perfcounters: add context switch counter
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
5517d86b
ED
121#ifdef CONFIG_SMP
122/*
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
125 */
126static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
127{
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129}
130
131/*
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
134 */
135static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
136{
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
139}
140#endif
141
e05606d3
IM
142static inline int rt_policy(int policy)
143{
3f33a7ce 144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
145 return 1;
146 return 0;
147}
148
149static inline int task_has_rt_policy(struct task_struct *p)
150{
151 return rt_policy(p->policy);
152}
153
1da177e4 154/*
6aa645ea 155 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 156 */
6aa645ea
IM
157struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
160};
161
d0b27fa7 162struct rt_bandwidth {
ea736ed5
IM
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
165 ktime_t rt_period;
166 u64 rt_runtime;
167 struct hrtimer rt_period_timer;
d0b27fa7
PZ
168};
169
170static struct rt_bandwidth def_rt_bandwidth;
171
172static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
173
174static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
175{
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 ktime_t now;
179 int overrun;
180 int idle = 0;
181
182 for (;;) {
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
185
186 if (!overrun)
187 break;
188
189 idle = do_sched_rt_period_timer(rt_b, overrun);
190 }
191
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
193}
194
195static
196void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
197{
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
200
ac086bc2
PZ
201 spin_lock_init(&rt_b->rt_runtime_lock);
202
d0b27fa7
PZ
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
ccc7dadf 206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
d0b27fa7
PZ
207}
208
c8bfff6d
KH
209static inline int rt_bandwidth_enabled(void)
210{
211 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
212}
213
214static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
215{
216 ktime_t now;
217
0b148fa0 218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
219 return;
220
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
223
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
228
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
231 hrtimer_start_expires(&rt_b->rt_period_timer,
232 HRTIMER_MODE_ABS);
d0b27fa7
PZ
233 }
234 spin_unlock(&rt_b->rt_runtime_lock);
235}
236
237#ifdef CONFIG_RT_GROUP_SCHED
238static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
239{
240 hrtimer_cancel(&rt_b->rt_period_timer);
241}
242#endif
243
712555ee
HC
244/*
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
247 */
248static DEFINE_MUTEX(sched_domains_mutex);
249
052f1dc7 250#ifdef CONFIG_GROUP_SCHED
29f59db3 251
68318b8e
SV
252#include <linux/cgroup.h>
253
29f59db3
SV
254struct cfs_rq;
255
6f505b16
PZ
256static LIST_HEAD(task_groups);
257
29f59db3 258/* task group related information */
4cf86d77 259struct task_group {
052f1dc7 260#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
261 struct cgroup_subsys_state css;
262#endif
052f1dc7
PZ
263
264#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
052f1dc7
PZ
270#endif
271
272#ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
275
d0b27fa7 276 struct rt_bandwidth rt_bandwidth;
052f1dc7 277#endif
6b2d7700 278
ae8393e5 279 struct rcu_head rcu;
6f505b16 280 struct list_head list;
f473aa5e
PZ
281
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
29f59db3
SV
285};
286
354d60c2 287#ifdef CONFIG_USER_SCHED
eff766a6
PZ
288
289/*
290 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
293 */
294struct task_group root_task_group;
295
052f1dc7 296#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
297/* Default task group's sched entity on each cpu */
298static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299/* Default task group's cfs_rq on each cpu */
300static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 301#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
302
303#ifdef CONFIG_RT_GROUP_SCHED
304static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 306#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 307#else /* !CONFIG_USER_SCHED */
eff766a6 308#define root_task_group init_task_group
9a7e0b18 309#endif /* CONFIG_USER_SCHED */
6f505b16 310
8ed36996 311/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
312 * a task group's cpu shares.
313 */
8ed36996 314static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 315
052f1dc7 316#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
317#ifdef CONFIG_USER_SCHED
318# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 319#else /* !CONFIG_USER_SCHED */
052f1dc7 320# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 321#endif /* CONFIG_USER_SCHED */
052f1dc7 322
cb4ad1ff 323/*
2e084786
LJ
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
cb4ad1ff
MX
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
330 */
18d95a28 331#define MIN_SHARES 2
2e084786 332#define MAX_SHARES (1UL << 18)
18d95a28 333
052f1dc7
PZ
334static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335#endif
336
29f59db3 337/* Default task group.
3a252015 338 * Every task in system belong to this group at bootup.
29f59db3 339 */
434d53b0 340struct task_group init_task_group;
29f59db3
SV
341
342/* return group to which a task belongs */
4cf86d77 343static inline struct task_group *task_group(struct task_struct *p)
29f59db3 344{
4cf86d77 345 struct task_group *tg;
9b5b7751 346
052f1dc7 347#ifdef CONFIG_USER_SCHED
24e377a8 348 tg = p->user->tg;
052f1dc7 349#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
24e377a8 352#else
41a2d6cf 353 tg = &init_task_group;
24e377a8 354#endif
9b5b7751 355 return tg;
29f59db3
SV
356}
357
358/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 359static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 360{
052f1dc7 361#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
052f1dc7 364#endif
6f505b16 365
052f1dc7 366#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 369#endif
29f59db3
SV
370}
371
372#else
373
6f505b16 374static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
375static inline struct task_group *task_group(struct task_struct *p)
376{
377 return NULL;
378}
29f59db3 379
052f1dc7 380#endif /* CONFIG_GROUP_SCHED */
29f59db3 381
6aa645ea
IM
382/* CFS-related fields in a runqueue */
383struct cfs_rq {
384 struct load_weight load;
385 unsigned long nr_running;
386
6aa645ea 387 u64 exec_clock;
e9acbff6 388 u64 min_vruntime;
6aa645ea
IM
389
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
4a55bd5e
PZ
392
393 struct list_head tasks;
394 struct list_head *balance_iterator;
395
396 /*
397 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
398 * It is set to NULL otherwise (i.e when none are currently running).
399 */
4793241b 400 struct sched_entity *curr, *next, *last;
ddc97297 401
5ac5c4d6 402 unsigned int nr_spread_over;
ddc97297 403
62160e3f 404#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
406
41a2d6cf
IM
407 /*
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
411 *
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
414 */
41a2d6cf
IM
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
417
418#ifdef CONFIG_SMP
c09595f6 419 /*
c8cba857 420 * the part of load.weight contributed by tasks
c09595f6 421 */
c8cba857 422 unsigned long task_weight;
c09595f6 423
c8cba857
PZ
424 /*
425 * h_load = weight * f(tg)
426 *
427 * Where f(tg) is the recursive weight fraction assigned to
428 * this group.
429 */
430 unsigned long h_load;
c09595f6 431
c8cba857
PZ
432 /*
433 * this cpu's part of tg->shares
434 */
435 unsigned long shares;
f1d239f7
PZ
436
437 /*
438 * load.weight at the time we set shares
439 */
440 unsigned long rq_weight;
c09595f6 441#endif
6aa645ea
IM
442#endif
443};
1da177e4 444
6aa645ea
IM
445/* Real-Time classes' related field in a runqueue: */
446struct rt_rq {
447 struct rt_prio_array active;
63489e45 448 unsigned long rt_nr_running;
052f1dc7 449#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
450 int highest_prio; /* highest queued rt task prio */
451#endif
fa85ae24 452#ifdef CONFIG_SMP
73fe6aae 453 unsigned long rt_nr_migratory;
a22d7fc1 454 int overloaded;
fa85ae24 455#endif
6f505b16 456 int rt_throttled;
fa85ae24 457 u64 rt_time;
ac086bc2 458 u64 rt_runtime;
ea736ed5 459 /* Nests inside the rq lock: */
ac086bc2 460 spinlock_t rt_runtime_lock;
6f505b16 461
052f1dc7 462#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
463 unsigned long rt_nr_boosted;
464
6f505b16
PZ
465 struct rq *rq;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
469#endif
6aa645ea
IM
470};
471
57d885fe
GH
472#ifdef CONFIG_SMP
473
474/*
475 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
478 * exclusive cpuset is created, we also create and attach a new root-domain
479 * object.
480 *
57d885fe
GH
481 */
482struct root_domain {
483 atomic_t refcount;
484 cpumask_t span;
485 cpumask_t online;
637f5085 486
0eab9146 487 /*
637f5085
GH
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
490 */
491 cpumask_t rto_mask;
0eab9146 492 atomic_t rto_count;
6e0534f2
GH
493#ifdef CONFIG_SMP
494 struct cpupri cpupri;
495#endif
57d885fe
GH
496};
497
dc938520
GH
498/*
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
501 */
57d885fe
GH
502static struct root_domain def_root_domain;
503
504#endif
505
1da177e4
LT
506/*
507 * This is the main, per-CPU runqueue data structure.
508 *
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
512 */
70b97a7f 513struct rq {
d8016491
IM
514 /* runqueue lock: */
515 spinlock_t lock;
1da177e4
LT
516
517 /*
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
520 */
521 unsigned long nr_running;
6aa645ea
IM
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 524 unsigned char idle_at_tick;
46cb4b7c 525#ifdef CONFIG_NO_HZ
15934a37 526 unsigned long last_tick_seen;
46cb4b7c
SS
527 unsigned char in_nohz_recently;
528#endif
d8016491
IM
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
6aa645ea
IM
531 unsigned long nr_load_updates;
532 u64 nr_switches;
533
534 struct cfs_rq cfs;
6f505b16 535 struct rt_rq rt;
6f505b16 536
6aa645ea 537#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
540#endif
541#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 542 struct list_head leaf_rt_rq_list;
1da177e4 543#endif
1da177e4
LT
544
545 /*
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
550 */
551 unsigned long nr_uninterruptible;
552
36c8b586 553 struct task_struct *curr, *idle;
c9819f45 554 unsigned long next_balance;
1da177e4 555 struct mm_struct *prev_mm;
6aa645ea 556
3e51f33f 557 u64 clock;
6aa645ea 558
1da177e4
LT
559 atomic_t nr_iowait;
560
561#ifdef CONFIG_SMP
0eab9146 562 struct root_domain *rd;
1da177e4
LT
563 struct sched_domain *sd;
564
565 /* For active balancing */
566 int active_balance;
567 int push_cpu;
d8016491
IM
568 /* cpu of this runqueue: */
569 int cpu;
1f11eb6a 570 int online;
1da177e4 571
a8a51d5e 572 unsigned long avg_load_per_task;
1da177e4 573
36c8b586 574 struct task_struct *migration_thread;
1da177e4
LT
575 struct list_head migration_queue;
576#endif
577
8f4d37ec 578#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
579#ifdef CONFIG_SMP
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
582#endif
8f4d37ec
PZ
583 struct hrtimer hrtick_timer;
584#endif
585
1da177e4
LT
586#ifdef CONFIG_SCHEDSTATS
587 /* latency stats */
588 struct sched_info rq_sched_info;
589
590 /* sys_sched_yield() stats */
480b9434
KC
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
1da177e4
LT
595
596 /* schedule() stats */
480b9434
KC
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
1da177e4
LT
600
601 /* try_to_wake_up() stats */
480b9434
KC
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
b8efb561
IM
604
605 /* BKL stats */
480b9434 606 unsigned int bkl_count;
1da177e4
LT
607#endif
608};
609
f34e3b61 610static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 611
15afe09b 612static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 613{
15afe09b 614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
615}
616
0a2966b4
CL
617static inline int cpu_of(struct rq *rq)
618{
619#ifdef CONFIG_SMP
620 return rq->cpu;
621#else
622 return 0;
623#endif
624}
625
674311d5
NP
626/*
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 628 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
629 *
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
632 */
48f24c4d
IM
633#define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
635
636#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637#define this_rq() (&__get_cpu_var(runqueues))
638#define task_rq(p) cpu_rq(task_cpu(p))
639#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
640
3e51f33f
PZ
641static inline void update_rq_clock(struct rq *rq)
642{
643 rq->clock = sched_clock_cpu(cpu_of(rq));
644}
645
bf5c91ba
IM
646/*
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
648 */
649#ifdef CONFIG_SCHED_DEBUG
650# define const_debug __read_mostly
651#else
652# define const_debug static const
653#endif
654
017730c1
IM
655/**
656 * runqueue_is_locked
657 *
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
661 */
662int runqueue_is_locked(void)
663{
664 int cpu = get_cpu();
665 struct rq *rq = cpu_rq(cpu);
666 int ret;
667
668 ret = spin_is_locked(&rq->lock);
669 put_cpu();
670 return ret;
671}
672
bf5c91ba
IM
673/*
674 * Debugging: various feature bits
675 */
f00b45c1
PZ
676
677#define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
679
bf5c91ba 680enum {
f00b45c1 681#include "sched_features.h"
bf5c91ba
IM
682};
683
f00b45c1
PZ
684#undef SCHED_FEAT
685
686#define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
688
bf5c91ba 689const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
690#include "sched_features.h"
691 0;
692
693#undef SCHED_FEAT
694
695#ifdef CONFIG_SCHED_DEBUG
696#define SCHED_FEAT(name, enabled) \
697 #name ,
698
983ed7a6 699static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
700#include "sched_features.h"
701 NULL
702};
703
704#undef SCHED_FEAT
705
983ed7a6 706static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
707{
708 filp->private_data = inode->i_private;
709 return 0;
710}
711
712static ssize_t
713sched_feat_read(struct file *filp, char __user *ubuf,
714 size_t cnt, loff_t *ppos)
715{
716 char *buf;
717 int r = 0;
718 int len = 0;
719 int i;
720
721 for (i = 0; sched_feat_names[i]; i++) {
722 len += strlen(sched_feat_names[i]);
723 len += 4;
724 }
725
726 buf = kmalloc(len + 2, GFP_KERNEL);
727 if (!buf)
728 return -ENOMEM;
729
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (sysctl_sched_features & (1UL << i))
732 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
733 else
c24b7c52 734 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
735 }
736
737 r += sprintf(buf + r, "\n");
738 WARN_ON(r >= len + 2);
739
740 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
741
742 kfree(buf);
743
744 return r;
745}
746
747static ssize_t
748sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
750{
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
755
756 if (cnt > 63)
757 cnt = 63;
758
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
761
762 buf[cnt] = 0;
763
c24b7c52 764 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
765 neg = 1;
766 cmp += 3;
767 }
768
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
771
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
778 }
779 }
780
781 if (!sched_feat_names[i])
782 return -EINVAL;
783
784 filp->f_pos += cnt;
785
786 return cnt;
787}
788
789static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open,
791 .read = sched_feat_read,
792 .write = sched_feat_write,
793};
794
795static __init int sched_init_debug(void)
796{
f00b45c1
PZ
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801}
802late_initcall(sched_init_debug);
803
804#endif
805
806#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 807
b82d9fdd
PZ
808/*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
2398f2c6
PZ
814/*
815 * ratelimit for updating the group shares.
55cd5340 816 * default: 0.25ms
2398f2c6 817 */
55cd5340 818unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 819
ffda12a1
PZ
820/*
821 * Inject some fuzzyness into changing the per-cpu group shares
822 * this avoids remote rq-locks at the expense of fairness.
823 * default: 4
824 */
825unsigned int sysctl_sched_shares_thresh = 4;
826
fa85ae24 827/*
9f0c1e56 828 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
829 * default: 1s
830 */
9f0c1e56 831unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 832
6892b75e
IM
833static __read_mostly int scheduler_running;
834
9f0c1e56
PZ
835/*
836 * part of the period that we allow rt tasks to run in us.
837 * default: 0.95s
838 */
839int sysctl_sched_rt_runtime = 950000;
fa85ae24 840
d0b27fa7
PZ
841static inline u64 global_rt_period(void)
842{
843 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
844}
845
846static inline u64 global_rt_runtime(void)
847{
e26873bb 848 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
849 return RUNTIME_INF;
850
851 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
852}
fa85ae24 853
1da177e4 854#ifndef prepare_arch_switch
4866cde0
NP
855# define prepare_arch_switch(next) do { } while (0)
856#endif
857#ifndef finish_arch_switch
858# define finish_arch_switch(prev) do { } while (0)
859#endif
860
051a1d1a
DA
861static inline int task_current(struct rq *rq, struct task_struct *p)
862{
863 return rq->curr == p;
864}
865
4866cde0 866#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 867static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 868{
051a1d1a 869 return task_current(rq, p);
4866cde0
NP
870}
871
70b97a7f 872static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
873{
874}
875
70b97a7f 876static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 877{
da04c035
IM
878#ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
881#endif
8a25d5de
IM
882 /*
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
885 * prev into current:
886 */
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
888
4866cde0
NP
889 spin_unlock_irq(&rq->lock);
890}
891
892#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 893static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
894{
895#ifdef CONFIG_SMP
896 return p->oncpu;
897#else
051a1d1a 898 return task_current(rq, p);
4866cde0
NP
899#endif
900}
901
70b97a7f 902static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
903{
904#ifdef CONFIG_SMP
905 /*
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
908 * here.
909 */
910 next->oncpu = 1;
911#endif
912#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
914#else
915 spin_unlock(&rq->lock);
916#endif
917}
918
70b97a7f 919static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
920{
921#ifdef CONFIG_SMP
922 /*
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
925 * finished.
926 */
927 smp_wmb();
928 prev->oncpu = 0;
929#endif
930#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 local_irq_enable();
1da177e4 932#endif
4866cde0
NP
933}
934#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 935
b29739f9
IM
936/*
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
939 */
70b97a7f 940static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
941 __acquires(rq->lock)
942{
3a5c359a
AK
943 for (;;) {
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
b29739f9 948 spin_unlock(&rq->lock);
b29739f9 949 }
b29739f9
IM
950}
951
1da177e4
LT
952/*
953 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 954 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
955 * explicitly disabling preemption.
956 */
70b97a7f 957static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
958 __acquires(rq->lock)
959{
70b97a7f 960 struct rq *rq;
1da177e4 961
3a5c359a
AK
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
1da177e4 968 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 969 }
1da177e4
LT
970}
971
ad474cac
ON
972void task_rq_unlock_wait(struct task_struct *p)
973{
974 struct rq *rq = task_rq(p);
975
976 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
977 spin_unlock_wait(&rq->lock);
978}
979
a9957449 980static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
981 __releases(rq->lock)
982{
983 spin_unlock(&rq->lock);
984}
985
70b97a7f 986static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
987 __releases(rq->lock)
988{
989 spin_unlock_irqrestore(&rq->lock, *flags);
990}
991
1da177e4 992/*
cc2a73b5 993 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 994 */
a9957449 995static struct rq *this_rq_lock(void)
1da177e4
LT
996 __acquires(rq->lock)
997{
70b97a7f 998 struct rq *rq;
1da177e4
LT
999
1000 local_irq_disable();
1001 rq = this_rq();
1002 spin_lock(&rq->lock);
1003
1004 return rq;
1005}
1006
8f4d37ec
PZ
1007#ifdef CONFIG_SCHED_HRTICK
1008/*
1009 * Use HR-timers to deliver accurate preemption points.
1010 *
1011 * Its all a bit involved since we cannot program an hrt while holding the
1012 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1013 * reschedule event.
1014 *
1015 * When we get rescheduled we reprogram the hrtick_timer outside of the
1016 * rq->lock.
1017 */
8f4d37ec
PZ
1018
1019/*
1020 * Use hrtick when:
1021 * - enabled by features
1022 * - hrtimer is actually high res
1023 */
1024static inline int hrtick_enabled(struct rq *rq)
1025{
1026 if (!sched_feat(HRTICK))
1027 return 0;
ba42059f 1028 if (!cpu_active(cpu_of(rq)))
b328ca18 1029 return 0;
8f4d37ec
PZ
1030 return hrtimer_is_hres_active(&rq->hrtick_timer);
1031}
1032
8f4d37ec
PZ
1033static void hrtick_clear(struct rq *rq)
1034{
1035 if (hrtimer_active(&rq->hrtick_timer))
1036 hrtimer_cancel(&rq->hrtick_timer);
1037}
1038
8f4d37ec
PZ
1039/*
1040 * High-resolution timer tick.
1041 * Runs from hardirq context with interrupts disabled.
1042 */
1043static enum hrtimer_restart hrtick(struct hrtimer *timer)
1044{
1045 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1046
1047 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1048
1049 spin_lock(&rq->lock);
3e51f33f 1050 update_rq_clock(rq);
8f4d37ec
PZ
1051 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1052 spin_unlock(&rq->lock);
1053
1054 return HRTIMER_NORESTART;
1055}
1056
95e904c7 1057#ifdef CONFIG_SMP
31656519
PZ
1058/*
1059 * called from hardirq (IPI) context
1060 */
1061static void __hrtick_start(void *arg)
b328ca18 1062{
31656519 1063 struct rq *rq = arg;
b328ca18 1064
31656519
PZ
1065 spin_lock(&rq->lock);
1066 hrtimer_restart(&rq->hrtick_timer);
1067 rq->hrtick_csd_pending = 0;
1068 spin_unlock(&rq->lock);
b328ca18
PZ
1069}
1070
31656519
PZ
1071/*
1072 * Called to set the hrtick timer state.
1073 *
1074 * called with rq->lock held and irqs disabled
1075 */
1076static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1077{
31656519
PZ
1078 struct hrtimer *timer = &rq->hrtick_timer;
1079 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1080
cc584b21 1081 hrtimer_set_expires(timer, time);
31656519
PZ
1082
1083 if (rq == this_rq()) {
1084 hrtimer_restart(timer);
1085 } else if (!rq->hrtick_csd_pending) {
1086 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1087 rq->hrtick_csd_pending = 1;
1088 }
b328ca18
PZ
1089}
1090
1091static int
1092hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1093{
1094 int cpu = (int)(long)hcpu;
1095
1096 switch (action) {
1097 case CPU_UP_CANCELED:
1098 case CPU_UP_CANCELED_FROZEN:
1099 case CPU_DOWN_PREPARE:
1100 case CPU_DOWN_PREPARE_FROZEN:
1101 case CPU_DEAD:
1102 case CPU_DEAD_FROZEN:
31656519 1103 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1104 return NOTIFY_OK;
1105 }
1106
1107 return NOTIFY_DONE;
1108}
1109
fa748203 1110static __init void init_hrtick(void)
b328ca18
PZ
1111{
1112 hotcpu_notifier(hotplug_hrtick, 0);
1113}
31656519
PZ
1114#else
1115/*
1116 * Called to set the hrtick timer state.
1117 *
1118 * called with rq->lock held and irqs disabled
1119 */
1120static void hrtick_start(struct rq *rq, u64 delay)
1121{
1122 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1123}
b328ca18 1124
006c75f1 1125static inline void init_hrtick(void)
8f4d37ec 1126{
8f4d37ec 1127}
31656519 1128#endif /* CONFIG_SMP */
8f4d37ec 1129
31656519 1130static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1131{
31656519
PZ
1132#ifdef CONFIG_SMP
1133 rq->hrtick_csd_pending = 0;
8f4d37ec 1134
31656519
PZ
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1138#endif
8f4d37ec 1139
31656519
PZ
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
ccc7dadf 1142 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
8f4d37ec 1143}
006c75f1 1144#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1145static inline void hrtick_clear(struct rq *rq)
1146{
1147}
1148
8f4d37ec
PZ
1149static inline void init_rq_hrtick(struct rq *rq)
1150{
1151}
1152
b328ca18
PZ
1153static inline void init_hrtick(void)
1154{
1155}
006c75f1 1156#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1157
c24d20db
IM
1158/*
1159 * resched_task - mark a task 'to be rescheduled now'.
1160 *
1161 * On UP this means the setting of the need_resched flag, on SMP it
1162 * might also involve a cross-CPU call to trigger the scheduler on
1163 * the target CPU.
1164 */
1165#ifdef CONFIG_SMP
1166
1167#ifndef tsk_is_polling
1168#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1169#endif
1170
31656519 1171static void resched_task(struct task_struct *p)
c24d20db
IM
1172{
1173 int cpu;
1174
1175 assert_spin_locked(&task_rq(p)->lock);
1176
31656519 1177 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1178 return;
1179
31656519 1180 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1181
1182 cpu = task_cpu(p);
1183 if (cpu == smp_processor_id())
1184 return;
1185
1186 /* NEED_RESCHED must be visible before we test polling */
1187 smp_mb();
1188 if (!tsk_is_polling(p))
1189 smp_send_reschedule(cpu);
1190}
1191
1192static void resched_cpu(int cpu)
1193{
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long flags;
1196
1197 if (!spin_trylock_irqsave(&rq->lock, flags))
1198 return;
1199 resched_task(cpu_curr(cpu));
1200 spin_unlock_irqrestore(&rq->lock, flags);
1201}
06d8308c
TG
1202
1203#ifdef CONFIG_NO_HZ
1204/*
1205 * When add_timer_on() enqueues a timer into the timer wheel of an
1206 * idle CPU then this timer might expire before the next timer event
1207 * which is scheduled to wake up that CPU. In case of a completely
1208 * idle system the next event might even be infinite time into the
1209 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210 * leaves the inner idle loop so the newly added timer is taken into
1211 * account when the CPU goes back to idle and evaluates the timer
1212 * wheel for the next timer event.
1213 */
1214void wake_up_idle_cpu(int cpu)
1215{
1216 struct rq *rq = cpu_rq(cpu);
1217
1218 if (cpu == smp_processor_id())
1219 return;
1220
1221 /*
1222 * This is safe, as this function is called with the timer
1223 * wheel base lock of (cpu) held. When the CPU is on the way
1224 * to idle and has not yet set rq->curr to idle then it will
1225 * be serialized on the timer wheel base lock and take the new
1226 * timer into account automatically.
1227 */
1228 if (rq->curr != rq->idle)
1229 return;
1230
1231 /*
1232 * We can set TIF_RESCHED on the idle task of the other CPU
1233 * lockless. The worst case is that the other CPU runs the
1234 * idle task through an additional NOOP schedule()
1235 */
1236 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1237
1238 /* NEED_RESCHED must be visible before we test polling */
1239 smp_mb();
1240 if (!tsk_is_polling(rq->idle))
1241 smp_send_reschedule(cpu);
1242}
6d6bc0ad 1243#endif /* CONFIG_NO_HZ */
06d8308c 1244
6d6bc0ad 1245#else /* !CONFIG_SMP */
31656519 1246static void resched_task(struct task_struct *p)
c24d20db
IM
1247{
1248 assert_spin_locked(&task_rq(p)->lock);
31656519 1249 set_tsk_need_resched(p);
c24d20db 1250}
6d6bc0ad 1251#endif /* CONFIG_SMP */
c24d20db 1252
45bf76df
IM
1253#if BITS_PER_LONG == 32
1254# define WMULT_CONST (~0UL)
1255#else
1256# define WMULT_CONST (1UL << 32)
1257#endif
1258
1259#define WMULT_SHIFT 32
1260
194081eb
IM
1261/*
1262 * Shift right and round:
1263 */
cf2ab469 1264#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1265
a7be37ac
PZ
1266/*
1267 * delta *= weight / lw
1268 */
cb1c4fc9 1269static unsigned long
45bf76df
IM
1270calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1271 struct load_weight *lw)
1272{
1273 u64 tmp;
1274
7a232e03
LJ
1275 if (!lw->inv_weight) {
1276 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1277 lw->inv_weight = 1;
1278 else
1279 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1280 / (lw->weight+1);
1281 }
45bf76df
IM
1282
1283 tmp = (u64)delta_exec * weight;
1284 /*
1285 * Check whether we'd overflow the 64-bit multiplication:
1286 */
194081eb 1287 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1288 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1289 WMULT_SHIFT/2);
1290 else
cf2ab469 1291 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1292
ecf691da 1293 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1294}
1295
1091985b 1296static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1297{
1298 lw->weight += inc;
e89996ae 1299 lw->inv_weight = 0;
45bf76df
IM
1300}
1301
1091985b 1302static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1303{
1304 lw->weight -= dec;
e89996ae 1305 lw->inv_weight = 0;
45bf76df
IM
1306}
1307
2dd73a4f
PW
1308/*
1309 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1310 * of tasks with abnormal "nice" values across CPUs the contribution that
1311 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1312 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1313 * scaled version of the new time slice allocation that they receive on time
1314 * slice expiry etc.
1315 */
1316
dd41f596
IM
1317#define WEIGHT_IDLEPRIO 2
1318#define WMULT_IDLEPRIO (1 << 31)
1319
1320/*
1321 * Nice levels are multiplicative, with a gentle 10% change for every
1322 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1323 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1324 * that remained on nice 0.
1325 *
1326 * The "10% effect" is relative and cumulative: from _any_ nice level,
1327 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1328 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1329 * If a task goes up by ~10% and another task goes down by ~10% then
1330 * the relative distance between them is ~25%.)
dd41f596
IM
1331 */
1332static const int prio_to_weight[40] = {
254753dc
IM
1333 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1334 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1335 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1336 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1337 /* 0 */ 1024, 820, 655, 526, 423,
1338 /* 5 */ 335, 272, 215, 172, 137,
1339 /* 10 */ 110, 87, 70, 56, 45,
1340 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1341};
1342
5714d2de
IM
1343/*
1344 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1345 *
1346 * In cases where the weight does not change often, we can use the
1347 * precalculated inverse to speed up arithmetics by turning divisions
1348 * into multiplications:
1349 */
dd41f596 1350static const u32 prio_to_wmult[40] = {
254753dc
IM
1351 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1352 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1353 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1354 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1355 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1356 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1357 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1358 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1359};
2dd73a4f 1360
dd41f596
IM
1361static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1362
1363/*
1364 * runqueue iterator, to support SMP load-balancing between different
1365 * scheduling classes, without having to expose their internal data
1366 * structures to the load-balancing proper:
1367 */
1368struct rq_iterator {
1369 void *arg;
1370 struct task_struct *(*start)(void *);
1371 struct task_struct *(*next)(void *);
1372};
1373
e1d1484f
PW
1374#ifdef CONFIG_SMP
1375static unsigned long
1376balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1377 unsigned long max_load_move, struct sched_domain *sd,
1378 enum cpu_idle_type idle, int *all_pinned,
1379 int *this_best_prio, struct rq_iterator *iterator);
1380
1381static int
1382iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 struct sched_domain *sd, enum cpu_idle_type idle,
1384 struct rq_iterator *iterator);
e1d1484f 1385#endif
dd41f596 1386
d842de87
SV
1387#ifdef CONFIG_CGROUP_CPUACCT
1388static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1389#else
1390static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1391#endif
1392
18d95a28
PZ
1393static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1394{
1395 update_load_add(&rq->load, load);
1396}
1397
1398static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1399{
1400 update_load_sub(&rq->load, load);
1401}
1402
7940ca36 1403#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1404typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1405
1406/*
1407 * Iterate the full tree, calling @down when first entering a node and @up when
1408 * leaving it for the final time.
1409 */
eb755805 1410static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1411{
1412 struct task_group *parent, *child;
eb755805 1413 int ret;
c09595f6
PZ
1414
1415 rcu_read_lock();
1416 parent = &root_task_group;
1417down:
eb755805
PZ
1418 ret = (*down)(parent, data);
1419 if (ret)
1420 goto out_unlock;
c09595f6
PZ
1421 list_for_each_entry_rcu(child, &parent->children, siblings) {
1422 parent = child;
1423 goto down;
1424
1425up:
1426 continue;
1427 }
eb755805
PZ
1428 ret = (*up)(parent, data);
1429 if (ret)
1430 goto out_unlock;
c09595f6
PZ
1431
1432 child = parent;
1433 parent = parent->parent;
1434 if (parent)
1435 goto up;
eb755805 1436out_unlock:
c09595f6 1437 rcu_read_unlock();
eb755805
PZ
1438
1439 return ret;
c09595f6
PZ
1440}
1441
eb755805
PZ
1442static int tg_nop(struct task_group *tg, void *data)
1443{
1444 return 0;
c09595f6 1445}
eb755805
PZ
1446#endif
1447
1448#ifdef CONFIG_SMP
1449static unsigned long source_load(int cpu, int type);
1450static unsigned long target_load(int cpu, int type);
1451static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1452
1453static unsigned long cpu_avg_load_per_task(int cpu)
1454{
1455 struct rq *rq = cpu_rq(cpu);
af6d596f 1456 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1457
4cd42620
SR
1458 if (nr_running)
1459 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1460 else
1461 rq->avg_load_per_task = 0;
eb755805
PZ
1462
1463 return rq->avg_load_per_task;
1464}
1465
1466#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1467
c09595f6
PZ
1468static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1469
1470/*
1471 * Calculate and set the cpu's group shares.
1472 */
1473static void
ffda12a1
PZ
1474update_group_shares_cpu(struct task_group *tg, int cpu,
1475 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1476{
c09595f6
PZ
1477 int boost = 0;
1478 unsigned long shares;
1479 unsigned long rq_weight;
1480
c8cba857 1481 if (!tg->se[cpu])
c09595f6
PZ
1482 return;
1483
c8cba857 1484 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1485
1486 /*
1487 * If there are currently no tasks on the cpu pretend there is one of
1488 * average load so that when a new task gets to run here it will not
1489 * get delayed by group starvation.
1490 */
1491 if (!rq_weight) {
1492 boost = 1;
1493 rq_weight = NICE_0_LOAD;
1494 }
1495
c8cba857
PZ
1496 if (unlikely(rq_weight > sd_rq_weight))
1497 rq_weight = sd_rq_weight;
1498
c09595f6
PZ
1499 /*
1500 * \Sum shares * rq_weight
1501 * shares = -----------------------
1502 * \Sum rq_weight
1503 *
1504 */
c8cba857 1505 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
ffda12a1 1506 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1507
ffda12a1
PZ
1508 if (abs(shares - tg->se[cpu]->load.weight) >
1509 sysctl_sched_shares_thresh) {
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long flags;
c09595f6 1512
ffda12a1
PZ
1513 spin_lock_irqsave(&rq->lock, flags);
1514 /*
1515 * record the actual number of shares, not the boosted amount.
1516 */
1517 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1518 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6 1519
ffda12a1
PZ
1520 __set_se_shares(tg->se[cpu], shares);
1521 spin_unlock_irqrestore(&rq->lock, flags);
1522 }
18d95a28 1523}
c09595f6
PZ
1524
1525/*
c8cba857
PZ
1526 * Re-compute the task group their per cpu shares over the given domain.
1527 * This needs to be done in a bottom-up fashion because the rq weight of a
1528 * parent group depends on the shares of its child groups.
c09595f6 1529 */
eb755805 1530static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1531{
c8cba857
PZ
1532 unsigned long rq_weight = 0;
1533 unsigned long shares = 0;
eb755805 1534 struct sched_domain *sd = data;
c8cba857 1535 int i;
c09595f6 1536
c8cba857
PZ
1537 for_each_cpu_mask(i, sd->span) {
1538 rq_weight += tg->cfs_rq[i]->load.weight;
1539 shares += tg->cfs_rq[i]->shares;
c09595f6 1540 }
c09595f6 1541
c8cba857
PZ
1542 if ((!shares && rq_weight) || shares > tg->shares)
1543 shares = tg->shares;
1544
1545 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1546 shares = tg->shares;
c09595f6 1547
cd80917e
PZ
1548 if (!rq_weight)
1549 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1550
ffda12a1
PZ
1551 for_each_cpu_mask(i, sd->span)
1552 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1553
1554 return 0;
c09595f6
PZ
1555}
1556
1557/*
c8cba857
PZ
1558 * Compute the cpu's hierarchical load factor for each task group.
