sched: mention CONFIG_SCHED_DEBUG in documentation
[linux-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
1da177e4 64
5517d86b 65#include <asm/tlb.h>
1da177e4 66
b035b6de
AD
67/*
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72unsigned long long __attribute__((weak)) sched_clock(void)
73{
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75}
76
1da177e4
LT
77/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
6aa645ea
IM
101#define NICE_0_LOAD SCHED_LOAD_SCALE
102#define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
1da177e4
LT
104/*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
5517d86b
ED
114#ifdef CONFIG_SMP
115/*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120{
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122}
123
124/*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129{
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132}
133#endif
134
634fa8c9
IM
135#define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
137
91fcdd4e 138/*
634fa8c9 139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
91fcdd4e 140 * to time slice values: [800ms ... 100ms ... 5ms]
91fcdd4e 141 */
634fa8c9 142static unsigned int static_prio_timeslice(int static_prio)
2dd73a4f 143{
634fa8c9
IM
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
2dd73a4f
PW
151}
152
e05606d3
IM
153static inline int rt_policy(int policy)
154{
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158}
159
160static inline int task_has_rt_policy(struct task_struct *p)
161{
162 return rt_policy(p->policy);
163}
164
1da177e4 165/*
6aa645ea 166 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 167 */
6aa645ea
IM
168struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171};
172
173struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177};
178
179/* CFS-related fields in a runqueue */
180struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193#ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208#endif
209};
1da177e4 210
6aa645ea
IM
211/* Real-Time classes' related field in a runqueue: */
212struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216};
217
1da177e4
LT
218/*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
70b97a7f 225struct rq {
6aa645ea 226 spinlock_t lock; /* runqueue lock */
1da177e4
LT
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
6aa645ea
IM
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 235 unsigned char idle_at_tick;
46cb4b7c
SS
236#ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238#endif
6aa645ea
IM
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244#ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 246#endif
6aa645ea 247 struct rt_rq rt;
1da177e4
LT
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
36c8b586 257 struct task_struct *curr, *idle;
c9819f45 258 unsigned long next_balance;
1da177e4 259 struct mm_struct *prev_mm;
6aa645ea 260
6aa645ea
IM
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
266
1da177e4
LT
267 atomic_t nr_iowait;
268
269#ifdef CONFIG_SMP
270 struct sched_domain *sd;
271
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
0a2966b4 275 int cpu; /* cpu of this runqueue */
1da177e4 276
36c8b586 277 struct task_struct *migration_thread;
1da177e4
LT
278 struct list_head migration_queue;
279#endif
280
281#ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
284
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
290
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
295
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299#endif
fcb99371 300 struct lock_class_key rq_lock_key;
1da177e4
LT
301};
302
f34e3b61 303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 304static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 305
dd41f596
IM
306static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
307{
308 rq->curr->sched_class->check_preempt_curr(rq, p);
309}
310
0a2966b4
CL
311static inline int cpu_of(struct rq *rq)
312{
313#ifdef CONFIG_SMP
314 return rq->cpu;
315#else
316 return 0;
317#endif
318}
319
20d315d4
IM
320/*
321 * Per-runqueue clock, as finegrained as the platform can give us:
322 */
323static unsigned long long __rq_clock(struct rq *rq)
324{
325 u64 prev_raw = rq->prev_clock_raw;
326 u64 now = sched_clock();
327 s64 delta = now - prev_raw;
328 u64 clock = rq->clock;
329
330 /*
331 * Protect against sched_clock() occasionally going backwards:
332 */
333 if (unlikely(delta < 0)) {
334 clock++;
335 rq->clock_warps++;
336 } else {
337 /*
338 * Catch too large forward jumps too:
339 */
340 if (unlikely(delta > 2*TICK_NSEC)) {
341 clock++;
342 rq->clock_overflows++;
343 } else {
344 if (unlikely(delta > rq->clock_max_delta))
345 rq->clock_max_delta = delta;
346 clock += delta;
347 }
348 }
349
350 rq->prev_clock_raw = now;
351 rq->clock = clock;
352
353 return clock;
354}
355
356static inline unsigned long long rq_clock(struct rq *rq)
357{
358 int this_cpu = smp_processor_id();
359
360 if (this_cpu == cpu_of(rq))
361 return __rq_clock(rq);
362
363 return rq->clock;
364}
365
674311d5
NP
366/*
367 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 368 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
369 *
370 * The domain tree of any CPU may only be accessed from within
371 * preempt-disabled sections.
372 */
48f24c4d
IM
373#define for_each_domain(cpu, __sd) \
374 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
375
376#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
377#define this_rq() (&__get_cpu_var(runqueues))
378#define task_rq(p) cpu_rq(task_cpu(p))
379#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
380
e436d800
IM
381/*
382 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
383 * clock constructed from sched_clock():
384 */
385unsigned long long cpu_clock(int cpu)
386{
e436d800
IM
387 unsigned long long now;
388 unsigned long flags;
389
2cd4d0ea
IM
390 local_irq_save(flags);
391 now = rq_clock(cpu_rq(cpu));
392 local_irq_restore(flags);
e436d800
IM
393
394 return now;
395}
396
138a8aeb
IM
397#ifdef CONFIG_FAIR_GROUP_SCHED
398/* Change a task's ->cfs_rq if it moves across CPUs */
399static inline void set_task_cfs_rq(struct task_struct *p)
400{
401 p->se.cfs_rq = &task_rq(p)->cfs;
402}
403#else
404static inline void set_task_cfs_rq(struct task_struct *p)
405{
406}
407#endif
408
1da177e4 409#ifndef prepare_arch_switch
4866cde0
NP
410# define prepare_arch_switch(next) do { } while (0)
411#endif
412#ifndef finish_arch_switch
413# define finish_arch_switch(prev) do { } while (0)
414#endif
415
416#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 417static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
418{
419 return rq->curr == p;
420}
421
70b97a7f 422static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
423{
424}
425
70b97a7f 426static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 427{
da04c035
IM
428#ifdef CONFIG_DEBUG_SPINLOCK
429 /* this is a valid case when another task releases the spinlock */
430 rq->lock.owner = current;
431#endif
8a25d5de
IM
432 /*
433 * If we are tracking spinlock dependencies then we have to
434 * fix up the runqueue lock - which gets 'carried over' from
435 * prev into current:
436 */
437 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
438
4866cde0
NP
439 spin_unlock_irq(&rq->lock);
440}
441
442#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 443static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
444{
445#ifdef CONFIG_SMP
446 return p->oncpu;
447#else
448 return rq->curr == p;
449#endif
450}
451
70b97a7f 452static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
453{
454#ifdef CONFIG_SMP
455 /*
456 * We can optimise this out completely for !SMP, because the
457 * SMP rebalancing from interrupt is the only thing that cares
458 * here.
459 */
460 next->oncpu = 1;
461#endif
462#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
463 spin_unlock_irq(&rq->lock);
464#else
465 spin_unlock(&rq->lock);
466#endif
467}
468
70b97a7f 469static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
470{
471#ifdef CONFIG_SMP
472 /*
473 * After ->oncpu is cleared, the task can be moved to a different CPU.
474 * We must ensure this doesn't happen until the switch is completely
475 * finished.
476 */
477 smp_wmb();
478 prev->oncpu = 0;
479#endif
480#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
481 local_irq_enable();
1da177e4 482#endif
4866cde0
NP
483}
484#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 485
b29739f9
IM
486/*
487 * __task_rq_lock - lock the runqueue a given task resides on.
488 * Must be called interrupts disabled.
489 */
70b97a7f 490static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
491 __acquires(rq->lock)
492{
70b97a7f 493 struct rq *rq;
b29739f9
IM
494
495repeat_lock_task:
496 rq = task_rq(p);
497 spin_lock(&rq->lock);
498 if (unlikely(rq != task_rq(p))) {
499 spin_unlock(&rq->lock);
500 goto repeat_lock_task;
501 }
502 return rq;
503}
504
1da177e4
LT
505/*
506 * task_rq_lock - lock the runqueue a given task resides on and disable
507 * interrupts. Note the ordering: we can safely lookup the task_rq without
508 * explicitly disabling preemption.
509 */
70b97a7f 510static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
511 __acquires(rq->lock)
512{
70b97a7f 513 struct rq *rq;
1da177e4
LT
514
515repeat_lock_task:
516 local_irq_save(*flags);
517 rq = task_rq(p);
518 spin_lock(&rq->lock);
519 if (unlikely(rq != task_rq(p))) {
520 spin_unlock_irqrestore(&rq->lock, *flags);
521 goto repeat_lock_task;
522 }
523 return rq;
524}
525
70b97a7f 526static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
527 __releases(rq->lock)
528{
529 spin_unlock(&rq->lock);
530}
531
70b97a7f 532static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
533 __releases(rq->lock)
534{
535 spin_unlock_irqrestore(&rq->lock, *flags);
536}
537
1da177e4 538/*
cc2a73b5 539 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 540 */
70b97a7f 541static inline struct rq *this_rq_lock(void)
1da177e4
LT
542 __acquires(rq->lock)
543{
70b97a7f 544 struct rq *rq;
1da177e4
LT
545
546 local_irq_disable();
547 rq = this_rq();
548 spin_lock(&rq->lock);
549
550 return rq;
551}
552
1b9f19c2
IM
553/*
554 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
555 */
556void sched_clock_unstable_event(void)
557{
558 unsigned long flags;
559 struct rq *rq;
560
561 rq = task_rq_lock(current, &flags);
562 rq->prev_clock_raw = sched_clock();
563 rq->clock_unstable_events++;
564 task_rq_unlock(rq, &flags);
565}
566
c24d20db
IM
567/*
568 * resched_task - mark a task 'to be rescheduled now'.
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
574#ifdef CONFIG_SMP
575
576#ifndef tsk_is_polling
577#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
578#endif
579
580static void resched_task(struct task_struct *p)
581{
582 int cpu;
583
584 assert_spin_locked(&task_rq(p)->lock);
585
586 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
587 return;
588
589 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
590
591 cpu = task_cpu(p);
592 if (cpu == smp_processor_id())
593 return;
594
595 /* NEED_RESCHED must be visible before we test polling */
596 smp_mb();
597 if (!tsk_is_polling(p))
598 smp_send_reschedule(cpu);
599}
600
601static void resched_cpu(int cpu)
602{
603 struct rq *rq = cpu_rq(cpu);
604 unsigned long flags;
605
606 if (!spin_trylock_irqsave(&rq->lock, flags))
607 return;
608 resched_task(cpu_curr(cpu));
609 spin_unlock_irqrestore(&rq->lock, flags);
610}
611#else
612static inline void resched_task(struct task_struct *p)
613{
614 assert_spin_locked(&task_rq(p)->lock);
615 set_tsk_need_resched(p);
616}
617#endif
618
45bf76df
IM
619static u64 div64_likely32(u64 divident, unsigned long divisor)
620{
621#if BITS_PER_LONG == 32
622 if (likely(divident <= 0xffffffffULL))
623 return (u32)divident / divisor;
624 do_div(divident, divisor);
625
626 return divident;
627#else
628 return divident / divisor;
629#endif
630}
631
632#if BITS_PER_LONG == 32
633# define WMULT_CONST (~0UL)
634#else
635# define WMULT_CONST (1UL << 32)
636#endif
637
638#define WMULT_SHIFT 32
639
cb1c4fc9 640static unsigned long
45bf76df
IM
641calc_delta_mine(unsigned long delta_exec, unsigned long weight,
642 struct load_weight *lw)
643{
644 u64 tmp;
645
646 if (unlikely(!lw->inv_weight))
647 lw->inv_weight = WMULT_CONST / lw->weight;
648
649 tmp = (u64)delta_exec * weight;
650 /*
651 * Check whether we'd overflow the 64-bit multiplication:
652 */
653 if (unlikely(tmp > WMULT_CONST)) {
654 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
655 >> (WMULT_SHIFT/2);
656 } else {
657 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
658 }
659
ecf691da 660 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
661}
662
663static inline unsigned long
664calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
665{
666 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
667}
668
669static void update_load_add(struct load_weight *lw, unsigned long inc)
670{
671 lw->weight += inc;
672 lw->inv_weight = 0;
673}
674
675static void update_load_sub(struct load_weight *lw, unsigned long dec)
676{
677 lw->weight -= dec;
678 lw->inv_weight = 0;
679}
680
2dd73a4f
PW
681/*
682 * To aid in avoiding the subversion of "niceness" due to uneven distribution
683 * of tasks with abnormal "nice" values across CPUs the contribution that
684 * each task makes to its run queue's load is weighted according to its
685 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
686 * scaled version of the new time slice allocation that they receive on time
687 * slice expiry etc.
688 */
689
dd41f596
IM
690#define WEIGHT_IDLEPRIO 2
691#define WMULT_IDLEPRIO (1 << 31)
692
693/*
694 * Nice levels are multiplicative, with a gentle 10% change for every
695 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
696 * nice 1, it will get ~10% less CPU time than another CPU-bound task
697 * that remained on nice 0.
698 *
699 * The "10% effect" is relative and cumulative: from _any_ nice level,
700 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
701 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
702 * If a task goes up by ~10% and another task goes down by ~10% then
703 * the relative distance between them is ~25%.)
dd41f596
IM
704 */
705static const int prio_to_weight[40] = {
706/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
707/* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
708/* 0 */ NICE_0_LOAD /* 1024 */,
709/* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
710/* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
711};
712
5714d2de
IM
713/*
714 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
715 *
716 * In cases where the weight does not change often, we can use the
717 * precalculated inverse to speed up arithmetics by turning divisions
718 * into multiplications:
719 */
dd41f596 720static const u32 prio_to_wmult[40] = {
e4af30be
IM
721/* -20 */ 48356, 60446, 75558, 94446, 118058,
722/* -15 */ 147573, 184467, 230589, 288233, 360285,
723/* -10 */ 450347, 562979, 703746, 879575, 1099582,
724/* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
725/* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
726/* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
727/* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
728/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 729};
2dd73a4f 730
dd41f596
IM
731static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
732
733/*
734 * runqueue iterator, to support SMP load-balancing between different
735 * scheduling classes, without having to expose their internal data
736 * structures to the load-balancing proper:
737 */
738struct rq_iterator {
739 void *arg;
740 struct task_struct *(*start)(void *);
741 struct task_struct *(*next)(void *);
742};
743
744static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
745 unsigned long max_nr_move, unsigned long max_load_move,
746 struct sched_domain *sd, enum cpu_idle_type idle,
747 int *all_pinned, unsigned long *load_moved,
748 int this_best_prio, int best_prio, int best_prio_seen,
749 struct rq_iterator *iterator);
750
751#include "sched_stats.h"
752#include "sched_rt.c"
753#include "sched_fair.c"
754#include "sched_idletask.c"
755#ifdef CONFIG_SCHED_DEBUG
756# include "sched_debug.c"
757#endif
758
759#define sched_class_highest (&rt_sched_class)
760
9c217245
IM
761static void __update_curr_load(struct rq *rq, struct load_stat *ls)
762{
763 if (rq->curr != rq->idle && ls->load.weight) {
764 ls->delta_exec += ls->delta_stat;
765 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
766 ls->delta_stat = 0;
767 }
768}
769
770/*
771 * Update delta_exec, delta_fair fields for rq.
772 *
773 * delta_fair clock advances at a rate inversely proportional to
774 * total load (rq->ls.load.weight) on the runqueue, while
775 * delta_exec advances at the same rate as wall-clock (provided
776 * cpu is not idle).
777 *
778 * delta_exec / delta_fair is a measure of the (smoothened) load on this
779 * runqueue over any given interval. This (smoothened) load is used
780 * during load balance.
781 *
782 * This function is called /before/ updating rq->ls.load
783 * and when switching tasks.
784 */
785static void update_curr_load(struct rq *rq, u64 now)
786{
787 struct load_stat *ls = &rq->ls;
788 u64 start;
789
790 start = ls->load_update_start;
791 ls->load_update_start = now;
792 ls->delta_stat += now - start;
793 /*
794 * Stagger updates to ls->delta_fair. Very frequent updates
795 * can be expensive.
796 */
797 if (ls->delta_stat >= sysctl_sched_stat_granularity)
798 __update_curr_load(rq, ls);
799}
800
801static inline void
802inc_load(struct rq *rq, const struct task_struct *p, u64 now)
803{
804 update_curr_load(rq, now);
805 update_load_add(&rq->ls.load, p->se.load.weight);
806}
807
808static inline void
809dec_load(struct rq *rq, const struct task_struct *p, u64 now)
810{
811 update_curr_load(rq, now);
812 update_load_sub(&rq->ls.load, p->se.load.weight);
813}
814
815static void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
816{
817 rq->nr_running++;
818 inc_load(rq, p, now);
819}
820
821static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
822{
823 rq->nr_running--;
824 dec_load(rq, p, now);
825}
826
45bf76df
IM
827static void set_load_weight(struct task_struct *p)
828{
dd41f596
IM
829 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
830 p->se.wait_runtime = 0;
831
45bf76df 832 if (task_has_rt_policy(p)) {
dd41f596
IM
833 p->se.load.weight = prio_to_weight[0] * 2;
834 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
835 return;
836 }
45bf76df 837
dd41f596
IM
838 /*
839 * SCHED_IDLE tasks get minimal weight:
840 */
841 if (p->policy == SCHED_IDLE) {
842 p->se.load.weight = WEIGHT_IDLEPRIO;
843 p->se.load.inv_weight = WMULT_IDLEPRIO;
844 return;
845 }
71f8bd46 846
dd41f596
IM
847 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
848 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
849}
850
dd41f596
IM
851static void
852enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
71f8bd46 853{
dd41f596
IM
854 sched_info_queued(p);
855 p->sched_class->enqueue_task(rq, p, wakeup, now);
856 p->se.on_rq = 1;
71f8bd46
IM
857}
858
dd41f596
IM
859static void
860dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
71f8bd46 861{
dd41f596
IM
862 p->sched_class->dequeue_task(rq, p, sleep, now);
863 p->se.on_rq = 0;
71f8bd46
IM
864}
865
14531189 866/*
dd41f596 867 * __normal_prio - return the priority that is based on the static prio
14531189 868 */
14531189
IM
869static inline int __normal_prio(struct task_struct *p)
870{
dd41f596 871 return p->static_prio;
14531189
IM
872}
873
b29739f9
IM
874/*
875 * Calculate the expected normal priority: i.e. priority
876 * without taking RT-inheritance into account. Might be
877 * boosted by interactivity modifiers. Changes upon fork,
878 * setprio syscalls, and whenever the interactivity
879 * estimator recalculates.
880 */
36c8b586 881static inline int normal_prio(struct task_struct *p)
b29739f9
IM
882{
883 int prio;
884
e05606d3 885 if (task_has_rt_policy(p))
b29739f9
IM
886 prio = MAX_RT_PRIO-1 - p->rt_priority;
887 else
888 prio = __normal_prio(p);
889 return prio;
890}
891
892/*
893 * Calculate the current priority, i.e. the priority
894 * taken into account by the scheduler. This value might
895 * be boosted by RT tasks, or might be boosted by
896 * interactivity modifiers. Will be RT if the task got
897 * RT-boosted. If not then it returns p->normal_prio.
898 */
36c8b586 899static int effective_prio(struct task_struct *p)
b29739f9
IM
900{
901 p->normal_prio = normal_prio(p);
902 /*
903 * If we are RT tasks or we were boosted to RT priority,
904 * keep the priority unchanged. Otherwise, update priority
905 * to the normal priority:
906 */
907 if (!rt_prio(p->prio))
908 return p->normal_prio;
909 return p->prio;
910}
911
1da177e4 912/*
dd41f596 913 * activate_task - move a task to the runqueue.
1da177e4 914 */
dd41f596 915static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 916{
dd41f596 917 u64 now = rq_clock(rq);
d425b274 918
dd41f596
IM
919 if (p->state == TASK_UNINTERRUPTIBLE)
920 rq->nr_uninterruptible--;
1da177e4 921
dd41f596
IM
922 enqueue_task(rq, p, wakeup, now);
923 inc_nr_running(p, rq, now);
1da177e4
LT
924}
925
926/*
dd41f596 927 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 928 */
dd41f596 929static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 930{
dd41f596 931 u64 now = rq_clock(rq);
1da177e4 932
dd41f596
IM
933 if (p->state == TASK_UNINTERRUPTIBLE)
934 rq->nr_uninterruptible--;
ece8a684 935
dd41f596
IM
936 enqueue_task(rq, p, 0, now);
937 inc_nr_running(p, rq, now);
1da177e4
LT
938}
939
940/*
941 * deactivate_task - remove a task from the runqueue.
942 */
dd41f596 943static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 944{
dd41f596
IM
945 u64 now = rq_clock(rq);
946
947 if (p->state == TASK_UNINTERRUPTIBLE)
948 rq->nr_uninterruptible++;
949
950 dequeue_task(rq, p, sleep, now);
951 dec_nr_running(p, rq, now);
1da177e4
LT
952}
953
1da177e4
LT
954/**
955 * task_curr - is this task currently executing on a CPU?
956 * @p: the task in question.
957 */
36c8b586 958inline int task_curr(const struct task_struct *p)
1da177e4
LT
959{
960 return cpu_curr(task_cpu(p)) == p;
961}
962
2dd73a4f
PW
963/* Used instead of source_load when we know the type == 0 */
964unsigned long weighted_cpuload(const int cpu)
965{
dd41f596
IM
966 return cpu_rq(cpu)->ls.load.weight;
967}
968
969static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
970{
971#ifdef CONFIG_SMP
972 task_thread_info(p)->cpu = cpu;
973 set_task_cfs_rq(p);
974#endif
2dd73a4f
PW
975}
976
1da177e4 977#ifdef CONFIG_SMP
c65cc870 978
dd41f596 979void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 980{
dd41f596
IM
981 int old_cpu = task_cpu(p);
982 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
983 u64 clock_offset, fair_clock_offset;
984
985 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
986 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
987
dd41f596
IM
988 if (p->se.wait_start_fair)
989 p->se.wait_start_fair -= fair_clock_offset;
6cfb0d5d
IM
990 if (p->se.sleep_start_fair)
991 p->se.sleep_start_fair -= fair_clock_offset;
992
993#ifdef CONFIG_SCHEDSTATS
994 if (p->se.wait_start)
995 p->se.wait_start -= clock_offset;
dd41f596
IM
996 if (p->se.sleep_start)
997 p->se.sleep_start -= clock_offset;
998 if (p->se.block_start)
999 p->se.block_start -= clock_offset;
6cfb0d5d 1000#endif
dd41f596
IM
1001
1002 __set_task_cpu(p, new_cpu);
c65cc870
IM
1003}
1004
70b97a7f 1005struct migration_req {
1da177e4 1006 struct list_head list;
1da177e4 1007
36c8b586 1008 struct task_struct *task;
1da177e4
LT
1009 int dest_cpu;
1010
1da177e4 1011 struct completion done;
70b97a7f 1012};
1da177e4
LT
1013
1014/*
1015 * The task's runqueue lock must be held.
1016 * Returns true if you have to wait for migration thread.
1017 */
36c8b586 1018static int
70b97a7f 1019migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1020{
70b97a7f 1021 struct rq *rq = task_rq(p);
1da177e4
LT
1022
1023 /*
1024 * If the task is not on a runqueue (and not running), then
1025 * it is sufficient to simply update the task's cpu field.
1026 */
dd41f596 1027 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1028 set_task_cpu(p, dest_cpu);
1029 return 0;
1030 }
1031
1032 init_completion(&req->done);
1da177e4
LT
1033 req->task = p;
1034 req->dest_cpu = dest_cpu;
1035 list_add(&req->list, &rq->migration_queue);
48f24c4d 1036
1da177e4
LT
1037 return 1;
1038}
1039
1040/*
1041 * wait_task_inactive - wait for a thread to unschedule.
1042 *
1043 * The caller must ensure that the task *will* unschedule sometime soon,
1044 * else this function might spin for a *long* time. This function can't
1045 * be called with interrupts off, or it may introduce deadlock with
1046 * smp_call_function() if an IPI is sent by the same process we are
1047 * waiting to become inactive.
1048 */
36c8b586 1049void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1050{
1051 unsigned long flags;
dd41f596 1052 int running, on_rq;
70b97a7f 1053 struct rq *rq;
1da177e4
LT
1054
1055repeat:
fa490cfd
LT
1056 /*
1057 * We do the initial early heuristics without holding
1058 * any task-queue locks at all. We'll only try to get
1059 * the runqueue lock when things look like they will
1060 * work out!
1061 */
1062 rq = task_rq(p);
1063
1064 /*
1065 * If the task is actively running on another CPU
1066 * still, just relax and busy-wait without holding
1067 * any locks.
1068 *
1069 * NOTE! Since we don't hold any locks, it's not
1070 * even sure that "rq" stays as the right runqueue!
1071 * But we don't care, since "task_running()" will
1072 * return false if the runqueue has changed and p
1073 * is actually now running somewhere else!
1074 */
1075 while (task_running(rq, p))
1076 cpu_relax();
1077
1078 /*
1079 * Ok, time to look more closely! We need the rq
1080 * lock now, to be *sure*. If we're wrong, we'll
1081 * just go back and repeat.
1082 */
1da177e4 1083 rq = task_rq_lock(p, &flags);
fa490cfd 1084 running = task_running(rq, p);
dd41f596 1085 on_rq = p->se.on_rq;
fa490cfd
LT
1086 task_rq_unlock(rq, &flags);
1087
1088 /*
1089 * Was it really running after all now that we
1090 * checked with the proper locks actually held?
1091 *
1092 * Oops. Go back and try again..
1093 */
1094 if (unlikely(running)) {
1da177e4 1095 cpu_relax();
1da177e4
LT
1096 goto repeat;
1097 }
fa490cfd
LT
1098
1099 /*
1100 * It's not enough that it's not actively running,
1101 * it must be off the runqueue _entirely_, and not
1102 * preempted!
1103 *
1104 * So if it wa still runnable (but just not actively
1105 * running right now), it's preempted, and we should
1106 * yield - it could be a while.
1107 */
dd41f596 1108 if (unlikely(on_rq)) {
fa490cfd
LT
1109 yield();
1110 goto repeat;
1111 }
1112
1113 /*
1114 * Ahh, all good. It wasn't running, and it wasn't
1115 * runnable, which means that it will never become
1116 * running in the future either. We're all done!
