Merge commit 'linus/master' into merge-linus
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
d7876a08 99 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 100 */
d6322faf 101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 102
6aa645ea
IM
103#define NICE_0_LOAD SCHED_LOAD_SCALE
104#define NICE_0_SHIFT SCHED_LOAD_SHIFT
105
1da177e4
LT
106/*
107 * These are the 'tuning knobs' of the scheduler:
108 *
a4ec24b4 109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
110 * Timeslices get refilled after they expire.
111 */
1da177e4 112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
d0b27fa7
PZ
114/*
115 * single value that denotes runtime == period, ie unlimited time.
116 */
117#define RUNTIME_INF ((u64)~0ULL)
118
5517d86b
ED
119#ifdef CONFIG_SMP
120/*
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 */
124static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125{
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127}
128
129/*
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
132 */
133static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134{
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137}
138#endif
139
e05606d3
IM
140static inline int rt_policy(int policy)
141{
3f33a7ce 142 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
143 return 1;
144 return 0;
145}
146
147static inline int task_has_rt_policy(struct task_struct *p)
148{
149 return rt_policy(p->policy);
150}
151
1da177e4 152/*
6aa645ea 153 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 154 */
6aa645ea
IM
155struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
158};
159
d0b27fa7 160struct rt_bandwidth {
ea736ed5
IM
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
d0b27fa7
PZ
166};
167
168static struct rt_bandwidth def_rt_bandwidth;
169
170static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173{
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
179
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184 if (!overrun)
185 break;
186
187 idle = do_sched_rt_period_timer(rt_b, overrun);
188 }
189
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191}
192
193static
194void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195{
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
198
ac086bc2
PZ
199 spin_lock_init(&rt_b->rt_runtime_lock);
200
d0b27fa7
PZ
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
ccc7dadf 204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
d0b27fa7
PZ
205}
206
c8bfff6d
KH
207static inline int rt_bandwidth_enabled(void)
208{
209 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
210}
211
212static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
213{
214 ktime_t now;
215
0b148fa0 216 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
217 return;
218
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 return;
221
222 spin_lock(&rt_b->rt_runtime_lock);
223 for (;;) {
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 break;
226
227 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
228 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
229 hrtimer_start_expires(&rt_b->rt_period_timer,
230 HRTIMER_MODE_ABS);
d0b27fa7
PZ
231 }
232 spin_unlock(&rt_b->rt_runtime_lock);
233}
234
235#ifdef CONFIG_RT_GROUP_SCHED
236static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
237{
238 hrtimer_cancel(&rt_b->rt_period_timer);
239}
240#endif
241
712555ee
HC
242/*
243 * sched_domains_mutex serializes calls to arch_init_sched_domains,
244 * detach_destroy_domains and partition_sched_domains.
245 */
246static DEFINE_MUTEX(sched_domains_mutex);
247
052f1dc7 248#ifdef CONFIG_GROUP_SCHED
29f59db3 249
68318b8e
SV
250#include <linux/cgroup.h>
251
29f59db3
SV
252struct cfs_rq;
253
6f505b16
PZ
254static LIST_HEAD(task_groups);
255
29f59db3 256/* task group related information */
4cf86d77 257struct task_group {
052f1dc7 258#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
259 struct cgroup_subsys_state css;
260#endif
052f1dc7
PZ
261
262#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
263 /* schedulable entities of this group on each cpu */
264 struct sched_entity **se;
265 /* runqueue "owned" by this group on each cpu */
266 struct cfs_rq **cfs_rq;
267 unsigned long shares;
052f1dc7
PZ
268#endif
269
270#ifdef CONFIG_RT_GROUP_SCHED
271 struct sched_rt_entity **rt_se;
272 struct rt_rq **rt_rq;
273
d0b27fa7 274 struct rt_bandwidth rt_bandwidth;
052f1dc7 275#endif
6b2d7700 276
ae8393e5 277 struct rcu_head rcu;
6f505b16 278 struct list_head list;
f473aa5e
PZ
279
280 struct task_group *parent;
281 struct list_head siblings;
282 struct list_head children;
29f59db3
SV
283};
284
354d60c2 285#ifdef CONFIG_USER_SCHED
eff766a6
PZ
286
287/*
288 * Root task group.
289 * Every UID task group (including init_task_group aka UID-0) will
290 * be a child to this group.
291 */
292struct task_group root_task_group;
293
052f1dc7 294#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
295/* Default task group's sched entity on each cpu */
296static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297/* Default task group's cfs_rq on each cpu */
298static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 299#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
300
301#ifdef CONFIG_RT_GROUP_SCHED
302static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
303static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 304#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 305#else /* !CONFIG_USER_SCHED */
eff766a6 306#define root_task_group init_task_group
9a7e0b18 307#endif /* CONFIG_USER_SCHED */
6f505b16 308
8ed36996 309/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
310 * a task group's cpu shares.
311 */
8ed36996 312static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
315#ifdef CONFIG_USER_SCHED
316# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 317#else /* !CONFIG_USER_SCHED */
052f1dc7 318# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 319#endif /* CONFIG_USER_SCHED */
052f1dc7 320
cb4ad1ff 321/*
2e084786
LJ
322 * A weight of 0 or 1 can cause arithmetics problems.
323 * A weight of a cfs_rq is the sum of weights of which entities
324 * are queued on this cfs_rq, so a weight of a entity should not be
325 * too large, so as the shares value of a task group.
cb4ad1ff
MX
326 * (The default weight is 1024 - so there's no practical
327 * limitation from this.)
328 */
18d95a28 329#define MIN_SHARES 2
2e084786 330#define MAX_SHARES (1UL << 18)
18d95a28 331
052f1dc7
PZ
332static int init_task_group_load = INIT_TASK_GROUP_LOAD;
333#endif
334
29f59db3 335/* Default task group.
3a252015 336 * Every task in system belong to this group at bootup.
29f59db3 337 */
434d53b0 338struct task_group init_task_group;
29f59db3
SV
339
340/* return group to which a task belongs */
4cf86d77 341static inline struct task_group *task_group(struct task_struct *p)
29f59db3 342{
4cf86d77 343 struct task_group *tg;
9b5b7751 344
052f1dc7 345#ifdef CONFIG_USER_SCHED
24e377a8 346 tg = p->user->tg;
052f1dc7 347#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
348 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
349 struct task_group, css);
24e377a8 350#else
41a2d6cf 351 tg = &init_task_group;
24e377a8 352#endif
9b5b7751 353 return tg;
29f59db3
SV
354}
355
356/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 357static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 358{
052f1dc7 359#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
360 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
361 p->se.parent = task_group(p)->se[cpu];
052f1dc7 362#endif
6f505b16 363
052f1dc7 364#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
365 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
366 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 367#endif
29f59db3
SV
368}
369
370#else
371
6f505b16 372static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
373static inline struct task_group *task_group(struct task_struct *p)
374{
375 return NULL;
376}
29f59db3 377
052f1dc7 378#endif /* CONFIG_GROUP_SCHED */
29f59db3 379
6aa645ea
IM
380/* CFS-related fields in a runqueue */
381struct cfs_rq {
382 struct load_weight load;
383 unsigned long nr_running;
384
6aa645ea 385 u64 exec_clock;
e9acbff6 386 u64 min_vruntime;
103638d9 387 u64 pair_start;
6aa645ea
IM
388
389 struct rb_root tasks_timeline;
390 struct rb_node *rb_leftmost;
4a55bd5e
PZ
391
392 struct list_head tasks;
393 struct list_head *balance_iterator;
394
395 /*
396 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
397 * It is set to NULL otherwise (i.e when none are currently running).
398 */
aa2ac252 399 struct sched_entity *curr, *next;
ddc97297
PZ
400
401 unsigned long nr_spread_over;
402
62160e3f 403#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
404 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
405
41a2d6cf
IM
406 /*
407 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
408 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
409 * (like users, containers etc.)
410 *
411 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
412 * list is used during load balance.
413 */
41a2d6cf
IM
414 struct list_head leaf_cfs_rq_list;
415 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
416
417#ifdef CONFIG_SMP
c09595f6 418 /*
c8cba857 419 * the part of load.weight contributed by tasks
c09595f6 420 */
c8cba857 421 unsigned long task_weight;
c09595f6 422
c8cba857
PZ
423 /*
424 * h_load = weight * f(tg)
425 *
426 * Where f(tg) is the recursive weight fraction assigned to
427 * this group.
428 */
429 unsigned long h_load;
c09595f6 430
c8cba857
PZ
431 /*
432 * this cpu's part of tg->shares
433 */
434 unsigned long shares;
f1d239f7
PZ
435
436 /*
437 * load.weight at the time we set shares
438 */
439 unsigned long rq_weight;
c09595f6 440#endif
6aa645ea
IM
441#endif
442};
1da177e4 443
6aa645ea
IM
444/* Real-Time classes' related field in a runqueue: */
445struct rt_rq {
446 struct rt_prio_array active;
63489e45 447 unsigned long rt_nr_running;
052f1dc7 448#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
449 int highest_prio; /* highest queued rt task prio */
450#endif
fa85ae24 451#ifdef CONFIG_SMP
73fe6aae 452 unsigned long rt_nr_migratory;
a22d7fc1 453 int overloaded;
fa85ae24 454#endif
6f505b16 455 int rt_throttled;
fa85ae24 456 u64 rt_time;
ac086bc2 457 u64 rt_runtime;
ea736ed5 458 /* Nests inside the rq lock: */
ac086bc2 459 spinlock_t rt_runtime_lock;
6f505b16 460
052f1dc7 461#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
462 unsigned long rt_nr_boosted;
463
6f505b16
PZ
464 struct rq *rq;
465 struct list_head leaf_rt_rq_list;
466 struct task_group *tg;
467 struct sched_rt_entity *rt_se;
468#endif
6aa645ea
IM
469};
470
57d885fe
GH
471#ifdef CONFIG_SMP
472
473/*
474 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
475 * variables. Each exclusive cpuset essentially defines an island domain by
476 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
477 * exclusive cpuset is created, we also create and attach a new root-domain
478 * object.
479 *
57d885fe
GH
480 */
481struct root_domain {
482 atomic_t refcount;
483 cpumask_t span;
484 cpumask_t online;
637f5085 485
0eab9146 486 /*
637f5085
GH
487 * The "RT overload" flag: it gets set if a CPU has more than
488 * one runnable RT task.
489 */
490 cpumask_t rto_mask;
0eab9146 491 atomic_t rto_count;
6e0534f2
GH
492#ifdef CONFIG_SMP
493 struct cpupri cpupri;
494#endif
57d885fe
GH
495};
496
dc938520
GH
497/*
498 * By default the system creates a single root-domain with all cpus as
499 * members (mimicking the global state we have today).
500 */
57d885fe
GH
501static struct root_domain def_root_domain;
502
503#endif
504
1da177e4
LT
505/*
506 * This is the main, per-CPU runqueue data structure.
507 *
508 * Locking rule: those places that want to lock multiple runqueues
509 * (such as the load balancing or the thread migration code), lock
510 * acquire operations must be ordered by ascending &runqueue.
511 */
70b97a7f 512struct rq {
d8016491
IM
513 /* runqueue lock: */
514 spinlock_t lock;
1da177e4
LT
515
516 /*
517 * nr_running and cpu_load should be in the same cacheline because
518 * remote CPUs use both these fields when doing load calculation.
519 */
520 unsigned long nr_running;
6aa645ea
IM
521 #define CPU_LOAD_IDX_MAX 5
522 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 523 unsigned char idle_at_tick;
46cb4b7c 524#ifdef CONFIG_NO_HZ
15934a37 525 unsigned long last_tick_seen;
46cb4b7c
SS
526 unsigned char in_nohz_recently;
527#endif
d8016491
IM
528 /* capture load from *all* tasks on this cpu: */
529 struct load_weight load;
6aa645ea
IM
530 unsigned long nr_load_updates;
531 u64 nr_switches;
532
533 struct cfs_rq cfs;
6f505b16 534 struct rt_rq rt;
6f505b16 535
6aa645ea 536#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
537 /* list of leaf cfs_rq on this cpu: */
538 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
539#endif
540#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 541 struct list_head leaf_rt_rq_list;
1da177e4 542#endif
1da177e4
LT
543
544 /*
545 * This is part of a global counter where only the total sum
546 * over all CPUs matters. A task can increase this counter on
547 * one CPU and if it got migrated afterwards it may decrease
548 * it on another CPU. Always updated under the runqueue lock:
549 */
550 unsigned long nr_uninterruptible;
551
36c8b586 552 struct task_struct *curr, *idle;
c9819f45 553 unsigned long next_balance;
1da177e4 554 struct mm_struct *prev_mm;
6aa645ea 555
3e51f33f 556 u64 clock;
6aa645ea 557
1da177e4
LT
558 atomic_t nr_iowait;
559
560#ifdef CONFIG_SMP
0eab9146 561 struct root_domain *rd;
1da177e4
LT
562 struct sched_domain *sd;
563
564 /* For active balancing */
565 int active_balance;
566 int push_cpu;
d8016491
IM
567 /* cpu of this runqueue: */
568 int cpu;
1f11eb6a 569 int online;
1da177e4 570
a8a51d5e 571 unsigned long avg_load_per_task;
1da177e4 572
36c8b586 573 struct task_struct *migration_thread;
1da177e4
LT
574 struct list_head migration_queue;
575#endif
576
8f4d37ec 577#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
578#ifdef CONFIG_SMP
579 int hrtick_csd_pending;
580 struct call_single_data hrtick_csd;
581#endif
8f4d37ec
PZ
582 struct hrtimer hrtick_timer;
583#endif
584
1da177e4
LT
585#ifdef CONFIG_SCHEDSTATS
586 /* latency stats */
587 struct sched_info rq_sched_info;
588
589 /* sys_sched_yield() stats */
480b9434
KC
590 unsigned int yld_exp_empty;
591 unsigned int yld_act_empty;
592 unsigned int yld_both_empty;
593 unsigned int yld_count;
1da177e4
LT
594
595 /* schedule() stats */
480b9434
KC
596 unsigned int sched_switch;
597 unsigned int sched_count;
598 unsigned int sched_goidle;
1da177e4
LT
599
600 /* try_to_wake_up() stats */
480b9434
KC
601 unsigned int ttwu_count;
602 unsigned int ttwu_local;
b8efb561
IM
603
604 /* BKL stats */
480b9434 605 unsigned int bkl_count;
1da177e4
LT
606#endif
607};
608
f34e3b61 609static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 610
15afe09b 611static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 612{
15afe09b 613 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
614}
615
0a2966b4
CL
616static inline int cpu_of(struct rq *rq)
617{
618#ifdef CONFIG_SMP
619 return rq->cpu;
620#else
621 return 0;
622#endif
623}
624
674311d5
NP
625/*
626 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 627 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
628 *
629 * The domain tree of any CPU may only be accessed from within
630 * preempt-disabled sections.
631 */
48f24c4d
IM
632#define for_each_domain(cpu, __sd) \
633 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
634
635#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
636#define this_rq() (&__get_cpu_var(runqueues))
637#define task_rq(p) cpu_rq(task_cpu(p))
638#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
639
3e51f33f
PZ
640static inline void update_rq_clock(struct rq *rq)
641{
642 rq->clock = sched_clock_cpu(cpu_of(rq));
643}
644
bf5c91ba
IM
645/*
646 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
647 */
648#ifdef CONFIG_SCHED_DEBUG
649# define const_debug __read_mostly
650#else
651# define const_debug static const
652#endif
653
017730c1
IM
654/**
655 * runqueue_is_locked
656 *
657 * Returns true if the current cpu runqueue is locked.
658 * This interface allows printk to be called with the runqueue lock
659 * held and know whether or not it is OK to wake up the klogd.
660 */
661int runqueue_is_locked(void)
662{
663 int cpu = get_cpu();
664 struct rq *rq = cpu_rq(cpu);
665 int ret;
666
667 ret = spin_is_locked(&rq->lock);
668 put_cpu();
669 return ret;
670}
671
bf5c91ba
IM
672/*
673 * Debugging: various feature bits
674 */
f00b45c1
PZ
675
676#define SCHED_FEAT(name, enabled) \
677 __SCHED_FEAT_##name ,
678
bf5c91ba 679enum {
f00b45c1 680#include "sched_features.h"
bf5c91ba
IM
681};
682
f00b45c1
PZ
683#undef SCHED_FEAT
684
685#define SCHED_FEAT(name, enabled) \
686 (1UL << __SCHED_FEAT_##name) * enabled |
687
bf5c91ba 688const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
689#include "sched_features.h"
690 0;
691
692#undef SCHED_FEAT
693
694#ifdef CONFIG_SCHED_DEBUG
695#define SCHED_FEAT(name, enabled) \
696 #name ,
697
983ed7a6 698static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
699#include "sched_features.h"
700 NULL
701};
702
703#undef SCHED_FEAT
704
983ed7a6 705static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
706{
707 filp->private_data = inode->i_private;
708 return 0;
709}
710
711static ssize_t
712sched_feat_read(struct file *filp, char __user *ubuf,
713 size_t cnt, loff_t *ppos)
714{
715 char *buf;
716 int r = 0;
717 int len = 0;
718 int i;
719
720 for (i = 0; sched_feat_names[i]; i++) {
721 len += strlen(sched_feat_names[i]);
722 len += 4;
723 }
724
725 buf = kmalloc(len + 2, GFP_KERNEL);
726 if (!buf)
727 return -ENOMEM;
728
729 for (i = 0; sched_feat_names[i]; i++) {
730 if (sysctl_sched_features & (1UL << i))
731 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
732 else
c24b7c52 733 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
734 }
735
736 r += sprintf(buf + r, "\n");
737 WARN_ON(r >= len + 2);
738
739 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
740
741 kfree(buf);
742
743 return r;
744}
745
746static ssize_t
747sched_feat_write(struct file *filp, const char __user *ubuf,
748 size_t cnt, loff_t *ppos)
749{
750 char buf[64];
751 char *cmp = buf;
752 int neg = 0;
753 int i;
754
755 if (cnt > 63)
756 cnt = 63;
757
758 if (copy_from_user(&buf, ubuf, cnt))
759 return -EFAULT;
760
761 buf[cnt] = 0;
762
c24b7c52 763 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
764 neg = 1;
765 cmp += 3;
766 }
767
768 for (i = 0; sched_feat_names[i]; i++) {
769 int len = strlen(sched_feat_names[i]);
770
771 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
772 if (neg)
773 sysctl_sched_features &= ~(1UL << i);
774 else
775 sysctl_sched_features |= (1UL << i);
776 break;
777 }
778 }
779
780 if (!sched_feat_names[i])
781 return -EINVAL;
782
783 filp->f_pos += cnt;
784
785 return cnt;
786}
787
788static struct file_operations sched_feat_fops = {
789 .open = sched_feat_open,
790 .read = sched_feat_read,
791 .write = sched_feat_write,
792};
793
794static __init int sched_init_debug(void)
795{
f00b45c1
PZ
796 debugfs_create_file("sched_features", 0644, NULL, NULL,
797 &sched_feat_fops);
798
799 return 0;
800}
801late_initcall(sched_init_debug);
802
803#endif
804
805#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 806
b82d9fdd
PZ
807/*
808 * Number of tasks to iterate in a single balance run.
809 * Limited because this is done with IRQs disabled.
810 */
811const_debug unsigned int sysctl_sched_nr_migrate = 32;
812
2398f2c6
PZ
813/*
814 * ratelimit for updating the group shares.
55cd5340 815 * default: 0.25ms
2398f2c6 816 */
55cd5340 817unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 818
fa85ae24 819/*
9f0c1e56 820 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
821 * default: 1s
822 */
9f0c1e56 823unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 824
6892b75e
IM
825static __read_mostly int scheduler_running;
826
9f0c1e56
PZ
827/*
828 * part of the period that we allow rt tasks to run in us.
829 * default: 0.95s
830 */
831int sysctl_sched_rt_runtime = 950000;
fa85ae24 832
d0b27fa7
PZ
833static inline u64 global_rt_period(void)
834{
835 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
836}
837
838static inline u64 global_rt_runtime(void)
839{
e26873bb 840 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
841 return RUNTIME_INF;
842
843 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
844}
fa85ae24 845
1da177e4 846#ifndef prepare_arch_switch
4866cde0
NP
847# define prepare_arch_switch(next) do { } while (0)
848#endif
849#ifndef finish_arch_switch
850# define finish_arch_switch(prev) do { } while (0)
851#endif
852
051a1d1a
DA
853static inline int task_current(struct rq *rq, struct task_struct *p)
854{
855 return rq->curr == p;
856}
857
4866cde0 858#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 859static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 860{
051a1d1a 861 return task_current(rq, p);
4866cde0
NP
862}
863
70b97a7f 864static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
865{
866}
867
70b97a7f 868static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 869{
da04c035
IM
870#ifdef CONFIG_DEBUG_SPINLOCK
871 /* this is a valid case when another task releases the spinlock */
872 rq->lock.owner = current;
873#endif
8a25d5de
IM
874 /*
875 * If we are tracking spinlock dependencies then we have to
876 * fix up the runqueue lock - which gets 'carried over' from
877 * prev into current:
878 */
879 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
880
4866cde0
NP
881 spin_unlock_irq(&rq->lock);
882}
883
884#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 885static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
886{
887#ifdef CONFIG_SMP
888 return p->oncpu;
889#else
051a1d1a 890 return task_current(rq, p);
4866cde0
NP
891#endif
892}
893
70b97a7f 894static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
895{
896#ifdef CONFIG_SMP
897 /*
898 * We can optimise this out completely for !SMP, because the
899 * SMP rebalancing from interrupt is the only thing that cares
900 * here.
901 */
902 next->oncpu = 1;
903#endif
904#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
905 spin_unlock_irq(&rq->lock);
906#else
907 spin_unlock(&rq->lock);
908#endif
909}
910
70b97a7f 911static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
912{
913#ifdef CONFIG_SMP
914 /*
915 * After ->oncpu is cleared, the task can be moved to a different CPU.
916 * We must ensure this doesn't happen until the switch is completely
917 * finished.
918 */
919 smp_wmb();
920 prev->oncpu = 0;
921#endif
922#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 local_irq_enable();
1da177e4 924#endif
4866cde0
NP
925}
926#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 927
b29739f9
IM
928/*
929 * __task_rq_lock - lock the runqueue a given task resides on.
930 * Must be called interrupts disabled.
931 */
70b97a7f 932static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
933 __acquires(rq->lock)
934{
3a5c359a
AK
935 for (;;) {
936 struct rq *rq = task_rq(p);
937 spin_lock(&rq->lock);
938 if (likely(rq == task_rq(p)))
939 return rq;
b29739f9 940 spin_unlock(&rq->lock);
b29739f9 941 }
b29739f9
IM
942}
943
1da177e4
LT
944/*
945 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 946 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
947 * explicitly disabling preemption.
948 */
70b97a7f 949static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
950 __acquires(rq->lock)
951{
70b97a7f 952 struct rq *rq;
1da177e4 953
3a5c359a
AK
954 for (;;) {
955 local_irq_save(*flags);
956 rq = task_rq(p);
957 spin_lock(&rq->lock);
958 if (likely(rq == task_rq(p)))
959 return rq;
1da177e4 960 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 961 }
1da177e4
LT
962}
963
a9957449 964static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
965 __releases(rq->lock)
966{
967 spin_unlock(&rq->lock);
968}
969
70b97a7f 970static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
971 __releases(rq->lock)
972{
973 spin_unlock_irqrestore(&rq->lock, *flags);
974}
975
1da177e4 976/*
cc2a73b5 977 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 978 */
a9957449 979static struct rq *this_rq_lock(void)
1da177e4
LT
980 __acquires(rq->lock)
981{
70b97a7f 982 struct rq *rq;
1da177e4
LT
983
984 local_irq_disable();
985 rq = this_rq();
986 spin_lock(&rq->lock);
987
988 return rq;
989}
990
8f4d37ec
PZ
991#ifdef CONFIG_SCHED_HRTICK
992/*
993 * Use HR-timers to deliver accurate preemption points.
994 *
995 * Its all a bit involved since we cannot program an hrt while holding the
996 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
997 * reschedule event.
998 *
999 * When we get rescheduled we reprogram the hrtick_timer outside of the
1000 * rq->lock.
1001 */
8f4d37ec
PZ
1002
1003/*
1004 * Use hrtick when:
1005 * - enabled by features
1006 * - hrtimer is actually high res
1007 */
1008static inline int hrtick_enabled(struct rq *rq)
1009{
1010 if (!sched_feat(HRTICK))
1011 return 0;
ba42059f 1012 if (!cpu_active(cpu_of(rq)))
b328ca18 1013 return 0;
8f4d37ec
PZ
1014 return hrtimer_is_hres_active(&rq->hrtick_timer);
1015}
1016
8f4d37ec
PZ
1017static void hrtick_clear(struct rq *rq)
1018{
1019 if (hrtimer_active(&rq->hrtick_timer))
1020 hrtimer_cancel(&rq->hrtick_timer);
1021}
1022
8f4d37ec
PZ
1023/*
1024 * High-resolution timer tick.
1025 * Runs from hardirq context with interrupts disabled.
1026 */
1027static enum hrtimer_restart hrtick(struct hrtimer *timer)
1028{
1029 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1030
1031 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1032
1033 spin_lock(&rq->lock);
3e51f33f 1034 update_rq_clock(rq);
8f4d37ec
PZ
1035 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1036 spin_unlock(&rq->lock);
1037
1038 return HRTIMER_NORESTART;
1039}
1040
95e904c7 1041#ifdef CONFIG_SMP
31656519
PZ
1042/*
1043 * called from hardirq (IPI) context
1044 */
1045static void __hrtick_start(void *arg)
b328ca18 1046{
31656519 1047 struct rq *rq = arg;
b328ca18 1048
31656519
PZ
1049 spin_lock(&rq->lock);
1050 hrtimer_restart(&rq->hrtick_timer);
1051 rq->hrtick_csd_pending = 0;
1052 spin_unlock(&rq->lock);
b328ca18
PZ
1053}
1054
31656519
PZ
1055/*
1056 * Called to set the hrtick timer state.
1057 *
1058 * called with rq->lock held and irqs disabled
1059 */
1060static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1061{
31656519
PZ
1062 struct hrtimer *timer = &rq->hrtick_timer;
1063 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1064
cc584b21 1065 hrtimer_set_expires(timer, time);
31656519
PZ
1066
1067 if (rq == this_rq()) {
1068 hrtimer_restart(timer);
1069 } else if (!rq->hrtick_csd_pending) {
1070 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1071 rq->hrtick_csd_pending = 1;
1072 }
b328ca18
PZ
1073}
1074
1075static int
1076hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1077{
1078 int cpu = (int)(long)hcpu;
1079
1080 switch (action) {
1081 case CPU_UP_CANCELED:
1082 case CPU_UP_CANCELED_FROZEN:
1083 case CPU_DOWN_PREPARE:
1084 case CPU_DOWN_PREPARE_FROZEN:
1085 case CPU_DEAD:
1086 case CPU_DEAD_FROZEN:
31656519 1087 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1088 return NOTIFY_OK;
1089 }
1090
1091 return NOTIFY_DONE;
1092}
1093
fa748203 1094static __init void init_hrtick(void)
b328ca18
PZ
1095{
1096 hotcpu_notifier(hotplug_hrtick, 0);
1097}
31656519
PZ
1098#else
1099/*
1100 * Called to set the hrtick timer state.
1101 *
1102 * called with rq->lock held and irqs disabled
1103 */
1104static void hrtick_start(struct rq *rq, u64 delay)
1105{
1106 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1107}
b328ca18 1108
006c75f1 1109static inline void init_hrtick(void)
8f4d37ec 1110{
8f4d37ec 1111}
31656519 1112#endif /* CONFIG_SMP */
8f4d37ec 1113
31656519 1114static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1115{
31656519
PZ
1116#ifdef CONFIG_SMP
1117 rq->hrtick_csd_pending = 0;
8f4d37ec 1118
31656519
PZ
1119 rq->hrtick_csd.flags = 0;
1120 rq->hrtick_csd.func = __hrtick_start;
1121 rq->hrtick_csd.info = rq;
1122#endif
8f4d37ec 1123
31656519
PZ
1124 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1125 rq->hrtick_timer.function = hrtick;
ccc7dadf 1126 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
8f4d37ec 1127}
006c75f1 1128#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1129static inline void hrtick_clear(struct rq *rq)
1130{
1131}
1132
8f4d37ec
PZ
1133static inline void init_rq_hrtick(struct rq *rq)
1134{
1135}
1136
b328ca18
PZ
1137static inline void init_hrtick(void)
1138{
1139}
006c75f1 1140#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1141
c24d20db
IM
1142/*
1143 * resched_task - mark a task 'to be rescheduled now'.
1144 *
1145 * On UP this means the setting of the need_resched flag, on SMP it
1146 * might also involve a cross-CPU call to trigger the scheduler on
1147 * the target CPU.
1148 */
1149#ifdef CONFIG_SMP
1150
1151#ifndef tsk_is_polling
1152#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1153#endif
1154
31656519 1155static void resched_task(struct task_struct *p)
c24d20db
IM
1156{
1157 int cpu;
1158
1159 assert_spin_locked(&task_rq(p)->lock);
1160
31656519 1161 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1162 return;
1163
31656519 1164 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1165
1166 cpu = task_cpu(p);
1167 if (cpu == smp_processor_id())
1168 return;
1169
1170 /* NEED_RESCHED must be visible before we test polling */
1171 smp_mb();
1172 if (!tsk_is_polling(p))
1173 smp_send_reschedule(cpu);
1174}
1175
1176static void resched_cpu(int cpu)
1177{
1178 struct rq *rq = cpu_rq(cpu);
1179 unsigned long flags;
1180
1181 if (!spin_trylock_irqsave(&rq->lock, flags))
1182 return;
1183 resched_task(cpu_curr(cpu));
1184 spin_unlock_irqrestore(&rq->lock, flags);
1185}
06d8308c
TG
1186
1187#ifdef CONFIG_NO_HZ
1188/*
1189 * When add_timer_on() enqueues a timer into the timer wheel of an
1190 * idle CPU then this timer might expire before the next timer event
1191 * which is scheduled to wake up that CPU. In case of a completely
1192 * idle system the next event might even be infinite time into the
1193 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1194 * leaves the inner idle loop so the newly added timer is taken into
1195 * account when the CPU goes back to idle and evaluates the timer
1196 * wheel for the next timer event.
1197 */
1198void wake_up_idle_cpu(int cpu)
1199{
1200 struct rq *rq = cpu_rq(cpu);
1201
1202 if (cpu == smp_processor_id())
1203 return;
1204
1205 /*
1206 * This is safe, as this function is called with the timer
1207 * wheel base lock of (cpu) held. When the CPU is on the way
1208 * to idle and has not yet set rq->curr to idle then it will
1209 * be serialized on the timer wheel base lock and take the new
1210 * timer into account automatically.
1211 */
1212 if (rq->curr != rq->idle)
1213 return;
1214
1215 /*
1216 * We can set TIF_RESCHED on the idle task of the other CPU
1217 * lockless. The worst case is that the other CPU runs the
1218 * idle task through an additional NOOP schedule()
1219 */
1220 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1221
1222 /* NEED_RESCHED must be visible before we test polling */
1223 smp_mb();
1224 if (!tsk_is_polling(rq->idle))
1225 smp_send_reschedule(cpu);
1226}
6d6bc0ad 1227#endif /* CONFIG_NO_HZ */
06d8308c 1228
6d6bc0ad 1229#else /* !CONFIG_SMP */
31656519 1230static void resched_task(struct task_struct *p)
c24d20db
IM
1231{
1232 assert_spin_locked(&task_rq(p)->lock);
31656519 1233 set_tsk_need_resched(p);
c24d20db 1234}
6d6bc0ad 1235#endif /* CONFIG_SMP */
c24d20db 1236
45bf76df
IM
1237#if BITS_PER_LONG == 32
1238# define WMULT_CONST (~0UL)
1239#else
1240# define WMULT_CONST (1UL << 32)
1241#endif
1242
1243#define WMULT_SHIFT 32
1244
194081eb
IM
1245/*
1246 * Shift right and round:
1247 */
cf2ab469 1248#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1249
a7be37ac
PZ
1250/*
1251 * delta *= weight / lw
1252 */
cb1c4fc9 1253static unsigned long
45bf76df
IM
1254calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1255 struct load_weight *lw)
1256{
1257 u64 tmp;
1258
7a232e03
LJ
1259 if (!lw->inv_weight) {
1260 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1261 lw->inv_weight = 1;
1262 else
1263 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1264 / (lw->weight+1);
1265 }
45bf76df
IM
1266
1267 tmp = (u64)delta_exec * weight;
1268 /*
1269 * Check whether we'd overflow the 64-bit multiplication:
1270 */
194081eb 1271 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1272 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1273 WMULT_SHIFT/2);
1274 else
cf2ab469 1275 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1276
ecf691da 1277 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1278}
1279
1091985b 1280static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1281{
1282 lw->weight += inc;
e89996ae 1283 lw->inv_weight = 0;
45bf76df
IM
1284}
1285
1091985b 1286static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1287{
1288 lw->weight -= dec;
e89996ae 1289 lw->inv_weight = 0;
45bf76df
IM
1290}
1291
2dd73a4f
PW
1292/*
1293 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1294 * of tasks with abnormal "nice" values across CPUs the contribution that
1295 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1296 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1297 * scaled version of the new time slice allocation that they receive on time
1298 * slice expiry etc.
1299 */
1300
dd41f596
IM
1301#define WEIGHT_IDLEPRIO 2
1302#define WMULT_IDLEPRIO (1 << 31)
1303
1304/*
1305 * Nice levels are multiplicative, with a gentle 10% change for every
1306 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1307 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1308 * that remained on nice 0.
1309 *
1310 * The "10% effect" is relative and cumulative: from _any_ nice level,
1311 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1312 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1313 * If a task goes up by ~10% and another task goes down by ~10% then
1314 * the relative distance between them is ~25%.)
dd41f596
IM
1315 */
1316static const int prio_to_weight[40] = {
254753dc
IM
1317 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1318 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1319 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1320 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1321 /* 0 */ 1024, 820, 655, 526, 423,
1322 /* 5 */ 335, 272, 215, 172, 137,
1323 /* 10 */ 110, 87, 70, 56, 45,
1324 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1325};
1326
5714d2de
IM
1327/*
1328 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1329 *
1330 * In cases where the weight does not change often, we can use the
1331 * precalculated inverse to speed up arithmetics by turning divisions
1332 * into multiplications:
1333 */
dd41f596 1334static const u32 prio_to_wmult[40] = {
254753dc
IM
1335 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1336 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1337 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1338 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1339 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1340 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1341 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1342 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1343};
2dd73a4f 1344
dd41f596
IM
1345static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1346
1347/*
1348 * runqueue iterator, to support SMP load-balancing between different
1349 * scheduling classes, without having to expose their internal data
1350 * structures to the load-balancing proper:
1351 */
1352struct rq_iterator {
1353 void *arg;
1354 struct task_struct *(*start)(void *);
1355 struct task_struct *(*next)(void *);
1356};
1357
e1d1484f
PW
1358#ifdef CONFIG_SMP
1359static unsigned long
1360balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1361 unsigned long max_load_move, struct sched_domain *sd,
1362 enum cpu_idle_type idle, int *all_pinned,
1363 int *this_best_prio, struct rq_iterator *iterator);
1364
1365static int
1366iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1367 struct sched_domain *sd, enum cpu_idle_type idle,
1368 struct rq_iterator *iterator);
e1d1484f 1369#endif
dd41f596 1370
d842de87
SV
1371#ifdef CONFIG_CGROUP_CPUACCT
1372static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1373#else
1374static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1375#endif
1376
18d95a28
PZ
1377static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1378{
1379 update_load_add(&rq->load, load);
1380}
1381
1382static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1383{
1384 update_load_sub(&rq->load, load);
1385}
1386
7940ca36 1387#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1388typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1389
1390/*
1391 * Iterate the full tree, calling @down when first entering a node and @up when
1392 * leaving it for the final time.