1559 * This needs to be done in a top-down fashion because the load of a child
1560 * group is a fraction of its parents load.
c09595f6 1561 */
eb755805 1562static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1563{
c8cba857 1564 unsigned long load;
eb755805 1565 long cpu = (long)data;
c09595f6 1566
c8cba857
PZ
1567 if (!tg->parent) {
1568 load = cpu_rq(cpu)->load.weight;
1569 } else {
1570 load = tg->parent->cfs_rq[cpu]->h_load;
1571 load *= tg->cfs_rq[cpu]->shares;
1572 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1573 }
c09595f6 1574
c8cba857 1575 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1576
eb755805 1577 return 0;
c09595f6
PZ
1578}
1579
c8cba857 1580static void update_shares(struct sched_domain *sd)
4d8d595d 1581{
2398f2c6
PZ
1582 u64 now = cpu_clock(raw_smp_processor_id());
1583 s64 elapsed = now - sd->last_update;
1584
1585 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1586 sd->last_update = now;
eb755805 1587 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1588 }
4d8d595d
PZ
1589}
1590
3e5459b4
PZ
1591static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1592{
1593 spin_unlock(&rq->lock);
1594 update_shares(sd);
1595 spin_lock(&rq->lock);
1596}
1597
eb755805 1598static void update_h_load(long cpu)
c09595f6 1599{
eb755805 1600 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1601}
1602
c09595f6
PZ
1603#else
1604
c8cba857 1605static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1606{
1607}
1608
3e5459b4
PZ
1609static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1610{
1611}
1612
18d95a28
PZ
1613#endif
1614
18d95a28
PZ
1615#endif
1616
30432094 1617#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1618static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1619{
30432094 1620#ifdef CONFIG_SMP
34e83e85
IM
1621 cfs_rq->shares = shares;
1622#endif
1623}
30432094 1624#endif
e7693a36 1625
dd41f596 1626#include "sched_stats.h"
dd41f596 1627#include "sched_idletask.c"
5522d5d5
IM
1628#include "sched_fair.c"
1629#include "sched_rt.c"
dd41f596
IM
1630#ifdef CONFIG_SCHED_DEBUG
1631# include "sched_debug.c"
1632#endif
1633
1634#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1635#define for_each_class(class) \
1636 for (class = sched_class_highest; class; class = class->next)
dd41f596 1637
c09595f6 1638static void inc_nr_running(struct rq *rq)
9c217245
IM
1639{
1640 rq->nr_running++;
9c217245
IM
1641}
1642
c09595f6 1643static void dec_nr_running(struct rq *rq)
9c217245
IM
1644{
1645 rq->nr_running--;
9c217245
IM
1646}
1647
45bf76df
IM
1648static void set_load_weight(struct task_struct *p)
1649{
1650 if (task_has_rt_policy(p)) {
dd41f596
IM
1651 p->se.load.weight = prio_to_weight[0] * 2;
1652 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1653 return;
1654 }
45bf76df 1655
dd41f596
IM
1656 /*
1657 * SCHED_IDLE tasks get minimal weight:
1658 */
1659 if (p->policy == SCHED_IDLE) {
1660 p->se.load.weight = WEIGHT_IDLEPRIO;
1661 p->se.load.inv_weight = WMULT_IDLEPRIO;
1662 return;
1663 }
71f8bd46 1664
dd41f596
IM
1665 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1666 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1667}
1668
2087a1ad
GH
1669static void update_avg(u64 *avg, u64 sample)
1670{
1671 s64 diff = sample - *avg;
1672 *avg += diff >> 3;
1673}
1674
8159f87e 1675static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1676{
dd41f596 1677 sched_info_queued(p);
fd390f6a 1678 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1679 p->se.on_rq = 1;
71f8bd46
IM
1680}
1681
69be72c1 1682static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1683{
2087a1ad
GH
1684 if (sleep && p->se.last_wakeup) {
1685 update_avg(&p->se.avg_overlap,
1686 p->se.sum_exec_runtime - p->se.last_wakeup);
1687 p->se.last_wakeup = 0;
1688 }
1689
46ac22ba 1690 sched_info_dequeued(p);
f02231e5 1691 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1692 p->se.on_rq = 0;
71f8bd46
IM
1693}
1694
14531189 1695/*
dd41f596 1696 * __normal_prio - return the priority that is based on the static prio
14531189 1697 */
14531189
IM
1698static inline int __normal_prio(struct task_struct *p)
1699{
dd41f596 1700 return p->static_prio;
14531189
IM
1701}
1702
b29739f9
IM
1703/*
1704 * Calculate the expected normal priority: i.e. priority
1705 * without taking RT-inheritance into account. Might be
1706 * boosted by interactivity modifiers. Changes upon fork,
1707 * setprio syscalls, and whenever the interactivity
1708 * estimator recalculates.
1709 */
36c8b586 1710static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1711{
1712 int prio;
1713
e05606d3 1714 if (task_has_rt_policy(p))
b29739f9
IM
1715 prio = MAX_RT_PRIO-1 - p->rt_priority;
1716 else
1717 prio = __normal_prio(p);
1718 return prio;
1719}
1720
1721/*
1722 * Calculate the current priority, i.e. the priority
1723 * taken into account by the scheduler. This value might
1724 * be boosted by RT tasks, or might be boosted by
1725 * interactivity modifiers. Will be RT if the task got
1726 * RT-boosted. If not then it returns p->normal_prio.
1727 */
36c8b586 1728static int effective_prio(struct task_struct *p)
b29739f9
IM
1729{
1730 p->normal_prio = normal_prio(p);
1731 /*
1732 * If we are RT tasks or we were boosted to RT priority,
1733 * keep the priority unchanged. Otherwise, update priority
1734 * to the normal priority:
1735 */
1736 if (!rt_prio(p->prio))
1737 return p->normal_prio;
1738 return p->prio;
1739}
1740
1da177e4 1741/*
dd41f596 1742 * activate_task - move a task to the runqueue.
1da177e4 1743 */
dd41f596 1744static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1745{
d9514f6c 1746 if (task_contributes_to_load(p))
dd41f596 1747 rq->nr_uninterruptible--;
1da177e4 1748
8159f87e 1749 enqueue_task(rq, p, wakeup);
c09595f6 1750 inc_nr_running(rq);
1da177e4
LT
1751}
1752
1da177e4
LT
1753/*
1754 * deactivate_task - remove a task from the runqueue.
1755 */
2e1cb74a 1756static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1757{
d9514f6c 1758 if (task_contributes_to_load(p))
dd41f596
IM
1759 rq->nr_uninterruptible++;
1760
69be72c1 1761 dequeue_task(rq, p, sleep);
c09595f6 1762 dec_nr_running(rq);
1da177e4
LT
1763}
1764
1da177e4
LT
1765/**
1766 * task_curr - is this task currently executing on a CPU?
1767 * @p: the task in question.
1768 */
36c8b586 1769inline int task_curr(const struct task_struct *p)
1da177e4
LT
1770{
1771 return cpu_curr(task_cpu(p)) == p;
1772}
1773
dd41f596
IM
1774static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1775{
6f505b16 1776 set_task_rq(p, cpu);
dd41f596 1777#ifdef CONFIG_SMP
ce96b5ac
DA
1778 /*
1779 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1780 * successfuly executed on another CPU. We must ensure that updates of
1781 * per-task data have been completed by this moment.
1782 */
1783 smp_wmb();
dd41f596 1784 task_thread_info(p)->cpu = cpu;
dd41f596 1785#endif
2dd73a4f
PW
1786}
1787
cb469845
SR
1788static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1789 const struct sched_class *prev_class,
1790 int oldprio, int running)
1791{
1792 if (prev_class != p->sched_class) {
1793 if (prev_class->switched_from)
1794 prev_class->switched_from(rq, p, running);
1795 p->sched_class->switched_to(rq, p, running);
1796 } else
1797 p->sched_class->prio_changed(rq, p, oldprio, running);
1798}
1799
1da177e4 1800#ifdef CONFIG_SMP
c65cc870 1801
e958b360
TG
1802/* Used instead of source_load when we know the type == 0 */
1803static unsigned long weighted_cpuload(const int cpu)
1804{
1805 return cpu_rq(cpu)->load.weight;
1806}
1807
cc367732
IM
1808/*
1809 * Is this task likely cache-hot:
1810 */
e7693a36 1811static int
cc367732
IM
1812task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1813{
1814 s64 delta;
1815
f540a608
IM
1816 /*
1817 * Buddy candidates are cache hot:
1818 */
4793241b
PZ
1819 if (sched_feat(CACHE_HOT_BUDDY) &&
1820 (&p->se == cfs_rq_of(&p->se)->next ||
1821 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1822 return 1;
1823
cc367732
IM
1824 if (p->sched_class != &fair_sched_class)
1825 return 0;
1826
6bc1665b
IM
1827 if (sysctl_sched_migration_cost == -1)
1828 return 1;
1829 if (sysctl_sched_migration_cost == 0)
1830 return 0;
1831
cc367732
IM
1832 delta = now - p->se.exec_start;
1833
1834 return delta < (s64)sysctl_sched_migration_cost;
1835}
1836
1837
dd41f596 1838void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1839{
dd41f596
IM
1840 int old_cpu = task_cpu(p);
1841 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1842 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1843 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1844 u64 clock_offset;
dd41f596
IM
1845
1846 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1847
1848#ifdef CONFIG_SCHEDSTATS
1849 if (p->se.wait_start)
1850 p->se.wait_start -= clock_offset;
dd41f596
IM
1851 if (p->se.sleep_start)
1852 p->se.sleep_start -= clock_offset;
1853 if (p->se.block_start)
1854 p->se.block_start -= clock_offset;
cc367732
IM
1855 if (old_cpu != new_cpu) {
1856 schedstat_inc(p, se.nr_migrations);
1857 if (task_hot(p, old_rq->clock, NULL))
1858 schedstat_inc(p, se.nr_forced2_migrations);
1859 }
6cfb0d5d 1860#endif
2830cf8c
SV
1861 p->se.vruntime -= old_cfsrq->min_vruntime -
1862 new_cfsrq->min_vruntime;
dd41f596
IM
1863
1864 __set_task_cpu(p, new_cpu);
c65cc870
IM
1865}
1866
70b97a7f 1867struct migration_req {
1da177e4 1868 struct list_head list;
1da177e4 1869
36c8b586 1870 struct task_struct *task;
1da177e4
LT
1871 int dest_cpu;
1872
1da177e4 1873 struct completion done;
70b97a7f 1874};
1da177e4
LT
1875
1876/*
1877 * The task's runqueue lock must be held.
1878 * Returns true if you have to wait for migration thread.
1879 */
36c8b586 1880static int
70b97a7f 1881migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1882{
70b97a7f 1883 struct rq *rq = task_rq(p);
1da177e4
LT
1884
1885 /*
1886 * If the task is not on a runqueue (and not running), then
1887 * it is sufficient to simply update the task's cpu field.
1888 */
dd41f596 1889 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1890 set_task_cpu(p, dest_cpu);
1891 return 0;
1892 }
1893
1894 init_completion(&req->done);
1da177e4
LT
1895 req->task = p;
1896 req->dest_cpu = dest_cpu;
1897 list_add(&req->list, &rq->migration_queue);
48f24c4d 1898
1da177e4
LT
1899 return 1;
1900}
1901
1902/*
1903 * wait_task_inactive - wait for a thread to unschedule.
1904 *
85ba2d86
RM
1905 * If @match_state is nonzero, it's the @p->state value just checked and
1906 * not expected to change. If it changes, i.e. @p might have woken up,
1907 * then return zero. When we succeed in waiting for @p to be off its CPU,
1908 * we return a positive number (its total switch count). If a second call
1909 * a short while later returns the same number, the caller can be sure that
1910 * @p has remained unscheduled the whole time.
1911 *
1da177e4
LT
1912 * The caller must ensure that the task *will* unschedule sometime soon,
1913 * else this function might spin for a *long* time. This function can't
1914 * be called with interrupts off, or it may introduce deadlock with
1915 * smp_call_function() if an IPI is sent by the same process we are
1916 * waiting to become inactive.
1917 */
85ba2d86 1918unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1919{
1920 unsigned long flags;
dd41f596 1921 int running, on_rq;
85ba2d86 1922 unsigned long ncsw;
70b97a7f 1923 struct rq *rq;
1da177e4 1924
3a5c359a
AK
1925 for (;;) {
1926 /*
1927 * We do the initial early heuristics without holding
1928 * any task-queue locks at all. We'll only try to get
1929 * the runqueue lock when things look like they will
1930 * work out!
1931 */
1932 rq = task_rq(p);
fa490cfd 1933
3a5c359a
AK
1934 /*
1935 * If the task is actively running on another CPU
1936 * still, just relax and busy-wait without holding
1937 * any locks.
1938 *
1939 * NOTE! Since we don't hold any locks, it's not
1940 * even sure that "rq" stays as the right runqueue!
1941 * But we don't care, since "task_running()" will
1942 * return false if the runqueue has changed and p
1943 * is actually now running somewhere else!
1944 */
85ba2d86
RM
1945 while (task_running(rq, p)) {
1946 if (match_state && unlikely(p->state != match_state))
1947 return 0;
3a5c359a 1948 cpu_relax();
85ba2d86 1949 }
fa490cfd 1950
3a5c359a
AK
1951 /*
1952 * Ok, time to look more closely! We need the rq
1953 * lock now, to be *sure*. If we're wrong, we'll
1954 * just go back and repeat.
1955 */
1956 rq = task_rq_lock(p, &flags);
0a16b607 1957 trace_sched_wait_task(rq, p);
3a5c359a
AK
1958 running = task_running(rq, p);
1959 on_rq = p->se.on_rq;
85ba2d86 1960 ncsw = 0;
f31e11d8 1961 if (!match_state || p->state == match_state)
93dcf55f 1962 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1963 task_rq_unlock(rq, &flags);
fa490cfd 1964
85ba2d86
RM
1965 /*
1966 * If it changed from the expected state, bail out now.
1967 */
1968 if (unlikely(!ncsw))
1969 break;
1970
3a5c359a
AK
1971 /*
1972 * Was it really running after all now that we
1973 * checked with the proper locks actually held?
1974 *
1975 * Oops. Go back and try again..
1976 */
1977 if (unlikely(running)) {
1978 cpu_relax();
1979 continue;
1980 }
fa490cfd 1981
3a5c359a
AK
1982 /*
1983 * It's not enough that it's not actively running,
1984 * it must be off the runqueue _entirely_, and not
1985 * preempted!
1986 *
1987 * So if it wa still runnable (but just not actively
1988 * running right now), it's preempted, and we should
1989 * yield - it could be a while.
1990 */
1991 if (unlikely(on_rq)) {
1992 schedule_timeout_uninterruptible(1);
1993 continue;
1994 }
fa490cfd 1995
3a5c359a
AK
1996 /*
1997 * Ahh, all good. It wasn't running, and it wasn't
1998 * runnable, which means that it will never become
1999 * running in the future either. We're all done!
2000 */
2001 break;
2002 }
85ba2d86
RM
2003
2004 return ncsw;
1da177e4
LT
2005}
2006
2007/***
2008 * kick_process - kick a running thread to enter/exit the kernel
2009 * @p: the to-be-kicked thread
2010 *
2011 * Cause a process which is running on another CPU to enter
2012 * kernel-mode, without any delay. (to get signals handled.)
2013 *
2014 * NOTE: this function doesnt have to take the runqueue lock,
2015 * because all it wants to ensure is that the remote task enters
2016 * the kernel. If the IPI races and the task has been migrated
2017 * to another CPU then no harm is done and the purpose has been
2018 * achieved as well.
2019 */
36c8b586 2020void kick_process(struct task_struct *p)
1da177e4
LT
2021{
2022 int cpu;
2023
2024 preempt_disable();
2025 cpu = task_cpu(p);
2026 if ((cpu != smp_processor_id()) && task_curr(p))
2027 smp_send_reschedule(cpu);
2028 preempt_enable();
2029}
2030
2031/*
2dd73a4f
PW
2032 * Return a low guess at the load of a migration-source cpu weighted
2033 * according to the scheduling class and "nice" value.
1da177e4
LT
2034 *
2035 * We want to under-estimate the load of migration sources, to
2036 * balance conservatively.
2037 */
a9957449 2038static unsigned long source_load(int cpu, int type)
1da177e4 2039{
70b97a7f 2040 struct rq *rq = cpu_rq(cpu);
dd41f596 2041 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2042
93b75217 2043 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2044 return total;
b910472d 2045
dd41f596 2046 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2047}
2048
2049/*
2dd73a4f
PW
2050 * Return a high guess at the load of a migration-target cpu weighted
2051 * according to the scheduling class and "nice" value.
1da177e4 2052 */
a9957449 2053static unsigned long target_load(int cpu, int type)
1da177e4 2054{
70b97a7f 2055 struct rq *rq = cpu_rq(cpu);
dd41f596 2056 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2057
93b75217 2058 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2059 return total;
3b0bd9bc 2060
dd41f596 2061 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2062}
2063
147cbb4b
NP
2064/*
2065 * find_idlest_group finds and returns the least busy CPU group within the
2066 * domain.
2067 */
2068static struct sched_group *
2069find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2070{
2071 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2072 unsigned long min_load = ULONG_MAX, this_load = 0;
2073 int load_idx = sd->forkexec_idx;
2074 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2075
2076 do {
2077 unsigned long load, avg_load;
2078 int local_group;
2079 int i;
2080
da5a5522
BD
2081 /* Skip over this group if it has no CPUs allowed */
2082 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2083 continue;
da5a5522 2084
147cbb4b 2085 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2086
2087 /* Tally up the load of all CPUs in the group */
2088 avg_load = 0;
2089
363ab6f1 2090 for_each_cpu_mask_nr(i, group->cpumask) {
147cbb4b
NP
2091 /* Bias balancing toward cpus of our domain */
2092 if (local_group)
2093 load = source_load(i, load_idx);
2094 else
2095 load = target_load(i, load_idx);
2096
2097 avg_load += load;
2098 }
2099
2100 /* Adjust by relative CPU power of the group */
5517d86b
ED
2101 avg_load = sg_div_cpu_power(group,
2102 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2103
2104 if (local_group) {
2105 this_load = avg_load;
2106 this = group;
2107 } else if (avg_load < min_load) {
2108 min_load = avg_load;
2109 idlest = group;
2110 }
3a5c359a 2111 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2112
2113 if (!idlest || 100*this_load < imbalance*min_load)
2114 return NULL;
2115 return idlest;
2116}
2117
2118/*
0feaece9 2119 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2120 */
95cdf3b7 2121static int
7c16ec58
MT
2122find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2123 cpumask_t *tmp)
147cbb4b
NP
2124{
2125 unsigned long load, min_load = ULONG_MAX;
2126 int idlest = -1;
2127 int i;
2128
da5a5522 2129 /* Traverse only the allowed CPUs */
7c16ec58 2130 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2131
363ab6f1 2132 for_each_cpu_mask_nr(i, *tmp) {
2dd73a4f 2133 load = weighted_cpuload(i);
147cbb4b
NP
2134
2135 if (load < min_load || (load == min_load && i == this_cpu)) {
2136 min_load = load;
2137 idlest = i;
2138 }
2139 }
2140
2141 return idlest;
2142}
2143
476d139c
NP
2144/*
2145 * sched_balance_self: balance the current task (running on cpu) in domains
2146 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2147 * SD_BALANCE_EXEC.
2148 *
2149 * Balance, ie. select the least loaded group.
2150 *
2151 * Returns the target CPU number, or the same CPU if no balancing is needed.
2152 *
2153 * preempt must be disabled.
2154 */
2155static int sched_balance_self(int cpu, int flag)
2156{
2157 struct task_struct *t = current;
2158 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2159
c96d145e 2160 for_each_domain(cpu, tmp) {
9761eea8
IM
2161 /*
2162 * If power savings logic is enabled for a domain, stop there.
2163 */
5c45bf27
SS
2164 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2165 break;
476d139c
NP
2166 if (tmp->flags & flag)
2167 sd = tmp;
c96d145e 2168 }
476d139c 2169
039a1c41
PZ
2170 if (sd)
2171 update_shares(sd);
2172
476d139c 2173 while (sd) {
7c16ec58 2174 cpumask_t span, tmpmask;
476d139c 2175 struct sched_group *group;
1a848870
SS
2176 int new_cpu, weight;
2177
2178 if (!(sd->flags & flag)) {
2179 sd = sd->child;
2180 continue;
2181 }
476d139c
NP
2182
2183 span = sd->span;
2184 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2185 if (!group) {
2186 sd = sd->child;
2187 continue;
2188 }
476d139c 2189
7c16ec58 2190 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2191 if (new_cpu == -1 || new_cpu == cpu) {
2192 /* Now try balancing at a lower domain level of cpu */
2193 sd = sd->child;
2194 continue;
2195 }
476d139c 2196
1a848870 2197 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2198 cpu = new_cpu;
476d139c
NP
2199 sd = NULL;
2200 weight = cpus_weight(span);
2201 for_each_domain(cpu, tmp) {
2202 if (weight <= cpus_weight(tmp->span))
2203 break;
2204 if (tmp->flags & flag)
2205 sd = tmp;
2206 }
2207 /* while loop will break here if sd == NULL */
2208 }
2209
2210 return cpu;
2211}
2212
2213#endif /* CONFIG_SMP */
1da177e4 2214
0793a61d
TG
2215/**
2216 * task_oncpu_function_call - call a function on the cpu on which a task runs
2217 * @p: the task to evaluate
2218 * @func: the function to be called
2219 * @info: the function call argument
2220 *
2221 * Calls the function @func when the task is currently running. This might
2222 * be on the current CPU, which just calls the function directly
2223 */
2224void task_oncpu_function_call(struct task_struct *p,
2225 void (*func) (void *info), void *info)
2226{
2227 int cpu;
2228
2229 preempt_disable();
2230 cpu = task_cpu(p);
2231 if (task_curr(p))
2232 smp_call_function_single(cpu, func, info, 1);
2233 preempt_enable();
2234}
2235
1da177e4
LT
2236/***
2237 * try_to_wake_up - wake up a thread
2238 * @p: the to-be-woken-up thread
2239 * @state: the mask of task states that can be woken
2240 * @sync: do a synchronous wakeup?
2241 *
2242 * Put it on the run-queue if it's not already there. The "current"
2243 * thread is always on the run-queue (except when the actual
2244 * re-schedule is in progress), and as such you're allowed to do
2245 * the simpler "current->state = TASK_RUNNING" to mark yourself
2246 * runnable without the overhead of this.
2247 *
2248 * returns failure only if the task is already active.
2249 */
36c8b586 2250static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2251{
cc367732 2252 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2253 unsigned long flags;
2254 long old_state;
70b97a7f 2255 struct rq *rq;
1da177e4 2256
b85d0667
IM
2257 if (!sched_feat(SYNC_WAKEUPS))
2258 sync = 0;
2259
2398f2c6
PZ
2260#ifdef CONFIG_SMP
2261 if (sched_feat(LB_WAKEUP_UPDATE)) {
2262 struct sched_domain *sd;
2263
2264 this_cpu = raw_smp_processor_id();
2265 cpu = task_cpu(p);
2266
2267 for_each_domain(this_cpu, sd) {
2268 if (cpu_isset(cpu, sd->span)) {
2269 update_shares(sd);
2270 break;
2271 }
2272 }
2273 }
2274#endif
2275
04e2f174 2276 smp_wmb();
1da177e4
LT
2277 rq = task_rq_lock(p, &flags);
2278 old_state = p->state;
2279 if (!(old_state & state))
2280 goto out;
2281
dd41f596 2282 if (p->se.on_rq)
1da177e4
LT
2283 goto out_running;
2284
2285 cpu = task_cpu(p);
cc367732 2286 orig_cpu = cpu;
1da177e4
LT
2287 this_cpu = smp_processor_id();
2288
2289#ifdef CONFIG_SMP
2290 if (unlikely(task_running(rq, p)))
2291 goto out_activate;
2292
5d2f5a61
DA
2293 cpu = p->sched_class->select_task_rq(p, sync);
2294 if (cpu != orig_cpu) {
2295 set_task_cpu(p, cpu);
1da177e4
LT
2296 task_rq_unlock(rq, &flags);
2297 /* might preempt at this point */
2298 rq = task_rq_lock(p, &flags);
2299 old_state = p->state;
2300 if (!(old_state & state))
2301 goto out;
dd41f596 2302 if (p->se.on_rq)
1da177e4
LT
2303 goto out_running;
2304
2305 this_cpu = smp_processor_id();
2306 cpu = task_cpu(p);
2307 }
2308
e7693a36
GH
2309#ifdef CONFIG_SCHEDSTATS
2310 schedstat_inc(rq, ttwu_count);
2311 if (cpu == this_cpu)
2312 schedstat_inc(rq, ttwu_local);
2313 else {
2314 struct sched_domain *sd;
2315 for_each_domain(this_cpu, sd) {
2316 if (cpu_isset(cpu, sd->span)) {
2317 schedstat_inc(sd, ttwu_wake_remote);
2318 break;
2319 }
2320 }
2321 }
6d6bc0ad 2322#endif /* CONFIG_SCHEDSTATS */
e7693a36 2323
1da177e4
LT
2324out_activate:
2325#endif /* CONFIG_SMP */
cc367732
IM
2326 schedstat_inc(p, se.nr_wakeups);
2327 if (sync)
2328 schedstat_inc(p, se.nr_wakeups_sync);
2329 if (orig_cpu != cpu)
2330 schedstat_inc(p, se.nr_wakeups_migrate);
2331 if (cpu == this_cpu)
2332 schedstat_inc(p, se.nr_wakeups_local);
2333 else
2334 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2335 update_rq_clock(rq);
dd41f596 2336 activate_task(rq, p, 1);
1da177e4
LT
2337 success = 1;
2338
2339out_running:
0a16b607 2340 trace_sched_wakeup(rq, p);
15afe09b 2341 check_preempt_curr(rq, p, sync);
4ae7d5ce 2342
1da177e4 2343 p->state = TASK_RUNNING;
9a897c5a
SR
2344#ifdef CONFIG_SMP
2345 if (p->sched_class->task_wake_up)
2346 p->sched_class->task_wake_up(rq, p);
2347#endif
1da177e4 2348out:
2087a1ad
GH
2349 current->se.last_wakeup = current->se.sum_exec_runtime;
2350
1da177e4
LT
2351 task_rq_unlock(rq, &flags);
2352
2353 return success;
2354}
2355
7ad5b3a5 2356int wake_up_process(struct task_struct *p)
1da177e4 2357{
d9514f6c 2358 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2359}
1da177e4
LT
2360EXPORT_SYMBOL(wake_up_process);
2361
7ad5b3a5 2362int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2363{
2364 return try_to_wake_up(p, state, 0);
2365}
2366
1da177e4
LT
2367/*
2368 * Perform scheduler related setup for a newly forked process p.
2369 * p is forked by current.
dd41f596
IM
2370 *
2371 * __sched_fork() is basic setup used by init_idle() too:
2372 */
2373static void __sched_fork(struct task_struct *p)
2374{
dd41f596
IM
2375 p->se.exec_start = 0;
2376 p->se.sum_exec_runtime = 0;
f6cf891c 2377 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2378 p->se.last_wakeup = 0;
2379 p->se.avg_overlap = 0;
6cfb0d5d
IM
2380
2381#ifdef CONFIG_SCHEDSTATS
2382 p->se.wait_start = 0;
dd41f596
IM
2383 p->se.sum_sleep_runtime = 0;
2384 p->se.sleep_start = 0;
dd41f596
IM
2385 p->se.block_start = 0;
2386 p->se.sleep_max = 0;
2387 p->se.block_max = 0;
2388 p->se.exec_max = 0;
eba1ed4b 2389 p->se.slice_max = 0;
dd41f596 2390 p->se.wait_max = 0;
6cfb0d5d 2391#endif
476d139c 2392
fa717060 2393 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2394 p->se.on_rq = 0;
4a55bd5e 2395 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2396
e107be36
AK
2397#ifdef CONFIG_PREEMPT_NOTIFIERS
2398 INIT_HLIST_HEAD(&p->preempt_notifiers);
2399#endif
2400
1da177e4
LT
2401 /*
2402 * We mark the process as running here, but have not actually
2403 * inserted it onto the runqueue yet. This guarantees that
2404 * nobody will actually run it, and a signal or other external
2405 * event cannot wake it up and insert it on the runqueue either.
2406 */
2407 p->state = TASK_RUNNING;
dd41f596
IM
2408}
2409
2410/*
2411 * fork()/clone()-time setup:
2412 */
2413void sched_fork(struct task_struct *p, int clone_flags)
2414{
2415 int cpu = get_cpu();
2416
2417 __sched_fork(p);
2418
2419#ifdef CONFIG_SMP
2420 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2421#endif
02e4bac2 2422 set_task_cpu(p, cpu);
b29739f9
IM
2423
2424 /*
2425 * Make sure we do not leak PI boosting priority to the child:
2426 */
2427 p->prio = current->normal_prio;
2ddbf952
HS
2428 if (!rt_prio(p->prio))
2429 p->sched_class = &fair_sched_class;
b29739f9 2430
52f17b6c 2431#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2432 if (likely(sched_info_on()))
52f17b6c 2433 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2434#endif
d6077cb8 2435#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2436 p->oncpu = 0;
2437#endif
1da177e4 2438#ifdef CONFIG_PREEMPT
4866cde0 2439 /* Want to start with kernel preemption disabled. */
a1261f54 2440 task_thread_info(p)->preempt_count = 1;
1da177e4 2441#endif
476d139c 2442 put_cpu();
1da177e4
LT
2443}
2444
2445/*
2446 * wake_up_new_task - wake up a newly created task for the first time.
2447 *
2448 * This function will do some initial scheduler statistics housekeeping
2449 * that must be done for every newly created context, then puts the task
2450 * on the runqueue and wakes it.
2451 */
7ad5b3a5 2452void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2453{
2454 unsigned long flags;
dd41f596 2455 struct rq *rq;
1da177e4
LT
2456
2457 rq = task_rq_lock(p, &flags);
147cbb4b 2458 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2459 update_rq_clock(rq);
1da177e4
LT
2460
2461 p->prio = effective_prio(p);
2462
b9dca1e0 2463 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2464 activate_task(rq, p, 0);
1da177e4 2465 } else {
1da177e4 2466 /*
dd41f596
IM
2467 * Let the scheduling class do new task startup
2468 * management (if any):
1da177e4 2469 */
ee0827d8 2470 p->sched_class->task_new(rq, p);
c09595f6 2471 inc_nr_running(rq);
1da177e4 2472 }
0a16b607 2473 trace_sched_wakeup_new(rq, p);
15afe09b 2474 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2475#ifdef CONFIG_SMP
2476 if (p->sched_class->task_wake_up)
2477 p->sched_class->task_wake_up(rq, p);
2478#endif
dd41f596 2479 task_rq_unlock(rq, &flags);
1da177e4
LT
2480}
2481
e107be36
AK
2482#ifdef CONFIG_PREEMPT_NOTIFIERS
2483
2484/**
421cee29
RD
2485 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2486 * @notifier: notifier struct to register
e107be36
AK
2487 */
2488void preempt_notifier_register(struct preempt_notifier *notifier)
2489{
2490 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2491}
2492EXPORT_SYMBOL_GPL(preempt_notifier_register);
2493
2494/**
2495 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2496 * @notifier: notifier struct to unregister
e107be36
AK
2497 *
2498 * This is safe to call from within a preemption notifier.
2499 */
2500void preempt_notifier_unregister(struct preempt_notifier *notifier)
2501{
2502 hlist_del(&notifier->link);
2503}
2504EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2505
2506static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2507{
2508 struct preempt_notifier *notifier;
2509 struct hlist_node *node;
2510
2511 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2512 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2513}
2514
2515static void
2516fire_sched_out_preempt_notifiers(struct task_struct *curr,
2517 struct task_struct *next)
2518{
2519 struct preempt_notifier *notifier;
2520 struct hlist_node *node;
2521
2522 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2523 notifier->ops->sched_out(notifier, next);
2524}
2525
6d6bc0ad 2526#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2527
2528static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2529{
2530}
2531
2532static void
2533fire_sched_out_preempt_notifiers(struct task_struct *curr,
2534 struct task_struct *next)
2535{
2536}
2537
6d6bc0ad 2538#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2539
4866cde0
NP
2540/**
2541 * prepare_task_switch - prepare to switch tasks
2542 * @rq: the runqueue preparing to switch
421cee29 2543 * @prev: the current task that is being switched out
4866cde0
NP
2544 * @next: the task we are going to switch to.
2545 *
2546 * This is called with the rq lock held and interrupts off. It must
2547 * be paired with a subsequent finish_task_switch after the context
2548 * switch.
2549 *
2550 * prepare_task_switch sets up locking and calls architecture specific
2551 * hooks.
2552 */
e107be36
AK
2553static inline void
2554prepare_task_switch(struct rq *rq, struct task_struct *prev,
2555 struct task_struct *next)
4866cde0 2556{
e107be36 2557 fire_sched_out_preempt_notifiers(prev, next);
0793a61d 2558 perf_counter_task_sched_out(prev, cpu_of(rq));
4866cde0
NP
2559 prepare_lock_switch(rq, next);
2560 prepare_arch_switch(next);
2561}
2562
1da177e4
LT
2563/**
2564 * finish_task_switch - clean up after a task-switch
344babaa 2565 * @rq: runqueue associated with task-switch
1da177e4
LT
2566 * @prev: the thread we just switched away from.
2567 *
4866cde0
NP
2568 * finish_task_switch must be called after the context switch, paired
2569 * with a prepare_task_switch call before the context switch.
2570 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2571 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2572 *
2573 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2574 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2575 * with the lock held can cause deadlocks; see schedule() for
2576 * details.)
2577 */
a9957449 2578static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2579 __releases(rq->lock)
2580{
1da177e4 2581 struct mm_struct *mm = rq->prev_mm;
55a101f8 2582 long prev_state;
1da177e4
LT
2583
2584 rq->prev_mm = NULL;
2585
2586 /*
2587 * A task struct has one reference for the use as "current".
c394cc9f 2588 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2589 * schedule one last time. The schedule call will never return, and
2590 * the scheduled task must drop that reference.
c394cc9f 2591 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2592 * still held, otherwise prev could be scheduled on another cpu, die
2593 * there before we look at prev->state, and then the reference would
2594 * be dropped twice.
2595 * Manfred Spraul <manfred@colorfullife.com>
2596 */
55a101f8 2597 prev_state = prev->state;
4866cde0 2598 finish_arch_switch(prev);
0793a61d 2599 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2600 finish_lock_switch(rq, prev);
9a897c5a
SR
2601#ifdef CONFIG_SMP
2602 if (current->sched_class->post_schedule)
2603 current->sched_class->post_schedule(rq);
2604#endif
e8fa1362 2605
e107be36 2606 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2607 if (mm)
2608 mmdrop(mm);
c394cc9f 2609 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2610 /*
2611 * Remove function-return probe instances associated with this
2612 * task and put them back on the free list.
9761eea8 2613 */
c6fd91f0 2614 kprobe_flush_task(prev);
1da177e4 2615 put_task_struct(prev);
c6fd91f0 2616 }
1da177e4
LT
2617}
2618
2619/**
2620 * schedule_tail - first thing a freshly forked thread must call.
2621 * @prev: the thread we just switched away from.
2622 */
36c8b586 2623asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2624 __releases(rq->lock)
2625{
70b97a7f
IM
2626 struct rq *rq = this_rq();
2627
4866cde0
NP
2628 finish_task_switch(rq, prev);
2629#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2630 /* In this case, finish_task_switch does not reenable preemption */
2631 preempt_enable();
2632#endif
1da177e4 2633 if (current->set_child_tid)
b488893a 2634 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2635}
2636
2637/*
2638 * context_switch - switch to the new MM and the new
2639 * thread's register state.
2640 */
dd41f596 2641static inline void
70b97a7f 2642context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2643 struct task_struct *next)
1da177e4 2644{
dd41f596 2645 struct mm_struct *mm, *oldmm;
1da177e4 2646
e107be36 2647 prepare_task_switch(rq, prev, next);
0a16b607 2648 trace_sched_switch(rq, prev, next);
dd41f596
IM
2649 mm = next->mm;
2650 oldmm = prev->active_mm;
9226d125
ZA
2651 /*
2652 * For paravirt, this is coupled with an exit in switch_to to
2653 * combine the page table reload and the switch backend into
2654 * one hypercall.
