[PATCH] udf: fix uid/gid options and add uid/gid=ignore and forget options
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
33#include <linux/security.h>
34#include <linux/notifier.h>
35#include <linux/profile.h>
36#include <linux/suspend.h>
198e2f18 37#include <linux/vmalloc.h>
1da177e4
LT
38#include <linux/blkdev.h>
39#include <linux/delay.h>
40#include <linux/smp.h>
41#include <linux/threads.h>
42#include <linux/timer.h>
43#include <linux/rcupdate.h>
44#include <linux/cpu.h>
45#include <linux/cpuset.h>
46#include <linux/percpu.h>
47#include <linux/kthread.h>
48#include <linux/seq_file.h>
49#include <linux/syscalls.h>
50#include <linux/times.h>
51#include <linux/acct.h>
52#include <asm/tlb.h>
53
54#include <asm/unistd.h>
55
56/*
57 * Convert user-nice values [ -20 ... 0 ... 19 ]
58 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
59 * and back.
60 */
61#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
62#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
63#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
64
65/*
66 * 'User priority' is the nice value converted to something we
67 * can work with better when scaling various scheduler parameters,
68 * it's a [ 0 ... 39 ] range.
69 */
70#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
71#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
72#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
73
74/*
75 * Some helpers for converting nanosecond timing to jiffy resolution
76 */
77#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
78#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
79
80/*
81 * These are the 'tuning knobs' of the scheduler:
82 *
83 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
84 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
85 * Timeslices get refilled after they expire.
86 */
87#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
88#define DEF_TIMESLICE (100 * HZ / 1000)
89#define ON_RUNQUEUE_WEIGHT 30
90#define CHILD_PENALTY 95
91#define PARENT_PENALTY 100
92#define EXIT_WEIGHT 3
93#define PRIO_BONUS_RATIO 25
94#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
95#define INTERACTIVE_DELTA 2
96#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
97#define STARVATION_LIMIT (MAX_SLEEP_AVG)
98#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
99
100/*
101 * If a task is 'interactive' then we reinsert it in the active
102 * array after it has expired its current timeslice. (it will not
103 * continue to run immediately, it will still roundrobin with
104 * other interactive tasks.)
105 *
106 * This part scales the interactivity limit depending on niceness.
107 *
108 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
109 * Here are a few examples of different nice levels:
110 *
111 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
112 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
113 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
114 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
116 *
117 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
118 * priority range a task can explore, a value of '1' means the
119 * task is rated interactive.)
120 *
121 * Ie. nice +19 tasks can never get 'interactive' enough to be
122 * reinserted into the active array. And only heavily CPU-hog nice -20
123 * tasks will be expired. Default nice 0 tasks are somewhere between,
124 * it takes some effort for them to get interactive, but it's not
125 * too hard.
126 */
127
128#define CURRENT_BONUS(p) \
129 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
130 MAX_SLEEP_AVG)
131
132#define GRANULARITY (10 * HZ / 1000 ? : 1)
133
134#ifdef CONFIG_SMP
135#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
136 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
137 num_online_cpus())
138#else
139#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
140 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
141#endif
142
143#define SCALE(v1,v1_max,v2_max) \
144 (v1) * (v2_max) / (v1_max)
145
146#define DELTA(p) \
147 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
148
149#define TASK_INTERACTIVE(p) \
150 ((p)->prio <= (p)->static_prio - DELTA(p))
151
152#define INTERACTIVE_SLEEP(p) \
153 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
154 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
155
156#define TASK_PREEMPTS_CURR(p, rq) \
157 ((p)->prio < (rq)->curr->prio)
158
159/*
160 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
161 * to time slice values: [800ms ... 100ms ... 5ms]
162 *
163 * The higher a thread's priority, the bigger timeslices
164 * it gets during one round of execution. But even the lowest
165 * priority thread gets MIN_TIMESLICE worth of execution time.
166 */
167
168#define SCALE_PRIO(x, prio) \
169 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
170
48c08d3f 171static unsigned int task_timeslice(task_t *p)
1da177e4
LT
172{
173 if (p->static_prio < NICE_TO_PRIO(0))
174 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
175 else
176 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
177}
178#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
179 < (long long) (sd)->cache_hot_time)
180
e56d0903
IM
181void __put_task_struct_cb(struct rcu_head *rhp)
182{
183 __put_task_struct(container_of(rhp, struct task_struct, rcu));
184}
185
186EXPORT_SYMBOL_GPL(__put_task_struct_cb);
187
1da177e4
LT
188/*
189 * These are the runqueue data structures:
190 */
191
192#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
193
194typedef struct runqueue runqueue_t;
195
196struct prio_array {
197 unsigned int nr_active;
198 unsigned long bitmap[BITMAP_SIZE];
199 struct list_head queue[MAX_PRIO];
200};
201
202/*
203 * This is the main, per-CPU runqueue data structure.
204 *
205 * Locking rule: those places that want to lock multiple runqueues
206 * (such as the load balancing or the thread migration code), lock
207 * acquire operations must be ordered by ascending &runqueue.
208 */
209struct runqueue {
210 spinlock_t lock;
211
212 /*
213 * nr_running and cpu_load should be in the same cacheline because
214 * remote CPUs use both these fields when doing load calculation.
215 */
216 unsigned long nr_running;
217#ifdef CONFIG_SMP
7897986b 218 unsigned long cpu_load[3];
1da177e4
LT
219#endif
220 unsigned long long nr_switches;
221
222 /*
223 * This is part of a global counter where only the total sum
224 * over all CPUs matters. A task can increase this counter on
225 * one CPU and if it got migrated afterwards it may decrease
226 * it on another CPU. Always updated under the runqueue lock:
227 */
228 unsigned long nr_uninterruptible;
229
230 unsigned long expired_timestamp;
231 unsigned long long timestamp_last_tick;
232 task_t *curr, *idle;
233 struct mm_struct *prev_mm;
234 prio_array_t *active, *expired, arrays[2];
235 int best_expired_prio;
236 atomic_t nr_iowait;
237
238#ifdef CONFIG_SMP
239 struct sched_domain *sd;
240
241 /* For active balancing */
242 int active_balance;
243 int push_cpu;
244
245 task_t *migration_thread;
246 struct list_head migration_queue;
247#endif
248
249#ifdef CONFIG_SCHEDSTATS
250 /* latency stats */
251 struct sched_info rq_sched_info;
252
253 /* sys_sched_yield() stats */
254 unsigned long yld_exp_empty;
255 unsigned long yld_act_empty;
256 unsigned long yld_both_empty;
257 unsigned long yld_cnt;
258
259 /* schedule() stats */
260 unsigned long sched_switch;
261 unsigned long sched_cnt;
262 unsigned long sched_goidle;
263
264 /* try_to_wake_up() stats */
265 unsigned long ttwu_cnt;
266 unsigned long ttwu_local;
267#endif
268};
269
270static DEFINE_PER_CPU(struct runqueue, runqueues);
271
674311d5
NP
272/*
273 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 274 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
275 *
276 * The domain tree of any CPU may only be accessed from within
277 * preempt-disabled sections.
278 */
1da177e4 279#define for_each_domain(cpu, domain) \
674311d5 280for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
1da177e4
LT
281
282#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
283#define this_rq() (&__get_cpu_var(runqueues))
284#define task_rq(p) cpu_rq(task_cpu(p))
285#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
286
1da177e4 287#ifndef prepare_arch_switch
4866cde0
NP
288# define prepare_arch_switch(next) do { } while (0)
289#endif
290#ifndef finish_arch_switch
291# define finish_arch_switch(prev) do { } while (0)
292#endif
293
294#ifndef __ARCH_WANT_UNLOCKED_CTXSW
295static inline int task_running(runqueue_t *rq, task_t *p)
296{
297 return rq->curr == p;
298}
299
300static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
301{
302}
303
304static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
305{
da04c035
IM
306#ifdef CONFIG_DEBUG_SPINLOCK
307 /* this is a valid case when another task releases the spinlock */
308 rq->lock.owner = current;
309#endif
4866cde0
NP
310 spin_unlock_irq(&rq->lock);
311}
312
313#else /* __ARCH_WANT_UNLOCKED_CTXSW */
314static inline int task_running(runqueue_t *rq, task_t *p)
315{
316#ifdef CONFIG_SMP
317 return p->oncpu;
318#else
319 return rq->curr == p;
320#endif
321}
322
323static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
324{
325#ifdef CONFIG_SMP
326 /*
327 * We can optimise this out completely for !SMP, because the
328 * SMP rebalancing from interrupt is the only thing that cares
329 * here.
330 */
331 next->oncpu = 1;
332#endif
333#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
334 spin_unlock_irq(&rq->lock);
335#else
336 spin_unlock(&rq->lock);
337#endif
338}
339
340static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
341{
342#ifdef CONFIG_SMP
343 /*
344 * After ->oncpu is cleared, the task can be moved to a different CPU.
345 * We must ensure this doesn't happen until the switch is completely
346 * finished.
347 */
348 smp_wmb();
349 prev->oncpu = 0;
350#endif
351#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
352 local_irq_enable();
1da177e4 353#endif
4866cde0
NP
354}
355#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4
LT
356
357/*
358 * task_rq_lock - lock the runqueue a given task resides on and disable
359 * interrupts. Note the ordering: we can safely lookup the task_rq without
360 * explicitly disabling preemption.
361 */
362static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
363 __acquires(rq->lock)
364{
365 struct runqueue *rq;
366
367repeat_lock_task:
368 local_irq_save(*flags);
369 rq = task_rq(p);
370 spin_lock(&rq->lock);
371 if (unlikely(rq != task_rq(p))) {
372 spin_unlock_irqrestore(&rq->lock, *flags);
373 goto repeat_lock_task;
374 }
375 return rq;
376}
377
378static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
379 __releases(rq->lock)
380{
381 spin_unlock_irqrestore(&rq->lock, *flags);
382}
383
384#ifdef CONFIG_SCHEDSTATS
385/*
386 * bump this up when changing the output format or the meaning of an existing
387 * format, so that tools can adapt (or abort)
388 */
68767a0a 389#define SCHEDSTAT_VERSION 12
1da177e4
LT
390
391static int show_schedstat(struct seq_file *seq, void *v)
392{
393 int cpu;
394
395 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
396 seq_printf(seq, "timestamp %lu\n", jiffies);
397 for_each_online_cpu(cpu) {
398 runqueue_t *rq = cpu_rq(cpu);
399#ifdef CONFIG_SMP
400 struct sched_domain *sd;
401 int dcnt = 0;
402#endif
403
404 /* runqueue-specific stats */
405 seq_printf(seq,
406 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
407 cpu, rq->yld_both_empty,
408 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
409 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
410 rq->ttwu_cnt, rq->ttwu_local,
411 rq->rq_sched_info.cpu_time,
412 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
413
414 seq_printf(seq, "\n");
415
416#ifdef CONFIG_SMP
417 /* domain-specific stats */
674311d5 418 preempt_disable();
1da177e4
LT
419 for_each_domain(cpu, sd) {
420 enum idle_type itype;
421 char mask_str[NR_CPUS];
422
423 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
424 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
425 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
426 itype++) {
427 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
428 sd->lb_cnt[itype],
429 sd->lb_balanced[itype],
430 sd->lb_failed[itype],
431 sd->lb_imbalance[itype],
432 sd->lb_gained[itype],
433 sd->lb_hot_gained[itype],
434 sd->lb_nobusyq[itype],
435 sd->lb_nobusyg[itype]);
436 }
68767a0a 437 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 438 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
439 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
440 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
441 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
442 }
674311d5 443 preempt_enable();
1da177e4
LT
444#endif
445 }
446 return 0;
447}
448
449static int schedstat_open(struct inode *inode, struct file *file)
450{
451 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
452 char *buf = kmalloc(size, GFP_KERNEL);
453 struct seq_file *m;
454 int res;
455
456 if (!buf)
457 return -ENOMEM;
458 res = single_open(file, show_schedstat, NULL);
459 if (!res) {
460 m = file->private_data;
461 m->buf = buf;
462 m->size = size;
463 } else
464 kfree(buf);
465 return res;
466}
467
468struct file_operations proc_schedstat_operations = {
469 .open = schedstat_open,
470 .read = seq_read,
471 .llseek = seq_lseek,
472 .release = single_release,
473};
474
475# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
476# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
477#else /* !CONFIG_SCHEDSTATS */
478# define schedstat_inc(rq, field) do { } while (0)
479# define schedstat_add(rq, field, amt) do { } while (0)
480#endif
481
482/*
483 * rq_lock - lock a given runqueue and disable interrupts.
484 */
485static inline runqueue_t *this_rq_lock(void)
486 __acquires(rq->lock)
487{
488 runqueue_t *rq;
489
490 local_irq_disable();
491 rq = this_rq();
492 spin_lock(&rq->lock);
493
494 return rq;
495}
496
1da177e4
LT
497#ifdef CONFIG_SCHEDSTATS
498/*
499 * Called when a process is dequeued from the active array and given
500 * the cpu. We should note that with the exception of interactive
501 * tasks, the expired queue will become the active queue after the active
502 * queue is empty, without explicitly dequeuing and requeuing tasks in the
503 * expired queue. (Interactive tasks may be requeued directly to the
504 * active queue, thus delaying tasks in the expired queue from running;
505 * see scheduler_tick()).
506 *
507 * This function is only called from sched_info_arrive(), rather than
508 * dequeue_task(). Even though a task may be queued and dequeued multiple
509 * times as it is shuffled about, we're really interested in knowing how
510 * long it was from the *first* time it was queued to the time that it
511 * finally hit a cpu.
512 */
513static inline void sched_info_dequeued(task_t *t)
514{
515 t->sched_info.last_queued = 0;
516}
517
518/*
519 * Called when a task finally hits the cpu. We can now calculate how
520 * long it was waiting to run. We also note when it began so that we
521 * can keep stats on how long its timeslice is.
522 */
858119e1 523static void sched_info_arrive(task_t *t)
1da177e4
LT
524{
525 unsigned long now = jiffies, diff = 0;
526 struct runqueue *rq = task_rq(t);
527
528 if (t->sched_info.last_queued)
529 diff = now - t->sched_info.last_queued;
530 sched_info_dequeued(t);
531 t->sched_info.run_delay += diff;
532 t->sched_info.last_arrival = now;
533 t->sched_info.pcnt++;
534
535 if (!rq)
536 return;
537
538 rq->rq_sched_info.run_delay += diff;
539 rq->rq_sched_info.pcnt++;
540}
541
542/*
543 * Called when a process is queued into either the active or expired
544 * array. The time is noted and later used to determine how long we
545 * had to wait for us to reach the cpu. Since the expired queue will
546 * become the active queue after active queue is empty, without dequeuing
547 * and requeuing any tasks, we are interested in queuing to either. It
548 * is unusual but not impossible for tasks to be dequeued and immediately
549 * requeued in the same or another array: this can happen in sched_yield(),
550 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
551 * to runqueue.
552 *
553 * This function is only called from enqueue_task(), but also only updates
554 * the timestamp if it is already not set. It's assumed that
555 * sched_info_dequeued() will clear that stamp when appropriate.
556 */
557static inline void sched_info_queued(task_t *t)
558{
559 if (!t->sched_info.last_queued)
560 t->sched_info.last_queued = jiffies;
561}
562
563/*
564 * Called when a process ceases being the active-running process, either
565 * voluntarily or involuntarily. Now we can calculate how long we ran.
566 */
567static inline void sched_info_depart(task_t *t)
568{
569 struct runqueue *rq = task_rq(t);
570 unsigned long diff = jiffies - t->sched_info.last_arrival;
571
572 t->sched_info.cpu_time += diff;
573
574 if (rq)
575 rq->rq_sched_info.cpu_time += diff;
576}
577
578/*
579 * Called when tasks are switched involuntarily due, typically, to expiring
580 * their time slice. (This may also be called when switching to or from
581 * the idle task.) We are only called when prev != next.
582 */
583static inline void sched_info_switch(task_t *prev, task_t *next)
584{
585 struct runqueue *rq = task_rq(prev);
586
587 /*
588 * prev now departs the cpu. It's not interesting to record
589 * stats about how efficient we were at scheduling the idle
590 * process, however.
591 */
592 if (prev != rq->idle)
593 sched_info_depart(prev);
594
595 if (next != rq->idle)
596 sched_info_arrive(next);
597}
598#else
599#define sched_info_queued(t) do { } while (0)
600#define sched_info_switch(t, next) do { } while (0)
601#endif /* CONFIG_SCHEDSTATS */
602
603/*
604 * Adding/removing a task to/from a priority array:
605 */
606static void dequeue_task(struct task_struct *p, prio_array_t *array)
607{
608 array->nr_active--;
609 list_del(&p->run_list);
610 if (list_empty(array->queue + p->prio))
611 __clear_bit(p->prio, array->bitmap);
612}
613
614static void enqueue_task(struct task_struct *p, prio_array_t *array)
615{
616 sched_info_queued(p);
617 list_add_tail(&p->run_list, array->queue + p->prio);
618 __set_bit(p->prio, array->bitmap);
619 array->nr_active++;
620 p->array = array;
621}
622
623/*
624 * Put task to the end of the run list without the overhead of dequeue
625 * followed by enqueue.
626 */
627static void requeue_task(struct task_struct *p, prio_array_t *array)
628{
629 list_move_tail(&p->run_list, array->queue + p->prio);
630}
631
632static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
633{
634 list_add(&p->run_list, array->queue + p->prio);
635 __set_bit(p->prio, array->bitmap);
636 array->nr_active++;
637 p->array = array;
638}
639
640/*
641 * effective_prio - return the priority that is based on the static
642 * priority but is modified by bonuses/penalties.
643 *
644 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
645 * into the -5 ... 0 ... +5 bonus/penalty range.
646 *
647 * We use 25% of the full 0...39 priority range so that:
648 *
649 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
650 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
651 *
652 * Both properties are important to certain workloads.