1117 */
1da177e4
LT
1118}
1119
1120/***
1121 * kick_process - kick a running thread to enter/exit the kernel
1122 * @p: the to-be-kicked thread
1123 *
1124 * Cause a process which is running on another CPU to enter
1125 * kernel-mode, without any delay. (to get signals handled.)
1126 *
1127 * NOTE: this function doesnt have to take the runqueue lock,
1128 * because all it wants to ensure is that the remote task enters
1129 * the kernel. If the IPI races and the task has been migrated
1130 * to another CPU then no harm is done and the purpose has been
1131 * achieved as well.
1132 */
36c8b586 1133void kick_process(struct task_struct *p)
1da177e4
LT
1134{
1135 int cpu;
1136
1137 preempt_disable();
1138 cpu = task_cpu(p);
1139 if ((cpu != smp_processor_id()) && task_curr(p))
1140 smp_send_reschedule(cpu);
1141 preempt_enable();
1142}
1143
1144/*
2dd73a4f
PW
1145 * Return a low guess at the load of a migration-source cpu weighted
1146 * according to the scheduling class and "nice" value.
1da177e4
LT
1147 *
1148 * We want to under-estimate the load of migration sources, to
1149 * balance conservatively.
1150 */
a2000572 1151static inline unsigned long source_load(int cpu, int type)
1da177e4 1152{
70b97a7f 1153 struct rq *rq = cpu_rq(cpu);
dd41f596 1154 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1155
3b0bd9bc 1156 if (type == 0)
dd41f596 1157 return total;
b910472d 1158
dd41f596 1159 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1160}
1161
1162/*
2dd73a4f
PW
1163 * Return a high guess at the load of a migration-target cpu weighted
1164 * according to the scheduling class and "nice" value.
1da177e4 1165 */
a2000572 1166static inline unsigned long target_load(int cpu, int type)
1da177e4 1167{
70b97a7f 1168 struct rq *rq = cpu_rq(cpu);
dd41f596 1169 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1170
7897986b 1171 if (type == 0)
dd41f596 1172 return total;
3b0bd9bc 1173
dd41f596 1174 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1175}
1176
1177/*
1178 * Return the average load per task on the cpu's run queue
1179 */
1180static inline unsigned long cpu_avg_load_per_task(int cpu)
1181{
70b97a7f 1182 struct rq *rq = cpu_rq(cpu);
dd41f596 1183 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1184 unsigned long n = rq->nr_running;
1185
dd41f596 1186 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1187}
1188
147cbb4b
NP
1189/*
1190 * find_idlest_group finds and returns the least busy CPU group within the
1191 * domain.
1192 */
1193static struct sched_group *
1194find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1195{
1196 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1197 unsigned long min_load = ULONG_MAX, this_load = 0;
1198 int load_idx = sd->forkexec_idx;
1199 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1200
1201 do {
1202 unsigned long load, avg_load;
1203 int local_group;
1204 int i;
1205
da5a5522
BD
1206 /* Skip over this group if it has no CPUs allowed */
1207 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1208 goto nextgroup;
1209
147cbb4b 1210 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1211
1212 /* Tally up the load of all CPUs in the group */
1213 avg_load = 0;
1214
1215 for_each_cpu_mask(i, group->cpumask) {
1216 /* Bias balancing toward cpus of our domain */
1217 if (local_group)
1218 load = source_load(i, load_idx);
1219 else
1220 load = target_load(i, load_idx);
1221
1222 avg_load += load;
1223 }
1224
1225 /* Adjust by relative CPU power of the group */
5517d86b
ED
1226 avg_load = sg_div_cpu_power(group,
1227 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1228
1229 if (local_group) {
1230 this_load = avg_load;
1231 this = group;
1232 } else if (avg_load < min_load) {
1233 min_load = avg_load;
1234 idlest = group;
1235 }
da5a5522 1236nextgroup:
147cbb4b
NP
1237 group = group->next;
1238 } while (group != sd->groups);
1239
1240 if (!idlest || 100*this_load < imbalance*min_load)
1241 return NULL;
1242 return idlest;
1243}
1244
1245/*
0feaece9 1246 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1247 */
95cdf3b7
IM
1248static int
1249find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1250{
da5a5522 1251 cpumask_t tmp;
147cbb4b
NP
1252 unsigned long load, min_load = ULONG_MAX;
1253 int idlest = -1;
1254 int i;
1255
da5a5522
BD
1256 /* Traverse only the allowed CPUs */
1257 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1258
1259 for_each_cpu_mask(i, tmp) {
2dd73a4f 1260 load = weighted_cpuload(i);
147cbb4b
NP
1261
1262 if (load < min_load || (load == min_load && i == this_cpu)) {
1263 min_load = load;
1264 idlest = i;
1265 }
1266 }
1267
1268 return idlest;
1269}
1270
476d139c
NP
1271/*
1272 * sched_balance_self: balance the current task (running on cpu) in domains
1273 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1274 * SD_BALANCE_EXEC.
1275 *
1276 * Balance, ie. select the least loaded group.
1277 *
1278 * Returns the target CPU number, or the same CPU if no balancing is needed.
1279 *
1280 * preempt must be disabled.
1281 */
1282static int sched_balance_self(int cpu, int flag)
1283{
1284 struct task_struct *t = current;
1285 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1286
c96d145e 1287 for_each_domain(cpu, tmp) {
9761eea8
IM
1288 /*
1289 * If power savings logic is enabled for a domain, stop there.
1290 */
5c45bf27
SS
1291 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1292 break;
476d139c
NP
1293 if (tmp->flags & flag)
1294 sd = tmp;
c96d145e 1295 }
476d139c
NP
1296
1297 while (sd) {
1298 cpumask_t span;
1299 struct sched_group *group;
1a848870
SS
1300 int new_cpu, weight;
1301
1302 if (!(sd->flags & flag)) {
1303 sd = sd->child;
1304 continue;
1305 }
476d139c
NP
1306
1307 span = sd->span;
1308 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1309 if (!group) {
1310 sd = sd->child;
1311 continue;
1312 }
476d139c 1313
da5a5522 1314 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1315 if (new_cpu == -1 || new_cpu == cpu) {
1316 /* Now try balancing at a lower domain level of cpu */
1317 sd = sd->child;
1318 continue;
1319 }
476d139c 1320
1a848870 1321 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1322 cpu = new_cpu;
476d139c
NP
1323 sd = NULL;
1324 weight = cpus_weight(span);
1325 for_each_domain(cpu, tmp) {
1326 if (weight <= cpus_weight(tmp->span))
1327 break;
1328 if (tmp->flags & flag)
1329 sd = tmp;
1330 }
1331 /* while loop will break here if sd == NULL */
1332 }
1333
1334 return cpu;
1335}
1336
1337#endif /* CONFIG_SMP */
1da177e4
LT
1338
1339/*
1340 * wake_idle() will wake a task on an idle cpu if task->cpu is
1341 * not idle and an idle cpu is available. The span of cpus to
1342 * search starts with cpus closest then further out as needed,
1343 * so we always favor a closer, idle cpu.
1344 *
1345 * Returns the CPU we should wake onto.
1346 */
1347#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1348static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1349{
1350 cpumask_t tmp;
1351 struct sched_domain *sd;
1352 int i;
1353
4953198b
SS
1354 /*
1355 * If it is idle, then it is the best cpu to run this task.
1356 *
1357 * This cpu is also the best, if it has more than one task already.
1358 * Siblings must be also busy(in most cases) as they didn't already
1359 * pickup the extra load from this cpu and hence we need not check
1360 * sibling runqueue info. This will avoid the checks and cache miss
1361 * penalities associated with that.
1362 */
1363 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1364 return cpu;
1365
1366 for_each_domain(cpu, sd) {
1367 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1368 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1369 for_each_cpu_mask(i, tmp) {
1370 if (idle_cpu(i))
1371 return i;
1372 }
9761eea8 1373 } else {
e0f364f4 1374 break;
9761eea8 1375 }
1da177e4
LT
1376 }
1377 return cpu;
1378}
1379#else
36c8b586 1380static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1381{
1382 return cpu;
1383}
1384#endif
1385
1386/***
1387 * try_to_wake_up - wake up a thread
1388 * @p: the to-be-woken-up thread
1389 * @state: the mask of task states that can be woken
1390 * @sync: do a synchronous wakeup?
1391 *
1392 * Put it on the run-queue if it's not already there. The "current"
1393 * thread is always on the run-queue (except when the actual
1394 * re-schedule is in progress), and as such you're allowed to do
1395 * the simpler "current->state = TASK_RUNNING" to mark yourself
1396 * runnable without the overhead of this.
1397 *
1398 * returns failure only if the task is already active.
1399 */
36c8b586 1400static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1401{
1402 int cpu, this_cpu, success = 0;
1403 unsigned long flags;
1404 long old_state;
70b97a7f 1405 struct rq *rq;
1da177e4 1406#ifdef CONFIG_SMP
7897986b 1407 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1408 unsigned long load, this_load;
1da177e4
LT
1409 int new_cpu;
1410#endif
1411
1412 rq = task_rq_lock(p, &flags);
1413 old_state = p->state;
1414 if (!(old_state & state))
1415 goto out;
1416
dd41f596 1417 if (p->se.on_rq)
1da177e4
LT
1418 goto out_running;
1419
1420 cpu = task_cpu(p);
1421 this_cpu = smp_processor_id();
1422
1423#ifdef CONFIG_SMP
1424 if (unlikely(task_running(rq, p)))
1425 goto out_activate;
1426
7897986b
NP
1427 new_cpu = cpu;
1428
1da177e4
LT
1429 schedstat_inc(rq, ttwu_cnt);
1430 if (cpu == this_cpu) {
1431 schedstat_inc(rq, ttwu_local);
7897986b
NP
1432 goto out_set_cpu;
1433 }
1434
1435 for_each_domain(this_cpu, sd) {
1436 if (cpu_isset(cpu, sd->span)) {
1437 schedstat_inc(sd, ttwu_wake_remote);
1438 this_sd = sd;
1439 break;
1da177e4
LT
1440 }
1441 }
1da177e4 1442
7897986b 1443 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1444 goto out_set_cpu;
1445
1da177e4 1446 /*
7897986b 1447 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1448 */
7897986b
NP
1449 if (this_sd) {
1450 int idx = this_sd->wake_idx;
1451 unsigned int imbalance;
1da177e4 1452
a3f21bce
NP
1453 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1454
7897986b
NP
1455 load = source_load(cpu, idx);
1456 this_load = target_load(this_cpu, idx);
1da177e4 1457
7897986b
NP
1458 new_cpu = this_cpu; /* Wake to this CPU if we can */
1459
a3f21bce
NP
1460 if (this_sd->flags & SD_WAKE_AFFINE) {
1461 unsigned long tl = this_load;
33859f7f
MOS
1462 unsigned long tl_per_task;
1463
1464 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1465
1da177e4 1466 /*
a3f21bce
NP
1467 * If sync wakeup then subtract the (maximum possible)
1468 * effect of the currently running task from the load
1469 * of the current CPU:
1da177e4 1470 */
a3f21bce 1471 if (sync)
dd41f596 1472 tl -= current->se.load.weight;
a3f21bce
NP
1473
1474 if ((tl <= load &&
2dd73a4f 1475 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1476 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1477 /*
1478 * This domain has SD_WAKE_AFFINE and
1479 * p is cache cold in this domain, and
1480 * there is no bad imbalance.
1481 */
1482 schedstat_inc(this_sd, ttwu_move_affine);
1483 goto out_set_cpu;
1484 }
1485 }
1486
1487 /*
1488 * Start passive balancing when half the imbalance_pct
1489 * limit is reached.
1490 */
1491 if (this_sd->flags & SD_WAKE_BALANCE) {
1492 if (imbalance*this_load <= 100*load) {
1493 schedstat_inc(this_sd, ttwu_move_balance);
1494 goto out_set_cpu;
1495 }
1da177e4
LT
1496 }
1497 }
1498
1499 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1500out_set_cpu:
1501 new_cpu = wake_idle(new_cpu, p);
1502 if (new_cpu != cpu) {
1503 set_task_cpu(p, new_cpu);
1504 task_rq_unlock(rq, &flags);
1505 /* might preempt at this point */
1506 rq = task_rq_lock(p, &flags);
1507 old_state = p->state;
1508 if (!(old_state & state))
1509 goto out;
dd41f596 1510 if (p->se.on_rq)
1da177e4
LT
1511 goto out_running;
1512
1513 this_cpu = smp_processor_id();
1514 cpu = task_cpu(p);
1515 }
1516
1517out_activate:
1518#endif /* CONFIG_SMP */
dd41f596 1519 activate_task(rq, p, 1);
1da177e4
LT
1520 /*
1521 * Sync wakeups (i.e. those types of wakeups where the waker
1522 * has indicated that it will leave the CPU in short order)
1523 * don't trigger a preemption, if the woken up task will run on
1524 * this cpu. (in this case the 'I will reschedule' promise of
1525 * the waker guarantees that the freshly woken up task is going
1526 * to be considered on this CPU.)
1527 */
dd41f596
IM
1528 if (!sync || cpu != this_cpu)
1529 check_preempt_curr(rq, p);
1da177e4
LT
1530 success = 1;
1531
1532out_running:
1533 p->state = TASK_RUNNING;
1534out:
1535 task_rq_unlock(rq, &flags);
1536
1537 return success;
1538}
1539
36c8b586 1540int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1541{
1542 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1543 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1544}
1da177e4
LT
1545EXPORT_SYMBOL(wake_up_process);
1546
36c8b586 1547int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1548{
1549 return try_to_wake_up(p, state, 0);
1550}
1551
1da177e4
LT
1552/*
1553 * Perform scheduler related setup for a newly forked process p.
1554 * p is forked by current.
dd41f596
IM
1555 *
1556 * __sched_fork() is basic setup used by init_idle() too:
1557 */
1558static void __sched_fork(struct task_struct *p)
1559{
1560 p->se.wait_start_fair = 0;
dd41f596
IM
1561 p->se.exec_start = 0;
1562 p->se.sum_exec_runtime = 0;
1563 p->se.delta_exec = 0;
1564 p->se.delta_fair_run = 0;
1565 p->se.delta_fair_sleep = 0;
1566 p->se.wait_runtime = 0;
6cfb0d5d
IM
1567 p->se.sleep_start_fair = 0;
1568
1569#ifdef CONFIG_SCHEDSTATS
1570 p->se.wait_start = 0;
dd41f596
IM
1571 p->se.sum_wait_runtime = 0;
1572 p->se.sum_sleep_runtime = 0;
1573 p->se.sleep_start = 0;
dd41f596
IM
1574 p->se.block_start = 0;
1575 p->se.sleep_max = 0;
1576 p->se.block_max = 0;
1577 p->se.exec_max = 0;
1578 p->se.wait_max = 0;
1579 p->se.wait_runtime_overruns = 0;
1580 p->se.wait_runtime_underruns = 0;
6cfb0d5d 1581#endif
476d139c 1582
dd41f596
IM
1583 INIT_LIST_HEAD(&p->run_list);
1584 p->se.on_rq = 0;
476d139c 1585
e107be36
AK
1586#ifdef CONFIG_PREEMPT_NOTIFIERS
1587 INIT_HLIST_HEAD(&p->preempt_notifiers);
1588#endif
1589
1da177e4
LT
1590 /*
1591 * We mark the process as running here, but have not actually
1592 * inserted it onto the runqueue yet. This guarantees that
1593 * nobody will actually run it, and a signal or other external
1594 * event cannot wake it up and insert it on the runqueue either.
1595 */
1596 p->state = TASK_RUNNING;
dd41f596
IM
1597}
1598
1599/*
1600 * fork()/clone()-time setup:
1601 */
1602void sched_fork(struct task_struct *p, int clone_flags)
1603{
1604 int cpu = get_cpu();
1605
1606 __sched_fork(p);
1607
1608#ifdef CONFIG_SMP
1609 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1610#endif
1611 __set_task_cpu(p, cpu);
b29739f9
IM
1612
1613 /*
1614 * Make sure we do not leak PI boosting priority to the child:
1615 */
1616 p->prio = current->normal_prio;
1617
52f17b6c 1618#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1619 if (likely(sched_info_on()))
52f17b6c 1620 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1621#endif
d6077cb8 1622#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1623 p->oncpu = 0;
1624#endif
1da177e4 1625#ifdef CONFIG_PREEMPT
4866cde0 1626 /* Want to start with kernel preemption disabled. */
a1261f54 1627 task_thread_info(p)->preempt_count = 1;
1da177e4 1628#endif
476d139c 1629 put_cpu();
1da177e4
LT
1630}
1631
dd41f596
IM
1632/*
1633 * After fork, child runs first. (default) If set to 0 then
1634 * parent will (try to) run first.
1635 */
1636unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1637
1da177e4
LT
1638/*
1639 * wake_up_new_task - wake up a newly created task for the first time.
1640 *
1641 * This function will do some initial scheduler statistics housekeeping
1642 * that must be done for every newly created context, then puts the task
1643 * on the runqueue and wakes it.
1644 */
36c8b586 1645void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1646{
1647 unsigned long flags;
dd41f596
IM
1648 struct rq *rq;
1649 int this_cpu;
cad60d93 1650 u64 now;
1da177e4
LT
1651
1652 rq = task_rq_lock(p, &flags);
147cbb4b 1653 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1654 this_cpu = smp_processor_id(); /* parent's CPU */
cad60d93 1655 now = rq_clock(rq);
1da177e4
LT
1656
1657 p->prio = effective_prio(p);
1658
cad60d93
IM
1659 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1660 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1661 !current->se.on_rq) {
1662
dd41f596 1663 activate_task(rq, p, 0);
1da177e4 1664 } else {
1da177e4 1665 /*
dd41f596
IM
1666 * Let the scheduling class do new task startup
1667 * management (if any):
1da177e4 1668 */
cad60d93
IM
1669 p->sched_class->task_new(rq, p, now);
1670 inc_nr_running(p, rq, now);
1da177e4 1671 }
dd41f596
IM
1672 check_preempt_curr(rq, p);
1673 task_rq_unlock(rq, &flags);
1da177e4
LT
1674}
1675
e107be36
AK
1676#ifdef CONFIG_PREEMPT_NOTIFIERS
1677
1678/**
421cee29
RD
1679 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1680 * @notifier: notifier struct to register
e107be36
AK
1681 */
1682void preempt_notifier_register(struct preempt_notifier *notifier)
1683{
1684 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1685}
1686EXPORT_SYMBOL_GPL(preempt_notifier_register);
1687
1688/**
1689 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1690 * @notifier: notifier struct to unregister
e107be36
AK
1691 *
1692 * This is safe to call from within a preemption notifier.
1693 */
1694void preempt_notifier_unregister(struct preempt_notifier *notifier)
1695{
1696 hlist_del(&notifier->link);
1697}
1698EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1699
1700static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1701{
1702 struct preempt_notifier *notifier;
1703 struct hlist_node *node;
1704
1705 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1706 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1707}
1708
1709static void
1710fire_sched_out_preempt_notifiers(struct task_struct *curr,
1711 struct task_struct *next)
1712{
1713 struct preempt_notifier *notifier;
1714 struct hlist_node *node;
1715
1716 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1717 notifier->ops->sched_out(notifier, next);
1718}
1719
1720#else
1721
1722static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1723{
1724}
1725
1726static void
1727fire_sched_out_preempt_notifiers(struct task_struct *curr,
1728 struct task_struct *next)
1729{
1730}
1731
1732#endif
1733
4866cde0
NP
1734/**
1735 * prepare_task_switch - prepare to switch tasks
1736 * @rq: the runqueue preparing to switch
421cee29 1737 * @prev: the current task that is being switched out
4866cde0
NP
1738 * @next: the task we are going to switch to.
1739 *
1740 * This is called with the rq lock held and interrupts off. It must
1741 * be paired with a subsequent finish_task_switch after the context
1742 * switch.
1743 *
1744 * prepare_task_switch sets up locking and calls architecture specific
1745 * hooks.
1746 */
e107be36
AK
1747static inline void
1748prepare_task_switch(struct rq *rq, struct task_struct *prev,
1749 struct task_struct *next)
4866cde0 1750{
e107be36 1751 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1752 prepare_lock_switch(rq, next);
1753 prepare_arch_switch(next);
1754}
1755
1da177e4
LT
1756/**
1757 * finish_task_switch - clean up after a task-switch
344babaa 1758 * @rq: runqueue associated with task-switch
1da177e4
LT
1759 * @prev: the thread we just switched away from.
1760 *
4866cde0
NP
1761 * finish_task_switch must be called after the context switch, paired
1762 * with a prepare_task_switch call before the context switch.
1763 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1764 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1765 *
1766 * Note that we may have delayed dropping an mm in context_switch(). If
1767 * so, we finish that here outside of the runqueue lock. (Doing it
1768 * with the lock held can cause deadlocks; see schedule() for
1769 * details.)
1770 */
70b97a7f 1771static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1772 __releases(rq->lock)
1773{
1da177e4 1774 struct mm_struct *mm = rq->prev_mm;
55a101f8 1775 long prev_state;
1da177e4
LT
1776
1777 rq->prev_mm = NULL;
1778
1779 /*
1780 * A task struct has one reference for the use as "current".
c394cc9f 1781 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1782 * schedule one last time. The schedule call will never return, and
1783 * the scheduled task must drop that reference.
c394cc9f 1784 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1785 * still held, otherwise prev could be scheduled on another cpu, die
1786 * there before we look at prev->state, and then the reference would
1787 * be dropped twice.
1788 * Manfred Spraul <manfred@colorfullife.com>
1789 */
55a101f8 1790 prev_state = prev->state;
4866cde0
NP
1791 finish_arch_switch(prev);
1792 finish_lock_switch(rq, prev);
e107be36 1793 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1794 if (mm)
1795 mmdrop(mm);
c394cc9f 1796 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1797 /*
1798 * Remove function-return probe instances associated with this
1799 * task and put them back on the free list.
9761eea8 1800 */
c6fd91f0 1801 kprobe_flush_task(prev);
1da177e4 1802 put_task_struct(prev);
c6fd91f0 1803 }
1da177e4
LT
1804}
1805
1806/**
1807 * schedule_tail - first thing a freshly forked thread must call.
1808 * @prev: the thread we just switched away from.
1809 */
36c8b586 1810asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1811 __releases(rq->lock)
1812{
70b97a7f
IM
1813 struct rq *rq = this_rq();
1814
4866cde0
NP
1815 finish_task_switch(rq, prev);
1816#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1817 /* In this case, finish_task_switch does not reenable preemption */
1818 preempt_enable();
1819#endif
1da177e4
LT
1820 if (current->set_child_tid)
1821 put_user(current->pid, current->set_child_tid);
1822}
1823
1824/*
1825 * context_switch - switch to the new MM and the new
1826 * thread's register state.
1827 */
dd41f596 1828static inline void
70b97a7f 1829context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1830 struct task_struct *next)
1da177e4 1831{
dd41f596 1832 struct mm_struct *mm, *oldmm;
1da177e4 1833
e107be36 1834 prepare_task_switch(rq, prev, next);
dd41f596
IM
1835 mm = next->mm;
1836 oldmm = prev->active_mm;
9226d125
ZA
1837 /*
1838 * For paravirt, this is coupled with an exit in switch_to to
1839 * combine the page table reload and the switch backend into
1840 * one hypercall.
1841 */
1842 arch_enter_lazy_cpu_mode();
1843
dd41f596 1844 if (unlikely(!mm)) {
1da177e4
LT
1845 next->active_mm = oldmm;
1846 atomic_inc(&oldmm->mm_count);
1847 enter_lazy_tlb(oldmm, next);
1848 } else
1849 switch_mm(oldmm, mm, next);
1850
dd41f596 1851 if (unlikely(!prev->mm)) {
1da177e4 1852 prev->active_mm = NULL;
1da177e4
LT
1853 rq->prev_mm = oldmm;
1854 }
3a5f5e48
IM
1855 /*
1856 * Since the runqueue lock will be released by the next
1857 * task (which is an invalid locking op but in the case
1858 * of the scheduler it's an obvious special-case), so we
1859 * do an early lockdep release here:
1860 */
1861#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1862 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1863#endif
1da177e4
LT
1864
1865 /* Here we just switch the register state and the stack. */
1866 switch_to(prev, next, prev);
1867
dd41f596
IM
1868 barrier();
1869 /*
1870 * this_rq must be evaluated again because prev may have moved
1871 * CPUs since it called schedule(), thus the 'rq' on its stack
1872 * frame will be invalid.
1873 */
1874 finish_task_switch(this_rq(), prev);
1da177e4
LT
1875}
1876
1877/*
1878 * nr_running, nr_uninterruptible and nr_context_switches:
1879 *
1880 * externally visible scheduler statistics: current number of runnable
1881 * threads, current number of uninterruptible-sleeping threads, total
1882 * number of context switches performed since bootup.
1883 */
1884unsigned long nr_running(void)
1885{
1886 unsigned long i, sum = 0;
1887
1888 for_each_online_cpu(i)
1889 sum += cpu_rq(i)->nr_running;
1890
1891 return sum;
1892}
1893
1894unsigned long nr_uninterruptible(void)
1895{
1896 unsigned long i, sum = 0;
1897
0a945022 1898 for_each_possible_cpu(i)
1da177e4
LT
1899 sum += cpu_rq(i)->nr_uninterruptible;
1900
1901 /*
1902 * Since we read the counters lockless, it might be slightly
1903 * inaccurate. Do not allow it to go below zero though:
1904 */
1905 if (unlikely((long)sum < 0))
1906 sum = 0;
1907
1908 return sum;
1909}
1910
1911unsigned long long nr_context_switches(void)
1912{
cc94abfc
SR
1913 int i;
1914 unsigned long long sum = 0;
1da177e4 1915
0a945022 1916 for_each_possible_cpu(i)
1da177e4
LT
1917 sum += cpu_rq(i)->nr_switches;
1918
1919 return sum;
1920}
1921
1922unsigned long nr_iowait(void)
1923{
1924 unsigned long i, sum = 0;
1925
0a945022 1926 for_each_possible_cpu(i)
1da177e4
LT
1927 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1928
1929 return sum;
1930}
1931
db1b1fef
JS
1932unsigned long nr_active(void)
1933{
1934 unsigned long i, running = 0, uninterruptible = 0;
1935
1936 for_each_online_cpu(i) {
1937 running += cpu_rq(i)->nr_running;
1938 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1939 }
1940
1941 if (unlikely((long)uninterruptible < 0))
1942 uninterruptible = 0;
1943
1944 return running + uninterruptible;
1945}
1946
48f24c4d 1947/*
dd41f596
IM
1948 * Update rq->cpu_load[] statistics. This function is usually called every
1949 * scheduler tick (TICK_NSEC).