1393 */
eb755805 1394static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1395{
1396 struct task_group *parent, *child;
eb755805 1397 int ret;
c09595f6
PZ
1398
1399 rcu_read_lock();
1400 parent = &root_task_group;
1401down:
eb755805
PZ
1402 ret = (*down)(parent, data);
1403 if (ret)
1404 goto out_unlock;
c09595f6
PZ
1405 list_for_each_entry_rcu(child, &parent->children, siblings) {
1406 parent = child;
1407 goto down;
1408
1409up:
1410 continue;
1411 }
eb755805
PZ
1412 ret = (*up)(parent, data);
1413 if (ret)
1414 goto out_unlock;
c09595f6
PZ
1415
1416 child = parent;
1417 parent = parent->parent;
1418 if (parent)
1419 goto up;
eb755805 1420out_unlock:
c09595f6 1421 rcu_read_unlock();
eb755805
PZ
1422
1423 return ret;
c09595f6
PZ
1424}
1425
eb755805
PZ
1426static int tg_nop(struct task_group *tg, void *data)
1427{
1428 return 0;
c09595f6 1429}
eb755805
PZ
1430#endif
1431
1432#ifdef CONFIG_SMP
1433static unsigned long source_load(int cpu, int type);
1434static unsigned long target_load(int cpu, int type);
1435static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1436
1437static unsigned long cpu_avg_load_per_task(int cpu)
1438{
1439 struct rq *rq = cpu_rq(cpu);
1440
1441 if (rq->nr_running)
1442 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1443
1444 return rq->avg_load_per_task;
1445}
1446
1447#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1448
c09595f6
PZ
1449static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1450
1451/*
1452 * Calculate and set the cpu's group shares.
1453 */
1454static void
b6a86c74 1455__update_group_shares_cpu(struct task_group *tg, int cpu,
c8cba857 1456 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1457{
c09595f6
PZ
1458 int boost = 0;
1459 unsigned long shares;
1460 unsigned long rq_weight;
1461
c8cba857 1462 if (!tg->se[cpu])
c09595f6
PZ
1463 return;
1464
c8cba857 1465 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1466
1467 /*
1468 * If there are currently no tasks on the cpu pretend there is one of
1469 * average load so that when a new task gets to run here it will not
1470 * get delayed by group starvation.
1471 */
1472 if (!rq_weight) {
1473 boost = 1;
1474 rq_weight = NICE_0_LOAD;
1475 }
1476
c8cba857
PZ
1477 if (unlikely(rq_weight > sd_rq_weight))
1478 rq_weight = sd_rq_weight;
1479
c09595f6
PZ
1480 /*
1481 * \Sum shares * rq_weight
1482 * shares = -----------------------
1483 * \Sum rq_weight
1484 *
1485 */
c8cba857 1486 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
c09595f6
PZ
1487
1488 /*
1489 * record the actual number of shares, not the boosted amount.
1490 */
c8cba857 1491 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
f1d239f7 1492 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6
PZ
1493
1494 if (shares < MIN_SHARES)
1495 shares = MIN_SHARES;
1496 else if (shares > MAX_SHARES)
1497 shares = MAX_SHARES;
1498
c8cba857 1499 __set_se_shares(tg->se[cpu], shares);
18d95a28 1500}
c09595f6
PZ
1501
1502/*
c8cba857
PZ
1503 * Re-compute the task group their per cpu shares over the given domain.
1504 * This needs to be done in a bottom-up fashion because the rq weight of a
1505 * parent group depends on the shares of its child groups.
c09595f6 1506 */
eb755805 1507static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1508{
c8cba857
PZ
1509 unsigned long rq_weight = 0;
1510 unsigned long shares = 0;
eb755805 1511 struct sched_domain *sd = data;
c8cba857 1512 int i;
c09595f6 1513
c8cba857
PZ
1514 for_each_cpu_mask(i, sd->span) {
1515 rq_weight += tg->cfs_rq[i]->load.weight;
1516 shares += tg->cfs_rq[i]->shares;
c09595f6 1517 }
c09595f6 1518
c8cba857
PZ
1519 if ((!shares && rq_weight) || shares > tg->shares)
1520 shares = tg->shares;
1521
1522 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1523 shares = tg->shares;
c09595f6 1524
cd80917e
PZ
1525 if (!rq_weight)
1526 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1527
c09595f6
PZ
1528 for_each_cpu_mask(i, sd->span) {
1529 struct rq *rq = cpu_rq(i);
1530 unsigned long flags;
1531
1532 spin_lock_irqsave(&rq->lock, flags);
c8cba857 1533 __update_group_shares_cpu(tg, i, shares, rq_weight);
c09595f6
PZ
1534 spin_unlock_irqrestore(&rq->lock, flags);
1535 }
eb755805
PZ
1536
1537 return 0;
c09595f6
PZ
1538}
1539
1540/*
c8cba857
PZ
1541 * Compute the cpu's hierarchical load factor for each task group.
1542 * This needs to be done in a top-down fashion because the load of a child
1543 * group is a fraction of its parents load.
c09595f6 1544 */
eb755805 1545static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1546{
c8cba857 1547 unsigned long load;
eb755805 1548 long cpu = (long)data;
c09595f6 1549
c8cba857
PZ
1550 if (!tg->parent) {
1551 load = cpu_rq(cpu)->load.weight;
1552 } else {
1553 load = tg->parent->cfs_rq[cpu]->h_load;
1554 load *= tg->cfs_rq[cpu]->shares;
1555 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1556 }
c09595f6 1557
c8cba857 1558 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1559
eb755805 1560 return 0;
c09595f6
PZ
1561}
1562
c8cba857 1563static void update_shares(struct sched_domain *sd)
4d8d595d 1564{
2398f2c6
PZ
1565 u64 now = cpu_clock(raw_smp_processor_id());
1566 s64 elapsed = now - sd->last_update;
1567
1568 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1569 sd->last_update = now;
eb755805 1570 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1571 }
4d8d595d
PZ
1572}
1573
3e5459b4
PZ
1574static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1575{
1576 spin_unlock(&rq->lock);
1577 update_shares(sd);
1578 spin_lock(&rq->lock);
1579}
1580
eb755805 1581static void update_h_load(long cpu)
c09595f6 1582{
eb755805 1583 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1584}
1585
c09595f6
PZ
1586#else
1587
c8cba857 1588static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1589{
1590}
1591
3e5459b4
PZ
1592static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1593{
1594}
1595
18d95a28
PZ
1596#endif
1597
18d95a28
PZ
1598#endif
1599
30432094 1600#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1601static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1602{
30432094 1603#ifdef CONFIG_SMP
34e83e85
IM
1604 cfs_rq->shares = shares;
1605#endif
1606}
30432094 1607#endif
e7693a36 1608
dd41f596 1609#include "sched_stats.h"
dd41f596 1610#include "sched_idletask.c"
5522d5d5
IM
1611#include "sched_fair.c"
1612#include "sched_rt.c"
dd41f596
IM
1613#ifdef CONFIG_SCHED_DEBUG
1614# include "sched_debug.c"
1615#endif
1616
1617#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1618#define for_each_class(class) \
1619 for (class = sched_class_highest; class; class = class->next)
dd41f596 1620
c09595f6 1621static void inc_nr_running(struct rq *rq)
9c217245
IM
1622{
1623 rq->nr_running++;
9c217245
IM
1624}
1625
c09595f6 1626static void dec_nr_running(struct rq *rq)
9c217245
IM
1627{
1628 rq->nr_running--;
9c217245
IM
1629}
1630
45bf76df
IM
1631static void set_load_weight(struct task_struct *p)
1632{
1633 if (task_has_rt_policy(p)) {
dd41f596
IM
1634 p->se.load.weight = prio_to_weight[0] * 2;
1635 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1636 return;
1637 }
45bf76df 1638
dd41f596
IM
1639 /*
1640 * SCHED_IDLE tasks get minimal weight:
1641 */
1642 if (p->policy == SCHED_IDLE) {
1643 p->se.load.weight = WEIGHT_IDLEPRIO;
1644 p->se.load.inv_weight = WMULT_IDLEPRIO;
1645 return;
1646 }
71f8bd46 1647
dd41f596
IM
1648 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1649 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1650}
1651
2087a1ad
GH
1652static void update_avg(u64 *avg, u64 sample)
1653{
1654 s64 diff = sample - *avg;
1655 *avg += diff >> 3;
1656}
1657
8159f87e 1658static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1659{
dd41f596 1660 sched_info_queued(p);
fd390f6a 1661 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1662 p->se.on_rq = 1;
71f8bd46
IM
1663}
1664
69be72c1 1665static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1666{
2087a1ad
GH
1667 if (sleep && p->se.last_wakeup) {
1668 update_avg(&p->se.avg_overlap,
1669 p->se.sum_exec_runtime - p->se.last_wakeup);
1670 p->se.last_wakeup = 0;
1671 }
1672
46ac22ba 1673 sched_info_dequeued(p);
f02231e5 1674 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1675 p->se.on_rq = 0;
71f8bd46
IM
1676}
1677
14531189 1678/*
dd41f596 1679 * __normal_prio - return the priority that is based on the static prio
14531189 1680 */
14531189
IM
1681static inline int __normal_prio(struct task_struct *p)
1682{
dd41f596 1683 return p->static_prio;
14531189
IM
1684}
1685
b29739f9
IM
1686/*
1687 * Calculate the expected normal priority: i.e. priority
1688 * without taking RT-inheritance into account. Might be
1689 * boosted by interactivity modifiers. Changes upon fork,
1690 * setprio syscalls, and whenever the interactivity
1691 * estimator recalculates.
1692 */
36c8b586 1693static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1694{
1695 int prio;
1696
e05606d3 1697 if (task_has_rt_policy(p))
b29739f9
IM
1698 prio = MAX_RT_PRIO-1 - p->rt_priority;
1699 else
1700 prio = __normal_prio(p);
1701 return prio;
1702}
1703
1704/*
1705 * Calculate the current priority, i.e. the priority
1706 * taken into account by the scheduler. This value might
1707 * be boosted by RT tasks, or might be boosted by
1708 * interactivity modifiers. Will be RT if the task got
1709 * RT-boosted. If not then it returns p->normal_prio.
1710 */
36c8b586 1711static int effective_prio(struct task_struct *p)
b29739f9
IM
1712{
1713 p->normal_prio = normal_prio(p);
1714 /*
1715 * If we are RT tasks or we were boosted to RT priority,
1716 * keep the priority unchanged. Otherwise, update priority
1717 * to the normal priority:
1718 */
1719 if (!rt_prio(p->prio))
1720 return p->normal_prio;
1721 return p->prio;
1722}
1723
1da177e4 1724/*
dd41f596 1725 * activate_task - move a task to the runqueue.
1da177e4 1726 */
dd41f596 1727static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1728{
d9514f6c 1729 if (task_contributes_to_load(p))
dd41f596 1730 rq->nr_uninterruptible--;
1da177e4 1731
8159f87e 1732 enqueue_task(rq, p, wakeup);
c09595f6 1733 inc_nr_running(rq);
1da177e4
LT
1734}
1735
1da177e4
LT
1736/*
1737 * deactivate_task - remove a task from the runqueue.
1738 */
2e1cb74a 1739static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1740{
d9514f6c 1741 if (task_contributes_to_load(p))
dd41f596
IM
1742 rq->nr_uninterruptible++;
1743
69be72c1 1744 dequeue_task(rq, p, sleep);
c09595f6 1745 dec_nr_running(rq);
1da177e4
LT
1746}
1747
1da177e4
LT
1748/**
1749 * task_curr - is this task currently executing on a CPU?
1750 * @p: the task in question.
1751 */
36c8b586 1752inline int task_curr(const struct task_struct *p)
1da177e4
LT
1753{
1754 return cpu_curr(task_cpu(p)) == p;
1755}
1756
dd41f596
IM
1757static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1758{
6f505b16 1759 set_task_rq(p, cpu);
dd41f596 1760#ifdef CONFIG_SMP
ce96b5ac
DA
1761 /*
1762 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1763 * successfuly executed on another CPU. We must ensure that updates of
1764 * per-task data have been completed by this moment.
1765 */
1766 smp_wmb();
dd41f596 1767 task_thread_info(p)->cpu = cpu;
dd41f596 1768#endif
2dd73a4f
PW
1769}
1770
cb469845
SR
1771static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1772 const struct sched_class *prev_class,
1773 int oldprio, int running)
1774{
1775 if (prev_class != p->sched_class) {
1776 if (prev_class->switched_from)
1777 prev_class->switched_from(rq, p, running);
1778 p->sched_class->switched_to(rq, p, running);
1779 } else
1780 p->sched_class->prio_changed(rq, p, oldprio, running);
1781}
1782
1da177e4 1783#ifdef CONFIG_SMP
c65cc870 1784
e958b360
TG
1785/* Used instead of source_load when we know the type == 0 */
1786static unsigned long weighted_cpuload(const int cpu)
1787{
1788 return cpu_rq(cpu)->load.weight;
1789}
1790
cc367732
IM
1791/*
1792 * Is this task likely cache-hot:
1793 */
e7693a36 1794static int
cc367732
IM
1795task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1796{
1797 s64 delta;
1798
f540a608
IM
1799 /*
1800 * Buddy candidates are cache hot:
1801 */
d25ce4cd 1802 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1803 return 1;
1804
cc367732
IM
1805 if (p->sched_class != &fair_sched_class)
1806 return 0;
1807
6bc1665b
IM
1808 if (sysctl_sched_migration_cost == -1)
1809 return 1;
1810 if (sysctl_sched_migration_cost == 0)
1811 return 0;
1812
cc367732
IM
1813 delta = now - p->se.exec_start;
1814
1815 return delta < (s64)sysctl_sched_migration_cost;
1816}
1817
1818
dd41f596 1819void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1820{
dd41f596
IM
1821 int old_cpu = task_cpu(p);
1822 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1823 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1824 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1825 u64 clock_offset;
dd41f596
IM
1826
1827 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1828
1829#ifdef CONFIG_SCHEDSTATS
1830 if (p->se.wait_start)
1831 p->se.wait_start -= clock_offset;
dd41f596
IM
1832 if (p->se.sleep_start)
1833 p->se.sleep_start -= clock_offset;
1834 if (p->se.block_start)
1835 p->se.block_start -= clock_offset;
cc367732
IM
1836 if (old_cpu != new_cpu) {
1837 schedstat_inc(p, se.nr_migrations);
1838 if (task_hot(p, old_rq->clock, NULL))
1839 schedstat_inc(p, se.nr_forced2_migrations);
1840 }
6cfb0d5d 1841#endif
2830cf8c
SV
1842 p->se.vruntime -= old_cfsrq->min_vruntime -
1843 new_cfsrq->min_vruntime;
dd41f596
IM
1844
1845 __set_task_cpu(p, new_cpu);
c65cc870
IM
1846}
1847
70b97a7f 1848struct migration_req {
1da177e4 1849 struct list_head list;
1da177e4 1850
36c8b586 1851 struct task_struct *task;
1da177e4
LT
1852 int dest_cpu;
1853
1da177e4 1854 struct completion done;
70b97a7f 1855};
1da177e4
LT
1856
1857/*
1858 * The task's runqueue lock must be held.
1859 * Returns true if you have to wait for migration thread.
1860 */
36c8b586 1861static int
70b97a7f 1862migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1863{
70b97a7f 1864 struct rq *rq = task_rq(p);
1da177e4
LT
1865
1866 /*
1867 * If the task is not on a runqueue (and not running), then
1868 * it is sufficient to simply update the task's cpu field.
1869 */
dd41f596 1870 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1871 set_task_cpu(p, dest_cpu);
1872 return 0;
1873 }
1874
1875 init_completion(&req->done);
1da177e4
LT
1876 req->task = p;
1877 req->dest_cpu = dest_cpu;
1878 list_add(&req->list, &rq->migration_queue);
48f24c4d 1879
1da177e4
LT
1880 return 1;
1881}
1882
1883/*
1884 * wait_task_inactive - wait for a thread to unschedule.
1885 *
85ba2d86
RM
1886 * If @match_state is nonzero, it's the @p->state value just checked and
1887 * not expected to change. If it changes, i.e. @p might have woken up,
1888 * then return zero. When we succeed in waiting for @p to be off its CPU,
1889 * we return a positive number (its total switch count). If a second call
1890 * a short while later returns the same number, the caller can be sure that
1891 * @p has remained unscheduled the whole time.
1892 *
1da177e4
LT
1893 * The caller must ensure that the task *will* unschedule sometime soon,
1894 * else this function might spin for a *long* time. This function can't
1895 * be called with interrupts off, or it may introduce deadlock with
1896 * smp_call_function() if an IPI is sent by the same process we are
1897 * waiting to become inactive.
1898 */
85ba2d86 1899unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1900{
1901 unsigned long flags;
dd41f596 1902 int running, on_rq;
85ba2d86 1903 unsigned long ncsw;
70b97a7f 1904 struct rq *rq;
1da177e4 1905
3a5c359a
AK
1906 for (;;) {
1907 /*
1908 * We do the initial early heuristics without holding
1909 * any task-queue locks at all. We'll only try to get
1910 * the runqueue lock when things look like they will
1911 * work out!
1912 */
1913 rq = task_rq(p);
fa490cfd 1914
3a5c359a
AK
1915 /*
1916 * If the task is actively running on another CPU
1917 * still, just relax and busy-wait without holding
1918 * any locks.
1919 *
1920 * NOTE! Since we don't hold any locks, it's not
1921 * even sure that "rq" stays as the right runqueue!
1922 * But we don't care, since "task_running()" will
1923 * return false if the runqueue has changed and p
1924 * is actually now running somewhere else!
1925 */
85ba2d86
RM
1926 while (task_running(rq, p)) {
1927 if (match_state && unlikely(p->state != match_state))
1928 return 0;
3a5c359a 1929 cpu_relax();
85ba2d86 1930 }
fa490cfd 1931
3a5c359a
AK
1932 /*
1933 * Ok, time to look more closely! We need the rq
1934 * lock now, to be *sure*. If we're wrong, we'll
1935 * just go back and repeat.
1936 */
1937 rq = task_rq_lock(p, &flags);
1938 running = task_running(rq, p);
1939 on_rq = p->se.on_rq;
85ba2d86 1940 ncsw = 0;
f31e11d8 1941 if (!match_state || p->state == match_state)
93dcf55f 1942 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1943 task_rq_unlock(rq, &flags);
fa490cfd 1944
85ba2d86
RM
1945 /*
1946 * If it changed from the expected state, bail out now.
1947 */
1948 if (unlikely(!ncsw))
1949 break;
1950
3a5c359a
AK
1951 /*
1952 * Was it really running after all now that we
1953 * checked with the proper locks actually held?
1954 *
1955 * Oops. Go back and try again..
1956 */
1957 if (unlikely(running)) {
1958 cpu_relax();
1959 continue;
1960 }
fa490cfd 1961
3a5c359a
AK
1962 /*
1963 * It's not enough that it's not actively running,
1964 * it must be off the runqueue _entirely_, and not
1965 * preempted!
1966 *
1967 * So if it wa still runnable (but just not actively
1968 * running right now), it's preempted, and we should
1969 * yield - it could be a while.
1970 */
1971 if (unlikely(on_rq)) {
1972 schedule_timeout_uninterruptible(1);
1973 continue;
1974 }
fa490cfd 1975
3a5c359a
AK
1976 /*
1977 * Ahh, all good. It wasn't running, and it wasn't
1978 * runnable, which means that it will never become
1979 * running in the future either. We're all done!
1980 */
1981 break;
1982 }
85ba2d86
RM
1983
1984 return ncsw;
1da177e4
LT
1985}
1986
1987/***
1988 * kick_process - kick a running thread to enter/exit the kernel
1989 * @p: the to-be-kicked thread
1990 *
1991 * Cause a process which is running on another CPU to enter
1992 * kernel-mode, without any delay. (to get signals handled.)
1993 *
1994 * NOTE: this function doesnt have to take the runqueue lock,
1995 * because all it wants to ensure is that the remote task enters
1996 * the kernel. If the IPI races and the task has been migrated
1997 * to another CPU then no harm is done and the purpose has been
1998 * achieved as well.
1999 */
36c8b586 2000void kick_process(struct task_struct *p)
1da177e4
LT
2001{
2002 int cpu;
2003
2004 preempt_disable();
2005 cpu = task_cpu(p);
2006 if ((cpu != smp_processor_id()) && task_curr(p))
2007 smp_send_reschedule(cpu);
2008 preempt_enable();
2009}
2010
2011/*
2dd73a4f
PW
2012 * Return a low guess at the load of a migration-source cpu weighted
2013 * according to the scheduling class and "nice" value.
1da177e4
LT
2014 *
2015 * We want to under-estimate the load of migration sources, to
2016 * balance conservatively.
2017 */
a9957449 2018static unsigned long source_load(int cpu, int type)
1da177e4 2019{
70b97a7f 2020 struct rq *rq = cpu_rq(cpu);
dd41f596 2021 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2022
93b75217 2023 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2024 return total;
b910472d 2025
dd41f596 2026 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2027}
2028
2029/*
2dd73a4f
PW
2030 * Return a high guess at the load of a migration-target cpu weighted
2031 * according to the scheduling class and "nice" value.
1da177e4 2032 */
a9957449 2033static unsigned long target_load(int cpu, int type)
1da177e4 2034{
70b97a7f 2035 struct rq *rq = cpu_rq(cpu);
dd41f596 2036 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2037
93b75217 2038 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2039 return total;
3b0bd9bc 2040
dd41f596 2041 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2042}
2043
147cbb4b
NP
2044/*
2045 * find_idlest_group finds and returns the least busy CPU group within the
2046 * domain.
2047 */
2048static struct sched_group *
2049find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2050{
2051 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2052 unsigned long min_load = ULONG_MAX, this_load = 0;
2053 int load_idx = sd->forkexec_idx;
2054 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2055
2056 do {
2057 unsigned long load, avg_load;
2058 int local_group;
2059 int i;
2060
da5a5522
BD
2061 /* Skip over this group if it has no CPUs allowed */
2062 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2063 continue;
da5a5522 2064
147cbb4b 2065 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2066
2067 /* Tally up the load of all CPUs in the group */
2068 avg_load = 0;
2069
363ab6f1 2070 for_each_cpu_mask_nr(i, group->cpumask) {
147cbb4b
NP
2071 /* Bias balancing toward cpus of our domain */
2072 if (local_group)
2073 load = source_load(i, load_idx);
2074 else
2075 load = target_load(i, load_idx);
2076
2077 avg_load += load;
2078 }
2079
2080 /* Adjust by relative CPU power of the group */
5517d86b
ED
2081 avg_load = sg_div_cpu_power(group,
2082 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2083
2084 if (local_group) {
2085 this_load = avg_load;
2086 this = group;
2087 } else if (avg_load < min_load) {
2088 min_load = avg_load;
2089 idlest = group;
2090 }
3a5c359a 2091 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2092
2093 if (!idlest || 100*this_load < imbalance*min_load)
2094 return NULL;
2095 return idlest;
2096}
2097
2098/*
0feaece9 2099 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2100 */
95cdf3b7 2101static int
7c16ec58
MT
2102find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2103 cpumask_t *tmp)
147cbb4b
NP
2104{
2105 unsigned long load, min_load = ULONG_MAX;
2106 int idlest = -1;
2107 int i;
2108
da5a5522 2109 /* Traverse only the allowed CPUs */
7c16ec58 2110 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2111
363ab6f1 2112 for_each_cpu_mask_nr(i, *tmp) {
2dd73a4f 2113 load = weighted_cpuload(i);
147cbb4b
NP
2114
2115 if (load < min_load || (load == min_load && i == this_cpu)) {
2116 min_load = load;
2117 idlest = i;
2118 }
2119 }
2120
2121 return idlest;
2122}
2123
476d139c
NP
2124/*
2125 * sched_balance_self: balance the current task (running on cpu) in domains
2126 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2127 * SD_BALANCE_EXEC.
2128 *
2129 * Balance, ie. select the least loaded group.
2130 *
2131 * Returns the target CPU number, or the same CPU if no balancing is needed.
2132 *
2133 * preempt must be disabled.
2134 */
2135static int sched_balance_self(int cpu, int flag)
2136{
2137 struct task_struct *t = current;
2138 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2139
c96d145e 2140 for_each_domain(cpu, tmp) {
9761eea8
IM
2141 /*
2142 * If power savings logic is enabled for a domain, stop there.
2143 */
5c45bf27
SS
2144 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2145 break;
476d139c
NP
2146 if (tmp->flags & flag)
2147 sd = tmp;
c96d145e 2148 }
476d139c 2149
039a1c41
PZ
2150 if (sd)
2151 update_shares(sd);
2152
476d139c 2153 while (sd) {
7c16ec58 2154 cpumask_t span, tmpmask;
476d139c 2155 struct sched_group *group;
1a848870
SS
2156 int new_cpu, weight;
2157
2158 if (!(sd->flags & flag)) {
2159 sd = sd->child;
2160 continue;
2161 }
476d139c
NP
2162
2163 span = sd->span;
2164 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2165 if (!group) {
2166 sd = sd->child;
2167 continue;
2168 }
476d139c 2169
7c16ec58 2170 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2171 if (new_cpu == -1 || new_cpu == cpu) {
2172 /* Now try balancing at a lower domain level of cpu */
2173 sd = sd->child;
2174 continue;
2175 }
476d139c 2176
1a848870 2177 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2178 cpu = new_cpu;
476d139c
NP
2179 sd = NULL;
2180 weight = cpus_weight(span);
2181 for_each_domain(cpu, tmp) {
2182 if (weight <= cpus_weight(tmp->span))
2183 break;
2184 if (tmp->flags & flag)
2185 sd = tmp;
2186 }
2187 /* while loop will break here if sd == NULL */
2188 }
2189
2190 return cpu;
2191}
2192
2193#endif /* CONFIG_SMP */
1da177e4 2194
1da177e4
LT
2195/***
2196 * try_to_wake_up - wake up a thread
2197 * @p: the to-be-woken-up thread
2198 * @state: the mask of task states that can be woken
2199 * @sync: do a synchronous wakeup?
2200 *
2201 * Put it on the run-queue if it's not already there. The "current"
2202 * thread is always on the run-queue (except when the actual
2203 * re-schedule is in progress), and as such you're allowed to do
2204 * the simpler "current->state = TASK_RUNNING" to mark yourself
2205 * runnable without the overhead of this.
2206 *
2207 * returns failure only if the task is already active.
2208 */
36c8b586 2209static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2210{
cc367732 2211 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2212 unsigned long flags;
2213 long old_state;
70b97a7f 2214 struct rq *rq;
1da177e4 2215
b85d0667
IM
2216 if (!sched_feat(SYNC_WAKEUPS))
2217 sync = 0;
2218
2398f2c6
PZ
2219#ifdef CONFIG_SMP
2220 if (sched_feat(LB_WAKEUP_UPDATE)) {
2221 struct sched_domain *sd;
2222
2223 this_cpu = raw_smp_processor_id();
2224 cpu = task_cpu(p);
2225
2226 for_each_domain(this_cpu, sd) {
2227 if (cpu_isset(cpu, sd->span)) {
2228 update_shares(sd);
2229 break;
2230 }
2231 }
2232 }
2233#endif
2234
04e2f174 2235 smp_wmb();
1da177e4
LT
2236 rq = task_rq_lock(p, &flags);
2237 old_state = p->state;
2238 if (!(old_state & state))
2239 goto out;
2240
dd41f596 2241 if (p->se.on_rq)
1da177e4
LT
2242 goto out_running;
2243
2244 cpu = task_cpu(p);
cc367732 2245 orig_cpu = cpu;
1da177e4
LT
2246 this_cpu = smp_processor_id();
2247
2248#ifdef CONFIG_SMP
2249 if (unlikely(task_running(rq, p)))
2250 goto out_activate;
2251
5d2f5a61
DA
2252 cpu = p->sched_class->select_task_rq(p, sync);
2253 if (cpu != orig_cpu) {
2254 set_task_cpu(p, cpu);
1da177e4
LT
2255 task_rq_unlock(rq, &flags);
2256 /* might preempt at this point */
2257 rq = task_rq_lock(p, &flags);
2258 old_state = p->state;
2259 if (!(old_state & state))
2260 goto out;
dd41f596 2261 if (p->se.on_rq)
1da177e4
LT
2262 goto out_running;
2263
2264 this_cpu = smp_processor_id();
2265 cpu = task_cpu(p);
2266 }
2267
e7693a36
GH
2268#ifdef CONFIG_SCHEDSTATS
2269 schedstat_inc(rq, ttwu_count);
2270 if (cpu == this_cpu)
2271 schedstat_inc(rq, ttwu_local);
2272 else {
2273 struct sched_domain *sd;
2274 for_each_domain(this_cpu, sd) {
2275 if (cpu_isset(cpu, sd->span)) {
2276 schedstat_inc(sd, ttwu_wake_remote);
2277 break;
2278 }
2279 }
2280 }
6d6bc0ad 2281#endif /* CONFIG_SCHEDSTATS */
e7693a36 2282
1da177e4
LT
2283out_activate:
2284#endif /* CONFIG_SMP */
cc367732
IM
2285 schedstat_inc(p, se.nr_wakeups);
2286 if (sync)
2287 schedstat_inc(p, se.nr_wakeups_sync);
2288 if (orig_cpu != cpu)
2289 schedstat_inc(p, se.nr_wakeups_migrate);
2290 if (cpu == this_cpu)
2291 schedstat_inc(p, se.nr_wakeups_local);
2292 else
2293 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2294 update_rq_clock(rq);
dd41f596 2295 activate_task(rq, p, 1);
1da177e4
LT
2296 success = 1;
2297
2298out_running:
5b82a1b0
MD
2299 trace_mark(kernel_sched_wakeup,
2300 "pid %d state %ld ## rq %p task %p rq->curr %p",
2301 p->pid, p->state, rq, p, rq->curr);
15afe09b 2302 check_preempt_curr(rq, p, sync);
4ae7d5ce 2303
1da177e4 2304 p->state = TASK_RUNNING;
9a897c5a
SR
2305#ifdef CONFIG_SMP
2306 if (p->sched_class->task_wake_up)
2307 p->sched_class->task_wake_up(rq, p);
2308#endif
1da177e4 2309out:
2087a1ad
GH
2310 current->se.last_wakeup = current->se.sum_exec_runtime;
2311
1da177e4
LT
2312 task_rq_unlock(rq, &flags);
2313
2314 return success;
2315}
2316
7ad5b3a5 2317int wake_up_process(struct task_struct *p)
1da177e4 2318{
d9514f6c 2319 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2320}
1da177e4
LT
2321EXPORT_SYMBOL(wake_up_process);
2322
7ad5b3a5 2323int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2324{
2325 return try_to_wake_up(p, state, 0);
2326}
2327
1da177e4
LT
2328/*
2329 * Perform scheduler related setup for a newly forked process p.
2330 * p is forked by current.
dd41f596
IM
2331 *
2332 * __sched_fork() is basic setup used by init_idle() too:
2333 */
2334static void __sched_fork(struct task_struct *p)
2335{
dd41f596
IM
2336 p->se.exec_start = 0;
2337 p->se.sum_exec_runtime = 0;
f6cf891c 2338 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2339 p->se.last_wakeup = 0;
2340 p->se.avg_overlap = 0;
6cfb0d5d
IM
2341
2342#ifdef CONFIG_SCHEDSTATS
2343 p->se.wait_start = 0;
dd41f596
IM
2344 p->se.sum_sleep_runtime = 0;
2345 p->se.sleep_start = 0;
dd41f596
IM
2346 p->se.block_start = 0;
2347 p->se.sleep_max = 0;
2348 p->se.block_max = 0;
2349 p->se.exec_max = 0;
eba1ed4b 2350 p->se.slice_max = 0;
dd41f596 2351 p->se.wait_max = 0;
6cfb0d5d 2352#endif
476d139c 2353
fa717060 2354 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2355 p->se.on_rq = 0;
4a55bd5e 2356 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2357
e107be36
AK
2358#ifdef CONFIG_PREEMPT_NOTIFIERS
2359 INIT_HLIST_HEAD(&p->preempt_notifiers);
2360#endif
2361
1da177e4
LT
2362 /*
2363 * We mark the process as running here, but have not actually
2364 * inserted it onto the runqueue yet. This guarantees that
2365 * nobody will actually run it, and a signal or other external
2366 * event cannot wake it up and insert it on the runqueue either.
2367 */
2368 p->state = TASK_RUNNING;
dd41f596
IM
2369}
2370
2371/*
2372 * fork()/clone()-time setup:
2373 */
2374void sched_fork(struct task_struct *p, int clone_flags)
2375{
2376 int cpu = get_cpu();
2377
2378 __sched_fork(p);
2379
2380#ifdef CONFIG_SMP
2381 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2382#endif
02e4bac2 2383 set_task_cpu(p, cpu);
b29739f9
IM
2384
2385 /*
2386 * Make sure we do not leak PI boosting priority to the child:
2387 */
2388 p->prio = current->normal_prio;
2ddbf952
HS
2389 if (!rt_prio(p->prio))
2390 p->sched_class = &fair_sched_class;
b29739f9 2391
52f17b6c 2392#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2393 if (likely(sched_info_on()))
52f17b6c 2394 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2395#endif
d6077cb8 2396#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2397 p->oncpu = 0;
2398#endif
1da177e4 2399#ifdef CONFIG_PREEMPT
4866cde0 2400 /* Want to start with kernel preemption disabled. */
a1261f54 2401 task_thread_info(p)->preempt_count = 1;
1da177e4 2402#endif
476d139c 2403 put_cpu();
1da177e4
LT
2404}
2405
2406/*
2407 * wake_up_new_task - wake up a newly created task for the first time.
2408 *
2409 * This function will do some initial scheduler statistics housekeeping
2410 * that must be done for every newly created context, then puts the task
2411 * on the runqueue and wakes it.
2412 */
7ad5b3a5 2413void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2414{
2415 unsigned long flags;
dd41f596 2416 struct rq *rq;
1da177e4
LT
2417
2418 rq = task_rq_lock(p, &flags);
147cbb4b 2419 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2420 update_rq_clock(rq);
1da177e4
LT
2421
2422 p->prio = effective_prio(p);
2423
b9dca1e0 2424 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2425 activate_task(rq, p, 0);
1da177e4 2426 } else {
1da177e4 2427 /*
dd41f596
IM
2428 * Let the scheduling class do new task startup
2429 * management (if any):
1da177e4 2430 */
ee0827d8 2431 p->sched_class->task_new(rq, p);
c09595f6 2432 inc_nr_running(rq);
1da177e4 2433 }
5b82a1b0
MD
2434 trace_mark(kernel_sched_wakeup_new,
2435 "pid %d state %ld ## rq %p task %p rq->curr %p",
2436 p->pid, p->state, rq, p, rq->curr);
15afe09b 2437 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2438#ifdef CONFIG_SMP
2439 if (p->sched_class->task_wake_up)
2440 p->sched_class->task_wake_up(rq, p);
2441#endif
dd41f596 2442 task_rq_unlock(rq, &flags);
1da177e4
LT
2443}
2444
e107be36
AK
2445#ifdef CONFIG_PREEMPT_NOTIFIERS
2446
2447/**
421cee29
RD
2448 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2449 * @notifier: notifier struct to register
e107be36
AK
2450 */
2451void preempt_notifier_register(struct preempt_notifier *notifier)
2452{
2453 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2454}
2455EXPORT_SYMBOL_GPL(preempt_notifier_register);
2456
2457/**
2458 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2459 * @notifier: notifier struct to unregister
e107be36
AK
2460 *
2461 * This is safe to call from within a preemption notifier.
2462 */
2463void preempt_notifier_unregister(struct preempt_notifier *notifier)
2464{
2465 hlist_del(&notifier->link);
2466}
2467EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2468
2469static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2470{
2471 struct preempt_notifier *notifier;
2472 struct hlist_node *node;
2473
2474 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2475 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2476}
2477
2478static void
2479fire_sched_out_preempt_notifiers(struct task_struct *curr,
2480 struct task_struct *next)
2481{
2482 struct preempt_notifier *notifier;
2483 struct hlist_node *node;
2484
2485 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2486 notifier->ops->sched_out(notifier, next);
2487}
2488
6d6bc0ad 2489#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2490
2491static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2492{
2493}
2494
2495static void
2496fire_sched_out_preempt_notifiers(struct task_struct *curr,
2497 struct task_struct *next)
2498{
2499}
2500
6d6bc0ad 2501#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2502
4866cde0
NP
2503/**
2504 * prepare_task_switch - prepare to switch tasks
2505 * @rq: the runqueue preparing to switch
421cee29 2506 * @prev: the current task that is being switched out
4866cde0
NP
2507 * @next: the task we are going to switch to.