2655 */
2656 arch_enter_lazy_cpu_mode();
2657
dd41f596 2658 if (unlikely(!mm)) {
1da177e4
LT
2659 next->active_mm = oldmm;
2660 atomic_inc(&oldmm->mm_count);
2661 enter_lazy_tlb(oldmm, next);
2662 } else
2663 switch_mm(oldmm, mm, next);
2664
dd41f596 2665 if (unlikely(!prev->mm)) {
1da177e4 2666 prev->active_mm = NULL;
1da177e4
LT
2667 rq->prev_mm = oldmm;
2668 }
3a5f5e48
IM
2669 /*
2670 * Since the runqueue lock will be released by the next
2671 * task (which is an invalid locking op but in the case
2672 * of the scheduler it's an obvious special-case), so we
2673 * do an early lockdep release here:
2674 */
2675#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2676 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2677#endif
1da177e4
LT
2678
2679 /* Here we just switch the register state and the stack. */
2680 switch_to(prev, next, prev);
2681
dd41f596
IM
2682 barrier();
2683 /*
2684 * this_rq must be evaluated again because prev may have moved
2685 * CPUs since it called schedule(), thus the 'rq' on its stack
2686 * frame will be invalid.
2687 */
2688 finish_task_switch(this_rq(), prev);
1da177e4
LT
2689}
2690
2691/*
2692 * nr_running, nr_uninterruptible and nr_context_switches:
2693 *
2694 * externally visible scheduler statistics: current number of runnable
2695 * threads, current number of uninterruptible-sleeping threads, total
2696 * number of context switches performed since bootup.
2697 */
2698unsigned long nr_running(void)
2699{
2700 unsigned long i, sum = 0;
2701
2702 for_each_online_cpu(i)
2703 sum += cpu_rq(i)->nr_running;
2704
2705 return sum;
2706}
2707
2708unsigned long nr_uninterruptible(void)
2709{
2710 unsigned long i, sum = 0;
2711
0a945022 2712 for_each_possible_cpu(i)
1da177e4
LT
2713 sum += cpu_rq(i)->nr_uninterruptible;
2714
2715 /*
2716 * Since we read the counters lockless, it might be slightly
2717 * inaccurate. Do not allow it to go below zero though:
2718 */
2719 if (unlikely((long)sum < 0))
2720 sum = 0;
2721
2722 return sum;
2723}
2724
2725unsigned long long nr_context_switches(void)
2726{
cc94abfc
SR
2727 int i;
2728 unsigned long long sum = 0;
1da177e4 2729
0a945022 2730 for_each_possible_cpu(i)
1da177e4
LT
2731 sum += cpu_rq(i)->nr_switches;
2732
2733 return sum;
2734}
2735
2736unsigned long nr_iowait(void)
2737{
2738 unsigned long i, sum = 0;
2739
0a945022 2740 for_each_possible_cpu(i)
1da177e4
LT
2741 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2742
2743 return sum;
2744}
2745
db1b1fef
JS
2746unsigned long nr_active(void)
2747{
2748 unsigned long i, running = 0, uninterruptible = 0;
2749
2750 for_each_online_cpu(i) {
2751 running += cpu_rq(i)->nr_running;
2752 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2753 }
2754
2755 if (unlikely((long)uninterruptible < 0))
2756 uninterruptible = 0;
2757
2758 return running + uninterruptible;
2759}
2760
48f24c4d 2761/*
dd41f596
IM
2762 * Update rq->cpu_load[] statistics. This function is usually called every
2763 * scheduler tick (TICK_NSEC).
48f24c4d 2764 */
dd41f596 2765static void update_cpu_load(struct rq *this_rq)
48f24c4d 2766{
495eca49 2767 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2768 int i, scale;
2769
2770 this_rq->nr_load_updates++;
dd41f596
IM
2771
2772 /* Update our load: */
2773 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2774 unsigned long old_load, new_load;
2775
2776 /* scale is effectively 1 << i now, and >> i divides by scale */
2777
2778 old_load = this_rq->cpu_load[i];
2779 new_load = this_load;
a25707f3
IM
2780 /*
2781 * Round up the averaging division if load is increasing. This
2782 * prevents us from getting stuck on 9 if the load is 10, for
2783 * example.
2784 */
2785 if (new_load > old_load)
2786 new_load += scale-1;
dd41f596
IM
2787 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2788 }
48f24c4d
IM
2789}
2790
dd41f596
IM
2791#ifdef CONFIG_SMP
2792
1da177e4
LT
2793/*
2794 * double_rq_lock - safely lock two runqueues
2795 *
2796 * Note this does not disable interrupts like task_rq_lock,
2797 * you need to do so manually before calling.
2798 */
70b97a7f 2799static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2800 __acquires(rq1->lock)
2801 __acquires(rq2->lock)
2802{
054b9108 2803 BUG_ON(!irqs_disabled());
1da177e4
LT
2804 if (rq1 == rq2) {
2805 spin_lock(&rq1->lock);
2806 __acquire(rq2->lock); /* Fake it out ;) */
2807 } else {
c96d145e 2808 if (rq1 < rq2) {
1da177e4 2809 spin_lock(&rq1->lock);
5e710e37 2810 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2811 } else {
2812 spin_lock(&rq2->lock);
5e710e37 2813 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2814 }
2815 }
6e82a3be
IM
2816 update_rq_clock(rq1);
2817 update_rq_clock(rq2);
1da177e4
LT
2818}
2819
2820/*
2821 * double_rq_unlock - safely unlock two runqueues
2822 *
2823 * Note this does not restore interrupts like task_rq_unlock,
2824 * you need to do so manually after calling.
2825 */
70b97a7f 2826static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2827 __releases(rq1->lock)
2828 __releases(rq2->lock)
2829{
2830 spin_unlock(&rq1->lock);
2831 if (rq1 != rq2)
2832 spin_unlock(&rq2->lock);
2833 else
2834 __release(rq2->lock);
2835}
2836
2837/*
2838 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2839 */
e8fa1362 2840static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2841 __releases(this_rq->lock)
2842 __acquires(busiest->lock)
2843 __acquires(this_rq->lock)
2844{
e8fa1362
SR
2845 int ret = 0;
2846
054b9108
KK
2847 if (unlikely(!irqs_disabled())) {
2848 /* printk() doesn't work good under rq->lock */
2849 spin_unlock(&this_rq->lock);
2850 BUG_ON(1);
2851 }
1da177e4 2852 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2853 if (busiest < this_rq) {
1da177e4
LT
2854 spin_unlock(&this_rq->lock);
2855 spin_lock(&busiest->lock);
5e710e37 2856 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
e8fa1362 2857 ret = 1;
1da177e4 2858 } else
5e710e37 2859 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1da177e4 2860 }
e8fa1362 2861 return ret;
1da177e4
LT
2862}
2863
1b12bbc7
PZ
2864static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2865 __releases(busiest->lock)
2866{
2867 spin_unlock(&busiest->lock);
2868 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2869}
2870
1da177e4
LT
2871/*
2872 * If dest_cpu is allowed for this process, migrate the task to it.
2873 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2874 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2875 * the cpu_allowed mask is restored.
2876 */
36c8b586 2877static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2878{
70b97a7f 2879 struct migration_req req;
1da177e4 2880 unsigned long flags;
70b97a7f 2881 struct rq *rq;
1da177e4
LT
2882
2883 rq = task_rq_lock(p, &flags);
2884 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2885 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2886 goto out;
2887
0a16b607 2888 trace_sched_migrate_task(rq, p, dest_cpu);
1da177e4
LT
2889 /* force the process onto the specified CPU */
2890 if (migrate_task(p, dest_cpu, &req)) {
2891 /* Need to wait for migration thread (might exit: take ref). */
2892 struct task_struct *mt = rq->migration_thread;
36c8b586 2893
1da177e4
LT
2894 get_task_struct(mt);
2895 task_rq_unlock(rq, &flags);
2896 wake_up_process(mt);
2897 put_task_struct(mt);
2898 wait_for_completion(&req.done);
36c8b586 2899
1da177e4
LT
2900 return;
2901 }
2902out:
2903 task_rq_unlock(rq, &flags);
2904}
2905
2906/*
476d139c
NP
2907 * sched_exec - execve() is a valuable balancing opportunity, because at
2908 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2909 */
2910void sched_exec(void)
2911{
1da177e4 2912 int new_cpu, this_cpu = get_cpu();
476d139c 2913 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2914 put_cpu();
476d139c
NP
2915 if (new_cpu != this_cpu)
2916 sched_migrate_task(current, new_cpu);
1da177e4
LT
2917}
2918
2919/*
2920 * pull_task - move a task from a remote runqueue to the local runqueue.
2921 * Both runqueues must be locked.
2922 */
dd41f596
IM
2923static void pull_task(struct rq *src_rq, struct task_struct *p,
2924 struct rq *this_rq, int this_cpu)
1da177e4 2925{
2e1cb74a 2926 deactivate_task(src_rq, p, 0);
1da177e4 2927 set_task_cpu(p, this_cpu);
dd41f596 2928 activate_task(this_rq, p, 0);
1da177e4
LT
2929 /*
2930 * Note that idle threads have a prio of MAX_PRIO, for this test
2931 * to be always true for them.
2932 */
15afe09b 2933 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2934}
2935
2936/*
2937 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2938 */
858119e1 2939static
70b97a7f 2940int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2941 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2942 int *all_pinned)
1da177e4
LT
2943{
2944 /*
2945 * We do not migrate tasks that are:
2946 * 1) running (obviously), or
2947 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2948 * 3) are cache-hot on their current CPU.
2949 */
cc367732
IM
2950 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2951 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2952 return 0;
cc367732 2953 }
81026794
NP
2954 *all_pinned = 0;
2955
cc367732
IM
2956 if (task_running(rq, p)) {
2957 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2958 return 0;
cc367732 2959 }
1da177e4 2960
da84d961
IM
2961 /*
2962 * Aggressive migration if:
2963 * 1) task is cache cold, or
2964 * 2) too many balance attempts have failed.
2965 */
2966
6bc1665b
IM
2967 if (!task_hot(p, rq->clock, sd) ||
2968 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2969#ifdef CONFIG_SCHEDSTATS
cc367732 2970 if (task_hot(p, rq->clock, sd)) {
da84d961 2971 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2972 schedstat_inc(p, se.nr_forced_migrations);
2973 }
da84d961
IM
2974#endif
2975 return 1;
2976 }
2977
cc367732
IM
2978 if (task_hot(p, rq->clock, sd)) {
2979 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2980 return 0;
cc367732 2981 }
1da177e4
LT
2982 return 1;
2983}
2984
e1d1484f
PW
2985static unsigned long
2986balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2987 unsigned long max_load_move, struct sched_domain *sd,
2988 enum cpu_idle_type idle, int *all_pinned,
2989 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2990{
051c6764 2991 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2992 struct task_struct *p;
2993 long rem_load_move = max_load_move;
1da177e4 2994
e1d1484f 2995 if (max_load_move == 0)
1da177e4
LT
2996 goto out;
2997
81026794
NP
2998 pinned = 1;
2999
1da177e4 3000 /*
dd41f596 3001 * Start the load-balancing iterator:
1da177e4 3002 */
dd41f596
IM
3003 p = iterator->start(iterator->arg);
3004next:
b82d9fdd 3005 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3006 goto out;
051c6764
PZ
3007
3008 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3009 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3010 p = iterator->next(iterator->arg);
3011 goto next;
1da177e4
LT
3012 }
3013
dd41f596 3014 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3015 pulled++;
dd41f596 3016 rem_load_move -= p->se.load.weight;
1da177e4 3017
2dd73a4f 3018 /*
b82d9fdd 3019 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3020 */
e1d1484f 3021 if (rem_load_move > 0) {
a4ac01c3
PW
3022 if (p->prio < *this_best_prio)
3023 *this_best_prio = p->prio;
dd41f596
IM
3024 p = iterator->next(iterator->arg);
3025 goto next;
1da177e4
LT
3026 }
3027out:
3028 /*
e1d1484f 3029 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3030 * so we can safely collect pull_task() stats here rather than
3031 * inside pull_task().
3032 */
3033 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3034
3035 if (all_pinned)
3036 *all_pinned = pinned;
e1d1484f
PW
3037
3038 return max_load_move - rem_load_move;
1da177e4
LT
3039}
3040
dd41f596 3041/*
43010659
PW
3042 * move_tasks tries to move up to max_load_move weighted load from busiest to
3043 * this_rq, as part of a balancing operation within domain "sd".
3044 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3045 *
3046 * Called with both runqueues locked.
3047 */
3048static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3049 unsigned long max_load_move,
dd41f596
IM
3050 struct sched_domain *sd, enum cpu_idle_type idle,
3051 int *all_pinned)
3052{
5522d5d5 3053 const struct sched_class *class = sched_class_highest;
43010659 3054 unsigned long total_load_moved = 0;
a4ac01c3 3055 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3056
3057 do {
43010659
PW
3058 total_load_moved +=
3059 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3060 max_load_move - total_load_moved,
a4ac01c3 3061 sd, idle, all_pinned, &this_best_prio);
dd41f596 3062 class = class->next;
c4acb2c0
GH
3063
3064 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3065 break;
3066
43010659 3067 } while (class && max_load_move > total_load_moved);
dd41f596 3068
43010659
PW
3069 return total_load_moved > 0;
3070}
3071
e1d1484f
PW
3072static int
3073iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3074 struct sched_domain *sd, enum cpu_idle_type idle,
3075 struct rq_iterator *iterator)
3076{
3077 struct task_struct *p = iterator->start(iterator->arg);
3078 int pinned = 0;
3079
3080 while (p) {
3081 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3082 pull_task(busiest, p, this_rq, this_cpu);
3083 /*
3084 * Right now, this is only the second place pull_task()
3085 * is called, so we can safely collect pull_task()
3086 * stats here rather than inside pull_task().
3087 */
3088 schedstat_inc(sd, lb_gained[idle]);
3089
3090 return 1;
3091 }
3092 p = iterator->next(iterator->arg);
3093 }
3094
3095 return 0;
3096}
3097
43010659
PW
3098/*
3099 * move_one_task tries to move exactly one task from busiest to this_rq, as
3100 * part of active balancing operations within "domain".
3101 * Returns 1 if successful and 0 otherwise.
3102 *
3103 * Called with both runqueues locked.
3104 */
3105static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3106 struct sched_domain *sd, enum cpu_idle_type idle)
3107{
5522d5d5 3108 const struct sched_class *class;
43010659
PW
3109
3110 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3111 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3112 return 1;
3113
3114 return 0;
dd41f596
IM
3115}
3116
1da177e4
LT
3117/*
3118 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3119 * domain. It calculates and returns the amount of weighted load which
3120 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3121 */
3122static struct sched_group *
3123find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3124 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3125 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3126{
3127 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3128 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3129 unsigned long max_pull;
2dd73a4f
PW
3130 unsigned long busiest_load_per_task, busiest_nr_running;
3131 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3132 int load_idx, group_imb = 0;
5c45bf27
SS
3133#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3134 int power_savings_balance = 1;
3135 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3136 unsigned long min_nr_running = ULONG_MAX;
3137 struct sched_group *group_min = NULL, *group_leader = NULL;
3138#endif
1da177e4
LT
3139
3140 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3141 busiest_load_per_task = busiest_nr_running = 0;
3142 this_load_per_task = this_nr_running = 0;
408ed066 3143
d15bcfdb 3144 if (idle == CPU_NOT_IDLE)
7897986b 3145 load_idx = sd->busy_idx;
d15bcfdb 3146 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3147 load_idx = sd->newidle_idx;
3148 else
3149 load_idx = sd->idle_idx;
1da177e4
LT
3150
3151 do {
908a7c1b 3152 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3153 int local_group;
3154 int i;
908a7c1b 3155 int __group_imb = 0;
783609c6 3156 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3157 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3158 unsigned long sum_avg_load_per_task;
3159 unsigned long avg_load_per_task;
1da177e4
LT
3160
3161 local_group = cpu_isset(this_cpu, group->cpumask);
3162
783609c6
SS
3163 if (local_group)
3164 balance_cpu = first_cpu(group->cpumask);
3165
1da177e4 3166 /* Tally up the load of all CPUs in the group */
2dd73a4f 3167 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3168 sum_avg_load_per_task = avg_load_per_task = 0;
3169
908a7c1b
KC
3170 max_cpu_load = 0;
3171 min_cpu_load = ~0UL;
1da177e4 3172
363ab6f1 3173 for_each_cpu_mask_nr(i, group->cpumask) {
0a2966b4
CL
3174 struct rq *rq;
3175
3176 if (!cpu_isset(i, *cpus))
3177 continue;
3178
3179 rq = cpu_rq(i);
2dd73a4f 3180
9439aab8 3181 if (*sd_idle && rq->nr_running)
5969fe06
NP
3182 *sd_idle = 0;
3183
1da177e4 3184 /* Bias balancing toward cpus of our domain */
783609c6
SS
3185 if (local_group) {
3186 if (idle_cpu(i) && !first_idle_cpu) {
3187 first_idle_cpu = 1;
3188 balance_cpu = i;
3189 }
3190
a2000572 3191 load = target_load(i, load_idx);
908a7c1b 3192 } else {
a2000572 3193 load = source_load(i, load_idx);
908a7c1b
KC
3194 if (load > max_cpu_load)
3195 max_cpu_load = load;
3196 if (min_cpu_load > load)
3197 min_cpu_load = load;
3198 }
1da177e4
LT
3199
3200 avg_load += load;
2dd73a4f 3201 sum_nr_running += rq->nr_running;
dd41f596 3202 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3203
3204 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3205 }
3206
783609c6
SS
3207 /*
3208 * First idle cpu or the first cpu(busiest) in this sched group
3209 * is eligible for doing load balancing at this and above
9439aab8
SS
3210 * domains. In the newly idle case, we will allow all the cpu's
3211 * to do the newly idle load balance.
783609c6 3212 */
9439aab8
SS
3213 if (idle != CPU_NEWLY_IDLE && local_group &&
3214 balance_cpu != this_cpu && balance) {
783609c6
SS
3215 *balance = 0;
3216 goto ret;
3217 }
3218
1da177e4 3219 total_load += avg_load;
5517d86b 3220 total_pwr += group->__cpu_power;
1da177e4
LT
3221
3222 /* Adjust by relative CPU power of the group */
5517d86b
ED
3223 avg_load = sg_div_cpu_power(group,
3224 avg_load * SCHED_LOAD_SCALE);
1da177e4 3225
408ed066
PZ
3226
3227 /*
3228 * Consider the group unbalanced when the imbalance is larger
3229 * than the average weight of two tasks.
3230 *
3231 * APZ: with cgroup the avg task weight can vary wildly and
3232 * might not be a suitable number - should we keep a
3233 * normalized nr_running number somewhere that negates
3234 * the hierarchy?
3235 */
3236 avg_load_per_task = sg_div_cpu_power(group,
3237 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3238
3239 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3240 __group_imb = 1;
3241
5517d86b 3242 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3243
1da177e4
LT
3244 if (local_group) {
3245 this_load = avg_load;
3246 this = group;
2dd73a4f
PW
3247 this_nr_running = sum_nr_running;
3248 this_load_per_task = sum_weighted_load;
3249 } else if (avg_load > max_load &&
908a7c1b 3250 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3251 max_load = avg_load;
3252 busiest = group;
2dd73a4f
PW
3253 busiest_nr_running = sum_nr_running;
3254 busiest_load_per_task = sum_weighted_load;
908a7c1b 3255 group_imb = __group_imb;
1da177e4 3256 }
5c45bf27
SS
3257
3258#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3259 /*
3260 * Busy processors will not participate in power savings
3261 * balance.
3262 */
dd41f596
IM
3263 if (idle == CPU_NOT_IDLE ||
3264 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3265 goto group_next;
5c45bf27
SS
3266
3267 /*
3268 * If the local group is idle or completely loaded
3269 * no need to do power savings balance at this domain
3270 */
3271 if (local_group && (this_nr_running >= group_capacity ||
3272 !this_nr_running))
3273 power_savings_balance = 0;
3274
dd41f596 3275 /*
5c45bf27
SS
3276 * If a group is already running at full capacity or idle,
3277 * don't include that group in power savings calculations
dd41f596
IM
3278 */
3279 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3280 || !sum_nr_running)
dd41f596 3281 goto group_next;
5c45bf27 3282
dd41f596 3283 /*
5c45bf27 3284 * Calculate the group which has the least non-idle load.
dd41f596
IM
3285 * This is the group from where we need to pick up the load
3286 * for saving power
3287 */
3288 if ((sum_nr_running < min_nr_running) ||
3289 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3290 first_cpu(group->cpumask) <
3291 first_cpu(group_min->cpumask))) {
dd41f596
IM
3292 group_min = group;
3293 min_nr_running = sum_nr_running;
5c45bf27
SS
3294 min_load_per_task = sum_weighted_load /
3295 sum_nr_running;
dd41f596 3296 }
5c45bf27 3297
dd41f596 3298 /*
5c45bf27 3299 * Calculate the group which is almost near its
dd41f596
IM
3300 * capacity but still has some space to pick up some load
3301 * from other group and save more power
3302 */
3303 if (sum_nr_running <= group_capacity - 1) {
3304 if (sum_nr_running > leader_nr_running ||
3305 (sum_nr_running == leader_nr_running &&
3306 first_cpu(group->cpumask) >
3307 first_cpu(group_leader->cpumask))) {
3308 group_leader = group;
3309 leader_nr_running = sum_nr_running;
3310 }
48f24c4d 3311 }
5c45bf27
SS
3312group_next:
3313#endif
1da177e4
LT
3314 group = group->next;
3315 } while (group != sd->groups);
3316
2dd73a4f 3317 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3318 goto out_balanced;
3319
3320 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3321
3322 if (this_load >= avg_load ||
3323 100*max_load <= sd->imbalance_pct*this_load)
3324 goto out_balanced;
3325
2dd73a4f 3326 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3327 if (group_imb)
3328 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3329
1da177e4
LT
3330 /*
3331 * We're trying to get all the cpus to the average_load, so we don't
3332 * want to push ourselves above the average load, nor do we wish to
3333 * reduce the max loaded cpu below the average load, as either of these
3334 * actions would just result in more rebalancing later, and ping-pong
3335 * tasks around. Thus we look for the minimum possible imbalance.
3336 * Negative imbalances (*we* are more loaded than anyone else) will
3337 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3338 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3339 * appear as very large values with unsigned longs.
3340 */
2dd73a4f
PW
3341 if (max_load <= busiest_load_per_task)
3342 goto out_balanced;
3343
3344 /*
3345 * In the presence of smp nice balancing, certain scenarios can have
3346 * max load less than avg load(as we skip the groups at or below
3347 * its cpu_power, while calculating max_load..)
3348 */
3349 if (max_load < avg_load) {
3350 *imbalance = 0;
3351 goto small_imbalance;
3352 }
0c117f1b
SS
3353
3354 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3355 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3356
1da177e4 3357 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3358 *imbalance = min(max_pull * busiest->__cpu_power,
3359 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3360 / SCHED_LOAD_SCALE;
3361
2dd73a4f
PW
3362 /*
3363 * if *imbalance is less than the average load per runnable task
3364 * there is no gaurantee that any tasks will be moved so we'll have
3365 * a think about bumping its value to force at least one task to be
3366 * moved
3367 */
7fd0d2dd 3368 if (*imbalance < busiest_load_per_task) {
48f24c4d 3369 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3370 unsigned int imbn;
3371
3372small_imbalance:
3373 pwr_move = pwr_now = 0;
3374 imbn = 2;
3375 if (this_nr_running) {
3376 this_load_per_task /= this_nr_running;
3377 if (busiest_load_per_task > this_load_per_task)
3378 imbn = 1;
3379 } else
408ed066 3380 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3381
01c8c57d 3382 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3383 busiest_load_per_task * imbn) {
2dd73a4f 3384 *imbalance = busiest_load_per_task;
1da177e4
LT
3385 return busiest;
3386 }
3387
3388 /*
3389 * OK, we don't have enough imbalance to justify moving tasks,
3390 * however we may be able to increase total CPU power used by
3391 * moving them.
3392 */
3393
5517d86b
ED
3394 pwr_now += busiest->__cpu_power *
3395 min(busiest_load_per_task, max_load);
3396 pwr_now += this->__cpu_power *
3397 min(this_load_per_task, this_load);
1da177e4
LT
3398 pwr_now /= SCHED_LOAD_SCALE;
3399
3400 /* Amount of load we'd subtract */
5517d86b
ED
3401 tmp = sg_div_cpu_power(busiest,
3402 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3403 if (max_load > tmp)
5517d86b 3404 pwr_move += busiest->__cpu_power *
2dd73a4f 3405 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3406
3407 /* Amount of load we'd add */
5517d86b 3408 if (max_load * busiest->__cpu_power <
33859f7f 3409 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3410 tmp = sg_div_cpu_power(this,
3411 max_load * busiest->__cpu_power);
1da177e4 3412 else
5517d86b
ED
3413 tmp = sg_div_cpu_power(this,
3414 busiest_load_per_task * SCHED_LOAD_SCALE);
3415 pwr_move += this->__cpu_power *
3416 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3417 pwr_move /= SCHED_LOAD_SCALE;
3418
3419 /* Move if we gain throughput */
7fd0d2dd
SS
3420 if (pwr_move > pwr_now)
3421 *imbalance = busiest_load_per_task;
1da177e4
LT
3422 }
3423
1da177e4
LT
3424 return busiest;
3425
3426out_balanced:
5c45bf27 3427#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3428 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3429 goto ret;
1da177e4 3430
5c45bf27
SS
3431 if (this == group_leader && group_leader != group_min) {
3432 *imbalance = min_load_per_task;
3433 return group_min;
3434 }
5c45bf27 3435#endif
783609c6 3436ret:
1da177e4
LT
3437 *imbalance = 0;
3438 return NULL;
3439}
3440
3441/*
3442 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3443 */
70b97a7f 3444static struct rq *
d15bcfdb 3445find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3446 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3447{
70b97a7f 3448 struct rq *busiest = NULL, *rq;
2dd73a4f 3449 unsigned long max_load = 0;
1da177e4
LT
3450 int i;
3451
363ab6f1 3452 for_each_cpu_mask_nr(i, group->cpumask) {
dd41f596 3453 unsigned long wl;
0a2966b4
CL
3454
3455 if (!cpu_isset(i, *cpus))
3456 continue;
3457
48f24c4d 3458 rq = cpu_rq(i);
dd41f596 3459 wl = weighted_cpuload(i);
2dd73a4f 3460
dd41f596 3461 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3462 continue;
1da177e4 3463
dd41f596
IM
3464 if (wl > max_load) {
3465 max_load = wl;
48f24c4d 3466 busiest = rq;
1da177e4
LT
3467 }
3468 }
3469
3470 return busiest;
3471}
3472
77391d71
NP
3473/*
3474 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3475 * so long as it is large enough.
3476 */
3477#define MAX_PINNED_INTERVAL 512
3478
1da177e4
LT
3479/*
3480 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3481 * tasks if there is an imbalance.
1da177e4 3482 */
70b97a7f 3483static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3484 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3485 int *balance, cpumask_t *cpus)
1da177e4 3486{
43010659 3487 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3488 struct sched_group *group;
1da177e4 3489 unsigned long imbalance;
70b97a7f 3490 struct rq *busiest;
fe2eea3f 3491 unsigned long flags;
5969fe06 3492
7c16ec58
MT
3493 cpus_setall(*cpus);
3494
89c4710e
SS
3495 /*
3496 * When power savings policy is enabled for the parent domain, idle
3497 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3498 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3499 * portraying it as CPU_NOT_IDLE.
89c4710e 3500 */
d15bcfdb 3501 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3502 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3503 sd_idle = 1;
1da177e4 3504
2d72376b 3505 schedstat_inc(sd, lb_count[idle]);
1da177e4 3506
0a2966b4 3507redo:
c8cba857 3508 update_shares(sd);
0a2966b4 3509 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3510 cpus, balance);
783609c6 3511
06066714 3512 if (*balance == 0)
783609c6 3513 goto out_balanced;
783609c6 3514
1da177e4
LT
3515 if (!group) {
3516 schedstat_inc(sd, lb_nobusyg[idle]);
3517 goto out_balanced;
3518 }
3519
7c16ec58 3520 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3521 if (!busiest) {
3522 schedstat_inc(sd, lb_nobusyq[idle]);
3523 goto out_balanced;
3524 }
3525
db935dbd 3526 BUG_ON(busiest == this_rq);
1da177e4
LT
3527
3528 schedstat_add(sd, lb_imbalance[idle], imbalance);
3529
43010659 3530 ld_moved = 0;
1da177e4
LT
3531 if (busiest->nr_running > 1) {
3532 /*
3533 * Attempt to move tasks. If find_busiest_group has found
3534 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3535 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3536 * correctly treated as an imbalance.
3537 */
fe2eea3f 3538 local_irq_save(flags);
e17224bf 3539 double_rq_lock(this_rq, busiest);
43010659 3540 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3541 imbalance, sd, idle, &all_pinned);
e17224bf 3542 double_rq_unlock(this_rq, busiest);
fe2eea3f 3543 local_irq_restore(flags);
81026794 3544
46cb4b7c
SS
3545 /*
3546 * some other cpu did the load balance for us.
3547 */
43010659 3548 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3549 resched_cpu(this_cpu);
3550
81026794 3551 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3552 if (unlikely(all_pinned)) {
7c16ec58
MT
3553 cpu_clear(cpu_of(busiest), *cpus);
3554 if (!cpus_empty(*cpus))
0a2966b4 3555 goto redo;
81026794 3556 goto out_balanced;
0a2966b4 3557 }
1da177e4 3558 }
81026794 3559
43010659 3560 if (!ld_moved) {
1da177e4
LT
3561 schedstat_inc(sd, lb_failed[idle]);
3562 sd->nr_balance_failed++;
3563
3564 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3565
fe2eea3f 3566 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3567
3568 /* don't kick the migration_thread, if the curr
3569 * task on busiest cpu can't be moved to this_cpu
3570 */
3571 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3572 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3573 all_pinned = 1;
3574 goto out_one_pinned;
3575 }
3576
1da177e4
LT
3577 if (!busiest->active_balance) {
3578 busiest->active_balance = 1;
3579 busiest->push_cpu = this_cpu;
81026794 3580 active_balance = 1;
1da177e4 3581 }
fe2eea3f 3582 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3583 if (active_balance)
1da177e4
LT
3584 wake_up_process(busiest->migration_thread);
3585
3586 /*
3587 * We've kicked active balancing, reset the failure
3588 * counter.
3589 */
39507451 3590 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3591 }
81026794 3592 } else
1da177e4
LT
3593 sd->nr_balance_failed = 0;
3594
81026794 3595 if (likely(!active_balance)) {
1da177e4
LT
3596 /* We were unbalanced, so reset the balancing interval */
3597 sd->balance_interval = sd->min_interval;
81026794
NP
3598 } else {
3599 /*
3600 * If we've begun active balancing, start to back off. This
3601 * case may not be covered by the all_pinned logic if there
3602 * is only 1 task on the busy runqueue (because we don't call
3603 * move_tasks).
3604 */
3605 if (sd->balance_interval < sd->max_interval)
3606 sd->balance_interval *= 2;
1da177e4
LT
3607 }
3608
43010659 3609 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3610 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3611 ld_moved = -1;
3612
3613 goto out;
1da177e4
LT
3614
3615out_balanced:
1da177e4
LT
3616 schedstat_inc(sd, lb_balanced[idle]);
3617
16cfb1c0 3618 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3619
3620out_one_pinned:
1da177e4 3621 /* tune up the balancing interval */
77391d71
NP
3622 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3623 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3624 sd->balance_interval *= 2;
3625
48f24c4d 3626 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3627 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3628 ld_moved = -1;
3629 else
3630 ld_moved = 0;
3631out:
c8cba857
PZ
3632 if (ld_moved)
3633 update_shares(sd);
c09595f6 3634 return ld_moved;
1da177e4
LT
3635}
3636
3637/*
3638 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3639 * tasks if there is an imbalance.
3640 *
d15bcfdb 3641 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3642 * this_rq is locked.
3643 */
48f24c4d 3644static int
7c16ec58
MT
3645load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3646 cpumask_t *cpus)
1da177e4
LT
3647{
3648 struct sched_group *group;
70b97a7f 3649 struct rq *busiest = NULL;
1da177e4 3650 unsigned long imbalance;
43010659 3651 int ld_moved = 0;
5969fe06 3652 int sd_idle = 0;
969bb4e4 3653 int all_pinned = 0;
7c16ec58
MT
3654
3655 cpus_setall(*cpus);
5969fe06 3656
89c4710e
SS
3657 /*
3658 * When power savings policy is enabled for the parent domain, idle
3659 * sibling can pick up load irrespective of busy siblings. In this case,
3660 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3661 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3662 */
3663 if (sd->flags & SD_SHARE_CPUPOWER &&
3664 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3665 sd_idle = 1;
1da177e4 3666
2d72376b 3667 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3668redo:
3e5459b4 3669 update_shares_locked(this_rq, sd);
d15bcfdb 3670 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3671 &sd_idle, cpus, NULL);
1da177e4 3672 if (!group) {
d15bcfdb 3673 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3674 goto out_balanced;
1da177e4
LT
3675 }
3676
7c16ec58 3677 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3678 if (!busiest) {
d15bcfdb 3679 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3680 goto out_balanced;
1da177e4
LT
3681 }
3682
db935dbd
NP
3683 BUG_ON(busiest == this_rq);
3684
d15bcfdb 3685 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3686
43010659 3687 ld_moved = 0;
d6d5cfaf
NP
3688 if (busiest->nr_running > 1) {
3689 /* Attempt to move tasks */
3690 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3691 /* this_rq->clock is already updated */
3692 update_rq_clock(busiest);
43010659 3693 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3694 imbalance, sd, CPU_NEWLY_IDLE,
3695 &all_pinned);
1b12bbc7 3696 double_unlock_balance(this_rq, busiest);
0a2966b4 3697
969bb4e4 3698 if (unlikely(all_pinned)) {
7c16ec58
MT
3699 cpu_clear(cpu_of(busiest), *cpus);
3700 if (!cpus_empty(*cpus))
0a2966b4
CL
3701 goto redo;
3702 }
d6d5cfaf
NP
3703 }
3704
43010659 3705 if (!ld_moved) {
d15bcfdb 3706 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3707 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3708 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3709 return -1;
3710 } else
16cfb1c0 3711 sd->nr_balance_failed = 0;
1da177e4 3712
3e5459b4 3713 update_shares_locked(this_rq, sd);
43010659 3714 return ld_moved;
16cfb1c0
NP
3715
3716out_balanced:
d15bcfdb 3717 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3718 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3719 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3720 return -1;
16cfb1c0 3721 sd->nr_balance_failed = 0;
48f24c4d 3722
16cfb1c0 3723 return 0;
1da177e4
LT
3724}
3725
3726/*
3727 * idle_balance is called by schedule() if this_cpu is about to become
3728 * idle. Attempts to pull tasks from other CPUs.
3729 */
70b97a7f 3730static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3731{
3732 struct sched_domain *sd;
dd41f596
IM
3733 int pulled_task = -1;
3734 unsigned long next_balance = jiffies + HZ;
7c16ec58 3735 cpumask_t tmpmask;
1da177e4
LT
3736
3737 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3738 unsigned long interval;
3739
3740 if (!(sd->flags & SD_LOAD_BALANCE))
3741 continue;
3742
3743 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3744 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3745 pulled_task = load_balance_newidle(this_cpu, this_rq,
3746 sd, &tmpmask);
92c4ca5c
CL
3747
3748 interval = msecs_to_jiffies(sd->balance_interval);
3749 if (time_after(next_balance, sd->last_balance + interval))
3750 next_balance = sd->last_balance + interval;
3751 if (pulled_task)
3752 break;
1da177e4 3753 }
dd41f596 3754 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3755 /*
3756 * We are going idle. next_balance may be set based on
3757 * a busy processor. So reset next_balance.