653 */
654static int effective_prio(task_t *p)
655{
656 int bonus, prio;
657
658 if (rt_task(p))
659 return p->prio;
660
661 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
662
663 prio = p->static_prio - bonus;
664 if (prio < MAX_RT_PRIO)
665 prio = MAX_RT_PRIO;
666 if (prio > MAX_PRIO-1)
667 prio = MAX_PRIO-1;
668 return prio;
669}
670
671/*
672 * __activate_task - move a task to the runqueue.
673 */
674static inline void __activate_task(task_t *p, runqueue_t *rq)
675{
676 enqueue_task(p, rq->active);
a2000572 677 rq->nr_running++;
1da177e4
LT
678}
679
680/*
681 * __activate_idle_task - move idle task to the _front_ of runqueue.
682 */
683static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
684{
685 enqueue_task_head(p, rq->active);
a2000572 686 rq->nr_running++;
1da177e4
LT
687}
688
a3464a10 689static int recalc_task_prio(task_t *p, unsigned long long now)
1da177e4
LT
690{
691 /* Caller must always ensure 'now >= p->timestamp' */
692 unsigned long long __sleep_time = now - p->timestamp;
693 unsigned long sleep_time;
694
b0a9499c
IM
695 if (unlikely(p->policy == SCHED_BATCH))
696 sleep_time = 0;
697 else {
698 if (__sleep_time > NS_MAX_SLEEP_AVG)
699 sleep_time = NS_MAX_SLEEP_AVG;
700 else
701 sleep_time = (unsigned long)__sleep_time;
702 }
1da177e4
LT
703
704 if (likely(sleep_time > 0)) {
705 /*
706 * User tasks that sleep a long time are categorised as
707 * idle and will get just interactive status to stay active &
708 * prevent them suddenly becoming cpu hogs and starving
709 * other processes.
710 */
711 if (p->mm && p->activated != -1 &&
712 sleep_time > INTERACTIVE_SLEEP(p)) {
713 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
714 DEF_TIMESLICE);
715 } else {
716 /*
717 * The lower the sleep avg a task has the more
718 * rapidly it will rise with sleep time.
719 */
720 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
721
722 /*
723 * Tasks waking from uninterruptible sleep are
724 * limited in their sleep_avg rise as they
725 * are likely to be waiting on I/O
726 */
727 if (p->activated == -1 && p->mm) {
728 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
729 sleep_time = 0;
730 else if (p->sleep_avg + sleep_time >=
731 INTERACTIVE_SLEEP(p)) {
732 p->sleep_avg = INTERACTIVE_SLEEP(p);
733 sleep_time = 0;
734 }
735 }
736
737 /*
738 * This code gives a bonus to interactive tasks.
739 *
740 * The boost works by updating the 'average sleep time'
741 * value here, based on ->timestamp. The more time a
742 * task spends sleeping, the higher the average gets -
743 * and the higher the priority boost gets as well.
744 */
745 p->sleep_avg += sleep_time;
746
747 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
748 p->sleep_avg = NS_MAX_SLEEP_AVG;
749 }
750 }
751
a3464a10 752 return effective_prio(p);
1da177e4
LT
753}
754
755/*
756 * activate_task - move a task to the runqueue and do priority recalculation
757 *
758 * Update all the scheduling statistics stuff. (sleep average
759 * calculation, priority modifiers, etc.)
760 */
761static void activate_task(task_t *p, runqueue_t *rq, int local)
762{
763 unsigned long long now;
764
765 now = sched_clock();
766#ifdef CONFIG_SMP
767 if (!local) {
768 /* Compensate for drifting sched_clock */
769 runqueue_t *this_rq = this_rq();
770 now = (now - this_rq->timestamp_last_tick)
771 + rq->timestamp_last_tick;
772 }
773#endif
774
a47ab937
CK
775 if (!rt_task(p))
776 p->prio = recalc_task_prio(p, now);
1da177e4
LT
777
778 /*
779 * This checks to make sure it's not an uninterruptible task
780 * that is now waking up.
781 */
782 if (!p->activated) {
783 /*
784 * Tasks which were woken up by interrupts (ie. hw events)
785 * are most likely of interactive nature. So we give them
786 * the credit of extending their sleep time to the period
787 * of time they spend on the runqueue, waiting for execution
788 * on a CPU, first time around:
789 */
790 if (in_interrupt())
791 p->activated = 2;
792 else {
793 /*
794 * Normal first-time wakeups get a credit too for
795 * on-runqueue time, but it will be weighted down:
796 */
797 p->activated = 1;
798 }
799 }
800 p->timestamp = now;
801
802 __activate_task(p, rq);
803}
804
805/*
806 * deactivate_task - remove a task from the runqueue.
807 */
808static void deactivate_task(struct task_struct *p, runqueue_t *rq)
809{
a2000572 810 rq->nr_running--;
1da177e4
LT
811 dequeue_task(p, p->array);
812 p->array = NULL;
813}
814
815/*
816 * resched_task - mark a task 'to be rescheduled now'.
817 *
818 * On UP this means the setting of the need_resched flag, on SMP it
819 * might also involve a cross-CPU call to trigger the scheduler on
820 * the target CPU.
821 */
822#ifdef CONFIG_SMP
823static void resched_task(task_t *p)
824{
64c7c8f8 825 int cpu;
1da177e4
LT
826
827 assert_spin_locked(&task_rq(p)->lock);
828
64c7c8f8
NP
829 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
830 return;
831
832 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 833
64c7c8f8
NP
834 cpu = task_cpu(p);
835 if (cpu == smp_processor_id())
836 return;
837
838 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
839 smp_mb();
840 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
841 smp_send_reschedule(cpu);
1da177e4
LT
842}
843#else
844static inline void resched_task(task_t *p)
845{
64c7c8f8 846 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
847 set_tsk_need_resched(p);
848}
849#endif
850
851/**
852 * task_curr - is this task currently executing on a CPU?
853 * @p: the task in question.
854 */
855inline int task_curr(const task_t *p)
856{
857 return cpu_curr(task_cpu(p)) == p;
858}
859
860#ifdef CONFIG_SMP
1da177e4
LT
861typedef struct {
862 struct list_head list;
1da177e4 863
1da177e4
LT
864 task_t *task;
865 int dest_cpu;
866
1da177e4
LT
867 struct completion done;
868} migration_req_t;
869
870/*
871 * The task's runqueue lock must be held.
872 * Returns true if you have to wait for migration thread.
873 */
874static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
875{
876 runqueue_t *rq = task_rq(p);
877
878 /*
879 * If the task is not on a runqueue (and not running), then
880 * it is sufficient to simply update the task's cpu field.
881 */
882 if (!p->array && !task_running(rq, p)) {
883 set_task_cpu(p, dest_cpu);
884 return 0;
885 }
886
887 init_completion(&req->done);
1da177e4
LT
888 req->task = p;
889 req->dest_cpu = dest_cpu;
890 list_add(&req->list, &rq->migration_queue);
891 return 1;
892}
893
894/*
895 * wait_task_inactive - wait for a thread to unschedule.
896 *
897 * The caller must ensure that the task *will* unschedule sometime soon,
898 * else this function might spin for a *long* time. This function can't
899 * be called with interrupts off, or it may introduce deadlock with
900 * smp_call_function() if an IPI is sent by the same process we are
901 * waiting to become inactive.
902 */
95cdf3b7 903void wait_task_inactive(task_t *p)
1da177e4
LT
904{
905 unsigned long flags;
906 runqueue_t *rq;
907 int preempted;
908
909repeat:
910 rq = task_rq_lock(p, &flags);
911 /* Must be off runqueue entirely, not preempted. */
912 if (unlikely(p->array || task_running(rq, p))) {
913 /* If it's preempted, we yield. It could be a while. */
914 preempted = !task_running(rq, p);
915 task_rq_unlock(rq, &flags);
916 cpu_relax();
917 if (preempted)
918 yield();
919 goto repeat;
920 }
921 task_rq_unlock(rq, &flags);
922}
923
924/***
925 * kick_process - kick a running thread to enter/exit the kernel
926 * @p: the to-be-kicked thread
927 *
928 * Cause a process which is running on another CPU to enter
929 * kernel-mode, without any delay. (to get signals handled.)
930 *
931 * NOTE: this function doesnt have to take the runqueue lock,
932 * because all it wants to ensure is that the remote task enters
933 * the kernel. If the IPI races and the task has been migrated
934 * to another CPU then no harm is done and the purpose has been
935 * achieved as well.
936 */
937void kick_process(task_t *p)
938{
939 int cpu;
940
941 preempt_disable();
942 cpu = task_cpu(p);
943 if ((cpu != smp_processor_id()) && task_curr(p))
944 smp_send_reschedule(cpu);
945 preempt_enable();
946}
947
948/*
949 * Return a low guess at the load of a migration-source cpu.
950 *
951 * We want to under-estimate the load of migration sources, to
952 * balance conservatively.
953 */
a2000572 954static inline unsigned long source_load(int cpu, int type)
1da177e4
LT
955{
956 runqueue_t *rq = cpu_rq(cpu);
a2000572 957 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
3b0bd9bc 958 if (type == 0)
a2000572 959 return load_now;
b910472d 960
a2000572 961 return min(rq->cpu_load[type-1], load_now);
1da177e4
LT
962}
963
964/*
965 * Return a high guess at the load of a migration-target cpu
966 */
a2000572 967static inline unsigned long target_load(int cpu, int type)
1da177e4
LT
968{
969 runqueue_t *rq = cpu_rq(cpu);
a2000572 970 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
7897986b 971 if (type == 0)
a2000572 972 return load_now;
3b0bd9bc 973
a2000572 974 return max(rq->cpu_load[type-1], load_now);
1da177e4
LT
975}
976
147cbb4b
NP
977/*
978 * find_idlest_group finds and returns the least busy CPU group within the
979 * domain.
980 */
981static struct sched_group *
982find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
983{
984 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
985 unsigned long min_load = ULONG_MAX, this_load = 0;
986 int load_idx = sd->forkexec_idx;
987 int imbalance = 100 + (sd->imbalance_pct-100)/2;
988
989 do {
990 unsigned long load, avg_load;
991 int local_group;
992 int i;
993
da5a5522
BD
994 /* Skip over this group if it has no CPUs allowed */
995 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
996 goto nextgroup;
997
147cbb4b 998 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
999
1000 /* Tally up the load of all CPUs in the group */
1001 avg_load = 0;
1002
1003 for_each_cpu_mask(i, group->cpumask) {
1004 /* Bias balancing toward cpus of our domain */
1005 if (local_group)
1006 load = source_load(i, load_idx);
1007 else
1008 load = target_load(i, load_idx);
1009
1010 avg_load += load;
1011 }
1012
1013 /* Adjust by relative CPU power of the group */
1014 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1015
1016 if (local_group) {
1017 this_load = avg_load;
1018 this = group;
1019 } else if (avg_load < min_load) {
1020 min_load = avg_load;
1021 idlest = group;
1022 }
da5a5522 1023nextgroup:
147cbb4b
NP
1024 group = group->next;
1025 } while (group != sd->groups);
1026
1027 if (!idlest || 100*this_load < imbalance*min_load)
1028 return NULL;
1029 return idlest;
1030}
1031
1032/*
1033 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1034 */
95cdf3b7
IM
1035static int
1036find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1037{
da5a5522 1038 cpumask_t tmp;
147cbb4b
NP
1039 unsigned long load, min_load = ULONG_MAX;
1040 int idlest = -1;
1041 int i;
1042
da5a5522
BD
1043 /* Traverse only the allowed CPUs */
1044 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1045
1046 for_each_cpu_mask(i, tmp) {
147cbb4b
NP
1047 load = source_load(i, 0);
1048
1049 if (load < min_load || (load == min_load && i == this_cpu)) {
1050 min_load = load;
1051 idlest = i;
1052 }
1053 }
1054
1055 return idlest;
1056}
1057
476d139c
NP
1058/*
1059 * sched_balance_self: balance the current task (running on cpu) in domains
1060 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1061 * SD_BALANCE_EXEC.
1062 *
1063 * Balance, ie. select the least loaded group.
1064 *
1065 * Returns the target CPU number, or the same CPU if no balancing is needed.
1066 *
1067 * preempt must be disabled.
1068 */
1069static int sched_balance_self(int cpu, int flag)
1070{
1071 struct task_struct *t = current;
1072 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1073
476d139c
NP
1074 for_each_domain(cpu, tmp)
1075 if (tmp->flags & flag)
1076 sd = tmp;
1077
1078 while (sd) {
1079 cpumask_t span;
1080 struct sched_group *group;
1081 int new_cpu;
1082 int weight;
1083
1084 span = sd->span;
1085 group = find_idlest_group(sd, t, cpu);
1086 if (!group)
1087 goto nextlevel;
1088
da5a5522 1089 new_cpu = find_idlest_cpu(group, t, cpu);
476d139c
NP
1090 if (new_cpu == -1 || new_cpu == cpu)
1091 goto nextlevel;
1092
1093 /* Now try balancing at a lower domain level */
1094 cpu = new_cpu;
1095nextlevel:
1096 sd = NULL;
1097 weight = cpus_weight(span);
1098 for_each_domain(cpu, tmp) {
1099 if (weight <= cpus_weight(tmp->span))
1100 break;
1101 if (tmp->flags & flag)
1102 sd = tmp;
1103 }
1104 /* while loop will break here if sd == NULL */
1105 }
1106
1107 return cpu;
1108}
1109
1110#endif /* CONFIG_SMP */
1da177e4
LT
1111
1112/*
1113 * wake_idle() will wake a task on an idle cpu if task->cpu is
1114 * not idle and an idle cpu is available. The span of cpus to
1115 * search starts with cpus closest then further out as needed,
1116 * so we always favor a closer, idle cpu.
1117 *
1118 * Returns the CPU we should wake onto.
1119 */
1120#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1121static int wake_idle(int cpu, task_t *p)
1122{
1123 cpumask_t tmp;
1124 struct sched_domain *sd;
1125 int i;
1126
1127 if (idle_cpu(cpu))
1128 return cpu;
1129
1130 for_each_domain(cpu, sd) {
1131 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1132 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1133 for_each_cpu_mask(i, tmp) {
1134 if (idle_cpu(i))
1135 return i;
1136 }
1137 }
e0f364f4
NP
1138 else
1139 break;
1da177e4
LT
1140 }
1141 return cpu;
1142}
1143#else
1144static inline int wake_idle(int cpu, task_t *p)
1145{
1146 return cpu;
1147}
1148#endif
1149
1150/***
1151 * try_to_wake_up - wake up a thread
1152 * @p: the to-be-woken-up thread
1153 * @state: the mask of task states that can be woken
1154 * @sync: do a synchronous wakeup?
1155 *
1156 * Put it on the run-queue if it's not already there. The "current"
1157 * thread is always on the run-queue (except when the actual
1158 * re-schedule is in progress), and as such you're allowed to do
1159 * the simpler "current->state = TASK_RUNNING" to mark yourself
1160 * runnable without the overhead of this.
1161 *
1162 * returns failure only if the task is already active.
1163 */
95cdf3b7 1164static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1da177e4
LT
1165{
1166 int cpu, this_cpu, success = 0;
1167 unsigned long flags;
1168 long old_state;
1169 runqueue_t *rq;
1170#ifdef CONFIG_SMP
1171 unsigned long load, this_load;
7897986b 1172 struct sched_domain *sd, *this_sd = NULL;
1da177e4
LT
1173 int new_cpu;
1174#endif
1175
1176 rq = task_rq_lock(p, &flags);
1177 old_state = p->state;
1178 if (!(old_state & state))
1179 goto out;
1180
1181 if (p->array)
1182 goto out_running;
1183
1184 cpu = task_cpu(p);
1185 this_cpu = smp_processor_id();
1186
1187#ifdef CONFIG_SMP
1188 if (unlikely(task_running(rq, p)))
1189 goto out_activate;
1190
7897986b
NP
1191 new_cpu = cpu;
1192
1da177e4
LT
1193 schedstat_inc(rq, ttwu_cnt);
1194 if (cpu == this_cpu) {
1195 schedstat_inc(rq, ttwu_local);
7897986b
NP
1196 goto out_set_cpu;
1197 }
1198
1199 for_each_domain(this_cpu, sd) {
1200 if (cpu_isset(cpu, sd->span)) {
1201 schedstat_inc(sd, ttwu_wake_remote);
1202 this_sd = sd;
1203 break;
1da177e4
LT
1204 }
1205 }
1da177e4 1206
7897986b 1207 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1208 goto out_set_cpu;
1209
1da177e4 1210 /*
7897986b 1211 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1212 */
7897986b
NP
1213 if (this_sd) {
1214 int idx = this_sd->wake_idx;
1215 unsigned int imbalance;
1da177e4 1216
a3f21bce
NP
1217 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1218
7897986b
NP
1219 load = source_load(cpu, idx);
1220 this_load = target_load(this_cpu, idx);
1da177e4 1221
7897986b
NP
1222 new_cpu = this_cpu; /* Wake to this CPU if we can */
1223
a3f21bce
NP
1224 if (this_sd->flags & SD_WAKE_AFFINE) {
1225 unsigned long tl = this_load;
1da177e4 1226 /*
a3f21bce
NP
1227 * If sync wakeup then subtract the (maximum possible)
1228 * effect of the currently running task from the load
1229 * of the current CPU:
1da177e4 1230 */
a3f21bce
NP
1231 if (sync)
1232 tl -= SCHED_LOAD_SCALE;
1233
1234 if ((tl <= load &&
1235 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1236 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1237 /*
1238 * This domain has SD_WAKE_AFFINE and
1239 * p is cache cold in this domain, and
1240 * there is no bad imbalance.
1241 */
1242 schedstat_inc(this_sd, ttwu_move_affine);
1243 goto out_set_cpu;
1244 }
1245 }
1246
1247 /*
1248 * Start passive balancing when half the imbalance_pct
1249 * limit is reached.