2508 *
2509 * This is called with the rq lock held and interrupts off. It must
2510 * be paired with a subsequent finish_task_switch after the context
2511 * switch.
2512 *
2513 * prepare_task_switch sets up locking and calls architecture specific
2514 * hooks.
2515 */
e107be36
AK
2516static inline void
2517prepare_task_switch(struct rq *rq, struct task_struct *prev,
2518 struct task_struct *next)
4866cde0 2519{
e107be36 2520 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2521 prepare_lock_switch(rq, next);
2522 prepare_arch_switch(next);
2523}
2524
1da177e4
LT
2525/**
2526 * finish_task_switch - clean up after a task-switch
344babaa 2527 * @rq: runqueue associated with task-switch
1da177e4
LT
2528 * @prev: the thread we just switched away from.
2529 *
4866cde0
NP
2530 * finish_task_switch must be called after the context switch, paired
2531 * with a prepare_task_switch call before the context switch.
2532 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2533 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2534 *
2535 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2536 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2537 * with the lock held can cause deadlocks; see schedule() for
2538 * details.)
2539 */
a9957449 2540static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2541 __releases(rq->lock)
2542{
1da177e4 2543 struct mm_struct *mm = rq->prev_mm;
55a101f8 2544 long prev_state;
1da177e4
LT
2545
2546 rq->prev_mm = NULL;
2547
2548 /*
2549 * A task struct has one reference for the use as "current".
c394cc9f 2550 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2551 * schedule one last time. The schedule call will never return, and
2552 * the scheduled task must drop that reference.
c394cc9f 2553 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2554 * still held, otherwise prev could be scheduled on another cpu, die
2555 * there before we look at prev->state, and then the reference would
2556 * be dropped twice.
2557 * Manfred Spraul <manfred@colorfullife.com>
2558 */
55a101f8 2559 prev_state = prev->state;
4866cde0
NP
2560 finish_arch_switch(prev);
2561 finish_lock_switch(rq, prev);
9a897c5a
SR
2562#ifdef CONFIG_SMP
2563 if (current->sched_class->post_schedule)
2564 current->sched_class->post_schedule(rq);
2565#endif
e8fa1362 2566
e107be36 2567 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2568 if (mm)
2569 mmdrop(mm);
c394cc9f 2570 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2571 /*
2572 * Remove function-return probe instances associated with this
2573 * task and put them back on the free list.
9761eea8 2574 */
c6fd91f0 2575 kprobe_flush_task(prev);
1da177e4 2576 put_task_struct(prev);
c6fd91f0 2577 }
1da177e4
LT
2578}
2579
2580/**
2581 * schedule_tail - first thing a freshly forked thread must call.
2582 * @prev: the thread we just switched away from.
2583 */
36c8b586 2584asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2585 __releases(rq->lock)
2586{
70b97a7f
IM
2587 struct rq *rq = this_rq();
2588
4866cde0
NP
2589 finish_task_switch(rq, prev);
2590#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2591 /* In this case, finish_task_switch does not reenable preemption */
2592 preempt_enable();
2593#endif
1da177e4 2594 if (current->set_child_tid)
b488893a 2595 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2596}
2597
2598/*
2599 * context_switch - switch to the new MM and the new
2600 * thread's register state.
2601 */
dd41f596 2602static inline void
70b97a7f 2603context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2604 struct task_struct *next)
1da177e4 2605{
dd41f596 2606 struct mm_struct *mm, *oldmm;
1da177e4 2607
e107be36 2608 prepare_task_switch(rq, prev, next);
5b82a1b0
MD
2609 trace_mark(kernel_sched_schedule,
2610 "prev_pid %d next_pid %d prev_state %ld "
2611 "## rq %p prev %p next %p",
2612 prev->pid, next->pid, prev->state,
2613 rq, prev, next);
dd41f596
IM
2614 mm = next->mm;
2615 oldmm = prev->active_mm;
9226d125
ZA
2616 /*
2617 * For paravirt, this is coupled with an exit in switch_to to
2618 * combine the page table reload and the switch backend into
2619 * one hypercall.
2620 */
2621 arch_enter_lazy_cpu_mode();
2622
dd41f596 2623 if (unlikely(!mm)) {
1da177e4
LT
2624 next->active_mm = oldmm;
2625 atomic_inc(&oldmm->mm_count);
2626 enter_lazy_tlb(oldmm, next);
2627 } else
2628 switch_mm(oldmm, mm, next);
2629
dd41f596 2630 if (unlikely(!prev->mm)) {
1da177e4 2631 prev->active_mm = NULL;
1da177e4
LT
2632 rq->prev_mm = oldmm;
2633 }
3a5f5e48
IM
2634 /*
2635 * Since the runqueue lock will be released by the next
2636 * task (which is an invalid locking op but in the case
2637 * of the scheduler it's an obvious special-case), so we
2638 * do an early lockdep release here:
2639 */
2640#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2641 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2642#endif
1da177e4
LT
2643
2644 /* Here we just switch the register state and the stack. */
2645 switch_to(prev, next, prev);
2646
dd41f596
IM
2647 barrier();
2648 /*
2649 * this_rq must be evaluated again because prev may have moved
2650 * CPUs since it called schedule(), thus the 'rq' on its stack
2651 * frame will be invalid.
2652 */
2653 finish_task_switch(this_rq(), prev);
1da177e4
LT
2654}
2655
2656/*
2657 * nr_running, nr_uninterruptible and nr_context_switches:
2658 *
2659 * externally visible scheduler statistics: current number of runnable
2660 * threads, current number of uninterruptible-sleeping threads, total
2661 * number of context switches performed since bootup.
2662 */
2663unsigned long nr_running(void)
2664{
2665 unsigned long i, sum = 0;
2666
2667 for_each_online_cpu(i)
2668 sum += cpu_rq(i)->nr_running;
2669
2670 return sum;
2671}
2672
2673unsigned long nr_uninterruptible(void)
2674{
2675 unsigned long i, sum = 0;
2676
0a945022 2677 for_each_possible_cpu(i)
1da177e4
LT
2678 sum += cpu_rq(i)->nr_uninterruptible;
2679
2680 /*
2681 * Since we read the counters lockless, it might be slightly
2682 * inaccurate. Do not allow it to go below zero though:
2683 */
2684 if (unlikely((long)sum < 0))
2685 sum = 0;
2686
2687 return sum;
2688}
2689
2690unsigned long long nr_context_switches(void)
2691{
cc94abfc
SR
2692 int i;
2693 unsigned long long sum = 0;
1da177e4 2694
0a945022 2695 for_each_possible_cpu(i)
1da177e4
LT
2696 sum += cpu_rq(i)->nr_switches;
2697
2698 return sum;
2699}
2700
2701unsigned long nr_iowait(void)
2702{
2703 unsigned long i, sum = 0;
2704
0a945022 2705 for_each_possible_cpu(i)
1da177e4
LT
2706 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2707
2708 return sum;
2709}
2710
db1b1fef
JS
2711unsigned long nr_active(void)
2712{
2713 unsigned long i, running = 0, uninterruptible = 0;
2714
2715 for_each_online_cpu(i) {
2716 running += cpu_rq(i)->nr_running;
2717 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2718 }
2719
2720 if (unlikely((long)uninterruptible < 0))
2721 uninterruptible = 0;
2722
2723 return running + uninterruptible;
2724}
2725
48f24c4d 2726/*
dd41f596
IM
2727 * Update rq->cpu_load[] statistics. This function is usually called every
2728 * scheduler tick (TICK_NSEC).
48f24c4d 2729 */
dd41f596 2730static void update_cpu_load(struct rq *this_rq)
48f24c4d 2731{
495eca49 2732 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2733 int i, scale;
2734
2735 this_rq->nr_load_updates++;
dd41f596
IM
2736
2737 /* Update our load: */
2738 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2739 unsigned long old_load, new_load;
2740
2741 /* scale is effectively 1 << i now, and >> i divides by scale */
2742
2743 old_load = this_rq->cpu_load[i];
2744 new_load = this_load;
a25707f3
IM
2745 /*
2746 * Round up the averaging division if load is increasing. This
2747 * prevents us from getting stuck on 9 if the load is 10, for
2748 * example.
2749 */
2750 if (new_load > old_load)
2751 new_load += scale-1;
dd41f596
IM
2752 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2753 }
48f24c4d
IM
2754}
2755
dd41f596
IM
2756#ifdef CONFIG_SMP
2757
1da177e4
LT
2758/*
2759 * double_rq_lock - safely lock two runqueues
2760 *
2761 * Note this does not disable interrupts like task_rq_lock,
2762 * you need to do so manually before calling.
2763 */
70b97a7f 2764static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2765 __acquires(rq1->lock)
2766 __acquires(rq2->lock)
2767{
054b9108 2768 BUG_ON(!irqs_disabled());
1da177e4
LT
2769 if (rq1 == rq2) {
2770 spin_lock(&rq1->lock);
2771 __acquire(rq2->lock); /* Fake it out ;) */
2772 } else {
c96d145e 2773 if (rq1 < rq2) {
1da177e4 2774 spin_lock(&rq1->lock);
5e710e37 2775 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2776 } else {
2777 spin_lock(&rq2->lock);
5e710e37 2778 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2779 }
2780 }
6e82a3be
IM
2781 update_rq_clock(rq1);
2782 update_rq_clock(rq2);
1da177e4
LT
2783}
2784
2785/*
2786 * double_rq_unlock - safely unlock two runqueues
2787 *
2788 * Note this does not restore interrupts like task_rq_unlock,
2789 * you need to do so manually after calling.
2790 */
70b97a7f 2791static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2792 __releases(rq1->lock)
2793 __releases(rq2->lock)
2794{
2795 spin_unlock(&rq1->lock);
2796 if (rq1 != rq2)
2797 spin_unlock(&rq2->lock);
2798 else
2799 __release(rq2->lock);
2800}
2801
2802/*
2803 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2804 */
e8fa1362 2805static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2806 __releases(this_rq->lock)
2807 __acquires(busiest->lock)
2808 __acquires(this_rq->lock)
2809{
e8fa1362
SR
2810 int ret = 0;
2811
054b9108
KK
2812 if (unlikely(!irqs_disabled())) {
2813 /* printk() doesn't work good under rq->lock */
2814 spin_unlock(&this_rq->lock);
2815 BUG_ON(1);
2816 }
1da177e4 2817 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2818 if (busiest < this_rq) {
1da177e4
LT
2819 spin_unlock(&this_rq->lock);
2820 spin_lock(&busiest->lock);
5e710e37 2821 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
e8fa1362 2822 ret = 1;
1da177e4 2823 } else
5e710e37 2824 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1da177e4 2825 }
e8fa1362 2826 return ret;
1da177e4
LT
2827}
2828
1b12bbc7
PZ
2829static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2830 __releases(busiest->lock)
2831{
2832 spin_unlock(&busiest->lock);
2833 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2834}
2835
1da177e4
LT
2836/*
2837 * If dest_cpu is allowed for this process, migrate the task to it.
2838 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2839 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2840 * the cpu_allowed mask is restored.
2841 */
36c8b586 2842static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2843{
70b97a7f 2844 struct migration_req req;
1da177e4 2845 unsigned long flags;
70b97a7f 2846 struct rq *rq;
1da177e4
LT
2847
2848 rq = task_rq_lock(p, &flags);
2849 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2850 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2851 goto out;
2852
2853 /* force the process onto the specified CPU */
2854 if (migrate_task(p, dest_cpu, &req)) {
2855 /* Need to wait for migration thread (might exit: take ref). */
2856 struct task_struct *mt = rq->migration_thread;
36c8b586 2857
1da177e4
LT
2858 get_task_struct(mt);
2859 task_rq_unlock(rq, &flags);
2860 wake_up_process(mt);
2861 put_task_struct(mt);
2862 wait_for_completion(&req.done);
36c8b586 2863
1da177e4
LT
2864 return;
2865 }
2866out:
2867 task_rq_unlock(rq, &flags);
2868}
2869
2870/*
476d139c
NP
2871 * sched_exec - execve() is a valuable balancing opportunity, because at
2872 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2873 */
2874void sched_exec(void)
2875{
1da177e4 2876 int new_cpu, this_cpu = get_cpu();
476d139c 2877 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2878 put_cpu();
476d139c
NP
2879 if (new_cpu != this_cpu)
2880 sched_migrate_task(current, new_cpu);
1da177e4
LT
2881}
2882
2883/*
2884 * pull_task - move a task from a remote runqueue to the local runqueue.
2885 * Both runqueues must be locked.
2886 */
dd41f596
IM
2887static void pull_task(struct rq *src_rq, struct task_struct *p,
2888 struct rq *this_rq, int this_cpu)
1da177e4 2889{
2e1cb74a 2890 deactivate_task(src_rq, p, 0);
1da177e4 2891 set_task_cpu(p, this_cpu);
dd41f596 2892 activate_task(this_rq, p, 0);
1da177e4
LT
2893 /*
2894 * Note that idle threads have a prio of MAX_PRIO, for this test
2895 * to be always true for them.
2896 */
15afe09b 2897 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2898}
2899
2900/*
2901 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2902 */
858119e1 2903static
70b97a7f 2904int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2905 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2906 int *all_pinned)
1da177e4
LT
2907{
2908 /*
2909 * We do not migrate tasks that are:
2910 * 1) running (obviously), or
2911 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2912 * 3) are cache-hot on their current CPU.
2913 */
cc367732
IM
2914 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2915 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2916 return 0;
cc367732 2917 }
81026794
NP
2918 *all_pinned = 0;
2919
cc367732
IM
2920 if (task_running(rq, p)) {
2921 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2922 return 0;
cc367732 2923 }
1da177e4 2924
da84d961
IM
2925 /*
2926 * Aggressive migration if:
2927 * 1) task is cache cold, or
2928 * 2) too many balance attempts have failed.
2929 */
2930
6bc1665b
IM
2931 if (!task_hot(p, rq->clock, sd) ||
2932 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2933#ifdef CONFIG_SCHEDSTATS
cc367732 2934 if (task_hot(p, rq->clock, sd)) {
da84d961 2935 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2936 schedstat_inc(p, se.nr_forced_migrations);
2937 }
da84d961
IM
2938#endif
2939 return 1;
2940 }
2941
cc367732
IM
2942 if (task_hot(p, rq->clock, sd)) {
2943 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2944 return 0;
cc367732 2945 }
1da177e4
LT
2946 return 1;
2947}
2948
e1d1484f
PW
2949static unsigned long
2950balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2951 unsigned long max_load_move, struct sched_domain *sd,
2952 enum cpu_idle_type idle, int *all_pinned,
2953 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2954{
051c6764 2955 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2956 struct task_struct *p;
2957 long rem_load_move = max_load_move;
1da177e4 2958
e1d1484f 2959 if (max_load_move == 0)
1da177e4
LT
2960 goto out;
2961
81026794
NP
2962 pinned = 1;
2963
1da177e4 2964 /*
dd41f596 2965 * Start the load-balancing iterator:
1da177e4 2966 */
dd41f596
IM
2967 p = iterator->start(iterator->arg);
2968next:
b82d9fdd 2969 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2970 goto out;
051c6764
PZ
2971
2972 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2973 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2974 p = iterator->next(iterator->arg);
2975 goto next;
1da177e4
LT
2976 }
2977
dd41f596 2978 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2979 pulled++;
dd41f596 2980 rem_load_move -= p->se.load.weight;
1da177e4 2981
2dd73a4f 2982 /*
b82d9fdd 2983 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2984 */
e1d1484f 2985 if (rem_load_move > 0) {
a4ac01c3
PW
2986 if (p->prio < *this_best_prio)
2987 *this_best_prio = p->prio;
dd41f596
IM
2988 p = iterator->next(iterator->arg);
2989 goto next;
1da177e4
LT
2990 }
2991out:
2992 /*
e1d1484f 2993 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2994 * so we can safely collect pull_task() stats here rather than
2995 * inside pull_task().
2996 */
2997 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2998
2999 if (all_pinned)
3000 *all_pinned = pinned;
e1d1484f
PW
3001
3002 return max_load_move - rem_load_move;
1da177e4
LT
3003}
3004
dd41f596 3005/*
43010659
PW
3006 * move_tasks tries to move up to max_load_move weighted load from busiest to
3007 * this_rq, as part of a balancing operation within domain "sd".
3008 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3009 *
3010 * Called with both runqueues locked.
3011 */
3012static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3013 unsigned long max_load_move,
dd41f596
IM
3014 struct sched_domain *sd, enum cpu_idle_type idle,
3015 int *all_pinned)
3016{
5522d5d5 3017 const struct sched_class *class = sched_class_highest;
43010659 3018 unsigned long total_load_moved = 0;
a4ac01c3 3019 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3020
3021 do {
43010659
PW
3022 total_load_moved +=
3023 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3024 max_load_move - total_load_moved,
a4ac01c3 3025 sd, idle, all_pinned, &this_best_prio);
dd41f596 3026 class = class->next;
c4acb2c0
GH
3027
3028 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3029 break;
3030
43010659 3031 } while (class && max_load_move > total_load_moved);
dd41f596 3032
43010659
PW
3033 return total_load_moved > 0;
3034}
3035
e1d1484f
PW
3036static int
3037iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3038 struct sched_domain *sd, enum cpu_idle_type idle,
3039 struct rq_iterator *iterator)
3040{
3041 struct task_struct *p = iterator->start(iterator->arg);
3042 int pinned = 0;
3043
3044 while (p) {
3045 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3046 pull_task(busiest, p, this_rq, this_cpu);
3047 /*
3048 * Right now, this is only the second place pull_task()
3049 * is called, so we can safely collect pull_task()
3050 * stats here rather than inside pull_task().
3051 */
3052 schedstat_inc(sd, lb_gained[idle]);
3053
3054 return 1;
3055 }
3056 p = iterator->next(iterator->arg);
3057 }
3058
3059 return 0;
3060}
3061
43010659
PW
3062/*
3063 * move_one_task tries to move exactly one task from busiest to this_rq, as
3064 * part of active balancing operations within "domain".
3065 * Returns 1 if successful and 0 otherwise.
3066 *
3067 * Called with both runqueues locked.
3068 */
3069static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3070 struct sched_domain *sd, enum cpu_idle_type idle)
3071{
5522d5d5 3072 const struct sched_class *class;
43010659
PW
3073
3074 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3075 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3076 return 1;
3077
3078 return 0;
dd41f596
IM
3079}
3080
1da177e4
LT
3081/*
3082 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3083 * domain. It calculates and returns the amount of weighted load which
3084 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3085 */
3086static struct sched_group *
3087find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3088 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3089 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3090{
3091 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3092 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3093 unsigned long max_pull;
2dd73a4f
PW
3094 unsigned long busiest_load_per_task, busiest_nr_running;
3095 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3096 int load_idx, group_imb = 0;
5c45bf27
SS
3097#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3098 int power_savings_balance = 1;
3099 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3100 unsigned long min_nr_running = ULONG_MAX;
3101 struct sched_group *group_min = NULL, *group_leader = NULL;
3102#endif
1da177e4
LT
3103
3104 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3105 busiest_load_per_task = busiest_nr_running = 0;
3106 this_load_per_task = this_nr_running = 0;
408ed066 3107
d15bcfdb 3108 if (idle == CPU_NOT_IDLE)
7897986b 3109 load_idx = sd->busy_idx;
d15bcfdb 3110 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3111 load_idx = sd->newidle_idx;
3112 else
3113 load_idx = sd->idle_idx;
1da177e4
LT
3114
3115 do {
908a7c1b 3116 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3117 int local_group;
3118 int i;
908a7c1b 3119 int __group_imb = 0;
783609c6 3120 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3121 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3122 unsigned long sum_avg_load_per_task;
3123 unsigned long avg_load_per_task;
1da177e4
LT
3124
3125 local_group = cpu_isset(this_cpu, group->cpumask);
3126
783609c6
SS
3127 if (local_group)
3128 balance_cpu = first_cpu(group->cpumask);
3129
1da177e4 3130 /* Tally up the load of all CPUs in the group */
2dd73a4f 3131 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3132 sum_avg_load_per_task = avg_load_per_task = 0;
3133
908a7c1b
KC
3134 max_cpu_load = 0;
3135 min_cpu_load = ~0UL;
1da177e4 3136
363ab6f1 3137 for_each_cpu_mask_nr(i, group->cpumask) {
0a2966b4
CL
3138 struct rq *rq;
3139
3140 if (!cpu_isset(i, *cpus))
3141 continue;
3142
3143 rq = cpu_rq(i);
2dd73a4f 3144
9439aab8 3145 if (*sd_idle && rq->nr_running)
5969fe06
NP
3146 *sd_idle = 0;
3147
1da177e4 3148 /* Bias balancing toward cpus of our domain */
783609c6
SS
3149 if (local_group) {
3150 if (idle_cpu(i) && !first_idle_cpu) {
3151 first_idle_cpu = 1;
3152 balance_cpu = i;
3153 }
3154
a2000572 3155 load = target_load(i, load_idx);
908a7c1b 3156 } else {
a2000572 3157 load = source_load(i, load_idx);
908a7c1b
KC
3158 if (load > max_cpu_load)
3159 max_cpu_load = load;
3160 if (min_cpu_load > load)
3161 min_cpu_load = load;
3162 }
1da177e4
LT
3163
3164 avg_load += load;
2dd73a4f 3165 sum_nr_running += rq->nr_running;
dd41f596 3166 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3167
3168 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3169 }
3170
783609c6
SS
3171 /*
3172 * First idle cpu or the first cpu(busiest) in this sched group
3173 * is eligible for doing load balancing at this and above
9439aab8
SS
3174 * domains. In the newly idle case, we will allow all the cpu's
3175 * to do the newly idle load balance.
783609c6 3176 */
9439aab8
SS
3177 if (idle != CPU_NEWLY_IDLE && local_group &&
3178 balance_cpu != this_cpu && balance) {
783609c6
SS
3179 *balance = 0;
3180 goto ret;
3181 }
3182
1da177e4 3183 total_load += avg_load;
5517d86b 3184 total_pwr += group->__cpu_power;
1da177e4
LT
3185
3186 /* Adjust by relative CPU power of the group */
5517d86b
ED
3187 avg_load = sg_div_cpu_power(group,
3188 avg_load * SCHED_LOAD_SCALE);
1da177e4 3189
408ed066
PZ
3190
3191 /*
3192 * Consider the group unbalanced when the imbalance is larger
3193 * than the average weight of two tasks.
3194 *
3195 * APZ: with cgroup the avg task weight can vary wildly and
3196 * might not be a suitable number - should we keep a
3197 * normalized nr_running number somewhere that negates
3198 * the hierarchy?
3199 */
3200 avg_load_per_task = sg_div_cpu_power(group,
3201 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3202
3203 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3204 __group_imb = 1;
3205
5517d86b 3206 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3207
1da177e4
LT
3208 if (local_group) {
3209 this_load = avg_load;
3210 this = group;
2dd73a4f
PW
3211 this_nr_running = sum_nr_running;
3212 this_load_per_task = sum_weighted_load;
3213 } else if (avg_load > max_load &&
908a7c1b 3214 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3215 max_load = avg_load;
3216 busiest = group;
2dd73a4f
PW
3217 busiest_nr_running = sum_nr_running;
3218 busiest_load_per_task = sum_weighted_load;
908a7c1b 3219 group_imb = __group_imb;
1da177e4 3220 }
5c45bf27
SS
3221
3222#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3223 /*
3224 * Busy processors will not participate in power savings
3225 * balance.
3226 */
dd41f596
IM
3227 if (idle == CPU_NOT_IDLE ||
3228 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3229 goto group_next;
5c45bf27
SS
3230
3231 /*
3232 * If the local group is idle or completely loaded
3233 * no need to do power savings balance at this domain
3234 */
3235 if (local_group && (this_nr_running >= group_capacity ||
3236 !this_nr_running))
3237 power_savings_balance = 0;
3238
dd41f596 3239 /*
5c45bf27
SS
3240 * If a group is already running at full capacity or idle,
3241 * don't include that group in power savings calculations
dd41f596
IM
3242 */
3243 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3244 || !sum_nr_running)
dd41f596 3245 goto group_next;
5c45bf27 3246
dd41f596 3247 /*
5c45bf27 3248 * Calculate the group which has the least non-idle load.
dd41f596
IM
3249 * This is the group from where we need to pick up the load
3250 * for saving power
3251 */
3252 if ((sum_nr_running < min_nr_running) ||
3253 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3254 first_cpu(group->cpumask) <
3255 first_cpu(group_min->cpumask))) {
dd41f596
IM
3256 group_min = group;
3257 min_nr_running = sum_nr_running;
5c45bf27
SS
3258 min_load_per_task = sum_weighted_load /
3259 sum_nr_running;
dd41f596 3260 }
5c45bf27 3261
dd41f596 3262 /*
5c45bf27 3263 * Calculate the group which is almost near its
dd41f596
IM
3264 * capacity but still has some space to pick up some load
3265 * from other group and save more power
3266 */
3267 if (sum_nr_running <= group_capacity - 1) {
3268 if (sum_nr_running > leader_nr_running ||
3269 (sum_nr_running == leader_nr_running &&
3270 first_cpu(group->cpumask) >
3271 first_cpu(group_leader->cpumask))) {
3272 group_leader = group;
3273 leader_nr_running = sum_nr_running;
3274 }
48f24c4d 3275 }
5c45bf27
SS
3276group_next:
3277#endif
1da177e4
LT
3278 group = group->next;
3279 } while (group != sd->groups);
3280
2dd73a4f 3281 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3282 goto out_balanced;
3283
3284 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3285
3286 if (this_load >= avg_load ||
3287 100*max_load <= sd->imbalance_pct*this_load)
3288 goto out_balanced;
3289
2dd73a4f 3290 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3291 if (group_imb)
3292 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3293
1da177e4
LT
3294 /*
3295 * We're trying to get all the cpus to the average_load, so we don't
3296 * want to push ourselves above the average load, nor do we wish to
3297 * reduce the max loaded cpu below the average load, as either of these
3298 * actions would just result in more rebalancing later, and ping-pong
3299 * tasks around. Thus we look for the minimum possible imbalance.
3300 * Negative imbalances (*we* are more loaded than anyone else) will
3301 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3302 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3303 * appear as very large values with unsigned longs.
3304 */
2dd73a4f
PW
3305 if (max_load <= busiest_load_per_task)
3306 goto out_balanced;
3307
3308 /*
3309 * In the presence of smp nice balancing, certain scenarios can have
3310 * max load less than avg load(as we skip the groups at or below
3311 * its cpu_power, while calculating max_load..)
3312 */
3313 if (max_load < avg_load) {
3314 *imbalance = 0;
3315 goto small_imbalance;
3316 }
0c117f1b
SS
3317
3318 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3319 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3320
1da177e4 3321 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3322 *imbalance = min(max_pull * busiest->__cpu_power,
3323 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3324 / SCHED_LOAD_SCALE;
3325
2dd73a4f
PW
3326 /*
3327 * if *imbalance is less than the average load per runnable task
3328 * there is no gaurantee that any tasks will be moved so we'll have
3329 * a think about bumping its value to force at least one task to be
3330 * moved
3331 */
7fd0d2dd 3332 if (*imbalance < busiest_load_per_task) {
48f24c4d 3333 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3334 unsigned int imbn;
3335
3336small_imbalance:
3337 pwr_move = pwr_now = 0;
3338 imbn = 2;
3339 if (this_nr_running) {
3340 this_load_per_task /= this_nr_running;
3341 if (busiest_load_per_task > this_load_per_task)
3342 imbn = 1;
3343 } else
408ed066 3344 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3345
408ed066 3346 if (max_load - this_load + 2*busiest_load_per_task >=
dd41f596 3347 busiest_load_per_task * imbn) {
2dd73a4f 3348 *imbalance = busiest_load_per_task;
1da177e4
LT
3349 return busiest;
3350 }
3351
3352 /*
3353 * OK, we don't have enough imbalance to justify moving tasks,
3354 * however we may be able to increase total CPU power used by
3355 * moving them.
3356 */
3357
5517d86b
ED
3358 pwr_now += busiest->__cpu_power *
3359 min(busiest_load_per_task, max_load);
3360 pwr_now += this->__cpu_power *
3361 min(this_load_per_task, this_load);
1da177e4
LT
3362 pwr_now /= SCHED_LOAD_SCALE;
3363
3364 /* Amount of load we'd subtract */
5517d86b
ED
3365 tmp = sg_div_cpu_power(busiest,
3366 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3367 if (max_load > tmp)
5517d86b 3368 pwr_move += busiest->__cpu_power *
2dd73a4f 3369 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3370
3371 /* Amount of load we'd add */
5517d86b 3372 if (max_load * busiest->__cpu_power <
33859f7f 3373 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3374 tmp = sg_div_cpu_power(this,
3375 max_load * busiest->__cpu_power);
1da177e4 3376 else
5517d86b
ED
3377 tmp = sg_div_cpu_power(this,
3378 busiest_load_per_task * SCHED_LOAD_SCALE);
3379 pwr_move += this->__cpu_power *
3380 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3381 pwr_move /= SCHED_LOAD_SCALE;
3382
3383 /* Move if we gain throughput */
7fd0d2dd
SS
3384 if (pwr_move > pwr_now)
3385 *imbalance = busiest_load_per_task;
1da177e4
LT
3386 }
3387
1da177e4
LT
3388 return busiest;
3389
3390out_balanced:
5c45bf27 3391#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3392 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3393 goto ret;
1da177e4 3394
5c45bf27
SS
3395 if (this == group_leader && group_leader != group_min) {
3396 *imbalance = min_load_per_task;
3397 return group_min;
3398 }
5c45bf27 3399#endif
783609c6 3400ret:
1da177e4
LT
3401 *imbalance = 0;
3402 return NULL;
3403}
3404
3405/*
3406 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3407 */
70b97a7f 3408static struct rq *
d15bcfdb 3409find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3410 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3411{
70b97a7f 3412 struct rq *busiest = NULL, *rq;
2dd73a4f 3413 unsigned long max_load = 0;
1da177e4
LT
3414 int i;
3415
363ab6f1 3416 for_each_cpu_mask_nr(i, group->cpumask) {
dd41f596 3417 unsigned long wl;
0a2966b4
CL
3418
3419 if (!cpu_isset(i, *cpus))
3420 continue;
3421
48f24c4d 3422 rq = cpu_rq(i);
dd41f596 3423 wl = weighted_cpuload(i);
2dd73a4f 3424
dd41f596 3425 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3426 continue;
1da177e4 3427
dd41f596
IM
3428 if (wl > max_load) {
3429 max_load = wl;
48f24c4d 3430 busiest = rq;
1da177e4
LT
3431 }
3432 }
3433
3434 return busiest;
3435}
3436
77391d71
NP
3437/*
3438 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3439 * so long as it is large enough.
3440 */
3441#define MAX_PINNED_INTERVAL 512
3442
1da177e4
LT
3443/*
3444 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3445 * tasks if there is an imbalance.
1da177e4 3446 */
70b97a7f 3447static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3448 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3449 int *balance, cpumask_t *cpus)
1da177e4 3450{
43010659 3451 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3452 struct sched_group *group;
1da177e4 3453 unsigned long imbalance;
70b97a7f 3454 struct rq *busiest;
fe2eea3f 3455 unsigned long flags;
5969fe06 3456
7c16ec58
MT
3457 cpus_setall(*cpus);
3458
89c4710e
SS
3459 /*
3460 * When power savings policy is enabled for the parent domain, idle
3461 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3462 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3463 * portraying it as CPU_NOT_IDLE.
89c4710e 3464 */
d15bcfdb 3465 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3466 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3467 sd_idle = 1;
1da177e4 3468
2d72376b 3469 schedstat_inc(sd, lb_count[idle]);
1da177e4 3470
0a2966b4 3471redo:
c8cba857 3472 update_shares(sd);
0a2966b4 3473 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3474 cpus, balance);
783609c6 3475
06066714 3476 if (*balance == 0)
783609c6 3477 goto out_balanced;
783609c6 3478
1da177e4
LT
3479 if (!group) {
3480 schedstat_inc(sd, lb_nobusyg[idle]);
3481 goto out_balanced;
3482 }
3483
7c16ec58 3484 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3485 if (!busiest) {
3486 schedstat_inc(sd, lb_nobusyq[idle]);
3487 goto out_balanced;
3488 }
3489
db935dbd 3490 BUG_ON(busiest == this_rq);
1da177e4
LT
3491
3492 schedstat_add(sd, lb_imbalance[idle], imbalance);
3493
43010659 3494 ld_moved = 0;
1da177e4
LT
3495 if (busiest->nr_running > 1) {
3496 /*
3497 * Attempt to move tasks. If find_busiest_group has found
3498 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3499 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3500 * correctly treated as an imbalance.
3501 */
fe2eea3f 3502 local_irq_save(flags);
e17224bf 3503 double_rq_lock(this_rq, busiest);
43010659 3504 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3505 imbalance, sd, idle, &all_pinned);
e17224bf 3506 double_rq_unlock(this_rq, busiest);
fe2eea3f 3507 local_irq_restore(flags);
81026794 3508
46cb4b7c
SS
3509 /*
3510 * some other cpu did the load balance for us.
3511 */
43010659 3512 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3513 resched_cpu(this_cpu);
3514
81026794 3515 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3516 if (unlikely(all_pinned)) {
7c16ec58
MT
3517 cpu_clear(cpu_of(busiest), *cpus);
3518 if (!cpus_empty(*cpus))
0a2966b4 3519 goto redo;
81026794 3520 goto out_balanced;
0a2966b4 3521 }
1da177e4 3522 }
81026794 3523
43010659 3524 if (!ld_moved) {
1da177e4
LT
3525 schedstat_inc(sd, lb_failed[idle]);
3526 sd->nr_balance_failed++;
3527
3528 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3529
fe2eea3f 3530 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3531
3532 /* don't kick the migration_thread, if the curr
3533 * task on busiest cpu can't be moved to this_cpu
3534 */
3535 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3536 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3537 all_pinned = 1;
3538 goto out_one_pinned;
3539 }
3540
1da177e4
LT
3541 if (!busiest->active_balance) {
3542 busiest->active_balance = 1;
3543 busiest->push_cpu = this_cpu;
81026794 3544 active_balance = 1;
1da177e4 3545 }
fe2eea3f 3546 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3547 if (active_balance)
1da177e4
LT
3548 wake_up_process(busiest->migration_thread);
3549
3550 /*
3551 * We've kicked active balancing, reset the failure
3552 * counter.
3553 */
39507451 3554 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3555 }
81026794 3556 } else
1da177e4
LT
3557 sd->nr_balance_failed = 0;
3558
81026794 3559 if (likely(!active_balance)) {
1da177e4
LT
3560 /* We were unbalanced, so reset the balancing interval */
3561 sd->balance_interval = sd->min_interval;
81026794
NP
3562 } else {
3563 /*
3564 * If we've begun active balancing, start to back off. This
3565 * case may not be covered by the all_pinned logic if there
3566 * is only 1 task on the busy runqueue (because we don't call
3567 * move_tasks).
3568 */
3569 if (sd->balance_interval < sd->max_interval)
3570 sd->balance_interval *= 2;
1da177e4
LT
3571 }
3572
43010659 3573 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3574 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3575 ld_moved = -1;
3576
3577 goto out;
1da177e4
LT
3578
3579out_balanced:
1da177e4
LT
3580 schedstat_inc(sd, lb_balanced[idle]);
3581
16cfb1c0 3582 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3583
3584out_one_pinned:
1da177e4 3585 /* tune up the balancing interval */
77391d71
NP
3586 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3587 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3588 sd->balance_interval *= 2;
3589
48f24c4d 3590 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3591 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3592 ld_moved = -1;
3593 else
3594 ld_moved = 0;
3595out:
c8cba857
PZ
3596 if (ld_moved)
3597 update_shares(sd);
c09595f6 3598 return ld_moved;
1da177e4
LT
3599}
3600
3601/*
3602 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3603 * tasks if there is an imbalance.
3604 *
d15bcfdb 3605 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3606 * this_rq is locked.