3758 */
3759 this_rq->next_balance = next_balance;
dd41f596 3760 }
1da177e4
LT
3761}
3762
3763/*
3764 * active_load_balance is run by migration threads. It pushes running tasks
3765 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3766 * running on each physical CPU where possible, and avoids physical /
3767 * logical imbalances.
3768 *
3769 * Called with busiest_rq locked.
3770 */
70b97a7f 3771static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3772{
39507451 3773 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3774 struct sched_domain *sd;
3775 struct rq *target_rq;
39507451 3776
48f24c4d 3777 /* Is there any task to move? */
39507451 3778 if (busiest_rq->nr_running <= 1)
39507451
NP
3779 return;
3780
3781 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3782
3783 /*
39507451 3784 * This condition is "impossible", if it occurs
41a2d6cf 3785 * we need to fix it. Originally reported by
39507451 3786 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3787 */
39507451 3788 BUG_ON(busiest_rq == target_rq);
1da177e4 3789
39507451
NP
3790 /* move a task from busiest_rq to target_rq */
3791 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3792 update_rq_clock(busiest_rq);
3793 update_rq_clock(target_rq);
39507451
NP
3794
3795 /* Search for an sd spanning us and the target CPU. */
c96d145e 3796 for_each_domain(target_cpu, sd) {
39507451 3797 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3798 cpu_isset(busiest_cpu, sd->span))
39507451 3799 break;
c96d145e 3800 }
39507451 3801
48f24c4d 3802 if (likely(sd)) {
2d72376b 3803 schedstat_inc(sd, alb_count);
39507451 3804
43010659
PW
3805 if (move_one_task(target_rq, target_cpu, busiest_rq,
3806 sd, CPU_IDLE))
48f24c4d
IM
3807 schedstat_inc(sd, alb_pushed);
3808 else
3809 schedstat_inc(sd, alb_failed);
3810 }
1b12bbc7 3811 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3812}
3813
46cb4b7c
SS
3814#ifdef CONFIG_NO_HZ
3815static struct {
3816 atomic_t load_balancer;
41a2d6cf 3817 cpumask_t cpu_mask;
46cb4b7c
SS
3818} nohz ____cacheline_aligned = {
3819 .load_balancer = ATOMIC_INIT(-1),
3820 .cpu_mask = CPU_MASK_NONE,
3821};
3822
7835b98b 3823/*
46cb4b7c
SS
3824 * This routine will try to nominate the ilb (idle load balancing)
3825 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3826 * load balancing on behalf of all those cpus. If all the cpus in the system
3827 * go into this tickless mode, then there will be no ilb owner (as there is
3828 * no need for one) and all the cpus will sleep till the next wakeup event
3829 * arrives...
3830 *
3831 * For the ilb owner, tick is not stopped. And this tick will be used
3832 * for idle load balancing. ilb owner will still be part of
3833 * nohz.cpu_mask..
7835b98b 3834 *
46cb4b7c
SS
3835 * While stopping the tick, this cpu will become the ilb owner if there
3836 * is no other owner. And will be the owner till that cpu becomes busy
3837 * or if all cpus in the system stop their ticks at which point
3838 * there is no need for ilb owner.
3839 *
3840 * When the ilb owner becomes busy, it nominates another owner, during the
3841 * next busy scheduler_tick()
3842 */
3843int select_nohz_load_balancer(int stop_tick)
3844{
3845 int cpu = smp_processor_id();
3846
3847 if (stop_tick) {
3848 cpu_set(cpu, nohz.cpu_mask);
3849 cpu_rq(cpu)->in_nohz_recently = 1;
3850
3851 /*
3852 * If we are going offline and still the leader, give up!
3853 */
e761b772 3854 if (!cpu_active(cpu) &&
46cb4b7c
SS
3855 atomic_read(&nohz.load_balancer) == cpu) {
3856 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3857 BUG();
3858 return 0;
3859 }
3860
3861 /* time for ilb owner also to sleep */
3862 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3863 if (atomic_read(&nohz.load_balancer) == cpu)
3864 atomic_set(&nohz.load_balancer, -1);
3865 return 0;
3866 }
3867
3868 if (atomic_read(&nohz.load_balancer) == -1) {
3869 /* make me the ilb owner */
3870 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3871 return 1;
3872 } else if (atomic_read(&nohz.load_balancer) == cpu)
3873 return 1;
3874 } else {
3875 if (!cpu_isset(cpu, nohz.cpu_mask))
3876 return 0;
3877
3878 cpu_clear(cpu, nohz.cpu_mask);
3879
3880 if (atomic_read(&nohz.load_balancer) == cpu)
3881 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3882 BUG();
3883 }
3884 return 0;
3885}
3886#endif
3887
3888static DEFINE_SPINLOCK(balancing);
3889
3890/*
7835b98b
CL
3891 * It checks each scheduling domain to see if it is due to be balanced,
3892 * and initiates a balancing operation if so.
3893 *
3894 * Balancing parameters are set up in arch_init_sched_domains.
3895 */
a9957449 3896static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3897{
46cb4b7c
SS
3898 int balance = 1;
3899 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3900 unsigned long interval;
3901 struct sched_domain *sd;
46cb4b7c 3902 /* Earliest time when we have to do rebalance again */
c9819f45 3903 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3904 int update_next_balance = 0;
d07355f5 3905 int need_serialize;
7c16ec58 3906 cpumask_t tmp;
1da177e4 3907
46cb4b7c 3908 for_each_domain(cpu, sd) {
1da177e4
LT
3909 if (!(sd->flags & SD_LOAD_BALANCE))
3910 continue;
3911
3912 interval = sd->balance_interval;
d15bcfdb 3913 if (idle != CPU_IDLE)
1da177e4
LT
3914 interval *= sd->busy_factor;
3915
3916 /* scale ms to jiffies */
3917 interval = msecs_to_jiffies(interval);
3918 if (unlikely(!interval))
3919 interval = 1;
dd41f596
IM
3920 if (interval > HZ*NR_CPUS/10)
3921 interval = HZ*NR_CPUS/10;
3922
d07355f5 3923 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3924
d07355f5 3925 if (need_serialize) {
08c183f3
CL
3926 if (!spin_trylock(&balancing))
3927 goto out;
3928 }
3929
c9819f45 3930 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3931 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3932 /*
3933 * We've pulled tasks over so either we're no
5969fe06
NP
3934 * longer idle, or one of our SMT siblings is
3935 * not idle.
3936 */
d15bcfdb 3937 idle = CPU_NOT_IDLE;
1da177e4 3938 }
1bd77f2d 3939 sd->last_balance = jiffies;
1da177e4 3940 }
d07355f5 3941 if (need_serialize)
08c183f3
CL
3942 spin_unlock(&balancing);
3943out:
f549da84 3944 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3945 next_balance = sd->last_balance + interval;
f549da84
SS
3946 update_next_balance = 1;
3947 }
783609c6
SS
3948
3949 /*
3950 * Stop the load balance at this level. There is another
3951 * CPU in our sched group which is doing load balancing more
3952 * actively.
3953 */
3954 if (!balance)
3955 break;
1da177e4 3956 }
f549da84
SS
3957
3958 /*
3959 * next_balance will be updated only when there is a need.
3960 * When the cpu is attached to null domain for ex, it will not be
3961 * updated.
3962 */
3963 if (likely(update_next_balance))
3964 rq->next_balance = next_balance;
46cb4b7c
SS
3965}
3966
3967/*
3968 * run_rebalance_domains is triggered when needed from the scheduler tick.
3969 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3970 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3971 */
3972static void run_rebalance_domains(struct softirq_action *h)
3973{
dd41f596
IM
3974 int this_cpu = smp_processor_id();
3975 struct rq *this_rq = cpu_rq(this_cpu);
3976 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3977 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3978
dd41f596 3979 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3980
3981#ifdef CONFIG_NO_HZ
3982 /*
3983 * If this cpu is the owner for idle load balancing, then do the
3984 * balancing on behalf of the other idle cpus whose ticks are
3985 * stopped.
3986 */
dd41f596
IM
3987 if (this_rq->idle_at_tick &&
3988 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3989 cpumask_t cpus = nohz.cpu_mask;
3990 struct rq *rq;
3991 int balance_cpu;
3992
dd41f596 3993 cpu_clear(this_cpu, cpus);
363ab6f1 3994 for_each_cpu_mask_nr(balance_cpu, cpus) {
46cb4b7c
SS
3995 /*
3996 * If this cpu gets work to do, stop the load balancing
3997 * work being done for other cpus. Next load
3998 * balancing owner will pick it up.
3999 */
4000 if (need_resched())
4001 break;
4002
de0cf899 4003 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4004
4005 rq = cpu_rq(balance_cpu);
dd41f596
IM
4006 if (time_after(this_rq->next_balance, rq->next_balance))
4007 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4008 }
4009 }
4010#endif
4011}
4012
4013/*
4014 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4015 *
4016 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4017 * idle load balancing owner or decide to stop the periodic load balancing,
4018 * if the whole system is idle.
4019 */
dd41f596 4020static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4021{
46cb4b7c
SS
4022#ifdef CONFIG_NO_HZ
4023 /*
4024 * If we were in the nohz mode recently and busy at the current
4025 * scheduler tick, then check if we need to nominate new idle
4026 * load balancer.
4027 */
4028 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4029 rq->in_nohz_recently = 0;
4030
4031 if (atomic_read(&nohz.load_balancer) == cpu) {
4032 cpu_clear(cpu, nohz.cpu_mask);
4033 atomic_set(&nohz.load_balancer, -1);
4034 }
4035
4036 if (atomic_read(&nohz.load_balancer) == -1) {
4037 /*
4038 * simple selection for now: Nominate the
4039 * first cpu in the nohz list to be the next
4040 * ilb owner.
4041 *
4042 * TBD: Traverse the sched domains and nominate
4043 * the nearest cpu in the nohz.cpu_mask.
4044 */
4045 int ilb = first_cpu(nohz.cpu_mask);
4046
434d53b0 4047 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4048 resched_cpu(ilb);
4049 }
4050 }
4051
4052 /*
4053 * If this cpu is idle and doing idle load balancing for all the
4054 * cpus with ticks stopped, is it time for that to stop?
4055 */
4056 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4057 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4058 resched_cpu(cpu);
4059 return;
4060 }
4061
4062 /*
4063 * If this cpu is idle and the idle load balancing is done by
4064 * someone else, then no need raise the SCHED_SOFTIRQ
4065 */
4066 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4067 cpu_isset(cpu, nohz.cpu_mask))
4068 return;
4069#endif
4070 if (time_after_eq(jiffies, rq->next_balance))
4071 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4072}
dd41f596
IM
4073
4074#else /* CONFIG_SMP */
4075
1da177e4
LT
4076/*
4077 * on UP we do not need to balance between CPUs:
4078 */
70b97a7f 4079static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4080{
4081}
dd41f596 4082
1da177e4
LT
4083#endif
4084
1da177e4
LT
4085DEFINE_PER_CPU(struct kernel_stat, kstat);
4086
4087EXPORT_PER_CPU_SYMBOL(kstat);
4088
4089/*
f06febc9
FM
4090 * Return any ns on the sched_clock that have not yet been banked in
4091 * @p in case that task is currently running.
1da177e4 4092 */
bb34d92f 4093unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4094{
1da177e4 4095 unsigned long flags;
41b86e9c 4096 struct rq *rq;
bb34d92f 4097 u64 ns = 0;
48f24c4d 4098
41b86e9c 4099 rq = task_rq_lock(p, &flags);
1508487e 4100
051a1d1a 4101 if (task_current(rq, p)) {
f06febc9
FM
4102 u64 delta_exec;
4103
a8e504d2
IM
4104 update_rq_clock(rq);
4105 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4106 if ((s64)delta_exec > 0)
bb34d92f 4107 ns = delta_exec;
41b86e9c 4108 }
48f24c4d 4109
41b86e9c 4110 task_rq_unlock(rq, &flags);
48f24c4d 4111
1da177e4
LT
4112 return ns;
4113}
4114
1da177e4
LT
4115/*
4116 * Account user cpu time to a process.
4117 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4118 * @cputime: the cpu time spent in user space since the last update
4119 */
4120void account_user_time(struct task_struct *p, cputime_t cputime)
4121{
4122 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4123 cputime64_t tmp;
4124
4125 p->utime = cputime_add(p->utime, cputime);
f06febc9 4126 account_group_user_time(p, cputime);
1da177e4
LT
4127
4128 /* Add user time to cpustat. */
4129 tmp = cputime_to_cputime64(cputime);
4130 if (TASK_NICE(p) > 0)
4131 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4132 else
4133 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4134 /* Account for user time used */
4135 acct_update_integrals(p);
1da177e4
LT
4136}
4137
94886b84
LV
4138/*
4139 * Account guest cpu time to a process.
4140 * @p: the process that the cpu time gets accounted to
4141 * @cputime: the cpu time spent in virtual machine since the last update
4142 */
f7402e03 4143static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4144{
4145 cputime64_t tmp;
4146 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4147
4148 tmp = cputime_to_cputime64(cputime);
4149
4150 p->utime = cputime_add(p->utime, cputime);
f06febc9 4151 account_group_user_time(p, cputime);
94886b84
LV
4152 p->gtime = cputime_add(p->gtime, cputime);
4153
4154 cpustat->user = cputime64_add(cpustat->user, tmp);
4155 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4156}
4157
c66f08be
MN
4158/*
4159 * Account scaled user cpu time to a process.
4160 * @p: the process that the cpu time gets accounted to
4161 * @cputime: the cpu time spent in user space since the last update
4162 */
4163void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4164{
4165 p->utimescaled = cputime_add(p->utimescaled, cputime);
4166}
4167
1da177e4
LT
4168/*
4169 * Account system cpu time to a process.
4170 * @p: the process that the cpu time gets accounted to
4171 * @hardirq_offset: the offset to subtract from hardirq_count()
4172 * @cputime: the cpu time spent in kernel space since the last update
4173 */
4174void account_system_time(struct task_struct *p, int hardirq_offset,
4175 cputime_t cputime)
4176{
4177 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4178 struct rq *rq = this_rq();
1da177e4
LT
4179 cputime64_t tmp;
4180
983ed7a6
HH
4181 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4182 account_guest_time(p, cputime);
4183 return;
4184 }
94886b84 4185
1da177e4 4186 p->stime = cputime_add(p->stime, cputime);
f06febc9 4187 account_group_system_time(p, cputime);
1da177e4
LT
4188
4189 /* Add system time to cpustat. */
4190 tmp = cputime_to_cputime64(cputime);
4191 if (hardirq_count() - hardirq_offset)
4192 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4193 else if (softirq_count())
4194 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4195 else if (p != rq->idle)
1da177e4 4196 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4197 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4198 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4199 else
4200 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4201 /* Account for system time used */
4202 acct_update_integrals(p);
1da177e4
LT
4203}
4204
c66f08be
MN
4205/*
4206 * Account scaled system cpu time to a process.
4207 * @p: the process that the cpu time gets accounted to
4208 * @hardirq_offset: the offset to subtract from hardirq_count()
4209 * @cputime: the cpu time spent in kernel space since the last update
4210 */
4211void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4212{
4213 p->stimescaled = cputime_add(p->stimescaled, cputime);
4214}
4215
1da177e4
LT
4216/*
4217 * Account for involuntary wait time.
4218 * @p: the process from which the cpu time has been stolen
4219 * @steal: the cpu time spent in involuntary wait
4220 */
4221void account_steal_time(struct task_struct *p, cputime_t steal)
4222{
4223 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4224 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4225 struct rq *rq = this_rq();
1da177e4
LT
4226
4227 if (p == rq->idle) {
4228 p->stime = cputime_add(p->stime, steal);
f06febc9 4229 account_group_system_time(p, steal);
1da177e4
LT
4230 if (atomic_read(&rq->nr_iowait) > 0)
4231 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4232 else
4233 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4234 } else
1da177e4
LT
4235 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4236}
4237
49048622
BS
4238/*
4239 * Use precise platform statistics if available:
4240 */
4241#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4242cputime_t task_utime(struct task_struct *p)
4243{
4244 return p->utime;
4245}
4246
4247cputime_t task_stime(struct task_struct *p)
4248{
4249 return p->stime;
4250}
4251#else
4252cputime_t task_utime(struct task_struct *p)
4253{
4254 clock_t utime = cputime_to_clock_t(p->utime),
4255 total = utime + cputime_to_clock_t(p->stime);
4256 u64 temp;
4257
4258 /*
4259 * Use CFS's precise accounting:
4260 */
4261 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4262
4263 if (total) {
4264 temp *= utime;
4265 do_div(temp, total);
4266 }
4267 utime = (clock_t)temp;
4268
4269 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4270 return p->prev_utime;
4271}
4272
4273cputime_t task_stime(struct task_struct *p)
4274{
4275 clock_t stime;
4276
4277 /*
4278 * Use CFS's precise accounting. (we subtract utime from
4279 * the total, to make sure the total observed by userspace
4280 * grows monotonically - apps rely on that):
4281 */
4282 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4283 cputime_to_clock_t(task_utime(p));
4284
4285 if (stime >= 0)
4286 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4287
4288 return p->prev_stime;
4289}
4290#endif
4291
4292inline cputime_t task_gtime(struct task_struct *p)
4293{
4294 return p->gtime;
4295}
4296
7835b98b
CL
4297/*
4298 * This function gets called by the timer code, with HZ frequency.
4299 * We call it with interrupts disabled.
4300 *
4301 * It also gets called by the fork code, when changing the parent's
4302 * timeslices.
4303 */
4304void scheduler_tick(void)
4305{
7835b98b
CL
4306 int cpu = smp_processor_id();
4307 struct rq *rq = cpu_rq(cpu);
dd41f596 4308 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4309
4310 sched_clock_tick();
dd41f596
IM
4311
4312 spin_lock(&rq->lock);
3e51f33f 4313 update_rq_clock(rq);
f1a438d8 4314 update_cpu_load(rq);
fa85ae24 4315 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4316 spin_unlock(&rq->lock);
7835b98b 4317
e418e1c2 4318#ifdef CONFIG_SMP
dd41f596
IM
4319 rq->idle_at_tick = idle_cpu(cpu);
4320 trigger_load_balance(rq, cpu);
e418e1c2 4321#endif
0793a61d 4322 perf_counter_task_tick(curr, cpu);
1da177e4
LT
4323}
4324
6cd8a4bb
SR
4325#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4326 defined(CONFIG_PREEMPT_TRACER))
4327
4328static inline unsigned long get_parent_ip(unsigned long addr)
4329{
4330 if (in_lock_functions(addr)) {
4331 addr = CALLER_ADDR2;
4332 if (in_lock_functions(addr))
4333 addr = CALLER_ADDR3;
4334 }
4335 return addr;
4336}
1da177e4 4337
43627582 4338void __kprobes add_preempt_count(int val)
1da177e4 4339{
6cd8a4bb 4340#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4341 /*
4342 * Underflow?
4343 */
9a11b49a
IM
4344 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4345 return;
6cd8a4bb 4346#endif
1da177e4 4347 preempt_count() += val;
6cd8a4bb 4348#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4349 /*
4350 * Spinlock count overflowing soon?
4351 */
33859f7f
MOS
4352 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4353 PREEMPT_MASK - 10);
6cd8a4bb
SR
4354#endif
4355 if (preempt_count() == val)
4356 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4357}
4358EXPORT_SYMBOL(add_preempt_count);
4359
43627582 4360void __kprobes sub_preempt_count(int val)
1da177e4 4361{
6cd8a4bb 4362#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4363 /*
4364 * Underflow?
4365 */
9a11b49a
IM
4366 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4367 return;
1da177e4
LT
4368 /*
4369 * Is the spinlock portion underflowing?
4370 */
9a11b49a
IM
4371 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4372 !(preempt_count() & PREEMPT_MASK)))
4373 return;
6cd8a4bb 4374#endif
9a11b49a 4375
6cd8a4bb
SR
4376 if (preempt_count() == val)
4377 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4378 preempt_count() -= val;
4379}
4380EXPORT_SYMBOL(sub_preempt_count);
4381
4382#endif
4383
4384/*
dd41f596 4385 * Print scheduling while atomic bug:
1da177e4 4386 */
dd41f596 4387static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4388{
838225b4
SS
4389 struct pt_regs *regs = get_irq_regs();
4390
4391 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4392 prev->comm, prev->pid, preempt_count());
4393
dd41f596 4394 debug_show_held_locks(prev);
e21f5b15 4395 print_modules();
dd41f596
IM
4396 if (irqs_disabled())
4397 print_irqtrace_events(prev);
838225b4
SS
4398
4399 if (regs)
4400 show_regs(regs);
4401 else
4402 dump_stack();
dd41f596 4403}
1da177e4 4404
dd41f596
IM
4405/*
4406 * Various schedule()-time debugging checks and statistics:
4407 */
4408static inline void schedule_debug(struct task_struct *prev)
4409{
1da177e4 4410 /*
41a2d6cf 4411 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4412 * schedule() atomically, we ignore that path for now.
4413 * Otherwise, whine if we are scheduling when we should not be.
4414 */
3f33a7ce 4415 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4416 __schedule_bug(prev);
4417
1da177e4
LT
4418 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4419
2d72376b 4420 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4421#ifdef CONFIG_SCHEDSTATS
4422 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4423 schedstat_inc(this_rq(), bkl_count);
4424 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4425 }
4426#endif
dd41f596
IM
4427}
4428
4429/*
4430 * Pick up the highest-prio task:
4431 */
4432static inline struct task_struct *
ff95f3df 4433pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4434{
5522d5d5 4435 const struct sched_class *class;
dd41f596 4436 struct task_struct *p;
1da177e4
LT
4437
4438 /*
dd41f596
IM
4439 * Optimization: we know that if all tasks are in
4440 * the fair class we can call that function directly:
1da177e4 4441 */
dd41f596 4442 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4443 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4444 if (likely(p))
4445 return p;
1da177e4
LT
4446 }
4447
dd41f596
IM
4448 class = sched_class_highest;
4449 for ( ; ; ) {
fb8d4724 4450 p = class->pick_next_task(rq);
dd41f596
IM
4451 if (p)
4452 return p;
4453 /*
4454 * Will never be NULL as the idle class always
4455 * returns a non-NULL p:
4456 */
4457 class = class->next;
4458 }
4459}
1da177e4 4460
dd41f596
IM
4461/*
4462 * schedule() is the main scheduler function.
4463 */
4464asmlinkage void __sched schedule(void)
4465{
4466 struct task_struct *prev, *next;
67ca7bde 4467 unsigned long *switch_count;
dd41f596 4468 struct rq *rq;
31656519 4469 int cpu;
dd41f596
IM
4470
4471need_resched:
4472 preempt_disable();
4473 cpu = smp_processor_id();
4474 rq = cpu_rq(cpu);
4475 rcu_qsctr_inc(cpu);
4476 prev = rq->curr;
4477 switch_count = &prev->nivcsw;
4478
4479 release_kernel_lock(prev);
4480need_resched_nonpreemptible:
4481
4482 schedule_debug(prev);
1da177e4 4483
31656519 4484 if (sched_feat(HRTICK))
f333fdc9 4485 hrtick_clear(rq);
8f4d37ec 4486
8cd162ce 4487 spin_lock_irq(&rq->lock);
3e51f33f 4488 update_rq_clock(rq);
1e819950 4489 clear_tsk_need_resched(prev);
1da177e4 4490
1da177e4 4491 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4492 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4493 prev->state = TASK_RUNNING;
16882c1e 4494 else
2e1cb74a 4495 deactivate_task(rq, prev, 1);
dd41f596 4496 switch_count = &prev->nvcsw;
1da177e4
LT
4497 }
4498
9a897c5a
SR
4499#ifdef CONFIG_SMP
4500 if (prev->sched_class->pre_schedule)
4501 prev->sched_class->pre_schedule(rq, prev);
4502#endif
f65eda4f 4503
dd41f596 4504 if (unlikely(!rq->nr_running))
1da177e4 4505 idle_balance(cpu, rq);
1da177e4 4506
31ee529c 4507 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4508 next = pick_next_task(rq, prev);
1da177e4 4509
1da177e4 4510 if (likely(prev != next)) {
673a90a1
DS
4511 sched_info_switch(prev, next);
4512
1da177e4
LT
4513 rq->nr_switches++;
4514 rq->curr = next;
4515 ++*switch_count;
4516
dd41f596 4517 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4518 /*
4519 * the context switch might have flipped the stack from under
4520 * us, hence refresh the local variables.
4521 */
4522 cpu = smp_processor_id();
4523 rq = cpu_rq(cpu);
1da177e4
LT
4524 } else
4525 spin_unlock_irq(&rq->lock);
4526
8f4d37ec 4527 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4528 goto need_resched_nonpreemptible;
8f4d37ec 4529
1da177e4
LT
4530 preempt_enable_no_resched();
4531 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4532 goto need_resched;
4533}
1da177e4
LT
4534EXPORT_SYMBOL(schedule);
4535
4536#ifdef CONFIG_PREEMPT
4537/*
2ed6e34f 4538 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4539 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4540 * occur there and call schedule directly.
4541 */
4542asmlinkage void __sched preempt_schedule(void)
4543{
4544 struct thread_info *ti = current_thread_info();
6478d880 4545
1da177e4
LT
4546 /*
4547 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4548 * we do not want to preempt the current task. Just return..
1da177e4 4549 */
beed33a8 4550 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4551 return;
4552
3a5c359a
AK
4553 do {
4554 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4555 schedule();
3a5c359a 4556 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4557
3a5c359a
AK
4558 /*
4559 * Check again in case we missed a preemption opportunity
4560 * between schedule and now.
4561 */
4562 barrier();
4563 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4564}
1da177e4
LT
4565EXPORT_SYMBOL(preempt_schedule);
4566
4567/*
2ed6e34f 4568 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4569 * off of irq context.
4570 * Note, that this is called and return with irqs disabled. This will
4571 * protect us against recursive calling from irq.
4572 */
4573asmlinkage void __sched preempt_schedule_irq(void)
4574{
4575 struct thread_info *ti = current_thread_info();
6478d880 4576
2ed6e34f 4577 /* Catch callers which need to be fixed */
1da177e4
LT
4578 BUG_ON(ti->preempt_count || !irqs_disabled());
4579
3a5c359a
AK
4580 do {
4581 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4582 local_irq_enable();
4583 schedule();
4584 local_irq_disable();
3a5c359a 4585 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4586
3a5c359a
AK
4587 /*
4588 * Check again in case we missed a preemption opportunity
4589 * between schedule and now.
4590 */
4591 barrier();
4592 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4593}
4594
4595#endif /* CONFIG_PREEMPT */
4596
95cdf3b7
IM
4597int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4598 void *key)
1da177e4 4599{
48f24c4d 4600 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4601}
1da177e4
LT
4602EXPORT_SYMBOL(default_wake_function);
4603
4604/*
41a2d6cf
IM
4605 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4606 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4607 * number) then we wake all the non-exclusive tasks and one exclusive task.
4608 *
4609 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4610 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4611 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4612 */
4613static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4614 int nr_exclusive, int sync, void *key)
4615{
2e45874c 4616 wait_queue_t *curr, *next;
1da177e4 4617
2e45874c 4618 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4619 unsigned flags = curr->flags;
4620
1da177e4 4621 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4622 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4623 break;
4624 }
4625}
4626
4627/**
4628 * __wake_up - wake up threads blocked on a waitqueue.
4629 * @q: the waitqueue
4630 * @mode: which threads
4631 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4632 * @key: is directly passed to the wakeup function
1da177e4 4633 */
7ad5b3a5 4634void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4635 int nr_exclusive, void *key)
1da177e4
LT
4636{
4637 unsigned long flags;
4638
4639 spin_lock_irqsave(&q->lock, flags);
4640 __wake_up_common(q, mode, nr_exclusive, 0, key);
4641 spin_unlock_irqrestore(&q->lock, flags);
4642}
1da177e4
LT
4643EXPORT_SYMBOL(__wake_up);
4644
4645/*
4646 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4647 */
7ad5b3a5 4648void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4649{
4650 __wake_up_common(q, mode, 1, 0, NULL);
4651}
4652
4653/**
67be2dd1 4654 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4655 * @q: the waitqueue
4656 * @mode: which threads
4657 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4658 *
4659 * The sync wakeup differs that the waker knows that it will schedule
4660 * away soon, so while the target thread will be woken up, it will not
4661 * be migrated to another CPU - ie. the two threads are 'synchronized'
4662 * with each other. This can prevent needless bouncing between CPUs.
4663 *
4664 * On UP it can prevent extra preemption.
4665 */
7ad5b3a5 4666void
95cdf3b7 4667__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4668{
4669 unsigned long flags;
4670 int sync = 1;
4671
4672 if (unlikely(!q))
4673 return;
4674
4675 if (unlikely(!nr_exclusive))
4676 sync = 0;
4677
4678 spin_lock_irqsave(&q->lock, flags);
4679 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4680 spin_unlock_irqrestore(&q->lock, flags);
4681}
4682EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4683
65eb3dc6
KD
4684/**
4685 * complete: - signals a single thread waiting on this completion
4686 * @x: holds the state of this particular completion
4687 *
4688 * This will wake up a single thread waiting on this completion. Threads will be
4689 * awakened in the same order in which they were queued.
4690 *
4691 * See also complete_all(), wait_for_completion() and related routines.
4692 */
b15136e9 4693void complete(struct completion *x)
1da177e4
LT
4694{
4695 unsigned long flags;
4696
4697 spin_lock_irqsave(&x->wait.lock, flags);
4698 x->done++;
d9514f6c 4699 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4700 spin_unlock_irqrestore(&x->wait.lock, flags);
4701}
4702EXPORT_SYMBOL(complete);
4703
65eb3dc6
KD
4704/**
4705 * complete_all: - signals all threads waiting on this completion
4706 * @x: holds the state of this particular completion
4707 *
4708 * This will wake up all threads waiting on this particular completion event.
4709 */
b15136e9 4710void complete_all(struct completion *x)
1da177e4
LT
4711{
4712 unsigned long flags;
4713
4714 spin_lock_irqsave(&x->wait.lock, flags);
4715 x->done += UINT_MAX/2;
d9514f6c 4716 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4717 spin_unlock_irqrestore(&x->wait.lock, flags);
4718}
4719EXPORT_SYMBOL(complete_all);
4720
8cbbe86d
AK
4721static inline long __sched
4722do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4723{
1da177e4
LT
4724 if (!x->done) {
4725 DECLARE_WAITQUEUE(wait, current);
4726
4727 wait.flags |= WQ_FLAG_EXCLUSIVE;
4728 __add_wait_queue_tail(&x->wait, &wait);
4729 do {
94d3d824 4730 if (signal_pending_state(state, current)) {
ea71a546
ON
4731 timeout = -ERESTARTSYS;
4732 break;
8cbbe86d
AK
4733 }
4734 __set_current_state(state);
1da177e4
LT
4735 spin_unlock_irq(&x->wait.lock);
4736 timeout = schedule_timeout(timeout);
4737 spin_lock_irq(&x->wait.lock);
ea71a546 4738 } while (!x->done && timeout);
1da177e4 4739 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4740 if (!x->done)
4741 return timeout;
1da177e4
LT
4742 }
4743 x->done--;
ea71a546 4744 return timeout ?: 1;
1da177e4 4745}
1da177e4 4746
8cbbe86d
AK
4747static long __sched
4748wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4749{
1da177e4
LT
4750 might_sleep();
4751
4752 spin_lock_irq(&x->wait.lock);
8cbbe86d 4753 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4754 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4755 return timeout;
4756}
1da177e4 4757
65eb3dc6
KD
4758/**
4759 * wait_for_completion: - waits for completion of a task
4760 * @x: holds the state of this particular completion
4761 *
4762 * This waits to be signaled for completion of a specific task. It is NOT
4763 * interruptible and there is no timeout.
4764 *
4765 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4766 * and interrupt capability. Also see complete().
4767 */
b15136e9 4768void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4769{
4770 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4771}
8cbbe86d 4772EXPORT_SYMBOL(wait_for_completion);
1da177e4 4773
65eb3dc6
KD
4774/**
4775 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4776 * @x: holds the state of this particular completion
4777 * @timeout: timeout value in jiffies
4778 *
4779 * This waits for either a completion of a specific task to be signaled or for a
4780 * specified timeout to expire. The timeout is in jiffies. It is not
4781 * interruptible.
4782 */
b15136e9 4783unsigned long __sched
8cbbe86d 4784wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4785{
8cbbe86d 4786 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4787}
8cbbe86d 4788EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4789
65eb3dc6
KD
4790/**
4791 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4792 * @x: holds the state of this particular completion
4793 *
4794 * This waits for completion of a specific task to be signaled. It is
4795 * interruptible.
4796 */
8cbbe86d 4797int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4798{
51e97990
AK
4799 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4800 if (t == -ERESTARTSYS)
4801 return t;
4802 return 0;
0fec171c 4803}
8cbbe86d 4804EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4805
65eb3dc6
KD
4806/**
4807 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4808 * @x: holds the state of this particular completion
4809 * @timeout: timeout value in jiffies
4810 *
4811 * This waits for either a completion of a specific task to be signaled or for a
4812 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4813 */
b15136e9 4814unsigned long __sched
8cbbe86d
AK
4815wait_for_completion_interruptible_timeout(struct completion *x,
4816 unsigned long timeout)
0fec171c 4817{
8cbbe86d 4818 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4819}
8cbbe86d 4820EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4821
65eb3dc6
KD
4822/**
4823 * wait_for_completion_killable: - waits for completion of a task (killable)
4824 * @x: holds the state of this particular completion
4825 *
4826 * This waits to be signaled for completion of a specific task. It can be
4827 * interrupted by a kill signal.
4828 */
009e577e
MW
4829int __sched wait_for_completion_killable(struct completion *x)
4830{
4831 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4832 if (t == -ERESTARTSYS)
4833 return t;
4834 return 0;
4835}
4836EXPORT_SYMBOL(wait_for_completion_killable);
4837
be4de352
DC
4838/**
4839 * try_wait_for_completion - try to decrement a completion without blocking
4840 * @x: completion structure
4841 *
4842 * Returns: 0 if a decrement cannot be done without blocking
4843 * 1 if a decrement succeeded.
4844 *
4845 * If a completion is being used as a counting completion,
4846 * attempt to decrement the counter without blocking. This
4847 * enables us to avoid waiting if the resource the completion
4848 * is protecting is not available.
4849 */
4850bool try_wait_for_completion(struct completion *x)
4851{
4852 int ret = 1;
4853
4854 spin_lock_irq(&x->wait.lock);
4855 if (!x->done)
4856 ret = 0;
4857 else
4858 x->done--;
4859 spin_unlock_irq(&x->wait.lock);
4860 return ret;
4861}
4862EXPORT_SYMBOL(try_wait_for_completion);
4863
4864/**
4865 * completion_done - Test to see if a completion has any waiters
4866 * @x: completion structure
4867 *
4868 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4869 * 1 if there are no waiters.
