8366 * tasks back to 0:
8367 */
8368 if (TASK_NICE(p) < 0 && p->mm)
8369 set_user_nice(p, 0);
1da177e4 8370 continue;
dd41f596 8371 }
1da177e4 8372
1d615482 8373 raw_spin_lock(&p->pi_lock);
b29739f9 8374 rq = __task_rq_lock(p);
1da177e4 8375
178be793 8376 normalize_task(rq, p);
3a5e4dc1 8377
b29739f9 8378 __task_rq_unlock(rq);
1d615482 8379 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8380 } while_each_thread(g, p);
8381
4cf5d77a 8382 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8383}
8384
8385#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8386
67fc4e0c 8387#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8388/*
67fc4e0c 8389 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8390 *
8391 * They can only be called when the whole system has been
8392 * stopped - every CPU needs to be quiescent, and no scheduling
8393 * activity can take place. Using them for anything else would
8394 * be a serious bug, and as a result, they aren't even visible
8395 * under any other configuration.
8396 */
8397
8398/**
8399 * curr_task - return the current task for a given cpu.
8400 * @cpu: the processor in question.
8401 *
8402 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8403 */
36c8b586 8404struct task_struct *curr_task(int cpu)
1df5c10a
LT
8405{
8406 return cpu_curr(cpu);
8407}
8408
67fc4e0c
JW
8409#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8410
8411#ifdef CONFIG_IA64
1df5c10a
LT
8412/**
8413 * set_curr_task - set the current task for a given cpu.
8414 * @cpu: the processor in question.
8415 * @p: the task pointer to set.
8416 *
8417 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8418 * are serviced on a separate stack. It allows the architecture to switch the
8419 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8420 * must be called with all CPU's synchronized, and interrupts disabled, the
8421 * and caller must save the original value of the current task (see
8422 * curr_task() above) and restore that value before reenabling interrupts and
8423 * re-starting the system.
8424 *
8425 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8426 */
36c8b586 8427void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8428{
8429 cpu_curr(cpu) = p;
8430}
8431
8432#endif
29f59db3 8433
bccbe08a
PZ
8434#ifdef CONFIG_FAIR_GROUP_SCHED
8435static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8436{
8437 int i;
8438
8439 for_each_possible_cpu(i) {
8440 if (tg->cfs_rq)
8441 kfree(tg->cfs_rq[i]);
8442 if (tg->se)
8443 kfree(tg->se[i]);
6f505b16
PZ
8444 }
8445
8446 kfree(tg->cfs_rq);
8447 kfree(tg->se);
6f505b16
PZ
8448}
8449
ec7dc8ac
DG
8450static
8451int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8452{
29f59db3 8453 struct cfs_rq *cfs_rq;
eab17229 8454 struct sched_entity *se;
29f59db3
SV
8455 int i;
8456
434d53b0 8457 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8458 if (!tg->cfs_rq)
8459 goto err;
434d53b0 8460 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8461 if (!tg->se)
8462 goto err;
052f1dc7
PZ
8463
8464 tg->shares = NICE_0_LOAD;
29f59db3
SV
8465
8466 for_each_possible_cpu(i) {
eab17229
LZ
8467 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8468 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8469 if (!cfs_rq)
8470 goto err;
8471
eab17229
LZ
8472 se = kzalloc_node(sizeof(struct sched_entity),
8473 GFP_KERNEL, cpu_to_node(i));
29f59db3 8474 if (!se)
dfc12eb2 8475 goto err_free_rq;
29f59db3 8476
3d4b47b4 8477 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8478 }
8479
8480 return 1;
8481
49246274 8482err_free_rq:
dfc12eb2 8483 kfree(cfs_rq);
49246274 8484err:
bccbe08a
PZ
8485 return 0;
8486}
8487
bccbe08a
PZ
8488static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8489{
3d4b47b4
PZ
8490 struct rq *rq = cpu_rq(cpu);
8491 unsigned long flags;
3d4b47b4
PZ
8492
8493 /*
8494 * Only empty task groups can be destroyed; so we can speculatively
8495 * check on_list without danger of it being re-added.