3607 */
48f24c4d 3608static int
7c16ec58
MT
3609load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3610 cpumask_t *cpus)
1da177e4
LT
3611{
3612 struct sched_group *group;
70b97a7f 3613 struct rq *busiest = NULL;
1da177e4 3614 unsigned long imbalance;
43010659 3615 int ld_moved = 0;
5969fe06 3616 int sd_idle = 0;
969bb4e4 3617 int all_pinned = 0;
7c16ec58
MT
3618
3619 cpus_setall(*cpus);
5969fe06 3620
89c4710e
SS
3621 /*
3622 * When power savings policy is enabled for the parent domain, idle
3623 * sibling can pick up load irrespective of busy siblings. In this case,
3624 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3625 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3626 */
3627 if (sd->flags & SD_SHARE_CPUPOWER &&
3628 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3629 sd_idle = 1;
1da177e4 3630
2d72376b 3631 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3632redo:
3e5459b4 3633 update_shares_locked(this_rq, sd);
d15bcfdb 3634 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3635 &sd_idle, cpus, NULL);
1da177e4 3636 if (!group) {
d15bcfdb 3637 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3638 goto out_balanced;
1da177e4
LT
3639 }
3640
7c16ec58 3641 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3642 if (!busiest) {
d15bcfdb 3643 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3644 goto out_balanced;
1da177e4
LT
3645 }
3646
db935dbd
NP
3647 BUG_ON(busiest == this_rq);
3648
d15bcfdb 3649 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3650
43010659 3651 ld_moved = 0;
d6d5cfaf
NP
3652 if (busiest->nr_running > 1) {
3653 /* Attempt to move tasks */
3654 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3655 /* this_rq->clock is already updated */
3656 update_rq_clock(busiest);
43010659 3657 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3658 imbalance, sd, CPU_NEWLY_IDLE,
3659 &all_pinned);
1b12bbc7 3660 double_unlock_balance(this_rq, busiest);
0a2966b4 3661
969bb4e4 3662 if (unlikely(all_pinned)) {
7c16ec58
MT
3663 cpu_clear(cpu_of(busiest), *cpus);
3664 if (!cpus_empty(*cpus))
0a2966b4
CL
3665 goto redo;
3666 }
d6d5cfaf
NP
3667 }
3668
43010659 3669 if (!ld_moved) {
d15bcfdb 3670 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3671 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3672 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3673 return -1;
3674 } else
16cfb1c0 3675 sd->nr_balance_failed = 0;
1da177e4 3676
3e5459b4 3677 update_shares_locked(this_rq, sd);
43010659 3678 return ld_moved;
16cfb1c0
NP
3679
3680out_balanced:
d15bcfdb 3681 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3682 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3683 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3684 return -1;
16cfb1c0 3685 sd->nr_balance_failed = 0;
48f24c4d 3686
16cfb1c0 3687 return 0;
1da177e4
LT
3688}
3689
3690/*
3691 * idle_balance is called by schedule() if this_cpu is about to become
3692 * idle. Attempts to pull tasks from other CPUs.
3693 */
70b97a7f 3694static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3695{
3696 struct sched_domain *sd;
dd41f596
IM
3697 int pulled_task = -1;
3698 unsigned long next_balance = jiffies + HZ;
7c16ec58 3699 cpumask_t tmpmask;
1da177e4
LT
3700
3701 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3702 unsigned long interval;
3703
3704 if (!(sd->flags & SD_LOAD_BALANCE))
3705 continue;
3706
3707 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3708 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3709 pulled_task = load_balance_newidle(this_cpu, this_rq,
3710 sd, &tmpmask);
92c4ca5c
CL
3711
3712 interval = msecs_to_jiffies(sd->balance_interval);
3713 if (time_after(next_balance, sd->last_balance + interval))
3714 next_balance = sd->last_balance + interval;
3715 if (pulled_task)
3716 break;
1da177e4 3717 }
dd41f596 3718 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3719 /*
3720 * We are going idle. next_balance may be set based on
3721 * a busy processor. So reset next_balance.
3722 */
3723 this_rq->next_balance = next_balance;
dd41f596 3724 }
1da177e4
LT
3725}
3726
3727/*
3728 * active_load_balance is run by migration threads. It pushes running tasks
3729 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3730 * running on each physical CPU where possible, and avoids physical /
3731 * logical imbalances.
3732 *
3733 * Called with busiest_rq locked.
3734 */
70b97a7f 3735static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3736{
39507451 3737 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3738 struct sched_domain *sd;
3739 struct rq *target_rq;
39507451 3740
48f24c4d 3741 /* Is there any task to move? */
39507451 3742 if (busiest_rq->nr_running <= 1)
39507451
NP
3743 return;
3744
3745 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3746
3747 /*
39507451 3748 * This condition is "impossible", if it occurs
41a2d6cf 3749 * we need to fix it. Originally reported by
39507451 3750 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3751 */
39507451 3752 BUG_ON(busiest_rq == target_rq);
1da177e4 3753
39507451
NP
3754 /* move a task from busiest_rq to target_rq */
3755 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3756 update_rq_clock(busiest_rq);
3757 update_rq_clock(target_rq);
39507451
NP
3758
3759 /* Search for an sd spanning us and the target CPU. */
c96d145e 3760 for_each_domain(target_cpu, sd) {
39507451 3761 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3762 cpu_isset(busiest_cpu, sd->span))
39507451 3763 break;
c96d145e 3764 }
39507451 3765
48f24c4d 3766 if (likely(sd)) {
2d72376b 3767 schedstat_inc(sd, alb_count);
39507451 3768
43010659
PW
3769 if (move_one_task(target_rq, target_cpu, busiest_rq,
3770 sd, CPU_IDLE))
48f24c4d
IM
3771 schedstat_inc(sd, alb_pushed);
3772 else
3773 schedstat_inc(sd, alb_failed);
3774 }
1b12bbc7 3775 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3776}
3777
46cb4b7c
SS
3778#ifdef CONFIG_NO_HZ
3779static struct {
3780 atomic_t load_balancer;
41a2d6cf 3781 cpumask_t cpu_mask;
46cb4b7c
SS
3782} nohz ____cacheline_aligned = {
3783 .load_balancer = ATOMIC_INIT(-1),
3784 .cpu_mask = CPU_MASK_NONE,
3785};
3786
7835b98b 3787/*
46cb4b7c
SS
3788 * This routine will try to nominate the ilb (idle load balancing)
3789 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3790 * load balancing on behalf of all those cpus. If all the cpus in the system
3791 * go into this tickless mode, then there will be no ilb owner (as there is
3792 * no need for one) and all the cpus will sleep till the next wakeup event
3793 * arrives...
3794 *
3795 * For the ilb owner, tick is not stopped. And this tick will be used
3796 * for idle load balancing. ilb owner will still be part of
3797 * nohz.cpu_mask..
7835b98b 3798 *
46cb4b7c
SS
3799 * While stopping the tick, this cpu will become the ilb owner if there
3800 * is no other owner. And will be the owner till that cpu becomes busy
3801 * or if all cpus in the system stop their ticks at which point
3802 * there is no need for ilb owner.
3803 *
3804 * When the ilb owner becomes busy, it nominates another owner, during the
3805 * next busy scheduler_tick()
3806 */
3807int select_nohz_load_balancer(int stop_tick)
3808{
3809 int cpu = smp_processor_id();
3810
3811 if (stop_tick) {
3812 cpu_set(cpu, nohz.cpu_mask);
3813 cpu_rq(cpu)->in_nohz_recently = 1;
3814
3815 /*
3816 * If we are going offline and still the leader, give up!
3817 */
e761b772 3818 if (!cpu_active(cpu) &&
46cb4b7c
SS
3819 atomic_read(&nohz.load_balancer) == cpu) {
3820 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3821 BUG();
3822 return 0;
3823 }
3824
3825 /* time for ilb owner also to sleep */
3826 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3827 if (atomic_read(&nohz.load_balancer) == cpu)
3828 atomic_set(&nohz.load_balancer, -1);
3829 return 0;
3830 }
3831
3832 if (atomic_read(&nohz.load_balancer) == -1) {
3833 /* make me the ilb owner */
3834 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3835 return 1;
3836 } else if (atomic_read(&nohz.load_balancer) == cpu)
3837 return 1;
3838 } else {
3839 if (!cpu_isset(cpu, nohz.cpu_mask))
3840 return 0;
3841
3842 cpu_clear(cpu, nohz.cpu_mask);
3843
3844 if (atomic_read(&nohz.load_balancer) == cpu)
3845 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3846 BUG();
3847 }
3848 return 0;
3849}
3850#endif
3851
3852static DEFINE_SPINLOCK(balancing);
3853
3854/*
7835b98b
CL
3855 * It checks each scheduling domain to see if it is due to be balanced,
3856 * and initiates a balancing operation if so.
3857 *
3858 * Balancing parameters are set up in arch_init_sched_domains.
3859 */
a9957449 3860static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3861{
46cb4b7c
SS
3862 int balance = 1;
3863 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3864 unsigned long interval;
3865 struct sched_domain *sd;
46cb4b7c 3866 /* Earliest time when we have to do rebalance again */
c9819f45 3867 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3868 int update_next_balance = 0;
d07355f5 3869 int need_serialize;
7c16ec58 3870 cpumask_t tmp;
1da177e4 3871
46cb4b7c 3872 for_each_domain(cpu, sd) {
1da177e4
LT
3873 if (!(sd->flags & SD_LOAD_BALANCE))
3874 continue;
3875
3876 interval = sd->balance_interval;
d15bcfdb 3877 if (idle != CPU_IDLE)
1da177e4
LT
3878 interval *= sd->busy_factor;
3879
3880 /* scale ms to jiffies */
3881 interval = msecs_to_jiffies(interval);
3882 if (unlikely(!interval))
3883 interval = 1;
dd41f596
IM
3884 if (interval > HZ*NR_CPUS/10)
3885 interval = HZ*NR_CPUS/10;
3886
d07355f5 3887 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3888
d07355f5 3889 if (need_serialize) {
08c183f3
CL
3890 if (!spin_trylock(&balancing))
3891 goto out;
3892 }
3893
c9819f45 3894 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3895 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3896 /*
3897 * We've pulled tasks over so either we're no
5969fe06
NP
3898 * longer idle, or one of our SMT siblings is
3899 * not idle.
3900 */
d15bcfdb 3901 idle = CPU_NOT_IDLE;
1da177e4 3902 }
1bd77f2d 3903 sd->last_balance = jiffies;
1da177e4 3904 }
d07355f5 3905 if (need_serialize)
08c183f3
CL
3906 spin_unlock(&balancing);
3907out:
f549da84 3908 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3909 next_balance = sd->last_balance + interval;
f549da84
SS
3910 update_next_balance = 1;
3911 }
783609c6
SS
3912
3913 /*
3914 * Stop the load balance at this level. There is another
3915 * CPU in our sched group which is doing load balancing more
3916 * actively.
3917 */
3918 if (!balance)
3919 break;
1da177e4 3920 }
f549da84
SS
3921
3922 /*
3923 * next_balance will be updated only when there is a need.
3924 * When the cpu is attached to null domain for ex, it will not be
3925 * updated.
3926 */
3927 if (likely(update_next_balance))
3928 rq->next_balance = next_balance;
46cb4b7c
SS
3929}
3930
3931/*
3932 * run_rebalance_domains is triggered when needed from the scheduler tick.
3933 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3934 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3935 */
3936static void run_rebalance_domains(struct softirq_action *h)
3937{
dd41f596
IM
3938 int this_cpu = smp_processor_id();
3939 struct rq *this_rq = cpu_rq(this_cpu);
3940 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3941 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3942
dd41f596 3943 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3944
3945#ifdef CONFIG_NO_HZ
3946 /*
3947 * If this cpu is the owner for idle load balancing, then do the
3948 * balancing on behalf of the other idle cpus whose ticks are
3949 * stopped.
3950 */
dd41f596
IM
3951 if (this_rq->idle_at_tick &&
3952 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3953 cpumask_t cpus = nohz.cpu_mask;
3954 struct rq *rq;
3955 int balance_cpu;
3956
dd41f596 3957 cpu_clear(this_cpu, cpus);
363ab6f1 3958 for_each_cpu_mask_nr(balance_cpu, cpus) {
46cb4b7c
SS
3959 /*
3960 * If this cpu gets work to do, stop the load balancing
3961 * work being done for other cpus. Next load
3962 * balancing owner will pick it up.
3963 */
3964 if (need_resched())
3965 break;
3966
de0cf899 3967 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3968
3969 rq = cpu_rq(balance_cpu);
dd41f596
IM
3970 if (time_after(this_rq->next_balance, rq->next_balance))
3971 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3972 }
3973 }
3974#endif
3975}
3976
3977/*
3978 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3979 *
3980 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3981 * idle load balancing owner or decide to stop the periodic load balancing,
3982 * if the whole system is idle.
3983 */
dd41f596 3984static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3985{
46cb4b7c
SS
3986#ifdef CONFIG_NO_HZ
3987 /*
3988 * If we were in the nohz mode recently and busy at the current
3989 * scheduler tick, then check if we need to nominate new idle
3990 * load balancer.
3991 */
3992 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3993 rq->in_nohz_recently = 0;
3994
3995 if (atomic_read(&nohz.load_balancer) == cpu) {
3996 cpu_clear(cpu, nohz.cpu_mask);
3997 atomic_set(&nohz.load_balancer, -1);
3998 }
3999
4000 if (atomic_read(&nohz.load_balancer) == -1) {
4001 /*
4002 * simple selection for now: Nominate the
4003 * first cpu in the nohz list to be the next
4004 * ilb owner.
4005 *
4006 * TBD: Traverse the sched domains and nominate
4007 * the nearest cpu in the nohz.cpu_mask.
4008 */
4009 int ilb = first_cpu(nohz.cpu_mask);
4010
434d53b0 4011 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4012 resched_cpu(ilb);
4013 }
4014 }
4015
4016 /*
4017 * If this cpu is idle and doing idle load balancing for all the
4018 * cpus with ticks stopped, is it time for that to stop?
4019 */
4020 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4021 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4022 resched_cpu(cpu);
4023 return;
4024 }
4025
4026 /*
4027 * If this cpu is idle and the idle load balancing is done by
4028 * someone else, then no need raise the SCHED_SOFTIRQ
4029 */
4030 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4031 cpu_isset(cpu, nohz.cpu_mask))
4032 return;
4033#endif
4034 if (time_after_eq(jiffies, rq->next_balance))
4035 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4036}
dd41f596
IM
4037
4038#else /* CONFIG_SMP */
4039
1da177e4
LT
4040/*
4041 * on UP we do not need to balance between CPUs:
4042 */
70b97a7f 4043static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4044{
4045}
dd41f596 4046
1da177e4
LT
4047#endif
4048
1da177e4
LT
4049DEFINE_PER_CPU(struct kernel_stat, kstat);
4050
4051EXPORT_PER_CPU_SYMBOL(kstat);
4052
4053/*
41b86e9c
IM
4054 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4055 * that have not yet been banked in case the task is currently running.
1da177e4 4056 */
41b86e9c 4057unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4058{
1da177e4 4059 unsigned long flags;
41b86e9c
IM
4060 u64 ns, delta_exec;
4061 struct rq *rq;
48f24c4d 4062
41b86e9c
IM
4063 rq = task_rq_lock(p, &flags);
4064 ns = p->se.sum_exec_runtime;
051a1d1a 4065 if (task_current(rq, p)) {
a8e504d2
IM
4066 update_rq_clock(rq);
4067 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4068 if ((s64)delta_exec > 0)
4069 ns += delta_exec;
4070 }
4071 task_rq_unlock(rq, &flags);
48f24c4d 4072
1da177e4
LT
4073 return ns;
4074}
4075
1da177e4
LT
4076/*
4077 * Account user cpu time to a process.
4078 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4079 * @cputime: the cpu time spent in user space since the last update
4080 */
4081void account_user_time(struct task_struct *p, cputime_t cputime)
4082{
4083 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4084 cputime64_t tmp;
4085
4086 p->utime = cputime_add(p->utime, cputime);
4087
4088 /* Add user time to cpustat. */
4089 tmp = cputime_to_cputime64(cputime);
4090 if (TASK_NICE(p) > 0)
4091 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4092 else
4093 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4094 /* Account for user time used */
4095 acct_update_integrals(p);
1da177e4
LT
4096}
4097
94886b84
LV
4098/*
4099 * Account guest cpu time to a process.
4100 * @p: the process that the cpu time gets accounted to
4101 * @cputime: the cpu time spent in virtual machine since the last update
4102 */
f7402e03 4103static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4104{
4105 cputime64_t tmp;
4106 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4107
4108 tmp = cputime_to_cputime64(cputime);
4109
4110 p->utime = cputime_add(p->utime, cputime);
4111 p->gtime = cputime_add(p->gtime, cputime);
4112
4113 cpustat->user = cputime64_add(cpustat->user, tmp);
4114 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4115}
4116
c66f08be
MN
4117/*
4118 * Account scaled user cpu time to a process.
4119 * @p: the process that the cpu time gets accounted to
4120 * @cputime: the cpu time spent in user space since the last update
4121 */
4122void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4123{
4124 p->utimescaled = cputime_add(p->utimescaled, cputime);
4125}
4126
1da177e4
LT
4127/*
4128 * Account system cpu time to a process.
4129 * @p: the process that the cpu time gets accounted to
4130 * @hardirq_offset: the offset to subtract from hardirq_count()
4131 * @cputime: the cpu time spent in kernel space since the last update
4132 */
4133void account_system_time(struct task_struct *p, int hardirq_offset,
4134 cputime_t cputime)
4135{
4136 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4137 struct rq *rq = this_rq();
1da177e4
LT
4138 cputime64_t tmp;
4139
983ed7a6
HH
4140 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4141 account_guest_time(p, cputime);
4142 return;
4143 }
94886b84 4144
1da177e4
LT
4145 p->stime = cputime_add(p->stime, cputime);
4146
4147 /* Add system time to cpustat. */
4148 tmp = cputime_to_cputime64(cputime);
4149 if (hardirq_count() - hardirq_offset)
4150 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4151 else if (softirq_count())
4152 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4153 else if (p != rq->idle)
1da177e4 4154 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4155 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4156 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4157 else
4158 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4159 /* Account for system time used */
4160 acct_update_integrals(p);
1da177e4
LT
4161}
4162
c66f08be
MN
4163/*
4164 * Account scaled system cpu time to a process.
4165 * @p: the process that the cpu time gets accounted to
4166 * @hardirq_offset: the offset to subtract from hardirq_count()
4167 * @cputime: the cpu time spent in kernel space since the last update
4168 */
4169void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4170{
4171 p->stimescaled = cputime_add(p->stimescaled, cputime);
4172}
4173
1da177e4
LT
4174/*
4175 * Account for involuntary wait time.
4176 * @p: the process from which the cpu time has been stolen
4177 * @steal: the cpu time spent in involuntary wait
4178 */
4179void account_steal_time(struct task_struct *p, cputime_t steal)
4180{
4181 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4182 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4183 struct rq *rq = this_rq();
1da177e4
LT
4184
4185 if (p == rq->idle) {
4186 p->stime = cputime_add(p->stime, steal);
4187 if (atomic_read(&rq->nr_iowait) > 0)
4188 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4189 else
4190 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4191 } else
1da177e4
LT
4192 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4193}
4194
49048622
BS
4195/*
4196 * Use precise platform statistics if available:
4197 */
4198#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4199cputime_t task_utime(struct task_struct *p)
4200{
4201 return p->utime;
4202}
4203
4204cputime_t task_stime(struct task_struct *p)
4205{
4206 return p->stime;
4207}
4208#else
4209cputime_t task_utime(struct task_struct *p)
4210{
4211 clock_t utime = cputime_to_clock_t(p->utime),
4212 total = utime + cputime_to_clock_t(p->stime);
4213 u64 temp;
4214
4215 /*
4216 * Use CFS's precise accounting:
4217 */
4218 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4219
4220 if (total) {
4221 temp *= utime;
4222 do_div(temp, total);
4223 }
4224 utime = (clock_t)temp;
4225
4226 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4227 return p->prev_utime;
4228}
4229
4230cputime_t task_stime(struct task_struct *p)
4231{
4232 clock_t stime;
4233
4234 /*
4235 * Use CFS's precise accounting. (we subtract utime from
4236 * the total, to make sure the total observed by userspace
4237 * grows monotonically - apps rely on that):
4238 */
4239 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4240 cputime_to_clock_t(task_utime(p));
4241
4242 if (stime >= 0)
4243 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4244
4245 return p->prev_stime;
4246}
4247#endif
4248
4249inline cputime_t task_gtime(struct task_struct *p)
4250{
4251 return p->gtime;
4252}
4253
7835b98b
CL
4254/*
4255 * This function gets called by the timer code, with HZ frequency.
4256 * We call it with interrupts disabled.
4257 *
4258 * It also gets called by the fork code, when changing the parent's
4259 * timeslices.
4260 */
4261void scheduler_tick(void)
4262{
7835b98b
CL
4263 int cpu = smp_processor_id();
4264 struct rq *rq = cpu_rq(cpu);
dd41f596 4265 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4266
4267 sched_clock_tick();
dd41f596
IM
4268
4269 spin_lock(&rq->lock);
3e51f33f 4270 update_rq_clock(rq);
f1a438d8 4271 update_cpu_load(rq);
fa85ae24 4272 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4273 spin_unlock(&rq->lock);
7835b98b 4274
e418e1c2 4275#ifdef CONFIG_SMP
dd41f596
IM
4276 rq->idle_at_tick = idle_cpu(cpu);
4277 trigger_load_balance(rq, cpu);
e418e1c2 4278#endif
1da177e4
LT
4279}
4280
6cd8a4bb
SR
4281#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4282 defined(CONFIG_PREEMPT_TRACER))
4283
4284static inline unsigned long get_parent_ip(unsigned long addr)
4285{
4286 if (in_lock_functions(addr)) {
4287 addr = CALLER_ADDR2;
4288 if (in_lock_functions(addr))
4289 addr = CALLER_ADDR3;
4290 }
4291 return addr;
4292}
1da177e4 4293
43627582 4294void __kprobes add_preempt_count(int val)
1da177e4 4295{
6cd8a4bb 4296#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4297 /*
4298 * Underflow?
4299 */
9a11b49a
IM
4300 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4301 return;
6cd8a4bb 4302#endif
1da177e4 4303 preempt_count() += val;
6cd8a4bb 4304#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4305 /*
4306 * Spinlock count overflowing soon?
4307 */
33859f7f
MOS
4308 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4309 PREEMPT_MASK - 10);
6cd8a4bb
SR
4310#endif
4311 if (preempt_count() == val)
4312 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4313}
4314EXPORT_SYMBOL(add_preempt_count);
4315
43627582 4316void __kprobes sub_preempt_count(int val)
1da177e4 4317{
6cd8a4bb 4318#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4319 /*
4320 * Underflow?
4321 */
9a11b49a
IM
4322 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4323 return;
1da177e4
LT
4324 /*
4325 * Is the spinlock portion underflowing?
4326 */
9a11b49a
IM
4327 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4328 !(preempt_count() & PREEMPT_MASK)))
4329 return;
6cd8a4bb 4330#endif
9a11b49a 4331
6cd8a4bb
SR
4332 if (preempt_count() == val)
4333 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4334 preempt_count() -= val;
4335}
4336EXPORT_SYMBOL(sub_preempt_count);
4337
4338#endif
4339
4340/*
dd41f596 4341 * Print scheduling while atomic bug:
1da177e4 4342 */
dd41f596 4343static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4344{
838225b4
SS
4345 struct pt_regs *regs = get_irq_regs();
4346
4347 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4348 prev->comm, prev->pid, preempt_count());
4349
dd41f596 4350 debug_show_held_locks(prev);
e21f5b15 4351 print_modules();
dd41f596
IM
4352 if (irqs_disabled())
4353 print_irqtrace_events(prev);
838225b4
SS
4354
4355 if (regs)
4356 show_regs(regs);
4357 else
4358 dump_stack();
dd41f596 4359}
1da177e4 4360
dd41f596
IM
4361/*
4362 * Various schedule()-time debugging checks and statistics:
4363 */
4364static inline void schedule_debug(struct task_struct *prev)
4365{
1da177e4 4366 /*
41a2d6cf 4367 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4368 * schedule() atomically, we ignore that path for now.
4369 * Otherwise, whine if we are scheduling when we should not be.
4370 */
3f33a7ce 4371 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4372 __schedule_bug(prev);
4373
1da177e4
LT
4374 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4375
2d72376b 4376 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4377#ifdef CONFIG_SCHEDSTATS
4378 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4379 schedstat_inc(this_rq(), bkl_count);
4380 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4381 }
4382#endif
dd41f596
IM
4383}
4384
4385/*
4386 * Pick up the highest-prio task:
4387 */
4388static inline struct task_struct *
ff95f3df 4389pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4390{
5522d5d5 4391 const struct sched_class *class;
dd41f596 4392 struct task_struct *p;
1da177e4
LT
4393
4394 /*
dd41f596
IM
4395 * Optimization: we know that if all tasks are in
4396 * the fair class we can call that function directly:
1da177e4 4397 */
dd41f596 4398 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4399 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4400 if (likely(p))
4401 return p;
1da177e4
LT
4402 }
4403
dd41f596
IM
4404 class = sched_class_highest;
4405 for ( ; ; ) {
fb8d4724 4406 p = class->pick_next_task(rq);
dd41f596
IM
4407 if (p)
4408 return p;
4409 /*
4410 * Will never be NULL as the idle class always
4411 * returns a non-NULL p:
4412 */
4413 class = class->next;
4414 }
4415}
1da177e4 4416
dd41f596
IM
4417/*
4418 * schedule() is the main scheduler function.
4419 */
4420asmlinkage void __sched schedule(void)
4421{
4422 struct task_struct *prev, *next;
67ca7bde 4423 unsigned long *switch_count;
dd41f596 4424 struct rq *rq;
31656519 4425 int cpu;
dd41f596
IM
4426
4427need_resched:
4428 preempt_disable();
4429 cpu = smp_processor_id();
4430 rq = cpu_rq(cpu);
4431 rcu_qsctr_inc(cpu);
4432 prev = rq->curr;
4433 switch_count = &prev->nivcsw;
4434
4435 release_kernel_lock(prev);
4436need_resched_nonpreemptible:
4437
4438 schedule_debug(prev);
1da177e4 4439
31656519 4440 if (sched_feat(HRTICK))
f333fdc9 4441 hrtick_clear(rq);
8f4d37ec 4442
1e819950
IM
4443 /*
4444 * Do the rq-clock update outside the rq lock:
4445 */
4446 local_irq_disable();
3e51f33f 4447 update_rq_clock(rq);
1e819950
IM
4448 spin_lock(&rq->lock);
4449 clear_tsk_need_resched(prev);
1da177e4 4450
1da177e4 4451 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4452 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4453 prev->state = TASK_RUNNING;
16882c1e 4454 else
2e1cb74a 4455 deactivate_task(rq, prev, 1);
dd41f596 4456 switch_count = &prev->nvcsw;
1da177e4
LT
4457 }
4458
9a897c5a
SR
4459#ifdef CONFIG_SMP
4460 if (prev->sched_class->pre_schedule)
4461 prev->sched_class->pre_schedule(rq, prev);
4462#endif
f65eda4f 4463
dd41f596 4464 if (unlikely(!rq->nr_running))
1da177e4 4465 idle_balance(cpu, rq);
1da177e4 4466
31ee529c 4467 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4468 next = pick_next_task(rq, prev);
1da177e4 4469
1da177e4 4470 if (likely(prev != next)) {
673a90a1
DS
4471 sched_info_switch(prev, next);
4472
1da177e4
LT
4473 rq->nr_switches++;
4474 rq->curr = next;
4475 ++*switch_count;
4476
dd41f596 4477 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4478 /*
4479 * the context switch might have flipped the stack from under
4480 * us, hence refresh the local variables.
4481 */
4482 cpu = smp_processor_id();
4483 rq = cpu_rq(cpu);
1da177e4
LT
4484 } else
4485 spin_unlock_irq(&rq->lock);
4486
8f4d37ec 4487 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4488 goto need_resched_nonpreemptible;
8f4d37ec 4489
1da177e4
LT
4490 preempt_enable_no_resched();
4491 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4492 goto need_resched;
4493}
1da177e4
LT
4494EXPORT_SYMBOL(schedule);
4495
4496#ifdef CONFIG_PREEMPT
4497/*
2ed6e34f 4498 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4499 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4500 * occur there and call schedule directly.
4501 */
4502asmlinkage void __sched preempt_schedule(void)
4503{
4504 struct thread_info *ti = current_thread_info();
6478d880 4505
1da177e4
LT
4506 /*
4507 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4508 * we do not want to preempt the current task. Just return..
1da177e4 4509 */
beed33a8 4510 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4511 return;
4512
3a5c359a
AK
4513 do {
4514 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4515 schedule();
3a5c359a 4516 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4517
3a5c359a
AK
4518 /*
4519 * Check again in case we missed a preemption opportunity
4520 * between schedule and now.
4521 */
4522 barrier();
4523 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4524}
1da177e4
LT
4525EXPORT_SYMBOL(preempt_schedule);
4526
4527/*
2ed6e34f 4528 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4529 * off of irq context.
4530 * Note, that this is called and return with irqs disabled. This will
4531 * protect us against recursive calling from irq.
4532 */
4533asmlinkage void __sched preempt_schedule_irq(void)
4534{
4535 struct thread_info *ti = current_thread_info();
6478d880 4536
2ed6e34f 4537 /* Catch callers which need to be fixed */
1da177e4
LT
4538 BUG_ON(ti->preempt_count || !irqs_disabled());
4539
3a5c359a
AK
4540 do {
4541 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4542 local_irq_enable();
4543 schedule();
4544 local_irq_disable();
3a5c359a 4545 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4546
3a5c359a
AK
4547 /*
4548 * Check again in case we missed a preemption opportunity
4549 * between schedule and now.
4550 */
4551 barrier();
4552 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4553}
4554
4555#endif /* CONFIG_PREEMPT */
4556
95cdf3b7
IM
4557int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4558 void *key)
1da177e4 4559{
48f24c4d 4560 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4561}
1da177e4
LT
4562EXPORT_SYMBOL(default_wake_function);
4563
4564/*
41a2d6cf
IM
4565 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4566 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4567 * number) then we wake all the non-exclusive tasks and one exclusive task.
4568 *
4569 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4570 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4571 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4572 */
4573static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4574 int nr_exclusive, int sync, void *key)
4575{
2e45874c 4576 wait_queue_t *curr, *next;
1da177e4 4577
2e45874c 4578 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4579 unsigned flags = curr->flags;
4580
1da177e4 4581 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4582 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4583 break;
4584 }
4585}
4586
4587/**
4588 * __wake_up - wake up threads blocked on a waitqueue.
4589 * @q: the waitqueue
4590 * @mode: which threads
4591 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4592 * @key: is directly passed to the wakeup function
1da177e4 4593 */
7ad5b3a5 4594void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4595 int nr_exclusive, void *key)
1da177e4
LT
4596{
4597 unsigned long flags;
4598
4599 spin_lock_irqsave(&q->lock, flags);
4600 __wake_up_common(q, mode, nr_exclusive, 0, key);
4601 spin_unlock_irqrestore(&q->lock, flags);
4602}
1da177e4
LT
4603EXPORT_SYMBOL(__wake_up);
4604
4605/*
4606 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4607 */
7ad5b3a5 4608void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4609{
4610 __wake_up_common(q, mode, 1, 0, NULL);
4611}
4612
4613/**
67be2dd1 4614 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4615 * @q: the waitqueue
4616 * @mode: which threads
4617 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4618 *
4619 * The sync wakeup differs that the waker knows that it will schedule
4620 * away soon, so while the target thread will be woken up, it will not
4621 * be migrated to another CPU - ie. the two threads are 'synchronized'
4622 * with each other. This can prevent needless bouncing between CPUs.
4623 *
4624 * On UP it can prevent extra preemption.
4625 */
7ad5b3a5 4626void
95cdf3b7 4627__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4628{
4629 unsigned long flags;
4630 int sync = 1;
4631
4632 if (unlikely(!q))
4633 return;
4634
4635 if (unlikely(!nr_exclusive))
4636 sync = 0;
4637
4638 spin_lock_irqsave(&q->lock, flags);
4639 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4640 spin_unlock_irqrestore(&q->lock, flags);
4641}
4642EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4643
65eb3dc6
KD
4644/**
4645 * complete: - signals a single thread waiting on this completion
4646 * @x: holds the state of this particular completion
4647 *
4648 * This will wake up a single thread waiting on this completion. Threads will be
4649 * awakened in the same order in which they were queued.
4650 *
4651 * See also complete_all(), wait_for_completion() and related routines.
4652 */
b15136e9 4653void complete(struct completion *x)
1da177e4
LT
4654{
4655 unsigned long flags;
4656
4657 spin_lock_irqsave(&x->wait.lock, flags);
4658 x->done++;
d9514f6c 4659 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4660 spin_unlock_irqrestore(&x->wait.lock, flags);
4661}
4662EXPORT_SYMBOL(complete);
4663
65eb3dc6
KD
4664/**
4665 * complete_all: - signals all threads waiting on this completion
4666 * @x: holds the state of this particular completion
4667 *
4668 * This will wake up all threads waiting on this particular completion event.
4669 */
b15136e9 4670void complete_all(struct completion *x)
1da177e4
LT
4671{
4672 unsigned long flags;
4673
4674 spin_lock_irqsave(&x->wait.lock, flags);
4675 x->done += UINT_MAX/2;
d9514f6c 4676 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4677 spin_unlock_irqrestore(&x->wait.lock, flags);
4678}
4679EXPORT_SYMBOL(complete_all);
4680
8cbbe86d
AK
4681static inline long __sched
4682do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4683{
1da177e4
LT
4684 if (!x->done) {
4685 DECLARE_WAITQUEUE(wait, current);
4686
4687 wait.flags |= WQ_FLAG_EXCLUSIVE;
4688 __add_wait_queue_tail(&x->wait, &wait);
4689 do {
94d3d824 4690 if (signal_pending_state(state, current)) {
ea71a546
ON
4691 timeout = -ERESTARTSYS;
4692 break;
8cbbe86d
AK
4693 }
4694 __set_current_state(state);
1da177e4
LT
4695 spin_unlock_irq(&x->wait.lock);
4696 timeout = schedule_timeout(timeout);
4697 spin_lock_irq(&x->wait.lock);
ea71a546 4698 } while (!x->done && timeout);
1da177e4 4699 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4700 if (!x->done)
4701 return timeout;
1da177e4
LT
4702 }
4703 x->done--;
ea71a546 4704 return timeout ?: 1;
1da177e4 4705}
1da177e4 4706
8cbbe86d
AK
4707static long __sched
4708wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4709{
1da177e4
LT
4710 might_sleep();
4711
4712 spin_lock_irq(&x->wait.lock);
8cbbe86d 4713 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4714 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4715 return timeout;
4716}
1da177e4 4717
65eb3dc6
KD
4718/**
4719 * wait_for_completion: - waits for completion of a task
4720 * @x: holds the state of this particular completion
4721 *
4722 * This waits to be signaled for completion of a specific task. It is NOT
4723 * interruptible and there is no timeout.
4724 *
4725 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4726 * and interrupt capability. Also see complete().
4727 */
b15136e9 4728void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4729{
4730 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4731}
8cbbe86d 4732EXPORT_SYMBOL(wait_for_completion);
1da177e4 4733
65eb3dc6
KD
4734/**
4735 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4736 * @x: holds the state of this particular completion
4737 * @timeout: timeout value in jiffies
4738 *
4739 * This waits for either a completion of a specific task to be signaled or for a
4740 * specified timeout to expire. The timeout is in jiffies. It is not
4741 * interruptible.
4742 */
b15136e9 4743unsigned long __sched
8cbbe86d 4744wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4745{
8cbbe86d 4746 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4747}
8cbbe86d 4748EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4749
65eb3dc6
KD
4750/**
4751 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4752 * @x: holds the state of this particular completion
4753 *
4754 * This waits for completion of a specific task to be signaled. It is
4755 * interruptible.