1250 */
1251 if (this_sd->flags & SD_WAKE_BALANCE) {
1252 if (imbalance*this_load <= 100*load) {
1253 schedstat_inc(this_sd, ttwu_move_balance);
1254 goto out_set_cpu;
1255 }
1da177e4
LT
1256 }
1257 }
1258
1259 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1260out_set_cpu:
1261 new_cpu = wake_idle(new_cpu, p);
1262 if (new_cpu != cpu) {
1263 set_task_cpu(p, new_cpu);
1264 task_rq_unlock(rq, &flags);
1265 /* might preempt at this point */
1266 rq = task_rq_lock(p, &flags);
1267 old_state = p->state;
1268 if (!(old_state & state))
1269 goto out;
1270 if (p->array)
1271 goto out_running;
1272
1273 this_cpu = smp_processor_id();
1274 cpu = task_cpu(p);
1275 }
1276
1277out_activate:
1278#endif /* CONFIG_SMP */
1279 if (old_state == TASK_UNINTERRUPTIBLE) {
1280 rq->nr_uninterruptible--;
1281 /*
1282 * Tasks on involuntary sleep don't earn
1283 * sleep_avg beyond just interactive state.
1284 */
1285 p->activated = -1;
1286 }
1287
d79fc0fc
IM
1288 /*
1289 * Tasks that have marked their sleep as noninteractive get
1290 * woken up without updating their sleep average. (i.e. their
1291 * sleep is handled in a priority-neutral manner, no priority
1292 * boost and no penalty.)
1293 */
1294 if (old_state & TASK_NONINTERACTIVE)
1295 __activate_task(p, rq);
1296 else
1297 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1298 /*
1299 * Sync wakeups (i.e. those types of wakeups where the waker
1300 * has indicated that it will leave the CPU in short order)
1301 * don't trigger a preemption, if the woken up task will run on
1302 * this cpu. (in this case the 'I will reschedule' promise of
1303 * the waker guarantees that the freshly woken up task is going
1304 * to be considered on this CPU.)
1305 */
1da177e4
LT
1306 if (!sync || cpu != this_cpu) {
1307 if (TASK_PREEMPTS_CURR(p, rq))
1308 resched_task(rq->curr);
1309 }
1310 success = 1;
1311
1312out_running:
1313 p->state = TASK_RUNNING;
1314out:
1315 task_rq_unlock(rq, &flags);
1316
1317 return success;
1318}
1319
95cdf3b7 1320int fastcall wake_up_process(task_t *p)
1da177e4
LT
1321{
1322 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1323 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1324}
1325
1326EXPORT_SYMBOL(wake_up_process);
1327
1328int fastcall wake_up_state(task_t *p, unsigned int state)
1329{
1330 return try_to_wake_up(p, state, 0);
1331}
1332
1da177e4
LT
1333/*
1334 * Perform scheduler related setup for a newly forked process p.
1335 * p is forked by current.
1336 */
476d139c 1337void fastcall sched_fork(task_t *p, int clone_flags)
1da177e4 1338{
476d139c
NP
1339 int cpu = get_cpu();
1340
1341#ifdef CONFIG_SMP
1342 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1343#endif
1344 set_task_cpu(p, cpu);
1345
1da177e4
LT
1346 /*
1347 * We mark the process as running here, but have not actually
1348 * inserted it onto the runqueue yet. This guarantees that
1349 * nobody will actually run it, and a signal or other external
1350 * event cannot wake it up and insert it on the runqueue either.
1351 */
1352 p->state = TASK_RUNNING;
1353 INIT_LIST_HEAD(&p->run_list);
1354 p->array = NULL;
1da177e4
LT
1355#ifdef CONFIG_SCHEDSTATS
1356 memset(&p->sched_info, 0, sizeof(p->sched_info));
1357#endif
d6077cb8 1358#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1359 p->oncpu = 0;
1360#endif
1da177e4 1361#ifdef CONFIG_PREEMPT
4866cde0 1362 /* Want to start with kernel preemption disabled. */
a1261f54 1363 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1364#endif
1365 /*
1366 * Share the timeslice between parent and child, thus the
1367 * total amount of pending timeslices in the system doesn't change,
1368 * resulting in more scheduling fairness.
1369 */
1370 local_irq_disable();
1371 p->time_slice = (current->time_slice + 1) >> 1;
1372 /*
1373 * The remainder of the first timeslice might be recovered by
1374 * the parent if the child exits early enough.
1375 */
1376 p->first_time_slice = 1;
1377 current->time_slice >>= 1;
1378 p->timestamp = sched_clock();
1379 if (unlikely(!current->time_slice)) {
1380 /*
1381 * This case is rare, it happens when the parent has only
1382 * a single jiffy left from its timeslice. Taking the
1383 * runqueue lock is not a problem.
1384 */
1385 current->time_slice = 1;
1da177e4 1386 scheduler_tick();
476d139c
NP
1387 }
1388 local_irq_enable();
1389 put_cpu();
1da177e4
LT
1390}
1391
1392/*
1393 * wake_up_new_task - wake up a newly created task for the first time.
1394 *
1395 * This function will do some initial scheduler statistics housekeeping
1396 * that must be done for every newly created context, then puts the task
1397 * on the runqueue and wakes it.
1398 */
95cdf3b7 1399void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1da177e4
LT
1400{
1401 unsigned long flags;
1402 int this_cpu, cpu;
1403 runqueue_t *rq, *this_rq;
1404
1405 rq = task_rq_lock(p, &flags);
147cbb4b 1406 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1407 this_cpu = smp_processor_id();
147cbb4b 1408 cpu = task_cpu(p);
1da177e4 1409
1da177e4
LT
1410 /*
1411 * We decrease the sleep average of forking parents
1412 * and children as well, to keep max-interactive tasks
1413 * from forking tasks that are max-interactive. The parent
1414 * (current) is done further down, under its lock.
1415 */
1416 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1417 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1418
1419 p->prio = effective_prio(p);
1420
1421 if (likely(cpu == this_cpu)) {
1422 if (!(clone_flags & CLONE_VM)) {
1423 /*
1424 * The VM isn't cloned, so we're in a good position to
1425 * do child-runs-first in anticipation of an exec. This
1426 * usually avoids a lot of COW overhead.
1427 */
1428 if (unlikely(!current->array))
1429 __activate_task(p, rq);
1430 else {
1431 p->prio = current->prio;
1432 list_add_tail(&p->run_list, &current->run_list);
1433 p->array = current->array;
1434 p->array->nr_active++;
a2000572 1435 rq->nr_running++;
1da177e4
LT
1436 }
1437 set_need_resched();
1438 } else
1439 /* Run child last */
1440 __activate_task(p, rq);
1441 /*
1442 * We skip the following code due to cpu == this_cpu
1443 *
1444 * task_rq_unlock(rq, &flags);
1445 * this_rq = task_rq_lock(current, &flags);
1446 */
1447 this_rq = rq;
1448 } else {
1449 this_rq = cpu_rq(this_cpu);
1450
1451 /*
1452 * Not the local CPU - must adjust timestamp. This should
1453 * get optimised away in the !CONFIG_SMP case.
1454 */
1455 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1456 + rq->timestamp_last_tick;
1457 __activate_task(p, rq);
1458 if (TASK_PREEMPTS_CURR(p, rq))
1459 resched_task(rq->curr);
1460
1461 /*
1462 * Parent and child are on different CPUs, now get the
1463 * parent runqueue to update the parent's ->sleep_avg:
1464 */
1465 task_rq_unlock(rq, &flags);
1466 this_rq = task_rq_lock(current, &flags);
1467 }
1468 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1469 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1470 task_rq_unlock(this_rq, &flags);
1471}
1472
1473/*
1474 * Potentially available exiting-child timeslices are
1475 * retrieved here - this way the parent does not get
1476 * penalized for creating too many threads.
1477 *
1478 * (this cannot be used to 'generate' timeslices
1479 * artificially, because any timeslice recovered here
1480 * was given away by the parent in the first place.)
1481 */
95cdf3b7 1482void fastcall sched_exit(task_t *p)
1da177e4
LT
1483{
1484 unsigned long flags;
1485 runqueue_t *rq;
1486
1487 /*
1488 * If the child was a (relative-) CPU hog then decrease
1489 * the sleep_avg of the parent as well.
1490 */
1491 rq = task_rq_lock(p->parent, &flags);
889dfafe 1492 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1493 p->parent->time_slice += p->time_slice;
1494 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1495 p->parent->time_slice = task_timeslice(p);
1496 }
1497 if (p->sleep_avg < p->parent->sleep_avg)
1498 p->parent->sleep_avg = p->parent->sleep_avg /
1499 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1500 (EXIT_WEIGHT + 1);
1501 task_rq_unlock(rq, &flags);
1502}
1503
4866cde0
NP
1504/**
1505 * prepare_task_switch - prepare to switch tasks
1506 * @rq: the runqueue preparing to switch
1507 * @next: the task we are going to switch to.
1508 *
1509 * This is called with the rq lock held and interrupts off. It must
1510 * be paired with a subsequent finish_task_switch after the context
1511 * switch.
1512 *
1513 * prepare_task_switch sets up locking and calls architecture specific
1514 * hooks.
1515 */
1516static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1517{
1518 prepare_lock_switch(rq, next);
1519 prepare_arch_switch(next);
1520}
1521
1da177e4
LT
1522/**
1523 * finish_task_switch - clean up after a task-switch
344babaa 1524 * @rq: runqueue associated with task-switch
1da177e4
LT
1525 * @prev: the thread we just switched away from.
1526 *
4866cde0
NP
1527 * finish_task_switch must be called after the context switch, paired
1528 * with a prepare_task_switch call before the context switch.
1529 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1530 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1531 *
1532 * Note that we may have delayed dropping an mm in context_switch(). If
1533 * so, we finish that here outside of the runqueue lock. (Doing it
1534 * with the lock held can cause deadlocks; see schedule() for
1535 * details.)
1536 */
4866cde0 1537static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1da177e4
LT
1538 __releases(rq->lock)
1539{
1da177e4
LT
1540 struct mm_struct *mm = rq->prev_mm;
1541 unsigned long prev_task_flags;
1542
1543 rq->prev_mm = NULL;
1544
1545 /*
1546 * A task struct has one reference for the use as "current".
1547 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1548 * calls schedule one last time. The schedule call will never return,
1549 * and the scheduled task must drop that reference.
1550 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1551 * still held, otherwise prev could be scheduled on another cpu, die
1552 * there before we look at prev->state, and then the reference would
1553 * be dropped twice.
1554 * Manfred Spraul <manfred@colorfullife.com>
1555 */
1556 prev_task_flags = prev->flags;
4866cde0
NP
1557 finish_arch_switch(prev);
1558 finish_lock_switch(rq, prev);
1da177e4
LT
1559 if (mm)
1560 mmdrop(mm);
1561 if (unlikely(prev_task_flags & PF_DEAD))
1562 put_task_struct(prev);
1563}
1564
1565/**
1566 * schedule_tail - first thing a freshly forked thread must call.
1567 * @prev: the thread we just switched away from.
1568 */
1569asmlinkage void schedule_tail(task_t *prev)
1570 __releases(rq->lock)
1571{
4866cde0
NP
1572 runqueue_t *rq = this_rq();
1573 finish_task_switch(rq, prev);
1574#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1575 /* In this case, finish_task_switch does not reenable preemption */
1576 preempt_enable();
1577#endif
1da177e4
LT
1578 if (current->set_child_tid)
1579 put_user(current->pid, current->set_child_tid);
1580}
1581
1582/*
1583 * context_switch - switch to the new MM and the new
1584 * thread's register state.
1585 */
1586static inline
1587task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1588{
1589 struct mm_struct *mm = next->mm;
1590 struct mm_struct *oldmm = prev->active_mm;
1591
1592 if (unlikely(!mm)) {
1593 next->active_mm = oldmm;
1594 atomic_inc(&oldmm->mm_count);
1595 enter_lazy_tlb(oldmm, next);
1596 } else
1597 switch_mm(oldmm, mm, next);
1598
1599 if (unlikely(!prev->mm)) {
1600 prev->active_mm = NULL;
1601 WARN_ON(rq->prev_mm);
1602 rq->prev_mm = oldmm;
1603 }
1604
1605 /* Here we just switch the register state and the stack. */
1606 switch_to(prev, next, prev);
1607
1608 return prev;
1609}
1610
1611/*
1612 * nr_running, nr_uninterruptible and nr_context_switches:
1613 *
1614 * externally visible scheduler statistics: current number of runnable
1615 * threads, current number of uninterruptible-sleeping threads, total
1616 * number of context switches performed since bootup.
1617 */
1618unsigned long nr_running(void)
1619{
1620 unsigned long i, sum = 0;
1621
1622 for_each_online_cpu(i)
1623 sum += cpu_rq(i)->nr_running;
1624
1625 return sum;
1626}
1627
1628unsigned long nr_uninterruptible(void)
1629{
1630 unsigned long i, sum = 0;
1631
1632 for_each_cpu(i)
1633 sum += cpu_rq(i)->nr_uninterruptible;
1634
1635 /*
1636 * Since we read the counters lockless, it might be slightly
1637 * inaccurate. Do not allow it to go below zero though:
1638 */
1639 if (unlikely((long)sum < 0))
1640 sum = 0;
1641
1642 return sum;
1643}
1644
1645unsigned long long nr_context_switches(void)
1646{
1647 unsigned long long i, sum = 0;
1648
1649 for_each_cpu(i)
1650 sum += cpu_rq(i)->nr_switches;
1651
1652 return sum;
1653}
1654
1655unsigned long nr_iowait(void)
1656{
1657 unsigned long i, sum = 0;
1658
1659 for_each_cpu(i)
1660 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1661
1662 return sum;
1663}
1664
1665#ifdef CONFIG_SMP
1666
1667/*
1668 * double_rq_lock - safely lock two runqueues
1669 *
1670 * Note this does not disable interrupts like task_rq_lock,
1671 * you need to do so manually before calling.
1672 */
1673static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1674 __acquires(rq1->lock)
1675 __acquires(rq2->lock)
1676{
1677 if (rq1 == rq2) {
1678 spin_lock(&rq1->lock);
1679 __acquire(rq2->lock); /* Fake it out ;) */
1680 } else {
1681 if (rq1 < rq2) {
1682 spin_lock(&rq1->lock);
1683 spin_lock(&rq2->lock);
1684 } else {
1685 spin_lock(&rq2->lock);
1686 spin_lock(&rq1->lock);
1687 }
1688 }
1689}
1690
1691/*
1692 * double_rq_unlock - safely unlock two runqueues
1693 *
1694 * Note this does not restore interrupts like task_rq_unlock,
1695 * you need to do so manually after calling.
1696 */
1697static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1698 __releases(rq1->lock)
1699 __releases(rq2->lock)
1700{
1701 spin_unlock(&rq1->lock);
1702 if (rq1 != rq2)
1703 spin_unlock(&rq2->lock);
1704 else
1705 __release(rq2->lock);
1706}
1707
1708/*
1709 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1710 */
1711static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1712 __releases(this_rq->lock)
1713 __acquires(busiest->lock)
1714 __acquires(this_rq->lock)
1715{
1716 if (unlikely(!spin_trylock(&busiest->lock))) {
1717 if (busiest < this_rq) {
1718 spin_unlock(&this_rq->lock);
1719 spin_lock(&busiest->lock);
1720 spin_lock(&this_rq->lock);
1721 } else
1722 spin_lock(&busiest->lock);
1723 }
1724}
1725
1da177e4
LT
1726/*
1727 * If dest_cpu is allowed for this process, migrate the task to it.
1728 * This is accomplished by forcing the cpu_allowed mask to only
1729 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1730 * the cpu_allowed mask is restored.
1731 */
1732static void sched_migrate_task(task_t *p, int dest_cpu)
1733{
1734 migration_req_t req;
1735 runqueue_t *rq;
1736 unsigned long flags;
1737
1738 rq = task_rq_lock(p, &flags);
1739 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1740 || unlikely(cpu_is_offline(dest_cpu)))
1741 goto out;
1742
1743 /* force the process onto the specified CPU */
1744 if (migrate_task(p, dest_cpu, &req)) {
1745 /* Need to wait for migration thread (might exit: take ref). */
1746 struct task_struct *mt = rq->migration_thread;
1747 get_task_struct(mt);
1748 task_rq_unlock(rq, &flags);
1749 wake_up_process(mt);
1750 put_task_struct(mt);
1751 wait_for_completion(&req.done);
1752 return;
1753 }
1754out:
1755 task_rq_unlock(rq, &flags);
1756}
1757
1758/*
476d139c
NP
1759 * sched_exec - execve() is a valuable balancing opportunity, because at
1760 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
1761 */
1762void sched_exec(void)
1763{
1da177e4 1764 int new_cpu, this_cpu = get_cpu();
476d139c 1765 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 1766 put_cpu();
476d139c
NP
1767 if (new_cpu != this_cpu)
1768 sched_migrate_task(current, new_cpu);
1da177e4
LT
1769}
1770
1771/*
1772 * pull_task - move a task from a remote runqueue to the local runqueue.
1773 * Both runqueues must be locked.
1774 */
858119e1 1775static
1da177e4
LT
1776void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1777 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1778{
1779 dequeue_task(p, src_array);
a2000572 1780 src_rq->nr_running--;
1da177e4 1781 set_task_cpu(p, this_cpu);
a2000572 1782 this_rq->nr_running++;
1da177e4
LT
1783 enqueue_task(p, this_array);
1784 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1785 + this_rq->timestamp_last_tick;
1786 /*
1787 * Note that idle threads have a prio of MAX_PRIO, for this test
1788 * to be always true for them.
1789 */
1790 if (TASK_PREEMPTS_CURR(p, this_rq))
1791 resched_task(this_rq->curr);
1792}
1793
1794/*
1795 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1796 */
858119e1 1797static
1da177e4 1798int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
95cdf3b7
IM
1799 struct sched_domain *sd, enum idle_type idle,
1800 int *all_pinned)
1da177e4
LT
1801{
1802 /*
1803 * We do not migrate tasks that are:
1804 * 1) running (obviously), or
1805 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1806 * 3) are cache-hot on their current CPU.
1807 */
1da177e4
LT
1808 if (!cpu_isset(this_cpu, p->cpus_allowed))
1809 return 0;
81026794
NP
1810 *all_pinned = 0;
1811
1812 if (task_running(rq, p))
1813 return 0;
1da177e4
LT
1814
1815 /*
1816 * Aggressive migration if:
cafb20c1 1817 * 1) task is cache cold, or
1da177e4
LT
1818 * 2) too many balance attempts have failed.