8496 */
8497 if (!tg->cfs_rq[cpu]->on_list)
8498 return;
8499
8500 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8501 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8502 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8503}
6d6bc0ad 8504#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8505static inline void free_fair_sched_group(struct task_group *tg)
8506{
8507}
8508
ec7dc8ac
DG
8509static inline
8510int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8511{
8512 return 1;
8513}
8514
bccbe08a
PZ
8515static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8516{
8517}
6d6bc0ad 8518#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8519
8520#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8521static void free_rt_sched_group(struct task_group *tg)
8522{
8523 int i;
8524
d0b27fa7
PZ
8525 destroy_rt_bandwidth(&tg->rt_bandwidth);
8526
bccbe08a
PZ
8527 for_each_possible_cpu(i) {
8528 if (tg->rt_rq)
8529 kfree(tg->rt_rq[i]);
8530 if (tg->rt_se)
8531 kfree(tg->rt_se[i]);
8532 }
8533
8534 kfree(tg->rt_rq);
8535 kfree(tg->rt_se);
8536}
8537
ec7dc8ac
DG
8538static
8539int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8540{
8541 struct rt_rq *rt_rq;
eab17229 8542 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8543 struct rq *rq;
8544 int i;
8545
434d53b0 8546 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8547 if (!tg->rt_rq)
8548 goto err;
434d53b0 8549 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8550 if (!tg->rt_se)
8551 goto err;
8552
d0b27fa7
PZ
8553 init_rt_bandwidth(&tg->rt_bandwidth,
8554 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8555
8556 for_each_possible_cpu(i) {
8557 rq = cpu_rq(i);
8558
eab17229
LZ
8559 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8560 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8561 if (!rt_rq)
8562 goto err;
29f59db3 8563
eab17229
LZ
8564 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8565 GFP_KERNEL, cpu_to_node(i));
6f505b16 8566 if (!rt_se)
dfc12eb2 8567 goto err_free_rq;
29f59db3 8568
3d4b47b4 8569 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8570 }
8571
bccbe08a
PZ
8572 return 1;
8573
49246274 8574err_free_rq:
dfc12eb2 8575 kfree(rt_rq);
49246274 8576err:
bccbe08a
PZ
8577 return 0;
8578}
6d6bc0ad 8579#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8580static inline void free_rt_sched_group(struct task_group *tg)
8581{
8582}
8583
ec7dc8ac
DG
8584static inline
8585int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8586{
8587 return 1;
8588}
6d6bc0ad 8589#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8590
7c941438 8591#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8592static void free_sched_group(struct task_group *tg)
8593{
8594 free_fair_sched_group(tg);
8595 free_rt_sched_group(tg);
e9aa1dd1 8596 autogroup_free(tg);
bccbe08a
PZ
8597 kfree(tg);
8598}
8599
8600/* allocate runqueue etc for a new task group */
ec7dc8ac 8601struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8602{
8603 struct task_group *tg;
8604 unsigned long flags;
bccbe08a
PZ
8605
8606 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8607 if (!tg)
8608 return ERR_PTR(-ENOMEM);
8609
ec7dc8ac 8610 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8611 goto err;
8612
ec7dc8ac 8613 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8614 goto err;
8615
8ed36996 8616 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8617 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8618
8619 WARN_ON(!parent); /* root should already exist */
8620
8621 tg->parent = parent;
f473aa5e 8622 INIT_LIST_HEAD(&tg->children);
09f2724a 8623 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8624 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8625
9b5b7751 8626 return tg;
29f59db3
SV
8627
8628err:
6f505b16 8629 free_sched_group(tg);
29f59db3
SV
8630 return ERR_PTR(-ENOMEM);
8631}
8632
9b5b7751 8633/* rcu callback to free various structures associated with a task group */
6f505b16 8634static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8635{
29f59db3 8636 /* now it should be safe to free those cfs_rqs */
6f505b16 8637 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8638}
8639
9b5b7751 8640/* Destroy runqueue etc associated with a task group */
4cf86d77 8641void sched_destroy_group(struct task_group *tg)
29f59db3 8642{
8ed36996 8643 unsigned long flags;
9b5b7751 8644 int i;
29f59db3 8645
3d4b47b4
PZ
8646 /* end participation in shares distribution */
8647 for_each_possible_cpu(i)
bccbe08a 8648 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8649
8650 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8651 list_del_rcu(&tg->list);
f473aa5e 8652 list_del_rcu(&tg->siblings);
8ed36996 8653 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8654
9b5b7751 8655 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8656 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8657}
8658
9b5b7751 8659/* change task's runqueue when it moves between groups.