4756 */
8cbbe86d 4757int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4758{
51e97990
AK
4759 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4760 if (t == -ERESTARTSYS)
4761 return t;
4762 return 0;
0fec171c 4763}
8cbbe86d 4764EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4765
65eb3dc6
KD
4766/**
4767 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4768 * @x: holds the state of this particular completion
4769 * @timeout: timeout value in jiffies
4770 *
4771 * This waits for either a completion of a specific task to be signaled or for a
4772 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4773 */
b15136e9 4774unsigned long __sched
8cbbe86d
AK
4775wait_for_completion_interruptible_timeout(struct completion *x,
4776 unsigned long timeout)
0fec171c 4777{
8cbbe86d 4778 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4779}
8cbbe86d 4780EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4781
65eb3dc6
KD
4782/**
4783 * wait_for_completion_killable: - waits for completion of a task (killable)
4784 * @x: holds the state of this particular completion
4785 *
4786 * This waits to be signaled for completion of a specific task. It can be
4787 * interrupted by a kill signal.
4788 */
009e577e
MW
4789int __sched wait_for_completion_killable(struct completion *x)
4790{
4791 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4792 if (t == -ERESTARTSYS)
4793 return t;
4794 return 0;
4795}
4796EXPORT_SYMBOL(wait_for_completion_killable);
4797
be4de352
DC
4798/**
4799 * try_wait_for_completion - try to decrement a completion without blocking
4800 * @x: completion structure
4801 *
4802 * Returns: 0 if a decrement cannot be done without blocking
4803 * 1 if a decrement succeeded.
4804 *
4805 * If a completion is being used as a counting completion,
4806 * attempt to decrement the counter without blocking. This
4807 * enables us to avoid waiting if the resource the completion
4808 * is protecting is not available.
4809 */
4810bool try_wait_for_completion(struct completion *x)
4811{
4812 int ret = 1;
4813
4814 spin_lock_irq(&x->wait.lock);
4815 if (!x->done)
4816 ret = 0;
4817 else
4818 x->done--;
4819 spin_unlock_irq(&x->wait.lock);
4820 return ret;
4821}
4822EXPORT_SYMBOL(try_wait_for_completion);
4823
4824/**
4825 * completion_done - Test to see if a completion has any waiters
4826 * @x: completion structure
4827 *
4828 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4829 * 1 if there are no waiters.
4830 *
4831 */
4832bool completion_done(struct completion *x)
4833{
4834 int ret = 1;
4835
4836 spin_lock_irq(&x->wait.lock);
4837 if (!x->done)
4838 ret = 0;
4839 spin_unlock_irq(&x->wait.lock);
4840 return ret;
4841}
4842EXPORT_SYMBOL(completion_done);
4843
8cbbe86d
AK
4844static long __sched
4845sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4846{
0fec171c
IM
4847 unsigned long flags;
4848 wait_queue_t wait;
4849
4850 init_waitqueue_entry(&wait, current);
1da177e4 4851
8cbbe86d 4852 __set_current_state(state);
1da177e4 4853
8cbbe86d
AK
4854 spin_lock_irqsave(&q->lock, flags);
4855 __add_wait_queue(q, &wait);
4856 spin_unlock(&q->lock);
4857 timeout = schedule_timeout(timeout);
4858 spin_lock_irq(&q->lock);
4859 __remove_wait_queue(q, &wait);
4860 spin_unlock_irqrestore(&q->lock, flags);
4861
4862 return timeout;
4863}
4864
4865void __sched interruptible_sleep_on(wait_queue_head_t *q)
4866{
4867 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4868}
1da177e4
LT
4869EXPORT_SYMBOL(interruptible_sleep_on);
4870
0fec171c 4871long __sched
95cdf3b7 4872interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4873{
8cbbe86d 4874 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4875}
1da177e4
LT
4876EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4877
0fec171c 4878void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4879{
8cbbe86d 4880 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4881}
1da177e4
LT
4882EXPORT_SYMBOL(sleep_on);
4883
0fec171c 4884long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4885{
8cbbe86d 4886 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4887}
1da177e4
LT
4888EXPORT_SYMBOL(sleep_on_timeout);
4889
b29739f9
IM
4890#ifdef CONFIG_RT_MUTEXES
4891
4892/*
4893 * rt_mutex_setprio - set the current priority of a task
4894 * @p: task
4895 * @prio: prio value (kernel-internal form)
4896 *
4897 * This function changes the 'effective' priority of a task. It does
4898 * not touch ->normal_prio like __setscheduler().
4899 *
4900 * Used by the rt_mutex code to implement priority inheritance logic.
4901 */
36c8b586 4902void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4903{
4904 unsigned long flags;
83b699ed 4905 int oldprio, on_rq, running;
70b97a7f 4906 struct rq *rq;
cb469845 4907 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4908
4909 BUG_ON(prio < 0 || prio > MAX_PRIO);
4910
4911 rq = task_rq_lock(p, &flags);
a8e504d2 4912 update_rq_clock(rq);
b29739f9 4913
d5f9f942 4914 oldprio = p->prio;
dd41f596 4915 on_rq = p->se.on_rq;
051a1d1a 4916 running = task_current(rq, p);
0e1f3483 4917 if (on_rq)
69be72c1 4918 dequeue_task(rq, p, 0);
0e1f3483
HS
4919 if (running)
4920 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4921
4922 if (rt_prio(prio))
4923 p->sched_class = &rt_sched_class;
4924 else
4925 p->sched_class = &fair_sched_class;
4926
b29739f9
IM
4927 p->prio = prio;
4928
0e1f3483
HS
4929 if (running)
4930 p->sched_class->set_curr_task(rq);
dd41f596 4931 if (on_rq) {
8159f87e 4932 enqueue_task(rq, p, 0);
cb469845
SR
4933
4934 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4935 }
4936 task_rq_unlock(rq, &flags);
4937}
4938
4939#endif
4940
36c8b586 4941void set_user_nice(struct task_struct *p, long nice)
1da177e4 4942{
dd41f596 4943 int old_prio, delta, on_rq;
1da177e4 4944 unsigned long flags;
70b97a7f 4945 struct rq *rq;
1da177e4
LT
4946
4947 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4948 return;
4949 /*
4950 * We have to be careful, if called from sys_setpriority(),
4951 * the task might be in the middle of scheduling on another CPU.
4952 */
4953 rq = task_rq_lock(p, &flags);
a8e504d2 4954 update_rq_clock(rq);
1da177e4
LT
4955 /*
4956 * The RT priorities are set via sched_setscheduler(), but we still
4957 * allow the 'normal' nice value to be set - but as expected
4958 * it wont have any effect on scheduling until the task is
dd41f596 4959 * SCHED_FIFO/SCHED_RR:
1da177e4 4960 */
e05606d3 4961 if (task_has_rt_policy(p)) {
1da177e4
LT
4962 p->static_prio = NICE_TO_PRIO(nice);
4963 goto out_unlock;
4964 }
dd41f596 4965 on_rq = p->se.on_rq;
c09595f6 4966 if (on_rq)
69be72c1 4967 dequeue_task(rq, p, 0);
1da177e4 4968
1da177e4 4969 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4970 set_load_weight(p);
b29739f9
IM
4971 old_prio = p->prio;
4972 p->prio = effective_prio(p);
4973 delta = p->prio - old_prio;
1da177e4 4974
dd41f596 4975 if (on_rq) {
8159f87e 4976 enqueue_task(rq, p, 0);
1da177e4 4977 /*
d5f9f942
AM
4978 * If the task increased its priority or is running and
4979 * lowered its priority, then reschedule its CPU:
1da177e4 4980 */
d5f9f942 4981 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4982 resched_task(rq->curr);
4983 }
4984out_unlock:
4985 task_rq_unlock(rq, &flags);
4986}
1da177e4
LT
4987EXPORT_SYMBOL(set_user_nice);
4988
e43379f1
MM
4989/*
4990 * can_nice - check if a task can reduce its nice value
4991 * @p: task
4992 * @nice: nice value
4993 */
36c8b586 4994int can_nice(const struct task_struct *p, const int nice)
e43379f1 4995{
024f4747
MM
4996 /* convert nice value [19,-20] to rlimit style value [1,40] */
4997 int nice_rlim = 20 - nice;
48f24c4d 4998
e43379f1
MM
4999 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5000 capable(CAP_SYS_NICE));
5001}
5002
1da177e4
LT
5003#ifdef __ARCH_WANT_SYS_NICE
5004
5005/*
5006 * sys_nice - change the priority of the current process.
5007 * @increment: priority increment
5008 *
5009 * sys_setpriority is a more generic, but much slower function that
5010 * does similar things.
5011 */
5012asmlinkage long sys_nice(int increment)
5013{
48f24c4d 5014 long nice, retval;
1da177e4
LT
5015
5016 /*
5017 * Setpriority might change our priority at the same moment.
5018 * We don't have to worry. Conceptually one call occurs first
5019 * and we have a single winner.
5020 */
e43379f1
MM
5021 if (increment < -40)
5022 increment = -40;
1da177e4
LT
5023 if (increment > 40)
5024 increment = 40;
5025
5026 nice = PRIO_TO_NICE(current->static_prio) + increment;
5027 if (nice < -20)
5028 nice = -20;
5029 if (nice > 19)
5030 nice = 19;
5031
e43379f1
MM
5032 if (increment < 0 && !can_nice(current, nice))
5033 return -EPERM;
5034
1da177e4
LT
5035 retval = security_task_setnice(current, nice);
5036 if (retval)
5037 return retval;
5038
5039 set_user_nice(current, nice);
5040 return 0;
5041}
5042
5043#endif
5044
5045/**
5046 * task_prio - return the priority value of a given task.
5047 * @p: the task in question.
5048 *
5049 * This is the priority value as seen by users in /proc.
5050 * RT tasks are offset by -200. Normal tasks are centered
5051 * around 0, value goes from -16 to +15.
5052 */
36c8b586 5053int task_prio(const struct task_struct *p)
1da177e4
LT
5054{
5055 return p->prio - MAX_RT_PRIO;
5056}
5057
5058/**
5059 * task_nice - return the nice value of a given task.
5060 * @p: the task in question.
5061 */
36c8b586 5062int task_nice(const struct task_struct *p)
1da177e4
LT
5063{
5064 return TASK_NICE(p);
5065}
150d8bed 5066EXPORT_SYMBOL(task_nice);
1da177e4
LT
5067
5068/**
5069 * idle_cpu - is a given cpu idle currently?
5070 * @cpu: the processor in question.
5071 */
5072int idle_cpu(int cpu)
5073{
5074 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5075}
5076
1da177e4
LT
5077/**
5078 * idle_task - return the idle task for a given cpu.
5079 * @cpu: the processor in question.
5080 */
36c8b586 5081struct task_struct *idle_task(int cpu)
1da177e4
LT
5082{
5083 return cpu_rq(cpu)->idle;
5084}
5085
5086/**
5087 * find_process_by_pid - find a process with a matching PID value.
5088 * @pid: the pid in question.
5089 */
a9957449 5090static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5091{
228ebcbe 5092 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5093}
5094
5095/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5096static void
5097__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5098{
dd41f596 5099 BUG_ON(p->se.on_rq);
48f24c4d 5100
1da177e4 5101 p->policy = policy;
dd41f596
IM
5102 switch (p->policy) {
5103 case SCHED_NORMAL:
5104 case SCHED_BATCH:
5105 case SCHED_IDLE:
5106 p->sched_class = &fair_sched_class;
5107 break;
5108 case SCHED_FIFO:
5109 case SCHED_RR:
5110 p->sched_class = &rt_sched_class;
5111 break;
5112 }
5113
1da177e4 5114 p->rt_priority = prio;
b29739f9
IM
5115 p->normal_prio = normal_prio(p);
5116 /* we are holding p->pi_lock already */
5117 p->prio = rt_mutex_getprio(p);
2dd73a4f 5118 set_load_weight(p);
1da177e4
LT
5119}
5120
961ccddd
RR
5121static int __sched_setscheduler(struct task_struct *p, int policy,
5122 struct sched_param *param, bool user)
1da177e4 5123{
83b699ed 5124 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5125 unsigned long flags;
cb469845 5126 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5127 struct rq *rq;
1da177e4 5128
66e5393a
SR
5129 /* may grab non-irq protected spin_locks */
5130 BUG_ON(in_interrupt());
1da177e4
LT
5131recheck:
5132 /* double check policy once rq lock held */
5133 if (policy < 0)
5134 policy = oldpolicy = p->policy;
5135 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5136 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5137 policy != SCHED_IDLE)
b0a9499c 5138 return -EINVAL;
1da177e4
LT
5139 /*
5140 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5141 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5142 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5143 */
5144 if (param->sched_priority < 0 ||
95cdf3b7 5145 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5146 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5147 return -EINVAL;
e05606d3 5148 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5149 return -EINVAL;
5150
37e4ab3f
OC
5151 /*
5152 * Allow unprivileged RT tasks to decrease priority:
5153 */
961ccddd 5154 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5155 if (rt_policy(policy)) {
8dc3e909 5156 unsigned long rlim_rtprio;
8dc3e909
ON
5157
5158 if (!lock_task_sighand(p, &flags))
5159 return -ESRCH;
5160 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5161 unlock_task_sighand(p, &flags);
5162
5163 /* can't set/change the rt policy */
5164 if (policy != p->policy && !rlim_rtprio)
5165 return -EPERM;
5166
5167 /* can't increase priority */
5168 if (param->sched_priority > p->rt_priority &&
5169 param->sched_priority > rlim_rtprio)
5170 return -EPERM;
5171 }
dd41f596
IM
5172 /*
5173 * Like positive nice levels, dont allow tasks to
5174 * move out of SCHED_IDLE either:
5175 */
5176 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5177 return -EPERM;
5fe1d75f 5178
37e4ab3f
OC
5179 /* can't change other user's priorities */
5180 if ((current->euid != p->euid) &&
5181 (current->euid != p->uid))
5182 return -EPERM;
5183 }
1da177e4 5184
725aad24 5185 if (user) {
b68aa230 5186#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5187 /*
5188 * Do not allow realtime tasks into groups that have no runtime
5189 * assigned.
5190 */
9a7e0b18
PZ
5191 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5192 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5193 return -EPERM;
b68aa230
PZ
5194#endif
5195
725aad24
JF
5196 retval = security_task_setscheduler(p, policy, param);
5197 if (retval)
5198 return retval;
5199 }
5200
b29739f9
IM
5201 /*
5202 * make sure no PI-waiters arrive (or leave) while we are
5203 * changing the priority of the task:
5204 */
5205 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5206 /*
5207 * To be able to change p->policy safely, the apropriate
5208 * runqueue lock must be held.
5209 */
b29739f9 5210 rq = __task_rq_lock(p);
1da177e4
LT
5211 /* recheck policy now with rq lock held */
5212 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5213 policy = oldpolicy = -1;
b29739f9
IM
5214 __task_rq_unlock(rq);
5215 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5216 goto recheck;
5217 }
2daa3577 5218 update_rq_clock(rq);
dd41f596 5219 on_rq = p->se.on_rq;
051a1d1a 5220 running = task_current(rq, p);
0e1f3483 5221 if (on_rq)
2e1cb74a 5222 deactivate_task(rq, p, 0);
0e1f3483
HS
5223 if (running)
5224 p->sched_class->put_prev_task(rq, p);
f6b53205 5225
1da177e4 5226 oldprio = p->prio;
dd41f596 5227 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5228
0e1f3483
HS
5229 if (running)
5230 p->sched_class->set_curr_task(rq);
dd41f596
IM
5231 if (on_rq) {
5232 activate_task(rq, p, 0);
cb469845
SR
5233
5234 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5235 }
b29739f9
IM
5236 __task_rq_unlock(rq);
5237 spin_unlock_irqrestore(&p->pi_lock, flags);
5238
95e02ca9
TG
5239 rt_mutex_adjust_pi(p);
5240
1da177e4
LT
5241 return 0;
5242}
961ccddd
RR
5243
5244/**
5245 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5246 * @p: the task in question.
5247 * @policy: new policy.
5248 * @param: structure containing the new RT priority.
5249 *
5250 * NOTE that the task may be already dead.
5251 */
5252int sched_setscheduler(struct task_struct *p, int policy,
5253 struct sched_param *param)
5254{
5255 return __sched_setscheduler(p, policy, param, true);
5256}
1da177e4
LT
5257EXPORT_SYMBOL_GPL(sched_setscheduler);
5258
961ccddd
RR
5259/**
5260 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5261 * @p: the task in question.
5262 * @policy: new policy.
5263 * @param: structure containing the new RT priority.
5264 *
5265 * Just like sched_setscheduler, only don't bother checking if the
5266 * current context has permission. For example, this is needed in
5267 * stop_machine(): we create temporary high priority worker threads,
5268 * but our caller might not have that capability.
5269 */
5270int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5271 struct sched_param *param)
5272{
5273 return __sched_setscheduler(p, policy, param, false);
5274}
5275
95cdf3b7
IM
5276static int
5277do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5278{
1da177e4
LT
5279 struct sched_param lparam;
5280 struct task_struct *p;
36c8b586 5281 int retval;
1da177e4
LT
5282
5283 if (!param || pid < 0)
5284 return -EINVAL;
5285 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5286 return -EFAULT;
5fe1d75f
ON
5287
5288 rcu_read_lock();
5289 retval = -ESRCH;
1da177e4 5290 p = find_process_by_pid(pid);
5fe1d75f
ON
5291 if (p != NULL)
5292 retval = sched_setscheduler(p, policy, &lparam);
5293 rcu_read_unlock();
36c8b586 5294
1da177e4
LT
5295 return retval;
5296}
5297
5298/**
5299 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5300 * @pid: the pid in question.
5301 * @policy: new policy.
5302 * @param: structure containing the new RT priority.
5303 */
41a2d6cf
IM
5304asmlinkage long
5305sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5306{
c21761f1
JB
5307 /* negative values for policy are not valid */
5308 if (policy < 0)
5309 return -EINVAL;
5310
1da177e4
LT
5311 return do_sched_setscheduler(pid, policy, param);
5312}
5313
5314/**
5315 * sys_sched_setparam - set/change the RT priority of a thread
5316 * @pid: the pid in question.
5317 * @param: structure containing the new RT priority.
5318 */
5319asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5320{
5321 return do_sched_setscheduler(pid, -1, param);
5322}
5323
5324/**
5325 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5326 * @pid: the pid in question.
5327 */
5328asmlinkage long sys_sched_getscheduler(pid_t pid)
5329{
36c8b586 5330 struct task_struct *p;
3a5c359a 5331 int retval;
1da177e4
LT
5332
5333 if (pid < 0)
3a5c359a 5334 return -EINVAL;
1da177e4
LT
5335
5336 retval = -ESRCH;
5337 read_lock(&tasklist_lock);
5338 p = find_process_by_pid(pid);
5339 if (p) {
5340 retval = security_task_getscheduler(p);
5341 if (!retval)
5342 retval = p->policy;
5343 }
5344 read_unlock(&tasklist_lock);
1da177e4
LT
5345 return retval;
5346}
5347
5348/**
5349 * sys_sched_getscheduler - get the RT priority of a thread
5350 * @pid: the pid in question.
5351 * @param: structure containing the RT priority.
5352 */
5353asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5354{
5355 struct sched_param lp;
36c8b586 5356 struct task_struct *p;
3a5c359a 5357 int retval;
1da177e4
LT
5358
5359 if (!param || pid < 0)
3a5c359a 5360 return -EINVAL;
1da177e4
LT
5361
5362 read_lock(&tasklist_lock);
5363 p = find_process_by_pid(pid);
5364 retval = -ESRCH;
5365 if (!p)
5366 goto out_unlock;
5367
5368 retval = security_task_getscheduler(p);
5369 if (retval)
5370 goto out_unlock;
5371
5372 lp.sched_priority = p->rt_priority;
5373 read_unlock(&tasklist_lock);
5374
5375 /*
5376 * This one might sleep, we cannot do it with a spinlock held ...
5377 */
5378 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5379
1da177e4
LT
5380 return retval;
5381
5382out_unlock:
5383 read_unlock(&tasklist_lock);
5384 return retval;
5385}
5386
b53e921b 5387long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5388{
1da177e4 5389 cpumask_t cpus_allowed;
b53e921b 5390 cpumask_t new_mask = *in_mask;
36c8b586
IM
5391 struct task_struct *p;
5392 int retval;
1da177e4 5393
95402b38 5394 get_online_cpus();
1da177e4
LT
5395 read_lock(&tasklist_lock);
5396
5397 p = find_process_by_pid(pid);
5398 if (!p) {
5399 read_unlock(&tasklist_lock);
95402b38 5400 put_online_cpus();
1da177e4
LT
5401 return -ESRCH;
5402 }
5403
5404 /*
5405 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5406 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5407 * usage count and then drop tasklist_lock.
5408 */
5409 get_task_struct(p);
5410 read_unlock(&tasklist_lock);
5411
5412 retval = -EPERM;
5413 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5414 !capable(CAP_SYS_NICE))
5415 goto out_unlock;
5416
e7834f8f
DQ
5417 retval = security_task_setscheduler(p, 0, NULL);
5418 if (retval)
5419 goto out_unlock;
5420
f9a86fcb 5421 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5422 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5423 again:
7c16ec58 5424 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5425
8707d8b8 5426 if (!retval) {
f9a86fcb 5427 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5428 if (!cpus_subset(new_mask, cpus_allowed)) {
5429 /*
5430 * We must have raced with a concurrent cpuset
5431 * update. Just reset the cpus_allowed to the
5432 * cpuset's cpus_allowed
5433 */
5434 new_mask = cpus_allowed;
5435 goto again;
5436 }
5437 }
1da177e4
LT
5438out_unlock:
5439 put_task_struct(p);
95402b38 5440 put_online_cpus();
1da177e4
LT
5441 return retval;
5442}
5443
5444static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5445 cpumask_t *new_mask)
5446{
5447 if (len < sizeof(cpumask_t)) {
5448 memset(new_mask, 0, sizeof(cpumask_t));
5449 } else if (len > sizeof(cpumask_t)) {
5450 len = sizeof(cpumask_t);
5451 }
5452 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5453}
5454
5455/**
5456 * sys_sched_setaffinity - set the cpu affinity of a process
5457 * @pid: pid of the process
5458 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5459 * @user_mask_ptr: user-space pointer to the new cpu mask
5460 */
5461asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5462 unsigned long __user *user_mask_ptr)
5463{
5464 cpumask_t new_mask;
5465 int retval;
5466
5467 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5468 if (retval)
5469 return retval;
5470
b53e921b 5471 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5472}
5473
1da177e4
LT
5474long sched_getaffinity(pid_t pid, cpumask_t *mask)
5475{
36c8b586 5476 struct task_struct *p;
1da177e4 5477 int retval;
1da177e4 5478
95402b38 5479 get_online_cpus();
1da177e4
LT
5480 read_lock(&tasklist_lock);
5481
5482 retval = -ESRCH;
5483 p = find_process_by_pid(pid);
5484 if (!p)
5485 goto out_unlock;
5486
e7834f8f
DQ
5487 retval = security_task_getscheduler(p);
5488 if (retval)
5489 goto out_unlock;
5490
2f7016d9 5491 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5492
5493out_unlock:
5494 read_unlock(&tasklist_lock);
95402b38 5495 put_online_cpus();
1da177e4 5496
9531b62f 5497 return retval;
1da177e4
LT
5498}
5499
5500/**
5501 * sys_sched_getaffinity - get the cpu affinity of a process
5502 * @pid: pid of the process
5503 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5504 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5505 */
5506asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5507 unsigned long __user *user_mask_ptr)
5508{
5509 int ret;
5510 cpumask_t mask;
5511
5512 if (len < sizeof(cpumask_t))
5513 return -EINVAL;
5514
5515 ret = sched_getaffinity(pid, &mask);
5516 if (ret < 0)
5517 return ret;
5518
5519 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5520 return -EFAULT;
5521
5522 return sizeof(cpumask_t);
5523}
5524
5525/**
5526 * sys_sched_yield - yield the current processor to other threads.
5527 *
dd41f596
IM
5528 * This function yields the current CPU to other tasks. If there are no
5529 * other threads running on this CPU then this function will return.
1da177e4
LT
5530 */
5531asmlinkage long sys_sched_yield(void)
5532{
70b97a7f 5533 struct rq *rq = this_rq_lock();
1da177e4 5534
2d72376b 5535 schedstat_inc(rq, yld_count);
4530d7ab 5536 current->sched_class->yield_task(rq);
1da177e4
LT
5537
5538 /*
5539 * Since we are going to call schedule() anyway, there's
5540 * no need to preempt or enable interrupts:
5541 */
5542 __release(rq->lock);
8a25d5de 5543 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5544 _raw_spin_unlock(&rq->lock);
5545 preempt_enable_no_resched();
5546
5547 schedule();
5548
5549 return 0;
5550}
5551
e7b38404 5552static void __cond_resched(void)
1da177e4 5553{
8e0a43d8
IM
5554#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5555 __might_sleep(__FILE__, __LINE__);
5556#endif
5bbcfd90
IM
5557 /*
5558 * The BKS might be reacquired before we have dropped
5559 * PREEMPT_ACTIVE, which could trigger a second
5560 * cond_resched() call.
5561 */
1da177e4
LT
5562 do {
5563 add_preempt_count(PREEMPT_ACTIVE);
5564 schedule();
5565 sub_preempt_count(PREEMPT_ACTIVE);
5566 } while (need_resched());
5567}
5568
02b67cc3 5569int __sched _cond_resched(void)
1da177e4 5570{
9414232f
IM
5571 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5572 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5573 __cond_resched();
5574 return 1;
5575 }
5576 return 0;
5577}
02b67cc3 5578EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5579
5580/*
5581 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5582 * call schedule, and on return reacquire the lock.
5583 *
41a2d6cf 5584 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5585 * operations here to prevent schedule() from being called twice (once via
5586 * spin_unlock(), once by hand).
5587 */
95cdf3b7 5588int cond_resched_lock(spinlock_t *lock)
1da177e4 5589{
95c354fe 5590 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5591 int ret = 0;
5592
95c354fe 5593 if (spin_needbreak(lock) || resched) {
1da177e4 5594 spin_unlock(lock);
95c354fe
NP
5595 if (resched && need_resched())
5596 __cond_resched();
5597 else
5598 cpu_relax();
6df3cecb 5599 ret = 1;
1da177e4 5600 spin_lock(lock);
1da177e4 5601 }
6df3cecb 5602 return ret;
1da177e4 5603}
1da177e4
LT
5604EXPORT_SYMBOL(cond_resched_lock);
5605
5606int __sched cond_resched_softirq(void)
5607{
5608 BUG_ON(!in_softirq());
5609
9414232f 5610 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5611 local_bh_enable();
1da177e4
LT
5612 __cond_resched();
5613 local_bh_disable();
5614 return 1;
5615 }
5616 return 0;
5617}
1da177e4
LT
5618EXPORT_SYMBOL(cond_resched_softirq);
5619
1da177e4
LT
5620/**
5621 * yield - yield the current processor to other threads.
5622 *
72fd4a35 5623 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5624 * thread runnable and calls sys_sched_yield().
5625 */
5626void __sched yield(void)
5627{
5628 set_current_state(TASK_RUNNING);
5629 sys_sched_yield();
5630}
1da177e4
LT
5631EXPORT_SYMBOL(yield);
5632
5633/*
41a2d6cf 5634 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5635 * that process accounting knows that this is a task in IO wait state.
5636 *
5637 * But don't do that if it is a deliberate, throttling IO wait (this task
5638 * has set its backing_dev_info: the queue against which it should throttle)
5639 */
5640void __sched io_schedule(void)
5641{
70b97a7f 5642 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5643
0ff92245 5644 delayacct_blkio_start();
1da177e4
LT
5645 atomic_inc(&rq->nr_iowait);
5646 schedule();
5647 atomic_dec(&rq->nr_iowait);
0ff92245 5648 delayacct_blkio_end();
1da177e4 5649}
1da177e4
LT
5650EXPORT_SYMBOL(io_schedule);
5651
5652long __sched io_schedule_timeout(long timeout)
5653{
70b97a7f 5654 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5655 long ret;
5656
0ff92245 5657 delayacct_blkio_start();
1da177e4
LT
5658 atomic_inc(&rq->nr_iowait);
5659 ret = schedule_timeout(timeout);
5660 atomic_dec(&rq->nr_iowait);
0ff92245 5661 delayacct_blkio_end();
1da177e4
LT
5662 return ret;
5663}
5664
5665/**
5666 * sys_sched_get_priority_max - return maximum RT priority.
5667 * @policy: scheduling class.
5668 *
5669 * this syscall returns the maximum rt_priority that can be used
5670 * by a given scheduling class.
5671 */
5672asmlinkage long sys_sched_get_priority_max(int policy)
5673{
5674 int ret = -EINVAL;
5675
5676 switch (policy) {
5677 case SCHED_FIFO:
5678 case SCHED_RR:
5679 ret = MAX_USER_RT_PRIO-1;
5680 break;
5681 case SCHED_NORMAL:
b0a9499c 5682 case SCHED_BATCH:
dd41f596 5683 case SCHED_IDLE:
1da177e4
LT
5684 ret = 0;
5685 break;
5686 }
5687 return ret;
5688}
5689
5690/**
5691 * sys_sched_get_priority_min - return minimum RT priority.
5692 * @policy: scheduling class.
5693 *
5694 * this syscall returns the minimum rt_priority that can be used
5695 * by a given scheduling class.
5696 */
5697asmlinkage long sys_sched_get_priority_min(int policy)
5698{
5699 int ret = -EINVAL;
5700
5701 switch (policy) {
5702 case SCHED_FIFO:
5703 case SCHED_RR:
5704 ret = 1;
5705 break;
5706 case SCHED_NORMAL:
b0a9499c 5707 case SCHED_BATCH:
dd41f596 5708 case SCHED_IDLE:
1da177e4
LT
5709 ret = 0;
5710 }
5711 return ret;
5712}
5713
5714/**
5715 * sys_sched_rr_get_interval - return the default timeslice of a process.
5716 * @pid: pid of the process.
5717 * @interval: userspace pointer to the timeslice value.
5718 *
5719 * this syscall writes the default timeslice value of a given process
5720 * into the user-space timespec buffer. A value of '0' means infinity.
5721 */
5722asmlinkage
5723long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5724{
36c8b586 5725 struct task_struct *p;
a4ec24b4 5726 unsigned int time_slice;
3a5c359a 5727 int retval;
1da177e4 5728 struct timespec t;
1da177e4
LT
5729
5730 if (pid < 0)
3a5c359a 5731 return -EINVAL;
1da177e4
LT
5732
5733 retval = -ESRCH;
5734 read_lock(&tasklist_lock);
5735 p = find_process_by_pid(pid);
5736 if (!p)
5737 goto out_unlock;
5738
5739 retval = security_task_getscheduler(p);
5740 if (retval)
5741 goto out_unlock;
5742
77034937
IM
5743 /*
5744 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5745 * tasks that are on an otherwise idle runqueue:
5746 */
5747 time_slice = 0;
5748 if (p->policy == SCHED_RR) {
a4ec24b4 5749 time_slice = DEF_TIMESLICE;
1868f958 5750 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5751 struct sched_entity *se = &p->se;
5752 unsigned long flags;
5753 struct rq *rq;
5754
5755 rq = task_rq_lock(p, &flags);
77034937
IM
5756 if (rq->cfs.load.weight)
5757 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5758 task_rq_unlock(rq, &flags);
5759 }
1da177e4 5760 read_unlock(&tasklist_lock);
a4ec24b4 5761 jiffies_to_timespec(time_slice, &t);
1da177e4 5762 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5763 return retval;
3a5c359a 5764
1da177e4
LT
5765out_unlock:
5766 read_unlock(&tasklist_lock);
5767 return retval;
5768}
5769
7c731e0a 5770static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5771
82a1fcb9 5772void sched_show_task(struct task_struct *p)
1da177e4 5773{
1da177e4 5774 unsigned long free = 0;
36c8b586 5775 unsigned state;
1da177e4 5776
1da177e4 5777 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5778 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5779 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5780#if BITS_PER_LONG == 32
1da177e4 5781 if (state == TASK_RUNNING)
cc4ea795 5782 printk(KERN_CONT " running ");
1da177e4 5783 else
cc4ea795 5784 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5785#else
5786 if (state == TASK_RUNNING)
cc4ea795 5787 printk(KERN_CONT " running task ");
1da177e4 5788 else
cc4ea795 5789 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5790#endif
5791#ifdef CONFIG_DEBUG_STACK_USAGE
5792 {
10ebffde 5793 unsigned long *n = end_of_stack(p);
1da177e4
LT
5794 while (!*n)
5795 n++;
10ebffde 5796 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5797 }
5798#endif
ba25f9dc 5799 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5800 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5801
5fb5e6de 5802 show_stack(p, NULL);
1da177e4
LT
5803}
5804
e59e2ae2 5805void show_state_filter(unsigned long state_filter)
1da177e4 5806{
36c8b586 5807 struct task_struct *g, *p;
1da177e4 5808
4bd77321
IM
5809#if BITS_PER_LONG == 32
5810 printk(KERN_INFO
5811 " task PC stack pid father\n");
1da177e4 5812#else
4bd77321
IM
5813 printk(KERN_INFO
5814 " task PC stack pid father\n");
1da177e4
LT
5815#endif
5816 read_lock(&tasklist_lock);
5817 do_each_thread(g, p) {
5818 /*
5819 * reset the NMI-timeout, listing all files on a slow
5820 * console might take alot of time:
5821 */
5822 touch_nmi_watchdog();
39bc89fd 5823 if (!state_filter || (p->state & state_filter))
82a1fcb9 5824 sched_show_task(p);
1da177e4
LT
5825 } while_each_thread(g, p);
5826
04c9167f
JF
5827 touch_all_softlockup_watchdogs();
5828
dd41f596
IM
5829#ifdef CONFIG_SCHED_DEBUG
5830 sysrq_sched_debug_show();
5831#endif
1da177e4 5832 read_unlock(&tasklist_lock);
e59e2ae2
IM
5833 /*
5834 * Only show locks if all tasks are dumped:
5835 */
5836 if (state_filter == -1)
5837 debug_show_all_locks();
1da177e4
LT
5838}
5839
1df21055
IM
5840void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5841{
dd41f596 5842 idle->sched_class = &idle_sched_class;
1df21055
IM
5843}
5844
f340c0d1
IM
5845/**
5846 * init_idle - set up an idle thread for a given CPU
5847 * @idle: task in question
5848 * @cpu: cpu the idle task belongs to
5849 *
5850 * NOTE: this function does not set the idle thread's NEED_RESCHED
5851 * flag, to make booting more robust.
5852 */
5c1e1767 5853void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5854{
70b97a7f 5855 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5856 unsigned long flags;
5857
dd41f596
IM
5858 __sched_fork(idle);
5859 idle->se.exec_start = sched_clock();
5860
b29739f9 5861 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5862 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5863 __set_task_cpu(idle, cpu);
1da177e4
LT
5864
5865 spin_lock_irqsave(&rq->lock, flags);
5866 rq->curr = rq->idle = idle;
4866cde0
NP
5867#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5868 idle->oncpu = 1;
5869#endif
1da177e4
LT
5870 spin_unlock_irqrestore(&rq->lock, flags);
5871
5872 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5873#if defined(CONFIG_PREEMPT)
5874 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5875#else
a1261f54 5876 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5877#endif
dd41f596
IM
5878 /*
5879 * The idle tasks have their own, simple scheduling class:
5880 */
5881 idle->sched_class = &idle_sched_class;
1da177e4
LT
5882}
5883
5884/*
5885 * In a system that switches off the HZ timer nohz_cpu_mask
5886 * indicates which cpus entered this state. This is used
5887 * in the rcu update to wait only for active cpus. For system
5888 * which do not switch off the HZ timer nohz_cpu_mask should
5889 * always be CPU_MASK_NONE.
5890 */
5891cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5892
19978ca6
IM
5893/*
5894 * Increase the granularity value when there are more CPUs,
5895 * because with more CPUs the 'effective latency' as visible
5896 * to users decreases. But the relationship is not linear,
5897 * so pick a second-best guess by going with the log2 of the
5898 * number of CPUs.
5899 *
5900 * This idea comes from the SD scheduler of Con Kolivas:
5901 */
5902static inline void sched_init_granularity(void)
5903{
5904 unsigned int factor = 1 + ilog2(num_online_cpus());
5905 const unsigned long limit = 200000000;
5906
5907 sysctl_sched_min_granularity *= factor;
5908 if (sysctl_sched_min_granularity > limit)
5909 sysctl_sched_min_granularity = limit;
5910
5911 sysctl_sched_latency *= factor;
5912 if (sysctl_sched_latency > limit)
5913 sysctl_sched_latency = limit;
5914
5915 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
5916
5917 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
5918}
5919
1da177e4
LT
5920#ifdef CONFIG_SMP
5921/*
5922 * This is how migration works:
5923 *
70b97a7f 5924 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5925 * runqueue and wake up that CPU's migration thread.