4870 *
4871 */
4872bool completion_done(struct completion *x)
4873{
4874 int ret = 1;
4875
4876 spin_lock_irq(&x->wait.lock);
4877 if (!x->done)
4878 ret = 0;
4879 spin_unlock_irq(&x->wait.lock);
4880 return ret;
4881}
4882EXPORT_SYMBOL(completion_done);
4883
8cbbe86d
AK
4884static long __sched
4885sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4886{
0fec171c
IM
4887 unsigned long flags;
4888 wait_queue_t wait;
4889
4890 init_waitqueue_entry(&wait, current);
1da177e4 4891
8cbbe86d 4892 __set_current_state(state);
1da177e4 4893
8cbbe86d
AK
4894 spin_lock_irqsave(&q->lock, flags);
4895 __add_wait_queue(q, &wait);
4896 spin_unlock(&q->lock);
4897 timeout = schedule_timeout(timeout);
4898 spin_lock_irq(&q->lock);
4899 __remove_wait_queue(q, &wait);
4900 spin_unlock_irqrestore(&q->lock, flags);
4901
4902 return timeout;
4903}
4904
4905void __sched interruptible_sleep_on(wait_queue_head_t *q)
4906{
4907 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4908}
1da177e4
LT
4909EXPORT_SYMBOL(interruptible_sleep_on);
4910
0fec171c 4911long __sched
95cdf3b7 4912interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4913{
8cbbe86d 4914 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4915}
1da177e4
LT
4916EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4917
0fec171c 4918void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4919{
8cbbe86d 4920 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4921}
1da177e4
LT
4922EXPORT_SYMBOL(sleep_on);
4923
0fec171c 4924long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4925{
8cbbe86d 4926 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4927}
1da177e4
LT
4928EXPORT_SYMBOL(sleep_on_timeout);
4929
b29739f9
IM
4930#ifdef CONFIG_RT_MUTEXES
4931
4932/*
4933 * rt_mutex_setprio - set the current priority of a task
4934 * @p: task
4935 * @prio: prio value (kernel-internal form)
4936 *
4937 * This function changes the 'effective' priority of a task. It does
4938 * not touch ->normal_prio like __setscheduler().
4939 *
4940 * Used by the rt_mutex code to implement priority inheritance logic.
4941 */
36c8b586 4942void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4943{
4944 unsigned long flags;
83b699ed 4945 int oldprio, on_rq, running;
70b97a7f 4946 struct rq *rq;
cb469845 4947 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4948
4949 BUG_ON(prio < 0 || prio > MAX_PRIO);
4950
4951 rq = task_rq_lock(p, &flags);
a8e504d2 4952 update_rq_clock(rq);
b29739f9 4953
d5f9f942 4954 oldprio = p->prio;
dd41f596 4955 on_rq = p->se.on_rq;
051a1d1a 4956 running = task_current(rq, p);
0e1f3483 4957 if (on_rq)
69be72c1 4958 dequeue_task(rq, p, 0);
0e1f3483
HS
4959 if (running)
4960 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4961
4962 if (rt_prio(prio))
4963 p->sched_class = &rt_sched_class;
4964 else
4965 p->sched_class = &fair_sched_class;
4966
b29739f9
IM
4967 p->prio = prio;
4968
0e1f3483
HS
4969 if (running)
4970 p->sched_class->set_curr_task(rq);
dd41f596 4971 if (on_rq) {
8159f87e 4972 enqueue_task(rq, p, 0);
cb469845
SR
4973
4974 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4975 }
4976 task_rq_unlock(rq, &flags);
4977}
4978
4979#endif
4980
36c8b586 4981void set_user_nice(struct task_struct *p, long nice)
1da177e4 4982{
dd41f596 4983 int old_prio, delta, on_rq;
1da177e4 4984 unsigned long flags;
70b97a7f 4985 struct rq *rq;
1da177e4
LT
4986
4987 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4988 return;
4989 /*
4990 * We have to be careful, if called from sys_setpriority(),
4991 * the task might be in the middle of scheduling on another CPU.
4992 */
4993 rq = task_rq_lock(p, &flags);
a8e504d2 4994 update_rq_clock(rq);
1da177e4
LT
4995 /*
4996 * The RT priorities are set via sched_setscheduler(), but we still
4997 * allow the 'normal' nice value to be set - but as expected
4998 * it wont have any effect on scheduling until the task is
dd41f596 4999 * SCHED_FIFO/SCHED_RR:
1da177e4 5000 */
e05606d3 5001 if (task_has_rt_policy(p)) {
1da177e4
LT
5002 p->static_prio = NICE_TO_PRIO(nice);
5003 goto out_unlock;
5004 }
dd41f596 5005 on_rq = p->se.on_rq;
c09595f6 5006 if (on_rq)
69be72c1 5007 dequeue_task(rq, p, 0);
1da177e4 5008
1da177e4 5009 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5010 set_load_weight(p);
b29739f9
IM
5011 old_prio = p->prio;
5012 p->prio = effective_prio(p);
5013 delta = p->prio - old_prio;
1da177e4 5014
dd41f596 5015 if (on_rq) {
8159f87e 5016 enqueue_task(rq, p, 0);
1da177e4 5017 /*
d5f9f942
AM
5018 * If the task increased its priority or is running and
5019 * lowered its priority, then reschedule its CPU:
1da177e4 5020 */
d5f9f942 5021 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5022 resched_task(rq->curr);
5023 }
5024out_unlock:
5025 task_rq_unlock(rq, &flags);
5026}
1da177e4
LT
5027EXPORT_SYMBOL(set_user_nice);
5028
e43379f1
MM
5029/*
5030 * can_nice - check if a task can reduce its nice value
5031 * @p: task
5032 * @nice: nice value
5033 */
36c8b586 5034int can_nice(const struct task_struct *p, const int nice)
e43379f1 5035{
024f4747
MM
5036 /* convert nice value [19,-20] to rlimit style value [1,40] */
5037 int nice_rlim = 20 - nice;
48f24c4d 5038
e43379f1
MM
5039 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5040 capable(CAP_SYS_NICE));
5041}
5042
1da177e4
LT
5043#ifdef __ARCH_WANT_SYS_NICE
5044
5045/*
5046 * sys_nice - change the priority of the current process.
5047 * @increment: priority increment
5048 *
5049 * sys_setpriority is a more generic, but much slower function that
5050 * does similar things.
5051 */
5052asmlinkage long sys_nice(int increment)
5053{
48f24c4d 5054 long nice, retval;
1da177e4
LT
5055
5056 /*
5057 * Setpriority might change our priority at the same moment.
5058 * We don't have to worry. Conceptually one call occurs first
5059 * and we have a single winner.
5060 */
e43379f1
MM
5061 if (increment < -40)
5062 increment = -40;
1da177e4
LT
5063 if (increment > 40)
5064 increment = 40;
5065
5066 nice = PRIO_TO_NICE(current->static_prio) + increment;
5067 if (nice < -20)
5068 nice = -20;
5069 if (nice > 19)
5070 nice = 19;
5071
e43379f1
MM
5072 if (increment < 0 && !can_nice(current, nice))
5073 return -EPERM;
5074
1da177e4
LT
5075 retval = security_task_setnice(current, nice);
5076 if (retval)
5077 return retval;
5078
5079 set_user_nice(current, nice);
5080 return 0;
5081}
5082
5083#endif
5084
5085/**
5086 * task_prio - return the priority value of a given task.
5087 * @p: the task in question.
5088 *
5089 * This is the priority value as seen by users in /proc.
5090 * RT tasks are offset by -200. Normal tasks are centered
5091 * around 0, value goes from -16 to +15.
5092 */
36c8b586 5093int task_prio(const struct task_struct *p)
1da177e4
LT
5094{
5095 return p->prio - MAX_RT_PRIO;
5096}
5097
5098/**
5099 * task_nice - return the nice value of a given task.
5100 * @p: the task in question.
5101 */
36c8b586 5102int task_nice(const struct task_struct *p)
1da177e4
LT
5103{
5104 return TASK_NICE(p);
5105}
150d8bed 5106EXPORT_SYMBOL(task_nice);
1da177e4
LT
5107
5108/**
5109 * idle_cpu - is a given cpu idle currently?
5110 * @cpu: the processor in question.
5111 */
5112int idle_cpu(int cpu)
5113{
5114 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5115}
5116
1da177e4
LT
5117/**
5118 * idle_task - return the idle task for a given cpu.
5119 * @cpu: the processor in question.
5120 */
36c8b586 5121struct task_struct *idle_task(int cpu)
1da177e4
LT
5122{
5123 return cpu_rq(cpu)->idle;
5124}
5125
5126/**
5127 * find_process_by_pid - find a process with a matching PID value.
5128 * @pid: the pid in question.
5129 */
a9957449 5130static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5131{
228ebcbe 5132 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5133}
5134
5135/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5136static void
5137__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5138{
dd41f596 5139 BUG_ON(p->se.on_rq);
48f24c4d 5140
1da177e4 5141 p->policy = policy;
dd41f596
IM
5142 switch (p->policy) {
5143 case SCHED_NORMAL:
5144 case SCHED_BATCH:
5145 case SCHED_IDLE:
5146 p->sched_class = &fair_sched_class;
5147 break;
5148 case SCHED_FIFO:
5149 case SCHED_RR:
5150 p->sched_class = &rt_sched_class;
5151 break;
5152 }
5153
1da177e4 5154 p->rt_priority = prio;
b29739f9
IM
5155 p->normal_prio = normal_prio(p);
5156 /* we are holding p->pi_lock already */
5157 p->prio = rt_mutex_getprio(p);
2dd73a4f 5158 set_load_weight(p);
1da177e4
LT
5159}
5160
961ccddd
RR
5161static int __sched_setscheduler(struct task_struct *p, int policy,
5162 struct sched_param *param, bool user)
1da177e4 5163{
83b699ed 5164 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5165 unsigned long flags;
cb469845 5166 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5167 struct rq *rq;
1da177e4 5168
66e5393a
SR
5169 /* may grab non-irq protected spin_locks */
5170 BUG_ON(in_interrupt());
1da177e4
LT
5171recheck:
5172 /* double check policy once rq lock held */
5173 if (policy < 0)
5174 policy = oldpolicy = p->policy;
5175 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5176 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5177 policy != SCHED_IDLE)
b0a9499c 5178 return -EINVAL;
1da177e4
LT
5179 /*
5180 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5181 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5182 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5183 */
5184 if (param->sched_priority < 0 ||
95cdf3b7 5185 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5186 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5187 return -EINVAL;
e05606d3 5188 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5189 return -EINVAL;
5190
37e4ab3f
OC
5191 /*
5192 * Allow unprivileged RT tasks to decrease priority:
5193 */
961ccddd 5194 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5195 if (rt_policy(policy)) {
8dc3e909 5196 unsigned long rlim_rtprio;
8dc3e909
ON
5197
5198 if (!lock_task_sighand(p, &flags))
5199 return -ESRCH;
5200 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5201 unlock_task_sighand(p, &flags);
5202
5203 /* can't set/change the rt policy */
5204 if (policy != p->policy && !rlim_rtprio)
5205 return -EPERM;
5206
5207 /* can't increase priority */
5208 if (param->sched_priority > p->rt_priority &&
5209 param->sched_priority > rlim_rtprio)
5210 return -EPERM;
5211 }
dd41f596
IM
5212 /*
5213 * Like positive nice levels, dont allow tasks to
5214 * move out of SCHED_IDLE either:
5215 */
5216 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5217 return -EPERM;
5fe1d75f 5218
37e4ab3f
OC
5219 /* can't change other user's priorities */
5220 if ((current->euid != p->euid) &&
5221 (current->euid != p->uid))
5222 return -EPERM;
5223 }
1da177e4 5224
725aad24 5225 if (user) {
b68aa230 5226#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5227 /*
5228 * Do not allow realtime tasks into groups that have no runtime
5229 * assigned.
5230 */
9a7e0b18
PZ
5231 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5232 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5233 return -EPERM;
b68aa230
PZ
5234#endif
5235
725aad24
JF
5236 retval = security_task_setscheduler(p, policy, param);
5237 if (retval)
5238 return retval;
5239 }
5240
b29739f9
IM
5241 /*
5242 * make sure no PI-waiters arrive (or leave) while we are
5243 * changing the priority of the task:
5244 */
5245 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5246 /*
5247 * To be able to change p->policy safely, the apropriate
5248 * runqueue lock must be held.
5249 */
b29739f9 5250 rq = __task_rq_lock(p);
1da177e4
LT
5251 /* recheck policy now with rq lock held */
5252 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5253 policy = oldpolicy = -1;
b29739f9
IM
5254 __task_rq_unlock(rq);
5255 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5256 goto recheck;
5257 }
2daa3577 5258 update_rq_clock(rq);
dd41f596 5259 on_rq = p->se.on_rq;
051a1d1a 5260 running = task_current(rq, p);
0e1f3483 5261 if (on_rq)
2e1cb74a 5262 deactivate_task(rq, p, 0);
0e1f3483
HS
5263 if (running)
5264 p->sched_class->put_prev_task(rq, p);
f6b53205 5265
1da177e4 5266 oldprio = p->prio;
dd41f596 5267 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5268
0e1f3483
HS
5269 if (running)
5270 p->sched_class->set_curr_task(rq);
dd41f596
IM
5271 if (on_rq) {
5272 activate_task(rq, p, 0);
cb469845
SR
5273
5274 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5275 }
b29739f9
IM
5276 __task_rq_unlock(rq);
5277 spin_unlock_irqrestore(&p->pi_lock, flags);
5278
95e02ca9
TG
5279 rt_mutex_adjust_pi(p);
5280
1da177e4
LT
5281 return 0;
5282}
961ccddd
RR
5283
5284/**
5285 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5286 * @p: the task in question.
5287 * @policy: new policy.
5288 * @param: structure containing the new RT priority.
5289 *
5290 * NOTE that the task may be already dead.
5291 */
5292int sched_setscheduler(struct task_struct *p, int policy,
5293 struct sched_param *param)
5294{
5295 return __sched_setscheduler(p, policy, param, true);
5296}
1da177e4
LT
5297EXPORT_SYMBOL_GPL(sched_setscheduler);
5298
961ccddd
RR
5299/**
5300 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5301 * @p: the task in question.
5302 * @policy: new policy.
5303 * @param: structure containing the new RT priority.
5304 *
5305 * Just like sched_setscheduler, only don't bother checking if the
5306 * current context has permission. For example, this is needed in
5307 * stop_machine(): we create temporary high priority worker threads,
5308 * but our caller might not have that capability.
5309 */
5310int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5311 struct sched_param *param)
5312{
5313 return __sched_setscheduler(p, policy, param, false);
5314}
5315
95cdf3b7
IM
5316static int
5317do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5318{
1da177e4
LT
5319 struct sched_param lparam;
5320 struct task_struct *p;
36c8b586 5321 int retval;
1da177e4
LT
5322
5323 if (!param || pid < 0)
5324 return -EINVAL;
5325 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5326 return -EFAULT;
5fe1d75f
ON
5327
5328 rcu_read_lock();
5329 retval = -ESRCH;
1da177e4 5330 p = find_process_by_pid(pid);
5fe1d75f
ON
5331 if (p != NULL)
5332 retval = sched_setscheduler(p, policy, &lparam);
5333 rcu_read_unlock();
36c8b586 5334
1da177e4
LT
5335 return retval;
5336}
5337
5338/**
5339 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5340 * @pid: the pid in question.
5341 * @policy: new policy.
5342 * @param: structure containing the new RT priority.
5343 */
41a2d6cf
IM
5344asmlinkage long
5345sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5346{
c21761f1
JB
5347 /* negative values for policy are not valid */
5348 if (policy < 0)
5349 return -EINVAL;
5350
1da177e4
LT
5351 return do_sched_setscheduler(pid, policy, param);
5352}
5353
5354/**
5355 * sys_sched_setparam - set/change the RT priority of a thread
5356 * @pid: the pid in question.
5357 * @param: structure containing the new RT priority.
5358 */
5359asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5360{
5361 return do_sched_setscheduler(pid, -1, param);
5362}
5363
5364/**
5365 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5366 * @pid: the pid in question.
5367 */
5368asmlinkage long sys_sched_getscheduler(pid_t pid)
5369{
36c8b586 5370 struct task_struct *p;
3a5c359a 5371 int retval;
1da177e4
LT
5372
5373 if (pid < 0)
3a5c359a 5374 return -EINVAL;
1da177e4
LT
5375
5376 retval = -ESRCH;
5377 read_lock(&tasklist_lock);
5378 p = find_process_by_pid(pid);
5379 if (p) {
5380 retval = security_task_getscheduler(p);
5381 if (!retval)
5382 retval = p->policy;
5383 }
5384 read_unlock(&tasklist_lock);
1da177e4
LT
5385 return retval;
5386}
5387
5388/**
5389 * sys_sched_getscheduler - get the RT priority of a thread
5390 * @pid: the pid in question.
5391 * @param: structure containing the RT priority.
5392 */
5393asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5394{
5395 struct sched_param lp;
36c8b586 5396 struct task_struct *p;
3a5c359a 5397 int retval;
1da177e4
LT
5398
5399 if (!param || pid < 0)
3a5c359a 5400 return -EINVAL;
1da177e4
LT
5401
5402 read_lock(&tasklist_lock);
5403 p = find_process_by_pid(pid);
5404 retval = -ESRCH;
5405 if (!p)
5406 goto out_unlock;
5407
5408 retval = security_task_getscheduler(p);
5409 if (retval)
5410 goto out_unlock;
5411
5412 lp.sched_priority = p->rt_priority;
5413 read_unlock(&tasklist_lock);
5414
5415 /*
5416 * This one might sleep, we cannot do it with a spinlock held ...
5417 */
5418 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5419
1da177e4
LT
5420 return retval;
5421
5422out_unlock:
5423 read_unlock(&tasklist_lock);
5424 return retval;
5425}
5426
b53e921b 5427long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5428{
1da177e4 5429 cpumask_t cpus_allowed;
b53e921b 5430 cpumask_t new_mask = *in_mask;
36c8b586
IM
5431 struct task_struct *p;
5432 int retval;
1da177e4 5433
95402b38 5434 get_online_cpus();
1da177e4
LT
5435 read_lock(&tasklist_lock);
5436
5437 p = find_process_by_pid(pid);
5438 if (!p) {
5439 read_unlock(&tasklist_lock);
95402b38 5440 put_online_cpus();
1da177e4
LT
5441 return -ESRCH;
5442 }
5443
5444 /*
5445 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5446 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5447 * usage count and then drop tasklist_lock.
5448 */
5449 get_task_struct(p);
5450 read_unlock(&tasklist_lock);
5451
5452 retval = -EPERM;
5453 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5454 !capable(CAP_SYS_NICE))
5455 goto out_unlock;
5456
e7834f8f
DQ
5457 retval = security_task_setscheduler(p, 0, NULL);
5458 if (retval)
5459 goto out_unlock;
5460
f9a86fcb 5461 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5462 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5463 again:
7c16ec58 5464 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5465
8707d8b8 5466 if (!retval) {
f9a86fcb 5467 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5468 if (!cpus_subset(new_mask, cpus_allowed)) {
5469 /*
5470 * We must have raced with a concurrent cpuset
5471 * update. Just reset the cpus_allowed to the
5472 * cpuset's cpus_allowed
5473 */
5474 new_mask = cpus_allowed;
5475 goto again;
5476 }
5477 }
1da177e4
LT
5478out_unlock:
5479 put_task_struct(p);
95402b38 5480 put_online_cpus();
1da177e4
LT
5481 return retval;
5482}
5483
5484static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5485 cpumask_t *new_mask)
5486{
5487 if (len < sizeof(cpumask_t)) {
5488 memset(new_mask, 0, sizeof(cpumask_t));
5489 } else if (len > sizeof(cpumask_t)) {
5490 len = sizeof(cpumask_t);
5491 }
5492 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5493}
5494
5495/**
5496 * sys_sched_setaffinity - set the cpu affinity of a process
5497 * @pid: pid of the process
5498 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5499 * @user_mask_ptr: user-space pointer to the new cpu mask
5500 */
5501asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5502 unsigned long __user *user_mask_ptr)
5503{
5504 cpumask_t new_mask;
5505 int retval;
5506
5507 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5508 if (retval)
5509 return retval;
5510
b53e921b 5511 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5512}
5513
1da177e4
LT
5514long sched_getaffinity(pid_t pid, cpumask_t *mask)
5515{
36c8b586 5516 struct task_struct *p;
1da177e4 5517 int retval;
1da177e4 5518
95402b38 5519 get_online_cpus();
1da177e4
LT
5520 read_lock(&tasklist_lock);
5521
5522 retval = -ESRCH;
5523 p = find_process_by_pid(pid);
5524 if (!p)
5525 goto out_unlock;
5526
e7834f8f
DQ
5527 retval = security_task_getscheduler(p);
5528 if (retval)
5529 goto out_unlock;
5530
2f7016d9 5531 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5532
5533out_unlock:
5534 read_unlock(&tasklist_lock);
95402b38 5535 put_online_cpus();
1da177e4 5536
9531b62f 5537 return retval;
1da177e4
LT
5538}
5539
5540/**
5541 * sys_sched_getaffinity - get the cpu affinity of a process
5542 * @pid: pid of the process
5543 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5544 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5545 */
5546asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5547 unsigned long __user *user_mask_ptr)
5548{
5549 int ret;
5550 cpumask_t mask;
5551
5552 if (len < sizeof(cpumask_t))
5553 return -EINVAL;
5554
5555 ret = sched_getaffinity(pid, &mask);
5556 if (ret < 0)
5557 return ret;
5558
5559 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5560 return -EFAULT;
5561
5562 return sizeof(cpumask_t);
5563}
5564
5565/**
5566 * sys_sched_yield - yield the current processor to other threads.
5567 *
dd41f596
IM
5568 * This function yields the current CPU to other tasks. If there are no
5569 * other threads running on this CPU then this function will return.
1da177e4
LT
5570 */
5571asmlinkage long sys_sched_yield(void)
5572{
70b97a7f 5573 struct rq *rq = this_rq_lock();
1da177e4 5574
2d72376b 5575 schedstat_inc(rq, yld_count);
4530d7ab 5576 current->sched_class->yield_task(rq);
1da177e4
LT
5577
5578 /*
5579 * Since we are going to call schedule() anyway, there's
5580 * no need to preempt or enable interrupts:
5581 */
5582 __release(rq->lock);
8a25d5de 5583 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5584 _raw_spin_unlock(&rq->lock);
5585 preempt_enable_no_resched();
5586
5587 schedule();
5588
5589 return 0;
5590}
5591
e7b38404 5592static void __cond_resched(void)
1da177e4 5593{
8e0a43d8
IM
5594#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5595 __might_sleep(__FILE__, __LINE__);
5596#endif
5bbcfd90
IM
5597 /*
5598 * The BKS might be reacquired before we have dropped
5599 * PREEMPT_ACTIVE, which could trigger a second
5600 * cond_resched() call.
5601 */
1da177e4
LT
5602 do {
5603 add_preempt_count(PREEMPT_ACTIVE);
5604 schedule();
5605 sub_preempt_count(PREEMPT_ACTIVE);
5606 } while (need_resched());
5607}
5608
02b67cc3 5609int __sched _cond_resched(void)
1da177e4 5610{
9414232f
IM
5611 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5612 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5613 __cond_resched();
5614 return 1;
5615 }
5616 return 0;
5617}
02b67cc3 5618EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5619
5620/*
5621 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5622 * call schedule, and on return reacquire the lock.
5623 *
41a2d6cf 5624 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5625 * operations here to prevent schedule() from being called twice (once via
5626 * spin_unlock(), once by hand).
5627 */
95cdf3b7 5628int cond_resched_lock(spinlock_t *lock)
1da177e4 5629{
95c354fe 5630 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5631 int ret = 0;
5632
95c354fe 5633 if (spin_needbreak(lock) || resched) {
1da177e4 5634 spin_unlock(lock);
95c354fe
NP
5635 if (resched && need_resched())
5636 __cond_resched();
5637 else
5638 cpu_relax();
6df3cecb 5639 ret = 1;
1da177e4 5640 spin_lock(lock);
1da177e4 5641 }
6df3cecb 5642 return ret;
1da177e4 5643}
1da177e4
LT
5644EXPORT_SYMBOL(cond_resched_lock);
5645
5646int __sched cond_resched_softirq(void)
5647{
5648 BUG_ON(!in_softirq());
5649
9414232f 5650 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5651 local_bh_enable();
1da177e4
LT
5652 __cond_resched();
5653 local_bh_disable();
5654 return 1;
5655 }
5656 return 0;
5657}
1da177e4
LT
5658EXPORT_SYMBOL(cond_resched_softirq);
5659
1da177e4
LT
5660/**
5661 * yield - yield the current processor to other threads.
5662 *
72fd4a35 5663 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5664 * thread runnable and calls sys_sched_yield().
5665 */
5666void __sched yield(void)
5667{
5668 set_current_state(TASK_RUNNING);
5669 sys_sched_yield();
5670}
1da177e4
LT
5671EXPORT_SYMBOL(yield);
5672
5673/*
41a2d6cf 5674 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5675 * that process accounting knows that this is a task in IO wait state.
5676 *
5677 * But don't do that if it is a deliberate, throttling IO wait (this task
5678 * has set its backing_dev_info: the queue against which it should throttle)
5679 */
5680void __sched io_schedule(void)
5681{
70b97a7f 5682 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5683
0ff92245 5684 delayacct_blkio_start();
1da177e4
LT
5685 atomic_inc(&rq->nr_iowait);
5686 schedule();
5687 atomic_dec(&rq->nr_iowait);
0ff92245 5688 delayacct_blkio_end();
1da177e4 5689}
1da177e4
LT
5690EXPORT_SYMBOL(io_schedule);
5691
5692long __sched io_schedule_timeout(long timeout)
5693{
70b97a7f 5694 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5695 long ret;
5696
0ff92245 5697 delayacct_blkio_start();
1da177e4
LT
5698 atomic_inc(&rq->nr_iowait);
5699 ret = schedule_timeout(timeout);
5700 atomic_dec(&rq->nr_iowait);
0ff92245 5701 delayacct_blkio_end();
1da177e4
LT
5702 return ret;
5703}
5704
5705/**
5706 * sys_sched_get_priority_max - return maximum RT priority.
5707 * @policy: scheduling class.
5708 *
5709 * this syscall returns the maximum rt_priority that can be used
5710 * by a given scheduling class.
5711 */
5712asmlinkage long sys_sched_get_priority_max(int policy)
5713{
5714 int ret = -EINVAL;
5715
5716 switch (policy) {
5717 case SCHED_FIFO:
5718 case SCHED_RR:
5719 ret = MAX_USER_RT_PRIO-1;
5720 break;
5721 case SCHED_NORMAL:
b0a9499c 5722 case SCHED_BATCH:
dd41f596 5723 case SCHED_IDLE:
1da177e4
LT
5724 ret = 0;
5725 break;
5726 }
5727 return ret;
5728}
5729
5730/**
5731 * sys_sched_get_priority_min - return minimum RT priority.
5732 * @policy: scheduling class.
5733 *
5734 * this syscall returns the minimum rt_priority that can be used
5735 * by a given scheduling class.
5736 */
5737asmlinkage long sys_sched_get_priority_min(int policy)
5738{
5739 int ret = -EINVAL;
5740
5741 switch (policy) {
5742 case SCHED_FIFO:
5743 case SCHED_RR:
5744 ret = 1;
5745 break;
5746 case SCHED_NORMAL:
b0a9499c 5747 case SCHED_BATCH:
dd41f596 5748 case SCHED_IDLE:
1da177e4
LT
5749 ret = 0;
5750 }
5751 return ret;
5752}
5753
5754/**
5755 * sys_sched_rr_get_interval - return the default timeslice of a process.
5756 * @pid: pid of the process.
5757 * @interval: userspace pointer to the timeslice value.
5758 *
5759 * this syscall writes the default timeslice value of a given process
5760 * into the user-space timespec buffer. A value of '0' means infinity.
5761 */
5762asmlinkage
5763long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5764{
36c8b586 5765 struct task_struct *p;
a4ec24b4 5766 unsigned int time_slice;
3a5c359a 5767 int retval;
1da177e4 5768 struct timespec t;
1da177e4
LT
5769
5770 if (pid < 0)
3a5c359a 5771 return -EINVAL;
1da177e4
LT
5772
5773 retval = -ESRCH;
5774 read_lock(&tasklist_lock);
5775 p = find_process_by_pid(pid);
5776 if (!p)
5777 goto out_unlock;
5778
5779 retval = security_task_getscheduler(p);
5780 if (retval)
5781 goto out_unlock;
5782
77034937
IM
5783 /*
5784 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5785 * tasks that are on an otherwise idle runqueue:
5786 */
5787 time_slice = 0;
5788 if (p->policy == SCHED_RR) {
a4ec24b4 5789 time_slice = DEF_TIMESLICE;
1868f958 5790 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5791 struct sched_entity *se = &p->se;
5792 unsigned long flags;
5793 struct rq *rq;
5794
5795 rq = task_rq_lock(p, &flags);
77034937
IM
5796 if (rq->cfs.load.weight)
5797 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5798 task_rq_unlock(rq, &flags);
5799 }
1da177e4 5800 read_unlock(&tasklist_lock);
a4ec24b4 5801 jiffies_to_timespec(time_slice, &t);
1da177e4 5802 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5803 return retval;
3a5c359a 5804
1da177e4
LT
5805out_unlock:
5806 read_unlock(&tasklist_lock);
5807 return retval;
5808}
5809
7c731e0a 5810static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5811
82a1fcb9 5812void sched_show_task(struct task_struct *p)
1da177e4 5813{
1da177e4 5814 unsigned long free = 0;
36c8b586 5815 unsigned state;
1da177e4 5816
1da177e4 5817 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5818 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5819 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5820#if BITS_PER_LONG == 32
1da177e4 5821 if (state == TASK_RUNNING)
cc4ea795 5822 printk(KERN_CONT " running ");
1da177e4 5823 else
cc4ea795 5824 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5825#else
5826 if (state == TASK_RUNNING)
cc4ea795 5827 printk(KERN_CONT " running task ");
1da177e4 5828 else
cc4ea795 5829 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5830#endif
5831#ifdef CONFIG_DEBUG_STACK_USAGE
5832 {
10ebffde 5833 unsigned long *n = end_of_stack(p);
1da177e4
LT
5834 while (!*n)
5835 n++;
10ebffde 5836 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5837 }
5838#endif
ba25f9dc 5839 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5840 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5841
5fb5e6de 5842 show_stack(p, NULL);
1da177e4
LT
5843}
5844
e59e2ae2 5845void show_state_filter(unsigned long state_filter)
1da177e4 5846{
36c8b586 5847 struct task_struct *g, *p;
1da177e4 5848
4bd77321
IM
5849#if BITS_PER_LONG == 32
5850 printk(KERN_INFO
5851 " task PC stack pid father\n");
1da177e4 5852#else
4bd77321
IM
5853 printk(KERN_INFO
5854 " task PC stack pid father\n");
1da177e4
LT
5855#endif
5856 read_lock(&tasklist_lock);
5857 do_each_thread(g, p) {
5858 /*
5859 * reset the NMI-timeout, listing all files on a slow
5860 * console might take alot of time:
5861 */
5862 touch_nmi_watchdog();
39bc89fd 5863 if (!state_filter || (p->state & state_filter))
82a1fcb9 5864 sched_show_task(p);
1da177e4
LT
5865 } while_each_thread(g, p);
5866
04c9167f
JF
5867 touch_all_softlockup_watchdogs();
5868
dd41f596
IM
5869#ifdef CONFIG_SCHED_DEBUG
5870 sysrq_sched_debug_show();
5871#endif
1da177e4 5872 read_unlock(&tasklist_lock);
e59e2ae2
IM
5873 /*
5874 * Only show locks if all tasks are dumped:
5875 */
5876 if (state_filter == -1)
5877 debug_show_all_locks();
1da177e4
LT
5878}
5879
1df21055
IM
5880void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5881{
dd41f596 5882 idle->sched_class = &idle_sched_class;
1df21055
IM
5883}
5884
f340c0d1
IM
5885/**
5886 * init_idle - set up an idle thread for a given CPU
5887 * @idle: task in question
5888 * @cpu: cpu the idle task belongs to
5889 *
5890 * NOTE: this function does not set the idle thread's NEED_RESCHED
5891 * flag, to make booting more robust.
5892 */
5c1e1767 5893void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5894{
70b97a7f 5895 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5896 unsigned long flags;
5897
5cbd54ef
IM
5898 spin_lock_irqsave(&rq->lock, flags);
5899
dd41f596
IM
5900 __sched_fork(idle);
5901 idle->se.exec_start = sched_clock();
5902
b29739f9 5903 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5904 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5905 __set_task_cpu(idle, cpu);
1da177e4 5906
1da177e4 5907 rq->curr = rq->idle = idle;
4866cde0
NP
5908#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5909 idle->oncpu = 1;
5910#endif
1da177e4
LT
5911 spin_unlock_irqrestore(&rq->lock, flags);
5912
5913 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5914#if defined(CONFIG_PREEMPT)
5915 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5916#else
a1261f54 5917 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5918#endif
dd41f596
IM
5919 /*
5920 * The idle tasks have their own, simple scheduling class:
5921 */
5922 idle->sched_class = &idle_sched_class;
1da177e4
LT
5923}
5924
5925/*
5926 * In a system that switches off the HZ timer nohz_cpu_mask
5927 * indicates which cpus entered this state. This is used
5928 * in the rcu update to wait only for active cpus. For system
5929 * which do not switch off the HZ timer nohz_cpu_mask should
5930 * always be CPU_MASK_NONE.
5931 */
5932cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5933
19978ca6
IM
5934/*
5935 * Increase the granularity value when there are more CPUs,
5936 * because with more CPUs the 'effective latency' as visible
5937 * to users decreases. But the relationship is not linear,
5938 * so pick a second-best guess by going with the log2 of the
5939 * number of CPUs.
5940 *
5941 * This idea comes from the SD scheduler of Con Kolivas:
5942 */
5943static inline void sched_init_granularity(void)
5944{
5945 unsigned int factor = 1 + ilog2(num_online_cpus());
5946 const unsigned long limit = 200000000;
5947
5948 sysctl_sched_min_granularity *= factor;
5949 if (sysctl_sched_min_granularity > limit)
5950 sysctl_sched_min_granularity = limit;
5951
5952 sysctl_sched_latency *= factor;
5953 if (sysctl_sched_latency > limit)
5954 sysctl_sched_latency = limit;
5955
5956 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
5957
5958 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
5959}
5960
1da177e4
LT
5961#ifdef CONFIG_SMP
5962/*
5963 * This is how migration works:
5964 *
70b97a7f 5965 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5966 * runqueue and wake up that CPU's migration thread.
5967 * 2) we down() the locked semaphore => thread blocks.
5968 * 3) migration thread wakes up (implicitly it forces the migrated
5969 * thread off the CPU)
5970 * 4) it gets the migration request and checks whether the migrated
5971 * task is still in the wrong runqueue.
5972 * 5) if it's in the wrong runqueue then the migration thread removes
5973 * it and puts it into the right queue.
5974 * 6) migration thread up()s the semaphore.
5975 * 7) we wake up and the migration is done.
5976 */
5977
5978/*
5979 * Change a given task's CPU affinity. Migrate the thread to a
5980 * proper CPU and schedule it away if the CPU it's executing on
5981 * is removed from the allowed bitmask.
5982 *
5983 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5984 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5985 * call is not atomic; no spinlocks may be held.
5986 */
cd8ba7cd 5987int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5988{
70b97a7f 5989 struct migration_req req;
1da177e4 5990 unsigned long flags;
70b97a7f 5991 struct rq *rq;
48f24c4d 5992 int ret = 0;
1da177e4
LT
5993
5994 rq = task_rq_lock(p, &flags);
cd8ba7cd 5995 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5996 ret = -EINVAL;
5997 goto out;
5998 }
5999
9985b0ba
DR
6000 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6001 !cpus_equal(p->cpus_allowed, *new_mask))) {
6002 ret = -EINVAL;
6003 goto out;
6004 }
6005
73fe6aae 6006 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6007 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6008 else {
cd8ba7cd
MT
6009 p->cpus_allowed = *new_mask;
6010 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
6011 }
6012
1da177e4 6013 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 6014 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
6015 goto out;
6016
cd8ba7cd 6017 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
6018 /* Need help from migration thread: drop lock and wait. */
6019 task_rq_unlock(rq, &flags);
6020 wake_up_process(rq->migration_thread);
6021 wait_for_completion(&req.done);
6022 tlb_migrate_finish(p->mm);
6023 return 0;
6024 }
6025out:
6026 task_rq_unlock(rq, &flags);
48f24c4d 6027
1da177e4
LT
6028 return ret;
6029}
cd8ba7cd 6030EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6031
6032/*
41a2d6cf 6033 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6034 * this because either it can't run here any more (set_cpus_allowed()
6035 * away from this CPU, or CPU going down), or because we're
6036 * attempting to rebalance this task on exec (sched_exec).