3a252015
IM
8660 * The caller of this function should have put the task in its new group
8661 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8662 * reflect its new group.
9b5b7751
SV
8663 */
8664void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8665{
8666 int on_rq, running;
8667 unsigned long flags;
8668 struct rq *rq;
8669
8670 rq = task_rq_lock(tsk, &flags);
8671
051a1d1a 8672 running = task_current(rq, tsk);
fd2f4419 8673 on_rq = tsk->on_rq;
29f59db3 8674
0e1f3483 8675 if (on_rq)
29f59db3 8676 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8677 if (unlikely(running))
8678 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8679
810b3817 8680#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8681 if (tsk->sched_class->task_move_group)
8682 tsk->sched_class->task_move_group(tsk, on_rq);
8683 else
810b3817 8684#endif
b2b5ce02 8685 set_task_rq(tsk, task_cpu(tsk));
810b3817 8686
0e1f3483
HS
8687 if (unlikely(running))
8688 tsk->sched_class->set_curr_task(rq);
8689 if (on_rq)
371fd7e7 8690 enqueue_task(rq, tsk, 0);
29f59db3 8691
0122ec5b 8692 task_rq_unlock(rq, tsk, &flags);
29f59db3 8693}
7c941438 8694#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8695
052f1dc7 8696#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8697static DEFINE_MUTEX(shares_mutex);
8698
4cf86d77 8699int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8700{
8701 int i;
8ed36996 8702 unsigned long flags;
c61935fd 8703
ec7dc8ac
DG
8704 /*
8705 * We can't change the weight of the root cgroup.
8706 */
8707 if (!tg->se[0])
8708 return -EINVAL;
8709
18d95a28
PZ
8710 if (shares < MIN_SHARES)
8711 shares = MIN_SHARES;
cb4ad1ff
MX
8712 else if (shares > MAX_SHARES)
8713 shares = MAX_SHARES;
62fb1851 8714
8ed36996 8715 mutex_lock(&shares_mutex);
9b5b7751 8716 if (tg->shares == shares)
5cb350ba 8717 goto done;
29f59db3 8718
9b5b7751 8719 tg->shares = shares;
c09595f6 8720 for_each_possible_cpu(i) {
9437178f
PT
8721 struct rq *rq = cpu_rq(i);
8722 struct sched_entity *se;
8723
8724 se = tg->se[i];
8725 /* Propagate contribution to hierarchy */
8726 raw_spin_lock_irqsave(&rq->lock, flags);
8727 for_each_sched_entity(se)
6d5ab293 8728 update_cfs_shares(group_cfs_rq(se));
9437178f 8729 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8730 }
29f59db3 8731
5cb350ba 8732done:
8ed36996 8733 mutex_unlock(&shares_mutex);
9b5b7751 8734 return 0;
29f59db3
SV
8735}
8736
5cb350ba
DG
8737unsigned long sched_group_shares(struct task_group *tg)
8738{
8739 return tg->shares;
8740}
052f1dc7 8741#endif
5cb350ba 8742
052f1dc7 8743#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8744/*
9f0c1e56 8745 * Ensure that the real time constraints are schedulable.