48f24c4d 1950 */
dd41f596 1951static void update_cpu_load(struct rq *this_rq)
48f24c4d 1952{
dd41f596
IM
1953 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1954 unsigned long total_load = this_rq->ls.load.weight;
1955 unsigned long this_load = total_load;
1956 struct load_stat *ls = &this_rq->ls;
1957 u64 now = __rq_clock(this_rq);
1958 int i, scale;
1959
1960 this_rq->nr_load_updates++;
1961 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1962 goto do_avg;
1963
1964 /* Update delta_fair/delta_exec fields first */
1965 update_curr_load(this_rq, now);
1966
1967 fair_delta64 = ls->delta_fair + 1;
1968 ls->delta_fair = 0;
1969
1970 exec_delta64 = ls->delta_exec + 1;
1971 ls->delta_exec = 0;
1972
1973 sample_interval64 = now - ls->load_update_last;
1974 ls->load_update_last = now;
1975
1976 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1977 sample_interval64 = TICK_NSEC;
1978
1979 if (exec_delta64 > sample_interval64)
1980 exec_delta64 = sample_interval64;
1981
1982 idle_delta64 = sample_interval64 - exec_delta64;
1983
1984 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1985 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1986
1987 this_load = (unsigned long)tmp64;
1988
1989do_avg:
1990
1991 /* Update our load: */
1992 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1993 unsigned long old_load, new_load;
1994
1995 /* scale is effectively 1 << i now, and >> i divides by scale */
1996
1997 old_load = this_rq->cpu_load[i];
1998 new_load = this_load;
1999
2000 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2001 }
48f24c4d
IM
2002}
2003
dd41f596
IM
2004#ifdef CONFIG_SMP
2005
1da177e4
LT
2006/*
2007 * double_rq_lock - safely lock two runqueues
2008 *
2009 * Note this does not disable interrupts like task_rq_lock,
2010 * you need to do so manually before calling.
2011 */
70b97a7f 2012static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2013 __acquires(rq1->lock)
2014 __acquires(rq2->lock)
2015{
054b9108 2016 BUG_ON(!irqs_disabled());
1da177e4
LT
2017 if (rq1 == rq2) {
2018 spin_lock(&rq1->lock);
2019 __acquire(rq2->lock); /* Fake it out ;) */
2020 } else {
c96d145e 2021 if (rq1 < rq2) {
1da177e4
LT
2022 spin_lock(&rq1->lock);
2023 spin_lock(&rq2->lock);
2024 } else {
2025 spin_lock(&rq2->lock);
2026 spin_lock(&rq1->lock);
2027 }
2028 }
2029}
2030
2031/*
2032 * double_rq_unlock - safely unlock two runqueues
2033 *
2034 * Note this does not restore interrupts like task_rq_unlock,
2035 * you need to do so manually after calling.
2036 */
70b97a7f 2037static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2038 __releases(rq1->lock)
2039 __releases(rq2->lock)
2040{
2041 spin_unlock(&rq1->lock);
2042 if (rq1 != rq2)
2043 spin_unlock(&rq2->lock);
2044 else
2045 __release(rq2->lock);
2046}
2047
2048/*
2049 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2050 */
70b97a7f 2051static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2052 __releases(this_rq->lock)
2053 __acquires(busiest->lock)
2054 __acquires(this_rq->lock)
2055{
054b9108
KK
2056 if (unlikely(!irqs_disabled())) {
2057 /* printk() doesn't work good under rq->lock */
2058 spin_unlock(&this_rq->lock);
2059 BUG_ON(1);
2060 }
1da177e4 2061 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2062 if (busiest < this_rq) {
1da177e4
LT
2063 spin_unlock(&this_rq->lock);
2064 spin_lock(&busiest->lock);
2065 spin_lock(&this_rq->lock);
2066 } else
2067 spin_lock(&busiest->lock);
2068 }
2069}
2070
1da177e4
LT
2071/*
2072 * If dest_cpu is allowed for this process, migrate the task to it.
2073 * This is accomplished by forcing the cpu_allowed mask to only
2074 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2075 * the cpu_allowed mask is restored.
2076 */
36c8b586 2077static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2078{
70b97a7f 2079 struct migration_req req;
1da177e4 2080 unsigned long flags;
70b97a7f 2081 struct rq *rq;
1da177e4
LT
2082
2083 rq = task_rq_lock(p, &flags);
2084 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2085 || unlikely(cpu_is_offline(dest_cpu)))
2086 goto out;
2087
2088 /* force the process onto the specified CPU */
2089 if (migrate_task(p, dest_cpu, &req)) {
2090 /* Need to wait for migration thread (might exit: take ref). */
2091 struct task_struct *mt = rq->migration_thread;
36c8b586 2092
1da177e4
LT
2093 get_task_struct(mt);
2094 task_rq_unlock(rq, &flags);
2095 wake_up_process(mt);
2096 put_task_struct(mt);
2097 wait_for_completion(&req.done);
36c8b586 2098
1da177e4
LT
2099 return;
2100 }
2101out:
2102 task_rq_unlock(rq, &flags);
2103}
2104
2105/*
476d139c
NP
2106 * sched_exec - execve() is a valuable balancing opportunity, because at
2107 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2108 */
2109void sched_exec(void)
2110{
1da177e4 2111 int new_cpu, this_cpu = get_cpu();
476d139c 2112 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2113 put_cpu();
476d139c
NP
2114 if (new_cpu != this_cpu)
2115 sched_migrate_task(current, new_cpu);
1da177e4
LT
2116}
2117
2118/*
2119 * pull_task - move a task from a remote runqueue to the local runqueue.
2120 * Both runqueues must be locked.
2121 */
dd41f596
IM
2122static void pull_task(struct rq *src_rq, struct task_struct *p,
2123 struct rq *this_rq, int this_cpu)
1da177e4 2124{
dd41f596 2125 deactivate_task(src_rq, p, 0);
1da177e4 2126 set_task_cpu(p, this_cpu);
dd41f596 2127 activate_task(this_rq, p, 0);
1da177e4
LT
2128 /*
2129 * Note that idle threads have a prio of MAX_PRIO, for this test
2130 * to be always true for them.
2131 */
dd41f596 2132 check_preempt_curr(this_rq, p);
1da177e4
LT
2133}
2134
2135/*
2136 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2137 */
858119e1 2138static
70b97a7f 2139int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2140 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2141 int *all_pinned)
1da177e4
LT
2142{
2143 /*
2144 * We do not migrate tasks that are:
2145 * 1) running (obviously), or
2146 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2147 * 3) are cache-hot on their current CPU.
2148 */
1da177e4
LT
2149 if (!cpu_isset(this_cpu, p->cpus_allowed))
2150 return 0;
81026794
NP
2151 *all_pinned = 0;
2152
2153 if (task_running(rq, p))
2154 return 0;
1da177e4
LT
2155
2156 /*
dd41f596 2157 * Aggressive migration if too many balance attempts have failed:
1da177e4 2158 */
dd41f596 2159 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
2160 return 1;
2161
1da177e4
LT
2162 return 1;
2163}
2164
dd41f596 2165static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2166 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2167 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596
IM
2168 int *all_pinned, unsigned long *load_moved,
2169 int this_best_prio, int best_prio, int best_prio_seen,
2170 struct rq_iterator *iterator)
1da177e4 2171{
dd41f596
IM
2172 int pulled = 0, pinned = 0, skip_for_load;
2173 struct task_struct *p;
2174 long rem_load_move = max_load_move;
1da177e4 2175
2dd73a4f 2176 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2177 goto out;
2178
81026794
NP
2179 pinned = 1;
2180
1da177e4 2181 /*
dd41f596 2182 * Start the load-balancing iterator:
1da177e4 2183 */
dd41f596
IM
2184 p = iterator->start(iterator->arg);
2185next:
2186 if (!p)
1da177e4 2187 goto out;
50ddd969
PW
2188 /*
2189 * To help distribute high priority tasks accross CPUs we don't
2190 * skip a task if it will be the highest priority task (i.e. smallest
2191 * prio value) on its new queue regardless of its load weight
2192 */
dd41f596
IM
2193 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2194 SCHED_LOAD_SCALE_FUZZ;
2195 if (skip_for_load && p->prio < this_best_prio)
2196 skip_for_load = !best_prio_seen && p->prio == best_prio;
615052dc 2197 if (skip_for_load ||
dd41f596 2198 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
48f24c4d 2199
dd41f596
IM
2200 best_prio_seen |= p->prio == best_prio;
2201 p = iterator->next(iterator->arg);
2202 goto next;
1da177e4
LT
2203 }
2204
dd41f596 2205 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2206 pulled++;
dd41f596 2207 rem_load_move -= p->se.load.weight;
1da177e4 2208
2dd73a4f
PW
2209 /*
2210 * We only want to steal up to the prescribed number of tasks
2211 * and the prescribed amount of weighted load.
2212 */
2213 if (pulled < max_nr_move && rem_load_move > 0) {
dd41f596
IM
2214 if (p->prio < this_best_prio)
2215 this_best_prio = p->prio;
2216 p = iterator->next(iterator->arg);
2217 goto next;
1da177e4
LT
2218 }
2219out:
2220 /*
2221 * Right now, this is the only place pull_task() is called,
2222 * so we can safely collect pull_task() stats here rather than
2223 * inside pull_task().
2224 */
2225 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2226
2227 if (all_pinned)
2228 *all_pinned = pinned;
dd41f596 2229 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2230 return pulled;
2231}
2232
dd41f596 2233/*
43010659
PW
2234 * move_tasks tries to move up to max_load_move weighted load from busiest to
2235 * this_rq, as part of a balancing operation within domain "sd".
2236 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2237 *
2238 * Called with both runqueues locked.
2239 */
2240static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2241 unsigned long max_load_move,
dd41f596
IM
2242 struct sched_domain *sd, enum cpu_idle_type idle,
2243 int *all_pinned)
2244{
2245 struct sched_class *class = sched_class_highest;
43010659 2246 unsigned long total_load_moved = 0;
dd41f596
IM
2247
2248 do {
43010659
PW
2249 total_load_moved +=
2250 class->load_balance(this_rq, this_cpu, busiest,
2251 ULONG_MAX, max_load_move - total_load_moved,
2252 sd, idle, all_pinned);
dd41f596 2253 class = class->next;
43010659 2254 } while (class && max_load_move > total_load_moved);
dd41f596 2255
43010659
PW
2256 return total_load_moved > 0;
2257}
2258
2259/*
2260 * move_one_task tries to move exactly one task from busiest to this_rq, as
2261 * part of active balancing operations within "domain".
2262 * Returns 1 if successful and 0 otherwise.
2263 *
2264 * Called with both runqueues locked.
2265 */
2266static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2267 struct sched_domain *sd, enum cpu_idle_type idle)
2268{
2269 struct sched_class *class;
2270
2271 for (class = sched_class_highest; class; class = class->next)
2272 if (class->load_balance(this_rq, this_cpu, busiest,
2273 1, ULONG_MAX, sd, idle, NULL))
2274 return 1;
2275
2276 return 0;
dd41f596
IM
2277}
2278
1da177e4
LT
2279/*
2280 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2281 * domain. It calculates and returns the amount of weighted load which
2282 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2283 */
2284static struct sched_group *
2285find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2286 unsigned long *imbalance, enum cpu_idle_type idle,
2287 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2288{
2289 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2290 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2291 unsigned long max_pull;
2dd73a4f
PW
2292 unsigned long busiest_load_per_task, busiest_nr_running;
2293 unsigned long this_load_per_task, this_nr_running;
7897986b 2294 int load_idx;
5c45bf27
SS
2295#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2296 int power_savings_balance = 1;
2297 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2298 unsigned long min_nr_running = ULONG_MAX;
2299 struct sched_group *group_min = NULL, *group_leader = NULL;
2300#endif
1da177e4
LT
2301
2302 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2303 busiest_load_per_task = busiest_nr_running = 0;
2304 this_load_per_task = this_nr_running = 0;
d15bcfdb 2305 if (idle == CPU_NOT_IDLE)
7897986b 2306 load_idx = sd->busy_idx;
d15bcfdb 2307 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2308 load_idx = sd->newidle_idx;
2309 else
2310 load_idx = sd->idle_idx;
1da177e4
LT
2311
2312 do {
5c45bf27 2313 unsigned long load, group_capacity;
1da177e4
LT
2314 int local_group;
2315 int i;
783609c6 2316 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2317 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2318
2319 local_group = cpu_isset(this_cpu, group->cpumask);
2320
783609c6
SS
2321 if (local_group)
2322 balance_cpu = first_cpu(group->cpumask);
2323
1da177e4 2324 /* Tally up the load of all CPUs in the group */
2dd73a4f 2325 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2326
2327 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2328 struct rq *rq;
2329
2330 if (!cpu_isset(i, *cpus))
2331 continue;
2332
2333 rq = cpu_rq(i);
2dd73a4f 2334
9439aab8 2335 if (*sd_idle && rq->nr_running)
5969fe06
NP
2336 *sd_idle = 0;
2337
1da177e4 2338 /* Bias balancing toward cpus of our domain */
783609c6
SS
2339 if (local_group) {
2340 if (idle_cpu(i) && !first_idle_cpu) {
2341 first_idle_cpu = 1;
2342 balance_cpu = i;
2343 }
2344
a2000572 2345 load = target_load(i, load_idx);
783609c6 2346 } else
a2000572 2347 load = source_load(i, load_idx);
1da177e4
LT
2348
2349 avg_load += load;
2dd73a4f 2350 sum_nr_running += rq->nr_running;
dd41f596 2351 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2352 }
2353
783609c6
SS
2354 /*
2355 * First idle cpu or the first cpu(busiest) in this sched group
2356 * is eligible for doing load balancing at this and above
9439aab8
SS
2357 * domains. In the newly idle case, we will allow all the cpu's
2358 * to do the newly idle load balance.
783609c6 2359 */
9439aab8
SS
2360 if (idle != CPU_NEWLY_IDLE && local_group &&
2361 balance_cpu != this_cpu && balance) {
783609c6
SS
2362 *balance = 0;
2363 goto ret;
2364 }
2365
1da177e4 2366 total_load += avg_load;
5517d86b 2367 total_pwr += group->__cpu_power;
1da177e4
LT
2368
2369 /* Adjust by relative CPU power of the group */
5517d86b
ED
2370 avg_load = sg_div_cpu_power(group,
2371 avg_load * SCHED_LOAD_SCALE);
1da177e4 2372
5517d86b 2373 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2374
1da177e4
LT
2375 if (local_group) {
2376 this_load = avg_load;
2377 this = group;
2dd73a4f
PW
2378 this_nr_running = sum_nr_running;
2379 this_load_per_task = sum_weighted_load;
2380 } else if (avg_load > max_load &&
5c45bf27 2381 sum_nr_running > group_capacity) {
1da177e4
LT
2382 max_load = avg_load;
2383 busiest = group;
2dd73a4f
PW
2384 busiest_nr_running = sum_nr_running;
2385 busiest_load_per_task = sum_weighted_load;
1da177e4 2386 }
5c45bf27
SS
2387
2388#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2389 /*
2390 * Busy processors will not participate in power savings
2391 * balance.
2392 */
dd41f596
IM
2393 if (idle == CPU_NOT_IDLE ||
2394 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2395 goto group_next;
5c45bf27
SS
2396
2397 /*
2398 * If the local group is idle or completely loaded
2399 * no need to do power savings balance at this domain
2400 */
2401 if (local_group && (this_nr_running >= group_capacity ||
2402 !this_nr_running))
2403 power_savings_balance = 0;
2404
dd41f596 2405 /*
5c45bf27
SS
2406 * If a group is already running at full capacity or idle,
2407 * don't include that group in power savings calculations
dd41f596
IM
2408 */
2409 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2410 || !sum_nr_running)
dd41f596 2411 goto group_next;
5c45bf27 2412
dd41f596 2413 /*
5c45bf27 2414 * Calculate the group which has the least non-idle load.
dd41f596
IM
2415 * This is the group from where we need to pick up the load
2416 * for saving power
2417 */
2418 if ((sum_nr_running < min_nr_running) ||
2419 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2420 first_cpu(group->cpumask) <
2421 first_cpu(group_min->cpumask))) {
dd41f596
IM
2422 group_min = group;
2423 min_nr_running = sum_nr_running;
5c45bf27
SS
2424 min_load_per_task = sum_weighted_load /
2425 sum_nr_running;
dd41f596 2426 }
5c45bf27 2427
dd41f596 2428 /*
5c45bf27 2429 * Calculate the group which is almost near its
dd41f596
IM
2430 * capacity but still has some space to pick up some load
2431 * from other group and save more power
2432 */
2433 if (sum_nr_running <= group_capacity - 1) {
2434 if (sum_nr_running > leader_nr_running ||
2435 (sum_nr_running == leader_nr_running &&
2436 first_cpu(group->cpumask) >
2437 first_cpu(group_leader->cpumask))) {
2438 group_leader = group;
2439 leader_nr_running = sum_nr_running;
2440 }
48f24c4d 2441 }
5c45bf27
SS
2442group_next:
2443#endif
1da177e4
LT
2444 group = group->next;
2445 } while (group != sd->groups);
2446
2dd73a4f 2447 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2448 goto out_balanced;
2449
2450 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2451
2452 if (this_load >= avg_load ||
2453 100*max_load <= sd->imbalance_pct*this_load)
2454 goto out_balanced;
2455
2dd73a4f 2456 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2457 /*
2458 * We're trying to get all the cpus to the average_load, so we don't
2459 * want to push ourselves above the average load, nor do we wish to
2460 * reduce the max loaded cpu below the average load, as either of these
2461 * actions would just result in more rebalancing later, and ping-pong
2462 * tasks around. Thus we look for the minimum possible imbalance.
2463 * Negative imbalances (*we* are more loaded than anyone else) will
2464 * be counted as no imbalance for these purposes -- we can't fix that
2465 * by pulling tasks to us. Be careful of negative numbers as they'll
2466 * appear as very large values with unsigned longs.
2467 */
2dd73a4f
PW
2468 if (max_load <= busiest_load_per_task)
2469 goto out_balanced;
2470
2471 /*
2472 * In the presence of smp nice balancing, certain scenarios can have
2473 * max load less than avg load(as we skip the groups at or below
2474 * its cpu_power, while calculating max_load..)
2475 */
2476 if (max_load < avg_load) {
2477 *imbalance = 0;
2478 goto small_imbalance;
2479 }
0c117f1b
SS
2480
2481 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2482 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2483
1da177e4 2484 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2485 *imbalance = min(max_pull * busiest->__cpu_power,
2486 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2487 / SCHED_LOAD_SCALE;
2488
2dd73a4f
PW
2489 /*
2490 * if *imbalance is less than the average load per runnable task
2491 * there is no gaurantee that any tasks will be moved so we'll have
2492 * a think about bumping its value to force at least one task to be
2493 * moved
2494 */
dd41f596 2495 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
48f24c4d 2496 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2497 unsigned int imbn;
2498
2499small_imbalance:
2500 pwr_move = pwr_now = 0;
2501 imbn = 2;
2502 if (this_nr_running) {
2503 this_load_per_task /= this_nr_running;
2504 if (busiest_load_per_task > this_load_per_task)
2505 imbn = 1;
2506 } else
2507 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2508
dd41f596
IM
2509 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2510 busiest_load_per_task * imbn) {
2dd73a4f 2511 *imbalance = busiest_load_per_task;
1da177e4
LT
2512 return busiest;
2513 }
2514
2515 /*
2516 * OK, we don't have enough imbalance to justify moving tasks,
2517 * however we may be able to increase total CPU power used by
2518 * moving them.
2519 */
2520
5517d86b
ED
2521 pwr_now += busiest->__cpu_power *
2522 min(busiest_load_per_task, max_load);
2523 pwr_now += this->__cpu_power *
2524 min(this_load_per_task, this_load);
1da177e4
LT
2525 pwr_now /= SCHED_LOAD_SCALE;
2526
2527 /* Amount of load we'd subtract */
5517d86b
ED
2528 tmp = sg_div_cpu_power(busiest,
2529 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2530 if (max_load > tmp)
5517d86b 2531 pwr_move += busiest->__cpu_power *
2dd73a4f 2532 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2533
2534 /* Amount of load we'd add */
5517d86b 2535 if (max_load * busiest->__cpu_power <
33859f7f 2536 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2537 tmp = sg_div_cpu_power(this,
2538 max_load * busiest->__cpu_power);
1da177e4 2539 else
5517d86b
ED
2540 tmp = sg_div_cpu_power(this,
2541 busiest_load_per_task * SCHED_LOAD_SCALE);
2542 pwr_move += this->__cpu_power *
2543 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2544 pwr_move /= SCHED_LOAD_SCALE;
2545
2546 /* Move if we gain throughput */
2547 if (pwr_move <= pwr_now)
2548 goto out_balanced;
2549
2dd73a4f 2550 *imbalance = busiest_load_per_task;
1da177e4
LT
2551 }
2552
1da177e4
LT
2553 return busiest;
2554
2555out_balanced:
5c45bf27 2556#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2557 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2558 goto ret;
1da177e4 2559
5c45bf27
SS
2560 if (this == group_leader && group_leader != group_min) {
2561 *imbalance = min_load_per_task;
2562 return group_min;
2563 }
5c45bf27 2564#endif
783609c6 2565ret:
1da177e4
LT
2566 *imbalance = 0;
2567 return NULL;
2568}
2569
2570/*
2571 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2572 */
70b97a7f 2573static struct rq *
d15bcfdb 2574find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2575 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2576{
70b97a7f 2577 struct rq *busiest = NULL, *rq;
2dd73a4f 2578 unsigned long max_load = 0;
1da177e4
LT
2579 int i;
2580
2581 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2582 unsigned long wl;
0a2966b4
CL
2583
2584 if (!cpu_isset(i, *cpus))
2585 continue;
2586
48f24c4d 2587 rq = cpu_rq(i);
dd41f596 2588 wl = weighted_cpuload(i);
2dd73a4f 2589
dd41f596 2590 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2591 continue;
1da177e4 2592
dd41f596
IM
2593 if (wl > max_load) {
2594 max_load = wl;
48f24c4d 2595 busiest = rq;
1da177e4
LT
2596 }
2597 }
2598
2599 return busiest;
2600}
2601
77391d71
NP
2602/*
2603 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2604 * so long as it is large enough.
2605 */
2606#define MAX_PINNED_INTERVAL 512
2607
1da177e4
LT
2608/*
2609 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2610 * tasks if there is an imbalance.
1da177e4 2611 */
70b97a7f 2612static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2613 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2614 int *balance)
1da177e4 2615{
43010659 2616 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2617 struct sched_group *group;
1da177e4 2618 unsigned long imbalance;
70b97a7f 2619 struct rq *busiest;
0a2966b4 2620 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2621 unsigned long flags;
5969fe06 2622
89c4710e
SS
2623 /*
2624 * When power savings policy is enabled for the parent domain, idle
2625 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2626 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2627 * portraying it as CPU_NOT_IDLE.
89c4710e 2628 */
d15bcfdb 2629 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2630 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2631 sd_idle = 1;
1da177e4 2632
1da177e4
LT
2633 schedstat_inc(sd, lb_cnt[idle]);
2634
0a2966b4
CL
2635redo:
2636 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2637 &cpus, balance);
2638
06066714 2639 if (*balance == 0)
783609c6 2640 goto out_balanced;
783609c6 2641
1da177e4
LT
2642 if (!group) {
2643 schedstat_inc(sd, lb_nobusyg[idle]);
2644 goto out_balanced;
2645 }
2646
0a2966b4 2647 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2648 if (!busiest) {
2649 schedstat_inc(sd, lb_nobusyq[idle]);
2650 goto out_balanced;
2651 }
2652
db935dbd 2653 BUG_ON(busiest == this_rq);
1da177e4
LT
2654
2655 schedstat_add(sd, lb_imbalance[idle], imbalance);
2656
43010659 2657 ld_moved = 0;
1da177e4
LT
2658 if (busiest->nr_running > 1) {
2659 /*
2660 * Attempt to move tasks. If find_busiest_group has found
2661 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2662 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2663 * correctly treated as an imbalance.
2664 */
fe2eea3f 2665 local_irq_save(flags);
e17224bf 2666 double_rq_lock(this_rq, busiest);
43010659 2667 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2668 imbalance, sd, idle, &all_pinned);
e17224bf 2669 double_rq_unlock(this_rq, busiest);
fe2eea3f 2670 local_irq_restore(flags);
81026794 2671
46cb4b7c
SS
2672 /*
2673 * some other cpu did the load balance for us.
2674 */
43010659 2675 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2676 resched_cpu(this_cpu);
2677
81026794 2678 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2679 if (unlikely(all_pinned)) {
2680 cpu_clear(cpu_of(busiest), cpus);
2681 if (!cpus_empty(cpus))
2682 goto redo;
81026794 2683 goto out_balanced;
0a2966b4 2684 }
1da177e4 2685 }
81026794 2686
43010659 2687 if (!ld_moved) {
1da177e4
LT
2688 schedstat_inc(sd, lb_failed[idle]);
2689 sd->nr_balance_failed++;
2690
2691 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2692
fe2eea3f 2693 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2694
2695 /* don't kick the migration_thread, if the curr
2696 * task on busiest cpu can't be moved to this_cpu
2697 */
2698 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2699 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2700 all_pinned = 1;
2701 goto out_one_pinned;
2702 }
2703
1da177e4
LT
2704 if (!busiest->active_balance) {
2705 busiest->active_balance = 1;
2706 busiest->push_cpu = this_cpu;
81026794 2707 active_balance = 1;
1da177e4 2708 }
fe2eea3f 2709 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2710 if (active_balance)
1da177e4
LT
2711 wake_up_process(busiest->migration_thread);
2712
2713 /*
2714 * We've kicked active balancing, reset the failure
2715 * counter.