6037 *
6038 * So we race with normal scheduler movements, but that's OK, as long
6039 * as the task is no longer on this CPU.
efc30814
KK
6040 *
6041 * Returns non-zero if task was successfully migrated.
1da177e4 6042 */
efc30814 6043static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6044{
70b97a7f 6045 struct rq *rq_dest, *rq_src;
dd41f596 6046 int ret = 0, on_rq;
1da177e4 6047
e761b772 6048 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6049 return ret;
1da177e4
LT
6050
6051 rq_src = cpu_rq(src_cpu);
6052 rq_dest = cpu_rq(dest_cpu);
6053
6054 double_rq_lock(rq_src, rq_dest);
6055 /* Already moved. */
6056 if (task_cpu(p) != src_cpu)
b1e38734 6057 goto done;
1da177e4
LT
6058 /* Affinity changed (again). */
6059 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 6060 goto fail;
1da177e4 6061
dd41f596 6062 on_rq = p->se.on_rq;
6e82a3be 6063 if (on_rq)
2e1cb74a 6064 deactivate_task(rq_src, p, 0);
6e82a3be 6065
1da177e4 6066 set_task_cpu(p, dest_cpu);
dd41f596
IM
6067 if (on_rq) {
6068 activate_task(rq_dest, p, 0);
15afe09b 6069 check_preempt_curr(rq_dest, p, 0);
1da177e4 6070 }
b1e38734 6071done:
efc30814 6072 ret = 1;
b1e38734 6073fail:
1da177e4 6074 double_rq_unlock(rq_src, rq_dest);
efc30814 6075 return ret;
1da177e4
LT
6076}
6077
6078/*
6079 * migration_thread - this is a highprio system thread that performs
6080 * thread migration by bumping thread off CPU then 'pushing' onto
6081 * another runqueue.
6082 */
95cdf3b7 6083static int migration_thread(void *data)
1da177e4 6084{
1da177e4 6085 int cpu = (long)data;
70b97a7f 6086 struct rq *rq;
1da177e4
LT
6087
6088 rq = cpu_rq(cpu);
6089 BUG_ON(rq->migration_thread != current);
6090
6091 set_current_state(TASK_INTERRUPTIBLE);
6092 while (!kthread_should_stop()) {
70b97a7f 6093 struct migration_req *req;
1da177e4 6094 struct list_head *head;
1da177e4 6095
1da177e4
LT
6096 spin_lock_irq(&rq->lock);
6097
6098 if (cpu_is_offline(cpu)) {
6099 spin_unlock_irq(&rq->lock);
6100 goto wait_to_die;
6101 }
6102
6103 if (rq->active_balance) {
6104 active_load_balance(rq, cpu);
6105 rq->active_balance = 0;
6106 }
6107
6108 head = &rq->migration_queue;
6109
6110 if (list_empty(head)) {
6111 spin_unlock_irq(&rq->lock);
6112 schedule();
6113 set_current_state(TASK_INTERRUPTIBLE);
6114 continue;
6115 }
70b97a7f 6116 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6117 list_del_init(head->next);
6118
674311d5
NP
6119 spin_unlock(&rq->lock);
6120 __migrate_task(req->task, cpu, req->dest_cpu);
6121 local_irq_enable();
1da177e4
LT
6122
6123 complete(&req->done);
6124 }
6125 __set_current_state(TASK_RUNNING);
6126 return 0;
6127
6128wait_to_die:
6129 /* Wait for kthread_stop */
6130 set_current_state(TASK_INTERRUPTIBLE);
6131 while (!kthread_should_stop()) {
6132 schedule();
6133 set_current_state(TASK_INTERRUPTIBLE);
6134 }
6135 __set_current_state(TASK_RUNNING);
6136 return 0;
6137}
6138
6139#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6140
6141static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6142{
6143 int ret;
6144
6145 local_irq_disable();
6146 ret = __migrate_task(p, src_cpu, dest_cpu);
6147 local_irq_enable();
6148 return ret;
6149}
6150
054b9108 6151/*
3a4fa0a2 6152 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
6153 * NOTE: interrupts should be disabled by the caller
6154 */
48f24c4d 6155static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6156{
efc30814 6157 unsigned long flags;
1da177e4 6158 cpumask_t mask;
70b97a7f
IM
6159 struct rq *rq;
6160 int dest_cpu;
1da177e4 6161
3a5c359a
AK
6162 do {
6163 /* On same node? */
6164 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6165 cpus_and(mask, mask, p->cpus_allowed);
6166 dest_cpu = any_online_cpu(mask);
6167
6168 /* On any allowed CPU? */
434d53b0 6169 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6170 dest_cpu = any_online_cpu(p->cpus_allowed);
6171
6172 /* No more Mr. Nice Guy. */
434d53b0 6173 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6174 cpumask_t cpus_allowed;
6175
6176 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6177 /*
6178 * Try to stay on the same cpuset, where the
6179 * current cpuset may be a subset of all cpus.
6180 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6181 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6182 * called within calls to cpuset_lock/cpuset_unlock.
6183 */
3a5c359a 6184 rq = task_rq_lock(p, &flags);
470fd646 6185 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6186 dest_cpu = any_online_cpu(p->cpus_allowed);
6187 task_rq_unlock(rq, &flags);
1da177e4 6188
3a5c359a
AK
6189 /*
6190 * Don't tell them about moving exiting tasks or
6191 * kernel threads (both mm NULL), since they never
6192 * leave kernel.
6193 */
41a2d6cf 6194 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6195 printk(KERN_INFO "process %d (%s) no "
6196 "longer affine to cpu%d\n",
41a2d6cf
IM
6197 task_pid_nr(p), p->comm, dead_cpu);
6198 }
3a5c359a 6199 }
f7b4cddc 6200 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6201}
6202
6203/*
6204 * While a dead CPU has no uninterruptible tasks queued at this point,
6205 * it might still have a nonzero ->nr_uninterruptible counter, because
6206 * for performance reasons the counter is not stricly tracking tasks to
6207 * their home CPUs. So we just add the counter to another CPU's counter,
6208 * to keep the global sum constant after CPU-down:
6209 */
70b97a7f 6210static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6211{
7c16ec58 6212 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6213 unsigned long flags;
6214
6215 local_irq_save(flags);
6216 double_rq_lock(rq_src, rq_dest);
6217 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6218 rq_src->nr_uninterruptible = 0;
6219 double_rq_unlock(rq_src, rq_dest);
6220 local_irq_restore(flags);
6221}
6222
6223/* Run through task list and migrate tasks from the dead cpu. */
6224static void migrate_live_tasks(int src_cpu)
6225{
48f24c4d 6226 struct task_struct *p, *t;
1da177e4 6227
f7b4cddc 6228 read_lock(&tasklist_lock);
1da177e4 6229
48f24c4d
IM
6230 do_each_thread(t, p) {
6231 if (p == current)
1da177e4
LT
6232 continue;
6233
48f24c4d
IM
6234 if (task_cpu(p) == src_cpu)
6235 move_task_off_dead_cpu(src_cpu, p);
6236 } while_each_thread(t, p);
1da177e4 6237
f7b4cddc 6238 read_unlock(&tasklist_lock);
1da177e4
LT
6239}
6240
dd41f596
IM
6241/*
6242 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6243 * It does so by boosting its priority to highest possible.
6244 * Used by CPU offline code.
1da177e4
LT
6245 */
6246void sched_idle_next(void)
6247{
48f24c4d 6248 int this_cpu = smp_processor_id();
70b97a7f 6249 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6250 struct task_struct *p = rq->idle;
6251 unsigned long flags;
6252
6253 /* cpu has to be offline */
48f24c4d 6254 BUG_ON(cpu_online(this_cpu));
1da177e4 6255
48f24c4d
IM
6256 /*
6257 * Strictly not necessary since rest of the CPUs are stopped by now
6258 * and interrupts disabled on the current cpu.
1da177e4
LT
6259 */
6260 spin_lock_irqsave(&rq->lock, flags);
6261
dd41f596 6262 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6263
94bc9a7b
DA
6264 update_rq_clock(rq);
6265 activate_task(rq, p, 0);
1da177e4
LT
6266
6267 spin_unlock_irqrestore(&rq->lock, flags);
6268}
6269
48f24c4d
IM
6270/*
6271 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6272 * offline.
6273 */
6274void idle_task_exit(void)
6275{
6276 struct mm_struct *mm = current->active_mm;
6277
6278 BUG_ON(cpu_online(smp_processor_id()));
6279
6280 if (mm != &init_mm)
6281 switch_mm(mm, &init_mm, current);
6282 mmdrop(mm);
6283}
6284
054b9108 6285/* called under rq->lock with disabled interrupts */
36c8b586 6286static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6287{
70b97a7f 6288 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6289
6290 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6291 BUG_ON(!p->exit_state);
1da177e4
LT
6292
6293 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6294 BUG_ON(p->state == TASK_DEAD);
1da177e4 6295
48f24c4d 6296 get_task_struct(p);
1da177e4
LT
6297
6298 /*
6299 * Drop lock around migration; if someone else moves it,
41a2d6cf 6300 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6301 * fine.
6302 */
f7b4cddc 6303 spin_unlock_irq(&rq->lock);
48f24c4d 6304 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6305 spin_lock_irq(&rq->lock);
1da177e4 6306
48f24c4d 6307 put_task_struct(p);
1da177e4
LT
6308}
6309
6310/* release_task() removes task from tasklist, so we won't find dead tasks. */
6311static void migrate_dead_tasks(unsigned int dead_cpu)
6312{
70b97a7f 6313 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6314 struct task_struct *next;
48f24c4d 6315
dd41f596
IM
6316 for ( ; ; ) {
6317 if (!rq->nr_running)
6318 break;
a8e504d2 6319 update_rq_clock(rq);
ff95f3df 6320 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6321 if (!next)
6322 break;
79c53799 6323 next->sched_class->put_prev_task(rq, next);
dd41f596 6324 migrate_dead(dead_cpu, next);
e692ab53 6325
1da177e4
LT
6326 }
6327}
6328#endif /* CONFIG_HOTPLUG_CPU */
6329
e692ab53
NP
6330#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6331
6332static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6333 {
6334 .procname = "sched_domain",
c57baf1e 6335 .mode = 0555,
e0361851 6336 },
38605cae 6337 {0, },
e692ab53
NP
6338};
6339
6340static struct ctl_table sd_ctl_root[] = {
e0361851 6341 {
c57baf1e 6342 .ctl_name = CTL_KERN,
e0361851 6343 .procname = "kernel",
c57baf1e 6344 .mode = 0555,
e0361851
AD
6345 .child = sd_ctl_dir,
6346 },
38605cae 6347 {0, },
e692ab53
NP
6348};
6349
6350static struct ctl_table *sd_alloc_ctl_entry(int n)
6351{
6352 struct ctl_table *entry =
5cf9f062 6353 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6354
e692ab53
NP
6355 return entry;
6356}
6357
6382bc90
MM
6358static void sd_free_ctl_entry(struct ctl_table **tablep)
6359{
cd790076 6360 struct ctl_table *entry;
6382bc90 6361
cd790076
MM
6362 /*
6363 * In the intermediate directories, both the child directory and
6364 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6365 * will always be set. In the lowest directory the names are
cd790076
MM
6366 * static strings and all have proc handlers.
6367 */
6368 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6369 if (entry->child)
6370 sd_free_ctl_entry(&entry->child);
cd790076
MM
6371 if (entry->proc_handler == NULL)
6372 kfree(entry->procname);
6373 }
6382bc90
MM
6374
6375 kfree(*tablep);
6376 *tablep = NULL;
6377}
6378
e692ab53 6379static void
e0361851 6380set_table_entry(struct ctl_table *entry,
e692ab53
NP
6381 const char *procname, void *data, int maxlen,
6382 mode_t mode, proc_handler *proc_handler)
6383{
e692ab53
NP
6384 entry->procname = procname;
6385 entry->data = data;
6386 entry->maxlen = maxlen;
6387 entry->mode = mode;
6388 entry->proc_handler = proc_handler;
6389}
6390
6391static struct ctl_table *
6392sd_alloc_ctl_domain_table(struct sched_domain *sd)
6393{
a5d8c348 6394 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6395
ad1cdc1d
MM
6396 if (table == NULL)
6397 return NULL;
6398
e0361851 6399 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6400 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6401 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6402 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6403 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6404 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6405 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6406 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6407 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6408 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6409 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6410 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6411 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6412 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6413 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6414 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6415 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6416 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6417 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6418 &sd->cache_nice_tries,
6419 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6420 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6421 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6422 set_table_entry(&table[11], "name", sd->name,
6423 CORENAME_MAX_SIZE, 0444, proc_dostring);
6424 /* &table[12] is terminator */
e692ab53
NP
6425
6426 return table;
6427}
6428
9a4e7159 6429static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6430{
6431 struct ctl_table *entry, *table;
6432 struct sched_domain *sd;
6433 int domain_num = 0, i;
6434 char buf[32];
6435
6436 for_each_domain(cpu, sd)
6437 domain_num++;
6438 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6439 if (table == NULL)
6440 return NULL;
e692ab53
NP
6441
6442 i = 0;
6443 for_each_domain(cpu, sd) {
6444 snprintf(buf, 32, "domain%d", i);
e692ab53 6445 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6446 entry->mode = 0555;
e692ab53
NP
6447 entry->child = sd_alloc_ctl_domain_table(sd);
6448 entry++;
6449 i++;
6450 }
6451 return table;
6452}
6453
6454static struct ctl_table_header *sd_sysctl_header;
6382bc90 6455static void register_sched_domain_sysctl(void)
e692ab53
NP
6456{
6457 int i, cpu_num = num_online_cpus();
6458 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6459 char buf[32];
6460
7378547f
MM
6461 WARN_ON(sd_ctl_dir[0].child);
6462 sd_ctl_dir[0].child = entry;
6463
ad1cdc1d
MM
6464 if (entry == NULL)
6465 return;
6466
97b6ea7b 6467 for_each_online_cpu(i) {
e692ab53 6468 snprintf(buf, 32, "cpu%d", i);
e692ab53 6469 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6470 entry->mode = 0555;
e692ab53 6471 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6472 entry++;
e692ab53 6473 }
7378547f
MM
6474
6475 WARN_ON(sd_sysctl_header);
e692ab53
NP
6476 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6477}
6382bc90 6478
7378547f 6479/* may be called multiple times per register */
6382bc90
MM
6480static void unregister_sched_domain_sysctl(void)
6481{
7378547f
MM
6482 if (sd_sysctl_header)
6483 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6484 sd_sysctl_header = NULL;
7378547f
MM
6485 if (sd_ctl_dir[0].child)
6486 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6487}
e692ab53 6488#else
6382bc90
MM
6489static void register_sched_domain_sysctl(void)
6490{
6491}
6492static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6493{
6494}
6495#endif
6496
1f11eb6a
GH
6497static void set_rq_online(struct rq *rq)
6498{
6499 if (!rq->online) {
6500 const struct sched_class *class;
6501
6502 cpu_set(rq->cpu, rq->rd->online);
6503 rq->online = 1;
6504
6505 for_each_class(class) {
6506 if (class->rq_online)
6507 class->rq_online(rq);
6508 }
6509 }
6510}
6511
6512static void set_rq_offline(struct rq *rq)
6513{
6514 if (rq->online) {
6515 const struct sched_class *class;
6516
6517 for_each_class(class) {
6518 if (class->rq_offline)
6519 class->rq_offline(rq);
6520 }
6521
6522 cpu_clear(rq->cpu, rq->rd->online);
6523 rq->online = 0;
6524 }
6525}
6526
1da177e4
LT
6527/*
6528 * migration_call - callback that gets triggered when a CPU is added.
6529 * Here we can start up the necessary migration thread for the new CPU.
6530 */
48f24c4d
IM
6531static int __cpuinit
6532migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6533{
1da177e4 6534 struct task_struct *p;
48f24c4d 6535 int cpu = (long)hcpu;
1da177e4 6536 unsigned long flags;
70b97a7f 6537 struct rq *rq;
1da177e4
LT
6538
6539 switch (action) {
5be9361c 6540
1da177e4 6541 case CPU_UP_PREPARE:
8bb78442 6542 case CPU_UP_PREPARE_FROZEN:
dd41f596 6543 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6544 if (IS_ERR(p))
6545 return NOTIFY_BAD;
1da177e4
LT
6546 kthread_bind(p, cpu);
6547 /* Must be high prio: stop_machine expects to yield to it. */
6548 rq = task_rq_lock(p, &flags);
dd41f596 6549 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6550 task_rq_unlock(rq, &flags);
6551 cpu_rq(cpu)->migration_thread = p;
6552 break;
48f24c4d 6553
1da177e4 6554 case CPU_ONLINE:
8bb78442 6555 case CPU_ONLINE_FROZEN:
3a4fa0a2 6556 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6557 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6558
6559 /* Update our root-domain */
6560 rq = cpu_rq(cpu);
6561 spin_lock_irqsave(&rq->lock, flags);
6562 if (rq->rd) {
6563 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6564
6565 set_rq_online(rq);
1f94ef59
GH
6566 }
6567 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6568 break;
48f24c4d 6569
1da177e4
LT
6570#ifdef CONFIG_HOTPLUG_CPU
6571 case CPU_UP_CANCELED:
8bb78442 6572 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6573 if (!cpu_rq(cpu)->migration_thread)
6574 break;
41a2d6cf 6575 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6576 kthread_bind(cpu_rq(cpu)->migration_thread,
6577 any_online_cpu(cpu_online_map));
1da177e4
LT
6578 kthread_stop(cpu_rq(cpu)->migration_thread);
6579 cpu_rq(cpu)->migration_thread = NULL;
6580 break;
48f24c4d 6581
1da177e4 6582 case CPU_DEAD:
8bb78442 6583 case CPU_DEAD_FROZEN:
470fd646 6584 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6585 migrate_live_tasks(cpu);
6586 rq = cpu_rq(cpu);
6587 kthread_stop(rq->migration_thread);
6588 rq->migration_thread = NULL;
6589 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6590 spin_lock_irq(&rq->lock);
a8e504d2 6591 update_rq_clock(rq);
2e1cb74a 6592 deactivate_task(rq, rq->idle, 0);
1da177e4 6593 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6594 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6595 rq->idle->sched_class = &idle_sched_class;
1da177e4 6596 migrate_dead_tasks(cpu);
d2da272a 6597 spin_unlock_irq(&rq->lock);
470fd646 6598 cpuset_unlock();
1da177e4
LT
6599 migrate_nr_uninterruptible(rq);
6600 BUG_ON(rq->nr_running != 0);
6601
41a2d6cf
IM
6602 /*
6603 * No need to migrate the tasks: it was best-effort if
6604 * they didn't take sched_hotcpu_mutex. Just wake up
6605 * the requestors.
6606 */
1da177e4
LT
6607 spin_lock_irq(&rq->lock);
6608 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6609 struct migration_req *req;
6610
1da177e4 6611 req = list_entry(rq->migration_queue.next,
70b97a7f 6612 struct migration_req, list);
1da177e4 6613 list_del_init(&req->list);
9a2bd244 6614 spin_unlock_irq(&rq->lock);
1da177e4 6615 complete(&req->done);
9a2bd244 6616 spin_lock_irq(&rq->lock);
1da177e4
LT
6617 }
6618 spin_unlock_irq(&rq->lock);
6619 break;
57d885fe 6620
08f503b0
GH
6621 case CPU_DYING:
6622 case CPU_DYING_FROZEN:
57d885fe
GH
6623 /* Update our root-domain */
6624 rq = cpu_rq(cpu);
6625 spin_lock_irqsave(&rq->lock, flags);
6626 if (rq->rd) {
6627 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6628 set_rq_offline(rq);
57d885fe
GH
6629 }
6630 spin_unlock_irqrestore(&rq->lock, flags);
6631 break;
1da177e4
LT
6632#endif
6633 }
6634 return NOTIFY_OK;
6635}
6636
6637/* Register at highest priority so that task migration (migrate_all_tasks)
6638 * happens before everything else.
6639 */
26c2143b 6640static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6641 .notifier_call = migration_call,
6642 .priority = 10
6643};
6644
7babe8db 6645static int __init migration_init(void)
1da177e4
LT
6646{
6647 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6648 int err;
48f24c4d
IM
6649
6650 /* Start one for the boot CPU: */
07dccf33
AM
6651 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6652 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6653 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6654 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6655
6656 return err;
1da177e4 6657}
7babe8db 6658early_initcall(migration_init);
1da177e4
LT
6659#endif
6660
6661#ifdef CONFIG_SMP
476f3534 6662
3e9830dc 6663#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6664
099f98c8
GS
6665static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6666{
6667 switch (lvl) {
6668 case SD_LV_NONE:
6669 return "NONE";
6670 case SD_LV_SIBLING:
6671 return "SIBLING";
6672 case SD_LV_MC:
6673 return "MC";
6674 case SD_LV_CPU:
6675 return "CPU";
6676 case SD_LV_NODE:
6677 return "NODE";
6678 case SD_LV_ALLNODES:
6679 return "ALLNODES";
6680 case SD_LV_MAX:
6681 return "MAX";
6682
6683 }
6684 return "MAX";
6685}
6686
7c16ec58
MT
6687static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6688 cpumask_t *groupmask)
1da177e4 6689{
4dcf6aff 6690 struct sched_group *group = sd->groups;
434d53b0 6691 char str[256];
1da177e4 6692
434d53b0 6693 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6694 cpus_clear(*groupmask);
4dcf6aff
IM
6695
6696 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6697
6698 if (!(sd->flags & SD_LOAD_BALANCE)) {
6699 printk("does not load-balance\n");
6700 if (sd->parent)
6701 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6702 " has parent");
6703 return -1;
41c7ce9a
NP
6704 }
6705
099f98c8
GS
6706 printk(KERN_CONT "span %s level %s\n",
6707 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6708
6709 if (!cpu_isset(cpu, sd->span)) {
6710 printk(KERN_ERR "ERROR: domain->span does not contain "
6711 "CPU%d\n", cpu);
6712 }
6713 if (!cpu_isset(cpu, group->cpumask)) {
6714 printk(KERN_ERR "ERROR: domain->groups does not contain"
6715 " CPU%d\n", cpu);
6716 }
1da177e4 6717
4dcf6aff 6718 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6719 do {
4dcf6aff
IM
6720 if (!group) {
6721 printk("\n");
6722 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6723 break;
6724 }
6725
4dcf6aff
IM
6726 if (!group->__cpu_power) {
6727 printk(KERN_CONT "\n");
6728 printk(KERN_ERR "ERROR: domain->cpu_power not "
6729 "set\n");
6730 break;
6731 }
1da177e4 6732
4dcf6aff
IM
6733 if (!cpus_weight(group->cpumask)) {
6734 printk(KERN_CONT "\n");
6735 printk(KERN_ERR "ERROR: empty group\n");
6736 break;
6737 }
1da177e4 6738
7c16ec58 6739 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6740 printk(KERN_CONT "\n");
6741 printk(KERN_ERR "ERROR: repeated CPUs\n");
6742 break;
6743 }
1da177e4 6744
7c16ec58 6745 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6746
434d53b0 6747 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6748 printk(KERN_CONT " %s", str);
1da177e4 6749
4dcf6aff
IM
6750 group = group->next;
6751 } while (group != sd->groups);
6752 printk(KERN_CONT "\n");
1da177e4 6753
7c16ec58 6754 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6755 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6756
7c16ec58 6757 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6758 printk(KERN_ERR "ERROR: parent span is not a superset "
6759 "of domain->span\n");
6760 return 0;
6761}
1da177e4 6762
4dcf6aff
IM
6763static void sched_domain_debug(struct sched_domain *sd, int cpu)
6764{
7c16ec58 6765 cpumask_t *groupmask;
4dcf6aff 6766 int level = 0;
1da177e4 6767
4dcf6aff
IM
6768 if (!sd) {
6769 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6770 return;
6771 }
1da177e4 6772
4dcf6aff
IM
6773 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6774
7c16ec58
MT
6775 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6776 if (!groupmask) {
6777 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6778 return;
6779 }
6780
4dcf6aff 6781 for (;;) {
7c16ec58 6782 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6783 break;
1da177e4
LT
6784 level++;
6785 sd = sd->parent;
33859f7f 6786 if (!sd)
4dcf6aff
IM
6787 break;
6788 }
7c16ec58 6789 kfree(groupmask);
1da177e4 6790}
6d6bc0ad 6791#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6792# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6793#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6794
1a20ff27 6795static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6796{
6797 if (cpus_weight(sd->span) == 1)
6798 return 1;
6799
6800 /* Following flags need at least 2 groups */
6801 if (sd->flags & (SD_LOAD_BALANCE |
6802 SD_BALANCE_NEWIDLE |
6803 SD_BALANCE_FORK |
89c4710e
SS
6804 SD_BALANCE_EXEC |
6805 SD_SHARE_CPUPOWER |
6806 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6807 if (sd->groups != sd->groups->next)
6808 return 0;
6809 }
6810
6811 /* Following flags don't use groups */
6812 if (sd->flags & (SD_WAKE_IDLE |
6813 SD_WAKE_AFFINE |
6814 SD_WAKE_BALANCE))
6815 return 0;
6816
6817 return 1;
6818}
6819
48f24c4d
IM
6820static int
6821sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6822{
6823 unsigned long cflags = sd->flags, pflags = parent->flags;
6824
6825 if (sd_degenerate(parent))
6826 return 1;
6827
6828 if (!cpus_equal(sd->span, parent->span))
6829 return 0;
6830
6831 /* Does parent contain flags not in child? */
6832 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6833 if (cflags & SD_WAKE_AFFINE)
6834 pflags &= ~SD_WAKE_BALANCE;
6835 /* Flags needing groups don't count if only 1 group in parent */
6836 if (parent->groups == parent->groups->next) {
6837 pflags &= ~(SD_LOAD_BALANCE |
6838 SD_BALANCE_NEWIDLE |
6839 SD_BALANCE_FORK |
89c4710e
SS
6840 SD_BALANCE_EXEC |
6841 SD_SHARE_CPUPOWER |
6842 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6843 }
6844 if (~cflags & pflags)
6845 return 0;
6846
6847 return 1;
6848}
6849
57d885fe
GH
6850static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6851{
6852 unsigned long flags;
57d885fe
GH
6853
6854 spin_lock_irqsave(&rq->lock, flags);
6855
6856 if (rq->rd) {
6857 struct root_domain *old_rd = rq->rd;
6858
1f11eb6a
GH
6859 if (cpu_isset(rq->cpu, old_rd->online))
6860 set_rq_offline(rq);
57d885fe 6861
dc938520 6862 cpu_clear(rq->cpu, old_rd->span);
dc938520 6863
57d885fe
GH
6864 if (atomic_dec_and_test(&old_rd->refcount))
6865 kfree(old_rd);
6866 }
6867
6868 atomic_inc(&rd->refcount);
6869 rq->rd = rd;
6870
dc938520 6871 cpu_set(rq->cpu, rd->span);
1f94ef59 6872 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6873 set_rq_online(rq);
57d885fe
GH
6874
6875 spin_unlock_irqrestore(&rq->lock, flags);
6876}
6877
dc938520 6878static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6879{
6880 memset(rd, 0, sizeof(*rd));
6881
dc938520
GH
6882 cpus_clear(rd->span);
6883 cpus_clear(rd->online);
6e0534f2
GH
6884
6885 cpupri_init(&rd->cpupri);
57d885fe
GH
6886}
6887
6888static void init_defrootdomain(void)
6889{
dc938520 6890 init_rootdomain(&def_root_domain);
57d885fe
GH
6891 atomic_set(&def_root_domain.refcount, 1);
6892}
6893
dc938520 6894static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6895{
6896 struct root_domain *rd;
6897
6898 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6899 if (!rd)
6900 return NULL;
6901
dc938520 6902 init_rootdomain(rd);
57d885fe
GH
6903
6904 return rd;
6905}
6906
1da177e4 6907/*
0eab9146 6908 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6909 * hold the hotplug lock.
6910 */
0eab9146
IM
6911static void
6912cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6913{
70b97a7f 6914 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6915 struct sched_domain *tmp;
6916
6917 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6918 for (tmp = sd; tmp; ) {
245af2c7
SS
6919 struct sched_domain *parent = tmp->parent;
6920 if (!parent)
6921 break;
f29c9b1c 6922
1a848870 6923 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6924 tmp->parent = parent->parent;
1a848870
SS
6925 if (parent->parent)
6926 parent->parent->child = tmp;
f29c9b1c
LZ
6927 } else
6928 tmp = tmp->parent;
245af2c7
SS
6929 }
6930
1a848870 6931 if (sd && sd_degenerate(sd)) {
245af2c7 6932 sd = sd->parent;
1a848870
SS
6933 if (sd)
6934 sd->child = NULL;
6935 }
1da177e4
LT
6936
6937 sched_domain_debug(sd, cpu);
6938
57d885fe 6939 rq_attach_root(rq, rd);
674311d5 6940 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6941}
6942
6943/* cpus with isolated domains */
67af63a6 6944static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6945
6946/* Setup the mask of cpus configured for isolated domains */
6947static int __init isolated_cpu_setup(char *str)
6948{
13b40c1e
MT
6949 static int __initdata ints[NR_CPUS];
6950 int i;
1da177e4
LT
6951
6952 str = get_options(str, ARRAY_SIZE(ints), ints);
6953 cpus_clear(cpu_isolated_map);
6954 for (i = 1; i <= ints[0]; i++)
6955 if (ints[i] < NR_CPUS)
6956 cpu_set(ints[i], cpu_isolated_map);
6957 return 1;
6958}
6959
8927f494 6960__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6961
6962/*
6711cab4
SS
6963 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6964 * to a function which identifies what group(along with sched group) a CPU
6965 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6966 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6967 *
6968 * init_sched_build_groups will build a circular linked list of the groups
6969 * covered by the given span, and will set each group's ->cpumask correctly,
6970 * and ->cpu_power to 0.
6971 */
a616058b 6972static void
7c16ec58 6973init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6974 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6975 struct sched_group **sg,
6976 cpumask_t *tmpmask),
6977 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6978{
6979 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6980 int i;
6981
7c16ec58
MT
6982 cpus_clear(*covered);
6983
363ab6f1 6984 for_each_cpu_mask_nr(i, *span) {
6711cab4 6985 struct sched_group *sg;
7c16ec58 6986 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6987 int j;
6988
7c16ec58 6989 if (cpu_isset(i, *covered))
1da177e4
LT
6990 continue;
6991
7c16ec58 6992 cpus_clear(sg->cpumask);
5517d86b 6993 sg->__cpu_power = 0;
1da177e4 6994
363ab6f1 6995 for_each_cpu_mask_nr(j, *span) {
7c16ec58 6996 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6997 continue;
6998
7c16ec58 6999 cpu_set(j, *covered);
1da177e4
LT
7000 cpu_set(j, sg->cpumask);
7001 }
7002 if (!first)
7003 first = sg;
7004 if (last)
7005 last->next = sg;
7006 last = sg;
7007 }
7008 last->next = first;
7009}
7010
9c1cfda2 7011#define SD_NODES_PER_DOMAIN 16
1da177e4 7012
9c1cfda2 7013#ifdef CONFIG_NUMA
198e2f18 7014
9c1cfda2
JH
7015/**
7016 * find_next_best_node - find the next node to include in a sched_domain
7017 * @node: node whose sched_domain we're building
7018 * @used_nodes: nodes already in the sched_domain
7019 *
41a2d6cf 7020 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7021 * finds the closest node not already in the @used_nodes map.
7022 *
7023 * Should use nodemask_t.
7024 */
c5f59f08 7025static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7026{
7027 int i, n, val, min_val, best_node = 0;
7028
7029 min_val = INT_MAX;
7030
076ac2af 7031 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7032 /* Start at @node */
076ac2af 7033 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7034
7035 if (!nr_cpus_node(n))
7036 continue;
7037
7038 /* Skip already used nodes */
c5f59f08 7039 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7040 continue;
7041
7042 /* Simple min distance search */
7043 val = node_distance(node, n);
7044
7045 if (val < min_val) {
7046 min_val = val;
7047 best_node = n;
7048 }
7049 }
7050
c5f59f08 7051 node_set(best_node, *used_nodes);
9c1cfda2
JH
7052 return best_node;
7053}
7054
7055/**
7056 * sched_domain_node_span - get a cpumask for a node's sched_domain
7057 * @node: node whose cpumask we're constructing
73486722 7058 * @span: resulting cpumask
9c1cfda2 7059 *
41a2d6cf 7060 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7061 * should be one that prevents unnecessary balancing, but also spreads tasks
7062 * out optimally.
7063 */
4bdbaad3 7064static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 7065{
c5f59f08 7066 nodemask_t used_nodes;
c5f59f08 7067 node_to_cpumask_ptr(nodemask, node);
48f24c4d 7068 int i;
9c1cfda2 7069
4bdbaad3 7070 cpus_clear(*span);
c5f59f08 7071 nodes_clear(used_nodes);
9c1cfda2 7072
4bdbaad3 7073 cpus_or(*span, *span, *nodemask);
c5f59f08 7074 node_set(node, used_nodes);
9c1cfda2
JH
7075
7076 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7077 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7078
c5f59f08 7079 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 7080 cpus_or(*span, *span, *nodemask);
9c1cfda2 7081 }
9c1cfda2 7082}
6d6bc0ad 7083#endif /* CONFIG_NUMA */
9c1cfda2 7084
5c45bf27 7085int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7086
9c1cfda2 7087/*
48f24c4d 7088 * SMT sched-domains:
9c1cfda2 7089 */
1da177e4
LT
7090#ifdef CONFIG_SCHED_SMT
7091static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 7092static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 7093
41a2d6cf 7094static int
7c16ec58
MT
7095cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7096 cpumask_t *unused)
1da177e4 7097{
6711cab4
SS
7098 if (sg)
7099 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
7100 return cpu;
7101}
6d6bc0ad 7102#endif /* CONFIG_SCHED_SMT */
1da177e4 7103
48f24c4d
IM
7104/*
7105 * multi-core sched-domains:
7106 */
1e9f28fa
SS
7107#ifdef CONFIG_SCHED_MC
7108static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 7109static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 7110#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7111
7112#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7113static int
7c16ec58
MT
7114cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7115 cpumask_t *mask)
1e9f28fa 7116{
6711cab4 7117 int group;
7c16ec58
MT
7118
7119 *mask = per_cpu(cpu_sibling_map, cpu);
7120 cpus_and(*mask, *mask, *cpu_map);
7121 group = first_cpu(*mask);
6711cab4
SS
7122 if (sg)
7123 *sg = &per_cpu(sched_group_core, group);
7124 return group;
1e9f28fa
SS
7125}
7126#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7127static int
7c16ec58
MT
7128cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7129 cpumask_t *unused)
1e9f28fa 7130{
6711cab4
SS
7131 if (sg)
7132 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
7133 return cpu;
7134}
7135#endif
7136
1da177e4 7137static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 7138static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 7139
41a2d6cf 7140static int
7c16ec58
MT
7141cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7142 cpumask_t *mask)
1da177e4 7143{
6711cab4 7144 int group;
48f24c4d 7145#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7146 *mask = cpu_coregroup_map(cpu);
7147 cpus_and(*mask, *mask, *cpu_map);
7148 group = first_cpu(*mask);
1e9f28fa 7149#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7150 *mask = per_cpu(cpu_sibling_map, cpu);
7151 cpus_and(*mask, *mask, *cpu_map);
7152 group = first_cpu(*mask);
1da177e4 7153#else
6711cab4 7154 group = cpu;
1da177e4 7155#endif
6711cab4
SS
7156 if (sg)
7157 *sg = &per_cpu(sched_group_phys, group);
7158 return group;
1da177e4
LT
7159}
7160
7161#ifdef CONFIG_NUMA
1da177e4 7162/*
9c1cfda2
JH
7163 * The init_sched_build_groups can't handle what we want to do with node
7164 * groups, so roll our own. Now each node has its own list of groups which
7165 * gets dynamically allocated.