6f505b16 8746 */
9f0c1e56
PZ
8747static DEFINE_MUTEX(rt_constraints_mutex);
8748
8749static unsigned long to_ratio(u64 period, u64 runtime)
8750{
8751 if (runtime == RUNTIME_INF)
9a7e0b18 8752 return 1ULL << 20;
9f0c1e56 8753
9a7e0b18 8754 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8755}
8756
9a7e0b18
PZ
8757/* Must be called with tasklist_lock held */
8758static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8759{
9a7e0b18 8760 struct task_struct *g, *p;
b40b2e8e 8761
9a7e0b18
PZ
8762 do_each_thread(g, p) {
8763 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8764 return 1;
8765 } while_each_thread(g, p);
b40b2e8e 8766
9a7e0b18
PZ
8767 return 0;
8768}
b40b2e8e 8769
9a7e0b18
PZ
8770struct rt_schedulable_data {
8771 struct task_group *tg;
8772 u64 rt_period;
8773 u64 rt_runtime;
8774};
b40b2e8e 8775
9a7e0b18
PZ
8776static int tg_schedulable(struct task_group *tg, void *data)
8777{
8778 struct rt_schedulable_data *d = data;
8779 struct task_group *child;
8780 unsigned long total, sum = 0;
8781 u64 period, runtime;
b40b2e8e 8782
9a7e0b18
PZ
8783 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8784 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8785
9a7e0b18
PZ
8786 if (tg == d->tg) {
8787 period = d->rt_period;
8788 runtime = d->rt_runtime;
b40b2e8e 8789 }
b40b2e8e 8790
4653f803
PZ
8791 /*
8792 * Cannot have more runtime than the period.
8793 */
8794 if (runtime > period && runtime != RUNTIME_INF)
8795 return -EINVAL;
6f505b16 8796
4653f803
PZ
8797 /*
8798 * Ensure we don't starve existing RT tasks.
8799 */
9a7e0b18
PZ
8800 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8801 return -EBUSY;
6f505b16 8802
9a7e0b18 8803 total = to_ratio(period, runtime);
6f505b16 8804
4653f803
PZ
8805 /*
8806 * Nobody can have more than the global setting allows.
8807 */
8808 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8809 return -EINVAL;
6f505b16 8810
4653f803
PZ
8811 /*
8812 * The sum of our children's runtime should not exceed our own.
8813 */
9a7e0b18
PZ
8814 list_for_each_entry_rcu(child, &tg->children, siblings) {
8815 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8816 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8817
9a7e0b18
PZ
8818 if (child == d->tg) {
8819 period = d->rt_period;
8820 runtime = d->rt_runtime;
8821 }
6f505b16 8822
9a7e0b18 8823 sum += to_ratio(period, runtime);
9f0c1e56 8824 }
6f505b16 8825
9a7e0b18
PZ
8826 if (sum > total)
8827 return -EINVAL;
8828
8829 return 0;
6f505b16
PZ
8830}
8831
9a7e0b18 8832static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8833{
9a7e0b18
PZ
8834 struct rt_schedulable_data data = {
8835 .tg = tg,
8836 .rt_period = period,
8837 .rt_runtime = runtime,
8838 };
8839
8840 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8841}
8842
d0b27fa7
PZ
8843static int tg_set_bandwidth(struct task_group *tg,
8844 u64 rt_period, u64 rt_runtime)
6f505b16 8845{
ac086bc2 8846 int i, err = 0;
9f0c1e56 8847
9f0c1e56 8848 mutex_lock(&rt_constraints_mutex);
521f1a24 8849 read_lock(&tasklist_lock);
9a7e0b18
PZ
8850 err = __rt_schedulable(tg, rt_period, rt_runtime);
8851 if (err)
9f0c1e56 8852 goto unlock;
ac086bc2 8853
0986b11b 8854 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8855 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8856 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8857
8858 for_each_possible_cpu(i) {
8859 struct rt_rq *rt_rq = tg->rt_rq[i];
8860
0986b11b 8861 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8862 rt_rq->rt_runtime = rt_runtime;
0986b11b 8863 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8864 }
0986b11b 8865 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8866unlock:
521f1a24 8867 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8868 mutex_unlock(&rt_constraints_mutex);
8869
8870 return err;
6f505b16
PZ
8871}
8872
d0b27fa7
PZ
8873int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8874{
8875 u64 rt_runtime, rt_period;
8876
8877 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8878 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8879 if (rt_runtime_us < 0)
8880 rt_runtime = RUNTIME_INF;
8881
8882 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8883}
8884
9f0c1e56
PZ
8885long sched_group_rt_runtime(struct task_group *tg)
8886{
8887 u64 rt_runtime_us;
8888
d0b27fa7 8889 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8890 return -1;
8891
d0b27fa7 8892 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8893 do_div(rt_runtime_us, NSEC_PER_USEC);
8894 return rt_runtime_us;
8895}
d0b27fa7