2716 */
39507451 2717 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2718 }
81026794 2719 } else
1da177e4
LT
2720 sd->nr_balance_failed = 0;
2721
81026794 2722 if (likely(!active_balance)) {
1da177e4
LT
2723 /* We were unbalanced, so reset the balancing interval */
2724 sd->balance_interval = sd->min_interval;
81026794
NP
2725 } else {
2726 /*
2727 * If we've begun active balancing, start to back off. This
2728 * case may not be covered by the all_pinned logic if there
2729 * is only 1 task on the busy runqueue (because we don't call
2730 * move_tasks).
2731 */
2732 if (sd->balance_interval < sd->max_interval)
2733 sd->balance_interval *= 2;
1da177e4
LT
2734 }
2735
43010659 2736 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2737 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2738 return -1;
43010659 2739 return ld_moved;
1da177e4
LT
2740
2741out_balanced:
1da177e4
LT
2742 schedstat_inc(sd, lb_balanced[idle]);
2743
16cfb1c0 2744 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2745
2746out_one_pinned:
1da177e4 2747 /* tune up the balancing interval */
77391d71
NP
2748 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2749 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2750 sd->balance_interval *= 2;
2751
48f24c4d 2752 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2753 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2754 return -1;
1da177e4
LT
2755 return 0;
2756}
2757
2758/*
2759 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2760 * tasks if there is an imbalance.
2761 *
d15bcfdb 2762 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2763 * this_rq is locked.
2764 */
48f24c4d 2765static int
70b97a7f 2766load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2767{
2768 struct sched_group *group;
70b97a7f 2769 struct rq *busiest = NULL;
1da177e4 2770 unsigned long imbalance;
43010659 2771 int ld_moved = 0;
5969fe06 2772 int sd_idle = 0;
969bb4e4 2773 int all_pinned = 0;
0a2966b4 2774 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2775
89c4710e
SS
2776 /*
2777 * When power savings policy is enabled for the parent domain, idle
2778 * sibling can pick up load irrespective of busy siblings. In this case,
2779 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2780 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2781 */
2782 if (sd->flags & SD_SHARE_CPUPOWER &&
2783 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2784 sd_idle = 1;
1da177e4 2785
d15bcfdb 2786 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2787redo:
d15bcfdb 2788 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2789 &sd_idle, &cpus, NULL);
1da177e4 2790 if (!group) {
d15bcfdb 2791 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2792 goto out_balanced;
1da177e4
LT
2793 }
2794
d15bcfdb 2795 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2796 &cpus);
db935dbd 2797 if (!busiest) {
d15bcfdb 2798 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2799 goto out_balanced;
1da177e4
LT
2800 }
2801
db935dbd
NP
2802 BUG_ON(busiest == this_rq);
2803
d15bcfdb 2804 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2805
43010659 2806 ld_moved = 0;
d6d5cfaf
NP
2807 if (busiest->nr_running > 1) {
2808 /* Attempt to move tasks */
2809 double_lock_balance(this_rq, busiest);
43010659 2810 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2811 imbalance, sd, CPU_NEWLY_IDLE,
2812 &all_pinned);
d6d5cfaf 2813 spin_unlock(&busiest->lock);
0a2966b4 2814
969bb4e4 2815 if (unlikely(all_pinned)) {
0a2966b4
CL
2816 cpu_clear(cpu_of(busiest), cpus);
2817 if (!cpus_empty(cpus))
2818 goto redo;
2819 }
d6d5cfaf
NP
2820 }
2821
43010659 2822 if (!ld_moved) {
d15bcfdb 2823 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2824 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2825 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2826 return -1;
2827 } else
16cfb1c0 2828 sd->nr_balance_failed = 0;
1da177e4 2829
43010659 2830 return ld_moved;
16cfb1c0
NP
2831
2832out_balanced:
d15bcfdb 2833 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2834 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2835 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2836 return -1;
16cfb1c0 2837 sd->nr_balance_failed = 0;
48f24c4d 2838
16cfb1c0 2839 return 0;
1da177e4
LT
2840}
2841
2842/*
2843 * idle_balance is called by schedule() if this_cpu is about to become
2844 * idle. Attempts to pull tasks from other CPUs.
2845 */
70b97a7f 2846static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2847{
2848 struct sched_domain *sd;
dd41f596
IM
2849 int pulled_task = -1;
2850 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2851
2852 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2853 unsigned long interval;
2854
2855 if (!(sd->flags & SD_LOAD_BALANCE))
2856 continue;
2857
2858 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2859 /* If we've pulled tasks over stop searching: */
1bd77f2d 2860 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2861 this_rq, sd);
2862
2863 interval = msecs_to_jiffies(sd->balance_interval);
2864 if (time_after(next_balance, sd->last_balance + interval))
2865 next_balance = sd->last_balance + interval;
2866 if (pulled_task)
2867 break;
1da177e4 2868 }
dd41f596 2869 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2870 /*
2871 * We are going idle. next_balance may be set based on
2872 * a busy processor. So reset next_balance.
2873 */
2874 this_rq->next_balance = next_balance;
dd41f596 2875 }
1da177e4
LT
2876}
2877
2878/*
2879 * active_load_balance is run by migration threads. It pushes running tasks
2880 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2881 * running on each physical CPU where possible, and avoids physical /
2882 * logical imbalances.
2883 *
2884 * Called with busiest_rq locked.
2885 */
70b97a7f 2886static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2887{
39507451 2888 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2889 struct sched_domain *sd;
2890 struct rq *target_rq;
39507451 2891
48f24c4d 2892 /* Is there any task to move? */
39507451 2893 if (busiest_rq->nr_running <= 1)
39507451
NP
2894 return;
2895
2896 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2897
2898 /*
39507451
NP
2899 * This condition is "impossible", if it occurs
2900 * we need to fix it. Originally reported by
2901 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2902 */
39507451 2903 BUG_ON(busiest_rq == target_rq);
1da177e4 2904
39507451
NP
2905 /* move a task from busiest_rq to target_rq */
2906 double_lock_balance(busiest_rq, target_rq);
2907
2908 /* Search for an sd spanning us and the target CPU. */
c96d145e 2909 for_each_domain(target_cpu, sd) {
39507451 2910 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2911 cpu_isset(busiest_cpu, sd->span))
39507451 2912 break;
c96d145e 2913 }
39507451 2914
48f24c4d
IM
2915 if (likely(sd)) {
2916 schedstat_inc(sd, alb_cnt);
39507451 2917
43010659
PW
2918 if (move_one_task(target_rq, target_cpu, busiest_rq,
2919 sd, CPU_IDLE))
48f24c4d
IM
2920 schedstat_inc(sd, alb_pushed);
2921 else
2922 schedstat_inc(sd, alb_failed);
2923 }
39507451 2924 spin_unlock(&target_rq->lock);
1da177e4
LT
2925}
2926
46cb4b7c
SS
2927#ifdef CONFIG_NO_HZ
2928static struct {
2929 atomic_t load_balancer;
2930 cpumask_t cpu_mask;
2931} nohz ____cacheline_aligned = {
2932 .load_balancer = ATOMIC_INIT(-1),
2933 .cpu_mask = CPU_MASK_NONE,
2934};
2935
7835b98b 2936/*
46cb4b7c
SS
2937 * This routine will try to nominate the ilb (idle load balancing)
2938 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2939 * load balancing on behalf of all those cpus. If all the cpus in the system
2940 * go into this tickless mode, then there will be no ilb owner (as there is
2941 * no need for one) and all the cpus will sleep till the next wakeup event
2942 * arrives...
2943 *
2944 * For the ilb owner, tick is not stopped. And this tick will be used
2945 * for idle load balancing. ilb owner will still be part of
2946 * nohz.cpu_mask..
7835b98b 2947 *
46cb4b7c
SS
2948 * While stopping the tick, this cpu will become the ilb owner if there
2949 * is no other owner. And will be the owner till that cpu becomes busy
2950 * or if all cpus in the system stop their ticks at which point
2951 * there is no need for ilb owner.
2952 *
2953 * When the ilb owner becomes busy, it nominates another owner, during the
2954 * next busy scheduler_tick()
2955 */
2956int select_nohz_load_balancer(int stop_tick)
2957{
2958 int cpu = smp_processor_id();
2959
2960 if (stop_tick) {
2961 cpu_set(cpu, nohz.cpu_mask);
2962 cpu_rq(cpu)->in_nohz_recently = 1;
2963
2964 /*
2965 * If we are going offline and still the leader, give up!
2966 */
2967 if (cpu_is_offline(cpu) &&
2968 atomic_read(&nohz.load_balancer) == cpu) {
2969 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2970 BUG();
2971 return 0;
2972 }
2973
2974 /* time for ilb owner also to sleep */
2975 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2976 if (atomic_read(&nohz.load_balancer) == cpu)
2977 atomic_set(&nohz.load_balancer, -1);
2978 return 0;
2979 }
2980
2981 if (atomic_read(&nohz.load_balancer) == -1) {
2982 /* make me the ilb owner */
2983 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2984 return 1;
2985 } else if (atomic_read(&nohz.load_balancer) == cpu)
2986 return 1;
2987 } else {
2988 if (!cpu_isset(cpu, nohz.cpu_mask))
2989 return 0;
2990
2991 cpu_clear(cpu, nohz.cpu_mask);
2992
2993 if (atomic_read(&nohz.load_balancer) == cpu)
2994 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2995 BUG();
2996 }
2997 return 0;
2998}
2999#endif
3000
3001static DEFINE_SPINLOCK(balancing);
3002
3003/*
7835b98b
CL
3004 * It checks each scheduling domain to see if it is due to be balanced,
3005 * and initiates a balancing operation if so.
3006 *
3007 * Balancing parameters are set up in arch_init_sched_domains.
3008 */
d15bcfdb 3009static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3010{
46cb4b7c
SS
3011 int balance = 1;
3012 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3013 unsigned long interval;
3014 struct sched_domain *sd;
46cb4b7c 3015 /* Earliest time when we have to do rebalance again */
c9819f45 3016 unsigned long next_balance = jiffies + 60*HZ;
1da177e4 3017
46cb4b7c 3018 for_each_domain(cpu, sd) {
1da177e4
LT
3019 if (!(sd->flags & SD_LOAD_BALANCE))
3020 continue;
3021
3022 interval = sd->balance_interval;
d15bcfdb 3023 if (idle != CPU_IDLE)
1da177e4
LT
3024 interval *= sd->busy_factor;
3025
3026 /* scale ms to jiffies */
3027 interval = msecs_to_jiffies(interval);
3028 if (unlikely(!interval))
3029 interval = 1;
dd41f596
IM
3030 if (interval > HZ*NR_CPUS/10)
3031 interval = HZ*NR_CPUS/10;
3032
1da177e4 3033
08c183f3
CL
3034 if (sd->flags & SD_SERIALIZE) {
3035 if (!spin_trylock(&balancing))
3036 goto out;
3037 }
3038
c9819f45 3039 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3040 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3041 /*
3042 * We've pulled tasks over so either we're no
5969fe06
NP
3043 * longer idle, or one of our SMT siblings is
3044 * not idle.
3045 */
d15bcfdb 3046 idle = CPU_NOT_IDLE;
1da177e4 3047 }
1bd77f2d 3048 sd->last_balance = jiffies;
1da177e4 3049 }
08c183f3
CL
3050 if (sd->flags & SD_SERIALIZE)
3051 spin_unlock(&balancing);
3052out:
c9819f45
CL
3053 if (time_after(next_balance, sd->last_balance + interval))
3054 next_balance = sd->last_balance + interval;
783609c6
SS
3055
3056 /*
3057 * Stop the load balance at this level. There is another
3058 * CPU in our sched group which is doing load balancing more
3059 * actively.
3060 */
3061 if (!balance)
3062 break;
1da177e4 3063 }
46cb4b7c
SS
3064 rq->next_balance = next_balance;
3065}
3066
3067/*
3068 * run_rebalance_domains is triggered when needed from the scheduler tick.
3069 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3070 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3071 */
3072static void run_rebalance_domains(struct softirq_action *h)
3073{
dd41f596
IM
3074 int this_cpu = smp_processor_id();
3075 struct rq *this_rq = cpu_rq(this_cpu);
3076 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3077 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3078
dd41f596 3079 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3080
3081#ifdef CONFIG_NO_HZ
3082 /*
3083 * If this cpu is the owner for idle load balancing, then do the
3084 * balancing on behalf of the other idle cpus whose ticks are
3085 * stopped.
3086 */
dd41f596
IM
3087 if (this_rq->idle_at_tick &&
3088 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3089 cpumask_t cpus = nohz.cpu_mask;
3090 struct rq *rq;
3091 int balance_cpu;
3092
dd41f596 3093 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3094 for_each_cpu_mask(balance_cpu, cpus) {
3095 /*
3096 * If this cpu gets work to do, stop the load balancing
3097 * work being done for other cpus. Next load
3098 * balancing owner will pick it up.
3099 */
3100 if (need_resched())
3101 break;
3102
dd41f596 3103 rebalance_domains(balance_cpu, SCHED_IDLE);
46cb4b7c
SS
3104
3105 rq = cpu_rq(balance_cpu);
dd41f596
IM
3106 if (time_after(this_rq->next_balance, rq->next_balance))
3107 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3108 }
3109 }
3110#endif
3111}
3112
3113/*
3114 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3115 *
3116 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3117 * idle load balancing owner or decide to stop the periodic load balancing,
3118 * if the whole system is idle.
3119 */
dd41f596 3120static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3121{
46cb4b7c
SS
3122#ifdef CONFIG_NO_HZ
3123 /*
3124 * If we were in the nohz mode recently and busy at the current
3125 * scheduler tick, then check if we need to nominate new idle
3126 * load balancer.
3127 */
3128 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3129 rq->in_nohz_recently = 0;
3130
3131 if (atomic_read(&nohz.load_balancer) == cpu) {
3132 cpu_clear(cpu, nohz.cpu_mask);
3133 atomic_set(&nohz.load_balancer, -1);
3134 }
3135
3136 if (atomic_read(&nohz.load_balancer) == -1) {
3137 /*
3138 * simple selection for now: Nominate the
3139 * first cpu in the nohz list to be the next
3140 * ilb owner.
3141 *
3142 * TBD: Traverse the sched domains and nominate
3143 * the nearest cpu in the nohz.cpu_mask.
3144 */
3145 int ilb = first_cpu(nohz.cpu_mask);
3146
3147 if (ilb != NR_CPUS)
3148 resched_cpu(ilb);
3149 }
3150 }
3151
3152 /*
3153 * If this cpu is idle and doing idle load balancing for all the
3154 * cpus with ticks stopped, is it time for that to stop?
3155 */
3156 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3157 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3158 resched_cpu(cpu);
3159 return;
3160 }
3161
3162 /*
3163 * If this cpu is idle and the idle load balancing is done by
3164 * someone else, then no need raise the SCHED_SOFTIRQ
3165 */
3166 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3167 cpu_isset(cpu, nohz.cpu_mask))
3168 return;
3169#endif
3170 if (time_after_eq(jiffies, rq->next_balance))
3171 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3172}
dd41f596
IM
3173
3174#else /* CONFIG_SMP */
3175
1da177e4
LT
3176/*
3177 * on UP we do not need to balance between CPUs:
3178 */
70b97a7f 3179static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3180{
3181}
dd41f596
IM
3182
3183/* Avoid "used but not defined" warning on UP */
3184static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3185 unsigned long max_nr_move, unsigned long max_load_move,
3186 struct sched_domain *sd, enum cpu_idle_type idle,
3187 int *all_pinned, unsigned long *load_moved,
3188 int this_best_prio, int best_prio, int best_prio_seen,
3189 struct rq_iterator *iterator)
3190{
3191 *load_moved = 0;
3192
3193 return 0;
3194}
3195
1da177e4
LT
3196#endif
3197
1da177e4
LT
3198DEFINE_PER_CPU(struct kernel_stat, kstat);
3199
3200EXPORT_PER_CPU_SYMBOL(kstat);
3201
3202/*
41b86e9c
IM
3203 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3204 * that have not yet been banked in case the task is currently running.
1da177e4 3205 */
41b86e9c 3206unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3207{
1da177e4 3208 unsigned long flags;
41b86e9c
IM
3209 u64 ns, delta_exec;
3210 struct rq *rq;
48f24c4d 3211
41b86e9c
IM
3212 rq = task_rq_lock(p, &flags);
3213 ns = p->se.sum_exec_runtime;
3214 if (rq->curr == p) {
3215 delta_exec = rq_clock(rq) - p->se.exec_start;
3216 if ((s64)delta_exec > 0)
3217 ns += delta_exec;
3218 }
3219 task_rq_unlock(rq, &flags);
48f24c4d 3220
1da177e4
LT
3221 return ns;
3222}
3223
1da177e4
LT
3224/*
3225 * Account user cpu time to a process.
3226 * @p: the process that the cpu time gets accounted to
3227 * @hardirq_offset: the offset to subtract from hardirq_count()
3228 * @cputime: the cpu time spent in user space since the last update
3229 */
3230void account_user_time(struct task_struct *p, cputime_t cputime)
3231{
3232 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3233 cputime64_t tmp;
3234
3235 p->utime = cputime_add(p->utime, cputime);
3236
3237 /* Add user time to cpustat. */
3238 tmp = cputime_to_cputime64(cputime);
3239 if (TASK_NICE(p) > 0)
3240 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3241 else
3242 cpustat->user = cputime64_add(cpustat->user, tmp);
3243}
3244
3245/*
3246 * Account system cpu time to a process.
3247 * @p: the process that the cpu time gets accounted to
3248 * @hardirq_offset: the offset to subtract from hardirq_count()
3249 * @cputime: the cpu time spent in kernel space since the last update
3250 */
3251void account_system_time(struct task_struct *p, int hardirq_offset,
3252 cputime_t cputime)
3253{
3254 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3255 struct rq *rq = this_rq();
1da177e4
LT
3256 cputime64_t tmp;
3257
3258 p->stime = cputime_add(p->stime, cputime);
3259
3260 /* Add system time to cpustat. */
3261 tmp = cputime_to_cputime64(cputime);
3262 if (hardirq_count() - hardirq_offset)
3263 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3264 else if (softirq_count())
3265 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3266 else if (p != rq->idle)
3267 cpustat->system = cputime64_add(cpustat->system, tmp);
3268 else if (atomic_read(&rq->nr_iowait) > 0)
3269 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3270 else
3271 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3272 /* Account for system time used */
3273 acct_update_integrals(p);
1da177e4
LT
3274}
3275
3276/*
3277 * Account for involuntary wait time.
3278 * @p: the process from which the cpu time has been stolen
3279 * @steal: the cpu time spent in involuntary wait
3280 */
3281void account_steal_time(struct task_struct *p, cputime_t steal)
3282{
3283 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3284 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3285 struct rq *rq = this_rq();
1da177e4
LT
3286
3287 if (p == rq->idle) {
3288 p->stime = cputime_add(p->stime, steal);
3289 if (atomic_read(&rq->nr_iowait) > 0)
3290 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3291 else
3292 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3293 } else
3294 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3295}
3296
7835b98b
CL
3297/*
3298 * This function gets called by the timer code, with HZ frequency.
3299 * We call it with interrupts disabled.
3300 *
3301 * It also gets called by the fork code, when changing the parent's
3302 * timeslices.
3303 */
3304void scheduler_tick(void)
3305{
7835b98b
CL
3306 int cpu = smp_processor_id();
3307 struct rq *rq = cpu_rq(cpu);
dd41f596
IM
3308 struct task_struct *curr = rq->curr;
3309
3310 spin_lock(&rq->lock);
f1a438d8 3311 update_cpu_load(rq);
dd41f596
IM
3312 if (curr != rq->idle) /* FIXME: needed? */
3313 curr->sched_class->task_tick(rq, curr);
dd41f596 3314 spin_unlock(&rq->lock);
7835b98b 3315
e418e1c2 3316#ifdef CONFIG_SMP
dd41f596
IM
3317 rq->idle_at_tick = idle_cpu(cpu);
3318 trigger_load_balance(rq, cpu);
e418e1c2 3319#endif
1da177e4
LT
3320}
3321
1da177e4
LT
3322#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3323
3324void fastcall add_preempt_count(int val)
3325{
3326 /*
3327 * Underflow?
3328 */
9a11b49a
IM
3329 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3330 return;
1da177e4
LT
3331 preempt_count() += val;
3332 /*
3333 * Spinlock count overflowing soon?
3334 */
33859f7f
MOS
3335 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3336 PREEMPT_MASK - 10);
1da177e4
LT
3337}
3338EXPORT_SYMBOL(add_preempt_count);
3339
3340void fastcall sub_preempt_count(int val)
3341{
3342 /*
3343 * Underflow?
3344 */
9a11b49a
IM
3345 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3346 return;
1da177e4
LT
3347 /*
3348 * Is the spinlock portion underflowing?
3349 */
9a11b49a
IM
3350 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3351 !(preempt_count() & PREEMPT_MASK)))
3352 return;
3353
1da177e4
LT
3354 preempt_count() -= val;
3355}
3356EXPORT_SYMBOL(sub_preempt_count);
3357
3358#endif
3359
3360/*
dd41f596 3361 * Print scheduling while atomic bug:
1da177e4 3362 */
dd41f596 3363static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3364{
dd41f596
IM
3365 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3366 prev->comm, preempt_count(), prev->pid);
3367 debug_show_held_locks(prev);
3368 if (irqs_disabled())
3369 print_irqtrace_events(prev);
3370 dump_stack();
3371}
1da177e4 3372
dd41f596
IM
3373/*
3374 * Various schedule()-time debugging checks and statistics:
3375 */
3376static inline void schedule_debug(struct task_struct *prev)
3377{
1da177e4
LT
3378 /*
3379 * Test if we are atomic. Since do_exit() needs to call into
3380 * schedule() atomically, we ignore that path for now.
3381 * Otherwise, whine if we are scheduling when we should not be.
3382 */
dd41f596
IM
3383 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3384 __schedule_bug(prev);
3385
1da177e4
LT
3386 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3387
dd41f596
IM
3388 schedstat_inc(this_rq(), sched_cnt);
3389}
3390
3391/*
3392 * Pick up the highest-prio task:
3393 */
3394static inline struct task_struct *
3395pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3396{
3397 struct sched_class *class;
3398 struct task_struct *p;
1da177e4
LT
3399
3400 /*
dd41f596
IM
3401 * Optimization: we know that if all tasks are in
3402 * the fair class we can call that function directly:
1da177e4 3403 */
dd41f596
IM
3404 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3405 p = fair_sched_class.pick_next_task(rq, now);
3406 if (likely(p))
3407 return p;
1da177e4
LT
3408 }
3409
dd41f596
IM
3410 class = sched_class_highest;
3411 for ( ; ; ) {
3412 p = class->pick_next_task(rq, now);
3413 if (p)
3414 return p;
3415 /*
3416 * Will never be NULL as the idle class always
3417 * returns a non-NULL p:
3418 */
3419 class = class->next;
3420 }
3421}
1da177e4 3422
dd41f596
IM
3423/*
3424 * schedule() is the main scheduler function.
3425 */
3426asmlinkage void __sched schedule(void)
3427{
3428 struct task_struct *prev, *next;
3429 long *switch_count;
3430 struct rq *rq;
3431 u64 now;
3432 int cpu;
3433
3434need_resched:
3435 preempt_disable();
3436 cpu = smp_processor_id();
3437 rq = cpu_rq(cpu);
3438 rcu_qsctr_inc(cpu);
3439 prev = rq->curr;
3440 switch_count = &prev->nivcsw;
3441
3442 release_kernel_lock(prev);
3443need_resched_nonpreemptible:
3444
3445 schedule_debug(prev);
1da177e4
LT
3446
3447 spin_lock_irq(&rq->lock);
dd41f596 3448 clear_tsk_need_resched(prev);
1da177e4 3449
1da177e4 3450 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3451 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3452 unlikely(signal_pending(prev)))) {
1da177e4 3453 prev->state = TASK_RUNNING;
dd41f596
IM
3454 } else {
3455 deactivate_task(rq, prev, 1);
1da177e4 3456 }
dd41f596 3457 switch_count = &prev->nvcsw;
1da177e4
LT
3458 }
3459
dd41f596 3460 if (unlikely(!rq->nr_running))
1da177e4 3461 idle_balance(cpu, rq);
1da177e4 3462
dd41f596
IM
3463 now = __rq_clock(rq);
3464 prev->sched_class->put_prev_task(rq, prev, now);
3465 next = pick_next_task(rq, prev, now);
1da177e4
LT
3466
3467 sched_info_switch(prev, next);
dd41f596 3468
1da177e4 3469 if (likely(prev != next)) {
1da177e4
LT
3470 rq->nr_switches++;
3471 rq->curr = next;
3472 ++*switch_count;
3473
dd41f596 3474 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3475 } else
3476 spin_unlock_irq(&rq->lock);
3477
dd41f596
IM
3478 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3479 cpu = smp_processor_id();
3480 rq = cpu_rq(cpu);
1da177e4 3481 goto need_resched_nonpreemptible;
dd41f596 3482 }
1da177e4
LT
3483 preempt_enable_no_resched();
3484 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3485 goto need_resched;
3486}
1da177e4
LT
3487EXPORT_SYMBOL(schedule);
3488
3489#ifdef CONFIG_PREEMPT
3490/*
2ed6e34f 3491 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3492 * off of preempt_enable. Kernel preemptions off return from interrupt
3493 * occur there and call schedule directly.
3494 */
3495asmlinkage void __sched preempt_schedule(void)
3496{
3497 struct thread_info *ti = current_thread_info();
3498#ifdef CONFIG_PREEMPT_BKL
3499 struct task_struct *task = current;
3500 int saved_lock_depth;
3501#endif
3502 /*
3503 * If there is a non-zero preempt_count or interrupts are disabled,
3504 * we do not want to preempt the current task. Just return..