1819 */
1820
cafb20c1 1821 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
1822 return 1;
1823
1824 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 1825 return 0;
1da177e4
LT
1826 return 1;
1827}
1828
1829/*
1830 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1831 * as part of a balancing operation within "domain". Returns the number of
1832 * tasks moved.
1833 *
1834 * Called with both runqueues locked.
1835 */
1836static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1837 unsigned long max_nr_move, struct sched_domain *sd,
81026794 1838 enum idle_type idle, int *all_pinned)
1da177e4
LT
1839{
1840 prio_array_t *array, *dst_array;
1841 struct list_head *head, *curr;
81026794 1842 int idx, pulled = 0, pinned = 0;
1da177e4
LT
1843 task_t *tmp;
1844
81026794 1845 if (max_nr_move == 0)
1da177e4
LT
1846 goto out;
1847
81026794
NP
1848 pinned = 1;
1849
1da177e4
LT
1850 /*
1851 * We first consider expired tasks. Those will likely not be
1852 * executed in the near future, and they are most likely to
1853 * be cache-cold, thus switching CPUs has the least effect
1854 * on them.
1855 */
1856 if (busiest->expired->nr_active) {
1857 array = busiest->expired;
1858 dst_array = this_rq->expired;
1859 } else {
1860 array = busiest->active;
1861 dst_array = this_rq->active;
1862 }
1863
1864new_array:
1865 /* Start searching at priority 0: */
1866 idx = 0;
1867skip_bitmap:
1868 if (!idx)
1869 idx = sched_find_first_bit(array->bitmap);
1870 else
1871 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1872 if (idx >= MAX_PRIO) {
1873 if (array == busiest->expired && busiest->active->nr_active) {
1874 array = busiest->active;
1875 dst_array = this_rq->active;
1876 goto new_array;
1877 }
1878 goto out;
1879 }
1880
1881 head = array->queue + idx;
1882 curr = head->prev;
1883skip_queue:
1884 tmp = list_entry(curr, task_t, run_list);
1885
1886 curr = curr->prev;
1887
81026794 1888 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1da177e4
LT
1889 if (curr != head)
1890 goto skip_queue;
1891 idx++;
1892 goto skip_bitmap;
1893 }
1894
1895#ifdef CONFIG_SCHEDSTATS
1896 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1897 schedstat_inc(sd, lb_hot_gained[idle]);
1898#endif
1899
1900 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1901 pulled++;
1902
1903 /* We only want to steal up to the prescribed number of tasks. */
1904 if (pulled < max_nr_move) {
1905 if (curr != head)
1906 goto skip_queue;
1907 idx++;
1908 goto skip_bitmap;
1909 }
1910out:
1911 /*
1912 * Right now, this is the only place pull_task() is called,
1913 * so we can safely collect pull_task() stats here rather than
1914 * inside pull_task().
1915 */
1916 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
1917
1918 if (all_pinned)
1919 *all_pinned = pinned;
1da177e4
LT
1920 return pulled;
1921}
1922
1923/*
1924 * find_busiest_group finds and returns the busiest CPU group within the
1925 * domain. It calculates and returns the number of tasks which should be
1926 * moved to restore balance via the imbalance parameter.
1927 */
1928static struct sched_group *
1929find_busiest_group(struct sched_domain *sd, int this_cpu,
5969fe06 1930 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1da177e4
LT
1931{
1932 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1933 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 1934 unsigned long max_pull;
7897986b 1935 int load_idx;
1da177e4
LT
1936
1937 max_load = this_load = total_load = total_pwr = 0;
7897986b
NP
1938 if (idle == NOT_IDLE)
1939 load_idx = sd->busy_idx;
1940 else if (idle == NEWLY_IDLE)
1941 load_idx = sd->newidle_idx;
1942 else
1943 load_idx = sd->idle_idx;
1da177e4
LT
1944
1945 do {
1946 unsigned long load;
1947 int local_group;
1948 int i;
1949
1950 local_group = cpu_isset(this_cpu, group->cpumask);
1951
1952 /* Tally up the load of all CPUs in the group */
1953 avg_load = 0;
1954
1955 for_each_cpu_mask(i, group->cpumask) {
5969fe06
NP
1956 if (*sd_idle && !idle_cpu(i))
1957 *sd_idle = 0;
1958
1da177e4
LT
1959 /* Bias balancing toward cpus of our domain */
1960 if (local_group)
a2000572 1961 load = target_load(i, load_idx);
1da177e4 1962 else
a2000572 1963 load = source_load(i, load_idx);
1da177e4
LT
1964
1965 avg_load += load;
1966 }
1967
1968 total_load += avg_load;
1969 total_pwr += group->cpu_power;
1970
1971 /* Adjust by relative CPU power of the group */
1972 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1973
1974 if (local_group) {
1975 this_load = avg_load;
1976 this = group;
1da177e4
LT
1977 } else if (avg_load > max_load) {
1978 max_load = avg_load;
1979 busiest = group;
1980 }
1da177e4
LT
1981 group = group->next;
1982 } while (group != sd->groups);
1983
0c117f1b 1984 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
1da177e4
LT
1985 goto out_balanced;
1986
1987 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1988
1989 if (this_load >= avg_load ||
1990 100*max_load <= sd->imbalance_pct*this_load)
1991 goto out_balanced;
1992
1993 /*
1994 * We're trying to get all the cpus to the average_load, so we don't
1995 * want to push ourselves above the average load, nor do we wish to
1996 * reduce the max loaded cpu below the average load, as either of these
1997 * actions would just result in more rebalancing later, and ping-pong
1998 * tasks around. Thus we look for the minimum possible imbalance.
1999 * Negative imbalances (*we* are more loaded than anyone else) will
2000 * be counted as no imbalance for these purposes -- we can't fix that
2001 * by pulling tasks to us. Be careful of negative numbers as they'll
2002 * appear as very large values with unsigned longs.
2003 */
0c117f1b
SS
2004
2005 /* Don't want to pull so many tasks that a group would go idle */
2006 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2007
1da177e4 2008 /* How much load to actually move to equalise the imbalance */
0c117f1b 2009 *imbalance = min(max_pull * busiest->cpu_power,
1da177e4
LT
2010 (avg_load - this_load) * this->cpu_power)
2011 / SCHED_LOAD_SCALE;
2012
2013 if (*imbalance < SCHED_LOAD_SCALE) {
2014 unsigned long pwr_now = 0, pwr_move = 0;
2015 unsigned long tmp;
2016
2017 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2018 *imbalance = 1;
2019 return busiest;
2020 }
2021
2022 /*
2023 * OK, we don't have enough imbalance to justify moving tasks,
2024 * however we may be able to increase total CPU power used by
2025 * moving them.
2026 */
2027
2028 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2029 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2030 pwr_now /= SCHED_LOAD_SCALE;
2031
2032 /* Amount of load we'd subtract */
2033 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2034 if (max_load > tmp)
2035 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2036 max_load - tmp);
2037
2038 /* Amount of load we'd add */
2039 if (max_load*busiest->cpu_power <
2040 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2041 tmp = max_load*busiest->cpu_power/this->cpu_power;
2042 else
2043 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2044 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2045 pwr_move /= SCHED_LOAD_SCALE;
2046
2047 /* Move if we gain throughput */
2048 if (pwr_move <= pwr_now)
2049 goto out_balanced;
2050
2051 *imbalance = 1;
2052 return busiest;
2053 }
2054
2055 /* Get rid of the scaling factor, rounding down as we divide */
2056 *imbalance = *imbalance / SCHED_LOAD_SCALE;
1da177e4
LT
2057 return busiest;
2058
2059out_balanced:
1da177e4
LT
2060
2061 *imbalance = 0;
2062 return NULL;
2063}
2064
2065/*
2066 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2067 */
b910472d
CK
2068static runqueue_t *find_busiest_queue(struct sched_group *group,
2069 enum idle_type idle)
1da177e4
LT
2070{
2071 unsigned long load, max_load = 0;
2072 runqueue_t *busiest = NULL;
2073 int i;
2074
2075 for_each_cpu_mask(i, group->cpumask) {
a2000572 2076 load = source_load(i, 0);
1da177e4
LT
2077
2078 if (load > max_load) {
2079 max_load = load;
2080 busiest = cpu_rq(i);
2081 }
2082 }
2083
2084 return busiest;
2085}
2086
77391d71
NP
2087/*
2088 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2089 * so long as it is large enough.
2090 */
2091#define MAX_PINNED_INTERVAL 512
2092
1da177e4
LT
2093/*
2094 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2095 * tasks if there is an imbalance.
2096 *
2097 * Called with this_rq unlocked.
2098 */
2099static int load_balance(int this_cpu, runqueue_t *this_rq,
2100 struct sched_domain *sd, enum idle_type idle)
2101{
2102 struct sched_group *group;
2103 runqueue_t *busiest;
2104 unsigned long imbalance;
77391d71 2105 int nr_moved, all_pinned = 0;
81026794 2106 int active_balance = 0;
5969fe06
NP
2107 int sd_idle = 0;
2108
2109 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2110 sd_idle = 1;
1da177e4 2111
1da177e4
LT
2112 schedstat_inc(sd, lb_cnt[idle]);
2113
5969fe06 2114 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
1da177e4
LT
2115 if (!group) {
2116 schedstat_inc(sd, lb_nobusyg[idle]);
2117 goto out_balanced;
2118 }
2119
b910472d 2120 busiest = find_busiest_queue(group, idle);
1da177e4
LT
2121 if (!busiest) {
2122 schedstat_inc(sd, lb_nobusyq[idle]);
2123 goto out_balanced;
2124 }
2125
db935dbd 2126 BUG_ON(busiest == this_rq);
1da177e4
LT
2127
2128 schedstat_add(sd, lb_imbalance[idle], imbalance);
2129
2130 nr_moved = 0;
2131 if (busiest->nr_running > 1) {
2132 /*
2133 * Attempt to move tasks. If find_busiest_group has found
2134 * an imbalance but busiest->nr_running <= 1, the group is
2135 * still unbalanced. nr_moved simply stays zero, so it is
2136 * correctly treated as an imbalance.
2137 */
e17224bf 2138 double_rq_lock(this_rq, busiest);
1da177e4 2139 nr_moved = move_tasks(this_rq, this_cpu, busiest,
d6d5cfaf 2140 imbalance, sd, idle, &all_pinned);
e17224bf 2141 double_rq_unlock(this_rq, busiest);
81026794
NP
2142
2143 /* All tasks on this runqueue were pinned by CPU affinity */
2144 if (unlikely(all_pinned))
2145 goto out_balanced;
1da177e4 2146 }
81026794 2147
1da177e4
LT
2148 if (!nr_moved) {
2149 schedstat_inc(sd, lb_failed[idle]);
2150 sd->nr_balance_failed++;
2151
2152 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
2153
2154 spin_lock(&busiest->lock);
fa3b6ddc
SS
2155
2156 /* don't kick the migration_thread, if the curr
2157 * task on busiest cpu can't be moved to this_cpu
2158 */
2159 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2160 spin_unlock(&busiest->lock);
2161 all_pinned = 1;
2162 goto out_one_pinned;
2163 }
2164
1da177e4
LT
2165 if (!busiest->active_balance) {
2166 busiest->active_balance = 1;
2167 busiest->push_cpu = this_cpu;
81026794 2168 active_balance = 1;
1da177e4
LT
2169 }
2170 spin_unlock(&busiest->lock);
81026794 2171 if (active_balance)
1da177e4
LT
2172 wake_up_process(busiest->migration_thread);
2173
2174 /*
2175 * We've kicked active balancing, reset the failure
2176 * counter.
2177 */
39507451 2178 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2179 }
81026794 2180 } else
1da177e4
LT
2181 sd->nr_balance_failed = 0;
2182
81026794 2183 if (likely(!active_balance)) {
1da177e4
LT
2184 /* We were unbalanced, so reset the balancing interval */
2185 sd->balance_interval = sd->min_interval;
81026794
NP
2186 } else {
2187 /*
2188 * If we've begun active balancing, start to back off. This
2189 * case may not be covered by the all_pinned logic if there
2190 * is only 1 task on the busy runqueue (because we don't call
2191 * move_tasks).
2192 */
2193 if (sd->balance_interval < sd->max_interval)
2194 sd->balance_interval *= 2;
1da177e4
LT
2195 }
2196
5969fe06
NP
2197 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2198 return -1;
1da177e4
LT
2199 return nr_moved;
2200
2201out_balanced:
1da177e4
LT
2202 schedstat_inc(sd, lb_balanced[idle]);
2203
16cfb1c0 2204 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2205
2206out_one_pinned:
1da177e4 2207 /* tune up the balancing interval */
77391d71
NP
2208 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2209 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2210 sd->balance_interval *= 2;
2211
5969fe06
NP
2212 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2213 return -1;
1da177e4
LT
2214 return 0;
2215}
2216
2217/*
2218 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2219 * tasks if there is an imbalance.
2220 *
2221 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2222 * this_rq is locked.
2223 */
2224static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2225 struct sched_domain *sd)
2226{
2227 struct sched_group *group;
2228 runqueue_t *busiest = NULL;
2229 unsigned long imbalance;
2230 int nr_moved = 0;
5969fe06
NP
2231 int sd_idle = 0;
2232
2233 if (sd->flags & SD_SHARE_CPUPOWER)
2234 sd_idle = 1;
1da177e4
LT
2235
2236 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
5969fe06 2237 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
1da177e4 2238 if (!group) {
1da177e4 2239 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2240 goto out_balanced;
1da177e4
LT
2241 }
2242
b910472d 2243 busiest = find_busiest_queue(group, NEWLY_IDLE);
db935dbd 2244 if (!busiest) {
1da177e4 2245 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2246 goto out_balanced;
1da177e4
LT
2247 }
2248
db935dbd
NP
2249 BUG_ON(busiest == this_rq);
2250
1da177e4 2251 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2252
2253 nr_moved = 0;
2254 if (busiest->nr_running > 1) {
2255 /* Attempt to move tasks */
2256 double_lock_balance(this_rq, busiest);
2257 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794 2258 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf
NP
2259 spin_unlock(&busiest->lock);
2260 }
2261
5969fe06 2262 if (!nr_moved) {
1da177e4 2263 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
5969fe06
NP
2264 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2265 return -1;
2266 } else
16cfb1c0 2267 sd->nr_balance_failed = 0;
1da177e4 2268
1da177e4 2269 return nr_moved;
16cfb1c0
NP
2270
2271out_balanced:
2272 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
5969fe06
NP
2273 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2274 return -1;
16cfb1c0
NP
2275 sd->nr_balance_failed = 0;
2276 return 0;
1da177e4
LT
2277}
2278
2279/*
2280 * idle_balance is called by schedule() if this_cpu is about to become
2281 * idle. Attempts to pull tasks from other CPUs.
2282 */
858119e1 2283static void idle_balance(int this_cpu, runqueue_t *this_rq)
1da177e4
LT
2284{
2285 struct sched_domain *sd;
2286
2287 for_each_domain(this_cpu, sd) {
2288 if (sd->flags & SD_BALANCE_NEWIDLE) {
2289 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2290 /* We've pulled tasks over so stop searching */
2291 break;
2292 }
2293 }
2294 }
2295}
2296
2297/*
2298 * active_load_balance is run by migration threads. It pushes running tasks
2299 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2300 * running on each physical CPU where possible, and avoids physical /
2301 * logical imbalances.
2302 *
2303 * Called with busiest_rq locked.
2304 */
2305static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2306{
2307 struct sched_domain *sd;
1da177e4 2308 runqueue_t *target_rq;
39507451
NP
2309 int target_cpu = busiest_rq->push_cpu;
2310
2311 if (busiest_rq->nr_running <= 1)
2312 /* no task to move */
2313 return;
2314
2315 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2316
2317 /*
39507451
NP
2318 * This condition is "impossible", if it occurs
2319 * we need to fix it. Originally reported by
2320 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2321 */
39507451 2322 BUG_ON(busiest_rq == target_rq);
1da177e4 2323
39507451
NP
2324 /* move a task from busiest_rq to target_rq */
2325 double_lock_balance(busiest_rq, target_rq);
2326
2327 /* Search for an sd spanning us and the target CPU. */
2328 for_each_domain(target_cpu, sd)
2329 if ((sd->flags & SD_LOAD_BALANCE) &&
2330 cpu_isset(busiest_cpu, sd->span))
2331 break;
2332
2333 if (unlikely(sd == NULL))
2334 goto out;
2335
2336 schedstat_inc(sd, alb_cnt);
2337
2338 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2339 schedstat_inc(sd, alb_pushed);
2340 else
2341 schedstat_inc(sd, alb_failed);
2342out:
2343 spin_unlock(&target_rq->lock);
1da177e4
LT
2344}
2345
2346/*
2347 * rebalance_tick will get called every timer tick, on every CPU.
2348 *
2349 * It checks each scheduling domain to see if it is due to be balanced,
2350 * and initiates a balancing operation if so.
2351 *
2352 * Balancing parameters are set up in arch_init_sched_domains.
2353 */
2354
2355/* Don't have all balancing operations going off at once */
2356#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2357
2358static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2359 enum idle_type idle)
2360{
2361 unsigned long old_load, this_load;
2362 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2363 struct sched_domain *sd;
7897986b 2364 int i;
1da177e4 2365
1da177e4 2366 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
2367 /* Update our load */
2368 for (i = 0; i < 3; i++) {
2369 unsigned long new_load = this_load;
2370 int scale = 1 << i;
2371 old_load = this_rq->cpu_load[i];
2372 /*
2373 * Round up the averaging division if load is increasing. This
2374 * prevents us from getting stuck on 9 if the load is 10, for
2375 * example.