PZ
8896
8897int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8898{
8899 u64 rt_runtime, rt_period;
8900
8901 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8902 rt_runtime = tg->rt_bandwidth.rt_runtime;
8903
619b0488
R
8904 if (rt_period == 0)
8905 return -EINVAL;
8906
d0b27fa7
PZ
8907 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8908}
8909
8910long sched_group_rt_period(struct task_group *tg)
8911{
8912 u64 rt_period_us;
8913
8914 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8915 do_div(rt_period_us, NSEC_PER_USEC);
8916 return rt_period_us;
8917}
8918
8919static int sched_rt_global_constraints(void)
8920{
4653f803 8921 u64 runtime, period;
d0b27fa7
PZ
8922 int ret = 0;
8923
ec5d4989
HS
8924 if (sysctl_sched_rt_period <= 0)
8925 return -EINVAL;
8926
4653f803
PZ
8927 runtime = global_rt_runtime();
8928 period = global_rt_period();
8929
8930 /*
8931 * Sanity check on the sysctl variables.
8932 */
8933 if (runtime > period && runtime != RUNTIME_INF)
8934 return -EINVAL;
10b612f4 8935
d0b27fa7 8936 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8937 read_lock(&tasklist_lock);
4653f803 8938 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8939 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8940 mutex_unlock(&rt_constraints_mutex);
8941
8942 return ret;
8943}
54e99124
DG
8944
8945int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8946{
8947 /* Don't accept realtime tasks when there is no way for them to run */
8948 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8949 return 0;
8950
8951 return 1;
8952}
8953
6d6bc0ad 8954#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8955static int sched_rt_global_constraints(void)
8956{
ac086bc2
PZ
8957 unsigned long flags;
8958 int i;
8959
ec5d4989
HS
8960 if (sysctl_sched_rt_period <= 0)
8961 return -EINVAL;
8962
60aa605d
PZ
8963 /*
8964 * There's always some RT tasks in the root group
8965 * -- migration, kstopmachine etc..
8966 */
8967 if (sysctl_sched_rt_runtime == 0)
8968 return -EBUSY;
8969
0986b11b 8970 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8971 for_each_possible_cpu(i) {
8972 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8973
0986b11b 8974 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8975 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8976 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8977 }
0986b11b 8978 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8979
d0b27fa7
PZ
8980 return 0;
8981}
6d6bc0ad 8982#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8983
8984int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8985 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8986 loff_t *ppos)
8987{
8988 int ret;
8989 int old_period, old_runtime;
8990 static DEFINE_MUTEX(mutex);
8991
8992 mutex_lock(&mutex);
8993 old_period = sysctl_sched_rt_period;
8994 old_runtime = sysctl_sched_rt_runtime;
8995
8d65af78 8996 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8997
8998 if (!ret && write) {
8999 ret = sched_rt_global_constraints();
9000 if (ret) {
9001 sysctl_sched_rt_period = old_period;
9002 sysctl_sched_rt_runtime = old_runtime;
9003 } else {
9004 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9005 def_rt_bandwidth.rt_period =
9006 ns_to_ktime(global_rt_period());
9007 }
9008 }
9009 mutex_unlock(&mutex);
9010
9011 return ret;
9012}
68318b8e 9013
052f1dc7 9014#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9015
9016/* return corresponding task_group object of a cgroup */
2b01dfe3 9017static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9018{
2b01dfe3
PM
9019 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9020 struct task_group, css);
68318b8e
SV
9021}
9022
9023static struct cgroup_subsys_state *
2b01dfe3 9024cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9025{
ec7dc8ac 9026 struct task_group *tg, *parent;
68318b8e 9027
2b01dfe3 9028 if (!cgrp->parent) {
68318b8e 9029 /* This is early initialization for the top cgroup */
07e06b01 9030 return &root_task_group.css;
68318b8e
SV
9031 }
9032
ec7dc8ac
DG
9033 parent = cgroup_tg(cgrp->parent);
9034 tg = sched_create_group(parent);
68318b8e
SV
9035 if (IS_ERR(tg))
9036 return ERR_PTR(-ENOMEM);
9037
68318b8e
SV
9038 return &tg->css;
9039}
9040
41a2d6cf
IM
9041static void
9042cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9043{
2b01dfe3 9044 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9045
9046 sched_destroy_group(tg);
9047}
9048
41a2d6cf 9049static int
be367d09 9050cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9051{