1da177e4 7166 */
9c1cfda2 7167static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7168static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7169
9c1cfda2 7170static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7171static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7172
6711cab4 7173static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7174 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7175{
6711cab4
SS
7176 int group;
7177
7c16ec58
MT
7178 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7179 cpus_and(*nodemask, *nodemask, *cpu_map);
7180 group = first_cpu(*nodemask);
6711cab4
SS
7181
7182 if (sg)
7183 *sg = &per_cpu(sched_group_allnodes, group);
7184 return group;
1da177e4 7185}
6711cab4 7186
08069033
SS
7187static void init_numa_sched_groups_power(struct sched_group *group_head)
7188{
7189 struct sched_group *sg = group_head;
7190 int j;
7191
7192 if (!sg)
7193 return;
3a5c359a 7194 do {
363ab6f1 7195 for_each_cpu_mask_nr(j, sg->cpumask) {
3a5c359a 7196 struct sched_domain *sd;
08069033 7197
3a5c359a
AK
7198 sd = &per_cpu(phys_domains, j);
7199 if (j != first_cpu(sd->groups->cpumask)) {
7200 /*
7201 * Only add "power" once for each
7202 * physical package.
7203 */
7204 continue;
7205 }
08069033 7206
3a5c359a
AK
7207 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7208 }
7209 sg = sg->next;
7210 } while (sg != group_head);
08069033 7211}
6d6bc0ad 7212#endif /* CONFIG_NUMA */
1da177e4 7213
a616058b 7214#ifdef CONFIG_NUMA
51888ca2 7215/* Free memory allocated for various sched_group structures */
7c16ec58 7216static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7217{
a616058b 7218 int cpu, i;
51888ca2 7219
363ab6f1 7220 for_each_cpu_mask_nr(cpu, *cpu_map) {
51888ca2
SV
7221 struct sched_group **sched_group_nodes
7222 = sched_group_nodes_bycpu[cpu];
7223
51888ca2
SV
7224 if (!sched_group_nodes)
7225 continue;
7226
076ac2af 7227 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7228 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7229
7c16ec58
MT
7230 *nodemask = node_to_cpumask(i);
7231 cpus_and(*nodemask, *nodemask, *cpu_map);
7232 if (cpus_empty(*nodemask))
51888ca2
SV
7233 continue;
7234
7235 if (sg == NULL)
7236 continue;
7237 sg = sg->next;
7238next_sg:
7239 oldsg = sg;
7240 sg = sg->next;
7241 kfree(oldsg);
7242 if (oldsg != sched_group_nodes[i])
7243 goto next_sg;
7244 }
7245 kfree(sched_group_nodes);
7246 sched_group_nodes_bycpu[cpu] = NULL;
7247 }
51888ca2 7248}
6d6bc0ad 7249#else /* !CONFIG_NUMA */
7c16ec58 7250static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7251{
7252}
6d6bc0ad 7253#endif /* CONFIG_NUMA */
51888ca2 7254
89c4710e
SS
7255/*
7256 * Initialize sched groups cpu_power.
7257 *
7258 * cpu_power indicates the capacity of sched group, which is used while
7259 * distributing the load between different sched groups in a sched domain.
7260 * Typically cpu_power for all the groups in a sched domain will be same unless
7261 * there are asymmetries in the topology. If there are asymmetries, group
7262 * having more cpu_power will pickup more load compared to the group having
7263 * less cpu_power.
7264 *
7265 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7266 * the maximum number of tasks a group can handle in the presence of other idle
7267 * or lightly loaded groups in the same sched domain.
7268 */
7269static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7270{
7271 struct sched_domain *child;
7272 struct sched_group *group;
7273
7274 WARN_ON(!sd || !sd->groups);
7275
7276 if (cpu != first_cpu(sd->groups->cpumask))
7277 return;
7278
7279 child = sd->child;
7280
5517d86b
ED
7281 sd->groups->__cpu_power = 0;
7282
89c4710e
SS
7283 /*
7284 * For perf policy, if the groups in child domain share resources
7285 * (for example cores sharing some portions of the cache hierarchy
7286 * or SMT), then set this domain groups cpu_power such that each group
7287 * can handle only one task, when there are other idle groups in the
7288 * same sched domain.
7289 */
7290 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7291 (child->flags &
7292 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7293 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7294 return;
7295 }
7296
89c4710e
SS
7297 /*
7298 * add cpu_power of each child group to this groups cpu_power
7299 */
7300 group = child->groups;
7301 do {
5517d86b 7302 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7303 group = group->next;
7304 } while (group != child->groups);
7305}
7306
7c16ec58
MT
7307/*
7308 * Initializers for schedule domains
7309 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7310 */
7311
a5d8c348
IM
7312#ifdef CONFIG_SCHED_DEBUG
7313# define SD_INIT_NAME(sd, type) sd->name = #type
7314#else
7315# define SD_INIT_NAME(sd, type) do { } while (0)
7316#endif
7317
7c16ec58 7318#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7319
7c16ec58
MT
7320#define SD_INIT_FUNC(type) \
7321static noinline void sd_init_##type(struct sched_domain *sd) \
7322{ \
7323 memset(sd, 0, sizeof(*sd)); \
7324 *sd = SD_##type##_INIT; \
1d3504fc 7325 sd->level = SD_LV_##type; \
a5d8c348 7326 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7327}
7328
7329SD_INIT_FUNC(CPU)
7330#ifdef CONFIG_NUMA
7331 SD_INIT_FUNC(ALLNODES)
7332 SD_INIT_FUNC(NODE)
7333#endif
7334#ifdef CONFIG_SCHED_SMT
7335 SD_INIT_FUNC(SIBLING)
7336#endif
7337#ifdef CONFIG_SCHED_MC
7338 SD_INIT_FUNC(MC)
7339#endif
7340
7341/*
7342 * To minimize stack usage kmalloc room for cpumasks and share the
7343 * space as the usage in build_sched_domains() dictates. Used only
7344 * if the amount of space is significant.
7345 */
7346struct allmasks {
7347 cpumask_t tmpmask; /* make this one first */
7348 union {
7349 cpumask_t nodemask;
7350 cpumask_t this_sibling_map;
7351 cpumask_t this_core_map;
7352 };
7353 cpumask_t send_covered;
7354
7355#ifdef CONFIG_NUMA
7356 cpumask_t domainspan;
7357 cpumask_t covered;
7358 cpumask_t notcovered;
7359#endif
7360};
7361
7362#if NR_CPUS > 128
7363#define SCHED_CPUMASK_ALLOC 1
7364#define SCHED_CPUMASK_FREE(v) kfree(v)
7365#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7366#else
7367#define SCHED_CPUMASK_ALLOC 0
7368#define SCHED_CPUMASK_FREE(v)
7369#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7370#endif
7371
7372#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7373 ((unsigned long)(a) + offsetof(struct allmasks, v))
7374
1d3504fc
HS
7375static int default_relax_domain_level = -1;
7376
7377static int __init setup_relax_domain_level(char *str)
7378{
30e0e178
LZ
7379 unsigned long val;
7380
7381 val = simple_strtoul(str, NULL, 0);
7382 if (val < SD_LV_MAX)
7383 default_relax_domain_level = val;
7384
1d3504fc
HS
7385 return 1;
7386}
7387__setup("relax_domain_level=", setup_relax_domain_level);
7388
7389static void set_domain_attribute(struct sched_domain *sd,
7390 struct sched_domain_attr *attr)
7391{
7392 int request;
7393
7394 if (!attr || attr->relax_domain_level < 0) {
7395 if (default_relax_domain_level < 0)
7396 return;
7397 else
7398 request = default_relax_domain_level;
7399 } else
7400 request = attr->relax_domain_level;
7401 if (request < sd->level) {
7402 /* turn off idle balance on this domain */
7403 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7404 } else {
7405 /* turn on idle balance on this domain */
7406 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7407 }
7408}
7409
1da177e4 7410/*
1a20ff27
DG
7411 * Build sched domains for a given set of cpus and attach the sched domains
7412 * to the individual cpus
1da177e4 7413 */
1d3504fc
HS
7414static int __build_sched_domains(const cpumask_t *cpu_map,
7415 struct sched_domain_attr *attr)
1da177e4
LT
7416{
7417 int i;
57d885fe 7418 struct root_domain *rd;
7c16ec58
MT
7419 SCHED_CPUMASK_DECLARE(allmasks);
7420 cpumask_t *tmpmask;
d1b55138
JH
7421#ifdef CONFIG_NUMA
7422 struct sched_group **sched_group_nodes = NULL;
6711cab4 7423 int sd_allnodes = 0;
d1b55138
JH
7424
7425 /*
7426 * Allocate the per-node list of sched groups
7427 */
076ac2af 7428 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7429 GFP_KERNEL);
d1b55138
JH
7430 if (!sched_group_nodes) {
7431 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7432 return -ENOMEM;
d1b55138 7433 }
d1b55138 7434#endif
1da177e4 7435
dc938520 7436 rd = alloc_rootdomain();
57d885fe
GH
7437 if (!rd) {
7438 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7439#ifdef CONFIG_NUMA
7440 kfree(sched_group_nodes);
7441#endif
57d885fe
GH
7442 return -ENOMEM;
7443 }
7444
7c16ec58
MT
7445#if SCHED_CPUMASK_ALLOC
7446 /* get space for all scratch cpumask variables */
7447 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7448 if (!allmasks) {
7449 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7450 kfree(rd);
7451#ifdef CONFIG_NUMA
7452 kfree(sched_group_nodes);
7453#endif
7454 return -ENOMEM;
7455 }
7456#endif
7457 tmpmask = (cpumask_t *)allmasks;
7458
7459
7460#ifdef CONFIG_NUMA
7461 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7462#endif
7463
1da177e4 7464 /*
1a20ff27 7465 * Set up domains for cpus specified by the cpu_map.
1da177e4 7466 */
363ab6f1 7467 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4 7468 struct sched_domain *sd = NULL, *p;
7c16ec58 7469 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7470
7c16ec58
MT
7471 *nodemask = node_to_cpumask(cpu_to_node(i));
7472 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7473
7474#ifdef CONFIG_NUMA
dd41f596 7475 if (cpus_weight(*cpu_map) >
7c16ec58 7476 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7477 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7478 SD_INIT(sd, ALLNODES);
1d3504fc 7479 set_domain_attribute(sd, attr);
9c1cfda2 7480 sd->span = *cpu_map;
7c16ec58 7481 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7482 p = sd;
6711cab4 7483 sd_allnodes = 1;
9c1cfda2
JH
7484 } else
7485 p = NULL;
7486
1da177e4 7487 sd = &per_cpu(node_domains, i);
7c16ec58 7488 SD_INIT(sd, NODE);
1d3504fc 7489 set_domain_attribute(sd, attr);
4bdbaad3 7490 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7491 sd->parent = p;
1a848870
SS
7492 if (p)
7493 p->child = sd;
9c1cfda2 7494 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7495#endif
7496
7497 p = sd;
7498 sd = &per_cpu(phys_domains, i);
7c16ec58 7499 SD_INIT(sd, CPU);
1d3504fc 7500 set_domain_attribute(sd, attr);
7c16ec58 7501 sd->span = *nodemask;
1da177e4 7502 sd->parent = p;
1a848870
SS
7503 if (p)
7504 p->child = sd;
7c16ec58 7505 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7506
1e9f28fa
SS
7507#ifdef CONFIG_SCHED_MC
7508 p = sd;
7509 sd = &per_cpu(core_domains, i);
7c16ec58 7510 SD_INIT(sd, MC);
1d3504fc 7511 set_domain_attribute(sd, attr);
1e9f28fa
SS
7512 sd->span = cpu_coregroup_map(i);
7513 cpus_and(sd->span, sd->span, *cpu_map);
7514 sd->parent = p;
1a848870 7515 p->child = sd;
7c16ec58 7516 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7517#endif
7518
1da177e4
LT
7519#ifdef CONFIG_SCHED_SMT
7520 p = sd;
7521 sd = &per_cpu(cpu_domains, i);
7c16ec58 7522 SD_INIT(sd, SIBLING);
1d3504fc 7523 set_domain_attribute(sd, attr);
d5a7430d 7524 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7525 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7526 sd->parent = p;
1a848870 7527 p->child = sd;
7c16ec58 7528 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7529#endif
7530 }
7531
7532#ifdef CONFIG_SCHED_SMT
7533 /* Set up CPU (sibling) groups */
363ab6f1 7534 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7535 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7536 SCHED_CPUMASK_VAR(send_covered, allmasks);
7537
7538 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7539 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7540 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7541 continue;
7542
dd41f596 7543 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7544 &cpu_to_cpu_group,
7545 send_covered, tmpmask);
1da177e4
LT
7546 }
7547#endif
7548
1e9f28fa
SS
7549#ifdef CONFIG_SCHED_MC
7550 /* Set up multi-core groups */
363ab6f1 7551 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7552 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7553 SCHED_CPUMASK_VAR(send_covered, allmasks);
7554
7555 *this_core_map = cpu_coregroup_map(i);
7556 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7557 if (i != first_cpu(*this_core_map))
1e9f28fa 7558 continue;
7c16ec58 7559
dd41f596 7560 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7561 &cpu_to_core_group,
7562 send_covered, tmpmask);
1e9f28fa
SS
7563 }
7564#endif
7565
1da177e4 7566 /* Set up physical groups */
076ac2af 7567 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7568 SCHED_CPUMASK_VAR(nodemask, allmasks);
7569 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7570
7c16ec58
MT
7571 *nodemask = node_to_cpumask(i);
7572 cpus_and(*nodemask, *nodemask, *cpu_map);
7573 if (cpus_empty(*nodemask))
1da177e4
LT
7574 continue;
7575
7c16ec58
MT
7576 init_sched_build_groups(nodemask, cpu_map,
7577 &cpu_to_phys_group,
7578 send_covered, tmpmask);
1da177e4
LT
7579 }
7580
7581#ifdef CONFIG_NUMA
7582 /* Set up node groups */
7c16ec58
MT
7583 if (sd_allnodes) {
7584 SCHED_CPUMASK_VAR(send_covered, allmasks);
7585
7586 init_sched_build_groups(cpu_map, cpu_map,
7587 &cpu_to_allnodes_group,
7588 send_covered, tmpmask);
7589 }
9c1cfda2 7590
076ac2af 7591 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7592 /* Set up node groups */
7593 struct sched_group *sg, *prev;
7c16ec58
MT
7594 SCHED_CPUMASK_VAR(nodemask, allmasks);
7595 SCHED_CPUMASK_VAR(domainspan, allmasks);
7596 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7597 int j;
7598
7c16ec58
MT
7599 *nodemask = node_to_cpumask(i);
7600 cpus_clear(*covered);
7601
7602 cpus_and(*nodemask, *nodemask, *cpu_map);
7603 if (cpus_empty(*nodemask)) {
d1b55138 7604 sched_group_nodes[i] = NULL;
9c1cfda2 7605 continue;
d1b55138 7606 }
9c1cfda2 7607
4bdbaad3 7608 sched_domain_node_span(i, domainspan);
7c16ec58 7609 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7610
15f0b676 7611 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7612 if (!sg) {
7613 printk(KERN_WARNING "Can not alloc domain group for "
7614 "node %d\n", i);
7615 goto error;
7616 }
9c1cfda2 7617 sched_group_nodes[i] = sg;
363ab6f1 7618 for_each_cpu_mask_nr(j, *nodemask) {
9c1cfda2 7619 struct sched_domain *sd;
9761eea8 7620
9c1cfda2
JH
7621 sd = &per_cpu(node_domains, j);
7622 sd->groups = sg;
9c1cfda2 7623 }
5517d86b 7624 sg->__cpu_power = 0;
7c16ec58 7625 sg->cpumask = *nodemask;
51888ca2 7626 sg->next = sg;
7c16ec58 7627 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7628 prev = sg;
7629
076ac2af 7630 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7631 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7632 int n = (i + j) % nr_node_ids;
c5f59f08 7633 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7634
7c16ec58
MT
7635 cpus_complement(*notcovered, *covered);
7636 cpus_and(*tmpmask, *notcovered, *cpu_map);
7637 cpus_and(*tmpmask, *tmpmask, *domainspan);
7638 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7639 break;
7640
7c16ec58
MT
7641 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7642 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7643 continue;
7644
15f0b676
SV
7645 sg = kmalloc_node(sizeof(struct sched_group),
7646 GFP_KERNEL, i);
9c1cfda2
JH
7647 if (!sg) {
7648 printk(KERN_WARNING
7649 "Can not alloc domain group for node %d\n", j);
51888ca2 7650 goto error;
9c1cfda2 7651 }
5517d86b 7652 sg->__cpu_power = 0;
7c16ec58 7653 sg->cpumask = *tmpmask;
51888ca2 7654 sg->next = prev->next;
7c16ec58 7655 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7656 prev->next = sg;
7657 prev = sg;
7658 }
9c1cfda2 7659 }
1da177e4
LT
7660#endif
7661
7662 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7663#ifdef CONFIG_SCHED_SMT
363ab6f1 7664 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7665 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7666
89c4710e 7667 init_sched_groups_power(i, sd);
5c45bf27 7668 }
1da177e4 7669#endif
1e9f28fa 7670#ifdef CONFIG_SCHED_MC
363ab6f1 7671 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7672 struct sched_domain *sd = &per_cpu(core_domains, i);
7673
89c4710e 7674 init_sched_groups_power(i, sd);
5c45bf27
SS
7675 }
7676#endif
1e9f28fa 7677
363ab6f1 7678 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7679 struct sched_domain *sd = &per_cpu(phys_domains, i);
7680
89c4710e 7681 init_sched_groups_power(i, sd);
1da177e4
LT
7682 }
7683
9c1cfda2 7684#ifdef CONFIG_NUMA
076ac2af 7685 for (i = 0; i < nr_node_ids; i++)
08069033 7686 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7687
6711cab4
SS
7688 if (sd_allnodes) {
7689 struct sched_group *sg;
f712c0c7 7690
7c16ec58
MT
7691 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7692 tmpmask);
f712c0c7
SS
7693 init_numa_sched_groups_power(sg);
7694 }
9c1cfda2
JH
7695#endif
7696
1da177e4 7697 /* Attach the domains */
363ab6f1 7698 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4
LT
7699 struct sched_domain *sd;
7700#ifdef CONFIG_SCHED_SMT
7701 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7702#elif defined(CONFIG_SCHED_MC)
7703 sd = &per_cpu(core_domains, i);
1da177e4
LT
7704#else
7705 sd = &per_cpu(phys_domains, i);
7706#endif
57d885fe 7707 cpu_attach_domain(sd, rd, i);
1da177e4 7708 }
51888ca2 7709
7c16ec58 7710 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7711 return 0;
7712
a616058b 7713#ifdef CONFIG_NUMA
51888ca2 7714error:
7c16ec58
MT
7715 free_sched_groups(cpu_map, tmpmask);
7716 SCHED_CPUMASK_FREE((void *)allmasks);
ca3273f9 7717 kfree(rd);
51888ca2 7718 return -ENOMEM;
a616058b 7719#endif
1da177e4 7720}
029190c5 7721
1d3504fc
HS
7722static int build_sched_domains(const cpumask_t *cpu_map)
7723{
7724 return __build_sched_domains(cpu_map, NULL);
7725}
7726
029190c5
PJ
7727static cpumask_t *doms_cur; /* current sched domains */
7728static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7729static struct sched_domain_attr *dattr_cur;
7730 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7731
7732/*
7733 * Special case: If a kmalloc of a doms_cur partition (array of
7734 * cpumask_t) fails, then fallback to a single sched domain,
7735 * as determined by the single cpumask_t fallback_doms.
7736 */
7737static cpumask_t fallback_doms;
7738
22e52b07
HC
7739void __attribute__((weak)) arch_update_cpu_topology(void)
7740{
7741}
7742
1a20ff27 7743/*
41a2d6cf 7744 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7745 * For now this just excludes isolated cpus, but could be used to
7746 * exclude other special cases in the future.
1a20ff27 7747 */
51888ca2 7748static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7749{
7378547f
MM
7750 int err;
7751
22e52b07 7752 arch_update_cpu_topology();
029190c5
PJ
7753 ndoms_cur = 1;
7754 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7755 if (!doms_cur)
7756 doms_cur = &fallback_doms;
7757 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7758 dattr_cur = NULL;
7378547f 7759 err = build_sched_domains(doms_cur);
6382bc90 7760 register_sched_domain_sysctl();
7378547f
MM
7761
7762 return err;
1a20ff27
DG
7763}
7764
7c16ec58
MT
7765static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7766 cpumask_t *tmpmask)
1da177e4 7767{
7c16ec58 7768 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7769}
1da177e4 7770
1a20ff27
DG
7771/*
7772 * Detach sched domains from a group of cpus specified in cpu_map
7773 * These cpus will now be attached to the NULL domain
7774 */
858119e1 7775static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7776{
7c16ec58 7777 cpumask_t tmpmask;
1a20ff27
DG
7778 int i;
7779
6382bc90
MM
7780 unregister_sched_domain_sysctl();
7781
363ab6f1 7782 for_each_cpu_mask_nr(i, *cpu_map)
57d885fe 7783 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7784 synchronize_sched();
7c16ec58 7785 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7786}
7787
1d3504fc
HS
7788/* handle null as "default" */
7789static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7790 struct sched_domain_attr *new, int idx_new)
7791{
7792 struct sched_domain_attr tmp;
7793
7794 /* fast path */
7795 if (!new && !cur)
7796 return 1;
7797
7798 tmp = SD_ATTR_INIT;
7799 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7800 new ? (new + idx_new) : &tmp,
7801 sizeof(struct sched_domain_attr));
7802}
7803
029190c5
PJ
7804/*
7805 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7806 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7807 * doms_new[] to the current sched domain partitioning, doms_cur[].
7808 * It destroys each deleted domain and builds each new domain.
7809 *
7810 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7811 * The masks don't intersect (don't overlap.) We should setup one
7812 * sched domain for each mask. CPUs not in any of the cpumasks will
7813 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7814 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7815 * it as it is.
7816 *
41a2d6cf
IM
7817 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7818 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7819 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7820 * ndoms_new == 1, and partition_sched_domains() will fallback to
7821 * the single partition 'fallback_doms', it also forces the domains
7822 * to be rebuilt.
029190c5 7823 *
700018e0
LZ
7824 * If doms_new == NULL it will be replaced with cpu_online_map.
7825 * ndoms_new == 0 is a special case for destroying existing domains,
7826 * and it will not create the default domain.
dfb512ec 7827 *
029190c5
PJ
7828 * Call with hotplug lock held
7829 */
1d3504fc
HS
7830void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7831 struct sched_domain_attr *dattr_new)
029190c5 7832{
dfb512ec 7833 int i, j, n;
029190c5 7834
712555ee 7835 mutex_lock(&sched_domains_mutex);
a1835615 7836
7378547f
MM
7837 /* always unregister in case we don't destroy any domains */
7838 unregister_sched_domain_sysctl();
7839
dfb512ec 7840 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7841
7842 /* Destroy deleted domains */
7843 for (i = 0; i < ndoms_cur; i++) {
dfb512ec 7844 for (j = 0; j < n; j++) {
1d3504fc
HS
7845 if (cpus_equal(doms_cur[i], doms_new[j])
7846 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7847 goto match1;
7848 }
7849 /* no match - a current sched domain not in new doms_new[] */
7850 detach_destroy_domains(doms_cur + i);
7851match1:
7852 ;
7853 }
7854
e761b772
MK
7855 if (doms_new == NULL) {
7856 ndoms_cur = 0;
e761b772
MK
7857 doms_new = &fallback_doms;
7858 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7859 dattr_new = NULL;
7860 }
7861
029190c5
PJ
7862 /* Build new domains */
7863 for (i = 0; i < ndoms_new; i++) {
7864 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7865 if (cpus_equal(doms_new[i], doms_cur[j])
7866 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7867 goto match2;
7868 }
7869 /* no match - add a new doms_new */
1d3504fc
HS
7870 __build_sched_domains(doms_new + i,
7871 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7872match2:
7873 ;
7874 }
7875
7876 /* Remember the new sched domains */
7877 if (doms_cur != &fallback_doms)
7878 kfree(doms_cur);
1d3504fc 7879 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7880 doms_cur = doms_new;
1d3504fc 7881 dattr_cur = dattr_new;
029190c5 7882 ndoms_cur = ndoms_new;
7378547f
MM
7883
7884 register_sched_domain_sysctl();
a1835615 7885
712555ee 7886 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7887}
7888
5c45bf27 7889#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7890int arch_reinit_sched_domains(void)
5c45bf27 7891{
95402b38 7892 get_online_cpus();
dfb512ec
MK
7893
7894 /* Destroy domains first to force the rebuild */
7895 partition_sched_domains(0, NULL, NULL);
7896
e761b772 7897 rebuild_sched_domains();
95402b38 7898 put_online_cpus();
dfb512ec 7899
e761b772 7900 return 0;
5c45bf27
SS
7901}
7902
7903static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7904{
7905 int ret;
7906
7907 if (buf[0] != '0' && buf[0] != '1')
7908 return -EINVAL;
7909
7910 if (smt)
7911 sched_smt_power_savings = (buf[0] == '1');
7912 else
7913 sched_mc_power_savings = (buf[0] == '1');
7914
7915 ret = arch_reinit_sched_domains();
7916
7917 return ret ? ret : count;
7918}
7919
5c45bf27 7920#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7921static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7922 char *page)
5c45bf27
SS
7923{
7924 return sprintf(page, "%u\n", sched_mc_power_savings);
7925}
f718cd4a 7926static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7927 const char *buf, size_t count)
5c45bf27
SS
7928{
7929 return sched_power_savings_store(buf, count, 0);
7930}
f718cd4a
AK
7931static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7932 sched_mc_power_savings_show,
7933 sched_mc_power_savings_store);
5c45bf27
SS
7934#endif
7935
7936#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7937static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7938 char *page)
5c45bf27
SS
7939{
7940 return sprintf(page, "%u\n", sched_smt_power_savings);
7941}
f718cd4a 7942static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7943 const char *buf, size_t count)
5c45bf27
SS
7944{
7945 return sched_power_savings_store(buf, count, 1);
7946}
f718cd4a
AK
7947static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7948 sched_smt_power_savings_show,
6707de00
AB
7949 sched_smt_power_savings_store);
7950#endif
7951
7952int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7953{
7954 int err = 0;
7955
7956#ifdef CONFIG_SCHED_SMT
7957 if (smt_capable())
7958 err = sysfs_create_file(&cls->kset.kobj,
7959 &attr_sched_smt_power_savings.attr);
7960#endif
7961#ifdef CONFIG_SCHED_MC
7962 if (!err && mc_capable())
7963 err = sysfs_create_file(&cls->kset.kobj,
7964 &attr_sched_mc_power_savings.attr);
7965#endif
7966 return err;
7967}
6d6bc0ad 7968#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7969
e761b772 7970#ifndef CONFIG_CPUSETS
1da177e4 7971/*
e761b772
MK
7972 * Add online and remove offline CPUs from the scheduler domains.
7973 * When cpusets are enabled they take over this function.
1da177e4
LT
7974 */
7975static int update_sched_domains(struct notifier_block *nfb,
7976 unsigned long action, void *hcpu)
e761b772
MK
7977{
7978 switch (action) {
7979 case CPU_ONLINE:
7980 case CPU_ONLINE_FROZEN:
7981 case CPU_DEAD:
7982 case CPU_DEAD_FROZEN:
dfb512ec 7983 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7984 return NOTIFY_OK;
7985
7986 default:
7987 return NOTIFY_DONE;
7988 }
7989}
7990#endif
7991
7992static int update_runtime(struct notifier_block *nfb,
7993 unsigned long action, void *hcpu)
1da177e4 7994{
7def2be1
PZ
7995 int cpu = (int)(long)hcpu;
7996
1da177e4 7997 switch (action) {
1da177e4 7998 case CPU_DOWN_PREPARE:
8bb78442 7999 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8000 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8001 return NOTIFY_OK;
8002
1da177e4 8003 case CPU_DOWN_FAILED:
8bb78442 8004 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8005 case CPU_ONLINE:
8bb78442 8006 case CPU_ONLINE_FROZEN:
7def2be1 8007 enable_runtime(cpu_rq(cpu));
e761b772
MK
8008 return NOTIFY_OK;
8009
1da177e4
LT
8010 default:
8011 return NOTIFY_DONE;
8012 }
1da177e4 8013}
1da177e4
LT
8014
8015void __init sched_init_smp(void)
8016{
5c1e1767
NP
8017 cpumask_t non_isolated_cpus;
8018
434d53b0
MT
8019#if defined(CONFIG_NUMA)
8020 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8021 GFP_KERNEL);
8022 BUG_ON(sched_group_nodes_bycpu == NULL);
8023#endif
95402b38 8024 get_online_cpus();
712555ee 8025 mutex_lock(&sched_domains_mutex);
1a20ff27 8026 arch_init_sched_domains(&cpu_online_map);
e5e5673f 8027 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
8028 if (cpus_empty(non_isolated_cpus))
8029 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 8030 mutex_unlock(&sched_domains_mutex);
95402b38 8031 put_online_cpus();
e761b772
MK
8032
8033#ifndef CONFIG_CPUSETS
1da177e4
LT
8034 /* XXX: Theoretical race here - CPU may be hotplugged now */
8035 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8036#endif
8037
8038 /* RT runtime code needs to handle some hotplug events */
8039 hotcpu_notifier(update_runtime, 0);
8040
b328ca18 8041 init_hrtick();
5c1e1767
NP
8042
8043 /* Move init over to a non-isolated CPU */
7c16ec58 8044 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 8045 BUG();
19978ca6 8046 sched_init_granularity();
1da177e4
LT
8047}
8048#else
8049void __init sched_init_smp(void)
8050{
19978ca6 8051 sched_init_granularity();
1da177e4
LT
8052}
8053#endif /* CONFIG_SMP */
8054
8055int in_sched_functions(unsigned long addr)
8056{
1da177e4
LT
8057 return in_lock_functions(addr) ||
8058 (addr >= (unsigned long)__sched_text_start
8059 && addr < (unsigned long)__sched_text_end);
8060}
8061
a9957449 8062static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8063{
8064 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8065 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8066#ifdef CONFIG_FAIR_GROUP_SCHED
8067 cfs_rq->rq = rq;
8068#endif
67e9fb2a 8069 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8070}
8071
fa85ae24
PZ
8072static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8073{
8074 struct rt_prio_array *array;
8075 int i;
8076
8077 array = &rt_rq->active;
8078 for (i = 0; i < MAX_RT_PRIO; i++) {
8079 INIT_LIST_HEAD(array->queue + i);
8080 __clear_bit(i, array->bitmap);
8081 }
8082 /* delimiter for bitsearch: */
8083 __set_bit(MAX_RT_PRIO, array->bitmap);
8084
052f1dc7 8085#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8086 rt_rq->highest_prio = MAX_RT_PRIO;
8087#endif
fa85ae24
PZ
8088#ifdef CONFIG_SMP
8089 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8090 rt_rq->overloaded = 0;
8091#endif
8092
8093 rt_rq->rt_time = 0;
8094 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8095 rt_rq->rt_runtime = 0;
8096 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8097
052f1dc7 8098#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8099 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8100 rt_rq->rq = rq;
8101#endif
fa85ae24
PZ
8102}
8103
6f505b16 8104#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8105static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8106 struct sched_entity *se, int cpu, int add,
8107 struct sched_entity *parent)
6f505b16 8108{
ec7dc8ac 8109 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8110 tg->cfs_rq[cpu] = cfs_rq;
8111 init_cfs_rq(cfs_rq, rq);
8112 cfs_rq->tg = tg;
8113 if (add)
8114 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8115
8116 tg->se[cpu] = se;
354d60c2
DG
8117 /* se could be NULL for init_task_group */
8118 if (!se)
8119 return;
8120
ec7dc8ac
DG
8121 if (!parent)
8122 se->cfs_rq = &rq->cfs;
8123 else
8124 se->cfs_rq = parent->my_q;
8125
6f505b16
PZ
8126 se->my_q = cfs_rq;
8127 se->load.weight = tg->shares;
e05510d0 8128 se->load.inv_weight = 0;
ec7dc8ac 8129 se->parent = parent;
6f505b16 8130}
052f1dc7 8131#endif
6f505b16 8132
052f1dc7 8133#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8134static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8135 struct sched_rt_entity *rt_se, int cpu, int add,
8136 struct sched_rt_entity *parent)
6f505b16 8137{
ec7dc8ac
DG
8138 struct rq *rq = cpu_rq(cpu);
8139
6f505b16
PZ
8140 tg->rt_rq[cpu] = rt_rq;
8141 init_rt_rq(rt_rq, rq);
8142 rt_rq->tg = tg;
8143 rt_rq->rt_se = rt_se;
ac086bc2 8144 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8145 if (add)
8146 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8147
8148 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8149 if (!rt_se)
8150 return;
8151
ec7dc8ac
DG
8152 if (!parent)
8153 rt_se->rt_rq = &rq->rt;
8154 else
8155 rt_se->rt_rq = parent->my_q;
8156
6f505b16 8157 rt_se->my_q = rt_rq;
ec7dc8ac 8158 rt_se->parent = parent;
6f505b16
PZ
8159 INIT_LIST_HEAD(&rt_se->run_list);
8160}
8161#endif
8162
1da177e4
LT
8163void __init sched_init(void)
8164{
dd41f596 8165 int i, j;
434d53b0
MT
8166 unsigned long alloc_size = 0, ptr;
8167
8168#ifdef CONFIG_FAIR_GROUP_SCHED
8169 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8170#endif
8171#ifdef CONFIG_RT_GROUP_SCHED
8172 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8173#endif
8174#ifdef CONFIG_USER_SCHED
8175 alloc_size *= 2;
434d53b0
MT
8176#endif
8177 /*
8178 * As sched_init() is called before page_alloc is setup,
8179 * we use alloc_bootmem().