3505 */
beed33a8 3506 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3507 return;
3508
3509need_resched:
3510 add_preempt_count(PREEMPT_ACTIVE);
3511 /*
3512 * We keep the big kernel semaphore locked, but we
3513 * clear ->lock_depth so that schedule() doesnt
3514 * auto-release the semaphore:
3515 */
3516#ifdef CONFIG_PREEMPT_BKL
3517 saved_lock_depth = task->lock_depth;
3518 task->lock_depth = -1;
3519#endif
3520 schedule();
3521#ifdef CONFIG_PREEMPT_BKL
3522 task->lock_depth = saved_lock_depth;
3523#endif
3524 sub_preempt_count(PREEMPT_ACTIVE);
3525
3526 /* we could miss a preemption opportunity between schedule and now */
3527 barrier();
3528 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3529 goto need_resched;
3530}
1da177e4
LT
3531EXPORT_SYMBOL(preempt_schedule);
3532
3533/*
2ed6e34f 3534 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3535 * off of irq context.
3536 * Note, that this is called and return with irqs disabled. This will
3537 * protect us against recursive calling from irq.
3538 */
3539asmlinkage void __sched preempt_schedule_irq(void)
3540{
3541 struct thread_info *ti = current_thread_info();
3542#ifdef CONFIG_PREEMPT_BKL
3543 struct task_struct *task = current;
3544 int saved_lock_depth;
3545#endif
2ed6e34f 3546 /* Catch callers which need to be fixed */
1da177e4
LT
3547 BUG_ON(ti->preempt_count || !irqs_disabled());
3548
3549need_resched:
3550 add_preempt_count(PREEMPT_ACTIVE);
3551 /*
3552 * We keep the big kernel semaphore locked, but we
3553 * clear ->lock_depth so that schedule() doesnt
3554 * auto-release the semaphore:
3555 */
3556#ifdef CONFIG_PREEMPT_BKL
3557 saved_lock_depth = task->lock_depth;
3558 task->lock_depth = -1;
3559#endif
3560 local_irq_enable();
3561 schedule();
3562 local_irq_disable();
3563#ifdef CONFIG_PREEMPT_BKL
3564 task->lock_depth = saved_lock_depth;
3565#endif
3566 sub_preempt_count(PREEMPT_ACTIVE);
3567
3568 /* we could miss a preemption opportunity between schedule and now */
3569 barrier();
3570 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3571 goto need_resched;
3572}
3573
3574#endif /* CONFIG_PREEMPT */
3575
95cdf3b7
IM
3576int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3577 void *key)
1da177e4 3578{
48f24c4d 3579 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3580}
1da177e4
LT
3581EXPORT_SYMBOL(default_wake_function);
3582
3583/*
3584 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3585 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3586 * number) then we wake all the non-exclusive tasks and one exclusive task.
3587 *
3588 * There are circumstances in which we can try to wake a task which has already
3589 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3590 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3591 */
3592static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3593 int nr_exclusive, int sync, void *key)
3594{
3595 struct list_head *tmp, *next;
3596
3597 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3598 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3599 unsigned flags = curr->flags;
3600
1da177e4 3601 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3602 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3603 break;
3604 }
3605}
3606
3607/**
3608 * __wake_up - wake up threads blocked on a waitqueue.
3609 * @q: the waitqueue
3610 * @mode: which threads
3611 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3612 * @key: is directly passed to the wakeup function
1da177e4
LT
3613 */
3614void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3615 int nr_exclusive, void *key)
1da177e4
LT
3616{
3617 unsigned long flags;
3618
3619 spin_lock_irqsave(&q->lock, flags);
3620 __wake_up_common(q, mode, nr_exclusive, 0, key);
3621 spin_unlock_irqrestore(&q->lock, flags);
3622}
1da177e4
LT
3623EXPORT_SYMBOL(__wake_up);
3624
3625/*
3626 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3627 */
3628void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3629{
3630 __wake_up_common(q, mode, 1, 0, NULL);
3631}
3632
3633/**
67be2dd1 3634 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3635 * @q: the waitqueue
3636 * @mode: which threads
3637 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3638 *
3639 * The sync wakeup differs that the waker knows that it will schedule
3640 * away soon, so while the target thread will be woken up, it will not
3641 * be migrated to another CPU - ie. the two threads are 'synchronized'
3642 * with each other. This can prevent needless bouncing between CPUs.
3643 *
3644 * On UP it can prevent extra preemption.
3645 */
95cdf3b7
IM
3646void fastcall
3647__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3648{
3649 unsigned long flags;
3650 int sync = 1;
3651
3652 if (unlikely(!q))
3653 return;
3654
3655 if (unlikely(!nr_exclusive))
3656 sync = 0;
3657
3658 spin_lock_irqsave(&q->lock, flags);
3659 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3660 spin_unlock_irqrestore(&q->lock, flags);
3661}
3662EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3663
3664void fastcall complete(struct completion *x)
3665{
3666 unsigned long flags;
3667
3668 spin_lock_irqsave(&x->wait.lock, flags);
3669 x->done++;
3670 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3671 1, 0, NULL);
3672 spin_unlock_irqrestore(&x->wait.lock, flags);
3673}
3674EXPORT_SYMBOL(complete);
3675
3676void fastcall complete_all(struct completion *x)
3677{
3678 unsigned long flags;
3679
3680 spin_lock_irqsave(&x->wait.lock, flags);
3681 x->done += UINT_MAX/2;
3682 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3683 0, 0, NULL);
3684 spin_unlock_irqrestore(&x->wait.lock, flags);
3685}
3686EXPORT_SYMBOL(complete_all);
3687
3688void fastcall __sched wait_for_completion(struct completion *x)
3689{
3690 might_sleep();
48f24c4d 3691
1da177e4
LT
3692 spin_lock_irq(&x->wait.lock);
3693 if (!x->done) {
3694 DECLARE_WAITQUEUE(wait, current);
3695
3696 wait.flags |= WQ_FLAG_EXCLUSIVE;
3697 __add_wait_queue_tail(&x->wait, &wait);
3698 do {
3699 __set_current_state(TASK_UNINTERRUPTIBLE);
3700 spin_unlock_irq(&x->wait.lock);
3701 schedule();
3702 spin_lock_irq(&x->wait.lock);
3703 } while (!x->done);
3704 __remove_wait_queue(&x->wait, &wait);
3705 }
3706 x->done--;
3707 spin_unlock_irq(&x->wait.lock);
3708}
3709EXPORT_SYMBOL(wait_for_completion);
3710
3711unsigned long fastcall __sched
3712wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3713{
3714 might_sleep();
3715
3716 spin_lock_irq(&x->wait.lock);
3717 if (!x->done) {
3718 DECLARE_WAITQUEUE(wait, current);
3719
3720 wait.flags |= WQ_FLAG_EXCLUSIVE;
3721 __add_wait_queue_tail(&x->wait, &wait);
3722 do {
3723 __set_current_state(TASK_UNINTERRUPTIBLE);
3724 spin_unlock_irq(&x->wait.lock);
3725 timeout = schedule_timeout(timeout);
3726 spin_lock_irq(&x->wait.lock);
3727 if (!timeout) {
3728 __remove_wait_queue(&x->wait, &wait);
3729 goto out;
3730 }
3731 } while (!x->done);
3732 __remove_wait_queue(&x->wait, &wait);
3733 }
3734 x->done--;
3735out:
3736 spin_unlock_irq(&x->wait.lock);
3737 return timeout;
3738}
3739EXPORT_SYMBOL(wait_for_completion_timeout);
3740
3741int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3742{
3743 int ret = 0;
3744
3745 might_sleep();
3746
3747 spin_lock_irq(&x->wait.lock);
3748 if (!x->done) {
3749 DECLARE_WAITQUEUE(wait, current);
3750
3751 wait.flags |= WQ_FLAG_EXCLUSIVE;
3752 __add_wait_queue_tail(&x->wait, &wait);
3753 do {
3754 if (signal_pending(current)) {
3755 ret = -ERESTARTSYS;
3756 __remove_wait_queue(&x->wait, &wait);
3757 goto out;
3758 }
3759 __set_current_state(TASK_INTERRUPTIBLE);
3760 spin_unlock_irq(&x->wait.lock);
3761 schedule();
3762 spin_lock_irq(&x->wait.lock);
3763 } while (!x->done);
3764 __remove_wait_queue(&x->wait, &wait);
3765 }
3766 x->done--;
3767out:
3768 spin_unlock_irq(&x->wait.lock);
3769
3770 return ret;
3771}
3772EXPORT_SYMBOL(wait_for_completion_interruptible);
3773
3774unsigned long fastcall __sched
3775wait_for_completion_interruptible_timeout(struct completion *x,
3776 unsigned long timeout)
3777{
3778 might_sleep();
3779
3780 spin_lock_irq(&x->wait.lock);
3781 if (!x->done) {
3782 DECLARE_WAITQUEUE(wait, current);
3783
3784 wait.flags |= WQ_FLAG_EXCLUSIVE;
3785 __add_wait_queue_tail(&x->wait, &wait);
3786 do {
3787 if (signal_pending(current)) {
3788 timeout = -ERESTARTSYS;
3789 __remove_wait_queue(&x->wait, &wait);
3790 goto out;
3791 }
3792 __set_current_state(TASK_INTERRUPTIBLE);
3793 spin_unlock_irq(&x->wait.lock);
3794 timeout = schedule_timeout(timeout);
3795 spin_lock_irq(&x->wait.lock);
3796 if (!timeout) {
3797 __remove_wait_queue(&x->wait, &wait);
3798 goto out;
3799 }
3800 } while (!x->done);
3801 __remove_wait_queue(&x->wait, &wait);
3802 }
3803 x->done--;
3804out:
3805 spin_unlock_irq(&x->wait.lock);
3806 return timeout;
3807}
3808EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3809
0fec171c
IM
3810static inline void
3811sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3812{
3813 spin_lock_irqsave(&q->lock, *flags);
3814 __add_wait_queue(q, wait);
1da177e4 3815 spin_unlock(&q->lock);
0fec171c 3816}
1da177e4 3817
0fec171c
IM
3818static inline void
3819sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3820{
3821 spin_lock_irq(&q->lock);
3822 __remove_wait_queue(q, wait);
3823 spin_unlock_irqrestore(&q->lock, *flags);
3824}
1da177e4 3825
0fec171c 3826void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3827{
0fec171c
IM
3828 unsigned long flags;
3829 wait_queue_t wait;
3830
3831 init_waitqueue_entry(&wait, current);
1da177e4
LT
3832
3833 current->state = TASK_INTERRUPTIBLE;
3834
0fec171c 3835 sleep_on_head(q, &wait, &flags);
1da177e4 3836 schedule();
0fec171c 3837 sleep_on_tail(q, &wait, &flags);
1da177e4 3838}
1da177e4
LT
3839EXPORT_SYMBOL(interruptible_sleep_on);
3840
0fec171c 3841long __sched
95cdf3b7 3842interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3843{
0fec171c
IM
3844 unsigned long flags;
3845 wait_queue_t wait;
3846
3847 init_waitqueue_entry(&wait, current);
1da177e4
LT
3848
3849 current->state = TASK_INTERRUPTIBLE;
3850
0fec171c 3851 sleep_on_head(q, &wait, &flags);
1da177e4 3852 timeout = schedule_timeout(timeout);
0fec171c 3853 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3854
3855 return timeout;
3856}
1da177e4
LT
3857EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3858
0fec171c 3859void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3860{
0fec171c
IM
3861 unsigned long flags;
3862 wait_queue_t wait;
3863
3864 init_waitqueue_entry(&wait, current);
1da177e4
LT
3865
3866 current->state = TASK_UNINTERRUPTIBLE;
3867
0fec171c 3868 sleep_on_head(q, &wait, &flags);
1da177e4 3869 schedule();
0fec171c 3870 sleep_on_tail(q, &wait, &flags);
1da177e4 3871}
1da177e4
LT
3872EXPORT_SYMBOL(sleep_on);
3873
0fec171c 3874long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3875{
0fec171c
IM
3876 unsigned long flags;
3877 wait_queue_t wait;
3878
3879 init_waitqueue_entry(&wait, current);
1da177e4
LT
3880
3881 current->state = TASK_UNINTERRUPTIBLE;
3882
0fec171c 3883 sleep_on_head(q, &wait, &flags);
1da177e4 3884 timeout = schedule_timeout(timeout);
0fec171c 3885 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3886
3887 return timeout;
3888}
1da177e4
LT
3889EXPORT_SYMBOL(sleep_on_timeout);
3890
b29739f9
IM
3891#ifdef CONFIG_RT_MUTEXES
3892
3893/*
3894 * rt_mutex_setprio - set the current priority of a task
3895 * @p: task
3896 * @prio: prio value (kernel-internal form)
3897 *
3898 * This function changes the 'effective' priority of a task. It does
3899 * not touch ->normal_prio like __setscheduler().
3900 *
3901 * Used by the rt_mutex code to implement priority inheritance logic.
3902 */
36c8b586 3903void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3904{
3905 unsigned long flags;
dd41f596 3906 int oldprio, on_rq;
70b97a7f 3907 struct rq *rq;
dd41f596 3908 u64 now;
b29739f9
IM
3909
3910 BUG_ON(prio < 0 || prio > MAX_PRIO);
3911
3912 rq = task_rq_lock(p, &flags);
dd41f596 3913 now = rq_clock(rq);
b29739f9 3914
d5f9f942 3915 oldprio = p->prio;
dd41f596
IM
3916 on_rq = p->se.on_rq;
3917 if (on_rq)
3918 dequeue_task(rq, p, 0, now);
3919
3920 if (rt_prio(prio))
3921 p->sched_class = &rt_sched_class;
3922 else
3923 p->sched_class = &fair_sched_class;
3924
b29739f9
IM
3925 p->prio = prio;
3926
dd41f596
IM
3927 if (on_rq) {
3928 enqueue_task(rq, p, 0, now);
b29739f9
IM
3929 /*
3930 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3931 * our priority decreased, or if we are not currently running on
3932 * this runqueue and our priority is higher than the current's
b29739f9 3933 */
d5f9f942
AM
3934 if (task_running(rq, p)) {
3935 if (p->prio > oldprio)
3936 resched_task(rq->curr);
dd41f596
IM
3937 } else {
3938 check_preempt_curr(rq, p);
3939 }
b29739f9
IM
3940 }
3941 task_rq_unlock(rq, &flags);
3942}
3943
3944#endif
3945
36c8b586 3946void set_user_nice(struct task_struct *p, long nice)
1da177e4 3947{
dd41f596 3948 int old_prio, delta, on_rq;
1da177e4 3949 unsigned long flags;
70b97a7f 3950 struct rq *rq;
dd41f596 3951 u64 now;
1da177e4
LT
3952
3953 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3954 return;
3955 /*
3956 * We have to be careful, if called from sys_setpriority(),
3957 * the task might be in the middle of scheduling on another CPU.
3958 */
3959 rq = task_rq_lock(p, &flags);
dd41f596 3960 now = rq_clock(rq);
1da177e4
LT
3961 /*
3962 * The RT priorities are set via sched_setscheduler(), but we still
3963 * allow the 'normal' nice value to be set - but as expected
3964 * it wont have any effect on scheduling until the task is
dd41f596 3965 * SCHED_FIFO/SCHED_RR:
1da177e4 3966 */
e05606d3 3967 if (task_has_rt_policy(p)) {
1da177e4
LT
3968 p->static_prio = NICE_TO_PRIO(nice);
3969 goto out_unlock;
3970 }
dd41f596
IM
3971 on_rq = p->se.on_rq;
3972 if (on_rq) {
3973 dequeue_task(rq, p, 0, now);
3974 dec_load(rq, p, now);
2dd73a4f 3975 }
1da177e4 3976
1da177e4 3977 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3978 set_load_weight(p);
b29739f9
IM
3979 old_prio = p->prio;
3980 p->prio = effective_prio(p);
3981 delta = p->prio - old_prio;
1da177e4 3982
dd41f596
IM
3983 if (on_rq) {
3984 enqueue_task(rq, p, 0, now);
3985 inc_load(rq, p, now);
1da177e4 3986 /*
d5f9f942
AM
3987 * If the task increased its priority or is running and
3988 * lowered its priority, then reschedule its CPU:
1da177e4 3989 */
d5f9f942 3990 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3991 resched_task(rq->curr);
3992 }
3993out_unlock:
3994 task_rq_unlock(rq, &flags);
3995}
1da177e4
LT
3996EXPORT_SYMBOL(set_user_nice);
3997
e43379f1
MM
3998/*
3999 * can_nice - check if a task can reduce its nice value
4000 * @p: task
4001 * @nice: nice value
4002 */
36c8b586 4003int can_nice(const struct task_struct *p, const int nice)
e43379f1 4004{
024f4747
MM
4005 /* convert nice value [19,-20] to rlimit style value [1,40] */
4006 int nice_rlim = 20 - nice;
48f24c4d 4007
e43379f1
MM
4008 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4009 capable(CAP_SYS_NICE));
4010}
4011
1da177e4
LT
4012#ifdef __ARCH_WANT_SYS_NICE
4013
4014/*
4015 * sys_nice - change the priority of the current process.
4016 * @increment: priority increment
4017 *
4018 * sys_setpriority is a more generic, but much slower function that
4019 * does similar things.
4020 */
4021asmlinkage long sys_nice(int increment)
4022{
48f24c4d 4023 long nice, retval;
1da177e4
LT
4024
4025 /*
4026 * Setpriority might change our priority at the same moment.
4027 * We don't have to worry. Conceptually one call occurs first
4028 * and we have a single winner.
4029 */
e43379f1
MM
4030 if (increment < -40)
4031 increment = -40;
1da177e4
LT
4032 if (increment > 40)
4033 increment = 40;
4034
4035 nice = PRIO_TO_NICE(current->static_prio) + increment;
4036 if (nice < -20)
4037 nice = -20;
4038 if (nice > 19)
4039 nice = 19;
4040
e43379f1
MM
4041 if (increment < 0 && !can_nice(current, nice))
4042 return -EPERM;
4043
1da177e4
LT
4044 retval = security_task_setnice(current, nice);
4045 if (retval)
4046 return retval;
4047
4048 set_user_nice(current, nice);
4049 return 0;
4050}
4051
4052#endif
4053
4054/**
4055 * task_prio - return the priority value of a given task.
4056 * @p: the task in question.
4057 *
4058 * This is the priority value as seen by users in /proc.
4059 * RT tasks are offset by -200. Normal tasks are centered
4060 * around 0, value goes from -16 to +15.
4061 */
36c8b586 4062int task_prio(const struct task_struct *p)
1da177e4
LT
4063{
4064 return p->prio - MAX_RT_PRIO;
4065}
4066
4067/**
4068 * task_nice - return the nice value of a given task.
4069 * @p: the task in question.
4070 */
36c8b586 4071int task_nice(const struct task_struct *p)
1da177e4
LT
4072{
4073 return TASK_NICE(p);
4074}
1da177e4 4075EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4076
4077/**
4078 * idle_cpu - is a given cpu idle currently?
4079 * @cpu: the processor in question.
4080 */
4081int idle_cpu(int cpu)
4082{
4083 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4084}
4085
1da177e4
LT
4086/**
4087 * idle_task - return the idle task for a given cpu.
4088 * @cpu: the processor in question.
4089 */
36c8b586 4090struct task_struct *idle_task(int cpu)
1da177e4
LT
4091{
4092 return cpu_rq(cpu)->idle;
4093}
4094
4095/**
4096 * find_process_by_pid - find a process with a matching PID value.
4097 * @pid: the pid in question.
4098 */
36c8b586 4099static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4100{
4101 return pid ? find_task_by_pid(pid) : current;
4102}
4103
4104/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4105static void
4106__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4107{
dd41f596 4108 BUG_ON(p->se.on_rq);
48f24c4d 4109
1da177e4 4110 p->policy = policy;
dd41f596
IM
4111 switch (p->policy) {
4112 case SCHED_NORMAL:
4113 case SCHED_BATCH:
4114 case SCHED_IDLE:
4115 p->sched_class = &fair_sched_class;
4116 break;
4117 case SCHED_FIFO:
4118 case SCHED_RR:
4119 p->sched_class = &rt_sched_class;
4120 break;
4121 }
4122
1da177e4 4123 p->rt_priority = prio;
b29739f9
IM
4124 p->normal_prio = normal_prio(p);
4125 /* we are holding p->pi_lock already */
4126 p->prio = rt_mutex_getprio(p);
2dd73a4f 4127 set_load_weight(p);
1da177e4
LT
4128}
4129
4130/**
72fd4a35 4131 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4132 * @p: the task in question.
4133 * @policy: new policy.
4134 * @param: structure containing the new RT priority.
5fe1d75f 4135 *
72fd4a35 4136 * NOTE that the task may be already dead.
1da177e4 4137 */
95cdf3b7
IM
4138int sched_setscheduler(struct task_struct *p, int policy,
4139 struct sched_param *param)
1da177e4 4140{
dd41f596 4141 int retval, oldprio, oldpolicy = -1, on_rq;
1da177e4 4142 unsigned long flags;
70b97a7f 4143 struct rq *rq;
1da177e4 4144
66e5393a
SR
4145 /* may grab non-irq protected spin_locks */
4146 BUG_ON(in_interrupt());
1da177e4
LT
4147recheck:
4148 /* double check policy once rq lock held */
4149 if (policy < 0)
4150 policy = oldpolicy = p->policy;
4151 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4152 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4153 policy != SCHED_IDLE)
b0a9499c 4154 return -EINVAL;
1da177e4
LT
4155 /*
4156 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4157 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4158 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4159 */
4160 if (param->sched_priority < 0 ||
95cdf3b7 4161 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4162 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4163 return -EINVAL;
e05606d3 4164 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4165 return -EINVAL;
4166
37e4ab3f
OC
4167 /*
4168 * Allow unprivileged RT tasks to decrease priority:
4169 */
4170 if (!capable(CAP_SYS_NICE)) {
e05606d3 4171 if (rt_policy(policy)) {
8dc3e909 4172 unsigned long rlim_rtprio;
8dc3e909
ON
4173
4174 if (!lock_task_sighand(p, &flags))
4175 return -ESRCH;
4176 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4177 unlock_task_sighand(p, &flags);
4178
4179 /* can't set/change the rt policy */
4180 if (policy != p->policy && !rlim_rtprio)
4181 return -EPERM;
4182
4183 /* can't increase priority */
4184 if (param->sched_priority > p->rt_priority &&
4185 param->sched_priority > rlim_rtprio)
4186 return -EPERM;
4187 }
dd41f596
IM
4188 /*
4189 * Like positive nice levels, dont allow tasks to
4190 * move out of SCHED_IDLE either:
4191 */
4192 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4193 return -EPERM;
5fe1d75f 4194
37e4ab3f
OC
4195 /* can't change other user's priorities */
4196 if ((current->euid != p->euid) &&
4197 (current->euid != p->uid))
4198 return -EPERM;
4199 }
1da177e4
LT
4200
4201 retval = security_task_setscheduler(p, policy, param);
4202 if (retval)
4203 return retval;
b29739f9
IM
4204 /*
4205 * make sure no PI-waiters arrive (or leave) while we are
4206 * changing the priority of the task:
4207 */
4208 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4209 /*
4210 * To be able to change p->policy safely, the apropriate
4211 * runqueue lock must be held.
4212 */
b29739f9 4213 rq = __task_rq_lock(p);
1da177e4
LT
4214 /* recheck policy now with rq lock held */
4215 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4216 policy = oldpolicy = -1;
b29739f9
IM
4217 __task_rq_unlock(rq);
4218 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4219 goto recheck;
4220 }
dd41f596
IM
4221 on_rq = p->se.on_rq;
4222 if (on_rq)
4223 deactivate_task(rq, p, 0);
1da177e4 4224 oldprio = p->prio;
dd41f596
IM
4225 __setscheduler(rq, p, policy, param->sched_priority);
4226 if (on_rq) {
4227 activate_task(rq, p, 0);
1da177e4
LT
4228 /*
4229 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4230 * our priority decreased, or if we are not currently running on
4231 * this runqueue and our priority is higher than the current's
1da177e4 4232 */
d5f9f942
AM
4233 if (task_running(rq, p)) {
4234 if (p->prio > oldprio)
4235 resched_task(rq->curr);
dd41f596
IM
4236 } else {
4237 check_preempt_curr(rq, p);
4238 }
1da177e4 4239 }
b29739f9
IM
4240 __task_rq_unlock(rq);
4241 spin_unlock_irqrestore(&p->pi_lock, flags);
4242
95e02ca9
TG
4243 rt_mutex_adjust_pi(p);
4244
1da177e4
LT
4245 return 0;
4246}
4247EXPORT_SYMBOL_GPL(sched_setscheduler);
4248
95cdf3b7
IM
4249static int
4250do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4251{
1da177e4
LT
4252 struct sched_param lparam;
4253 struct task_struct *p;
36c8b586 4254 int retval;
1da177e4
LT
4255
4256 if (!param || pid < 0)
4257 return -EINVAL;
4258 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4259 return -EFAULT;
5fe1d75f
ON
4260
4261 rcu_read_lock();
4262 retval = -ESRCH;
1da177e4 4263 p = find_process_by_pid(pid);
5fe1d75f
ON
4264 if (p != NULL)
4265 retval = sched_setscheduler(p, policy, &lparam);
4266 rcu_read_unlock();
36c8b586 4267
1da177e4
LT
4268 return retval;
4269}
4270
4271/**
4272 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4273 * @pid: the pid in question.
4274 * @policy: new policy.
4275 * @param: structure containing the new RT priority.
4276 */
4277asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4278 struct sched_param __user *param)
4279{
c21761f1
JB
4280 /* negative values for policy are not valid */
4281 if (policy < 0)
4282 return -EINVAL;
4283
1da177e4
LT
4284 return do_sched_setscheduler(pid, policy, param);
4285}
4286
4287/**
4288 * sys_sched_setparam - set/change the RT priority of a thread
4289 * @pid: the pid in question.
4290 * @param: structure containing the new RT priority.
4291 */
4292asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4293{
4294 return do_sched_setscheduler(pid, -1, param);
4295}
4296
4297/**
4298 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4299 * @pid: the pid in question.