5926 * 2) we down() the locked semaphore => thread blocks.
5927 * 3) migration thread wakes up (implicitly it forces the migrated
5928 * thread off the CPU)
5929 * 4) it gets the migration request and checks whether the migrated
5930 * task is still in the wrong runqueue.
5931 * 5) if it's in the wrong runqueue then the migration thread removes
5932 * it and puts it into the right queue.
5933 * 6) migration thread up()s the semaphore.
5934 * 7) we wake up and the migration is done.
5935 */
5936
5937/*
5938 * Change a given task's CPU affinity. Migrate the thread to a
5939 * proper CPU and schedule it away if the CPU it's executing on
5940 * is removed from the allowed bitmask.
5941 *
5942 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5943 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5944 * call is not atomic; no spinlocks may be held.
5945 */
cd8ba7cd 5946int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5947{
70b97a7f 5948 struct migration_req req;
1da177e4 5949 unsigned long flags;
70b97a7f 5950 struct rq *rq;
48f24c4d 5951 int ret = 0;
1da177e4
LT
5952
5953 rq = task_rq_lock(p, &flags);
cd8ba7cd 5954 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5955 ret = -EINVAL;
5956 goto out;
5957 }
5958
9985b0ba
DR
5959 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5960 !cpus_equal(p->cpus_allowed, *new_mask))) {
5961 ret = -EINVAL;
5962 goto out;
5963 }
5964
73fe6aae 5965 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5966 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5967 else {
cd8ba7cd
MT
5968 p->cpus_allowed = *new_mask;
5969 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5970 }
5971
1da177e4 5972 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5973 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5974 goto out;
5975
cd8ba7cd 5976 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5977 /* Need help from migration thread: drop lock and wait. */
5978 task_rq_unlock(rq, &flags);
5979 wake_up_process(rq->migration_thread);
5980 wait_for_completion(&req.done);
5981 tlb_migrate_finish(p->mm);
5982 return 0;
5983 }
5984out:
5985 task_rq_unlock(rq, &flags);
48f24c4d 5986
1da177e4
LT
5987 return ret;
5988}
cd8ba7cd 5989EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5990
5991/*
41a2d6cf 5992 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5993 * this because either it can't run here any more (set_cpus_allowed()
5994 * away from this CPU, or CPU going down), or because we're
5995 * attempting to rebalance this task on exec (sched_exec).
5996 *
5997 * So we race with normal scheduler movements, but that's OK, as long
5998 * as the task is no longer on this CPU.
efc30814
KK
5999 *
6000 * Returns non-zero if task was successfully migrated.
1da177e4 6001 */
efc30814 6002static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6003{
70b97a7f 6004 struct rq *rq_dest, *rq_src;
dd41f596 6005 int ret = 0, on_rq;
1da177e4 6006
e761b772 6007 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6008 return ret;
1da177e4
LT
6009
6010 rq_src = cpu_rq(src_cpu);
6011 rq_dest = cpu_rq(dest_cpu);
6012
6013 double_rq_lock(rq_src, rq_dest);
6014 /* Already moved. */
6015 if (task_cpu(p) != src_cpu)
b1e38734 6016 goto done;
1da177e4
LT
6017 /* Affinity changed (again). */
6018 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 6019 goto fail;
1da177e4 6020
dd41f596 6021 on_rq = p->se.on_rq;
6e82a3be 6022 if (on_rq)
2e1cb74a 6023 deactivate_task(rq_src, p, 0);
6e82a3be 6024
1da177e4 6025 set_task_cpu(p, dest_cpu);
dd41f596
IM
6026 if (on_rq) {
6027 activate_task(rq_dest, p, 0);
15afe09b 6028 check_preempt_curr(rq_dest, p, 0);
1da177e4 6029 }
b1e38734 6030done:
efc30814 6031 ret = 1;
b1e38734 6032fail:
1da177e4 6033 double_rq_unlock(rq_src, rq_dest);
efc30814 6034 return ret;
1da177e4
LT
6035}
6036
6037/*
6038 * migration_thread - this is a highprio system thread that performs
6039 * thread migration by bumping thread off CPU then 'pushing' onto
6040 * another runqueue.
6041 */
95cdf3b7 6042static int migration_thread(void *data)
1da177e4 6043{
1da177e4 6044 int cpu = (long)data;
70b97a7f 6045 struct rq *rq;
1da177e4
LT
6046
6047 rq = cpu_rq(cpu);
6048 BUG_ON(rq->migration_thread != current);
6049
6050 set_current_state(TASK_INTERRUPTIBLE);
6051 while (!kthread_should_stop()) {
70b97a7f 6052 struct migration_req *req;
1da177e4 6053 struct list_head *head;
1da177e4 6054
1da177e4
LT
6055 spin_lock_irq(&rq->lock);
6056
6057 if (cpu_is_offline(cpu)) {
6058 spin_unlock_irq(&rq->lock);
6059 goto wait_to_die;
6060 }
6061
6062 if (rq->active_balance) {
6063 active_load_balance(rq, cpu);
6064 rq->active_balance = 0;
6065 }
6066
6067 head = &rq->migration_queue;
6068
6069 if (list_empty(head)) {
6070 spin_unlock_irq(&rq->lock);
6071 schedule();
6072 set_current_state(TASK_INTERRUPTIBLE);
6073 continue;
6074 }
70b97a7f 6075 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6076 list_del_init(head->next);
6077
674311d5
NP
6078 spin_unlock(&rq->lock);
6079 __migrate_task(req->task, cpu, req->dest_cpu);
6080 local_irq_enable();
1da177e4
LT
6081
6082 complete(&req->done);
6083 }
6084 __set_current_state(TASK_RUNNING);
6085 return 0;
6086
6087wait_to_die:
6088 /* Wait for kthread_stop */
6089 set_current_state(TASK_INTERRUPTIBLE);
6090 while (!kthread_should_stop()) {
6091 schedule();
6092 set_current_state(TASK_INTERRUPTIBLE);
6093 }
6094 __set_current_state(TASK_RUNNING);
6095 return 0;
6096}
6097
6098#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6099
6100static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6101{
6102 int ret;
6103
6104 local_irq_disable();
6105 ret = __migrate_task(p, src_cpu, dest_cpu);
6106 local_irq_enable();
6107 return ret;
6108}
6109
054b9108 6110/*
3a4fa0a2 6111 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
6112 * NOTE: interrupts should be disabled by the caller
6113 */
48f24c4d 6114static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6115{
efc30814 6116 unsigned long flags;
1da177e4 6117 cpumask_t mask;
70b97a7f
IM
6118 struct rq *rq;
6119 int dest_cpu;
1da177e4 6120
3a5c359a
AK
6121 do {
6122 /* On same node? */
6123 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6124 cpus_and(mask, mask, p->cpus_allowed);
6125 dest_cpu = any_online_cpu(mask);
6126
6127 /* On any allowed CPU? */
434d53b0 6128 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6129 dest_cpu = any_online_cpu(p->cpus_allowed);
6130
6131 /* No more Mr. Nice Guy. */
434d53b0 6132 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6133 cpumask_t cpus_allowed;
6134
6135 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6136 /*
6137 * Try to stay on the same cpuset, where the
6138 * current cpuset may be a subset of all cpus.
6139 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6140 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6141 * called within calls to cpuset_lock/cpuset_unlock.
6142 */
3a5c359a 6143 rq = task_rq_lock(p, &flags);
470fd646 6144 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6145 dest_cpu = any_online_cpu(p->cpus_allowed);
6146 task_rq_unlock(rq, &flags);
1da177e4 6147
3a5c359a
AK
6148 /*
6149 * Don't tell them about moving exiting tasks or
6150 * kernel threads (both mm NULL), since they never
6151 * leave kernel.
6152 */
41a2d6cf 6153 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6154 printk(KERN_INFO "process %d (%s) no "
6155 "longer affine to cpu%d\n",
41a2d6cf
IM
6156 task_pid_nr(p), p->comm, dead_cpu);
6157 }
3a5c359a 6158 }
f7b4cddc 6159 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6160}
6161
6162/*
6163 * While a dead CPU has no uninterruptible tasks queued at this point,
6164 * it might still have a nonzero ->nr_uninterruptible counter, because
6165 * for performance reasons the counter is not stricly tracking tasks to
6166 * their home CPUs. So we just add the counter to another CPU's counter,
6167 * to keep the global sum constant after CPU-down:
6168 */
70b97a7f 6169static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6170{
7c16ec58 6171 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6172 unsigned long flags;
6173
6174 local_irq_save(flags);
6175 double_rq_lock(rq_src, rq_dest);
6176 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6177 rq_src->nr_uninterruptible = 0;
6178 double_rq_unlock(rq_src, rq_dest);
6179 local_irq_restore(flags);
6180}
6181
6182/* Run through task list and migrate tasks from the dead cpu. */
6183static void migrate_live_tasks(int src_cpu)
6184{
48f24c4d 6185 struct task_struct *p, *t;
1da177e4 6186
f7b4cddc 6187 read_lock(&tasklist_lock);
1da177e4 6188
48f24c4d
IM
6189 do_each_thread(t, p) {
6190 if (p == current)
1da177e4
LT
6191 continue;
6192
48f24c4d
IM
6193 if (task_cpu(p) == src_cpu)
6194 move_task_off_dead_cpu(src_cpu, p);
6195 } while_each_thread(t, p);
1da177e4 6196
f7b4cddc 6197 read_unlock(&tasklist_lock);
1da177e4
LT
6198}
6199
dd41f596
IM
6200/*
6201 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6202 * It does so by boosting its priority to highest possible.
6203 * Used by CPU offline code.
1da177e4
LT
6204 */
6205void sched_idle_next(void)
6206{
48f24c4d 6207 int this_cpu = smp_processor_id();
70b97a7f 6208 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6209 struct task_struct *p = rq->idle;
6210 unsigned long flags;
6211
6212 /* cpu has to be offline */
48f24c4d 6213 BUG_ON(cpu_online(this_cpu));
1da177e4 6214
48f24c4d
IM
6215 /*
6216 * Strictly not necessary since rest of the CPUs are stopped by now
6217 * and interrupts disabled on the current cpu.
1da177e4
LT
6218 */
6219 spin_lock_irqsave(&rq->lock, flags);
6220
dd41f596 6221 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6222
94bc9a7b
DA
6223 update_rq_clock(rq);
6224 activate_task(rq, p, 0);
1da177e4
LT
6225
6226 spin_unlock_irqrestore(&rq->lock, flags);
6227}
6228
48f24c4d
IM
6229/*
6230 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6231 * offline.
6232 */
6233void idle_task_exit(void)
6234{
6235 struct mm_struct *mm = current->active_mm;
6236
6237 BUG_ON(cpu_online(smp_processor_id()));
6238
6239 if (mm != &init_mm)
6240 switch_mm(mm, &init_mm, current);
6241 mmdrop(mm);
6242}
6243
054b9108 6244/* called under rq->lock with disabled interrupts */
36c8b586 6245static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6246{
70b97a7f 6247 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6248
6249 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6250 BUG_ON(!p->exit_state);
1da177e4
LT
6251
6252 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6253 BUG_ON(p->state == TASK_DEAD);
1da177e4 6254
48f24c4d 6255 get_task_struct(p);
1da177e4
LT
6256
6257 /*
6258 * Drop lock around migration; if someone else moves it,
41a2d6cf 6259 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6260 * fine.
6261 */
f7b4cddc 6262 spin_unlock_irq(&rq->lock);
48f24c4d 6263 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6264 spin_lock_irq(&rq->lock);
1da177e4 6265
48f24c4d 6266 put_task_struct(p);
1da177e4
LT
6267}
6268
6269/* release_task() removes task from tasklist, so we won't find dead tasks. */
6270static void migrate_dead_tasks(unsigned int dead_cpu)
6271{
70b97a7f 6272 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6273 struct task_struct *next;
48f24c4d 6274
dd41f596
IM
6275 for ( ; ; ) {
6276 if (!rq->nr_running)
6277 break;
a8e504d2 6278 update_rq_clock(rq);
ff95f3df 6279 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6280 if (!next)
6281 break;
79c53799 6282 next->sched_class->put_prev_task(rq, next);
dd41f596 6283 migrate_dead(dead_cpu, next);
e692ab53 6284
1da177e4
LT
6285 }
6286}
6287#endif /* CONFIG_HOTPLUG_CPU */
6288
e692ab53
NP
6289#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6290
6291static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6292 {
6293 .procname = "sched_domain",
c57baf1e 6294 .mode = 0555,
e0361851 6295 },
38605cae 6296 {0, },
e692ab53
NP
6297};
6298
6299static struct ctl_table sd_ctl_root[] = {
e0361851 6300 {
c57baf1e 6301 .ctl_name = CTL_KERN,
e0361851 6302 .procname = "kernel",
c57baf1e 6303 .mode = 0555,
e0361851
AD
6304 .child = sd_ctl_dir,
6305 },
38605cae 6306 {0, },
e692ab53
NP
6307};
6308
6309static struct ctl_table *sd_alloc_ctl_entry(int n)
6310{
6311 struct ctl_table *entry =
5cf9f062 6312 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6313
e692ab53
NP
6314 return entry;
6315}
6316
6382bc90
MM
6317static void sd_free_ctl_entry(struct ctl_table **tablep)
6318{
cd790076 6319 struct ctl_table *entry;
6382bc90 6320
cd790076
MM
6321 /*
6322 * In the intermediate directories, both the child directory and
6323 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6324 * will always be set. In the lowest directory the names are
cd790076
MM
6325 * static strings and all have proc handlers.
6326 */
6327 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6328 if (entry->child)
6329 sd_free_ctl_entry(&entry->child);
cd790076
MM
6330 if (entry->proc_handler == NULL)
6331 kfree(entry->procname);
6332 }
6382bc90
MM
6333
6334 kfree(*tablep);
6335 *tablep = NULL;
6336}
6337
e692ab53 6338static void
e0361851 6339set_table_entry(struct ctl_table *entry,
e692ab53
NP
6340 const char *procname, void *data, int maxlen,
6341 mode_t mode, proc_handler *proc_handler)
6342{
e692ab53
NP
6343 entry->procname = procname;
6344 entry->data = data;
6345 entry->maxlen = maxlen;
6346 entry->mode = mode;
6347 entry->proc_handler = proc_handler;
6348}
6349
6350static struct ctl_table *
6351sd_alloc_ctl_domain_table(struct sched_domain *sd)
6352{
a5d8c348 6353 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6354
ad1cdc1d
MM
6355 if (table == NULL)
6356 return NULL;
6357
e0361851 6358 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6359 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6360 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6361 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6362 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6363 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6364 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6365 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6366 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6367 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6368 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6369 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6370 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6371 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6372 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6373 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6374 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6375 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6376 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6377 &sd->cache_nice_tries,
6378 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6379 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6380 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6381 set_table_entry(&table[11], "name", sd->name,
6382 CORENAME_MAX_SIZE, 0444, proc_dostring);
6383 /* &table[12] is terminator */
e692ab53
NP
6384
6385 return table;
6386}
6387
9a4e7159 6388static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6389{
6390 struct ctl_table *entry, *table;
6391 struct sched_domain *sd;
6392 int domain_num = 0, i;
6393 char buf[32];
6394
6395 for_each_domain(cpu, sd)
6396 domain_num++;
6397 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6398 if (table == NULL)
6399 return NULL;
e692ab53
NP
6400
6401 i = 0;
6402 for_each_domain(cpu, sd) {
6403 snprintf(buf, 32, "domain%d", i);
e692ab53 6404 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6405 entry->mode = 0555;
e692ab53
NP
6406 entry->child = sd_alloc_ctl_domain_table(sd);
6407 entry++;
6408 i++;
6409 }
6410 return table;
6411}
6412
6413static struct ctl_table_header *sd_sysctl_header;
6382bc90 6414static void register_sched_domain_sysctl(void)
e692ab53
NP
6415{
6416 int i, cpu_num = num_online_cpus();
6417 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6418 char buf[32];
6419
7378547f
MM
6420 WARN_ON(sd_ctl_dir[0].child);
6421 sd_ctl_dir[0].child = entry;
6422
ad1cdc1d
MM
6423 if (entry == NULL)
6424 return;
6425
97b6ea7b 6426 for_each_online_cpu(i) {
e692ab53 6427 snprintf(buf, 32, "cpu%d", i);
e692ab53 6428 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6429 entry->mode = 0555;
e692ab53 6430 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6431 entry++;
e692ab53 6432 }
7378547f
MM
6433
6434 WARN_ON(sd_sysctl_header);
e692ab53
NP
6435 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6436}
6382bc90 6437
7378547f 6438/* may be called multiple times per register */
6382bc90
MM
6439static void unregister_sched_domain_sysctl(void)
6440{
7378547f
MM
6441 if (sd_sysctl_header)
6442 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6443 sd_sysctl_header = NULL;
7378547f
MM
6444 if (sd_ctl_dir[0].child)
6445 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6446}
e692ab53 6447#else
6382bc90
MM
6448static void register_sched_domain_sysctl(void)
6449{
6450}
6451static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6452{
6453}
6454#endif
6455
1f11eb6a
GH
6456static void set_rq_online(struct rq *rq)
6457{
6458 if (!rq->online) {
6459 const struct sched_class *class;
6460
6461 cpu_set(rq->cpu, rq->rd->online);
6462 rq->online = 1;
6463
6464 for_each_class(class) {
6465 if (class->rq_online)
6466 class->rq_online(rq);
6467 }
6468 }
6469}
6470
6471static void set_rq_offline(struct rq *rq)
6472{
6473 if (rq->online) {
6474 const struct sched_class *class;
6475
6476 for_each_class(class) {
6477 if (class->rq_offline)
6478 class->rq_offline(rq);
6479 }
6480
6481 cpu_clear(rq->cpu, rq->rd->online);
6482 rq->online = 0;
6483 }
6484}
6485
1da177e4
LT
6486/*
6487 * migration_call - callback that gets triggered when a CPU is added.
6488 * Here we can start up the necessary migration thread for the new CPU.
6489 */
48f24c4d
IM
6490static int __cpuinit
6491migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6492{
1da177e4 6493 struct task_struct *p;
48f24c4d 6494 int cpu = (long)hcpu;
1da177e4 6495 unsigned long flags;
70b97a7f 6496 struct rq *rq;
1da177e4
LT
6497
6498 switch (action) {
5be9361c 6499
1da177e4 6500 case CPU_UP_PREPARE:
8bb78442 6501 case CPU_UP_PREPARE_FROZEN:
dd41f596 6502 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6503 if (IS_ERR(p))
6504 return NOTIFY_BAD;
1da177e4
LT
6505 kthread_bind(p, cpu);
6506 /* Must be high prio: stop_machine expects to yield to it. */
6507 rq = task_rq_lock(p, &flags);
dd41f596 6508 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6509 task_rq_unlock(rq, &flags);
6510 cpu_rq(cpu)->migration_thread = p;
6511 break;
48f24c4d 6512
1da177e4 6513 case CPU_ONLINE:
8bb78442 6514 case CPU_ONLINE_FROZEN:
3a4fa0a2 6515 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6516 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6517
6518 /* Update our root-domain */
6519 rq = cpu_rq(cpu);
6520 spin_lock_irqsave(&rq->lock, flags);
6521 if (rq->rd) {
6522 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6523
6524 set_rq_online(rq);
1f94ef59
GH
6525 }
6526 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6527 break;
48f24c4d 6528
1da177e4
LT
6529#ifdef CONFIG_HOTPLUG_CPU
6530 case CPU_UP_CANCELED:
8bb78442 6531 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6532 if (!cpu_rq(cpu)->migration_thread)
6533 break;
41a2d6cf 6534 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6535 kthread_bind(cpu_rq(cpu)->migration_thread,
6536 any_online_cpu(cpu_online_map));
1da177e4
LT
6537 kthread_stop(cpu_rq(cpu)->migration_thread);
6538 cpu_rq(cpu)->migration_thread = NULL;
6539 break;
48f24c4d 6540
1da177e4 6541 case CPU_DEAD:
8bb78442 6542 case CPU_DEAD_FROZEN:
470fd646 6543 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6544 migrate_live_tasks(cpu);
6545 rq = cpu_rq(cpu);
6546 kthread_stop(rq->migration_thread);
6547 rq->migration_thread = NULL;
6548 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6549 spin_lock_irq(&rq->lock);
a8e504d2 6550 update_rq_clock(rq);
2e1cb74a 6551 deactivate_task(rq, rq->idle, 0);
1da177e4 6552 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6553 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6554 rq->idle->sched_class = &idle_sched_class;
1da177e4 6555 migrate_dead_tasks(cpu);
d2da272a 6556 spin_unlock_irq(&rq->lock);
470fd646 6557 cpuset_unlock();
1da177e4
LT
6558 migrate_nr_uninterruptible(rq);
6559 BUG_ON(rq->nr_running != 0);
6560
41a2d6cf
IM
6561 /*
6562 * No need to migrate the tasks: it was best-effort if
6563 * they didn't take sched_hotcpu_mutex. Just wake up
6564 * the requestors.
6565 */
1da177e4
LT
6566 spin_lock_irq(&rq->lock);
6567 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6568 struct migration_req *req;
6569
1da177e4 6570 req = list_entry(rq->migration_queue.next,
70b97a7f 6571 struct migration_req, list);
1da177e4
LT
6572 list_del_init(&req->list);
6573 complete(&req->done);
6574 }
6575 spin_unlock_irq(&rq->lock);
6576 break;
57d885fe 6577
08f503b0
GH
6578 case CPU_DYING:
6579 case CPU_DYING_FROZEN:
57d885fe
GH
6580 /* Update our root-domain */
6581 rq = cpu_rq(cpu);
6582 spin_lock_irqsave(&rq->lock, flags);
6583 if (rq->rd) {
6584 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6585 set_rq_offline(rq);
57d885fe
GH
6586 }
6587 spin_unlock_irqrestore(&rq->lock, flags);
6588 break;
1da177e4
LT
6589#endif
6590 }
6591 return NOTIFY_OK;
6592}
6593
6594/* Register at highest priority so that task migration (migrate_all_tasks)
6595 * happens before everything else.
6596 */
26c2143b 6597static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6598 .notifier_call = migration_call,
6599 .priority = 10
6600};
6601
7babe8db 6602static int __init migration_init(void)
1da177e4
LT
6603{
6604 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6605 int err;
48f24c4d
IM
6606
6607 /* Start one for the boot CPU: */
07dccf33
AM
6608 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6609 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6610 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6611 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6612
6613 return err;
1da177e4 6614}
7babe8db 6615early_initcall(migration_init);
1da177e4
LT
6616#endif
6617
6618#ifdef CONFIG_SMP
476f3534 6619
3e9830dc 6620#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6621
099f98c8
GS
6622static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6623{
6624 switch (lvl) {
6625 case SD_LV_NONE:
6626 return "NONE";
6627 case SD_LV_SIBLING:
6628 return "SIBLING";
6629 case SD_LV_MC:
6630 return "MC";
6631 case SD_LV_CPU:
6632 return "CPU";
6633 case SD_LV_NODE:
6634 return "NODE";
6635 case SD_LV_ALLNODES:
6636 return "ALLNODES";
6637 case SD_LV_MAX:
6638 return "MAX";
6639
6640 }
6641 return "MAX";
6642}
6643
7c16ec58
MT
6644static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6645 cpumask_t *groupmask)
1da177e4 6646{
4dcf6aff 6647 struct sched_group *group = sd->groups;
434d53b0 6648 char str[256];
1da177e4 6649
434d53b0 6650 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6651 cpus_clear(*groupmask);
4dcf6aff
IM
6652
6653 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6654
6655 if (!(sd->flags & SD_LOAD_BALANCE)) {
6656 printk("does not load-balance\n");
6657 if (sd->parent)
6658 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6659 " has parent");
6660 return -1;
41c7ce9a
NP
6661 }
6662
099f98c8
GS
6663 printk(KERN_CONT "span %s level %s\n",
6664 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6665
6666 if (!cpu_isset(cpu, sd->span)) {
6667 printk(KERN_ERR "ERROR: domain->span does not contain "
6668 "CPU%d\n", cpu);
6669 }
6670 if (!cpu_isset(cpu, group->cpumask)) {
6671 printk(KERN_ERR "ERROR: domain->groups does not contain"
6672 " CPU%d\n", cpu);
6673 }
1da177e4 6674
4dcf6aff 6675 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6676 do {
4dcf6aff
IM
6677 if (!group) {
6678 printk("\n");
6679 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6680 break;
6681 }
6682
4dcf6aff
IM
6683 if (!group->__cpu_power) {
6684 printk(KERN_CONT "\n");
6685 printk(KERN_ERR "ERROR: domain->cpu_power not "
6686 "set\n");
6687 break;
6688 }
1da177e4 6689
4dcf6aff
IM
6690 if (!cpus_weight(group->cpumask)) {
6691 printk(KERN_CONT "\n");
6692 printk(KERN_ERR "ERROR: empty group\n");
6693 break;
6694 }
1da177e4 6695
7c16ec58 6696 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6697 printk(KERN_CONT "\n");
6698 printk(KERN_ERR "ERROR: repeated CPUs\n");
6699 break;
6700 }
1da177e4 6701
7c16ec58 6702 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6703
434d53b0 6704 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6705 printk(KERN_CONT " %s", str);
1da177e4 6706
4dcf6aff
IM
6707 group = group->next;
6708 } while (group != sd->groups);
6709 printk(KERN_CONT "\n");
1da177e4 6710
7c16ec58 6711 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6712 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6713
7c16ec58 6714 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6715 printk(KERN_ERR "ERROR: parent span is not a superset "
6716 "of domain->span\n");
6717 return 0;
6718}
1da177e4 6719
4dcf6aff
IM
6720static void sched_domain_debug(struct sched_domain *sd, int cpu)
6721{
7c16ec58 6722 cpumask_t *groupmask;
4dcf6aff 6723 int level = 0;
1da177e4 6724
4dcf6aff
IM
6725 if (!sd) {
6726 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6727 return;
6728 }
1da177e4 6729
4dcf6aff
IM
6730 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6731
7c16ec58
MT
6732 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6733 if (!groupmask) {
6734 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6735 return;
6736 }
6737
4dcf6aff 6738 for (;;) {
7c16ec58 6739 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6740 break;
1da177e4
LT
6741 level++;
6742 sd = sd->parent;
33859f7f 6743 if (!sd)
4dcf6aff
IM
6744 break;
6745 }
7c16ec58 6746 kfree(groupmask);
1da177e4 6747}
6d6bc0ad 6748#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6749# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6750#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6751
1a20ff27 6752static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6753{
6754 if (cpus_weight(sd->span) == 1)
6755 return 1;
6756
6757 /* Following flags need at least 2 groups */
6758 if (sd->flags & (SD_LOAD_BALANCE |
6759 SD_BALANCE_NEWIDLE |
6760 SD_BALANCE_FORK |
89c4710e
SS
6761 SD_BALANCE_EXEC |
6762 SD_SHARE_CPUPOWER |
6763 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6764 if (sd->groups != sd->groups->next)
6765 return 0;
6766 }
6767
6768 /* Following flags don't use groups */
6769 if (sd->flags & (SD_WAKE_IDLE |
6770 SD_WAKE_AFFINE |
6771 SD_WAKE_BALANCE))
6772 return 0;
6773
6774 return 1;
6775}
6776
48f24c4d
IM
6777static int
6778sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6779{
6780 unsigned long cflags = sd->flags, pflags = parent->flags;
6781
6782 if (sd_degenerate(parent))
6783 return 1;
6784
6785 if (!cpus_equal(sd->span, parent->span))
6786 return 0;
6787
6788 /* Does parent contain flags not in child? */
6789 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6790 if (cflags & SD_WAKE_AFFINE)
6791 pflags &= ~SD_WAKE_BALANCE;
6792 /* Flags needing groups don't count if only 1 group in parent */
6793 if (parent->groups == parent->groups->next) {
6794 pflags &= ~(SD_LOAD_BALANCE |
6795 SD_BALANCE_NEWIDLE |
6796 SD_BALANCE_FORK |
89c4710e
SS
6797 SD_BALANCE_EXEC |
6798 SD_SHARE_CPUPOWER |
6799 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6800 }
6801 if (~cflags & pflags)
6802 return 0;
6803
6804 return 1;
6805}
6806
57d885fe
GH
6807static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6808{
6809 unsigned long flags;
57d885fe
GH
6810
6811 spin_lock_irqsave(&rq->lock, flags);
6812
6813 if (rq->rd) {
6814 struct root_domain *old_rd = rq->rd;
6815
1f11eb6a
GH
6816 if (cpu_isset(rq->cpu, old_rd->online))
6817 set_rq_offline(rq);
57d885fe 6818
dc938520 6819 cpu_clear(rq->cpu, old_rd->span);
dc938520 6820
57d885fe
GH
6821 if (atomic_dec_and_test(&old_rd->refcount))
6822 kfree(old_rd);
6823 }
6824
6825 atomic_inc(&rd->refcount);
6826 rq->rd = rd;
6827
dc938520 6828 cpu_set(rq->cpu, rd->span);
1f94ef59 6829 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6830 set_rq_online(rq);
57d885fe
GH
6831
6832 spin_unlock_irqrestore(&rq->lock, flags);
6833}
6834
dc938520 6835static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6836{
6837 memset(rd, 0, sizeof(*rd));
6838
dc938520
GH
6839 cpus_clear(rd->span);
6840 cpus_clear(rd->online);
6e0534f2
GH
6841
6842 cpupri_init(&rd->cpupri);
57d885fe
GH
6843}
6844
6845static void init_defrootdomain(void)
6846{
dc938520 6847 init_rootdomain(&def_root_domain);
57d885fe
GH
6848 atomic_set(&def_root_domain.refcount, 1);
6849}
6850
dc938520 6851static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6852{
6853 struct root_domain *rd;
6854
6855 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6856 if (!rd)
6857 return NULL;
6858
dc938520 6859 init_rootdomain(rd);
57d885fe
GH
6860
6861 return rd;
6862}
6863
1da177e4 6864/*
0eab9146 6865 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6866 * hold the hotplug lock.
6867 */
0eab9146
IM
6868static void
6869cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6870{
70b97a7f 6871 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6872 struct sched_domain *tmp;
6873
6874 /* Remove the sched domains which do not contribute to scheduling. */
6875 for (tmp = sd; tmp; tmp = tmp->parent) {
6876 struct sched_domain *parent = tmp->parent;
6877 if (!parent)
6878 break;
1a848870 6879 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6880 tmp->parent = parent->parent;
1a848870
SS
6881 if (parent->parent)
6882 parent->parent->child = tmp;
6883 }
245af2c7
SS
6884 }
6885
1a848870 6886 if (sd && sd_degenerate(sd)) {
245af2c7 6887 sd = sd->parent;
1a848870
SS
6888 if (sd)
6889 sd->child = NULL;
6890 }
1da177e4
LT
6891
6892 sched_domain_debug(sd, cpu);
6893
57d885fe 6894 rq_attach_root(rq, rd);
674311d5 6895 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6896}
6897
6898/* cpus with isolated domains */
67af63a6 6899static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6900
6901/* Setup the mask of cpus configured for isolated domains */
6902static int __init isolated_cpu_setup(char *str)
6903{
13b40c1e
MT
6904 static int __initdata ints[NR_CPUS];
6905 int i;
1da177e4
LT
6906
6907 str = get_options(str, ARRAY_SIZE(ints), ints);
6908 cpus_clear(cpu_isolated_map);
6909 for (i = 1; i <= ints[0]; i++)
6910 if (ints[i] < NR_CPUS)
6911 cpu_set(ints[i], cpu_isolated_map);
6912 return 1;
6913}
6914
8927f494 6915__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6916
6917/*
6711cab4
SS
6918 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6919 * to a function which identifies what group(along with sched group) a CPU
6920 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6921 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6922 *
6923 * init_sched_build_groups will build a circular linked list of the groups
6924 * covered by the given span, and will set each group's ->cpumask correctly,
6925 * and ->cpu_power to 0.
6926 */
a616058b 6927static void
7c16ec58 6928init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6929 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6930 struct sched_group **sg,
6931 cpumask_t *tmpmask),
6932 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6933{
6934 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6935 int i;
6936
7c16ec58
MT
6937 cpus_clear(*covered);
6938
363ab6f1 6939 for_each_cpu_mask_nr(i, *span) {
6711cab4 6940 struct sched_group *sg;
7c16ec58 6941 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6942 int j;
6943
7c16ec58 6944 if (cpu_isset(i, *covered))
1da177e4
LT
6945 continue;
6946
7c16ec58 6947 cpus_clear(sg->cpumask);
5517d86b 6948 sg->__cpu_power = 0;
1da177e4 6949
363ab6f1 6950 for_each_cpu_mask_nr(j, *span) {
7c16ec58 6951 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6952 continue;
6953
7c16ec58 6954 cpu_set(j, *covered);
1da177e4
LT
6955 cpu_set(j, sg->cpumask);
6956 }
6957 if (!first)
6958 first = sg;
6959 if (last)
6960 last->next = sg;
6961 last = sg;
6962 }
6963 last->next = first;
6964}
6965
9c1cfda2 6966#define SD_NODES_PER_DOMAIN 16
1da177e4 6967
9c1cfda2 6968#ifdef CONFIG_NUMA
198e2f18 6969
9c1cfda2
JH
6970/**
6971 * find_next_best_node - find the next node to include in a sched_domain
6972 * @node: node whose sched_domain we're building
6973 * @used_nodes: nodes already in the sched_domain
6974 *
41a2d6cf 6975 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6976 * finds the closest node not already in the @used_nodes map.
6977 *
6978 * Should use nodemask_t.
6979 */
c5f59f08 6980static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6981{
6982 int i, n, val, min_val, best_node = 0;
6983
6984 min_val = INT_MAX;
6985
076ac2af 6986 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6987 /* Start at @node */
076ac2af 6988 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6989
6990 if (!nr_cpus_node(n))
6991 continue;
6992
6993 /* Skip already used nodes */
c5f59f08 6994 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6995 continue;
6996
6997 /* Simple min distance search */
6998 val = node_distance(node, n);
6999
7000 if (val < min_val) {
7001 min_val = val;
7002 best_node = n;
7003 }
7004 }
7005
c5f59f08 7006 node_set(best_node, *used_nodes);
9c1cfda2
JH
7007 return best_node;
7008}
7009
7010/**
7011 * sched_domain_node_span - get a cpumask for a node's sched_domain
7012 * @node: node whose cpumask we're constructing
73486722 7013 * @span: resulting cpumask
9c1cfda2 7014 *
41a2d6cf 7015 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7016 * should be one that prevents unnecessary balancing, but also spreads tasks
7017 * out optimally.