8180 */
8181 if (alloc_size) {
5a9d3225 8182 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8183
8184#ifdef CONFIG_FAIR_GROUP_SCHED
8185 init_task_group.se = (struct sched_entity **)ptr;
8186 ptr += nr_cpu_ids * sizeof(void **);
8187
8188 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8189 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8190
8191#ifdef CONFIG_USER_SCHED
8192 root_task_group.se = (struct sched_entity **)ptr;
8193 ptr += nr_cpu_ids * sizeof(void **);
8194
8195 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8196 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8197#endif /* CONFIG_USER_SCHED */
8198#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8199#ifdef CONFIG_RT_GROUP_SCHED
8200 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8201 ptr += nr_cpu_ids * sizeof(void **);
8202
8203 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8204 ptr += nr_cpu_ids * sizeof(void **);
8205
8206#ifdef CONFIG_USER_SCHED
8207 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8208 ptr += nr_cpu_ids * sizeof(void **);
8209
8210 root_task_group.rt_rq = (struct rt_rq **)ptr;
8211 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8212#endif /* CONFIG_USER_SCHED */
8213#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8214 }
dd41f596 8215
57d885fe
GH
8216#ifdef CONFIG_SMP
8217 init_defrootdomain();
8218#endif
8219
d0b27fa7
PZ
8220 init_rt_bandwidth(&def_rt_bandwidth,
8221 global_rt_period(), global_rt_runtime());
8222
8223#ifdef CONFIG_RT_GROUP_SCHED
8224 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8225 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8226#ifdef CONFIG_USER_SCHED
8227 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8228 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8229#endif /* CONFIG_USER_SCHED */
8230#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8231
052f1dc7 8232#ifdef CONFIG_GROUP_SCHED
6f505b16 8233 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8234 INIT_LIST_HEAD(&init_task_group.children);
8235
8236#ifdef CONFIG_USER_SCHED
8237 INIT_LIST_HEAD(&root_task_group.children);
8238 init_task_group.parent = &root_task_group;
8239 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8240#endif /* CONFIG_USER_SCHED */
8241#endif /* CONFIG_GROUP_SCHED */
6f505b16 8242
0a945022 8243 for_each_possible_cpu(i) {
70b97a7f 8244 struct rq *rq;
1da177e4
LT
8245
8246 rq = cpu_rq(i);
8247 spin_lock_init(&rq->lock);
7897986b 8248 rq->nr_running = 0;
dd41f596 8249 init_cfs_rq(&rq->cfs, rq);
6f505b16 8250 init_rt_rq(&rq->rt, rq);
dd41f596 8251#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8252 init_task_group.shares = init_task_group_load;
6f505b16 8253 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8254#ifdef CONFIG_CGROUP_SCHED
8255 /*
8256 * How much cpu bandwidth does init_task_group get?
8257 *
8258 * In case of task-groups formed thr' the cgroup filesystem, it
8259 * gets 100% of the cpu resources in the system. This overall
8260 * system cpu resource is divided among the tasks of
8261 * init_task_group and its child task-groups in a fair manner,
8262 * based on each entity's (task or task-group's) weight
8263 * (se->load.weight).
8264 *
8265 * In other words, if init_task_group has 10 tasks of weight
8266 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8267 * then A0's share of the cpu resource is:
8268 *
8269 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8270 *
8271 * We achieve this by letting init_task_group's tasks sit
8272 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8273 */
ec7dc8ac 8274 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8275#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8276 root_task_group.shares = NICE_0_LOAD;
8277 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8278 /*
8279 * In case of task-groups formed thr' the user id of tasks,
8280 * init_task_group represents tasks belonging to root user.
8281 * Hence it forms a sibling of all subsequent groups formed.
8282 * In this case, init_task_group gets only a fraction of overall
8283 * system cpu resource, based on the weight assigned to root
8284 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8285 * by letting tasks of init_task_group sit in a separate cfs_rq
8286 * (init_cfs_rq) and having one entity represent this group of
8287 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8288 */
ec7dc8ac 8289 init_tg_cfs_entry(&init_task_group,
6f505b16 8290 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8291 &per_cpu(init_sched_entity, i), i, 1,
8292 root_task_group.se[i]);
6f505b16 8293
052f1dc7 8294#endif
354d60c2
DG
8295#endif /* CONFIG_FAIR_GROUP_SCHED */
8296
8297 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8298#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8299 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8300#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8301 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8302#elif defined CONFIG_USER_SCHED
eff766a6 8303 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8304 init_tg_rt_entry(&init_task_group,
6f505b16 8305 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8306 &per_cpu(init_sched_rt_entity, i), i, 1,
8307 root_task_group.rt_se[i]);
354d60c2 8308#endif
dd41f596 8309#endif
1da177e4 8310
dd41f596
IM
8311 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8312 rq->cpu_load[j] = 0;
1da177e4 8313#ifdef CONFIG_SMP
41c7ce9a 8314 rq->sd = NULL;
57d885fe 8315 rq->rd = NULL;
1da177e4 8316 rq->active_balance = 0;
dd41f596 8317 rq->next_balance = jiffies;
1da177e4 8318 rq->push_cpu = 0;
0a2966b4 8319 rq->cpu = i;
1f11eb6a 8320 rq->online = 0;
1da177e4
LT
8321 rq->migration_thread = NULL;
8322 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8323 rq_attach_root(rq, &def_root_domain);
1da177e4 8324#endif
8f4d37ec 8325 init_rq_hrtick(rq);
1da177e4 8326 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8327 }
8328
2dd73a4f 8329 set_load_weight(&init_task);
b50f60ce 8330
e107be36
AK
8331#ifdef CONFIG_PREEMPT_NOTIFIERS
8332 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8333#endif
8334
c9819f45 8335#ifdef CONFIG_SMP
962cf36c 8336 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8337#endif
8338
b50f60ce
HC
8339#ifdef CONFIG_RT_MUTEXES
8340 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8341#endif
8342
1da177e4
LT
8343 /*
8344 * The boot idle thread does lazy MMU switching as well:
8345 */
8346 atomic_inc(&init_mm.mm_count);
8347 enter_lazy_tlb(&init_mm, current);
8348
8349 /*
8350 * Make us the idle thread. Technically, schedule() should not be
8351 * called from this thread, however somewhere below it might be,
8352 * but because we are the idle thread, we just pick up running again
8353 * when this runqueue becomes "idle".
8354 */
8355 init_idle(current, smp_processor_id());
dd41f596
IM
8356 /*
8357 * During early bootup we pretend to be a normal task:
8358 */
8359 current->sched_class = &fair_sched_class;
6892b75e
IM
8360
8361 scheduler_running = 1;
1da177e4
LT
8362}
8363
8364#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8365void __might_sleep(char *file, int line)
8366{
48f24c4d 8367#ifdef in_atomic
1da177e4
LT
8368 static unsigned long prev_jiffy; /* ratelimiting */
8369
aef745fc
IM
8370 if ((!in_atomic() && !irqs_disabled()) ||
8371 system_state != SYSTEM_RUNNING || oops_in_progress)
8372 return;
8373 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8374 return;
8375 prev_jiffy = jiffies;
8376
8377 printk(KERN_ERR
8378 "BUG: sleeping function called from invalid context at %s:%d\n",
8379 file, line);
8380 printk(KERN_ERR
8381 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8382 in_atomic(), irqs_disabled(),
8383 current->pid, current->comm);
8384
8385 debug_show_held_locks(current);
8386 if (irqs_disabled())
8387 print_irqtrace_events(current);
8388 dump_stack();
1da177e4
LT
8389#endif
8390}
8391EXPORT_SYMBOL(__might_sleep);
8392#endif
8393
8394#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8395static void normalize_task(struct rq *rq, struct task_struct *p)
8396{
8397 int on_rq;
3e51f33f 8398
3a5e4dc1
AK
8399 update_rq_clock(rq);
8400 on_rq = p->se.on_rq;
8401 if (on_rq)
8402 deactivate_task(rq, p, 0);
8403 __setscheduler(rq, p, SCHED_NORMAL, 0);
8404 if (on_rq) {
8405 activate_task(rq, p, 0);
8406 resched_task(rq->curr);
8407 }
8408}
8409
1da177e4
LT
8410void normalize_rt_tasks(void)
8411{
a0f98a1c 8412 struct task_struct *g, *p;
1da177e4 8413 unsigned long flags;
70b97a7f 8414 struct rq *rq;
1da177e4 8415
4cf5d77a 8416 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8417 do_each_thread(g, p) {
178be793
IM
8418 /*
8419 * Only normalize user tasks:
8420 */
8421 if (!p->mm)
8422 continue;
8423
6cfb0d5d 8424 p->se.exec_start = 0;
6cfb0d5d 8425#ifdef CONFIG_SCHEDSTATS
dd41f596 8426 p->se.wait_start = 0;
dd41f596 8427 p->se.sleep_start = 0;
dd41f596 8428 p->se.block_start = 0;
6cfb0d5d 8429#endif
dd41f596
IM
8430
8431 if (!rt_task(p)) {
8432 /*
8433 * Renice negative nice level userspace
8434 * tasks back to 0:
8435 */
8436 if (TASK_NICE(p) < 0 && p->mm)
8437 set_user_nice(p, 0);
1da177e4 8438 continue;
dd41f596 8439 }
1da177e4 8440
4cf5d77a 8441 spin_lock(&p->pi_lock);
b29739f9 8442 rq = __task_rq_lock(p);
1da177e4 8443
178be793 8444 normalize_task(rq, p);
3a5e4dc1 8445
b29739f9 8446 __task_rq_unlock(rq);
4cf5d77a 8447 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8448 } while_each_thread(g, p);
8449
4cf5d77a 8450 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8451}
8452
8453#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8454
8455#ifdef CONFIG_IA64
8456/*
8457 * These functions are only useful for the IA64 MCA handling.
8458 *
8459 * They can only be called when the whole system has been
8460 * stopped - every CPU needs to be quiescent, and no scheduling
8461 * activity can take place. Using them for anything else would
8462 * be a serious bug, and as a result, they aren't even visible
8463 * under any other configuration.
8464 */
8465
8466/**
8467 * curr_task - return the current task for a given cpu.
8468 * @cpu: the processor in question.
8469 *
8470 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8471 */
36c8b586 8472struct task_struct *curr_task(int cpu)
1df5c10a
LT
8473{
8474 return cpu_curr(cpu);
8475}
8476
8477/**
8478 * set_curr_task - set the current task for a given cpu.
8479 * @cpu: the processor in question.
8480 * @p: the task pointer to set.
8481 *
8482 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8483 * are serviced on a separate stack. It allows the architecture to switch the
8484 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8485 * must be called with all CPU's synchronized, and interrupts disabled, the
8486 * and caller must save the original value of the current task (see
8487 * curr_task() above) and restore that value before reenabling interrupts and
8488 * re-starting the system.
8489 *
8490 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8491 */
36c8b586 8492void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8493{
8494 cpu_curr(cpu) = p;
8495}
8496
8497#endif
29f59db3 8498
bccbe08a
PZ
8499#ifdef CONFIG_FAIR_GROUP_SCHED
8500static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8501{
8502 int i;
8503
8504 for_each_possible_cpu(i) {
8505 if (tg->cfs_rq)
8506 kfree(tg->cfs_rq[i]);
8507 if (tg->se)
8508 kfree(tg->se[i]);
6f505b16
PZ
8509 }
8510
8511 kfree(tg->cfs_rq);
8512 kfree(tg->se);
6f505b16
PZ
8513}
8514
ec7dc8ac
DG
8515static
8516int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8517{
29f59db3 8518 struct cfs_rq *cfs_rq;
ec7dc8ac 8519 struct sched_entity *se, *parent_se;
9b5b7751 8520 struct rq *rq;
29f59db3
SV
8521 int i;
8522
434d53b0 8523 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8524 if (!tg->cfs_rq)
8525 goto err;
434d53b0 8526 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8527 if (!tg->se)
8528 goto err;
052f1dc7
PZ
8529
8530 tg->shares = NICE_0_LOAD;
29f59db3
SV
8531
8532 for_each_possible_cpu(i) {
9b5b7751 8533 rq = cpu_rq(i);
29f59db3 8534
6f505b16
PZ
8535 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8536 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8537 if (!cfs_rq)
8538 goto err;
8539
6f505b16
PZ
8540 se = kmalloc_node(sizeof(struct sched_entity),
8541 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8542 if (!se)
8543 goto err;
8544
ec7dc8ac
DG
8545 parent_se = parent ? parent->se[i] : NULL;
8546 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8547 }
8548
8549 return 1;
8550
8551 err:
8552 return 0;
8553}
8554
8555static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8556{
8557 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8558 &cpu_rq(cpu)->leaf_cfs_rq_list);
8559}
8560
8561static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8562{
8563 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8564}
6d6bc0ad 8565#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8566static inline void free_fair_sched_group(struct task_group *tg)
8567{
8568}
8569
ec7dc8ac
DG
8570static inline
8571int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8572{
8573 return 1;
8574}
8575
8576static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8577{
8578}
8579
8580static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8581{
8582}
6d6bc0ad 8583#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8584
8585#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8586static void free_rt_sched_group(struct task_group *tg)
8587{
8588 int i;
8589
d0b27fa7
PZ
8590 destroy_rt_bandwidth(&tg->rt_bandwidth);
8591
bccbe08a
PZ
8592 for_each_possible_cpu(i) {
8593 if (tg->rt_rq)
8594 kfree(tg->rt_rq[i]);
8595 if (tg->rt_se)
8596 kfree(tg->rt_se[i]);
8597 }
8598
8599 kfree(tg->rt_rq);
8600 kfree(tg->rt_se);
8601}
8602
ec7dc8ac
DG
8603static
8604int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8605{
8606 struct rt_rq *rt_rq;
ec7dc8ac 8607 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8608 struct rq *rq;
8609 int i;
8610
434d53b0 8611 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8612 if (!tg->rt_rq)
8613 goto err;
434d53b0 8614 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8615 if (!tg->rt_se)
8616 goto err;
8617
d0b27fa7
PZ
8618 init_rt_bandwidth(&tg->rt_bandwidth,
8619 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8620
8621 for_each_possible_cpu(i) {
8622 rq = cpu_rq(i);
8623
6f505b16
PZ
8624 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8625 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8626 if (!rt_rq)
8627 goto err;
29f59db3 8628
6f505b16
PZ
8629 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8630 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8631 if (!rt_se)
8632 goto err;
29f59db3 8633
ec7dc8ac
DG
8634 parent_se = parent ? parent->rt_se[i] : NULL;
8635 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8636 }
8637
bccbe08a
PZ
8638 return 1;
8639
8640 err:
8641 return 0;
8642}
8643
8644static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8645{
8646 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8647 &cpu_rq(cpu)->leaf_rt_rq_list);
8648}
8649
8650static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8651{
8652 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8653}
6d6bc0ad 8654#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8655static inline void free_rt_sched_group(struct task_group *tg)
8656{
8657}
8658
ec7dc8ac
DG
8659static inline
8660int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8661{
8662 return 1;
8663}
8664
8665static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8666{
8667}
8668
8669static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8670{
8671}
6d6bc0ad 8672#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8673
d0b27fa7 8674#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8675static void free_sched_group(struct task_group *tg)
8676{
8677 free_fair_sched_group(tg);
8678 free_rt_sched_group(tg);
8679 kfree(tg);
8680}
8681
8682/* allocate runqueue etc for a new task group */
ec7dc8ac 8683struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8684{
8685 struct task_group *tg;
8686 unsigned long flags;
8687 int i;
8688
8689 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8690 if (!tg)
8691 return ERR_PTR(-ENOMEM);
8692
ec7dc8ac 8693 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8694 goto err;
8695
ec7dc8ac 8696 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8697 goto err;
8698
8ed36996 8699 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8700 for_each_possible_cpu(i) {
bccbe08a
PZ
8701 register_fair_sched_group(tg, i);
8702 register_rt_sched_group(tg, i);
9b5b7751 8703 }
6f505b16 8704 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8705
8706 WARN_ON(!parent); /* root should already exist */
8707
8708 tg->parent = parent;
f473aa5e 8709 INIT_LIST_HEAD(&tg->children);
09f2724a 8710 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8711 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8712
9b5b7751 8713 return tg;
29f59db3
SV
8714
8715err:
6f505b16 8716 free_sched_group(tg);
29f59db3
SV
8717 return ERR_PTR(-ENOMEM);
8718}
8719
9b5b7751 8720/* rcu callback to free various structures associated with a task group */
6f505b16 8721static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8722{
29f59db3 8723 /* now it should be safe to free those cfs_rqs */
6f505b16 8724 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8725}
8726
9b5b7751 8727/* Destroy runqueue etc associated with a task group */
4cf86d77 8728void sched_destroy_group(struct task_group *tg)
29f59db3 8729{
8ed36996 8730 unsigned long flags;
9b5b7751 8731 int i;
29f59db3 8732
8ed36996 8733 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8734 for_each_possible_cpu(i) {
bccbe08a
PZ
8735 unregister_fair_sched_group(tg, i);
8736 unregister_rt_sched_group(tg, i);
9b5b7751 8737 }
6f505b16 8738 list_del_rcu(&tg->list);
f473aa5e 8739 list_del_rcu(&tg->siblings);
8ed36996 8740 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8741
9b5b7751 8742 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8743 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8744}
8745
9b5b7751 8746/* change task's runqueue when it moves between groups.
3a252015
IM
8747 * The caller of this function should have put the task in its new group
8748 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8749 * reflect its new group.
9b5b7751
SV
8750 */
8751void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8752{
8753 int on_rq, running;
8754 unsigned long flags;
8755 struct rq *rq;
8756
8757 rq = task_rq_lock(tsk, &flags);
8758
29f59db3
SV
8759 update_rq_clock(rq);
8760
051a1d1a 8761 running = task_current(rq, tsk);
29f59db3
SV
8762 on_rq = tsk->se.on_rq;
8763
0e1f3483 8764 if (on_rq)
29f59db3 8765 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8766 if (unlikely(running))
8767 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8768
6f505b16 8769 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8770
810b3817
PZ
8771#ifdef CONFIG_FAIR_GROUP_SCHED
8772 if (tsk->sched_class->moved_group)
8773 tsk->sched_class->moved_group(tsk);
8774#endif
8775
0e1f3483
HS
8776 if (unlikely(running))
8777 tsk->sched_class->set_curr_task(rq);
8778 if (on_rq)
7074badb 8779 enqueue_task(rq, tsk, 0);
29f59db3 8780
29f59db3
SV
8781 task_rq_unlock(rq, &flags);
8782}
6d6bc0ad 8783#endif /* CONFIG_GROUP_SCHED */
29f59db3 8784
052f1dc7 8785#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8786static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8787{
8788 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8789 int on_rq;
8790
29f59db3 8791 on_rq = se->on_rq;
62fb1851 8792 if (on_rq)
29f59db3
SV
8793 dequeue_entity(cfs_rq, se, 0);
8794
8795 se->load.weight = shares;
e05510d0 8796 se->load.inv_weight = 0;
29f59db3 8797
62fb1851 8798 if (on_rq)
29f59db3 8799 enqueue_entity(cfs_rq, se, 0);
c09595f6 8800}
62fb1851 8801
c09595f6
PZ
8802static void set_se_shares(struct sched_entity *se, unsigned long shares)
8803{
8804 struct cfs_rq *cfs_rq = se->cfs_rq;
8805 struct rq *rq = cfs_rq->rq;
8806 unsigned long flags;
8807
8808 spin_lock_irqsave(&rq->lock, flags);
8809 __set_se_shares(se, shares);
8810 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8811}
8812
8ed36996
PZ
8813static DEFINE_MUTEX(shares_mutex);
8814
4cf86d77 8815int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8816{
8817 int i;
8ed36996 8818 unsigned long flags;
c61935fd 8819
ec7dc8ac
DG
8820 /*
8821 * We can't change the weight of the root cgroup.
8822 */
8823 if (!tg->se[0])
8824 return -EINVAL;
8825
18d95a28
PZ
8826 if (shares < MIN_SHARES)
8827 shares = MIN_SHARES;
cb4ad1ff
MX
8828 else if (shares > MAX_SHARES)
8829 shares = MAX_SHARES;
62fb1851 8830
8ed36996 8831 mutex_lock(&shares_mutex);
9b5b7751 8832 if (tg->shares == shares)
5cb350ba 8833 goto done;
29f59db3 8834
8ed36996 8835 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8836 for_each_possible_cpu(i)
8837 unregister_fair_sched_group(tg, i);
f473aa5e 8838 list_del_rcu(&tg->siblings);
8ed36996 8839 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8840
8841 /* wait for any ongoing reference to this group to finish */
8842 synchronize_sched();
8843
8844 /*
8845 * Now we are free to modify the group's share on each cpu
8846 * w/o tripping rebalance_share or load_balance_fair.
8847 */
9b5b7751 8848 tg->shares = shares;
c09595f6
PZ
8849 for_each_possible_cpu(i) {
8850 /*
8851 * force a rebalance
8852 */
8853 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8854 set_se_shares(tg->se[i], shares);
c09595f6 8855 }
29f59db3 8856
6b2d7700
SV
8857 /*
8858 * Enable load balance activity on this group, by inserting it back on
8859 * each cpu's rq->leaf_cfs_rq_list.
8860 */
8ed36996 8861 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8862 for_each_possible_cpu(i)
8863 register_fair_sched_group(tg, i);
f473aa5e 8864 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8865 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8866done:
8ed36996 8867 mutex_unlock(&shares_mutex);
9b5b7751 8868 return 0;
29f59db3
SV
8869}
8870
5cb350ba
DG
8871unsigned long sched_group_shares(struct task_group *tg)
8872{
8873 return tg->shares;
8874}
052f1dc7 8875#endif
5cb350ba 8876
052f1dc7 8877#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8878/*
9f0c1e56 8879 * Ensure that the real time constraints are schedulable.
6f505b16 8880 */
9f0c1e56
PZ
8881static DEFINE_MUTEX(rt_constraints_mutex);
8882
8883static unsigned long to_ratio(u64 period, u64 runtime)
8884{
8885 if (runtime == RUNTIME_INF)
9a7e0b18 8886 return 1ULL << 20;
9f0c1e56 8887
9a7e0b18 8888 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8889}
8890
9a7e0b18
PZ
8891/* Must be called with tasklist_lock held */
8892static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8893{
9a7e0b18 8894 struct task_struct *g, *p;
b40b2e8e 8895
9a7e0b18
PZ
8896 do_each_thread(g, p) {
8897 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8898 return 1;
8899 } while_each_thread(g, p);
b40b2e8e 8900
9a7e0b18
PZ
8901 return 0;
8902}
b40b2e8e 8903
9a7e0b18
PZ
8904struct rt_schedulable_data {
8905 struct task_group *tg;
8906 u64 rt_period;
8907 u64 rt_runtime;
8908};
b40b2e8e 8909
9a7e0b18
PZ
8910static int tg_schedulable(struct task_group *tg, void *data)
8911{
8912 struct rt_schedulable_data *d = data;
8913 struct task_group *child;
8914 unsigned long total, sum = 0;
8915 u64 period, runtime;
b40b2e8e 8916
9a7e0b18
PZ
8917 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8918 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8919
9a7e0b18
PZ
8920 if (tg == d->tg) {
8921 period = d->rt_period;
8922 runtime = d->rt_runtime;
b40b2e8e 8923 }
b40b2e8e 8924
4653f803
PZ
8925 /*
8926 * Cannot have more runtime than the period.
8927 */
8928 if (runtime > period && runtime != RUNTIME_INF)
8929 return -EINVAL;
6f505b16 8930
4653f803
PZ
8931 /*
8932 * Ensure we don't starve existing RT tasks.
8933 */
9a7e0b18
PZ
8934 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8935 return -EBUSY;
6f505b16 8936
9a7e0b18 8937 total = to_ratio(period, runtime);
6f505b16 8938
4653f803
PZ
8939 /*
8940 * Nobody can have more than the global setting allows.
8941 */
8942 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8943 return -EINVAL;
6f505b16 8944
4653f803
PZ
8945 /*
8946 * The sum of our children's runtime should not exceed our own.
8947 */
9a7e0b18
PZ
8948 list_for_each_entry_rcu(child, &tg->children, siblings) {
8949 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8950 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8951
9a7e0b18
PZ
8952 if (child == d->tg) {
8953 period = d->rt_period;
8954 runtime = d->rt_runtime;
8955 }
6f505b16 8956
9a7e0b18 8957 sum += to_ratio(period, runtime);
9f0c1e56 8958 }
6f505b16 8959
9a7e0b18
PZ
8960 if (sum > total)
8961 return -EINVAL;
8962
8963 return 0;
6f505b16
PZ
8964}
8965
9a7e0b18 8966static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8967{
9a7e0b18
PZ
8968 struct rt_schedulable_data data = {
8969 .tg = tg,
8970 .rt_period = period,
8971 .rt_runtime = runtime,
8972 };
8973
8974 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8975}
8976
d0b27fa7
PZ
8977static int tg_set_bandwidth(struct task_group *tg,
8978 u64 rt_period, u64 rt_runtime)
6f505b16 8979{
ac086bc2 8980 int i, err = 0;
9f0c1e56 8981
9f0c1e56 8982 mutex_lock(&rt_constraints_mutex);
521f1a24 8983 read_lock(&tasklist_lock);
9a7e0b18
PZ
8984 err = __rt_schedulable(tg, rt_period, rt_runtime);
8985 if (err)
9f0c1e56 8986 goto unlock;
ac086bc2
PZ
8987
8988 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8989 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8990 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8991
8992 for_each_possible_cpu(i) {
8993 struct rt_rq *rt_rq = tg->rt_rq[i];
8994
8995 spin_lock(&rt_rq->rt_runtime_lock);
8996 rt_rq->rt_runtime = rt_runtime;
8997 spin_unlock(&rt_rq->rt_runtime_lock);
8998 }
8999 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9000 unlock:
521f1a24 9001 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9002 mutex_unlock(&rt_constraints_mutex);
9003
9004 return err;
6f505b16
PZ
9005}
9006
d0b27fa7
PZ
9007int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9008{
9009 u64 rt_runtime, rt_period;
9010
9011 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9012 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9013 if (rt_runtime_us < 0)
9014 rt_runtime = RUNTIME_INF;
9015
9016 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9017}
9018
9f0c1e56
PZ
9019long sched_group_rt_runtime(struct task_group *tg)
9020{
9021 u64 rt_runtime_us;
9022
d0b27fa7 9023 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9024 return -1;
9025
d0b27fa7 9026 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9027 do_div(rt_runtime_us, NSEC_PER_USEC);
9028 return rt_runtime_us;
9029}
d0b27fa7
PZ
9030
9031int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9032{
9033 u64 rt_runtime, rt_period;
9034
9035 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9036 rt_runtime = tg->rt_bandwidth.rt_runtime;
9037
619b0488
R
9038 if (rt_period == 0)
9039 return -EINVAL;
9040
d0b27fa7
PZ
9041 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9042}
9043
9044long sched_group_rt_period(struct task_group *tg)
9045{
9046 u64 rt_period_us;
9047
9048 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9049 do_div(rt_period_us, NSEC_PER_USEC);
9050 return rt_period_us;
9051}
9052
9053static int sched_rt_global_constraints(void)
9054{
4653f803 9055 u64 runtime, period;
d0b27fa7
PZ
9056 int ret = 0;
9057
ec5d4989
HS
9058 if (sysctl_sched_rt_period <= 0)
9059 return -EINVAL;
9060
4653f803
PZ
9061 runtime = global_rt_runtime();
9062 period = global_rt_period();
9063
9064 /*
9065 * Sanity check on the sysctl variables.
9066 */
9067 if (runtime > period && runtime != RUNTIME_INF)
9068 return -EINVAL;
10b612f4 9069
d0b27fa7 9070 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9071 read_lock(&tasklist_lock);
4653f803 9072 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9073 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9074 mutex_unlock(&rt_constraints_mutex);
9075
9076 return ret;
9077}
6d6bc0ad 9078#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9079static int sched_rt_global_constraints(void)
9080{
ac086bc2
PZ
9081 unsigned long flags;
9082 int i;
9083
ec5d4989
HS
9084 if (sysctl_sched_rt_period <= 0)
9085 return -EINVAL;
9086
ac086bc2
PZ
9087 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9088 for_each_possible_cpu(i) {
9089 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9090
9091 spin_lock(&rt_rq->rt_runtime_lock);
9092 rt_rq->rt_runtime = global_rt_runtime();
9093 spin_unlock(&rt_rq->rt_runtime_lock);
9094 }
9095 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9096
d0b27fa7
PZ
9097 return 0;
9098}
6d6bc0ad 9099#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9100
9101int sched_rt_handler(struct ctl_table *table, int write,
9102 struct file *filp, void __user *buffer, size_t *lenp,
9103 loff_t *ppos)
9104{
9105 int ret;
9106 int old_period, old_runtime;
9107 static DEFINE_MUTEX(mutex);
9108
9109 mutex_lock(&mutex);
9110 old_period = sysctl_sched_rt_period;
9111 old_runtime = sysctl_sched_rt_runtime;
9112
9113 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9114
9115 if (!ret && write) {
9116 ret = sched_rt_global_constraints();
9117 if (ret) {
9118 sysctl_sched_rt_period = old_period;
9119 sysctl_sched_rt_runtime = old_runtime;
9120 } else {
9121 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9122 def_rt_bandwidth.rt_period =
9123 ns_to_ktime(global_rt_period());
9124 }
9125 }
9126 mutex_unlock(&mutex);
9127
9128 return ret;
9129}
68318b8e 9130
052f1dc7 9131#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9132
9133/* return corresponding task_group object of a cgroup */
2b01dfe3 9134static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9135{
2b01dfe3
PM
9136 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9137 struct task_group, css);
68318b8e
SV
9138}
9139
9140static struct cgroup_subsys_state *
2b01dfe3 9141cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9142{
ec7dc8ac 9143 struct task_group *tg, *parent;
68318b8e 9144
2b01dfe3 9145 if (!cgrp->parent) {
68318b8e 9146 /* This is early initialization for the top cgroup */
68318b8e
SV
9147 return &init_task_group.css;
9148 }
9149
ec7dc8ac
DG
9150 parent = cgroup_tg(cgrp->parent);
9151 tg = sched_create_group(parent);
68318b8e
SV
9152 if (IS_ERR(tg))
9153 return ERR_PTR(-ENOMEM);
9154
68318b8e
SV
9155 return &tg->css;
9156}
9157
41a2d6cf
IM
9158static void
9159cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9160{
2b01dfe3 9161 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9162
9163 sched_destroy_group(tg);
9164}
9165
41a2d6cf
IM
9166static int
9167cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9168 struct task_struct *tsk)
68318b8e 9169{
b68aa230
PZ
9170#ifdef CONFIG_RT_GROUP_SCHED
9171 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9172 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9173 return -EINVAL;
9174#else
68318b8e
SV
9175 /* We don't support RT-tasks being in separate groups */
9176 if (tsk->sched_class != &fair_sched_class)
9177 return -EINVAL;
b68aa230 9178#endif
68318b8e
SV
9179
9180 return 0;
9181}
9182
9183static void
2b01dfe3 9184cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9185 struct cgroup *old_cont, struct task_struct *tsk)
9186{
9187 sched_move_task(tsk);
9188}
9189
052f1dc7 9190#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9191static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9192 u64 shareval)
68318b8e 9193{
2b01dfe3 9194 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9195}
9196
f4c753b7 9197static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9198{
2b01dfe3 9199 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9200
9201 return (u64) tg->shares;
9202}
6d6bc0ad 9203#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9204
052f1dc7 9205#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9206static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9207 s64 val)
6f505b16 9208{
06ecb27c 9209 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9210}
9211
06ecb27c 9212static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9213{
06ecb27c 9214 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9215}
d0b27fa7
PZ
9216
9217static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9218 u64 rt_period_us)
9219{
9220 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9221}
9222
9223static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9224{
9225 return sched_group_rt_period(cgroup_tg(cgrp));
9226}
6d6bc0ad 9227#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9228
fe5c7cc2 9229static struct cftype cpu_files[] = {
052f1dc7 9230#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9231 {
9232 .name = "shares",
f4c753b7
PM
9233 .read_u64 = cpu_shares_read_u64,
9234 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9235 },
052f1dc7
PZ
9236#endif
9237#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9238 {
9f0c1e56 9239 .name = "rt_runtime_us",
06ecb27c
PM
9240 .read_s64 = cpu_rt_runtime_read,
9241 .write_s64 = cpu_rt_runtime_write,
6f505b16 9242 },
d0b27fa7
PZ
9243 {
9244 .name = "rt_period_us",
f4c753b7
PM
9245 .read_u64 = cpu_rt_period_read_uint,
9246 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9247 },
052f1dc7 9248#endif
68318b8e
SV
9249};
9250
9251static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9252{
fe5c7cc2 9253 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9254}
9255
9256struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9257 .name = "cpu",
9258 .create = cpu_cgroup_create,
9259 .destroy = cpu_cgroup_destroy,
9260 .can_attach = cpu_cgroup_can_attach,
9261 .attach = cpu_cgroup_attach,
9262 .populate = cpu_cgroup_populate,
9263 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9264 .early_init = 1,
9265};
9266
052f1dc7 9267#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9268
9269#ifdef CONFIG_CGROUP_CPUACCT
9270
9271/*
9272 * CPU accounting code for task groups.
9273 *
9274 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9275 * (balbir@in.ibm.com).
9276 */
9277
9278/* track cpu usage of a group of tasks */
9279struct cpuacct {
9280 struct cgroup_subsys_state css;
9281 /* cpuusage holds pointer to a u64-type object on every cpu */
9282 u64 *cpuusage;
9283};
9284
9285struct cgroup_subsys cpuacct_subsys;
9286
9287/* return cpu accounting group corresponding to this container */
32cd756a 9288static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9289{
32cd756a 9290 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9291 struct cpuacct, css);
9292}
9293
9294/* return cpu accounting group to which this task belongs */
9295static inline struct cpuacct *task_ca(struct task_struct *tsk)
9296{
9297 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9298 struct cpuacct, css);
9299}
9300
9301/* create a new cpu accounting group */
9302static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9303 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9304{
9305 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9306
9307 if (!ca)
9308 return ERR_PTR(-ENOMEM);
9309
9310 ca->cpuusage = alloc_percpu(u64);
9311 if (!ca->cpuusage) {
9312 kfree(ca);
9313 return ERR_PTR(-ENOMEM);
9314 }
9315
9316 return &ca->css;
9317}
9318
9319/* destroy an existing cpu accounting group */
41a2d6cf 9320static void
32cd756a 9321cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9322{
32cd756a 9323 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9324
9325 free_percpu(ca->cpuusage);
9326 kfree(ca);
9327}
9328
9329/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9330static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9331{
32cd756a 9332 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9333 u64 totalcpuusage = 0;
9334 int i;
9335
9336 for_each_possible_cpu(i) {
9337 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9338
9339 /*
9340 * Take rq->lock to make 64-bit addition safe on 32-bit
9341 * platforms.
9342 */
9343 spin_lock_irq(&cpu_rq(i)->lock);
9344 totalcpuusage += *cpuusage;
9345 spin_unlock_irq(&cpu_rq(i)->lock);
9346 }
9347
9348 return totalcpuusage;
9349}
9350
0297b803
DG
9351static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9352 u64 reset)
9353{
9354 struct cpuacct *ca = cgroup_ca(cgrp);
9355 int err = 0;
9356 int i;
9357
9358 if (reset) {
9359 err = -EINVAL;
9360 goto out;
9361 }
9362
9363 for_each_possible_cpu(i) {
9364 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9365
9366 spin_lock_irq(&cpu_rq(i)->lock);
9367 *cpuusage = 0;
9368 spin_unlock_irq(&cpu_rq(i)->lock);
9369 }
9370out:
9371 return err;
9372}
9373
d842de87
SV
9374static struct cftype files[] = {
9375 {
9376 .name = "usage",
f4c753b7
PM
9377 .read_u64 = cpuusage_read,
9378 .write_u64 = cpuusage_write,
d842de87
SV
9379 },
9380};
9381
32cd756a 9382static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9383{
32cd756a 9384 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9385}
9386
9387/*
9388 * charge this task's execution time to its accounting group.
9389 *
9390 * called with rq->lock held.
9391 */
9392static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9393{
9394 struct cpuacct *ca;
9395
9396 if (!cpuacct_subsys.active)
9397 return;
9398
9399 ca = task_ca(tsk);
9400 if (ca) {
9401 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9402
9403 *cpuusage += cputime;
9404 }
9405}
9406
9407struct cgroup_subsys cpuacct_subsys = {
9408 .name = "cpuacct",
9409 .create = cpuacct_create,
9410 .destroy = cpuacct_destroy,
9411 .populate = cpuacct_populate,
9412 .subsys_id = cpuacct_subsys_id,
9413};
9414#endif /* CONFIG_CGROUP_CPUACCT */