2376 */
2377 if (new_load > old_load)
2378 new_load += scale-1;
2379 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2380 }
1da177e4
LT
2381
2382 for_each_domain(this_cpu, sd) {
2383 unsigned long interval;
2384
2385 if (!(sd->flags & SD_LOAD_BALANCE))
2386 continue;
2387
2388 interval = sd->balance_interval;
2389 if (idle != SCHED_IDLE)
2390 interval *= sd->busy_factor;
2391
2392 /* scale ms to jiffies */
2393 interval = msecs_to_jiffies(interval);
2394 if (unlikely(!interval))
2395 interval = 1;
2396
2397 if (j - sd->last_balance >= interval) {
2398 if (load_balance(this_cpu, this_rq, sd, idle)) {
fa3b6ddc
SS
2399 /*
2400 * We've pulled tasks over so either we're no
5969fe06
NP
2401 * longer idle, or one of our SMT siblings is
2402 * not idle.
2403 */
1da177e4
LT
2404 idle = NOT_IDLE;
2405 }
2406 sd->last_balance += interval;
2407 }
2408 }
2409}
2410#else
2411/*
2412 * on UP we do not need to balance between CPUs:
2413 */
2414static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2415{
2416}
2417static inline void idle_balance(int cpu, runqueue_t *rq)
2418{
2419}
2420#endif
2421
2422static inline int wake_priority_sleeper(runqueue_t *rq)
2423{
2424 int ret = 0;
2425#ifdef CONFIG_SCHED_SMT
2426 spin_lock(&rq->lock);
2427 /*
2428 * If an SMT sibling task has been put to sleep for priority
2429 * reasons reschedule the idle task to see if it can now run.
2430 */
2431 if (rq->nr_running) {
2432 resched_task(rq->idle);
2433 ret = 1;
2434 }
2435 spin_unlock(&rq->lock);
2436#endif
2437 return ret;
2438}
2439
2440DEFINE_PER_CPU(struct kernel_stat, kstat);
2441
2442EXPORT_PER_CPU_SYMBOL(kstat);
2443
2444/*
2445 * This is called on clock ticks and on context switches.
2446 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2447 */
2448static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2449 unsigned long long now)
2450{
2451 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2452 p->sched_time += now - last;
2453}
2454
2455/*
2456 * Return current->sched_time plus any more ns on the sched_clock
2457 * that have not yet been banked.
2458 */
2459unsigned long long current_sched_time(const task_t *tsk)
2460{
2461 unsigned long long ns;
2462 unsigned long flags;
2463 local_irq_save(flags);
2464 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2465 ns = tsk->sched_time + (sched_clock() - ns);
2466 local_irq_restore(flags);
2467 return ns;
2468}
2469
2470/*
2471 * We place interactive tasks back into the active array, if possible.
2472 *
2473 * To guarantee that this does not starve expired tasks we ignore the
2474 * interactivity of a task if the first expired task had to wait more
2475 * than a 'reasonable' amount of time. This deadline timeout is
2476 * load-dependent, as the frequency of array switched decreases with
2477 * increasing number of running tasks. We also ignore the interactivity
2478 * if a better static_prio task has expired:
2479 */
2480#define EXPIRED_STARVING(rq) \
2481 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2482 (jiffies - (rq)->expired_timestamp >= \
2483 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2484 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2485
2486/*
2487 * Account user cpu time to a process.
2488 * @p: the process that the cpu time gets accounted to
2489 * @hardirq_offset: the offset to subtract from hardirq_count()
2490 * @cputime: the cpu time spent in user space since the last update
2491 */
2492void account_user_time(struct task_struct *p, cputime_t cputime)
2493{
2494 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2495 cputime64_t tmp;
2496
2497 p->utime = cputime_add(p->utime, cputime);
2498
2499 /* Add user time to cpustat. */
2500 tmp = cputime_to_cputime64(cputime);
2501 if (TASK_NICE(p) > 0)
2502 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2503 else
2504 cpustat->user = cputime64_add(cpustat->user, tmp);
2505}
2506
2507/*
2508 * Account system cpu time to a process.
2509 * @p: the process that the cpu time gets accounted to
2510 * @hardirq_offset: the offset to subtract from hardirq_count()
2511 * @cputime: the cpu time spent in kernel space since the last update
2512 */
2513void account_system_time(struct task_struct *p, int hardirq_offset,
2514 cputime_t cputime)
2515{
2516 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2517 runqueue_t *rq = this_rq();
2518 cputime64_t tmp;
2519
2520 p->stime = cputime_add(p->stime, cputime);
2521
2522 /* Add system time to cpustat. */
2523 tmp = cputime_to_cputime64(cputime);
2524 if (hardirq_count() - hardirq_offset)
2525 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2526 else if (softirq_count())
2527 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2528 else if (p != rq->idle)
2529 cpustat->system = cputime64_add(cpustat->system, tmp);
2530 else if (atomic_read(&rq->nr_iowait) > 0)
2531 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2532 else
2533 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2534 /* Account for system time used */
2535 acct_update_integrals(p);
1da177e4
LT
2536}
2537
2538/*
2539 * Account for involuntary wait time.
2540 * @p: the process from which the cpu time has been stolen
2541 * @steal: the cpu time spent in involuntary wait
2542 */
2543void account_steal_time(struct task_struct *p, cputime_t steal)
2544{
2545 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2546 cputime64_t tmp = cputime_to_cputime64(steal);
2547 runqueue_t *rq = this_rq();
2548
2549 if (p == rq->idle) {
2550 p->stime = cputime_add(p->stime, steal);
2551 if (atomic_read(&rq->nr_iowait) > 0)
2552 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2553 else
2554 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2555 } else
2556 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2557}
2558
2559/*
2560 * This function gets called by the timer code, with HZ frequency.
2561 * We call it with interrupts disabled.
2562 *
2563 * It also gets called by the fork code, when changing the parent's
2564 * timeslices.
2565 */
2566void scheduler_tick(void)
2567{
2568 int cpu = smp_processor_id();
2569 runqueue_t *rq = this_rq();
2570 task_t *p = current;
2571 unsigned long long now = sched_clock();
2572
2573 update_cpu_clock(p, rq, now);
2574
2575 rq->timestamp_last_tick = now;
2576
2577 if (p == rq->idle) {
2578 if (wake_priority_sleeper(rq))
2579 goto out;
2580 rebalance_tick(cpu, rq, SCHED_IDLE);
2581 return;
2582 }
2583
2584 /* Task might have expired already, but not scheduled off yet */
2585 if (p->array != rq->active) {
2586 set_tsk_need_resched(p);
2587 goto out;
2588 }
2589 spin_lock(&rq->lock);
2590 /*
2591 * The task was running during this tick - update the
2592 * time slice counter. Note: we do not update a thread's
2593 * priority until it either goes to sleep or uses up its
2594 * timeslice. This makes it possible for interactive tasks
2595 * to use up their timeslices at their highest priority levels.
2596 */
2597 if (rt_task(p)) {
2598 /*
2599 * RR tasks need a special form of timeslice management.
2600 * FIFO tasks have no timeslices.
2601 */
2602 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2603 p->time_slice = task_timeslice(p);
2604 p->first_time_slice = 0;
2605 set_tsk_need_resched(p);
2606
2607 /* put it at the end of the queue: */
2608 requeue_task(p, rq->active);
2609 }
2610 goto out_unlock;
2611 }
2612 if (!--p->time_slice) {
2613 dequeue_task(p, rq->active);
2614 set_tsk_need_resched(p);
2615 p->prio = effective_prio(p);
2616 p->time_slice = task_timeslice(p);
2617 p->first_time_slice = 0;
2618
2619 if (!rq->expired_timestamp)
2620 rq->expired_timestamp = jiffies;
2621 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2622 enqueue_task(p, rq->expired);
2623 if (p->static_prio < rq->best_expired_prio)
2624 rq->best_expired_prio = p->static_prio;
2625 } else
2626 enqueue_task(p, rq->active);
2627 } else {
2628 /*
2629 * Prevent a too long timeslice allowing a task to monopolize
2630 * the CPU. We do this by splitting up the timeslice into
2631 * smaller pieces.
2632 *
2633 * Note: this does not mean the task's timeslices expire or
2634 * get lost in any way, they just might be preempted by
2635 * another task of equal priority. (one with higher
2636 * priority would have preempted this task already.) We
2637 * requeue this task to the end of the list on this priority
2638 * level, which is in essence a round-robin of tasks with
2639 * equal priority.
2640 *
2641 * This only applies to tasks in the interactive
2642 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2643 */
2644 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2645 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2646 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2647 (p->array == rq->active)) {
2648
2649 requeue_task(p, rq->active);
2650 set_tsk_need_resched(p);
2651 }
2652 }
2653out_unlock:
2654 spin_unlock(&rq->lock);
2655out:
2656 rebalance_tick(cpu, rq, NOT_IDLE);
2657}
2658
2659#ifdef CONFIG_SCHED_SMT
fc38ed75
CK
2660static inline void wakeup_busy_runqueue(runqueue_t *rq)
2661{
2662 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2663 if (rq->curr == rq->idle && rq->nr_running)
2664 resched_task(rq->idle);
2665}
2666
858119e1 2667static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
1da177e4 2668{
41c7ce9a 2669 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2670 cpumask_t sibling_map;
2671 int i;
2672
41c7ce9a
NP
2673 for_each_domain(this_cpu, tmp)
2674 if (tmp->flags & SD_SHARE_CPUPOWER)
2675 sd = tmp;
2676
2677 if (!sd)
1da177e4
LT
2678 return;
2679
2680 /*
2681 * Unlock the current runqueue because we have to lock in
2682 * CPU order to avoid deadlocks. Caller knows that we might
2683 * unlock. We keep IRQs disabled.
2684 */
2685 spin_unlock(&this_rq->lock);
2686
2687 sibling_map = sd->span;
2688
2689 for_each_cpu_mask(i, sibling_map)
2690 spin_lock(&cpu_rq(i)->lock);
2691 /*
2692 * We clear this CPU from the mask. This both simplifies the
2693 * inner loop and keps this_rq locked when we exit:
2694 */
2695 cpu_clear(this_cpu, sibling_map);
2696
2697 for_each_cpu_mask(i, sibling_map) {
2698 runqueue_t *smt_rq = cpu_rq(i);
2699
fc38ed75 2700 wakeup_busy_runqueue(smt_rq);
1da177e4
LT
2701 }
2702
2703 for_each_cpu_mask(i, sibling_map)
2704 spin_unlock(&cpu_rq(i)->lock);
2705 /*
2706 * We exit with this_cpu's rq still held and IRQs
2707 * still disabled:
2708 */
2709}
2710
67f9a619
IM
2711/*
2712 * number of 'lost' timeslices this task wont be able to fully
2713 * utilize, if another task runs on a sibling. This models the
2714 * slowdown effect of other tasks running on siblings:
2715 */
2716static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2717{
2718 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2719}
2720
858119e1 2721static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
1da177e4 2722{
41c7ce9a 2723 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2724 cpumask_t sibling_map;
2725 prio_array_t *array;
2726 int ret = 0, i;
2727 task_t *p;
2728
41c7ce9a
NP
2729 for_each_domain(this_cpu, tmp)
2730 if (tmp->flags & SD_SHARE_CPUPOWER)
2731 sd = tmp;
2732
2733 if (!sd)
1da177e4
LT
2734 return 0;
2735
2736 /*
2737 * The same locking rules and details apply as for
2738 * wake_sleeping_dependent():
2739 */
2740 spin_unlock(&this_rq->lock);
2741 sibling_map = sd->span;
2742 for_each_cpu_mask(i, sibling_map)
2743 spin_lock(&cpu_rq(i)->lock);
2744 cpu_clear(this_cpu, sibling_map);
2745
2746 /*
2747 * Establish next task to be run - it might have gone away because
2748 * we released the runqueue lock above:
2749 */
2750 if (!this_rq->nr_running)
2751 goto out_unlock;
2752 array = this_rq->active;
2753 if (!array->nr_active)
2754 array = this_rq->expired;
2755 BUG_ON(!array->nr_active);
2756
2757 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2758 task_t, run_list);
2759
2760 for_each_cpu_mask(i, sibling_map) {
2761 runqueue_t *smt_rq = cpu_rq(i);
2762 task_t *smt_curr = smt_rq->curr;
2763
fc38ed75
CK
2764 /* Kernel threads do not participate in dependent sleeping */
2765 if (!p->mm || !smt_curr->mm || rt_task(p))
2766 goto check_smt_task;
2767
1da177e4
LT
2768 /*
2769 * If a user task with lower static priority than the
2770 * running task on the SMT sibling is trying to schedule,
2771 * delay it till there is proportionately less timeslice
2772 * left of the sibling task to prevent a lower priority
2773 * task from using an unfair proportion of the
2774 * physical cpu's resources. -ck
2775 */
fc38ed75
CK
2776 if (rt_task(smt_curr)) {
2777 /*
2778 * With real time tasks we run non-rt tasks only
2779 * per_cpu_gain% of the time.
2780 */
2781 if ((jiffies % DEF_TIMESLICE) >
2782 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2783 ret = 1;
2784 } else
67f9a619
IM
2785 if (smt_curr->static_prio < p->static_prio &&
2786 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2787 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75
CK
2788 ret = 1;
2789
2790check_smt_task:
2791 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2792 rt_task(smt_curr))
2793 continue;
2794 if (!p->mm) {
2795 wakeup_busy_runqueue(smt_rq);
2796 continue;
2797 }
1da177e4
LT
2798
2799 /*
fc38ed75
CK
2800 * Reschedule a lower priority task on the SMT sibling for
2801 * it to be put to sleep, or wake it up if it has been put to
2802 * sleep for priority reasons to see if it should run now.
1da177e4 2803 */
fc38ed75
CK
2804 if (rt_task(p)) {
2805 if ((jiffies % DEF_TIMESLICE) >
2806 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2807 resched_task(smt_curr);
2808 } else {
67f9a619
IM
2809 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2810 smt_slice(p, sd) > task_timeslice(smt_curr))
fc38ed75
CK
2811 resched_task(smt_curr);
2812 else
2813 wakeup_busy_runqueue(smt_rq);
2814 }
1da177e4
LT
2815 }
2816out_unlock:
2817 for_each_cpu_mask(i, sibling_map)
2818 spin_unlock(&cpu_rq(i)->lock);
2819 return ret;
2820}
2821#else
2822static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2823{
2824}
2825
2826static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2827{
2828 return 0;
2829}
2830#endif
2831
2832#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2833
2834void fastcall add_preempt_count(int val)
2835{
2836 /*
2837 * Underflow?
2838 */
be5b4fbd 2839 BUG_ON((preempt_count() < 0));
1da177e4
LT
2840 preempt_count() += val;
2841 /*
2842 * Spinlock count overflowing soon?
2843 */
2844 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2845}
2846EXPORT_SYMBOL(add_preempt_count);
2847
2848void fastcall sub_preempt_count(int val)
2849{
2850 /*
2851 * Underflow?
2852 */
2853 BUG_ON(val > preempt_count());
2854 /*
2855 * Is the spinlock portion underflowing?
2856 */
2857 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2858 preempt_count() -= val;
2859}
2860EXPORT_SYMBOL(sub_preempt_count);
2861
2862#endif
2863
2864/*
2865 * schedule() is the main scheduler function.
2866 */
2867asmlinkage void __sched schedule(void)
2868{
2869 long *switch_count;
2870 task_t *prev, *next;
2871 runqueue_t *rq;
2872 prio_array_t *array;
2873 struct list_head *queue;
2874 unsigned long long now;
2875 unsigned long run_time;
a3464a10 2876 int cpu, idx, new_prio;
1da177e4
LT
2877
2878 /*
2879 * Test if we are atomic. Since do_exit() needs to call into
2880 * schedule() atomically, we ignore that path for now.
2881 * Otherwise, whine if we are scheduling when we should not be.
2882 */
2883 if (likely(!current->exit_state)) {
2884 if (unlikely(in_atomic())) {
2885 printk(KERN_ERR "scheduling while atomic: "
2886 "%s/0x%08x/%d\n",
2887 current->comm, preempt_count(), current->pid);
2888 dump_stack();
2889 }
2890 }
2891 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2892
2893need_resched:
2894 preempt_disable();
2895 prev = current;
2896 release_kernel_lock(prev);
2897need_resched_nonpreemptible:
2898 rq = this_rq();
2899
2900 /*
2901 * The idle thread is not allowed to schedule!
2902 * Remove this check after it has been exercised a bit.
2903 */
2904 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2905 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2906 dump_stack();
2907 }
2908
2909 schedstat_inc(rq, sched_cnt);
2910 now = sched_clock();
238628ed 2911 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 2912 run_time = now - prev->timestamp;
238628ed 2913 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
2914 run_time = 0;
2915 } else
2916 run_time = NS_MAX_SLEEP_AVG;
2917
2918 /*
2919 * Tasks charged proportionately less run_time at high sleep_avg to
2920 * delay them losing their interactive status
2921 */
2922 run_time /= (CURRENT_BONUS(prev) ? : 1);
2923
2924 spin_lock_irq(&rq->lock);
2925
2926 if (unlikely(prev->flags & PF_DEAD))
2927 prev->state = EXIT_DEAD;
2928
2929 switch_count = &prev->nivcsw;
2930 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2931 switch_count = &prev->nvcsw;
2932 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2933 unlikely(signal_pending(prev))))
2934 prev->state = TASK_RUNNING;
2935 else {
2936 if (prev->state == TASK_UNINTERRUPTIBLE)
2937 rq->nr_uninterruptible++;
2938 deactivate_task(prev, rq);
2939 }
2940 }
2941
2942 cpu = smp_processor_id();
2943 if (unlikely(!rq->nr_running)) {
2944go_idle:
2945 idle_balance(cpu, rq);
2946 if (!rq->nr_running) {
2947 next = rq->idle;
2948 rq->expired_timestamp = 0;
2949 wake_sleeping_dependent(cpu, rq);
2950 /*
2951 * wake_sleeping_dependent() might have released
2952 * the runqueue, so break out if we got new
2953 * tasks meanwhile:
2954 */
2955 if (!rq->nr_running)
2956 goto switch_tasks;
2957 }
2958 } else {
2959 if (dependent_sleeper(cpu, rq)) {
2960 next = rq->idle;
2961 goto switch_tasks;
2962 }
2963 /*
2964 * dependent_sleeper() releases and reacquires the runqueue
2965 * lock, hence go into the idle loop if the rq went
2966 * empty meanwhile:
2967 */
2968 if (unlikely(!rq->nr_running))
2969 goto go_idle;
2970 }
2971
2972 array = rq->active;
2973 if (unlikely(!array->nr_active)) {
2974 /*
2975 * Switch the active and expired arrays.