b68aa230 9052#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9053 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9054 return -EINVAL;
9055#else
68318b8e
SV
9056 /* We don't support RT-tasks being in separate groups */
9057 if (tsk->sched_class != &fair_sched_class)
9058 return -EINVAL;
b68aa230 9059#endif
be367d09
BB
9060 return 0;
9061}
68318b8e 9062
be367d09
BB
9063static int
9064cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9065 struct task_struct *tsk, bool threadgroup)
9066{
9067 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9068 if (retval)
9069 return retval;
9070 if (threadgroup) {
9071 struct task_struct *c;
9072 rcu_read_lock();
9073 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9074 retval = cpu_cgroup_can_attach_task(cgrp, c);
9075 if (retval) {
9076 rcu_read_unlock();
9077 return retval;
9078 }
9079 }
9080 rcu_read_unlock();
9081 }
68318b8e
SV
9082 return 0;
9083}
9084
9085static void
2b01dfe3 9086cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9087 struct cgroup *old_cont, struct task_struct *tsk,
9088 bool threadgroup)
68318b8e
SV
9089{
9090 sched_move_task(tsk);
be367d09
BB
9091 if (threadgroup) {
9092 struct task_struct *c;
9093 rcu_read_lock();
9094 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9095 sched_move_task(c);
9096 }
9097 rcu_read_unlock();
9098 }
68318b8e
SV
9099}
9100
068c5cc5 9101static void
d41d5a01
PZ
9102cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9103 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9104{
9105 /*
9106 * cgroup_exit() is called in the copy_process() failure path.
9107 * Ignore this case since the task hasn't ran yet, this avoids
9108 * trying to poke a half freed task state from generic code.
9109 */
9110 if (!(task->flags & PF_EXITING))
9111 return;
9112
9113 sched_move_task(task);
9114}
9115
052f1dc7 9116#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9117static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9118 u64 shareval)
68318b8e 9119{
2b01dfe3 9120 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9121}
9122
f4c753b7 9123static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9124{
2b01dfe3 9125 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9126
9127 return (u64) tg->shares;
9128}
6d6bc0ad 9129#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9130
052f1dc7 9131#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9132static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9133 s64 val)
6f505b16 9134{
06ecb27c 9135 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9136}
9137
06ecb27c 9138static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9139{
06ecb27c 9140 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9141}
d0b27fa7
PZ
9142
9143static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9144 u64 rt_period_us)
9145{
9146 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9147}
9148
9149static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9150{
9151 return sched_group_rt_period(cgroup_tg(cgrp));
9152}
6d6bc0ad 9153#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9154
fe5c7cc2 9155static struct cftype cpu_files[] = {
052f1dc7 9156#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9157 {
9158 .name = "shares",
f4c753b7
PM
9159 .read_u64 = cpu_shares_read_u64,
9160 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9161 },
052f1dc7
PZ
9162#endif
9163#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9164 {
9f0c1e56 9165 .name = "rt_runtime_us",
06ecb27c
PM
9166 .read_s64 = cpu_rt_runtime_read,
9167 .write_s64 = cpu_rt_runtime_write,
6f505b16 9168 },
d0b27fa7
PZ
9169 {
9170 .name = "rt_period_us",
f4c753b7
PM
9171 .read_u64 = cpu_rt_period_read_uint,
9172 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9173 },
052f1dc7 9174#endif
68318b8e
SV
9175};
9176
9177static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9178{
fe5c7cc2 9179 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9180}
9181
9182struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9183 .name = "cpu",
9184 .create = cpu_cgroup_create,
9185 .destroy = cpu_cgroup_destroy,
9186 .can_attach = cpu_cgroup_can_attach,
9187 .attach = cpu_cgroup_attach,
068c5cc5 9188 .exit = cpu_cgroup_exit,
38605cae
IM
9189 .populate = cpu_cgroup_populate,
9190 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9191 .early_init = 1,
9192};
9193
052f1dc7 9194#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9195
9196#ifdef CONFIG_CGROUP_CPUACCT
9197
9198/*
9199 * CPU accounting code for task groups.