4300 */
4301asmlinkage long sys_sched_getscheduler(pid_t pid)
4302{
36c8b586 4303 struct task_struct *p;
1da177e4 4304 int retval = -EINVAL;
1da177e4
LT
4305
4306 if (pid < 0)
4307 goto out_nounlock;
4308
4309 retval = -ESRCH;
4310 read_lock(&tasklist_lock);
4311 p = find_process_by_pid(pid);
4312 if (p) {
4313 retval = security_task_getscheduler(p);
4314 if (!retval)
4315 retval = p->policy;
4316 }
4317 read_unlock(&tasklist_lock);
4318
4319out_nounlock:
4320 return retval;
4321}
4322
4323/**
4324 * sys_sched_getscheduler - get the RT priority of a thread
4325 * @pid: the pid in question.
4326 * @param: structure containing the RT priority.
4327 */
4328asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4329{
4330 struct sched_param lp;
36c8b586 4331 struct task_struct *p;
1da177e4 4332 int retval = -EINVAL;
1da177e4
LT
4333
4334 if (!param || pid < 0)
4335 goto out_nounlock;
4336
4337 read_lock(&tasklist_lock);
4338 p = find_process_by_pid(pid);
4339 retval = -ESRCH;
4340 if (!p)
4341 goto out_unlock;
4342
4343 retval = security_task_getscheduler(p);
4344 if (retval)
4345 goto out_unlock;
4346
4347 lp.sched_priority = p->rt_priority;
4348 read_unlock(&tasklist_lock);
4349
4350 /*
4351 * This one might sleep, we cannot do it with a spinlock held ...
4352 */
4353 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4354
4355out_nounlock:
4356 return retval;
4357
4358out_unlock:
4359 read_unlock(&tasklist_lock);
4360 return retval;
4361}
4362
4363long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4364{
1da177e4 4365 cpumask_t cpus_allowed;
36c8b586
IM
4366 struct task_struct *p;
4367 int retval;
1da177e4 4368
5be9361c 4369 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4370 read_lock(&tasklist_lock);
4371
4372 p = find_process_by_pid(pid);
4373 if (!p) {
4374 read_unlock(&tasklist_lock);
5be9361c 4375 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4376 return -ESRCH;
4377 }
4378
4379 /*
4380 * It is not safe to call set_cpus_allowed with the
4381 * tasklist_lock held. We will bump the task_struct's
4382 * usage count and then drop tasklist_lock.
4383 */
4384 get_task_struct(p);
4385 read_unlock(&tasklist_lock);
4386
4387 retval = -EPERM;
4388 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4389 !capable(CAP_SYS_NICE))
4390 goto out_unlock;
4391
e7834f8f
DQ
4392 retval = security_task_setscheduler(p, 0, NULL);
4393 if (retval)
4394 goto out_unlock;
4395
1da177e4
LT
4396 cpus_allowed = cpuset_cpus_allowed(p);
4397 cpus_and(new_mask, new_mask, cpus_allowed);
4398 retval = set_cpus_allowed(p, new_mask);
4399
4400out_unlock:
4401 put_task_struct(p);
5be9361c 4402 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4403 return retval;
4404}
4405
4406static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4407 cpumask_t *new_mask)
4408{
4409 if (len < sizeof(cpumask_t)) {
4410 memset(new_mask, 0, sizeof(cpumask_t));
4411 } else if (len > sizeof(cpumask_t)) {
4412 len = sizeof(cpumask_t);
4413 }
4414 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4415}
4416
4417/**
4418 * sys_sched_setaffinity - set the cpu affinity of a process
4419 * @pid: pid of the process
4420 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4421 * @user_mask_ptr: user-space pointer to the new cpu mask
4422 */
4423asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4424 unsigned long __user *user_mask_ptr)
4425{
4426 cpumask_t new_mask;
4427 int retval;
4428
4429 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4430 if (retval)
4431 return retval;
4432
4433 return sched_setaffinity(pid, new_mask);
4434}
4435
4436/*
4437 * Represents all cpu's present in the system
4438 * In systems capable of hotplug, this map could dynamically grow
4439 * as new cpu's are detected in the system via any platform specific
4440 * method, such as ACPI for e.g.
4441 */
4442
4cef0c61 4443cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4444EXPORT_SYMBOL(cpu_present_map);
4445
4446#ifndef CONFIG_SMP
4cef0c61 4447cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4448EXPORT_SYMBOL(cpu_online_map);
4449
4cef0c61 4450cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4451EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4452#endif
4453
4454long sched_getaffinity(pid_t pid, cpumask_t *mask)
4455{
36c8b586 4456 struct task_struct *p;
1da177e4 4457 int retval;
1da177e4 4458
5be9361c 4459 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4460 read_lock(&tasklist_lock);
4461
4462 retval = -ESRCH;
4463 p = find_process_by_pid(pid);
4464 if (!p)
4465 goto out_unlock;
4466
e7834f8f
DQ
4467 retval = security_task_getscheduler(p);
4468 if (retval)
4469 goto out_unlock;
4470
2f7016d9 4471 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4472
4473out_unlock:
4474 read_unlock(&tasklist_lock);
5be9361c 4475 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4476 if (retval)
4477 return retval;
4478
4479 return 0;
4480}
4481
4482/**
4483 * sys_sched_getaffinity - get the cpu affinity of a process
4484 * @pid: pid of the process
4485 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4486 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4487 */
4488asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4489 unsigned long __user *user_mask_ptr)
4490{
4491 int ret;
4492 cpumask_t mask;
4493
4494 if (len < sizeof(cpumask_t))
4495 return -EINVAL;
4496
4497 ret = sched_getaffinity(pid, &mask);
4498 if (ret < 0)
4499 return ret;
4500
4501 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4502 return -EFAULT;
4503
4504 return sizeof(cpumask_t);
4505}
4506
4507/**
4508 * sys_sched_yield - yield the current processor to other threads.
4509 *
dd41f596
IM
4510 * This function yields the current CPU to other tasks. If there are no
4511 * other threads running on this CPU then this function will return.
1da177e4
LT
4512 */
4513asmlinkage long sys_sched_yield(void)
4514{
70b97a7f 4515 struct rq *rq = this_rq_lock();
1da177e4
LT
4516
4517 schedstat_inc(rq, yld_cnt);
dd41f596 4518 if (unlikely(rq->nr_running == 1))
1da177e4 4519 schedstat_inc(rq, yld_act_empty);
dd41f596
IM
4520 else
4521 current->sched_class->yield_task(rq, current);
1da177e4
LT
4522
4523 /*
4524 * Since we are going to call schedule() anyway, there's
4525 * no need to preempt or enable interrupts:
4526 */
4527 __release(rq->lock);
8a25d5de 4528 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4529 _raw_spin_unlock(&rq->lock);
4530 preempt_enable_no_resched();
4531
4532 schedule();
4533
4534 return 0;
4535}
4536
e7b38404 4537static void __cond_resched(void)
1da177e4 4538{
8e0a43d8
IM
4539#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4540 __might_sleep(__FILE__, __LINE__);
4541#endif
5bbcfd90
IM
4542 /*
4543 * The BKS might be reacquired before we have dropped
4544 * PREEMPT_ACTIVE, which could trigger a second
4545 * cond_resched() call.
4546 */
1da177e4
LT
4547 do {
4548 add_preempt_count(PREEMPT_ACTIVE);
4549 schedule();
4550 sub_preempt_count(PREEMPT_ACTIVE);
4551 } while (need_resched());
4552}
4553
4554int __sched cond_resched(void)
4555{
9414232f
IM
4556 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4557 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4558 __cond_resched();
4559 return 1;
4560 }
4561 return 0;
4562}
1da177e4
LT
4563EXPORT_SYMBOL(cond_resched);
4564
4565/*
4566 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4567 * call schedule, and on return reacquire the lock.
4568 *
4569 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4570 * operations here to prevent schedule() from being called twice (once via
4571 * spin_unlock(), once by hand).
4572 */
95cdf3b7 4573int cond_resched_lock(spinlock_t *lock)
1da177e4 4574{
6df3cecb
JK
4575 int ret = 0;
4576
1da177e4
LT
4577 if (need_lockbreak(lock)) {
4578 spin_unlock(lock);
4579 cpu_relax();
6df3cecb 4580 ret = 1;
1da177e4
LT
4581 spin_lock(lock);
4582 }
9414232f 4583 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4584 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4585 _raw_spin_unlock(lock);
4586 preempt_enable_no_resched();
4587 __cond_resched();
6df3cecb 4588 ret = 1;
1da177e4 4589 spin_lock(lock);
1da177e4 4590 }
6df3cecb 4591 return ret;
1da177e4 4592}
1da177e4
LT
4593EXPORT_SYMBOL(cond_resched_lock);
4594
4595int __sched cond_resched_softirq(void)
4596{
4597 BUG_ON(!in_softirq());
4598
9414232f 4599 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4600 local_bh_enable();
1da177e4
LT
4601 __cond_resched();
4602 local_bh_disable();
4603 return 1;
4604 }
4605 return 0;
4606}
1da177e4
LT
4607EXPORT_SYMBOL(cond_resched_softirq);
4608
1da177e4
LT
4609/**
4610 * yield - yield the current processor to other threads.
4611 *
72fd4a35 4612 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4613 * thread runnable and calls sys_sched_yield().
4614 */
4615void __sched yield(void)
4616{
4617 set_current_state(TASK_RUNNING);
4618 sys_sched_yield();
4619}
1da177e4
LT
4620EXPORT_SYMBOL(yield);
4621
4622/*
4623 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4624 * that process accounting knows that this is a task in IO wait state.
4625 *
4626 * But don't do that if it is a deliberate, throttling IO wait (this task
4627 * has set its backing_dev_info: the queue against which it should throttle)
4628 */
4629void __sched io_schedule(void)
4630{
70b97a7f 4631 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4632
0ff92245 4633 delayacct_blkio_start();
1da177e4
LT
4634 atomic_inc(&rq->nr_iowait);
4635 schedule();
4636 atomic_dec(&rq->nr_iowait);
0ff92245 4637 delayacct_blkio_end();
1da177e4 4638}
1da177e4
LT
4639EXPORT_SYMBOL(io_schedule);
4640
4641long __sched io_schedule_timeout(long timeout)
4642{
70b97a7f 4643 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4644 long ret;
4645
0ff92245 4646 delayacct_blkio_start();
1da177e4
LT
4647 atomic_inc(&rq->nr_iowait);
4648 ret = schedule_timeout(timeout);
4649 atomic_dec(&rq->nr_iowait);
0ff92245 4650 delayacct_blkio_end();
1da177e4
LT
4651 return ret;
4652}
4653
4654/**
4655 * sys_sched_get_priority_max - return maximum RT priority.
4656 * @policy: scheduling class.
4657 *
4658 * this syscall returns the maximum rt_priority that can be used
4659 * by a given scheduling class.
4660 */
4661asmlinkage long sys_sched_get_priority_max(int policy)
4662{
4663 int ret = -EINVAL;
4664
4665 switch (policy) {
4666 case SCHED_FIFO:
4667 case SCHED_RR:
4668 ret = MAX_USER_RT_PRIO-1;
4669 break;
4670 case SCHED_NORMAL:
b0a9499c 4671 case SCHED_BATCH:
dd41f596 4672 case SCHED_IDLE:
1da177e4
LT
4673 ret = 0;
4674 break;
4675 }
4676 return ret;
4677}
4678
4679/**
4680 * sys_sched_get_priority_min - return minimum RT priority.
4681 * @policy: scheduling class.
4682 *
4683 * this syscall returns the minimum rt_priority that can be used
4684 * by a given scheduling class.
4685 */
4686asmlinkage long sys_sched_get_priority_min(int policy)
4687{
4688 int ret = -EINVAL;
4689
4690 switch (policy) {
4691 case SCHED_FIFO:
4692 case SCHED_RR:
4693 ret = 1;
4694 break;
4695 case SCHED_NORMAL:
b0a9499c 4696 case SCHED_BATCH:
dd41f596 4697 case SCHED_IDLE:
1da177e4
LT
4698 ret = 0;
4699 }
4700 return ret;
4701}
4702
4703/**
4704 * sys_sched_rr_get_interval - return the default timeslice of a process.
4705 * @pid: pid of the process.
4706 * @interval: userspace pointer to the timeslice value.
4707 *
4708 * this syscall writes the default timeslice value of a given process
4709 * into the user-space timespec buffer. A value of '0' means infinity.
4710 */
4711asmlinkage
4712long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4713{
36c8b586 4714 struct task_struct *p;
1da177e4
LT
4715 int retval = -EINVAL;
4716 struct timespec t;
1da177e4
LT
4717
4718 if (pid < 0)
4719 goto out_nounlock;
4720
4721 retval = -ESRCH;
4722 read_lock(&tasklist_lock);
4723 p = find_process_by_pid(pid);
4724 if (!p)
4725 goto out_unlock;
4726
4727 retval = security_task_getscheduler(p);
4728 if (retval)
4729 goto out_unlock;
4730
b78709cf 4731 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4732 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4733 read_unlock(&tasklist_lock);
4734 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4735out_nounlock:
4736 return retval;
4737out_unlock:
4738 read_unlock(&tasklist_lock);
4739 return retval;
4740}
4741
2ed6e34f 4742static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4743
4744static void show_task(struct task_struct *p)
1da177e4 4745{
1da177e4 4746 unsigned long free = 0;
36c8b586 4747 unsigned state;
1da177e4 4748
1da177e4 4749 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4750 printk("%-13.13s %c", p->comm,
4751 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4752#if BITS_PER_LONG == 32
1da177e4 4753 if (state == TASK_RUNNING)
4bd77321 4754 printk(" running ");
1da177e4 4755 else
4bd77321 4756 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4757#else
4758 if (state == TASK_RUNNING)
4bd77321 4759 printk(" running task ");
1da177e4
LT
4760 else
4761 printk(" %016lx ", thread_saved_pc(p));
4762#endif
4763#ifdef CONFIG_DEBUG_STACK_USAGE
4764 {
10ebffde 4765 unsigned long *n = end_of_stack(p);
1da177e4
LT
4766 while (!*n)
4767 n++;
10ebffde 4768 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4769 }
4770#endif
4bd77321 4771 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4772
4773 if (state != TASK_RUNNING)
4774 show_stack(p, NULL);
4775}
4776
e59e2ae2 4777void show_state_filter(unsigned long state_filter)
1da177e4 4778{
36c8b586 4779 struct task_struct *g, *p;
1da177e4 4780
4bd77321
IM
4781#if BITS_PER_LONG == 32
4782 printk(KERN_INFO
4783 " task PC stack pid father\n");
1da177e4 4784#else
4bd77321
IM
4785 printk(KERN_INFO
4786 " task PC stack pid father\n");
1da177e4
LT
4787#endif
4788 read_lock(&tasklist_lock);
4789 do_each_thread(g, p) {
4790 /*
4791 * reset the NMI-timeout, listing all files on a slow
4792 * console might take alot of time:
4793 */
4794 touch_nmi_watchdog();
39bc89fd 4795 if (!state_filter || (p->state & state_filter))
e59e2ae2 4796 show_task(p);
1da177e4
LT
4797 } while_each_thread(g, p);
4798
04c9167f
JF
4799 touch_all_softlockup_watchdogs();
4800
dd41f596
IM
4801#ifdef CONFIG_SCHED_DEBUG
4802 sysrq_sched_debug_show();
4803#endif
1da177e4 4804 read_unlock(&tasklist_lock);
e59e2ae2
IM
4805 /*
4806 * Only show locks if all tasks are dumped:
4807 */
4808 if (state_filter == -1)
4809 debug_show_all_locks();
1da177e4
LT
4810}
4811
1df21055
IM
4812void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4813{
dd41f596 4814 idle->sched_class = &idle_sched_class;
1df21055
IM
4815}
4816
f340c0d1
IM
4817/**
4818 * init_idle - set up an idle thread for a given CPU
4819 * @idle: task in question
4820 * @cpu: cpu the idle task belongs to
4821 *
4822 * NOTE: this function does not set the idle thread's NEED_RESCHED
4823 * flag, to make booting more robust.
4824 */
5c1e1767 4825void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4826{
70b97a7f 4827 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4828 unsigned long flags;
4829
dd41f596
IM
4830 __sched_fork(idle);
4831 idle->se.exec_start = sched_clock();
4832
b29739f9 4833 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4834 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4835 __set_task_cpu(idle, cpu);
1da177e4
LT
4836
4837 spin_lock_irqsave(&rq->lock, flags);
4838 rq->curr = rq->idle = idle;
4866cde0
NP
4839#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4840 idle->oncpu = 1;
4841#endif
1da177e4
LT
4842 spin_unlock_irqrestore(&rq->lock, flags);
4843
4844 /* Set the preempt count _outside_ the spinlocks! */
4845#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4846 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4847#else
a1261f54 4848 task_thread_info(idle)->preempt_count = 0;
1da177e4 4849#endif
dd41f596
IM
4850 /*
4851 * The idle tasks have their own, simple scheduling class:
4852 */
4853 idle->sched_class = &idle_sched_class;
1da177e4
LT
4854}
4855
4856/*
4857 * In a system that switches off the HZ timer nohz_cpu_mask
4858 * indicates which cpus entered this state. This is used
4859 * in the rcu update to wait only for active cpus. For system
4860 * which do not switch off the HZ timer nohz_cpu_mask should
4861 * always be CPU_MASK_NONE.
4862 */
4863cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4864
dd41f596
IM
4865/*
4866 * Increase the granularity value when there are more CPUs,
4867 * because with more CPUs the 'effective latency' as visible
4868 * to users decreases. But the relationship is not linear,
4869 * so pick a second-best guess by going with the log2 of the
4870 * number of CPUs.
4871 *
4872 * This idea comes from the SD scheduler of Con Kolivas:
4873 */
4874static inline void sched_init_granularity(void)
4875{
4876 unsigned int factor = 1 + ilog2(num_online_cpus());
a5968df8 4877 const unsigned long gran_limit = 100000000;
dd41f596
IM
4878
4879 sysctl_sched_granularity *= factor;
4880 if (sysctl_sched_granularity > gran_limit)
4881 sysctl_sched_granularity = gran_limit;
4882
4883 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4884 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4885}
4886
1da177e4
LT
4887#ifdef CONFIG_SMP
4888/*
4889 * This is how migration works:
4890 *
70b97a7f 4891 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4892 * runqueue and wake up that CPU's migration thread.
4893 * 2) we down() the locked semaphore => thread blocks.
4894 * 3) migration thread wakes up (implicitly it forces the migrated
4895 * thread off the CPU)
4896 * 4) it gets the migration request and checks whether the migrated
4897 * task is still in the wrong runqueue.
4898 * 5) if it's in the wrong runqueue then the migration thread removes
4899 * it and puts it into the right queue.
4900 * 6) migration thread up()s the semaphore.
4901 * 7) we wake up and the migration is done.
4902 */
4903
4904/*
4905 * Change a given task's CPU affinity. Migrate the thread to a
4906 * proper CPU and schedule it away if the CPU it's executing on
4907 * is removed from the allowed bitmask.
4908 *
4909 * NOTE: the caller must have a valid reference to the task, the
4910 * task must not exit() & deallocate itself prematurely. The
4911 * call is not atomic; no spinlocks may be held.
4912 */
36c8b586 4913int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4914{
70b97a7f 4915 struct migration_req req;
1da177e4 4916 unsigned long flags;
70b97a7f 4917 struct rq *rq;
48f24c4d 4918 int ret = 0;
1da177e4
LT
4919
4920 rq = task_rq_lock(p, &flags);
4921 if (!cpus_intersects(new_mask, cpu_online_map)) {
4922 ret = -EINVAL;
4923 goto out;
4924 }
4925
4926 p->cpus_allowed = new_mask;
4927 /* Can the task run on the task's current CPU? If so, we're done */
4928 if (cpu_isset(task_cpu(p), new_mask))
4929 goto out;
4930
4931 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4932 /* Need help from migration thread: drop lock and wait. */
4933 task_rq_unlock(rq, &flags);
4934 wake_up_process(rq->migration_thread);
4935 wait_for_completion(&req.done);
4936 tlb_migrate_finish(p->mm);
4937 return 0;
4938 }
4939out:
4940 task_rq_unlock(rq, &flags);
48f24c4d 4941
1da177e4
LT
4942 return ret;
4943}
1da177e4
LT
4944EXPORT_SYMBOL_GPL(set_cpus_allowed);
4945
4946/*
4947 * Move (not current) task off this cpu, onto dest cpu. We're doing
4948 * this because either it can't run here any more (set_cpus_allowed()
4949 * away from this CPU, or CPU going down), or because we're
4950 * attempting to rebalance this task on exec (sched_exec).
4951 *
4952 * So we race with normal scheduler movements, but that's OK, as long
4953 * as the task is no longer on this CPU.
efc30814
KK
4954 *
4955 * Returns non-zero if task was successfully migrated.
1da177e4 4956 */
efc30814 4957static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4958{
70b97a7f 4959 struct rq *rq_dest, *rq_src;
dd41f596 4960 int ret = 0, on_rq;
1da177e4
LT
4961
4962 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4963 return ret;
1da177e4
LT
4964
4965 rq_src = cpu_rq(src_cpu);
4966 rq_dest = cpu_rq(dest_cpu);
4967
4968 double_rq_lock(rq_src, rq_dest);
4969 /* Already moved. */
4970 if (task_cpu(p) != src_cpu)
4971 goto out;
4972 /* Affinity changed (again). */
4973 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4974 goto out;
4975
dd41f596
IM
4976 on_rq = p->se.on_rq;
4977 if (on_rq)
4978 deactivate_task(rq_src, p, 0);
1da177e4 4979 set_task_cpu(p, dest_cpu);
dd41f596
IM
4980 if (on_rq) {
4981 activate_task(rq_dest, p, 0);
4982 check_preempt_curr(rq_dest, p);
1da177e4 4983 }
efc30814 4984 ret = 1;
1da177e4
LT
4985out:
4986 double_rq_unlock(rq_src, rq_dest);
efc30814 4987 return ret;
1da177e4
LT
4988}
4989
4990/*
4991 * migration_thread - this is a highprio system thread that performs
4992 * thread migration by bumping thread off CPU then 'pushing' onto
4993 * another runqueue.
4994 */
95cdf3b7 4995static int migration_thread(void *data)
1da177e4 4996{
1da177e4 4997 int cpu = (long)data;
70b97a7f 4998 struct rq *rq;
1da177e4
LT
4999
5000 rq = cpu_rq(cpu);
5001 BUG_ON(rq->migration_thread != current);
5002
5003 set_current_state(TASK_INTERRUPTIBLE);
5004 while (!kthread_should_stop()) {
70b97a7f 5005 struct migration_req *req;
1da177e4 5006 struct list_head *head;
1da177e4 5007
1da177e4
LT
5008 spin_lock_irq(&rq->lock);
5009
5010 if (cpu_is_offline(cpu)) {
5011 spin_unlock_irq(&rq->lock);
5012 goto wait_to_die;
5013 }
5014
5015 if (rq->active_balance) {
5016 active_load_balance(rq, cpu);
5017 rq->active_balance = 0;
5018 }
5019
5020 head = &rq->migration_queue;
5021
5022 if (list_empty(head)) {
5023 spin_unlock_irq(&rq->lock);
5024 schedule();
5025 set_current_state(TASK_INTERRUPTIBLE);
5026 continue;
5027 }
70b97a7f 5028 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5029 list_del_init(head->next);
5030
674311d5
NP
5031 spin_unlock(&rq->lock);
5032 __migrate_task(req->task, cpu, req->dest_cpu);
5033 local_irq_enable();
1da177e4
LT
5034
5035 complete(&req->done);
5036 }
5037 __set_current_state(TASK_RUNNING);
5038 return 0;
5039
5040wait_to_die:
5041 /* Wait for kthread_stop */
5042 set_current_state(TASK_INTERRUPTIBLE);
5043 while (!kthread_should_stop()) {
5044 schedule();
5045 set_current_state(TASK_INTERRUPTIBLE);
5046 }
5047 __set_current_state(TASK_RUNNING);
5048 return 0;
5049}
5050
5051#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5052/*
5053 * Figure out where task on dead CPU should go, use force if neccessary.
5054 * NOTE: interrupts should be disabled by the caller
5055 */
48f24c4d 5056static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5057{
efc30814 5058 unsigned long flags;
1da177e4 5059 cpumask_t mask;
70b97a7f
IM
5060 struct rq *rq;
5061 int dest_cpu;
1da177e4 5062
efc30814 5063restart:
1da177e4
LT
5064 /* On same node? */
5065 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5066 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5067 dest_cpu = any_online_cpu(mask);
5068
5069 /* On any allowed CPU? */
5070 if (dest_cpu == NR_CPUS)
48f24c4d 5071 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5072
5073 /* No more Mr. Nice Guy. */
5074 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5075 rq = task_rq_lock(p, &flags);
5076 cpus_setall(p->cpus_allowed);
5077 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5078 task_rq_unlock(rq, &flags);
1da177e4
LT
5079
5080 /*
5081 * Don't tell them about moving exiting tasks or
5082 * kernel threads (both mm NULL), since they never
5083 * leave kernel.
5084 */
48f24c4d 5085 if (p->mm && printk_ratelimit())
1da177e4
LT
5086 printk(KERN_INFO "process %d (%s) no "
5087 "longer affine to cpu%d\n",
48f24c4d 5088 p->pid, p->comm, dead_cpu);
1da177e4 5089 }
48f24c4d 5090 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5091 goto restart;
1da177e4
LT
5092}
5093
5094/*
5095 * While a dead CPU has no uninterruptible tasks queued at this point,
5096 * it might still have a nonzero ->nr_uninterruptible counter, because
5097 * for performance reasons the counter is not stricly tracking tasks to
5098 * their home CPUs. So we just add the counter to another CPU's counter,
5099 * to keep the global sum constant after CPU-down:
5100 */
70b97a7f 5101static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5102{
70b97a7f 5103 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5104 unsigned long flags;
5105
5106 local_irq_save(flags);
5107 double_rq_lock(rq_src, rq_dest);
5108 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5109 rq_src->nr_uninterruptible = 0;
5110 double_rq_unlock(rq_src, rq_dest);
5111 local_irq_restore(flags);
5112}
5113
5114/* Run through task list and migrate tasks from the dead cpu. */
5115static void migrate_live_tasks(int src_cpu)
5116{
48f24c4d 5117 struct task_struct *p, *t;
1da177e4
LT
5118
5119 write_lock_irq(&tasklist_lock);
5120
48f24c4d
IM
5121 do_each_thread(t, p) {
5122 if (p == current)
1da177e4
LT
5123 continue;
5124
48f24c4d
IM
5125 if (task_cpu(p) == src_cpu)
5126 move_task_off_dead_cpu(src_cpu, p);
5127 } while_each_thread(t, p);
1da177e4
LT
5128
5129 write_unlock_irq(&tasklist_lock);
5130}
5131
dd41f596
IM
5132/*
5133 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5134 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5135 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5136 */
5137void sched_idle_next(void)
5138{
48f24c4d 5139 int this_cpu = smp_processor_id();
70b97a7f 5140 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5141 struct task_struct *p = rq->idle;
5142 unsigned long flags;
5143
5144 /* cpu has to be offline */
48f24c4d 5145 BUG_ON(cpu_online(this_cpu));
1da177e4 5146
48f24c4d
IM
5147 /*
5148 * Strictly not necessary since rest of the CPUs are stopped by now
5149 * and interrupts disabled on the current cpu.