2976 */
2977 schedstat_inc(rq, sched_switch);
2978 rq->active = rq->expired;
2979 rq->expired = array;
2980 array = rq->active;
2981 rq->expired_timestamp = 0;
2982 rq->best_expired_prio = MAX_PRIO;
2983 }
2984
2985 idx = sched_find_first_bit(array->bitmap);
2986 queue = array->queue + idx;
2987 next = list_entry(queue->next, task_t, run_list);
2988
2989 if (!rt_task(next) && next->activated > 0) {
2990 unsigned long long delta = now - next->timestamp;
238628ed 2991 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
2992 delta = 0;
2993
2994 if (next->activated == 1)
2995 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2996
2997 array = next->array;
a3464a10
CS
2998 new_prio = recalc_task_prio(next, next->timestamp + delta);
2999
3000 if (unlikely(next->prio != new_prio)) {
3001 dequeue_task(next, array);
3002 next->prio = new_prio;
3003 enqueue_task(next, array);
3004 } else
3005 requeue_task(next, array);
1da177e4
LT
3006 }
3007 next->activated = 0;
3008switch_tasks:
3009 if (next == rq->idle)
3010 schedstat_inc(rq, sched_goidle);
3011 prefetch(next);
383f2835 3012 prefetch_stack(next);
1da177e4
LT
3013 clear_tsk_need_resched(prev);
3014 rcu_qsctr_inc(task_cpu(prev));
3015
3016 update_cpu_clock(prev, rq, now);
3017
3018 prev->sleep_avg -= run_time;
3019 if ((long)prev->sleep_avg <= 0)
3020 prev->sleep_avg = 0;
3021 prev->timestamp = prev->last_ran = now;
3022
3023 sched_info_switch(prev, next);
3024 if (likely(prev != next)) {
3025 next->timestamp = now;
3026 rq->nr_switches++;
3027 rq->curr = next;
3028 ++*switch_count;
3029
4866cde0 3030 prepare_task_switch(rq, next);
1da177e4
LT
3031 prev = context_switch(rq, prev, next);
3032 barrier();
4866cde0
NP
3033 /*
3034 * this_rq must be evaluated again because prev may have moved
3035 * CPUs since it called schedule(), thus the 'rq' on its stack
3036 * frame will be invalid.
3037 */
3038 finish_task_switch(this_rq(), prev);
1da177e4
LT
3039 } else
3040 spin_unlock_irq(&rq->lock);
3041
3042 prev = current;
3043 if (unlikely(reacquire_kernel_lock(prev) < 0))
3044 goto need_resched_nonpreemptible;
3045 preempt_enable_no_resched();
3046 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3047 goto need_resched;
3048}
3049
3050EXPORT_SYMBOL(schedule);
3051
3052#ifdef CONFIG_PREEMPT
3053/*
3054 * this is is the entry point to schedule() from in-kernel preemption
3055 * off of preempt_enable. Kernel preemptions off return from interrupt
3056 * occur there and call schedule directly.
3057 */
3058asmlinkage void __sched preempt_schedule(void)
3059{
3060 struct thread_info *ti = current_thread_info();
3061#ifdef CONFIG_PREEMPT_BKL
3062 struct task_struct *task = current;
3063 int saved_lock_depth;
3064#endif
3065 /*
3066 * If there is a non-zero preempt_count or interrupts are disabled,
3067 * we do not want to preempt the current task. Just return..
3068 */
3069 if (unlikely(ti->preempt_count || irqs_disabled()))
3070 return;
3071
3072need_resched:
3073 add_preempt_count(PREEMPT_ACTIVE);
3074 /*
3075 * We keep the big kernel semaphore locked, but we
3076 * clear ->lock_depth so that schedule() doesnt
3077 * auto-release the semaphore:
3078 */
3079#ifdef CONFIG_PREEMPT_BKL
3080 saved_lock_depth = task->lock_depth;
3081 task->lock_depth = -1;
3082#endif
3083 schedule();
3084#ifdef CONFIG_PREEMPT_BKL
3085 task->lock_depth = saved_lock_depth;
3086#endif
3087 sub_preempt_count(PREEMPT_ACTIVE);
3088
3089 /* we could miss a preemption opportunity between schedule and now */
3090 barrier();
3091 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3092 goto need_resched;
3093}
3094
3095EXPORT_SYMBOL(preempt_schedule);
3096
3097/*
3098 * this is is the entry point to schedule() from kernel preemption
3099 * off of irq context.
3100 * Note, that this is called and return with irqs disabled. This will
3101 * protect us against recursive calling from irq.
3102 */
3103asmlinkage void __sched preempt_schedule_irq(void)
3104{
3105 struct thread_info *ti = current_thread_info();
3106#ifdef CONFIG_PREEMPT_BKL
3107 struct task_struct *task = current;
3108 int saved_lock_depth;
3109#endif
3110 /* Catch callers which need to be fixed*/
3111 BUG_ON(ti->preempt_count || !irqs_disabled());
3112
3113need_resched:
3114 add_preempt_count(PREEMPT_ACTIVE);
3115 /*
3116 * We keep the big kernel semaphore locked, but we
3117 * clear ->lock_depth so that schedule() doesnt
3118 * auto-release the semaphore:
3119 */
3120#ifdef CONFIG_PREEMPT_BKL
3121 saved_lock_depth = task->lock_depth;
3122 task->lock_depth = -1;
3123#endif
3124 local_irq_enable();
3125 schedule();
3126 local_irq_disable();
3127#ifdef CONFIG_PREEMPT_BKL
3128 task->lock_depth = saved_lock_depth;
3129#endif
3130 sub_preempt_count(PREEMPT_ACTIVE);
3131
3132 /* we could miss a preemption opportunity between schedule and now */
3133 barrier();
3134 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3135 goto need_resched;
3136}
3137
3138#endif /* CONFIG_PREEMPT */
3139
95cdf3b7
IM
3140int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3141 void *key)
1da177e4 3142{
c43dc2fd 3143 task_t *p = curr->private;
1da177e4
LT
3144 return try_to_wake_up(p, mode, sync);
3145}
3146
3147EXPORT_SYMBOL(default_wake_function);
3148
3149/*
3150 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3151 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3152 * number) then we wake all the non-exclusive tasks and one exclusive task.
3153 *
3154 * There are circumstances in which we can try to wake a task which has already
3155 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3156 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3157 */
3158static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3159 int nr_exclusive, int sync, void *key)
3160{
3161 struct list_head *tmp, *next;
3162
3163 list_for_each_safe(tmp, next, &q->task_list) {
3164 wait_queue_t *curr;
3165 unsigned flags;
3166 curr = list_entry(tmp, wait_queue_t, task_list);
3167 flags = curr->flags;
3168 if (curr->func(curr, mode, sync, key) &&
3169 (flags & WQ_FLAG_EXCLUSIVE) &&
3170 !--nr_exclusive)
3171 break;
3172 }
3173}
3174
3175/**
3176 * __wake_up - wake up threads blocked on a waitqueue.
3177 * @q: the waitqueue
3178 * @mode: which threads
3179 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3180 * @key: is directly passed to the wakeup function
1da177e4
LT
3181 */
3182void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3183 int nr_exclusive, void *key)
1da177e4
LT
3184{
3185 unsigned long flags;
3186
3187 spin_lock_irqsave(&q->lock, flags);
3188 __wake_up_common(q, mode, nr_exclusive, 0, key);
3189 spin_unlock_irqrestore(&q->lock, flags);
3190}
3191
3192EXPORT_SYMBOL(__wake_up);
3193
3194/*
3195 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3196 */
3197void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3198{
3199 __wake_up_common(q, mode, 1, 0, NULL);
3200}
3201
3202/**
67be2dd1 3203 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3204 * @q: the waitqueue
3205 * @mode: which threads
3206 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3207 *
3208 * The sync wakeup differs that the waker knows that it will schedule
3209 * away soon, so while the target thread will be woken up, it will not
3210 * be migrated to another CPU - ie. the two threads are 'synchronized'
3211 * with each other. This can prevent needless bouncing between CPUs.
3212 *
3213 * On UP it can prevent extra preemption.
3214 */
95cdf3b7
IM
3215void fastcall
3216__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3217{
3218 unsigned long flags;
3219 int sync = 1;
3220
3221 if (unlikely(!q))
3222 return;
3223
3224 if (unlikely(!nr_exclusive))
3225 sync = 0;
3226
3227 spin_lock_irqsave(&q->lock, flags);
3228 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3229 spin_unlock_irqrestore(&q->lock, flags);
3230}
3231EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3232
3233void fastcall complete(struct completion *x)
3234{
3235 unsigned long flags;
3236
3237 spin_lock_irqsave(&x->wait.lock, flags);
3238 x->done++;
3239 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3240 1, 0, NULL);
3241 spin_unlock_irqrestore(&x->wait.lock, flags);
3242}
3243EXPORT_SYMBOL(complete);
3244
3245void fastcall complete_all(struct completion *x)
3246{
3247 unsigned long flags;
3248
3249 spin_lock_irqsave(&x->wait.lock, flags);
3250 x->done += UINT_MAX/2;
3251 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3252 0, 0, NULL);
3253 spin_unlock_irqrestore(&x->wait.lock, flags);
3254}
3255EXPORT_SYMBOL(complete_all);
3256
3257void fastcall __sched wait_for_completion(struct completion *x)
3258{
3259 might_sleep();
3260 spin_lock_irq(&x->wait.lock);
3261 if (!x->done) {
3262 DECLARE_WAITQUEUE(wait, current);
3263
3264 wait.flags |= WQ_FLAG_EXCLUSIVE;
3265 __add_wait_queue_tail(&x->wait, &wait);
3266 do {
3267 __set_current_state(TASK_UNINTERRUPTIBLE);
3268 spin_unlock_irq(&x->wait.lock);
3269 schedule();
3270 spin_lock_irq(&x->wait.lock);
3271 } while (!x->done);
3272 __remove_wait_queue(&x->wait, &wait);
3273 }
3274 x->done--;
3275 spin_unlock_irq(&x->wait.lock);
3276}
3277EXPORT_SYMBOL(wait_for_completion);
3278
3279unsigned long fastcall __sched
3280wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3281{
3282 might_sleep();
3283
3284 spin_lock_irq(&x->wait.lock);
3285 if (!x->done) {
3286 DECLARE_WAITQUEUE(wait, current);
3287
3288 wait.flags |= WQ_FLAG_EXCLUSIVE;
3289 __add_wait_queue_tail(&x->wait, &wait);
3290 do {
3291 __set_current_state(TASK_UNINTERRUPTIBLE);
3292 spin_unlock_irq(&x->wait.lock);
3293 timeout = schedule_timeout(timeout);
3294 spin_lock_irq(&x->wait.lock);
3295 if (!timeout) {
3296 __remove_wait_queue(&x->wait, &wait);
3297 goto out;
3298 }
3299 } while (!x->done);
3300 __remove_wait_queue(&x->wait, &wait);
3301 }
3302 x->done--;
3303out:
3304 spin_unlock_irq(&x->wait.lock);
3305 return timeout;
3306}
3307EXPORT_SYMBOL(wait_for_completion_timeout);
3308
3309int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3310{
3311 int ret = 0;
3312
3313 might_sleep();
3314
3315 spin_lock_irq(&x->wait.lock);
3316 if (!x->done) {
3317 DECLARE_WAITQUEUE(wait, current);
3318
3319 wait.flags |= WQ_FLAG_EXCLUSIVE;
3320 __add_wait_queue_tail(&x->wait, &wait);
3321 do {
3322 if (signal_pending(current)) {
3323 ret = -ERESTARTSYS;
3324 __remove_wait_queue(&x->wait, &wait);
3325 goto out;
3326 }
3327 __set_current_state(TASK_INTERRUPTIBLE);
3328 spin_unlock_irq(&x->wait.lock);
3329 schedule();
3330 spin_lock_irq(&x->wait.lock);
3331 } while (!x->done);
3332 __remove_wait_queue(&x->wait, &wait);
3333 }
3334 x->done--;
3335out:
3336 spin_unlock_irq(&x->wait.lock);
3337
3338 return ret;
3339}
3340EXPORT_SYMBOL(wait_for_completion_interruptible);
3341
3342unsigned long fastcall __sched
3343wait_for_completion_interruptible_timeout(struct completion *x,
3344 unsigned long timeout)
3345{
3346 might_sleep();
3347
3348 spin_lock_irq(&x->wait.lock);
3349 if (!x->done) {
3350 DECLARE_WAITQUEUE(wait, current);
3351
3352 wait.flags |= WQ_FLAG_EXCLUSIVE;
3353 __add_wait_queue_tail(&x->wait, &wait);
3354 do {
3355 if (signal_pending(current)) {
3356 timeout = -ERESTARTSYS;
3357 __remove_wait_queue(&x->wait, &wait);
3358 goto out;
3359 }
3360 __set_current_state(TASK_INTERRUPTIBLE);
3361 spin_unlock_irq(&x->wait.lock);
3362 timeout = schedule_timeout(timeout);
3363 spin_lock_irq(&x->wait.lock);
3364 if (!timeout) {
3365 __remove_wait_queue(&x->wait, &wait);
3366 goto out;
3367 }
3368 } while (!x->done);
3369 __remove_wait_queue(&x->wait, &wait);
3370 }
3371 x->done--;
3372out:
3373 spin_unlock_irq(&x->wait.lock);
3374 return timeout;
3375}
3376EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3377
3378
3379#define SLEEP_ON_VAR \
3380 unsigned long flags; \
3381 wait_queue_t wait; \
3382 init_waitqueue_entry(&wait, current);
3383
3384#define SLEEP_ON_HEAD \
3385 spin_lock_irqsave(&q->lock,flags); \
3386 __add_wait_queue(q, &wait); \
3387 spin_unlock(&q->lock);
3388
3389#define SLEEP_ON_TAIL \
3390 spin_lock_irq(&q->lock); \
3391 __remove_wait_queue(q, &wait); \
3392 spin_unlock_irqrestore(&q->lock, flags);
3393
3394void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3395{
3396 SLEEP_ON_VAR
3397
3398 current->state = TASK_INTERRUPTIBLE;
3399
3400 SLEEP_ON_HEAD
3401 schedule();
3402 SLEEP_ON_TAIL
3403}
3404
3405EXPORT_SYMBOL(interruptible_sleep_on);
3406
95cdf3b7
IM
3407long fastcall __sched
3408interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3409{
3410 SLEEP_ON_VAR
3411
3412 current->state = TASK_INTERRUPTIBLE;
3413
3414 SLEEP_ON_HEAD
3415 timeout = schedule_timeout(timeout);
3416 SLEEP_ON_TAIL
3417
3418 return timeout;
3419}
3420
3421EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3422
3423void fastcall __sched sleep_on(wait_queue_head_t *q)
3424{
3425 SLEEP_ON_VAR
3426
3427 current->state = TASK_UNINTERRUPTIBLE;
3428
3429 SLEEP_ON_HEAD
3430 schedule();
3431 SLEEP_ON_TAIL
3432}
3433
3434EXPORT_SYMBOL(sleep_on);
3435
3436long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3437{
3438 SLEEP_ON_VAR
3439
3440 current->state = TASK_UNINTERRUPTIBLE;
3441
3442 SLEEP_ON_HEAD
3443 timeout = schedule_timeout(timeout);
3444 SLEEP_ON_TAIL
3445
3446 return timeout;
3447}
3448
3449EXPORT_SYMBOL(sleep_on_timeout);
3450
3451void set_user_nice(task_t *p, long nice)
3452{
3453 unsigned long flags;
3454 prio_array_t *array;
3455 runqueue_t *rq;
3456 int old_prio, new_prio, delta;
3457
3458 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3459 return;
3460 /*
3461 * We have to be careful, if called from sys_setpriority(),
3462 * the task might be in the middle of scheduling on another CPU.
3463 */
3464 rq = task_rq_lock(p, &flags);
3465 /*
3466 * The RT priorities are set via sched_setscheduler(), but we still
3467 * allow the 'normal' nice value to be set - but as expected
3468 * it wont have any effect on scheduling until the task is
b0a9499c 3469 * not SCHED_NORMAL/SCHED_BATCH:
1da177e4
LT
3470 */
3471 if (rt_task(p)) {
3472 p->static_prio = NICE_TO_PRIO(nice);
3473 goto out_unlock;
3474 }
3475 array = p->array;
a2000572 3476 if (array)
1da177e4
LT
3477 dequeue_task(p, array);
3478
3479 old_prio = p->prio;
3480 new_prio = NICE_TO_PRIO(nice);
3481 delta = new_prio - old_prio;
3482 p->static_prio = NICE_TO_PRIO(nice);
3483 p->prio += delta;
3484
3485 if (array) {
3486 enqueue_task(p, array);
3487 /*
3488 * If the task increased its priority or is running and
3489 * lowered its priority, then reschedule its CPU:
3490 */
3491 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3492 resched_task(rq->curr);
3493 }
3494out_unlock:
3495 task_rq_unlock(rq, &flags);
3496}
3497
3498EXPORT_SYMBOL(set_user_nice);
3499
e43379f1
MM
3500/*
3501 * can_nice - check if a task can reduce its nice value
3502 * @p: task
3503 * @nice: nice value
3504 */
3505int can_nice(const task_t *p, const int nice)
3506{
024f4747
MM
3507 /* convert nice value [19,-20] to rlimit style value [1,40] */
3508 int nice_rlim = 20 - nice;
e43379f1
MM
3509 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3510 capable(CAP_SYS_NICE));
3511}
3512
1da177e4
LT
3513#ifdef __ARCH_WANT_SYS_NICE
3514
3515/*
3516 * sys_nice - change the priority of the current process.