9200 *
9201 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9202 * (balbir@in.ibm.com).
9203 */
9204
934352f2 9205/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9206struct cpuacct {
9207 struct cgroup_subsys_state css;
9208 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9209 u64 __percpu *cpuusage;
ef12fefa 9210 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9211 struct cpuacct *parent;
d842de87
SV
9212};
9213
9214struct cgroup_subsys cpuacct_subsys;
9215
9216/* return cpu accounting group corresponding to this container */
32cd756a 9217static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9218{
32cd756a 9219 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9220 struct cpuacct, css);
9221}
9222
9223/* return cpu accounting group to which this task belongs */
9224static inline struct cpuacct *task_ca(struct task_struct *tsk)
9225{
9226 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9227 struct cpuacct, css);
9228}
9229
9230/* create a new cpu accounting group */
9231static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9232 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9233{
9234 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9235 int i;
d842de87
SV
9236
9237 if (!ca)
ef12fefa 9238 goto out;
d842de87
SV
9239
9240 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9241 if (!ca->cpuusage)
9242 goto out_free_ca;
9243
9244 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9245 if (percpu_counter_init(&ca->cpustat[i], 0))
9246 goto out_free_counters;
d842de87 9247
934352f2
BR
9248 if (cgrp->parent)
9249 ca->parent = cgroup_ca(cgrp->parent);
9250
d842de87 9251 return &ca->css;
ef12fefa
BR
9252
9253out_free_counters:
9254 while (--i >= 0)
9255 percpu_counter_destroy(&ca->cpustat[i]);
9256 free_percpu(ca->cpuusage);
9257out_free_ca:
9258 kfree(ca);
9259out:
9260 return ERR_PTR(-ENOMEM);
d842de87
SV
9261}
9262
9263/* destroy an existing cpu accounting group */
41a2d6cf 9264static void
32cd756a 9265cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9266{
32cd756a 9267 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9268 int i;
d842de87 9269
ef12fefa
BR
9270 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9271 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9272 free_percpu(ca->cpuusage);
9273 kfree(ca);
9274}
9275
720f5498
KC
9276static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9277{
b36128c8 9278 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9279 u64 data;
9280
9281#ifndef CONFIG_64BIT
9282 /*
9283 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9284 */
05fa785c 9285 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9286 data = *cpuusage;
05fa785c 9287 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9288#else
9289 data = *cpuusage;
9290#endif
9291
9292 return data;
9293}
9294
9295static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9296{
b36128c8 9297 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9298
9299#ifndef CONFIG_64BIT
9300 /*
9301 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9302 */
05fa785c 9303 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9304 *cpuusage = val;
05fa785c 9305 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9306#else
9307 *cpuusage = val;
9308#endif
9309}
9310
d842de87 9311/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9312static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9313{
32cd756a 9314 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9315 u64 totalcpuusage = 0;
9316 int i;
9317
720f5498
KC
9318 for_each_present_cpu(i)
9319 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9320
9321 return totalcpuusage;
9322}
9323
0297b803
DG
9324static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9325 u64 reset)
9326{
9327 struct cpuacct *ca = cgroup_ca(cgrp);
9328 int err = 0;