1da177e4
LT
5150 */
5151 spin_lock_irqsave(&rq->lock, flags);
5152
dd41f596 5153 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5154
5155 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5156 activate_idle_task(p, rq);
1da177e4
LT
5157
5158 spin_unlock_irqrestore(&rq->lock, flags);
5159}
5160
48f24c4d
IM
5161/*
5162 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5163 * offline.
5164 */
5165void idle_task_exit(void)
5166{
5167 struct mm_struct *mm = current->active_mm;
5168
5169 BUG_ON(cpu_online(smp_processor_id()));
5170
5171 if (mm != &init_mm)
5172 switch_mm(mm, &init_mm, current);
5173 mmdrop(mm);
5174}
5175
054b9108 5176/* called under rq->lock with disabled interrupts */
36c8b586 5177static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5178{
70b97a7f 5179 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5180
5181 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5182 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5183
5184 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5185 BUG_ON(p->state == TASK_DEAD);
1da177e4 5186
48f24c4d 5187 get_task_struct(p);
1da177e4
LT
5188
5189 /*
5190 * Drop lock around migration; if someone else moves it,
5191 * that's OK. No task can be added to this CPU, so iteration is
5192 * fine.
054b9108 5193 * NOTE: interrupts should be left disabled --dev@
1da177e4 5194 */
054b9108 5195 spin_unlock(&rq->lock);
48f24c4d 5196 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5197 spin_lock(&rq->lock);
1da177e4 5198
48f24c4d 5199 put_task_struct(p);
1da177e4
LT
5200}
5201
5202/* release_task() removes task from tasklist, so we won't find dead tasks. */
5203static void migrate_dead_tasks(unsigned int dead_cpu)
5204{
70b97a7f 5205 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5206 struct task_struct *next;
48f24c4d 5207
dd41f596
IM
5208 for ( ; ; ) {
5209 if (!rq->nr_running)
5210 break;
5211 next = pick_next_task(rq, rq->curr, rq_clock(rq));
5212 if (!next)
5213 break;
5214 migrate_dead(dead_cpu, next);
e692ab53 5215
1da177e4
LT
5216 }
5217}
5218#endif /* CONFIG_HOTPLUG_CPU */
5219
e692ab53
NP
5220#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5221
5222static struct ctl_table sd_ctl_dir[] = {
5223 {CTL_UNNUMBERED, "sched_domain", NULL, 0, 0755, NULL, },
5224 {0,},
5225};
5226
5227static struct ctl_table sd_ctl_root[] = {
5228 {CTL_UNNUMBERED, "kernel", NULL, 0, 0755, sd_ctl_dir, },
5229 {0,},
5230};
5231
5232static struct ctl_table *sd_alloc_ctl_entry(int n)
5233{
5234 struct ctl_table *entry =
5235 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5236
5237 BUG_ON(!entry);
5238 memset(entry, 0, n * sizeof(struct ctl_table));
5239
5240 return entry;
5241}
5242
5243static void
5244set_table_entry(struct ctl_table *entry, int ctl_name,
5245 const char *procname, void *data, int maxlen,
5246 mode_t mode, proc_handler *proc_handler)
5247{
5248 entry->ctl_name = ctl_name;
5249 entry->procname = procname;
5250 entry->data = data;
5251 entry->maxlen = maxlen;
5252 entry->mode = mode;
5253 entry->proc_handler = proc_handler;
5254}
5255
5256static struct ctl_table *
5257sd_alloc_ctl_domain_table(struct sched_domain *sd)
5258{
5259 struct ctl_table *table = sd_alloc_ctl_entry(14);
5260
5261 set_table_entry(&table[0], 1, "min_interval", &sd->min_interval,
5262 sizeof(long), 0644, proc_doulongvec_minmax);
5263 set_table_entry(&table[1], 2, "max_interval", &sd->max_interval,
5264 sizeof(long), 0644, proc_doulongvec_minmax);
5265 set_table_entry(&table[2], 3, "busy_idx", &sd->busy_idx,
5266 sizeof(int), 0644, proc_dointvec_minmax);
5267 set_table_entry(&table[3], 4, "idle_idx", &sd->idle_idx,
5268 sizeof(int), 0644, proc_dointvec_minmax);
5269 set_table_entry(&table[4], 5, "newidle_idx", &sd->newidle_idx,
5270 sizeof(int), 0644, proc_dointvec_minmax);
5271 set_table_entry(&table[5], 6, "wake_idx", &sd->wake_idx,
5272 sizeof(int), 0644, proc_dointvec_minmax);
5273 set_table_entry(&table[6], 7, "forkexec_idx", &sd->forkexec_idx,
5274 sizeof(int), 0644, proc_dointvec_minmax);
5275 set_table_entry(&table[7], 8, "busy_factor", &sd->busy_factor,
5276 sizeof(int), 0644, proc_dointvec_minmax);
5277 set_table_entry(&table[8], 9, "imbalance_pct", &sd->imbalance_pct,
5278 sizeof(int), 0644, proc_dointvec_minmax);
e692ab53
NP
5279 set_table_entry(&table[10], 11, "cache_nice_tries",
5280 &sd->cache_nice_tries,
5281 sizeof(int), 0644, proc_dointvec_minmax);
5282 set_table_entry(&table[12], 13, "flags", &sd->flags,
5283 sizeof(int), 0644, proc_dointvec_minmax);
5284
5285 return table;
5286}
5287
5288static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5289{
5290 struct ctl_table *entry, *table;
5291 struct sched_domain *sd;
5292 int domain_num = 0, i;
5293 char buf[32];
5294
5295 for_each_domain(cpu, sd)
5296 domain_num++;
5297 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5298
5299 i = 0;
5300 for_each_domain(cpu, sd) {
5301 snprintf(buf, 32, "domain%d", i);
5302 entry->ctl_name = i + 1;
5303 entry->procname = kstrdup(buf, GFP_KERNEL);
5304 entry->mode = 0755;
5305 entry->child = sd_alloc_ctl_domain_table(sd);
5306 entry++;
5307 i++;
5308 }
5309 return table;
5310}
5311
5312static struct ctl_table_header *sd_sysctl_header;
5313static void init_sched_domain_sysctl(void)
5314{
5315 int i, cpu_num = num_online_cpus();
5316 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5317 char buf[32];
5318
5319 sd_ctl_dir[0].child = entry;
5320
5321 for (i = 0; i < cpu_num; i++, entry++) {
5322 snprintf(buf, 32, "cpu%d", i);
5323 entry->ctl_name = i + 1;
5324 entry->procname = kstrdup(buf, GFP_KERNEL);
5325 entry->mode = 0755;
5326 entry->child = sd_alloc_ctl_cpu_table(i);
5327 }
5328 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5329}
5330#else
5331static void init_sched_domain_sysctl(void)
5332{
5333}
5334#endif
5335
1da177e4
LT
5336/*
5337 * migration_call - callback that gets triggered when a CPU is added.
5338 * Here we can start up the necessary migration thread for the new CPU.
5339 */
48f24c4d
IM
5340static int __cpuinit
5341migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5342{
1da177e4 5343 struct task_struct *p;
48f24c4d 5344 int cpu = (long)hcpu;
1da177e4 5345 unsigned long flags;
70b97a7f 5346 struct rq *rq;
1da177e4
LT
5347
5348 switch (action) {
5be9361c
GS
5349 case CPU_LOCK_ACQUIRE:
5350 mutex_lock(&sched_hotcpu_mutex);
5351 break;
5352
1da177e4 5353 case CPU_UP_PREPARE:
8bb78442 5354 case CPU_UP_PREPARE_FROZEN:
dd41f596 5355 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5356 if (IS_ERR(p))
5357 return NOTIFY_BAD;
1da177e4
LT
5358 kthread_bind(p, cpu);
5359 /* Must be high prio: stop_machine expects to yield to it. */
5360 rq = task_rq_lock(p, &flags);
dd41f596 5361 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5362 task_rq_unlock(rq, &flags);
5363 cpu_rq(cpu)->migration_thread = p;
5364 break;
48f24c4d 5365
1da177e4 5366 case CPU_ONLINE:
8bb78442 5367 case CPU_ONLINE_FROZEN:
1da177e4
LT
5368 /* Strictly unneccessary, as first user will wake it. */
5369 wake_up_process(cpu_rq(cpu)->migration_thread);
5370 break;
48f24c4d 5371
1da177e4
LT
5372#ifdef CONFIG_HOTPLUG_CPU
5373 case CPU_UP_CANCELED:
8bb78442 5374 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5375 if (!cpu_rq(cpu)->migration_thread)
5376 break;
1da177e4 5377 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5378 kthread_bind(cpu_rq(cpu)->migration_thread,
5379 any_online_cpu(cpu_online_map));
1da177e4
LT
5380 kthread_stop(cpu_rq(cpu)->migration_thread);
5381 cpu_rq(cpu)->migration_thread = NULL;
5382 break;
48f24c4d 5383
1da177e4 5384 case CPU_DEAD:
8bb78442 5385 case CPU_DEAD_FROZEN:
1da177e4
LT
5386 migrate_live_tasks(cpu);
5387 rq = cpu_rq(cpu);
5388 kthread_stop(rq->migration_thread);
5389 rq->migration_thread = NULL;
5390 /* Idle task back to normal (off runqueue, low prio) */
5391 rq = task_rq_lock(rq->idle, &flags);
dd41f596 5392 deactivate_task(rq, rq->idle, 0);
1da177e4 5393 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5394 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5395 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5396 migrate_dead_tasks(cpu);
5397 task_rq_unlock(rq, &flags);
5398 migrate_nr_uninterruptible(rq);
5399 BUG_ON(rq->nr_running != 0);
5400
5401 /* No need to migrate the tasks: it was best-effort if
5be9361c 5402 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5403 * the requestors. */
5404 spin_lock_irq(&rq->lock);
5405 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5406 struct migration_req *req;
5407
1da177e4 5408 req = list_entry(rq->migration_queue.next,
70b97a7f 5409 struct migration_req, list);
1da177e4
LT
5410 list_del_init(&req->list);
5411 complete(&req->done);
5412 }
5413 spin_unlock_irq(&rq->lock);
5414 break;
5415#endif
5be9361c
GS
5416 case CPU_LOCK_RELEASE:
5417 mutex_unlock(&sched_hotcpu_mutex);
5418 break;
1da177e4
LT
5419 }
5420 return NOTIFY_OK;
5421}
5422
5423/* Register at highest priority so that task migration (migrate_all_tasks)
5424 * happens before everything else.
5425 */
26c2143b 5426static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5427 .notifier_call = migration_call,
5428 .priority = 10
5429};
5430
5431int __init migration_init(void)
5432{
5433 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5434 int err;
48f24c4d
IM
5435
5436 /* Start one for the boot CPU: */
07dccf33
AM
5437 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5438 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5439 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5440 register_cpu_notifier(&migration_notifier);
48f24c4d 5441
1da177e4
LT
5442 return 0;
5443}
5444#endif
5445
5446#ifdef CONFIG_SMP
476f3534
CL
5447
5448/* Number of possible processor ids */
5449int nr_cpu_ids __read_mostly = NR_CPUS;
5450EXPORT_SYMBOL(nr_cpu_ids);
5451
1a20ff27 5452#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5453#ifdef SCHED_DOMAIN_DEBUG
5454static void sched_domain_debug(struct sched_domain *sd, int cpu)
5455{
5456 int level = 0;
5457
41c7ce9a
NP
5458 if (!sd) {
5459 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5460 return;
5461 }
5462
1da177e4
LT
5463 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5464
5465 do {
5466 int i;
5467 char str[NR_CPUS];
5468 struct sched_group *group = sd->groups;
5469 cpumask_t groupmask;
5470
5471 cpumask_scnprintf(str, NR_CPUS, sd->span);
5472 cpus_clear(groupmask);
5473
5474 printk(KERN_DEBUG);
5475 for (i = 0; i < level + 1; i++)
5476 printk(" ");
5477 printk("domain %d: ", level);
5478
5479 if (!(sd->flags & SD_LOAD_BALANCE)) {
5480 printk("does not load-balance\n");
5481 if (sd->parent)
33859f7f
MOS
5482 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5483 " has parent");
1da177e4
LT
5484 break;
5485 }
5486
5487 printk("span %s\n", str);
5488
5489 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5490 printk(KERN_ERR "ERROR: domain->span does not contain "
5491 "CPU%d\n", cpu);
1da177e4 5492 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5493 printk(KERN_ERR "ERROR: domain->groups does not contain"
5494 " CPU%d\n", cpu);
1da177e4
LT
5495
5496 printk(KERN_DEBUG);
5497 for (i = 0; i < level + 2; i++)
5498 printk(" ");
5499 printk("groups:");
5500 do {
5501 if (!group) {
5502 printk("\n");
5503 printk(KERN_ERR "ERROR: group is NULL\n");
5504 break;
5505 }
5506
5517d86b 5507 if (!group->__cpu_power) {
1da177e4 5508 printk("\n");
33859f7f
MOS
5509 printk(KERN_ERR "ERROR: domain->cpu_power not "
5510 "set\n");
1da177e4
LT
5511 }
5512
5513 if (!cpus_weight(group->cpumask)) {
5514 printk("\n");
5515 printk(KERN_ERR "ERROR: empty group\n");
5516 }
5517
5518 if (cpus_intersects(groupmask, group->cpumask)) {
5519 printk("\n");
5520 printk(KERN_ERR "ERROR: repeated CPUs\n");
5521 }
5522
5523 cpus_or(groupmask, groupmask, group->cpumask);
5524
5525 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5526 printk(" %s", str);
5527
5528 group = group->next;
5529 } while (group != sd->groups);
5530 printk("\n");
5531
5532 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5533 printk(KERN_ERR "ERROR: groups don't span "
5534 "domain->span\n");
1da177e4
LT
5535
5536 level++;
5537 sd = sd->parent;
33859f7f
MOS
5538 if (!sd)
5539 continue;
1da177e4 5540
33859f7f
MOS
5541 if (!cpus_subset(groupmask, sd->span))
5542 printk(KERN_ERR "ERROR: parent span is not a superset "
5543 "of domain->span\n");
1da177e4
LT
5544
5545 } while (sd);
5546}
5547#else
48f24c4d 5548# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5549#endif
5550
1a20ff27 5551static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5552{
5553 if (cpus_weight(sd->span) == 1)
5554 return 1;
5555
5556 /* Following flags need at least 2 groups */
5557 if (sd->flags & (SD_LOAD_BALANCE |
5558 SD_BALANCE_NEWIDLE |
5559 SD_BALANCE_FORK |
89c4710e
SS
5560 SD_BALANCE_EXEC |
5561 SD_SHARE_CPUPOWER |
5562 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5563 if (sd->groups != sd->groups->next)
5564 return 0;
5565 }
5566
5567 /* Following flags don't use groups */
5568 if (sd->flags & (SD_WAKE_IDLE |
5569 SD_WAKE_AFFINE |
5570 SD_WAKE_BALANCE))
5571 return 0;
5572
5573 return 1;
5574}
5575
48f24c4d
IM
5576static int
5577sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5578{
5579 unsigned long cflags = sd->flags, pflags = parent->flags;
5580
5581 if (sd_degenerate(parent))
5582 return 1;
5583
5584 if (!cpus_equal(sd->span, parent->span))
5585 return 0;
5586
5587 /* Does parent contain flags not in child? */
5588 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5589 if (cflags & SD_WAKE_AFFINE)
5590 pflags &= ~SD_WAKE_BALANCE;
5591 /* Flags needing groups don't count if only 1 group in parent */
5592 if (parent->groups == parent->groups->next) {
5593 pflags &= ~(SD_LOAD_BALANCE |
5594 SD_BALANCE_NEWIDLE |
5595 SD_BALANCE_FORK |
89c4710e
SS
5596 SD_BALANCE_EXEC |
5597 SD_SHARE_CPUPOWER |
5598 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5599 }
5600 if (~cflags & pflags)
5601 return 0;
5602
5603 return 1;
5604}
5605
1da177e4
LT
5606/*
5607 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5608 * hold the hotplug lock.
5609 */
9c1cfda2 5610static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5611{
70b97a7f 5612 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5613 struct sched_domain *tmp;
5614
5615 /* Remove the sched domains which do not contribute to scheduling. */
5616 for (tmp = sd; tmp; tmp = tmp->parent) {
5617 struct sched_domain *parent = tmp->parent;
5618 if (!parent)
5619 break;
1a848870 5620 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5621 tmp->parent = parent->parent;
1a848870
SS
5622 if (parent->parent)
5623 parent->parent->child = tmp;
5624 }
245af2c7
SS
5625 }
5626
1a848870 5627 if (sd && sd_degenerate(sd)) {
245af2c7 5628 sd = sd->parent;
1a848870
SS
5629 if (sd)
5630 sd->child = NULL;
5631 }
1da177e4
LT
5632
5633 sched_domain_debug(sd, cpu);
5634
674311d5 5635 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5636}
5637
5638/* cpus with isolated domains */
67af63a6 5639static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5640
5641/* Setup the mask of cpus configured for isolated domains */
5642static int __init isolated_cpu_setup(char *str)
5643{
5644 int ints[NR_CPUS], i;
5645
5646 str = get_options(str, ARRAY_SIZE(ints), ints);
5647 cpus_clear(cpu_isolated_map);
5648 for (i = 1; i <= ints[0]; i++)
5649 if (ints[i] < NR_CPUS)
5650 cpu_set(ints[i], cpu_isolated_map);
5651 return 1;
5652}
5653
5654__setup ("isolcpus=", isolated_cpu_setup);
5655
5656/*
6711cab4
SS
5657 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5658 * to a function which identifies what group(along with sched group) a CPU
5659 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5660 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5661 *
5662 * init_sched_build_groups will build a circular linked list of the groups
5663 * covered by the given span, and will set each group's ->cpumask correctly,
5664 * and ->cpu_power to 0.
5665 */
a616058b 5666static void
6711cab4
SS
5667init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5668 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5669 struct sched_group **sg))
1da177e4
LT
5670{
5671 struct sched_group *first = NULL, *last = NULL;
5672 cpumask_t covered = CPU_MASK_NONE;
5673 int i;
5674
5675 for_each_cpu_mask(i, span) {
6711cab4
SS
5676 struct sched_group *sg;
5677 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5678 int j;
5679
5680 if (cpu_isset(i, covered))
5681 continue;
5682
5683 sg->cpumask = CPU_MASK_NONE;
5517d86b 5684 sg->__cpu_power = 0;
1da177e4
LT
5685
5686 for_each_cpu_mask(j, span) {
6711cab4 5687 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5688 continue;
5689
5690 cpu_set(j, covered);
5691 cpu_set(j, sg->cpumask);
5692 }
5693 if (!first)
5694 first = sg;
5695 if (last)
5696 last->next = sg;
5697 last = sg;
5698 }
5699 last->next = first;
5700}
5701
9c1cfda2 5702#define SD_NODES_PER_DOMAIN 16
1da177e4 5703
9c1cfda2 5704#ifdef CONFIG_NUMA
198e2f18 5705
9c1cfda2
JH
5706/**
5707 * find_next_best_node - find the next node to include in a sched_domain
5708 * @node: node whose sched_domain we're building
5709 * @used_nodes: nodes already in the sched_domain
5710 *
5711 * Find the next node to include in a given scheduling domain. Simply
5712 * finds the closest node not already in the @used_nodes map.
5713 *
5714 * Should use nodemask_t.
5715 */
5716static int find_next_best_node(int node, unsigned long *used_nodes)
5717{
5718 int i, n, val, min_val, best_node = 0;
5719
5720 min_val = INT_MAX;
5721
5722 for (i = 0; i < MAX_NUMNODES; i++) {
5723 /* Start at @node */
5724 n = (node + i) % MAX_NUMNODES;
5725
5726 if (!nr_cpus_node(n))
5727 continue;
5728
5729 /* Skip already used nodes */
5730 if (test_bit(n, used_nodes))
5731 continue;
5732
5733 /* Simple min distance search */
5734 val = node_distance(node, n);
5735
5736 if (val < min_val) {
5737 min_val = val;
5738 best_node = n;
5739 }
5740 }
5741
5742 set_bit(best_node, used_nodes);
5743 return best_node;
5744}
5745
5746/**
5747 * sched_domain_node_span - get a cpumask for a node's sched_domain
5748 * @node: node whose cpumask we're constructing
5749 * @size: number of nodes to include in this span
5750 *
5751 * Given a node, construct a good cpumask for its sched_domain to span. It
5752 * should be one that prevents unnecessary balancing, but also spreads tasks
5753 * out optimally.
5754 */
5755static cpumask_t sched_domain_node_span(int node)
5756{
9c1cfda2 5757 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5758 cpumask_t span, nodemask;
5759 int i;
9c1cfda2
JH
5760
5761 cpus_clear(span);
5762 bitmap_zero(used_nodes, MAX_NUMNODES);
5763
5764 nodemask = node_to_cpumask(node);
5765 cpus_or(span, span, nodemask);
5766 set_bit(node, used_nodes);
5767
5768 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5769 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5770
9c1cfda2
JH
5771 nodemask = node_to_cpumask(next_node);
5772 cpus_or(span, span, nodemask);
5773 }
5774
5775 return span;
5776}
5777#endif
5778
5c45bf27 5779int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5780
9c1cfda2 5781/*
48f24c4d 5782 * SMT sched-domains:
9c1cfda2 5783 */
1da177e4
LT
5784#ifdef CONFIG_SCHED_SMT
5785static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5786static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5787
6711cab4
SS
5788static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5789 struct sched_group **sg)
1da177e4 5790{
6711cab4
SS
5791 if (sg)
5792 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5793 return cpu;
5794}
5795#endif
5796
48f24c4d
IM
5797/*
5798 * multi-core sched-domains:
5799 */
1e9f28fa
SS
5800#ifdef CONFIG_SCHED_MC
5801static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5802static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5803#endif
5804
5805#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5806static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5807 struct sched_group **sg)
1e9f28fa 5808{
6711cab4 5809 int group;
a616058b
SS
5810 cpumask_t mask = cpu_sibling_map[cpu];
5811 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5812 group = first_cpu(mask);
5813 if (sg)
5814 *sg = &per_cpu(sched_group_core, group);
5815 return group;
1e9f28fa
SS
5816}
5817#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5818static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5819 struct sched_group **sg)
1e9f28fa 5820{
6711cab4
SS
5821 if (sg)
5822 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5823 return cpu;
5824}
5825#endif
5826
1da177e4 5827static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5828static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5829
6711cab4
SS
5830static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5831 struct sched_group **sg)
1da177e4 5832{
6711cab4 5833 int group;
48f24c4d 5834#ifdef CONFIG_SCHED_MC
1e9f28fa 5835 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5836 cpus_and(mask, mask, *cpu_map);
6711cab4 5837 group = first_cpu(mask);
1e9f28fa 5838#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5839 cpumask_t mask = cpu_sibling_map[cpu];
5840 cpus_and(mask, mask, *cpu_map);
6711cab4 5841 group = first_cpu(mask);
1da177e4 5842#else
6711cab4 5843 group = cpu;
1da177e4 5844#endif
6711cab4
SS
5845 if (sg)
5846 *sg = &per_cpu(sched_group_phys, group);
5847 return group;
1da177e4
LT
5848}
5849
5850#ifdef CONFIG_NUMA
1da177e4 5851/*
9c1cfda2
JH
5852 * The init_sched_build_groups can't handle what we want to do with node
5853 * groups, so roll our own. Now each node has its own list of groups which
5854 * gets dynamically allocated.
1da177e4 5855 */
9c1cfda2 5856static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5857static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5858
9c1cfda2 5859static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5860static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5861
6711cab4
SS
5862static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5863 struct sched_group **sg)
9c1cfda2 5864{
6711cab4
SS
5865 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5866 int group;
5867
5868 cpus_and(nodemask, nodemask, *cpu_map);
5869 group = first_cpu(nodemask);
5870
5871 if (sg)
5872 *sg = &per_cpu(sched_group_allnodes, group);
5873 return group;
1da177e4 5874}
6711cab4 5875
08069033
SS
5876static void init_numa_sched_groups_power(struct sched_group *group_head)
5877{
5878 struct sched_group *sg = group_head;
5879 int j;
5880
5881 if (!sg)
5882 return;
5883next_sg:
5884 for_each_cpu_mask(j, sg->cpumask) {
5885 struct sched_domain *sd;
5886
5887 sd = &per_cpu(phys_domains, j);
5888 if (j != first_cpu(sd->groups->cpumask)) {
5889 /*
5890 * Only add "power" once for each
5891 * physical package.