3517 * @increment: priority increment
3518 *
3519 * sys_setpriority is a more generic, but much slower function that
3520 * does similar things.
3521 */
3522asmlinkage long sys_nice(int increment)
3523{
3524 int retval;
3525 long nice;
3526
3527 /*
3528 * Setpriority might change our priority at the same moment.
3529 * We don't have to worry. Conceptually one call occurs first
3530 * and we have a single winner.
3531 */
e43379f1
MM
3532 if (increment < -40)
3533 increment = -40;
1da177e4
LT
3534 if (increment > 40)
3535 increment = 40;
3536
3537 nice = PRIO_TO_NICE(current->static_prio) + increment;
3538 if (nice < -20)
3539 nice = -20;
3540 if (nice > 19)
3541 nice = 19;
3542
e43379f1
MM
3543 if (increment < 0 && !can_nice(current, nice))
3544 return -EPERM;
3545
1da177e4
LT
3546 retval = security_task_setnice(current, nice);
3547 if (retval)
3548 return retval;
3549
3550 set_user_nice(current, nice);
3551 return 0;
3552}
3553
3554#endif
3555
3556/**
3557 * task_prio - return the priority value of a given task.
3558 * @p: the task in question.
3559 *
3560 * This is the priority value as seen by users in /proc.
3561 * RT tasks are offset by -200. Normal tasks are centered
3562 * around 0, value goes from -16 to +15.
3563 */
3564int task_prio(const task_t *p)
3565{
3566 return p->prio - MAX_RT_PRIO;
3567}
3568
3569/**
3570 * task_nice - return the nice value of a given task.
3571 * @p: the task in question.
3572 */
3573int task_nice(const task_t *p)
3574{
3575 return TASK_NICE(p);
3576}
1da177e4 3577EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
3578
3579/**
3580 * idle_cpu - is a given cpu idle currently?
3581 * @cpu: the processor in question.
3582 */
3583int idle_cpu(int cpu)
3584{
3585 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3586}
3587
1da177e4
LT
3588/**
3589 * idle_task - return the idle task for a given cpu.
3590 * @cpu: the processor in question.
3591 */
3592task_t *idle_task(int cpu)
3593{
3594 return cpu_rq(cpu)->idle;
3595}
3596
3597/**
3598 * find_process_by_pid - find a process with a matching PID value.
3599 * @pid: the pid in question.
3600 */
3601static inline task_t *find_process_by_pid(pid_t pid)
3602{
3603 return pid ? find_task_by_pid(pid) : current;
3604}
3605
3606/* Actually do priority change: must hold rq lock. */
3607static void __setscheduler(struct task_struct *p, int policy, int prio)
3608{
3609 BUG_ON(p->array);
3610 p->policy = policy;
3611 p->rt_priority = prio;
b0a9499c 3612 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
d46523ea 3613 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
b0a9499c 3614 } else {
1da177e4 3615 p->prio = p->static_prio;
b0a9499c
IM
3616 /*
3617 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3618 */
3619 if (policy == SCHED_BATCH)
3620 p->sleep_avg = 0;
3621 }
1da177e4
LT
3622}
3623
3624/**
3625 * sched_setscheduler - change the scheduling policy and/or RT priority of
3626 * a thread.
3627 * @p: the task in question.
3628 * @policy: new policy.
3629 * @param: structure containing the new RT priority.
3630 */
95cdf3b7
IM
3631int sched_setscheduler(struct task_struct *p, int policy,
3632 struct sched_param *param)
1da177e4
LT
3633{
3634 int retval;
3635 int oldprio, oldpolicy = -1;
3636 prio_array_t *array;
3637 unsigned long flags;
3638 runqueue_t *rq;
3639
3640recheck:
3641 /* double check policy once rq lock held */
3642 if (policy < 0)
3643 policy = oldpolicy = p->policy;
3644 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
b0a9499c
IM
3645 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3646 return -EINVAL;
1da177e4
LT
3647 /*
3648 * Valid priorities for SCHED_FIFO and SCHED_RR are
b0a9499c
IM
3649 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3650 * SCHED_BATCH is 0.
1da177e4
LT
3651 */
3652 if (param->sched_priority < 0 ||
95cdf3b7 3653 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3654 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3655 return -EINVAL;
b0a9499c
IM
3656 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3657 != (param->sched_priority == 0))
1da177e4
LT
3658 return -EINVAL;
3659
37e4ab3f
OC
3660 /*
3661 * Allow unprivileged RT tasks to decrease priority:
3662 */
3663 if (!capable(CAP_SYS_NICE)) {
b0a9499c
IM
3664 /*
3665 * can't change policy, except between SCHED_NORMAL
3666 * and SCHED_BATCH:
3667 */
3668 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3669 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3670 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
37e4ab3f
OC
3671 return -EPERM;
3672 /* can't increase priority */
b0a9499c 3673 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
37e4ab3f
OC
3674 param->sched_priority > p->rt_priority &&
3675 param->sched_priority >
3676 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3677 return -EPERM;
3678 /* can't change other user's priorities */
3679 if ((current->euid != p->euid) &&
3680 (current->euid != p->uid))
3681 return -EPERM;
3682 }
1da177e4
LT
3683
3684 retval = security_task_setscheduler(p, policy, param);
3685 if (retval)
3686 return retval;
3687 /*
3688 * To be able to change p->policy safely, the apropriate
3689 * runqueue lock must be held.
3690 */
3691 rq = task_rq_lock(p, &flags);
3692 /* recheck policy now with rq lock held */
3693 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3694 policy = oldpolicy = -1;
3695 task_rq_unlock(rq, &flags);
3696 goto recheck;
3697 }
3698 array = p->array;
3699 if (array)
3700 deactivate_task(p, rq);
3701 oldprio = p->prio;
3702 __setscheduler(p, policy, param->sched_priority);
3703 if (array) {
3704 __activate_task(p, rq);
3705 /*
3706 * Reschedule if we are currently running on this runqueue and
3707 * our priority decreased, or if we are not currently running on
3708 * this runqueue and our priority is higher than the current's
3709 */
3710 if (task_running(rq, p)) {
3711 if (p->prio > oldprio)
3712 resched_task(rq->curr);
3713 } else if (TASK_PREEMPTS_CURR(p, rq))
3714 resched_task(rq->curr);
3715 }
3716 task_rq_unlock(rq, &flags);
3717 return 0;
3718}
3719EXPORT_SYMBOL_GPL(sched_setscheduler);
3720
95cdf3b7
IM
3721static int
3722do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4
LT
3723{
3724 int retval;
3725 struct sched_param lparam;
3726 struct task_struct *p;
3727
3728 if (!param || pid < 0)
3729 return -EINVAL;
3730 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3731 return -EFAULT;
3732 read_lock_irq(&tasklist_lock);
3733 p = find_process_by_pid(pid);
3734 if (!p) {
3735 read_unlock_irq(&tasklist_lock);
3736 return -ESRCH;
3737 }
3738 retval = sched_setscheduler(p, policy, &lparam);
3739 read_unlock_irq(&tasklist_lock);
3740 return retval;
3741}
3742
3743/**
3744 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3745 * @pid: the pid in question.
3746 * @policy: new policy.
3747 * @param: structure containing the new RT priority.
3748 */
3749asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3750 struct sched_param __user *param)
3751{
c21761f1
JB
3752 /* negative values for policy are not valid */
3753 if (policy < 0)
3754 return -EINVAL;
3755
1da177e4
LT
3756 return do_sched_setscheduler(pid, policy, param);
3757}
3758
3759/**
3760 * sys_sched_setparam - set/change the RT priority of a thread
3761 * @pid: the pid in question.
3762 * @param: structure containing the new RT priority.
3763 */
3764asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3765{
3766 return do_sched_setscheduler(pid, -1, param);
3767}
3768
3769/**
3770 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3771 * @pid: the pid in question.
3772 */
3773asmlinkage long sys_sched_getscheduler(pid_t pid)
3774{
3775 int retval = -EINVAL;
3776 task_t *p;
3777
3778 if (pid < 0)
3779 goto out_nounlock;
3780
3781 retval = -ESRCH;
3782 read_lock(&tasklist_lock);
3783 p = find_process_by_pid(pid);
3784 if (p) {
3785 retval = security_task_getscheduler(p);
3786 if (!retval)
3787 retval = p->policy;
3788 }
3789 read_unlock(&tasklist_lock);
3790
3791out_nounlock:
3792 return retval;
3793}
3794
3795/**
3796 * sys_sched_getscheduler - get the RT priority of a thread
3797 * @pid: the pid in question.
3798 * @param: structure containing the RT priority.
3799 */
3800asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3801{
3802 struct sched_param lp;
3803 int retval = -EINVAL;
3804 task_t *p;
3805
3806 if (!param || pid < 0)
3807 goto out_nounlock;
3808
3809 read_lock(&tasklist_lock);
3810 p = find_process_by_pid(pid);
3811 retval = -ESRCH;
3812 if (!p)
3813 goto out_unlock;
3814
3815 retval = security_task_getscheduler(p);
3816 if (retval)
3817 goto out_unlock;
3818
3819 lp.sched_priority = p->rt_priority;
3820 read_unlock(&tasklist_lock);
3821
3822 /*
3823 * This one might sleep, we cannot do it with a spinlock held ...
3824 */
3825 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3826
3827out_nounlock:
3828 return retval;
3829
3830out_unlock:
3831 read_unlock(&tasklist_lock);
3832 return retval;
3833}
3834
3835long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3836{
3837 task_t *p;
3838 int retval;
3839 cpumask_t cpus_allowed;
3840
3841 lock_cpu_hotplug();
3842 read_lock(&tasklist_lock);
3843
3844 p = find_process_by_pid(pid);
3845 if (!p) {
3846 read_unlock(&tasklist_lock);
3847 unlock_cpu_hotplug();
3848 return -ESRCH;
3849 }
3850
3851 /*
3852 * It is not safe to call set_cpus_allowed with the
3853 * tasklist_lock held. We will bump the task_struct's
3854 * usage count and then drop tasklist_lock.
3855 */
3856 get_task_struct(p);
3857 read_unlock(&tasklist_lock);
3858
3859 retval = -EPERM;
3860 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3861 !capable(CAP_SYS_NICE))
3862 goto out_unlock;
3863
3864 cpus_allowed = cpuset_cpus_allowed(p);
3865 cpus_and(new_mask, new_mask, cpus_allowed);
3866 retval = set_cpus_allowed(p, new_mask);
3867
3868out_unlock:
3869 put_task_struct(p);
3870 unlock_cpu_hotplug();
3871 return retval;
3872}
3873
3874static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3875 cpumask_t *new_mask)
3876{
3877 if (len < sizeof(cpumask_t)) {
3878 memset(new_mask, 0, sizeof(cpumask_t));
3879 } else if (len > sizeof(cpumask_t)) {
3880 len = sizeof(cpumask_t);
3881 }
3882 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3883}
3884
3885/**
3886 * sys_sched_setaffinity - set the cpu affinity of a process
3887 * @pid: pid of the process
3888 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3889 * @user_mask_ptr: user-space pointer to the new cpu mask
3890 */
3891asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3892 unsigned long __user *user_mask_ptr)
3893{
3894 cpumask_t new_mask;
3895 int retval;
3896
3897 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3898 if (retval)
3899 return retval;
3900
3901 return sched_setaffinity(pid, new_mask);
3902}
3903
3904/*
3905 * Represents all cpu's present in the system
3906 * In systems capable of hotplug, this map could dynamically grow
3907 * as new cpu's are detected in the system via any platform specific
3908 * method, such as ACPI for e.g.
3909 */
3910
4cef0c61 3911cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
3912EXPORT_SYMBOL(cpu_present_map);
3913
3914#ifndef CONFIG_SMP
4cef0c61
AK
3915cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3916cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
1da177e4
LT
3917#endif
3918
3919long sched_getaffinity(pid_t pid, cpumask_t *mask)
3920{
3921 int retval;
3922 task_t *p;
3923
3924 lock_cpu_hotplug();
3925 read_lock(&tasklist_lock);
3926
3927 retval = -ESRCH;
3928 p = find_process_by_pid(pid);
3929 if (!p)
3930 goto out_unlock;
3931
3932 retval = 0;
2f7016d9 3933 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
3934
3935out_unlock:
3936 read_unlock(&tasklist_lock);
3937 unlock_cpu_hotplug();
3938 if (retval)
3939 return retval;
3940
3941 return 0;
3942}
3943
3944/**
3945 * sys_sched_getaffinity - get the cpu affinity of a process
3946 * @pid: pid of the process
3947 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3948 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3949 */
3950asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3951 unsigned long __user *user_mask_ptr)
3952{
3953 int ret;
3954 cpumask_t mask;
3955
3956 if (len < sizeof(cpumask_t))
3957 return -EINVAL;
3958
3959 ret = sched_getaffinity(pid, &mask);
3960 if (ret < 0)
3961 return ret;
3962
3963 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3964 return -EFAULT;
3965
3966 return sizeof(cpumask_t);
3967}
3968
3969/**
3970 * sys_sched_yield - yield the current processor to other threads.
3971 *
3972 * this function yields the current CPU by moving the calling thread
3973 * to the expired array. If there are no other threads running on this
3974 * CPU then this function will return.
3975 */
3976asmlinkage long sys_sched_yield(void)
3977{
3978 runqueue_t *rq = this_rq_lock();
3979 prio_array_t *array = current->array;
3980 prio_array_t *target = rq->expired;
3981
3982 schedstat_inc(rq, yld_cnt);
3983 /*
3984 * We implement yielding by moving the task into the expired
3985 * queue.
3986 *
3987 * (special rule: RT tasks will just roundrobin in the active
3988 * array.)
3989 */
3990 if (rt_task(current))
3991 target = rq->active;
3992
5927ad78 3993 if (array->nr_active == 1) {
1da177e4
LT
3994 schedstat_inc(rq, yld_act_empty);
3995 if (!rq->expired->nr_active)
3996 schedstat_inc(rq, yld_both_empty);
3997 } else if (!rq->expired->nr_active)
3998 schedstat_inc(rq, yld_exp_empty);
3999
4000 if (array != target) {
4001 dequeue_task(current, array);
4002 enqueue_task(current, target);
4003 } else
4004 /*
4005 * requeue_task is cheaper so perform that if possible.
4006 */
4007 requeue_task(current, array);
4008
4009 /*
4010 * Since we are going to call schedule() anyway, there's
4011 * no need to preempt or enable interrupts:
4012 */
4013 __release(rq->lock);
4014 _raw_spin_unlock(&rq->lock);
4015 preempt_enable_no_resched();
4016
4017 schedule();
4018
4019 return 0;
4020}
4021
4022static inline void __cond_resched(void)
4023{
5bbcfd90
IM
4024 /*
4025 * The BKS might be reacquired before we have dropped
4026 * PREEMPT_ACTIVE, which could trigger a second
4027 * cond_resched() call.
4028 */
4029 if (unlikely(preempt_count()))
4030 return;
8ba7b0a1
LT
4031 if (unlikely(system_state != SYSTEM_RUNNING))
4032 return;
1da177e4
LT
4033 do {
4034 add_preempt_count(PREEMPT_ACTIVE);
4035 schedule();
4036 sub_preempt_count(PREEMPT_ACTIVE);
4037 } while (need_resched());
4038}
4039
4040int __sched cond_resched(void)
4041{
4042 if (need_resched()) {
4043 __cond_resched();
4044 return 1;
4045 }
4046 return 0;
4047}
4048
4049EXPORT_SYMBOL(cond_resched);
4050
4051/*
4052 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4053 * call schedule, and on return reacquire the lock.
4054 *
4055 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4056 * operations here to prevent schedule() from being called twice (once via
4057 * spin_unlock(), once by hand).
4058 */
95cdf3b7 4059int cond_resched_lock(spinlock_t *lock)
1da177e4 4060{
6df3cecb
JK
4061 int ret = 0;
4062
1da177e4
LT
4063 if (need_lockbreak(lock)) {
4064 spin_unlock(lock);
4065 cpu_relax();
6df3cecb 4066 ret = 1;
1da177e4
LT
4067 spin_lock(lock);
4068 }
4069 if (need_resched()) {
4070 _raw_spin_unlock(lock);
4071 preempt_enable_no_resched();
4072 __cond_resched();
6df3cecb 4073 ret = 1;
1da177e4 4074 spin_lock(lock);
1da177e4 4075 }
6df3cecb 4076 return ret;
1da177e4
LT
4077}
4078
4079EXPORT_SYMBOL(cond_resched_lock);
4080
4081int __sched cond_resched_softirq(void)
4082{
4083 BUG_ON(!in_softirq());
4084
4085 if (need_resched()) {
4086 __local_bh_enable();
4087 __cond_resched();
4088 local_bh_disable();
4089 return 1;
4090 }
4091 return 0;
4092}
4093
4094EXPORT_SYMBOL(cond_resched_softirq);
4095
4096
4097/**
4098 * yield - yield the current processor to other threads.
4099 *
4100 * this is a shortcut for kernel-space yielding - it marks the
4101 * thread runnable and calls sys_sched_yield().
4102 */
4103void __sched yield(void)
4104{
4105 set_current_state(TASK_RUNNING);
4106 sys_sched_yield();
4107}
4108
4109EXPORT_SYMBOL(yield);
4110
4111/*
4112 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4113 * that process accounting knows that this is a task in IO wait state.
4114 *
4115 * But don't do that if it is a deliberate, throttling IO wait (this task
4116 * has set its backing_dev_info: the queue against which it should throttle)
4117 */
4118void __sched io_schedule(void)
4119{
39c715b7 4120 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
4121
4122 atomic_inc(&rq->nr_iowait);
4123 schedule();
4124 atomic_dec(&rq->nr_iowait);
4125}
4126
4127EXPORT_SYMBOL(io_schedule);
4128
4129long __sched io_schedule_timeout(long timeout)
4130{
39c715b7 4131 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
4132 long ret;
4133
4134 atomic_inc(&rq->nr_iowait);
4135 ret = schedule_timeout(timeout);
4136 atomic_dec(&rq->nr_iowait);
4137 return ret;
4138}
4139
4140/**
4141 * sys_sched_get_priority_max - return maximum RT priority.