9329 int i;
9330
9331 if (reset) {
9332 err = -EINVAL;
9333 goto out;
9334 }
9335
720f5498
KC
9336 for_each_present_cpu(i)
9337 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9338
0297b803
DG
9339out:
9340 return err;
9341}
9342
e9515c3c
KC
9343static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9344 struct seq_file *m)
9345{
9346 struct cpuacct *ca = cgroup_ca(cgroup);
9347 u64 percpu;
9348 int i;
9349
9350 for_each_present_cpu(i) {
9351 percpu = cpuacct_cpuusage_read(ca, i);
9352 seq_printf(m, "%llu ", (unsigned long long) percpu);
9353 }
9354 seq_printf(m, "\n");
9355 return 0;
9356}
9357
ef12fefa
BR
9358static const char *cpuacct_stat_desc[] = {
9359 [CPUACCT_STAT_USER] = "user",
9360 [CPUACCT_STAT_SYSTEM] = "system",
9361};
9362
9363static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9364 struct cgroup_map_cb *cb)
9365{
9366 struct cpuacct *ca = cgroup_ca(cgrp);
9367 int i;
9368
9369 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9370 s64 val = percpu_counter_read(&ca->cpustat[i]);
9371 val = cputime64_to_clock_t(val);
9372 cb->fill(cb, cpuacct_stat_desc[i], val);
9373 }
9374 return 0;
9375}
9376
d842de87
SV
9377static struct cftype files[] = {
9378 {
9379 .name = "usage",
f4c753b7
PM
9380 .read_u64 = cpuusage_read,
9381 .write_u64 = cpuusage_write,
d842de87 9382 },
e9515c3c
KC
9383 {
9384 .name = "usage_percpu",
9385 .read_seq_string = cpuacct_percpu_seq_read,
9386 },
ef12fefa
BR
9387 {
9388 .name = "stat",
9389 .read_map = cpuacct_stats_show,
9390 },
d842de87
SV
9391};
9392
32cd756a 9393static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9394{
32cd756a 9395 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9396}
9397
9398/*
9399 * charge this task's execution time to its accounting group.
9400 *
9401 * called with rq->lock held.
9402 */
9403static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9404{
9405 struct cpuacct *ca;
934352f2 9406 int cpu;
d842de87 9407
c40c6f85 9408 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9409 return;
9410
934352f2 9411 cpu = task_cpu(tsk);
a18b83b7
BR
9412
9413 rcu_read_lock();
9414
d842de87 9415 ca = task_ca(tsk);
d842de87 9416
934352f2 9417 for (; ca; ca = ca->parent) {
b36128c8 9418 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9419 *cpuusage += cputime;
9420 }
a18b83b7
BR
9421
9422 rcu_read_unlock();
d842de87
SV
9423}
9424
fa535a77
AB
9425/*
9426 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9427 * in cputime_t units. As a result, cpuacct_update_stats calls
9428 * percpu_counter_add with values large enough to always overflow the
9429 * per cpu batch limit causing bad SMP scalability.
9430 *
9431 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9432 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9433 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9434 */
9435#ifdef CONFIG_SMP
9436#define CPUACCT_BATCH \
9437 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9438#else
9439#define CPUACCT_BATCH 0
9440#endif
9441
ef12fefa
BR
9442/*
9443 * Charge the system/user time to the task's accounting group.
9444 */
9445static void cpuacct_update_stats(struct task_struct *tsk,
9446 enum cpuacct_stat_index idx, cputime_t val)
9447{
9448 struct cpuacct *ca;
fa535a77 9449 int batch = CPUACCT_BATCH;
ef12fefa
BR
9450
9451 if (unlikely(!cpuacct_subsys.active))
9452 return;
9453
9454 rcu_read_lock();
9455 ca = task_ca(tsk);
9456
9457 do {
fa535a77 9458 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9459 ca = ca->parent;
9460 } while (ca);
9461 rcu_read_unlock();
9462}
9463
d842de87
SV
9464struct cgroup_subsys cpuacct_subsys = {
9465 .name = "cpuacct",
9466 .create = cpuacct_create,
9467 .destroy = cpuacct_destroy,
9468 .populate = cpuacct_populate,
9469 .subsys_id = cpuacct_subsys_id,
9470};
9471#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9472