5892 */
5893 continue;
5894 }
5895
5517d86b 5896 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5897 }
5898 sg = sg->next;
5899 if (sg != group_head)
5900 goto next_sg;
5901}
1da177e4
LT
5902#endif
5903
a616058b 5904#ifdef CONFIG_NUMA
51888ca2
SV
5905/* Free memory allocated for various sched_group structures */
5906static void free_sched_groups(const cpumask_t *cpu_map)
5907{
a616058b 5908 int cpu, i;
51888ca2
SV
5909
5910 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5911 struct sched_group **sched_group_nodes
5912 = sched_group_nodes_bycpu[cpu];
5913
51888ca2
SV
5914 if (!sched_group_nodes)
5915 continue;
5916
5917 for (i = 0; i < MAX_NUMNODES; i++) {
5918 cpumask_t nodemask = node_to_cpumask(i);
5919 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5920
5921 cpus_and(nodemask, nodemask, *cpu_map);
5922 if (cpus_empty(nodemask))
5923 continue;
5924
5925 if (sg == NULL)
5926 continue;
5927 sg = sg->next;
5928next_sg:
5929 oldsg = sg;
5930 sg = sg->next;
5931 kfree(oldsg);
5932 if (oldsg != sched_group_nodes[i])
5933 goto next_sg;
5934 }
5935 kfree(sched_group_nodes);
5936 sched_group_nodes_bycpu[cpu] = NULL;
5937 }
51888ca2 5938}
a616058b
SS
5939#else
5940static void free_sched_groups(const cpumask_t *cpu_map)
5941{
5942}
5943#endif
51888ca2 5944
89c4710e
SS
5945/*
5946 * Initialize sched groups cpu_power.
5947 *
5948 * cpu_power indicates the capacity of sched group, which is used while
5949 * distributing the load between different sched groups in a sched domain.
5950 * Typically cpu_power for all the groups in a sched domain will be same unless
5951 * there are asymmetries in the topology. If there are asymmetries, group
5952 * having more cpu_power will pickup more load compared to the group having
5953 * less cpu_power.
5954 *
5955 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5956 * the maximum number of tasks a group can handle in the presence of other idle
5957 * or lightly loaded groups in the same sched domain.
5958 */
5959static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5960{
5961 struct sched_domain *child;
5962 struct sched_group *group;
5963
5964 WARN_ON(!sd || !sd->groups);
5965
5966 if (cpu != first_cpu(sd->groups->cpumask))
5967 return;
5968
5969 child = sd->child;
5970
5517d86b
ED
5971 sd->groups->__cpu_power = 0;
5972
89c4710e
SS
5973 /*
5974 * For perf policy, if the groups in child domain share resources
5975 * (for example cores sharing some portions of the cache hierarchy
5976 * or SMT), then set this domain groups cpu_power such that each group
5977 * can handle only one task, when there are other idle groups in the
5978 * same sched domain.
5979 */
5980 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5981 (child->flags &
5982 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5983 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5984 return;
5985 }
5986
89c4710e
SS
5987 /*
5988 * add cpu_power of each child group to this groups cpu_power
5989 */
5990 group = child->groups;
5991 do {
5517d86b 5992 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
5993 group = group->next;
5994 } while (group != child->groups);
5995}
5996
1da177e4 5997/*
1a20ff27
DG
5998 * Build sched domains for a given set of cpus and attach the sched domains
5999 * to the individual cpus
1da177e4 6000 */
51888ca2 6001static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6002{
6003 int i;
d1b55138
JH
6004#ifdef CONFIG_NUMA
6005 struct sched_group **sched_group_nodes = NULL;
6711cab4 6006 int sd_allnodes = 0;
d1b55138
JH
6007
6008 /*
6009 * Allocate the per-node list of sched groups
6010 */
dd41f596 6011 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6012 GFP_KERNEL);
d1b55138
JH
6013 if (!sched_group_nodes) {
6014 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6015 return -ENOMEM;
d1b55138
JH
6016 }
6017 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6018#endif
1da177e4
LT
6019
6020 /*
1a20ff27 6021 * Set up domains for cpus specified by the cpu_map.
1da177e4 6022 */
1a20ff27 6023 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6024 struct sched_domain *sd = NULL, *p;
6025 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6026
1a20ff27 6027 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6028
6029#ifdef CONFIG_NUMA
dd41f596
IM
6030 if (cpus_weight(*cpu_map) >
6031 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6032 sd = &per_cpu(allnodes_domains, i);
6033 *sd = SD_ALLNODES_INIT;
6034 sd->span = *cpu_map;
6711cab4 6035 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6036 p = sd;
6711cab4 6037 sd_allnodes = 1;
9c1cfda2
JH
6038 } else
6039 p = NULL;
6040
1da177e4 6041 sd = &per_cpu(node_domains, i);
1da177e4 6042 *sd = SD_NODE_INIT;
9c1cfda2
JH
6043 sd->span = sched_domain_node_span(cpu_to_node(i));
6044 sd->parent = p;
1a848870
SS
6045 if (p)
6046 p->child = sd;
9c1cfda2 6047 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6048#endif
6049
6050 p = sd;
6051 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6052 *sd = SD_CPU_INIT;
6053 sd->span = nodemask;
6054 sd->parent = p;
1a848870
SS
6055 if (p)
6056 p->child = sd;
6711cab4 6057 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6058
1e9f28fa
SS
6059#ifdef CONFIG_SCHED_MC
6060 p = sd;
6061 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6062 *sd = SD_MC_INIT;
6063 sd->span = cpu_coregroup_map(i);
6064 cpus_and(sd->span, sd->span, *cpu_map);
6065 sd->parent = p;
1a848870 6066 p->child = sd;
6711cab4 6067 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6068#endif
6069
1da177e4
LT
6070#ifdef CONFIG_SCHED_SMT
6071 p = sd;
6072 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6073 *sd = SD_SIBLING_INIT;
6074 sd->span = cpu_sibling_map[i];
1a20ff27 6075 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6076 sd->parent = p;
1a848870 6077 p->child = sd;
6711cab4 6078 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6079#endif
6080 }
6081
6082#ifdef CONFIG_SCHED_SMT
6083 /* Set up CPU (sibling) groups */
9c1cfda2 6084 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6085 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6086 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6087 if (i != first_cpu(this_sibling_map))
6088 continue;
6089
dd41f596
IM
6090 init_sched_build_groups(this_sibling_map, cpu_map,
6091 &cpu_to_cpu_group);
1da177e4
LT
6092 }
6093#endif
6094
1e9f28fa
SS
6095#ifdef CONFIG_SCHED_MC
6096 /* Set up multi-core groups */
6097 for_each_cpu_mask(i, *cpu_map) {
6098 cpumask_t this_core_map = cpu_coregroup_map(i);
6099 cpus_and(this_core_map, this_core_map, *cpu_map);
6100 if (i != first_cpu(this_core_map))
6101 continue;
dd41f596
IM
6102 init_sched_build_groups(this_core_map, cpu_map,
6103 &cpu_to_core_group);
1e9f28fa
SS
6104 }
6105#endif
6106
1da177e4
LT
6107 /* Set up physical groups */
6108 for (i = 0; i < MAX_NUMNODES; i++) {
6109 cpumask_t nodemask = node_to_cpumask(i);
6110
1a20ff27 6111 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6112 if (cpus_empty(nodemask))
6113 continue;
6114
6711cab4 6115 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6116 }
6117
6118#ifdef CONFIG_NUMA
6119 /* Set up node groups */
6711cab4 6120 if (sd_allnodes)
dd41f596
IM
6121 init_sched_build_groups(*cpu_map, cpu_map,
6122 &cpu_to_allnodes_group);
9c1cfda2
JH
6123
6124 for (i = 0; i < MAX_NUMNODES; i++) {
6125 /* Set up node groups */
6126 struct sched_group *sg, *prev;
6127 cpumask_t nodemask = node_to_cpumask(i);
6128 cpumask_t domainspan;
6129 cpumask_t covered = CPU_MASK_NONE;
6130 int j;
6131
6132 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6133 if (cpus_empty(nodemask)) {
6134 sched_group_nodes[i] = NULL;
9c1cfda2 6135 continue;
d1b55138 6136 }
9c1cfda2
JH
6137
6138 domainspan = sched_domain_node_span(i);
6139 cpus_and(domainspan, domainspan, *cpu_map);
6140
15f0b676 6141 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6142 if (!sg) {
6143 printk(KERN_WARNING "Can not alloc domain group for "
6144 "node %d\n", i);
6145 goto error;
6146 }
9c1cfda2
JH
6147 sched_group_nodes[i] = sg;
6148 for_each_cpu_mask(j, nodemask) {
6149 struct sched_domain *sd;
9761eea8 6150
9c1cfda2
JH
6151 sd = &per_cpu(node_domains, j);
6152 sd->groups = sg;
9c1cfda2 6153 }
5517d86b 6154 sg->__cpu_power = 0;
9c1cfda2 6155 sg->cpumask = nodemask;
51888ca2 6156 sg->next = sg;
9c1cfda2
JH
6157 cpus_or(covered, covered, nodemask);
6158 prev = sg;
6159
6160 for (j = 0; j < MAX_NUMNODES; j++) {
6161 cpumask_t tmp, notcovered;
6162 int n = (i + j) % MAX_NUMNODES;
6163
6164 cpus_complement(notcovered, covered);
6165 cpus_and(tmp, notcovered, *cpu_map);
6166 cpus_and(tmp, tmp, domainspan);
6167 if (cpus_empty(tmp))
6168 break;
6169
6170 nodemask = node_to_cpumask(n);
6171 cpus_and(tmp, tmp, nodemask);
6172 if (cpus_empty(tmp))
6173 continue;
6174
15f0b676
SV
6175 sg = kmalloc_node(sizeof(struct sched_group),
6176 GFP_KERNEL, i);
9c1cfda2
JH
6177 if (!sg) {
6178 printk(KERN_WARNING
6179 "Can not alloc domain group for node %d\n", j);
51888ca2 6180 goto error;
9c1cfda2 6181 }
5517d86b 6182 sg->__cpu_power = 0;
9c1cfda2 6183 sg->cpumask = tmp;
51888ca2 6184 sg->next = prev->next;
9c1cfda2
JH
6185 cpus_or(covered, covered, tmp);
6186 prev->next = sg;
6187 prev = sg;
6188 }
9c1cfda2 6189 }
1da177e4
LT
6190#endif
6191
6192 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6193#ifdef CONFIG_SCHED_SMT
1a20ff27 6194 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6195 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6196
89c4710e 6197 init_sched_groups_power(i, sd);
5c45bf27 6198 }
1da177e4 6199#endif
1e9f28fa 6200#ifdef CONFIG_SCHED_MC
5c45bf27 6201 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6202 struct sched_domain *sd = &per_cpu(core_domains, i);
6203
89c4710e 6204 init_sched_groups_power(i, sd);
5c45bf27
SS
6205 }
6206#endif
1e9f28fa 6207
5c45bf27 6208 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6209 struct sched_domain *sd = &per_cpu(phys_domains, i);
6210
89c4710e 6211 init_sched_groups_power(i, sd);
1da177e4
LT
6212 }
6213
9c1cfda2 6214#ifdef CONFIG_NUMA
08069033
SS
6215 for (i = 0; i < MAX_NUMNODES; i++)
6216 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6217
6711cab4
SS
6218 if (sd_allnodes) {
6219 struct sched_group *sg;
f712c0c7 6220
6711cab4 6221 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6222 init_numa_sched_groups_power(sg);
6223 }
9c1cfda2
JH
6224#endif
6225
1da177e4 6226 /* Attach the domains */
1a20ff27 6227 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6228 struct sched_domain *sd;
6229#ifdef CONFIG_SCHED_SMT
6230 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6231#elif defined(CONFIG_SCHED_MC)
6232 sd = &per_cpu(core_domains, i);
1da177e4
LT
6233#else
6234 sd = &per_cpu(phys_domains, i);
6235#endif
6236 cpu_attach_domain(sd, i);
6237 }
51888ca2
SV
6238
6239 return 0;
6240
a616058b 6241#ifdef CONFIG_NUMA
51888ca2
SV
6242error:
6243 free_sched_groups(cpu_map);
6244 return -ENOMEM;
a616058b 6245#endif
1da177e4 6246}
1a20ff27
DG
6247/*
6248 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6249 */
51888ca2 6250static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6251{
6252 cpumask_t cpu_default_map;
51888ca2 6253 int err;
1da177e4 6254
1a20ff27
DG
6255 /*
6256 * Setup mask for cpus without special case scheduling requirements.
6257 * For now this just excludes isolated cpus, but could be used to
6258 * exclude other special cases in the future.
6259 */
6260 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6261
51888ca2
SV
6262 err = build_sched_domains(&cpu_default_map);
6263
6264 return err;
1a20ff27
DG
6265}
6266
6267static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6268{
51888ca2 6269 free_sched_groups(cpu_map);
9c1cfda2 6270}
1da177e4 6271
1a20ff27
DG
6272/*
6273 * Detach sched domains from a group of cpus specified in cpu_map
6274 * These cpus will now be attached to the NULL domain
6275 */
858119e1 6276static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6277{
6278 int i;
6279
6280 for_each_cpu_mask(i, *cpu_map)
6281 cpu_attach_domain(NULL, i);
6282 synchronize_sched();
6283 arch_destroy_sched_domains(cpu_map);
6284}
6285
6286/*
6287 * Partition sched domains as specified by the cpumasks below.
6288 * This attaches all cpus from the cpumasks to the NULL domain,
6289 * waits for a RCU quiescent period, recalculates sched
6290 * domain information and then attaches them back to the
6291 * correct sched domains
6292 * Call with hotplug lock held
6293 */
51888ca2 6294int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6295{
6296 cpumask_t change_map;
51888ca2 6297 int err = 0;
1a20ff27
DG
6298
6299 cpus_and(*partition1, *partition1, cpu_online_map);
6300 cpus_and(*partition2, *partition2, cpu_online_map);
6301 cpus_or(change_map, *partition1, *partition2);
6302
6303 /* Detach sched domains from all of the affected cpus */
6304 detach_destroy_domains(&change_map);
6305 if (!cpus_empty(*partition1))
51888ca2
SV
6306 err = build_sched_domains(partition1);
6307 if (!err && !cpus_empty(*partition2))
6308 err = build_sched_domains(partition2);
6309
6310 return err;
1a20ff27
DG
6311}
6312
5c45bf27
SS
6313#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6314int arch_reinit_sched_domains(void)
6315{
6316 int err;
6317
5be9361c 6318 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6319 detach_destroy_domains(&cpu_online_map);
6320 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6321 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6322
6323 return err;
6324}
6325
6326static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6327{
6328 int ret;
6329
6330 if (buf[0] != '0' && buf[0] != '1')
6331 return -EINVAL;
6332
6333 if (smt)
6334 sched_smt_power_savings = (buf[0] == '1');
6335 else
6336 sched_mc_power_savings = (buf[0] == '1');
6337
6338 ret = arch_reinit_sched_domains();
6339
6340 return ret ? ret : count;
6341}
6342
6343int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6344{
6345 int err = 0;
48f24c4d 6346
5c45bf27
SS
6347#ifdef CONFIG_SCHED_SMT
6348 if (smt_capable())
6349 err = sysfs_create_file(&cls->kset.kobj,
6350 &attr_sched_smt_power_savings.attr);
6351#endif
6352#ifdef CONFIG_SCHED_MC
6353 if (!err && mc_capable())
6354 err = sysfs_create_file(&cls->kset.kobj,
6355 &attr_sched_mc_power_savings.attr);
6356#endif
6357 return err;
6358}
6359#endif
6360
6361#ifdef CONFIG_SCHED_MC
6362static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6363{
6364 return sprintf(page, "%u\n", sched_mc_power_savings);
6365}
48f24c4d
IM
6366static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6367 const char *buf, size_t count)
5c45bf27
SS
6368{
6369 return sched_power_savings_store(buf, count, 0);
6370}
6371SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6372 sched_mc_power_savings_store);
6373#endif
6374
6375#ifdef CONFIG_SCHED_SMT
6376static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6377{
6378 return sprintf(page, "%u\n", sched_smt_power_savings);
6379}
48f24c4d
IM
6380static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6381 const char *buf, size_t count)
5c45bf27
SS
6382{
6383 return sched_power_savings_store(buf, count, 1);
6384}
6385SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6386 sched_smt_power_savings_store);
6387#endif
6388
1da177e4
LT
6389/*
6390 * Force a reinitialization of the sched domains hierarchy. The domains
6391 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6392 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6393 * which will prevent rebalancing while the sched domains are recalculated.
6394 */
6395static int update_sched_domains(struct notifier_block *nfb,
6396 unsigned long action, void *hcpu)
6397{
1da177e4
LT
6398 switch (action) {
6399 case CPU_UP_PREPARE:
8bb78442 6400 case CPU_UP_PREPARE_FROZEN:
1da177e4 6401 case CPU_DOWN_PREPARE:
8bb78442 6402 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6403 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6404 return NOTIFY_OK;
6405
6406 case CPU_UP_CANCELED:
8bb78442 6407 case CPU_UP_CANCELED_FROZEN:
1da177e4 6408 case CPU_DOWN_FAILED:
8bb78442 6409 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6410 case CPU_ONLINE:
8bb78442 6411 case CPU_ONLINE_FROZEN:
1da177e4 6412 case CPU_DEAD:
8bb78442 6413 case CPU_DEAD_FROZEN:
1da177e4
LT
6414 /*
6415 * Fall through and re-initialise the domains.
6416 */
6417 break;
6418 default:
6419 return NOTIFY_DONE;
6420 }
6421
6422 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6423 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6424
6425 return NOTIFY_OK;
6426}
1da177e4
LT
6427
6428void __init sched_init_smp(void)
6429{
5c1e1767
NP
6430 cpumask_t non_isolated_cpus;
6431
5be9361c 6432 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6433 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6434 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6435 if (cpus_empty(non_isolated_cpus))
6436 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6437 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6438 /* XXX: Theoretical race here - CPU may be hotplugged now */
6439 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6440
e692ab53
NP
6441 init_sched_domain_sysctl();
6442
5c1e1767
NP
6443 /* Move init over to a non-isolated CPU */
6444 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6445 BUG();
dd41f596 6446 sched_init_granularity();
1da177e4
LT
6447}
6448#else
6449void __init sched_init_smp(void)
6450{
dd41f596 6451 sched_init_granularity();
1da177e4
LT
6452}
6453#endif /* CONFIG_SMP */
6454
6455int in_sched_functions(unsigned long addr)
6456{
6457 /* Linker adds these: start and end of __sched functions */
6458 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6459
1da177e4
LT
6460 return in_lock_functions(addr) ||
6461 (addr >= (unsigned long)__sched_text_start
6462 && addr < (unsigned long)__sched_text_end);
6463}
6464
dd41f596
IM
6465static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6466{
6467 cfs_rq->tasks_timeline = RB_ROOT;
6468 cfs_rq->fair_clock = 1;
6469#ifdef CONFIG_FAIR_GROUP_SCHED
6470 cfs_rq->rq = rq;
6471#endif
6472}
6473
1da177e4
LT
6474void __init sched_init(void)
6475{
dd41f596 6476 u64 now = sched_clock();
476f3534 6477 int highest_cpu = 0;
dd41f596
IM
6478 int i, j;
6479
6480 /*
6481 * Link up the scheduling class hierarchy:
6482 */
6483 rt_sched_class.next = &fair_sched_class;
6484 fair_sched_class.next = &idle_sched_class;
6485 idle_sched_class.next = NULL;
1da177e4 6486
0a945022 6487 for_each_possible_cpu(i) {
dd41f596 6488 struct rt_prio_array *array;
70b97a7f 6489 struct rq *rq;
1da177e4
LT
6490
6491 rq = cpu_rq(i);
6492 spin_lock_init(&rq->lock);
fcb99371 6493 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6494 rq->nr_running = 0;
dd41f596
IM
6495 rq->clock = 1;
6496 init_cfs_rq(&rq->cfs, rq);
6497#ifdef CONFIG_FAIR_GROUP_SCHED
6498 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6499 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6500#endif
6501 rq->ls.load_update_last = now;
6502 rq->ls.load_update_start = now;
1da177e4 6503
dd41f596
IM
6504 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6505 rq->cpu_load[j] = 0;
1da177e4 6506#ifdef CONFIG_SMP
41c7ce9a 6507 rq->sd = NULL;
1da177e4 6508 rq->active_balance = 0;
dd41f596 6509 rq->next_balance = jiffies;
1da177e4 6510 rq->push_cpu = 0;
0a2966b4 6511 rq->cpu = i;
1da177e4
LT
6512 rq->migration_thread = NULL;
6513 INIT_LIST_HEAD(&rq->migration_queue);
6514#endif
6515 atomic_set(&rq->nr_iowait, 0);
6516
dd41f596
IM
6517 array = &rq->rt.active;
6518 for (j = 0; j < MAX_RT_PRIO; j++) {
6519 INIT_LIST_HEAD(array->queue + j);
6520 __clear_bit(j, array->bitmap);
1da177e4 6521 }
476f3534 6522 highest_cpu = i;
dd41f596
IM
6523 /* delimiter for bitsearch: */
6524 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6525 }
6526
2dd73a4f 6527 set_load_weight(&init_task);
b50f60ce 6528
e107be36
AK
6529#ifdef CONFIG_PREEMPT_NOTIFIERS
6530 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6531#endif
6532
c9819f45 6533#ifdef CONFIG_SMP
476f3534 6534 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6535 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6536#endif
6537
b50f60ce
HC
6538#ifdef CONFIG_RT_MUTEXES
6539 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6540#endif
6541
1da177e4
LT
6542 /*
6543 * The boot idle thread does lazy MMU switching as well:
6544 */
6545 atomic_inc(&init_mm.mm_count);
6546 enter_lazy_tlb(&init_mm, current);
6547
6548 /*
6549 * Make us the idle thread. Technically, schedule() should not be
6550 * called from this thread, however somewhere below it might be,
6551 * but because we are the idle thread, we just pick up running again
6552 * when this runqueue becomes "idle".
6553 */
6554 init_idle(current, smp_processor_id());
dd41f596
IM
6555 /*
6556 * During early bootup we pretend to be a normal task:
6557 */
6558 current->sched_class = &fair_sched_class;
1da177e4
LT
6559}
6560
6561#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6562void __might_sleep(char *file, int line)
6563{
48f24c4d 6564#ifdef in_atomic
1da177e4
LT
6565 static unsigned long prev_jiffy; /* ratelimiting */
6566
6567 if ((in_atomic() || irqs_disabled()) &&
6568 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6569 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6570 return;
6571 prev_jiffy = jiffies;
91368d73 6572 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6573 " context at %s:%d\n", file, line);
6574 printk("in_atomic():%d, irqs_disabled():%d\n",
6575 in_atomic(), irqs_disabled());
a4c410f0 6576 debug_show_held_locks(current);
3117df04
IM
6577 if (irqs_disabled())
6578 print_irqtrace_events(current);
1da177e4
LT
6579 dump_stack();
6580 }
6581#endif
6582}
6583EXPORT_SYMBOL(__might_sleep);
6584#endif
6585
6586#ifdef CONFIG_MAGIC_SYSRQ
6587void normalize_rt_tasks(void)
6588{
a0f98a1c 6589 struct task_struct *g, *p;
1da177e4 6590 unsigned long flags;
70b97a7f 6591 struct rq *rq;
dd41f596 6592 int on_rq;
1da177e4
LT
6593
6594 read_lock_irq(&tasklist_lock);
a0f98a1c 6595 do_each_thread(g, p) {
dd41f596
IM
6596 p->se.fair_key = 0;
6597 p->se.wait_runtime = 0;
6cfb0d5d 6598 p->se.exec_start = 0;
dd41f596 6599 p->se.wait_start_fair = 0;
6cfb0d5d
IM
6600 p->se.sleep_start_fair = 0;
6601#ifdef CONFIG_SCHEDSTATS
dd41f596 6602 p->se.wait_start = 0;
dd41f596 6603 p->se.sleep_start = 0;
dd41f596 6604 p->se.block_start = 0;
6cfb0d5d 6605#endif
dd41f596
IM
6606 task_rq(p)->cfs.fair_clock = 0;
6607 task_rq(p)->clock = 0;
6608
6609 if (!rt_task(p)) {
6610 /*
6611 * Renice negative nice level userspace
6612 * tasks back to 0:
6613 */
6614 if (TASK_NICE(p) < 0 && p->mm)
6615 set_user_nice(p, 0);
1da177e4 6616 continue;
dd41f596 6617 }
1da177e4 6618
b29739f9
IM
6619 spin_lock_irqsave(&p->pi_lock, flags);
6620 rq = __task_rq_lock(p);
dd41f596
IM
6621#ifdef CONFIG_SMP
6622 /*
6623 * Do not touch the migration thread:
6624 */
6625 if (p == rq->migration_thread)
6626 goto out_unlock;
6627#endif
1da177e4 6628
dd41f596
IM
6629 on_rq = p->se.on_rq;
6630 if (on_rq)
6631 deactivate_task(task_rq(p), p, 0);
6632 __setscheduler(rq, p, SCHED_NORMAL, 0);
6633 if (on_rq) {
6634 activate_task(task_rq(p), p, 0);
1da177e4
LT
6635 resched_task(rq->curr);
6636 }
dd41f596
IM
6637#ifdef CONFIG_SMP
6638 out_unlock:
6639#endif
b29739f9
IM
6640 __task_rq_unlock(rq);
6641 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6642 } while_each_thread(g, p);
6643
1da177e4
LT
6644 read_unlock_irq(&tasklist_lock);
6645}
6646
6647#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6648
6649#ifdef CONFIG_IA64
6650/*
6651 * These functions are only useful for the IA64 MCA handling.
6652 *
6653 * They can only be called when the whole system has been
6654 * stopped - every CPU needs to be quiescent, and no scheduling
6655 * activity can take place. Using them for anything else would
6656 * be a serious bug, and as a result, they aren't even visible
6657 * under any other configuration.
6658 */
6659
6660/**
6661 * curr_task - return the current task for a given cpu.
6662 * @cpu: the processor in question.
6663 *
6664 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6665 */
36c8b586 6666struct task_struct *curr_task(int cpu)
1df5c10a
LT
6667{
6668 return cpu_curr(cpu);
6669}
6670
6671/**
6672 * set_curr_task - set the current task for a given cpu.
6673 * @cpu: the processor in question.
6674 * @p: the task pointer to set.
6675 *
6676 * Description: This function must only be used when non-maskable interrupts
6677 * are serviced on a separate stack. It allows the architecture to switch the
6678 * notion of the current task on a cpu in a non-blocking manner. This function
6679 * must be called with all CPU's synchronized, and interrupts disabled, the
6680 * and caller must save the original value of the current task (see
6681 * curr_task() above) and restore that value before reenabling interrupts and
6682 * re-starting the system.
6683 *
6684 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6685 */
36c8b586 6686void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6687{
6688 cpu_curr(cpu) = p;
6689}
6690
6691#endif