7018 */
4bdbaad3 7019static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 7020{
c5f59f08 7021 nodemask_t used_nodes;
c5f59f08 7022 node_to_cpumask_ptr(nodemask, node);
48f24c4d 7023 int i;
9c1cfda2 7024
4bdbaad3 7025 cpus_clear(*span);
c5f59f08 7026 nodes_clear(used_nodes);
9c1cfda2 7027
4bdbaad3 7028 cpus_or(*span, *span, *nodemask);
c5f59f08 7029 node_set(node, used_nodes);
9c1cfda2
JH
7030
7031 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7032 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7033
c5f59f08 7034 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 7035 cpus_or(*span, *span, *nodemask);
9c1cfda2 7036 }
9c1cfda2 7037}
6d6bc0ad 7038#endif /* CONFIG_NUMA */
9c1cfda2 7039
5c45bf27 7040int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7041
9c1cfda2 7042/*
48f24c4d 7043 * SMT sched-domains:
9c1cfda2 7044 */
1da177e4
LT
7045#ifdef CONFIG_SCHED_SMT
7046static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 7047static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 7048
41a2d6cf 7049static int
7c16ec58
MT
7050cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7051 cpumask_t *unused)
1da177e4 7052{
6711cab4
SS
7053 if (sg)
7054 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
7055 return cpu;
7056}
6d6bc0ad 7057#endif /* CONFIG_SCHED_SMT */
1da177e4 7058
48f24c4d
IM
7059/*
7060 * multi-core sched-domains:
7061 */
1e9f28fa
SS
7062#ifdef CONFIG_SCHED_MC
7063static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 7064static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 7065#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7066
7067#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7068static int
7c16ec58
MT
7069cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7070 cpumask_t *mask)
1e9f28fa 7071{
6711cab4 7072 int group;
7c16ec58
MT
7073
7074 *mask = per_cpu(cpu_sibling_map, cpu);
7075 cpus_and(*mask, *mask, *cpu_map);
7076 group = first_cpu(*mask);
6711cab4
SS
7077 if (sg)
7078 *sg = &per_cpu(sched_group_core, group);
7079 return group;
1e9f28fa
SS
7080}
7081#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7082static int
7c16ec58
MT
7083cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7084 cpumask_t *unused)
1e9f28fa 7085{
6711cab4
SS
7086 if (sg)
7087 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
7088 return cpu;
7089}
7090#endif
7091
1da177e4 7092static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 7093static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 7094
41a2d6cf 7095static int
7c16ec58
MT
7096cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7097 cpumask_t *mask)
1da177e4 7098{
6711cab4 7099 int group;
48f24c4d 7100#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7101 *mask = cpu_coregroup_map(cpu);
7102 cpus_and(*mask, *mask, *cpu_map);
7103 group = first_cpu(*mask);
1e9f28fa 7104#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7105 *mask = per_cpu(cpu_sibling_map, cpu);
7106 cpus_and(*mask, *mask, *cpu_map);
7107 group = first_cpu(*mask);
1da177e4 7108#else
6711cab4 7109 group = cpu;
1da177e4 7110#endif
6711cab4
SS
7111 if (sg)
7112 *sg = &per_cpu(sched_group_phys, group);
7113 return group;
1da177e4
LT
7114}
7115
7116#ifdef CONFIG_NUMA
1da177e4 7117/*
9c1cfda2
JH
7118 * The init_sched_build_groups can't handle what we want to do with node
7119 * groups, so roll our own. Now each node has its own list of groups which
7120 * gets dynamically allocated.
1da177e4 7121 */
9c1cfda2 7122static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7123static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7124
9c1cfda2 7125static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7126static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7127
6711cab4 7128static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7129 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7130{
6711cab4
SS
7131 int group;
7132
7c16ec58
MT
7133 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7134 cpus_and(*nodemask, *nodemask, *cpu_map);
7135 group = first_cpu(*nodemask);
6711cab4
SS
7136
7137 if (sg)
7138 *sg = &per_cpu(sched_group_allnodes, group);
7139 return group;
1da177e4 7140}
6711cab4 7141
08069033
SS
7142static void init_numa_sched_groups_power(struct sched_group *group_head)
7143{
7144 struct sched_group *sg = group_head;
7145 int j;
7146
7147 if (!sg)
7148 return;
3a5c359a 7149 do {
363ab6f1 7150 for_each_cpu_mask_nr(j, sg->cpumask) {
3a5c359a 7151 struct sched_domain *sd;
08069033 7152
3a5c359a
AK
7153 sd = &per_cpu(phys_domains, j);
7154 if (j != first_cpu(sd->groups->cpumask)) {
7155 /*
7156 * Only add "power" once for each
7157 * physical package.
7158 */
7159 continue;
7160 }
08069033 7161
3a5c359a
AK
7162 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7163 }
7164 sg = sg->next;
7165 } while (sg != group_head);
08069033 7166}
6d6bc0ad 7167#endif /* CONFIG_NUMA */
1da177e4 7168
a616058b 7169#ifdef CONFIG_NUMA
51888ca2 7170/* Free memory allocated for various sched_group structures */
7c16ec58 7171static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7172{
a616058b 7173 int cpu, i;
51888ca2 7174
363ab6f1 7175 for_each_cpu_mask_nr(cpu, *cpu_map) {
51888ca2
SV
7176 struct sched_group **sched_group_nodes
7177 = sched_group_nodes_bycpu[cpu];
7178
51888ca2
SV
7179 if (!sched_group_nodes)
7180 continue;
7181
076ac2af 7182 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7183 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7184
7c16ec58
MT
7185 *nodemask = node_to_cpumask(i);
7186 cpus_and(*nodemask, *nodemask, *cpu_map);
7187 if (cpus_empty(*nodemask))
51888ca2
SV
7188 continue;
7189
7190 if (sg == NULL)
7191 continue;
7192 sg = sg->next;
7193next_sg:
7194 oldsg = sg;
7195 sg = sg->next;
7196 kfree(oldsg);
7197 if (oldsg != sched_group_nodes[i])
7198 goto next_sg;
7199 }
7200 kfree(sched_group_nodes);
7201 sched_group_nodes_bycpu[cpu] = NULL;
7202 }
51888ca2 7203}
6d6bc0ad 7204#else /* !CONFIG_NUMA */
7c16ec58 7205static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7206{
7207}
6d6bc0ad 7208#endif /* CONFIG_NUMA */
51888ca2 7209
89c4710e
SS
7210/*
7211 * Initialize sched groups cpu_power.
7212 *
7213 * cpu_power indicates the capacity of sched group, which is used while
7214 * distributing the load between different sched groups in a sched domain.
7215 * Typically cpu_power for all the groups in a sched domain will be same unless
7216 * there are asymmetries in the topology. If there are asymmetries, group
7217 * having more cpu_power will pickup more load compared to the group having
7218 * less cpu_power.
7219 *
7220 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7221 * the maximum number of tasks a group can handle in the presence of other idle
7222 * or lightly loaded groups in the same sched domain.
7223 */
7224static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7225{
7226 struct sched_domain *child;
7227 struct sched_group *group;
7228
7229 WARN_ON(!sd || !sd->groups);
7230
7231 if (cpu != first_cpu(sd->groups->cpumask))
7232 return;
7233
7234 child = sd->child;
7235
5517d86b
ED
7236 sd->groups->__cpu_power = 0;
7237
89c4710e
SS
7238 /*
7239 * For perf policy, if the groups in child domain share resources
7240 * (for example cores sharing some portions of the cache hierarchy
7241 * or SMT), then set this domain groups cpu_power such that each group
7242 * can handle only one task, when there are other idle groups in the
7243 * same sched domain.
7244 */
7245 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7246 (child->flags &
7247 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7248 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7249 return;
7250 }
7251
89c4710e
SS
7252 /*
7253 * add cpu_power of each child group to this groups cpu_power
7254 */
7255 group = child->groups;
7256 do {
5517d86b 7257 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7258 group = group->next;
7259 } while (group != child->groups);
7260}
7261
7c16ec58
MT
7262/*
7263 * Initializers for schedule domains
7264 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7265 */
7266
a5d8c348
IM
7267#ifdef CONFIG_SCHED_DEBUG
7268# define SD_INIT_NAME(sd, type) sd->name = #type
7269#else
7270# define SD_INIT_NAME(sd, type) do { } while (0)
7271#endif
7272
7c16ec58 7273#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7274
7c16ec58
MT
7275#define SD_INIT_FUNC(type) \
7276static noinline void sd_init_##type(struct sched_domain *sd) \
7277{ \
7278 memset(sd, 0, sizeof(*sd)); \
7279 *sd = SD_##type##_INIT; \
1d3504fc 7280 sd->level = SD_LV_##type; \
a5d8c348 7281 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7282}
7283
7284SD_INIT_FUNC(CPU)
7285#ifdef CONFIG_NUMA
7286 SD_INIT_FUNC(ALLNODES)
7287 SD_INIT_FUNC(NODE)
7288#endif
7289#ifdef CONFIG_SCHED_SMT
7290 SD_INIT_FUNC(SIBLING)
7291#endif
7292#ifdef CONFIG_SCHED_MC
7293 SD_INIT_FUNC(MC)
7294#endif
7295
7296/*
7297 * To minimize stack usage kmalloc room for cpumasks and share the
7298 * space as the usage in build_sched_domains() dictates. Used only
7299 * if the amount of space is significant.
7300 */
7301struct allmasks {
7302 cpumask_t tmpmask; /* make this one first */
7303 union {
7304 cpumask_t nodemask;
7305 cpumask_t this_sibling_map;
7306 cpumask_t this_core_map;
7307 };
7308 cpumask_t send_covered;
7309
7310#ifdef CONFIG_NUMA
7311 cpumask_t domainspan;
7312 cpumask_t covered;
7313 cpumask_t notcovered;
7314#endif
7315};
7316
7317#if NR_CPUS > 128
7318#define SCHED_CPUMASK_ALLOC 1
7319#define SCHED_CPUMASK_FREE(v) kfree(v)
7320#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7321#else
7322#define SCHED_CPUMASK_ALLOC 0
7323#define SCHED_CPUMASK_FREE(v)
7324#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7325#endif
7326
7327#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7328 ((unsigned long)(a) + offsetof(struct allmasks, v))
7329
1d3504fc
HS
7330static int default_relax_domain_level = -1;
7331
7332static int __init setup_relax_domain_level(char *str)
7333{
30e0e178
LZ
7334 unsigned long val;
7335
7336 val = simple_strtoul(str, NULL, 0);
7337 if (val < SD_LV_MAX)
7338 default_relax_domain_level = val;
7339
1d3504fc
HS
7340 return 1;
7341}
7342__setup("relax_domain_level=", setup_relax_domain_level);
7343
7344static void set_domain_attribute(struct sched_domain *sd,
7345 struct sched_domain_attr *attr)
7346{
7347 int request;
7348
7349 if (!attr || attr->relax_domain_level < 0) {
7350 if (default_relax_domain_level < 0)
7351 return;
7352 else
7353 request = default_relax_domain_level;
7354 } else
7355 request = attr->relax_domain_level;
7356 if (request < sd->level) {
7357 /* turn off idle balance on this domain */
7358 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7359 } else {
7360 /* turn on idle balance on this domain */
7361 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7362 }
7363}
7364
1da177e4 7365/*
1a20ff27
DG
7366 * Build sched domains for a given set of cpus and attach the sched domains
7367 * to the individual cpus
1da177e4 7368 */
1d3504fc
HS
7369static int __build_sched_domains(const cpumask_t *cpu_map,
7370 struct sched_domain_attr *attr)
1da177e4
LT
7371{
7372 int i;
57d885fe 7373 struct root_domain *rd;
7c16ec58
MT
7374 SCHED_CPUMASK_DECLARE(allmasks);
7375 cpumask_t *tmpmask;
d1b55138
JH
7376#ifdef CONFIG_NUMA
7377 struct sched_group **sched_group_nodes = NULL;
6711cab4 7378 int sd_allnodes = 0;
d1b55138
JH
7379
7380 /*
7381 * Allocate the per-node list of sched groups
7382 */
076ac2af 7383 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7384 GFP_KERNEL);
d1b55138
JH
7385 if (!sched_group_nodes) {
7386 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7387 return -ENOMEM;
d1b55138 7388 }
d1b55138 7389#endif
1da177e4 7390
dc938520 7391 rd = alloc_rootdomain();
57d885fe
GH
7392 if (!rd) {
7393 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7394#ifdef CONFIG_NUMA
7395 kfree(sched_group_nodes);
7396#endif
57d885fe
GH
7397 return -ENOMEM;
7398 }
7399
7c16ec58
MT
7400#if SCHED_CPUMASK_ALLOC
7401 /* get space for all scratch cpumask variables */
7402 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7403 if (!allmasks) {
7404 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7405 kfree(rd);
7406#ifdef CONFIG_NUMA
7407 kfree(sched_group_nodes);
7408#endif
7409 return -ENOMEM;
7410 }
7411#endif
7412 tmpmask = (cpumask_t *)allmasks;
7413
7414
7415#ifdef CONFIG_NUMA
7416 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7417#endif
7418
1da177e4 7419 /*
1a20ff27 7420 * Set up domains for cpus specified by the cpu_map.
1da177e4 7421 */
363ab6f1 7422 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4 7423 struct sched_domain *sd = NULL, *p;
7c16ec58 7424 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7425
7c16ec58
MT
7426 *nodemask = node_to_cpumask(cpu_to_node(i));
7427 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7428
7429#ifdef CONFIG_NUMA
dd41f596 7430 if (cpus_weight(*cpu_map) >
7c16ec58 7431 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7432 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7433 SD_INIT(sd, ALLNODES);
1d3504fc 7434 set_domain_attribute(sd, attr);
9c1cfda2 7435 sd->span = *cpu_map;
7c16ec58 7436 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7437 p = sd;
6711cab4 7438 sd_allnodes = 1;
9c1cfda2
JH
7439 } else
7440 p = NULL;
7441
1da177e4 7442 sd = &per_cpu(node_domains, i);
7c16ec58 7443 SD_INIT(sd, NODE);
1d3504fc 7444 set_domain_attribute(sd, attr);
4bdbaad3 7445 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7446 sd->parent = p;
1a848870
SS
7447 if (p)
7448 p->child = sd;
9c1cfda2 7449 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7450#endif
7451
7452 p = sd;
7453 sd = &per_cpu(phys_domains, i);
7c16ec58 7454 SD_INIT(sd, CPU);
1d3504fc 7455 set_domain_attribute(sd, attr);
7c16ec58 7456 sd->span = *nodemask;
1da177e4 7457 sd->parent = p;
1a848870
SS
7458 if (p)
7459 p->child = sd;
7c16ec58 7460 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7461
1e9f28fa
SS
7462#ifdef CONFIG_SCHED_MC
7463 p = sd;
7464 sd = &per_cpu(core_domains, i);
7c16ec58 7465 SD_INIT(sd, MC);
1d3504fc 7466 set_domain_attribute(sd, attr);
1e9f28fa
SS
7467 sd->span = cpu_coregroup_map(i);
7468 cpus_and(sd->span, sd->span, *cpu_map);
7469 sd->parent = p;
1a848870 7470 p->child = sd;
7c16ec58 7471 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7472#endif
7473
1da177e4
LT
7474#ifdef CONFIG_SCHED_SMT
7475 p = sd;
7476 sd = &per_cpu(cpu_domains, i);
7c16ec58 7477 SD_INIT(sd, SIBLING);
1d3504fc 7478 set_domain_attribute(sd, attr);
d5a7430d 7479 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7480 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7481 sd->parent = p;
1a848870 7482 p->child = sd;
7c16ec58 7483 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7484#endif
7485 }
7486
7487#ifdef CONFIG_SCHED_SMT
7488 /* Set up CPU (sibling) groups */
363ab6f1 7489 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7490 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7491 SCHED_CPUMASK_VAR(send_covered, allmasks);
7492
7493 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7494 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7495 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7496 continue;
7497
dd41f596 7498 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7499 &cpu_to_cpu_group,
7500 send_covered, tmpmask);
1da177e4
LT
7501 }
7502#endif
7503
1e9f28fa
SS
7504#ifdef CONFIG_SCHED_MC
7505 /* Set up multi-core groups */
363ab6f1 7506 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7507 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7508 SCHED_CPUMASK_VAR(send_covered, allmasks);
7509
7510 *this_core_map = cpu_coregroup_map(i);
7511 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7512 if (i != first_cpu(*this_core_map))
1e9f28fa 7513 continue;
7c16ec58 7514
dd41f596 7515 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7516 &cpu_to_core_group,
7517 send_covered, tmpmask);
1e9f28fa
SS
7518 }
7519#endif
7520
1da177e4 7521 /* Set up physical groups */
076ac2af 7522 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7523 SCHED_CPUMASK_VAR(nodemask, allmasks);
7524 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7525
7c16ec58
MT
7526 *nodemask = node_to_cpumask(i);
7527 cpus_and(*nodemask, *nodemask, *cpu_map);
7528 if (cpus_empty(*nodemask))
1da177e4
LT
7529 continue;
7530
7c16ec58
MT
7531 init_sched_build_groups(nodemask, cpu_map,
7532 &cpu_to_phys_group,
7533 send_covered, tmpmask);
1da177e4
LT
7534 }
7535
7536#ifdef CONFIG_NUMA
7537 /* Set up node groups */
7c16ec58
MT
7538 if (sd_allnodes) {
7539 SCHED_CPUMASK_VAR(send_covered, allmasks);
7540
7541 init_sched_build_groups(cpu_map, cpu_map,
7542 &cpu_to_allnodes_group,
7543 send_covered, tmpmask);
7544 }
9c1cfda2 7545
076ac2af 7546 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7547 /* Set up node groups */
7548 struct sched_group *sg, *prev;
7c16ec58
MT
7549 SCHED_CPUMASK_VAR(nodemask, allmasks);
7550 SCHED_CPUMASK_VAR(domainspan, allmasks);
7551 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7552 int j;
7553
7c16ec58
MT
7554 *nodemask = node_to_cpumask(i);
7555 cpus_clear(*covered);
7556
7557 cpus_and(*nodemask, *nodemask, *cpu_map);
7558 if (cpus_empty(*nodemask)) {
d1b55138 7559 sched_group_nodes[i] = NULL;
9c1cfda2 7560 continue;
d1b55138 7561 }
9c1cfda2 7562
4bdbaad3 7563 sched_domain_node_span(i, domainspan);
7c16ec58 7564 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7565
15f0b676 7566 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7567 if (!sg) {
7568 printk(KERN_WARNING "Can not alloc domain group for "
7569 "node %d\n", i);
7570 goto error;
7571 }
9c1cfda2 7572 sched_group_nodes[i] = sg;
363ab6f1 7573 for_each_cpu_mask_nr(j, *nodemask) {
9c1cfda2 7574 struct sched_domain *sd;
9761eea8 7575
9c1cfda2
JH
7576 sd = &per_cpu(node_domains, j);
7577 sd->groups = sg;
9c1cfda2 7578 }
5517d86b 7579 sg->__cpu_power = 0;
7c16ec58 7580 sg->cpumask = *nodemask;
51888ca2 7581 sg->next = sg;
7c16ec58 7582 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7583 prev = sg;
7584
076ac2af 7585 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7586 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7587 int n = (i + j) % nr_node_ids;
c5f59f08 7588 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7589
7c16ec58
MT
7590 cpus_complement(*notcovered, *covered);
7591 cpus_and(*tmpmask, *notcovered, *cpu_map);
7592 cpus_and(*tmpmask, *tmpmask, *domainspan);
7593 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7594 break;
7595
7c16ec58
MT
7596 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7597 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7598 continue;
7599
15f0b676
SV
7600 sg = kmalloc_node(sizeof(struct sched_group),
7601 GFP_KERNEL, i);
9c1cfda2
JH
7602 if (!sg) {
7603 printk(KERN_WARNING
7604 "Can not alloc domain group for node %d\n", j);
51888ca2 7605 goto error;
9c1cfda2 7606 }
5517d86b 7607 sg->__cpu_power = 0;
7c16ec58 7608 sg->cpumask = *tmpmask;
51888ca2 7609 sg->next = prev->next;
7c16ec58 7610 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7611 prev->next = sg;
7612 prev = sg;
7613 }
9c1cfda2 7614 }
1da177e4
LT
7615#endif
7616
7617 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7618#ifdef CONFIG_SCHED_SMT
363ab6f1 7619 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7620 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7621
89c4710e 7622 init_sched_groups_power(i, sd);
5c45bf27 7623 }
1da177e4 7624#endif
1e9f28fa 7625#ifdef CONFIG_SCHED_MC
363ab6f1 7626 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7627 struct sched_domain *sd = &per_cpu(core_domains, i);
7628
89c4710e 7629 init_sched_groups_power(i, sd);
5c45bf27
SS
7630 }
7631#endif
1e9f28fa 7632
363ab6f1 7633 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7634 struct sched_domain *sd = &per_cpu(phys_domains, i);
7635
89c4710e 7636 init_sched_groups_power(i, sd);
1da177e4
LT
7637 }
7638
9c1cfda2 7639#ifdef CONFIG_NUMA
076ac2af 7640 for (i = 0; i < nr_node_ids; i++)
08069033 7641 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7642
6711cab4
SS
7643 if (sd_allnodes) {
7644 struct sched_group *sg;
f712c0c7 7645
7c16ec58
MT
7646 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7647 tmpmask);
f712c0c7
SS
7648 init_numa_sched_groups_power(sg);
7649 }
9c1cfda2
JH
7650#endif
7651
1da177e4 7652 /* Attach the domains */
363ab6f1 7653 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4
LT
7654 struct sched_domain *sd;
7655#ifdef CONFIG_SCHED_SMT
7656 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7657#elif defined(CONFIG_SCHED_MC)
7658 sd = &per_cpu(core_domains, i);
1da177e4
LT
7659#else
7660 sd = &per_cpu(phys_domains, i);
7661#endif
57d885fe 7662 cpu_attach_domain(sd, rd, i);
1da177e4 7663 }
51888ca2 7664
7c16ec58 7665 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7666 return 0;
7667
a616058b 7668#ifdef CONFIG_NUMA
51888ca2 7669error:
7c16ec58
MT
7670 free_sched_groups(cpu_map, tmpmask);
7671 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7672 return -ENOMEM;
a616058b 7673#endif
1da177e4 7674}
029190c5 7675
1d3504fc
HS
7676static int build_sched_domains(const cpumask_t *cpu_map)
7677{
7678 return __build_sched_domains(cpu_map, NULL);
7679}
7680
029190c5
PJ
7681static cpumask_t *doms_cur; /* current sched domains */
7682static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7683static struct sched_domain_attr *dattr_cur;
7684 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7685
7686/*
7687 * Special case: If a kmalloc of a doms_cur partition (array of
7688 * cpumask_t) fails, then fallback to a single sched domain,
7689 * as determined by the single cpumask_t fallback_doms.
7690 */
7691static cpumask_t fallback_doms;
7692
22e52b07
HC
7693void __attribute__((weak)) arch_update_cpu_topology(void)
7694{
7695}
7696
1a20ff27 7697/*
41a2d6cf 7698 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7699 * For now this just excludes isolated cpus, but could be used to
7700 * exclude other special cases in the future.
1a20ff27 7701 */
51888ca2 7702static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7703{
7378547f
MM
7704 int err;
7705
22e52b07 7706 arch_update_cpu_topology();
029190c5
PJ
7707 ndoms_cur = 1;
7708 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7709 if (!doms_cur)
7710 doms_cur = &fallback_doms;
7711 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7712 dattr_cur = NULL;
7378547f 7713 err = build_sched_domains(doms_cur);
6382bc90 7714 register_sched_domain_sysctl();
7378547f
MM
7715
7716 return err;
1a20ff27
DG
7717}
7718
7c16ec58
MT
7719static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7720 cpumask_t *tmpmask)
1da177e4 7721{
7c16ec58 7722 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7723}
1da177e4 7724
1a20ff27
DG
7725/*
7726 * Detach sched domains from a group of cpus specified in cpu_map
7727 * These cpus will now be attached to the NULL domain
7728 */
858119e1 7729static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7730{
7c16ec58 7731 cpumask_t tmpmask;
1a20ff27
DG
7732 int i;
7733
6382bc90
MM
7734 unregister_sched_domain_sysctl();
7735
363ab6f1 7736 for_each_cpu_mask_nr(i, *cpu_map)
57d885fe 7737 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7738 synchronize_sched();
7c16ec58 7739 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7740}
7741
1d3504fc
HS
7742/* handle null as "default" */
7743static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7744 struct sched_domain_attr *new, int idx_new)
7745{
7746 struct sched_domain_attr tmp;
7747
7748 /* fast path */
7749 if (!new && !cur)
7750 return 1;
7751
7752 tmp = SD_ATTR_INIT;
7753 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7754 new ? (new + idx_new) : &tmp,
7755 sizeof(struct sched_domain_attr));
7756}
7757
029190c5
PJ
7758/*
7759 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7760 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7761 * doms_new[] to the current sched domain partitioning, doms_cur[].
7762 * It destroys each deleted domain and builds each new domain.
7763 *
7764 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7765 * The masks don't intersect (don't overlap.) We should setup one
7766 * sched domain for each mask. CPUs not in any of the cpumasks will
7767 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7768 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7769 * it as it is.
7770 *
41a2d6cf
IM
7771 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7772 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7773 * failed the kmalloc call, then it can pass in doms_new == NULL,
7774 * and partition_sched_domains() will fallback to the single partition
e761b772 7775 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7776 *
dfb512ec
MK
7777 * If doms_new==NULL it will be replaced with cpu_online_map.
7778 * ndoms_new==0 is a special case for destroying existing domains.
7779 * It will not create the default domain.
7780 *
029190c5
PJ
7781 * Call with hotplug lock held
7782 */
1d3504fc
HS
7783void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7784 struct sched_domain_attr *dattr_new)
029190c5 7785{
dfb512ec 7786 int i, j, n;
029190c5 7787
712555ee 7788 mutex_lock(&sched_domains_mutex);
a1835615 7789
7378547f
MM
7790 /* always unregister in case we don't destroy any domains */
7791 unregister_sched_domain_sysctl();
7792
dfb512ec 7793 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7794
7795 /* Destroy deleted domains */
7796 for (i = 0; i < ndoms_cur; i++) {
dfb512ec 7797 for (j = 0; j < n; j++) {
1d3504fc
HS
7798 if (cpus_equal(doms_cur[i], doms_new[j])
7799 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7800 goto match1;
7801 }
7802 /* no match - a current sched domain not in new doms_new[] */
7803 detach_destroy_domains(doms_cur + i);
7804match1:
7805 ;
7806 }
7807
e761b772
MK
7808 if (doms_new == NULL) {
7809 ndoms_cur = 0;
e761b772
MK
7810 doms_new = &fallback_doms;
7811 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7812 dattr_new = NULL;
7813 }
7814
029190c5
PJ
7815 /* Build new domains */
7816 for (i = 0; i < ndoms_new; i++) {
7817 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7818 if (cpus_equal(doms_new[i], doms_cur[j])
7819 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7820 goto match2;
7821 }
7822 /* no match - add a new doms_new */
1d3504fc
HS
7823 __build_sched_domains(doms_new + i,
7824 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7825match2:
7826 ;
7827 }
7828
7829 /* Remember the new sched domains */
7830 if (doms_cur != &fallback_doms)
7831 kfree(doms_cur);
1d3504fc 7832 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7833 doms_cur = doms_new;
1d3504fc 7834 dattr_cur = dattr_new;
029190c5 7835 ndoms_cur = ndoms_new;
7378547f
MM
7836
7837 register_sched_domain_sysctl();
a1835615 7838
712555ee 7839 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7840}
7841
5c45bf27 7842#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7843int arch_reinit_sched_domains(void)
5c45bf27 7844{
95402b38 7845 get_online_cpus();
dfb512ec
MK
7846
7847 /* Destroy domains first to force the rebuild */
7848 partition_sched_domains(0, NULL, NULL);
7849
e761b772 7850 rebuild_sched_domains();
95402b38 7851 put_online_cpus();
dfb512ec 7852
e761b772 7853 return 0;
5c45bf27
SS
7854}
7855
7856static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7857{
7858 int ret;
7859
7860 if (buf[0] != '0' && buf[0] != '1')
7861 return -EINVAL;
7862
7863 if (smt)
7864 sched_smt_power_savings = (buf[0] == '1');
7865 else
7866 sched_mc_power_savings = (buf[0] == '1');
7867
7868 ret = arch_reinit_sched_domains();
7869
7870 return ret ? ret : count;
7871}
7872
5c45bf27 7873#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7874static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7875 char *page)
5c45bf27
SS
7876{
7877 return sprintf(page, "%u\n", sched_mc_power_savings);
7878}
f718cd4a 7879static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7880 const char *buf, size_t count)
5c45bf27
SS
7881{
7882 return sched_power_savings_store(buf, count, 0);
7883}
f718cd4a
AK
7884static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7885 sched_mc_power_savings_show,
7886 sched_mc_power_savings_store);
5c45bf27
SS
7887#endif
7888
7889#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7890static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7891 char *page)
5c45bf27
SS
7892{
7893 return sprintf(page, "%u\n", sched_smt_power_savings);
7894}
f718cd4a 7895static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7896 const char *buf, size_t count)
5c45bf27
SS
7897{
7898 return sched_power_savings_store(buf, count, 1);
7899}
f718cd4a
AK
7900static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7901 sched_smt_power_savings_show,
6707de00
AB
7902 sched_smt_power_savings_store);
7903#endif
7904
7905int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7906{
7907 int err = 0;
7908
7909#ifdef CONFIG_SCHED_SMT
7910 if (smt_capable())
7911 err = sysfs_create_file(&cls->kset.kobj,
7912 &attr_sched_smt_power_savings.attr);
7913#endif
7914#ifdef CONFIG_SCHED_MC
7915 if (!err && mc_capable())
7916 err = sysfs_create_file(&cls->kset.kobj,
7917 &attr_sched_mc_power_savings.attr);
7918#endif
7919 return err;
7920}
6d6bc0ad 7921#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7922
e761b772 7923#ifndef CONFIG_CPUSETS
1da177e4 7924/*
e761b772
MK
7925 * Add online and remove offline CPUs from the scheduler domains.
7926 * When cpusets are enabled they take over this function.
1da177e4
LT
7927 */
7928static int update_sched_domains(struct notifier_block *nfb,
7929 unsigned long action, void *hcpu)
e761b772
MK
7930{
7931 switch (action) {
7932 case CPU_ONLINE:
7933 case CPU_ONLINE_FROZEN:
7934 case CPU_DEAD:
7935 case CPU_DEAD_FROZEN:
dfb512ec 7936 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7937 return NOTIFY_OK;
7938
7939 default:
7940 return NOTIFY_DONE;
7941 }
7942}
7943#endif
7944
7945static int update_runtime(struct notifier_block *nfb,
7946 unsigned long action, void *hcpu)
1da177e4 7947{
7def2be1
PZ
7948 int cpu = (int)(long)hcpu;
7949
1da177e4 7950 switch (action) {
1da177e4 7951 case CPU_DOWN_PREPARE:
8bb78442 7952 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7953 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7954 return NOTIFY_OK;
7955
1da177e4 7956 case CPU_DOWN_FAILED:
8bb78442 7957 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7958 case CPU_ONLINE:
8bb78442 7959 case CPU_ONLINE_FROZEN:
7def2be1 7960 enable_runtime(cpu_rq(cpu));
e761b772
MK
7961 return NOTIFY_OK;
7962
1da177e4
LT
7963 default:
7964 return NOTIFY_DONE;
7965 }
1da177e4 7966}
1da177e4
LT
7967
7968void __init sched_init_smp(void)
7969{
5c1e1767
NP
7970 cpumask_t non_isolated_cpus;
7971
434d53b0
MT
7972#if defined(CONFIG_NUMA)
7973 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7974 GFP_KERNEL);
7975 BUG_ON(sched_group_nodes_bycpu == NULL);
7976#endif
95402b38 7977 get_online_cpus();
712555ee 7978 mutex_lock(&sched_domains_mutex);
1a20ff27 7979 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7980 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7981 if (cpus_empty(non_isolated_cpus))
7982 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7983 mutex_unlock(&sched_domains_mutex);
95402b38 7984 put_online_cpus();
e761b772
MK
7985
7986#ifndef CONFIG_CPUSETS
1da177e4
LT
7987 /* XXX: Theoretical race here - CPU may be hotplugged now */
7988 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7989#endif
7990
7991 /* RT runtime code needs to handle some hotplug events */
7992 hotcpu_notifier(update_runtime, 0);
7993
b328ca18 7994 init_hrtick();
5c1e1767
NP
7995
7996 /* Move init over to a non-isolated CPU */
7c16ec58 7997 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7998 BUG();
19978ca6 7999 sched_init_granularity();
1da177e4
LT
8000}
8001#else
8002void __init sched_init_smp(void)
8003{
19978ca6 8004 sched_init_granularity();
1da177e4
LT
8005}
8006#endif /* CONFIG_SMP */
8007
8008int in_sched_functions(unsigned long addr)
8009{
1da177e4
LT
8010 return in_lock_functions(addr) ||
8011 (addr >= (unsigned long)__sched_text_start
8012 && addr < (unsigned long)__sched_text_end);
8013}
8014
a9957449 8015static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8016{
8017 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8018 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8019#ifdef CONFIG_FAIR_GROUP_SCHED
8020 cfs_rq->rq = rq;
8021#endif
67e9fb2a 8022 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8023}
8024
fa85ae24
PZ
8025static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8026{
8027 struct rt_prio_array *array;
8028 int i;
8029
8030 array = &rt_rq->active;
8031 for (i = 0; i < MAX_RT_PRIO; i++) {
8032 INIT_LIST_HEAD(array->queue + i);
8033 __clear_bit(i, array->bitmap);
8034 }
8035 /* delimiter for bitsearch: */
8036 __set_bit(MAX_RT_PRIO, array->bitmap);
8037
052f1dc7 8038#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8039 rt_rq->highest_prio = MAX_RT_PRIO;
8040#endif
fa85ae24
PZ
8041#ifdef CONFIG_SMP
8042 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8043 rt_rq->overloaded = 0;
8044#endif
8045
8046 rt_rq->rt_time = 0;
8047 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8048 rt_rq->rt_runtime = 0;
8049 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8050
052f1dc7 8051#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8052 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8053 rt_rq->rq = rq;
8054#endif
fa85ae24
PZ
8055}
8056
6f505b16 8057#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8058static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8059 struct sched_entity *se, int cpu, int add,
8060 struct sched_entity *parent)
6f505b16 8061{
ec7dc8ac 8062 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8063 tg->cfs_rq[cpu] = cfs_rq;
8064 init_cfs_rq(cfs_rq, rq);
8065 cfs_rq->tg = tg;
8066 if (add)
8067 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8068
8069 tg->se[cpu] = se;
354d60c2
DG
8070 /* se could be NULL for init_task_group */
8071 if (!se)
8072 return;
8073
ec7dc8ac
DG
8074 if (!parent)
8075 se->cfs_rq = &rq->cfs;
8076 else
8077 se->cfs_rq = parent->my_q;
8078
6f505b16
PZ
8079 se->my_q = cfs_rq;
8080 se->load.weight = tg->shares;
e05510d0 8081 se->load.inv_weight = 0;
ec7dc8ac 8082 se->parent = parent;
6f505b16 8083}
052f1dc7 8084#endif
6f505b16 8085
052f1dc7 8086#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8087static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8088 struct sched_rt_entity *rt_se, int cpu, int add,
8089 struct sched_rt_entity *parent)
6f505b16 8090{
ec7dc8ac
DG
8091 struct rq *rq = cpu_rq(cpu);
8092
6f505b16
PZ
8093 tg->rt_rq[cpu] = rt_rq;
8094 init_rt_rq(rt_rq, rq);
8095 rt_rq->tg = tg;
8096 rt_rq->rt_se = rt_se;
ac086bc2 8097 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8098 if (add)
8099 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8100
8101 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8102 if (!rt_se)
8103 return;
8104
ec7dc8ac
DG
8105 if (!parent)
8106 rt_se->rt_rq = &rq->rt;
8107 else
8108 rt_se->rt_rq = parent->my_q;
8109
6f505b16 8110 rt_se->my_q = rt_rq;
ec7dc8ac 8111 rt_se->parent = parent;
6f505b16
PZ
8112 INIT_LIST_HEAD(&rt_se->run_list);
8113}
8114#endif
8115
1da177e4
LT
8116void __init sched_init(void)
8117{
dd41f596 8118 int i, j;
434d53b0
MT
8119 unsigned long alloc_size = 0, ptr;
8120
8121#ifdef CONFIG_FAIR_GROUP_SCHED
8122 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8123#endif
8124#ifdef CONFIG_RT_GROUP_SCHED
8125 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8126#endif
8127#ifdef CONFIG_USER_SCHED
8128 alloc_size *= 2;
434d53b0
MT
8129#endif
8130 /*
8131 * As sched_init() is called before page_alloc is setup,
8132 * we use alloc_bootmem().
8133 */
8134 if (alloc_size) {
5a9d3225 8135 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8136
8137#ifdef CONFIG_FAIR_GROUP_SCHED
8138 init_task_group.se = (struct sched_entity **)ptr;
8139 ptr += nr_cpu_ids * sizeof(void **);
8140
8141 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8142 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8143
8144#ifdef CONFIG_USER_SCHED
8145 root_task_group.se = (struct sched_entity **)ptr;
8146 ptr += nr_cpu_ids * sizeof(void **);
8147
8148 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8149 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8150#endif /* CONFIG_USER_SCHED */
8151#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8152#ifdef CONFIG_RT_GROUP_SCHED
8153 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8154 ptr += nr_cpu_ids * sizeof(void **);
8155
8156 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8157 ptr += nr_cpu_ids * sizeof(void **);
8158
8159#ifdef CONFIG_USER_SCHED
8160 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8161 ptr += nr_cpu_ids * sizeof(void **);
8162
8163 root_task_group.rt_rq = (struct rt_rq **)ptr;
8164 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8165#endif /* CONFIG_USER_SCHED */
8166#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8167 }
dd41f596 8168
57d885fe
GH
8169#ifdef CONFIG_SMP
8170 init_defrootdomain();
8171#endif
8172
d0b27fa7
PZ
8173 init_rt_bandwidth(&def_rt_bandwidth,
8174 global_rt_period(), global_rt_runtime());
8175
8176#ifdef CONFIG_RT_GROUP_SCHED
8177 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8178 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8179#ifdef CONFIG_USER_SCHED
8180 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8181 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8182#endif /* CONFIG_USER_SCHED */
8183#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8184
052f1dc7 8185#ifdef CONFIG_GROUP_SCHED
6f505b16 8186 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8187 INIT_LIST_HEAD(&init_task_group.children);
8188
8189#ifdef CONFIG_USER_SCHED
8190 INIT_LIST_HEAD(&root_task_group.children);
8191 init_task_group.parent = &root_task_group;
8192 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8193#endif /* CONFIG_USER_SCHED */
8194#endif /* CONFIG_GROUP_SCHED */
6f505b16 8195
0a945022 8196 for_each_possible_cpu(i) {
70b97a7f 8197 struct rq *rq;
1da177e4
LT
8198
8199 rq = cpu_rq(i);
8200 spin_lock_init(&rq->lock);
7897986b 8201 rq->nr_running = 0;
dd41f596 8202 init_cfs_rq(&rq->cfs, rq);
6f505b16 8203 init_rt_rq(&rq->rt, rq);
dd41f596 8204#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8205 init_task_group.shares = init_task_group_load;
6f505b16 8206 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8207#ifdef CONFIG_CGROUP_SCHED
8208 /*
8209 * How much cpu bandwidth does init_task_group get?
8210 *
8211 * In case of task-groups formed thr' the cgroup filesystem, it
8212 * gets 100% of the cpu resources in the system. This overall
8213 * system cpu resource is divided among the tasks of
8214 * init_task_group and its child task-groups in a fair manner,
8215 * based on each entity's (task or task-group's) weight
8216 * (se->load.weight).
8217 *
8218 * In other words, if init_task_group has 10 tasks of weight
8219 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8220 * then A0's share of the cpu resource is:
8221 *
8222 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8223 *
8224 * We achieve this by letting init_task_group's tasks sit
8225 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8226 */
ec7dc8ac 8227 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8228#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8229 root_task_group.shares = NICE_0_LOAD;
8230 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8231 /*
8232 * In case of task-groups formed thr' the user id of tasks,
8233 * init_task_group represents tasks belonging to root user.
8234 * Hence it forms a sibling of all subsequent groups formed.
8235 * In this case, init_task_group gets only a fraction of overall
8236 * system cpu resource, based on the weight assigned to root
8237 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8238 * by letting tasks of init_task_group sit in a separate cfs_rq
8239 * (init_cfs_rq) and having one entity represent this group of
8240 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8241 */
ec7dc8ac 8242 init_tg_cfs_entry(&init_task_group,
6f505b16 8243 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8244 &per_cpu(init_sched_entity, i), i, 1,
8245 root_task_group.se[i]);
6f505b16 8246
052f1dc7 8247#endif
354d60c2
DG
8248#endif /* CONFIG_FAIR_GROUP_SCHED */
8249
8250 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8251#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8252 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8253#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8254 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8255#elif defined CONFIG_USER_SCHED
eff766a6 8256 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8257 init_tg_rt_entry(&init_task_group,
6f505b16 8258 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8259 &per_cpu(init_sched_rt_entity, i), i, 1,
8260 root_task_group.rt_se[i]);
354d60c2 8261#endif
dd41f596 8262#endif
1da177e4 8263
dd41f596
IM
8264 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8265 rq->cpu_load[j] = 0;
1da177e4 8266#ifdef CONFIG_SMP
41c7ce9a 8267 rq->sd = NULL;
57d885fe 8268 rq->rd = NULL;
1da177e4 8269 rq->active_balance = 0;
dd41f596 8270 rq->next_balance = jiffies;
1da177e4 8271 rq->push_cpu = 0;
0a2966b4 8272 rq->cpu = i;
1f11eb6a 8273 rq->online = 0;
1da177e4
LT
8274 rq->migration_thread = NULL;
8275 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8276 rq_attach_root(rq, &def_root_domain);
1da177e4 8277#endif
8f4d37ec 8278 init_rq_hrtick(rq);
1da177e4 8279 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8280 }
8281
2dd73a4f 8282 set_load_weight(&init_task);
b50f60ce 8283
e107be36
AK
8284#ifdef CONFIG_PREEMPT_NOTIFIERS
8285 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8286#endif
8287
c9819f45 8288#ifdef CONFIG_SMP
962cf36c 8289 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8290#endif
8291
b50f60ce
HC
8292#ifdef CONFIG_RT_MUTEXES
8293 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8294#endif
8295
1da177e4
LT
8296 /*
8297 * The boot idle thread does lazy MMU switching as well:
8298 */
8299 atomic_inc(&init_mm.mm_count);
8300 enter_lazy_tlb(&init_mm, current);
8301
8302 /*
8303 * Make us the idle thread. Technically, schedule() should not be
8304 * called from this thread, however somewhere below it might be,
8305 * but because we are the idle thread, we just pick up running again
8306 * when this runqueue becomes "idle".
8307 */
8308 init_idle(current, smp_processor_id());
dd41f596
IM
8309 /*
8310 * During early bootup we pretend to be a normal task:
8311 */
8312 current->sched_class = &fair_sched_class;
6892b75e
IM
8313
8314 scheduler_running = 1;
1da177e4
LT
8315}
8316
8317#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8318void __might_sleep(char *file, int line)
8319{
48f24c4d 8320#ifdef in_atomic
1da177e4
LT
8321 static unsigned long prev_jiffy; /* ratelimiting */
8322
aef745fc
IM
8323 if ((!in_atomic() && !irqs_disabled()) ||
8324 system_state != SYSTEM_RUNNING || oops_in_progress)
8325 return;
8326 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8327 return;
8328 prev_jiffy = jiffies;
8329
8330 printk(KERN_ERR
8331 "BUG: sleeping function called from invalid context at %s:%d\n",
8332 file, line);
8333 printk(KERN_ERR
8334 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8335 in_atomic(), irqs_disabled(),
8336 current->pid, current->comm);
8337
8338 debug_show_held_locks(current);
8339 if (irqs_disabled())
8340 print_irqtrace_events(current);
8341 dump_stack();
1da177e4
LT
8342#endif
8343}
8344EXPORT_SYMBOL(__might_sleep);
8345#endif
8346
8347#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8348static void normalize_task(struct rq *rq, struct task_struct *p)
8349{
8350 int on_rq;
3e51f33f 8351
3a5e4dc1
AK
8352 update_rq_clock(rq);
8353 on_rq = p->se.on_rq;
8354 if (on_rq)
8355 deactivate_task(rq, p, 0);
8356 __setscheduler(rq, p, SCHED_NORMAL, 0);
8357 if (on_rq) {
8358 activate_task(rq, p, 0);
8359 resched_task(rq->curr);
8360 }
8361}
8362
1da177e4
LT
8363void normalize_rt_tasks(void)
8364{
a0f98a1c 8365 struct task_struct *g, *p;
1da177e4 8366 unsigned long flags;
70b97a7f 8367 struct rq *rq;
1da177e4 8368
4cf5d77a 8369 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8370 do_each_thread(g, p) {
178be793
IM
8371 /*
8372 * Only normalize user tasks:
8373 */
8374 if (!p->mm)
8375 continue;
8376
6cfb0d5d 8377 p->se.exec_start = 0;
6cfb0d5d 8378#ifdef CONFIG_SCHEDSTATS
dd41f596 8379 p->se.wait_start = 0;
dd41f596 8380 p->se.sleep_start = 0;
dd41f596 8381 p->se.block_start = 0;
6cfb0d5d 8382#endif
dd41f596
IM
8383
8384 if (!rt_task(p)) {
8385 /*
8386 * Renice negative nice level userspace
8387 * tasks back to 0:
8388 */
8389 if (TASK_NICE(p) < 0 && p->mm)
8390 set_user_nice(p, 0);
1da177e4 8391 continue;
dd41f596 8392 }
1da177e4 8393
4cf5d77a 8394 spin_lock(&p->pi_lock);
b29739f9 8395 rq = __task_rq_lock(p);
1da177e4 8396
178be793 8397 normalize_task(rq, p);
3a5e4dc1 8398
b29739f9 8399 __task_rq_unlock(rq);
4cf5d77a 8400 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8401 } while_each_thread(g, p);
8402
4cf5d77a 8403 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8404}
8405
8406#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8407
8408#ifdef CONFIG_IA64
8409/*
8410 * These functions are only useful for the IA64 MCA handling.
8411 *
8412 * They can only be called when the whole system has been
8413 * stopped - every CPU needs to be quiescent, and no scheduling
8414 * activity can take place. Using them for anything else would
8415 * be a serious bug, and as a result, they aren't even visible
8416 * under any other configuration.
8417 */
8418
8419/**
8420 * curr_task - return the current task for a given cpu.
8421 * @cpu: the processor in question.
8422 *
8423 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8424 */
36c8b586 8425struct task_struct *curr_task(int cpu)
1df5c10a
LT
8426{
8427 return cpu_curr(cpu);
8428}
8429
8430/**
8431 * set_curr_task - set the current task for a given cpu.
8432 * @cpu: the processor in question.
8433 * @p: the task pointer to set.
8434 *
8435 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8436 * are serviced on a separate stack. It allows the architecture to switch the
8437 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8438 * must be called with all CPU's synchronized, and interrupts disabled, the
8439 * and caller must save the original value of the current task (see
8440 * curr_task() above) and restore that value before reenabling interrupts and
8441 * re-starting the system.
8442 *
8443 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8444 */
36c8b586 8445void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8446{
8447 cpu_curr(cpu) = p;
8448}
8449
8450#endif
29f59db3 8451
bccbe08a
PZ
8452#ifdef CONFIG_FAIR_GROUP_SCHED
8453static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8454{
8455 int i;
8456
8457 for_each_possible_cpu(i) {
8458 if (tg->cfs_rq)
8459 kfree(tg->cfs_rq[i]);
8460 if (tg->se)
8461 kfree(tg->se[i]);
6f505b16
PZ
8462 }
8463
8464 kfree(tg->cfs_rq);
8465 kfree(tg->se);
6f505b16
PZ
8466}
8467
ec7dc8ac
DG
8468static
8469int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8470{
29f59db3 8471 struct cfs_rq *cfs_rq;
ec7dc8ac 8472 struct sched_entity *se, *parent_se;
9b5b7751 8473 struct rq *rq;
29f59db3
SV
8474 int i;
8475
434d53b0 8476 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8477 if (!tg->cfs_rq)
8478 goto err;
434d53b0 8479 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8480 if (!tg->se)
8481 goto err;
052f1dc7
PZ
8482
8483 tg->shares = NICE_0_LOAD;
29f59db3
SV
8484
8485 for_each_possible_cpu(i) {
9b5b7751 8486 rq = cpu_rq(i);
29f59db3 8487
6f505b16
PZ
8488 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8489 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8490 if (!cfs_rq)
8491 goto err;
8492
6f505b16
PZ
8493 se = kmalloc_node(sizeof(struct sched_entity),
8494 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8495 if (!se)
8496 goto err;
8497
ec7dc8ac
DG
8498 parent_se = parent ? parent->se[i] : NULL;
8499 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8500 }
8501
8502 return 1;
8503
8504 err:
8505 return 0;
8506}
8507
8508static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8509{
8510 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8511 &cpu_rq(cpu)->leaf_cfs_rq_list);
8512}
8513
8514static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8515{
8516 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8517}
6d6bc0ad 8518#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8519static inline void free_fair_sched_group(struct task_group *tg)
8520{
8521}
8522
ec7dc8ac
DG
8523static inline
8524int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8525{
8526 return 1;
8527}
8528
8529static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8530{
8531}
8532
8533static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8534{
8535}
6d6bc0ad 8536#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8537
8538#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8539static void free_rt_sched_group(struct task_group *tg)
8540{
8541 int i;
8542
d0b27fa7
PZ
8543 destroy_rt_bandwidth(&tg->rt_bandwidth);
8544
bccbe08a
PZ
8545 for_each_possible_cpu(i) {
8546 if (tg->rt_rq)
8547 kfree(tg->rt_rq[i]);
8548 if (tg->rt_se)
8549 kfree(tg->rt_se[i]);
8550 }
8551
8552 kfree(tg->rt_rq);
8553 kfree(tg->rt_se);
8554}
8555
ec7dc8ac
DG
8556static
8557int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8558{
8559 struct rt_rq *rt_rq;
ec7dc8ac 8560 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8561 struct rq *rq;
8562 int i;
8563
434d53b0 8564 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8565 if (!tg->rt_rq)
8566 goto err;
434d53b0 8567 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8568 if (!tg->rt_se)
8569 goto err;
8570
d0b27fa7
PZ
8571 init_rt_bandwidth(&tg->rt_bandwidth,
8572 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8573
8574 for_each_possible_cpu(i) {
8575 rq = cpu_rq(i);
8576
6f505b16
PZ
8577 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8578 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8579 if (!rt_rq)
8580 goto err;
29f59db3 8581
6f505b16
PZ
8582 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8583 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8584 if (!rt_se)
8585 goto err;
29f59db3 8586
ec7dc8ac
DG
8587 parent_se = parent ? parent->rt_se[i] : NULL;
8588 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8589 }
8590
bccbe08a
PZ
8591 return 1;
8592
8593 err:
8594 return 0;
8595}
8596
8597static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8598{
8599 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8600 &cpu_rq(cpu)->leaf_rt_rq_list);
8601}
8602
8603static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8604{
8605 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8606}
6d6bc0ad 8607#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8608static inline void free_rt_sched_group(struct task_group *tg)
8609{
8610}
8611
ec7dc8ac
DG
8612static inline
8613int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8614{
8615 return 1;
8616}
8617
8618static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8619{
8620}
8621
8622static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8623{
8624}
6d6bc0ad 8625#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8626
d0b27fa7 8627#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8628static void free_sched_group(struct task_group *tg)
8629{
8630 free_fair_sched_group(tg);
8631 free_rt_sched_group(tg);
8632 kfree(tg);
8633}
8634
8635/* allocate runqueue etc for a new task group */
ec7dc8ac 8636struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8637{
8638 struct task_group *tg;
8639 unsigned long flags;
8640 int i;
8641
8642 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8643 if (!tg)
8644 return ERR_PTR(-ENOMEM);
8645
ec7dc8ac 8646 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8647 goto err;
8648
ec7dc8ac 8649 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8650 goto err;
8651
8ed36996 8652 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8653 for_each_possible_cpu(i) {
bccbe08a
PZ
8654 register_fair_sched_group(tg, i);
8655 register_rt_sched_group(tg, i);
9b5b7751 8656 }
6f505b16 8657 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8658
8659 WARN_ON(!parent); /* root should already exist */
8660
8661 tg->parent = parent;
f473aa5e 8662 INIT_LIST_HEAD(&tg->children);
09f2724a 8663 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8664 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8665
9b5b7751 8666 return tg;
29f59db3
SV
8667
8668err:
6f505b16 8669 free_sched_group(tg);
29f59db3
SV
8670 return ERR_PTR(-ENOMEM);
8671}
8672
9b5b7751 8673/* rcu callback to free various structures associated with a task group */
6f505b16 8674static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8675{
29f59db3 8676 /* now it should be safe to free those cfs_rqs */
6f505b16 8677 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8678}
8679
9b5b7751 8680/* Destroy runqueue etc associated with a task group */
4cf86d77 8681void sched_destroy_group(struct task_group *tg)
29f59db3 8682{
8ed36996 8683 unsigned long flags;
9b5b7751 8684 int i;
29f59db3 8685
8ed36996 8686 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8687 for_each_possible_cpu(i) {
bccbe08a
PZ
8688 unregister_fair_sched_group(tg, i);
8689 unregister_rt_sched_group(tg, i);
9b5b7751 8690 }
6f505b16 8691 list_del_rcu(&tg->list);
f473aa5e 8692 list_del_rcu(&tg->siblings);
8ed36996 8693 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8694
9b5b7751 8695 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8696 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8697}
8698
9b5b7751 8699/* change task's runqueue when it moves between groups.
3a252015
IM
8700 * The caller of this function should have put the task in its new group
8701 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8702 * reflect its new group.
9b5b7751
SV
8703 */
8704void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8705{
8706 int on_rq, running;
8707 unsigned long flags;
8708 struct rq *rq;
8709
8710 rq = task_rq_lock(tsk, &flags);
8711
29f59db3
SV
8712 update_rq_clock(rq);
8713
051a1d1a 8714 running = task_current(rq, tsk);
29f59db3
SV
8715 on_rq = tsk->se.on_rq;
8716
0e1f3483 8717 if (on_rq)
29f59db3 8718 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8719 if (unlikely(running))
8720 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8721
6f505b16 8722 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8723
810b3817
PZ
8724#ifdef CONFIG_FAIR_GROUP_SCHED
8725 if (tsk->sched_class->moved_group)
8726 tsk->sched_class->moved_group(tsk);
8727#endif
8728
0e1f3483
HS
8729 if (unlikely(running))
8730 tsk->sched_class->set_curr_task(rq);
8731 if (on_rq)
7074badb 8732 enqueue_task(rq, tsk, 0);
29f59db3 8733
29f59db3
SV
8734 task_rq_unlock(rq, &flags);
8735}
6d6bc0ad 8736#endif /* CONFIG_GROUP_SCHED */
29f59db3 8737
052f1dc7 8738#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8739static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8740{
8741 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8742 int on_rq;
8743
29f59db3 8744 on_rq = se->on_rq;
62fb1851 8745 if (on_rq)
29f59db3
SV
8746 dequeue_entity(cfs_rq, se, 0);
8747
8748 se->load.weight = shares;
e05510d0 8749 se->load.inv_weight = 0;
29f59db3 8750
62fb1851 8751 if (on_rq)
29f59db3 8752 enqueue_entity(cfs_rq, se, 0);
c09595f6 8753}
62fb1851 8754
c09595f6
PZ
8755static void set_se_shares(struct sched_entity *se, unsigned long shares)
8756{
8757 struct cfs_rq *cfs_rq = se->cfs_rq;
8758 struct rq *rq = cfs_rq->rq;
8759 unsigned long flags;
8760
8761 spin_lock_irqsave(&rq->lock, flags);
8762 __set_se_shares(se, shares);
8763 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8764}
8765
8ed36996
PZ
8766static DEFINE_MUTEX(shares_mutex);
8767
4cf86d77 8768int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8769{
8770 int i;
8ed36996 8771 unsigned long flags;
c61935fd 8772
ec7dc8ac
DG
8773 /*
8774 * We can't change the weight of the root cgroup.
8775 */
8776 if (!tg->se[0])
8777 return -EINVAL;
8778
18d95a28
PZ
8779 if (shares < MIN_SHARES)
8780 shares = MIN_SHARES;
cb4ad1ff
MX
8781 else if (shares > MAX_SHARES)
8782 shares = MAX_SHARES;
62fb1851 8783
8ed36996 8784 mutex_lock(&shares_mutex);
9b5b7751 8785 if (tg->shares == shares)
5cb350ba 8786 goto done;
29f59db3 8787
8ed36996 8788 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8789 for_each_possible_cpu(i)
8790 unregister_fair_sched_group(tg, i);
f473aa5e 8791 list_del_rcu(&tg->siblings);
8ed36996 8792 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8793
8794 /* wait for any ongoing reference to this group to finish */
8795 synchronize_sched();
8796
8797 /*
8798 * Now we are free to modify the group's share on each cpu
8799 * w/o tripping rebalance_share or load_balance_fair.
8800 */
9b5b7751 8801 tg->shares = shares;
c09595f6
PZ
8802 for_each_possible_cpu(i) {
8803 /*
8804 * force a rebalance
8805 */
8806 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8807 set_se_shares(tg->se[i], shares);
c09595f6 8808 }
29f59db3 8809
6b2d7700
SV
8810 /*
8811 * Enable load balance activity on this group, by inserting it back on
8812 * each cpu's rq->leaf_cfs_rq_list.
8813 */
8ed36996 8814 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8815 for_each_possible_cpu(i)
8816 register_fair_sched_group(tg, i);
f473aa5e 8817 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8818 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8819done:
8ed36996 8820 mutex_unlock(&shares_mutex);
9b5b7751 8821 return 0;
29f59db3
SV
8822}
8823
5cb350ba
DG
8824unsigned long sched_group_shares(struct task_group *tg)
8825{
8826 return tg->shares;
8827}
052f1dc7 8828#endif
5cb350ba 8829
052f1dc7 8830#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8831/*
9f0c1e56 8832 * Ensure that the real time constraints are schedulable.
6f505b16 8833 */
9f0c1e56
PZ
8834static DEFINE_MUTEX(rt_constraints_mutex);
8835
8836static unsigned long to_ratio(u64 period, u64 runtime)
8837{
8838 if (runtime == RUNTIME_INF)
9a7e0b18 8839 return 1ULL << 20;
9f0c1e56 8840
9a7e0b18 8841 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8842}
8843
9a7e0b18
PZ
8844/* Must be called with tasklist_lock held */
8845static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8846{
9a7e0b18 8847 struct task_struct *g, *p;
b40b2e8e 8848
9a7e0b18
PZ
8849 do_each_thread(g, p) {
8850 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8851 return 1;
8852 } while_each_thread(g, p);
b40b2e8e 8853
9a7e0b18
PZ
8854 return 0;
8855}
b40b2e8e 8856
9a7e0b18
PZ
8857struct rt_schedulable_data {
8858 struct task_group *tg;
8859 u64 rt_period;
8860 u64 rt_runtime;
8861};
b40b2e8e 8862
9a7e0b18
PZ
8863static int tg_schedulable(struct task_group *tg, void *data)
8864{
8865 struct rt_schedulable_data *d = data;
8866 struct task_group *child;
8867 unsigned long total, sum = 0;
8868 u64 period, runtime;
b40b2e8e 8869
9a7e0b18
PZ
8870 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8871 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8872
9a7e0b18
PZ
8873 if (tg == d->tg) {
8874 period = d->rt_period;
8875 runtime = d->rt_runtime;
b40b2e8e 8876 }
b40b2e8e 8877
4653f803
PZ
8878 /*
8879 * Cannot have more runtime than the period.
8880 */
8881 if (runtime > period && runtime != RUNTIME_INF)
8882 return -EINVAL;
6f505b16 8883
4653f803
PZ
8884 /*
8885 * Ensure we don't starve existing RT tasks.
8886 */
9a7e0b18
PZ
8887 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8888 return -EBUSY;
6f505b16 8889
9a7e0b18 8890 total = to_ratio(period, runtime);
6f505b16 8891
4653f803
PZ
8892 /*
8893 * Nobody can have more than the global setting allows.
8894 */
8895 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8896 return -EINVAL;
6f505b16 8897
4653f803
PZ
8898 /*
8899 * The sum of our children's runtime should not exceed our own.
8900 */
9a7e0b18
PZ
8901 list_for_each_entry_rcu(child, &tg->children, siblings) {
8902 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8903 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8904
9a7e0b18
PZ
8905 if (child == d->tg) {
8906 period = d->rt_period;
8907 runtime = d->rt_runtime;
8908 }
6f505b16 8909
9a7e0b18 8910 sum += to_ratio(period, runtime);
9f0c1e56 8911 }
6f505b16 8912
9a7e0b18
PZ
8913 if (sum > total)
8914 return -EINVAL;
8915
8916 return 0;
6f505b16
PZ
8917}
8918
9a7e0b18 8919static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8920{
9a7e0b18
PZ
8921 struct rt_schedulable_data data = {
8922 .tg = tg,
8923 .rt_period = period,
8924 .rt_runtime = runtime,
8925 };
8926
8927 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8928}
8929
d0b27fa7
PZ
8930static int tg_set_bandwidth(struct task_group *tg,
8931 u64 rt_period, u64 rt_runtime)
6f505b16 8932{
ac086bc2 8933 int i, err = 0;
9f0c1e56 8934
9f0c1e56 8935 mutex_lock(&rt_constraints_mutex);
521f1a24 8936 read_lock(&tasklist_lock);
9a7e0b18
PZ
8937 err = __rt_schedulable(tg, rt_period, rt_runtime);
8938 if (err)
9f0c1e56 8939 goto unlock;
ac086bc2
PZ
8940
8941 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8942 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8943 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8944
8945 for_each_possible_cpu(i) {
8946 struct rt_rq *rt_rq = tg->rt_rq[i];
8947
8948 spin_lock(&rt_rq->rt_runtime_lock);
8949 rt_rq->rt_runtime = rt_runtime;
8950 spin_unlock(&rt_rq->rt_runtime_lock);
8951 }
8952 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8953 unlock:
521f1a24 8954 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8955 mutex_unlock(&rt_constraints_mutex);
8956
8957 return err;
6f505b16
PZ
8958}
8959
d0b27fa7
PZ
8960int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8961{
8962 u64 rt_runtime, rt_period;
8963
8964 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8965 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8966 if (rt_runtime_us < 0)
8967 rt_runtime = RUNTIME_INF;
8968
8969 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8970}
8971
9f0c1e56
PZ
8972long sched_group_rt_runtime(struct task_group *tg)
8973{
8974 u64 rt_runtime_us;
8975
d0b27fa7 8976 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8977 return -1;
8978
d0b27fa7 8979 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8980 do_div(rt_runtime_us, NSEC_PER_USEC);
8981 return rt_runtime_us;
8982}
d0b27fa7
PZ
8983
8984int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8985{
8986 u64 rt_runtime, rt_period;
8987
8988 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8989 rt_runtime = tg->rt_bandwidth.rt_runtime;
8990
619b0488
R
8991 if (rt_period == 0)
8992 return -EINVAL;
8993
d0b27fa7
PZ
8994 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8995}
8996
8997long sched_group_rt_period(struct task_group *tg)
8998{
8999 u64 rt_period_us;
9000
9001 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9002 do_div(rt_period_us, NSEC_PER_USEC);
9003 return rt_period_us;
9004}
9005
9006static int sched_rt_global_constraints(void)
9007{
4653f803 9008 u64 runtime, period;
d0b27fa7
PZ
9009 int ret = 0;
9010
ec5d4989
HS
9011 if (sysctl_sched_rt_period <= 0)
9012 return -EINVAL;
9013
4653f803
PZ
9014 runtime = global_rt_runtime();
9015 period = global_rt_period();
9016
9017 /*
9018 * Sanity check on the sysctl variables.
9019 */
9020 if (runtime > period && runtime != RUNTIME_INF)
9021 return -EINVAL;
10b612f4 9022
d0b27fa7 9023 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9024 read_lock(&tasklist_lock);
4653f803 9025 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9026 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9027 mutex_unlock(&rt_constraints_mutex);
9028
9029 return ret;
9030}
6d6bc0ad 9031#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9032static int sched_rt_global_constraints(void)
9033{
ac086bc2
PZ
9034 unsigned long flags;
9035 int i;
9036
ec5d4989
HS
9037 if (sysctl_sched_rt_period <= 0)
9038 return -EINVAL;
9039
ac086bc2
PZ
9040 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9041 for_each_possible_cpu(i) {
9042 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9043
9044 spin_lock(&rt_rq->rt_runtime_lock);
9045 rt_rq->rt_runtime = global_rt_runtime();
9046 spin_unlock(&rt_rq->rt_runtime_lock);
9047 }
9048 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9049
d0b27fa7
PZ
9050 return 0;
9051}
6d6bc0ad 9052#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9053
9054int sched_rt_handler(struct ctl_table *table, int write,
9055 struct file *filp, void __user *buffer, size_t *lenp,
9056 loff_t *ppos)
9057{
9058 int ret;
9059 int old_period, old_runtime;
9060 static DEFINE_MUTEX(mutex);
9061
9062 mutex_lock(&mutex);
9063 old_period = sysctl_sched_rt_period;
9064 old_runtime = sysctl_sched_rt_runtime;
9065
9066 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9067
9068 if (!ret && write) {
9069 ret = sched_rt_global_constraints();
9070 if (ret) {
9071 sysctl_sched_rt_period = old_period;
9072 sysctl_sched_rt_runtime = old_runtime;
9073 } else {
9074 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9075 def_rt_bandwidth.rt_period =
9076 ns_to_ktime(global_rt_period());
9077 }
9078 }
9079 mutex_unlock(&mutex);
9080
9081 return ret;
9082}
68318b8e 9083
052f1dc7 9084#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9085
9086/* return corresponding task_group object of a cgroup */
2b01dfe3 9087static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9088{
2b01dfe3
PM
9089 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9090 struct task_group, css);
68318b8e
SV
9091}
9092
9093static struct cgroup_subsys_state *
2b01dfe3 9094cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9095{
ec7dc8ac 9096 struct task_group *tg, *parent;
68318b8e 9097
2b01dfe3 9098 if (!cgrp->parent) {
68318b8e 9099 /* This is early initialization for the top cgroup */
68318b8e
SV
9100 return &init_task_group.css;
9101 }
9102
ec7dc8ac
DG
9103 parent = cgroup_tg(cgrp->parent);
9104 tg = sched_create_group(parent);
68318b8e
SV
9105 if (IS_ERR(tg))
9106 return ERR_PTR(-ENOMEM);
9107
68318b8e
SV
9108 return &tg->css;
9109}
9110
41a2d6cf
IM
9111static void
9112cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9113{
2b01dfe3 9114 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9115
9116 sched_destroy_group(tg);
9117}
9118
41a2d6cf
IM
9119static int
9120cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9121 struct task_struct *tsk)
68318b8e 9122{
b68aa230
PZ
9123#ifdef CONFIG_RT_GROUP_SCHED
9124 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9125 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9126 return -EINVAL;
9127#else
68318b8e
SV
9128 /* We don't support RT-tasks being in separate groups */
9129 if (tsk->sched_class != &fair_sched_class)
9130 return -EINVAL;
b68aa230 9131#endif
68318b8e
SV
9132
9133 return 0;
9134}
9135
9136static void
2b01dfe3 9137cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9138 struct cgroup *old_cont, struct task_struct *tsk)
9139{
9140 sched_move_task(tsk);
9141}
9142
052f1dc7 9143#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9144static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9145 u64 shareval)
68318b8e 9146{
2b01dfe3 9147 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9148}
9149
f4c753b7 9150static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9151{
2b01dfe3 9152 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9153
9154 return (u64) tg->shares;
9155}
6d6bc0ad 9156#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9157
052f1dc7 9158#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9159static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9160 s64 val)
6f505b16 9161{
06ecb27c 9162 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9163}
9164
06ecb27c 9165static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9166{
06ecb27c 9167 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9168}
d0b27fa7
PZ
9169
9170static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9171 u64 rt_period_us)
9172{
9173 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9174}
9175
9176static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9177{
9178 return sched_group_rt_period(cgroup_tg(cgrp));
9179}
6d6bc0ad 9180#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9181
fe5c7cc2 9182static struct cftype cpu_files[] = {
052f1dc7 9183#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9184 {
9185 .name = "shares",
f4c753b7
PM
9186 .read_u64 = cpu_shares_read_u64,
9187 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9188 },
052f1dc7
PZ
9189#endif
9190#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9191 {
9f0c1e56 9192 .name = "rt_runtime_us",
06ecb27c
PM
9193 .read_s64 = cpu_rt_runtime_read,
9194 .write_s64 = cpu_rt_runtime_write,
6f505b16 9195 },
d0b27fa7
PZ
9196 {
9197 .name = "rt_period_us",
f4c753b7
PM
9198 .read_u64 = cpu_rt_period_read_uint,
9199 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9200 },
052f1dc7 9201#endif
68318b8e
SV
9202};
9203
9204static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9205{
fe5c7cc2 9206 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9207}
9208
9209struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9210 .name = "cpu",
9211 .create = cpu_cgroup_create,
9212 .destroy = cpu_cgroup_destroy,
9213 .can_attach = cpu_cgroup_can_attach,
9214 .attach = cpu_cgroup_attach,
9215 .populate = cpu_cgroup_populate,
9216 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9217 .early_init = 1,
9218};
9219
052f1dc7 9220#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9221
9222#ifdef CONFIG_CGROUP_CPUACCT
9223
9224/*
9225 * CPU accounting code for task groups.
9226 *
9227 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9228 * (balbir@in.ibm.com).
9229 */
9230
9231/* track cpu usage of a group of tasks */
9232struct cpuacct {
9233 struct cgroup_subsys_state css;
9234 /* cpuusage holds pointer to a u64-type object on every cpu */
9235 u64 *cpuusage;
9236};
9237
9238struct cgroup_subsys cpuacct_subsys;
9239
9240/* return cpu accounting group corresponding to this container */
32cd756a 9241static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9242{
32cd756a 9243 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9244 struct cpuacct, css);
9245}
9246
9247/* return cpu accounting group to which this task belongs */
9248static inline struct cpuacct *task_ca(struct task_struct *tsk)
9249{
9250 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9251 struct cpuacct, css);
9252}
9253
9254/* create a new cpu accounting group */
9255static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9256 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9257{
9258 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9259
9260 if (!ca)
9261 return ERR_PTR(-ENOMEM);
9262
9263 ca->cpuusage = alloc_percpu(u64);
9264 if (!ca->cpuusage) {
9265 kfree(ca);
9266 return ERR_PTR(-ENOMEM);
9267 }
9268
9269 return &ca->css;
9270}
9271
9272/* destroy an existing cpu accounting group */
41a2d6cf 9273static void
32cd756a 9274cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9275{
32cd756a 9276 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9277
9278 free_percpu(ca->cpuusage);
9279 kfree(ca);
9280}
9281
9282/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9283static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9284{
32cd756a 9285 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9286 u64 totalcpuusage = 0;
9287 int i;
9288
9289 for_each_possible_cpu(i) {
9290 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9291
9292 /*
9293 * Take rq->lock to make 64-bit addition safe on 32-bit
9294 * platforms.
9295 */
9296 spin_lock_irq(&cpu_rq(i)->lock);
9297 totalcpuusage += *cpuusage;
9298 spin_unlock_irq(&cpu_rq(i)->lock);
9299 }
9300
9301 return totalcpuusage;
9302}
9303
0297b803
DG
9304static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9305 u64 reset)
9306{
9307 struct cpuacct *ca = cgroup_ca(cgrp);
9308 int err = 0;
9309 int i;
9310
9311 if (reset) {
9312 err = -EINVAL;
9313 goto out;
9314 }
9315
9316 for_each_possible_cpu(i) {
9317 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9318
9319 spin_lock_irq(&cpu_rq(i)->lock);
9320 *cpuusage = 0;
9321 spin_unlock_irq(&cpu_rq(i)->lock);
9322 }
9323out:
9324 return err;
9325}
9326
d842de87
SV
9327static struct cftype files[] = {
9328 {
9329 .name = "usage",
f4c753b7
PM
9330 .read_u64 = cpuusage_read,
9331 .write_u64 = cpuusage_write,
d842de87
SV
9332 },
9333};
9334
32cd756a 9335static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9336{
32cd756a 9337 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9338}
9339
9340/*
9341 * charge this task's execution time to its accounting group.
9342 *
9343 * called with rq->lock held.
9344 */
9345static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9346{
9347 struct cpuacct *ca;
9348
9349 if (!cpuacct_subsys.active)
9350 return;
9351
9352 ca = task_ca(tsk);
9353 if (ca) {
9354 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9355
9356 *cpuusage += cputime;
9357 }
9358}
9359
9360struct cgroup_subsys cpuacct_subsys = {
9361 .name = "cpuacct",
9362 .create = cpuacct_create,
9363 .destroy = cpuacct_destroy,
9364 .populate = cpuacct_populate,
9365 .subsys_id = cpuacct_subsys_id,
9366};
9367#endif /* CONFIG_CGROUP_CPUACCT */