4142 * @policy: scheduling class.
4143 *
4144 * this syscall returns the maximum rt_priority that can be used
4145 * by a given scheduling class.
4146 */
4147asmlinkage long sys_sched_get_priority_max(int policy)
4148{
4149 int ret = -EINVAL;
4150
4151 switch (policy) {
4152 case SCHED_FIFO:
4153 case SCHED_RR:
4154 ret = MAX_USER_RT_PRIO-1;
4155 break;
4156 case SCHED_NORMAL:
b0a9499c 4157 case SCHED_BATCH:
1da177e4
LT
4158 ret = 0;
4159 break;
4160 }
4161 return ret;
4162}
4163
4164/**
4165 * sys_sched_get_priority_min - return minimum RT priority.
4166 * @policy: scheduling class.
4167 *
4168 * this syscall returns the minimum rt_priority that can be used
4169 * by a given scheduling class.
4170 */
4171asmlinkage long sys_sched_get_priority_min(int policy)
4172{
4173 int ret = -EINVAL;
4174
4175 switch (policy) {
4176 case SCHED_FIFO:
4177 case SCHED_RR:
4178 ret = 1;
4179 break;
4180 case SCHED_NORMAL:
b0a9499c 4181 case SCHED_BATCH:
1da177e4
LT
4182 ret = 0;
4183 }
4184 return ret;
4185}
4186
4187/**
4188 * sys_sched_rr_get_interval - return the default timeslice of a process.
4189 * @pid: pid of the process.
4190 * @interval: userspace pointer to the timeslice value.
4191 *
4192 * this syscall writes the default timeslice value of a given process
4193 * into the user-space timespec buffer. A value of '0' means infinity.
4194 */
4195asmlinkage
4196long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4197{
4198 int retval = -EINVAL;
4199 struct timespec t;
4200 task_t *p;
4201
4202 if (pid < 0)
4203 goto out_nounlock;
4204
4205 retval = -ESRCH;
4206 read_lock(&tasklist_lock);
4207 p = find_process_by_pid(pid);
4208 if (!p)
4209 goto out_unlock;
4210
4211 retval = security_task_getscheduler(p);
4212 if (retval)
4213 goto out_unlock;
4214
4215 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4216 0 : task_timeslice(p), &t);
4217 read_unlock(&tasklist_lock);
4218 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4219out_nounlock:
4220 return retval;
4221out_unlock:
4222 read_unlock(&tasklist_lock);
4223 return retval;
4224}
4225
4226static inline struct task_struct *eldest_child(struct task_struct *p)
4227{
4228 if (list_empty(&p->children)) return NULL;
4229 return list_entry(p->children.next,struct task_struct,sibling);
4230}
4231
4232static inline struct task_struct *older_sibling(struct task_struct *p)
4233{
4234 if (p->sibling.prev==&p->parent->children) return NULL;
4235 return list_entry(p->sibling.prev,struct task_struct,sibling);
4236}
4237
4238static inline struct task_struct *younger_sibling(struct task_struct *p)
4239{
4240 if (p->sibling.next==&p->parent->children) return NULL;
4241 return list_entry(p->sibling.next,struct task_struct,sibling);
4242}
4243
95cdf3b7 4244static void show_task(task_t *p)
1da177e4
LT
4245{
4246 task_t *relative;
4247 unsigned state;
4248 unsigned long free = 0;
4249 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4250
4251 printk("%-13.13s ", p->comm);
4252 state = p->state ? __ffs(p->state) + 1 : 0;
4253 if (state < ARRAY_SIZE(stat_nam))
4254 printk(stat_nam[state]);
4255 else
4256 printk("?");
4257#if (BITS_PER_LONG == 32)
4258 if (state == TASK_RUNNING)
4259 printk(" running ");
4260 else
4261 printk(" %08lX ", thread_saved_pc(p));
4262#else
4263 if (state == TASK_RUNNING)
4264 printk(" running task ");
4265 else
4266 printk(" %016lx ", thread_saved_pc(p));
4267#endif
4268#ifdef CONFIG_DEBUG_STACK_USAGE
4269 {
10ebffde 4270 unsigned long *n = end_of_stack(p);
1da177e4
LT
4271 while (!*n)
4272 n++;
10ebffde 4273 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4274 }
4275#endif
4276 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4277 if ((relative = eldest_child(p)))
4278 printk("%5d ", relative->pid);
4279 else
4280 printk(" ");
4281 if ((relative = younger_sibling(p)))
4282 printk("%7d", relative->pid);
4283 else
4284 printk(" ");
4285 if ((relative = older_sibling(p)))
4286 printk(" %5d", relative->pid);
4287 else
4288 printk(" ");
4289 if (!p->mm)
4290 printk(" (L-TLB)\n");
4291 else
4292 printk(" (NOTLB)\n");
4293
4294 if (state != TASK_RUNNING)
4295 show_stack(p, NULL);
4296}
4297
4298void show_state(void)
4299{
4300 task_t *g, *p;
4301
4302#if (BITS_PER_LONG == 32)
4303 printk("\n"
4304 " sibling\n");
4305 printk(" task PC pid father child younger older\n");
4306#else
4307 printk("\n"
4308 " sibling\n");
4309 printk(" task PC pid father child younger older\n");
4310#endif
4311 read_lock(&tasklist_lock);
4312 do_each_thread(g, p) {
4313 /*
4314 * reset the NMI-timeout, listing all files on a slow
4315 * console might take alot of time:
4316 */
4317 touch_nmi_watchdog();
4318 show_task(p);
4319 } while_each_thread(g, p);
4320
4321 read_unlock(&tasklist_lock);
de5097c2 4322 mutex_debug_show_all_locks();
1da177e4
LT
4323}
4324
f340c0d1
IM
4325/**
4326 * init_idle - set up an idle thread for a given CPU
4327 * @idle: task in question
4328 * @cpu: cpu the idle task belongs to
4329 *
4330 * NOTE: this function does not set the idle thread's NEED_RESCHED
4331 * flag, to make booting more robust.
4332 */
1da177e4
LT
4333void __devinit init_idle(task_t *idle, int cpu)
4334{
4335 runqueue_t *rq = cpu_rq(cpu);
4336 unsigned long flags;
4337
4338 idle->sleep_avg = 0;
4339 idle->array = NULL;
4340 idle->prio = MAX_PRIO;
4341 idle->state = TASK_RUNNING;
4342 idle->cpus_allowed = cpumask_of_cpu(cpu);
4343 set_task_cpu(idle, cpu);
4344
4345 spin_lock_irqsave(&rq->lock, flags);
4346 rq->curr = rq->idle = idle;
4866cde0
NP
4347#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4348 idle->oncpu = 1;
4349#endif
1da177e4
LT
4350 spin_unlock_irqrestore(&rq->lock, flags);
4351
4352 /* Set the preempt count _outside_ the spinlocks! */
4353#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4354 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4355#else
a1261f54 4356 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
4357#endif
4358}
4359
4360/*
4361 * In a system that switches off the HZ timer nohz_cpu_mask
4362 * indicates which cpus entered this state. This is used
4363 * in the rcu update to wait only for active cpus. For system
4364 * which do not switch off the HZ timer nohz_cpu_mask should
4365 * always be CPU_MASK_NONE.
4366 */
4367cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4368
4369#ifdef CONFIG_SMP
4370/*
4371 * This is how migration works:
4372 *
4373 * 1) we queue a migration_req_t structure in the source CPU's
4374 * runqueue and wake up that CPU's migration thread.
4375 * 2) we down() the locked semaphore => thread blocks.
4376 * 3) migration thread wakes up (implicitly it forces the migrated
4377 * thread off the CPU)
4378 * 4) it gets the migration request and checks whether the migrated
4379 * task is still in the wrong runqueue.
4380 * 5) if it's in the wrong runqueue then the migration thread removes
4381 * it and puts it into the right queue.
4382 * 6) migration thread up()s the semaphore.
4383 * 7) we wake up and the migration is done.
4384 */
4385
4386/*
4387 * Change a given task's CPU affinity. Migrate the thread to a
4388 * proper CPU and schedule it away if the CPU it's executing on
4389 * is removed from the allowed bitmask.
4390 *
4391 * NOTE: the caller must have a valid reference to the task, the
4392 * task must not exit() & deallocate itself prematurely. The
4393 * call is not atomic; no spinlocks may be held.
4394 */
4395int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4396{
4397 unsigned long flags;
4398 int ret = 0;
4399 migration_req_t req;
4400 runqueue_t *rq;
4401
4402 rq = task_rq_lock(p, &flags);
4403 if (!cpus_intersects(new_mask, cpu_online_map)) {
4404 ret = -EINVAL;
4405 goto out;
4406 }
4407
4408 p->cpus_allowed = new_mask;
4409 /* Can the task run on the task's current CPU? If so, we're done */
4410 if (cpu_isset(task_cpu(p), new_mask))
4411 goto out;
4412
4413 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4414 /* Need help from migration thread: drop lock and wait. */
4415 task_rq_unlock(rq, &flags);
4416 wake_up_process(rq->migration_thread);
4417 wait_for_completion(&req.done);
4418 tlb_migrate_finish(p->mm);
4419 return 0;
4420 }
4421out:
4422 task_rq_unlock(rq, &flags);
4423 return ret;
4424}
4425
4426EXPORT_SYMBOL_GPL(set_cpus_allowed);
4427
4428/*
4429 * Move (not current) task off this cpu, onto dest cpu. We're doing
4430 * this because either it can't run here any more (set_cpus_allowed()
4431 * away from this CPU, or CPU going down), or because we're
4432 * attempting to rebalance this task on exec (sched_exec).
4433 *
4434 * So we race with normal scheduler movements, but that's OK, as long
4435 * as the task is no longer on this CPU.
4436 */
4437static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4438{
4439 runqueue_t *rq_dest, *rq_src;
4440
4441 if (unlikely(cpu_is_offline(dest_cpu)))
4442 return;
4443
4444 rq_src = cpu_rq(src_cpu);
4445 rq_dest = cpu_rq(dest_cpu);
4446
4447 double_rq_lock(rq_src, rq_dest);
4448 /* Already moved. */
4449 if (task_cpu(p) != src_cpu)
4450 goto out;
4451 /* Affinity changed (again). */
4452 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4453 goto out;
4454
4455 set_task_cpu(p, dest_cpu);
4456 if (p->array) {
4457 /*
4458 * Sync timestamp with rq_dest's before activating.
4459 * The same thing could be achieved by doing this step
4460 * afterwards, and pretending it was a local activate.
4461 * This way is cleaner and logically correct.
4462 */
4463 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4464 + rq_dest->timestamp_last_tick;
4465 deactivate_task(p, rq_src);
4466 activate_task(p, rq_dest, 0);
4467 if (TASK_PREEMPTS_CURR(p, rq_dest))
4468 resched_task(rq_dest->curr);
4469 }
4470
4471out:
4472 double_rq_unlock(rq_src, rq_dest);
4473}
4474
4475/*
4476 * migration_thread - this is a highprio system thread that performs
4477 * thread migration by bumping thread off CPU then 'pushing' onto
4478 * another runqueue.
4479 */
95cdf3b7 4480static int migration_thread(void *data)
1da177e4
LT
4481{
4482 runqueue_t *rq;
4483 int cpu = (long)data;
4484
4485 rq = cpu_rq(cpu);
4486 BUG_ON(rq->migration_thread != current);
4487
4488 set_current_state(TASK_INTERRUPTIBLE);
4489 while (!kthread_should_stop()) {
4490 struct list_head *head;
4491 migration_req_t *req;
4492
3e1d1d28 4493 try_to_freeze();
1da177e4
LT
4494
4495 spin_lock_irq(&rq->lock);
4496
4497 if (cpu_is_offline(cpu)) {
4498 spin_unlock_irq(&rq->lock);
4499 goto wait_to_die;
4500 }
4501
4502 if (rq->active_balance) {
4503 active_load_balance(rq, cpu);
4504 rq->active_balance = 0;
4505 }
4506
4507 head = &rq->migration_queue;
4508
4509 if (list_empty(head)) {
4510 spin_unlock_irq(&rq->lock);
4511 schedule();
4512 set_current_state(TASK_INTERRUPTIBLE);
4513 continue;
4514 }
4515 req = list_entry(head->next, migration_req_t, list);
4516 list_del_init(head->next);
4517
674311d5
NP
4518 spin_unlock(&rq->lock);
4519 __migrate_task(req->task, cpu, req->dest_cpu);
4520 local_irq_enable();
1da177e4
LT
4521
4522 complete(&req->done);
4523 }
4524 __set_current_state(TASK_RUNNING);
4525 return 0;
4526
4527wait_to_die:
4528 /* Wait for kthread_stop */
4529 set_current_state(TASK_INTERRUPTIBLE);
4530 while (!kthread_should_stop()) {
4531 schedule();
4532 set_current_state(TASK_INTERRUPTIBLE);
4533 }
4534 __set_current_state(TASK_RUNNING);
4535 return 0;
4536}
4537
4538#ifdef CONFIG_HOTPLUG_CPU
4539/* Figure out where task on dead CPU should go, use force if neccessary. */
4540static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4541{
4542 int dest_cpu;
4543 cpumask_t mask;
4544
4545 /* On same node? */
4546 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4547 cpus_and(mask, mask, tsk->cpus_allowed);
4548 dest_cpu = any_online_cpu(mask);
4549
4550 /* On any allowed CPU? */
4551 if (dest_cpu == NR_CPUS)
4552 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4553
4554 /* No more Mr. Nice Guy. */
4555 if (dest_cpu == NR_CPUS) {
b39c4fab 4556 cpus_setall(tsk->cpus_allowed);
1da177e4
LT
4557 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4558
4559 /*
4560 * Don't tell them about moving exiting tasks or
4561 * kernel threads (both mm NULL), since they never
4562 * leave kernel.
4563 */
4564 if (tsk->mm && printk_ratelimit())
4565 printk(KERN_INFO "process %d (%s) no "
4566 "longer affine to cpu%d\n",
4567 tsk->pid, tsk->comm, dead_cpu);
4568 }
4569 __migrate_task(tsk, dead_cpu, dest_cpu);
4570}
4571
4572/*
4573 * While a dead CPU has no uninterruptible tasks queued at this point,
4574 * it might still have a nonzero ->nr_uninterruptible counter, because
4575 * for performance reasons the counter is not stricly tracking tasks to
4576 * their home CPUs. So we just add the counter to another CPU's counter,
4577 * to keep the global sum constant after CPU-down:
4578 */
4579static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4580{
4581 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4582 unsigned long flags;
4583
4584 local_irq_save(flags);
4585 double_rq_lock(rq_src, rq_dest);
4586 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4587 rq_src->nr_uninterruptible = 0;
4588 double_rq_unlock(rq_src, rq_dest);
4589 local_irq_restore(flags);
4590}
4591
4592/* Run through task list and migrate tasks from the dead cpu. */
4593static void migrate_live_tasks(int src_cpu)
4594{
4595 struct task_struct *tsk, *t;
4596
4597 write_lock_irq(&tasklist_lock);
4598
4599 do_each_thread(t, tsk) {
4600 if (tsk == current)
4601 continue;
4602
4603 if (task_cpu(tsk) == src_cpu)
4604 move_task_off_dead_cpu(src_cpu, tsk);
4605 } while_each_thread(t, tsk);
4606
4607 write_unlock_irq(&tasklist_lock);
4608}
4609
4610/* Schedules idle task to be the next runnable task on current CPU.
4611 * It does so by boosting its priority to highest possible and adding it to
4612 * the _front_ of runqueue. Used by CPU offline code.
4613 */
4614void sched_idle_next(void)
4615{
4616 int cpu = smp_processor_id();
4617 runqueue_t *rq = this_rq();
4618 struct task_struct *p = rq->idle;
4619 unsigned long flags;
4620
4621 /* cpu has to be offline */
4622 BUG_ON(cpu_online(cpu));
4623
4624 /* Strictly not necessary since rest of the CPUs are stopped by now
4625 * and interrupts disabled on current cpu.
4626 */
4627 spin_lock_irqsave(&rq->lock, flags);
4628
4629 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4630 /* Add idle task to _front_ of it's priority queue */
4631 __activate_idle_task(p, rq);
4632
4633 spin_unlock_irqrestore(&rq->lock, flags);
4634}
4635
4636/* Ensures that the idle task is using init_mm right before its cpu goes
4637 * offline.
4638 */
4639void idle_task_exit(void)
4640{
4641 struct mm_struct *mm = current->active_mm;
4642
4643 BUG_ON(cpu_online(smp_processor_id()));
4644
4645 if (mm != &init_mm)
4646 switch_mm(mm, &init_mm, current);
4647 mmdrop(mm);
4648}
4649
4650static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4651{
4652 struct runqueue *rq = cpu_rq(dead_cpu);
4653
4654 /* Must be exiting, otherwise would be on tasklist. */
4655 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4656
4657 /* Cannot have done final schedule yet: would have vanished. */
4658 BUG_ON(tsk->flags & PF_DEAD);
4659
4660 get_task_struct(tsk);
4661
4662 /*
4663 * Drop lock around migration; if someone else moves it,
4664 * that's OK. No task can be added to this CPU, so iteration is
4665 * fine.
4666 */
4667 spin_unlock_irq(&rq->lock);
4668 move_task_off_dead_cpu(dead_cpu, tsk);
4669 spin_lock_irq(&rq->lock);
4670
4671 put_task_struct(tsk);
4672}
4673
4674/* release_task() removes task from tasklist, so we won't find dead tasks. */
4675static void migrate_dead_tasks(unsigned int dead_cpu)
4676{
4677 unsigned arr, i;
4678 struct runqueue *rq = cpu_rq(dead_cpu);
4679
4680 for (arr = 0; arr < 2; arr++) {
4681 for (i = 0; i < MAX_PRIO; i++) {
4682 struct list_head *list = &rq->arrays[arr].queue[i];
4683 while (!list_empty(list))
4684 migrate_dead(dead_cpu,
4685 list_entry(list->next, task_t,
4686 run_list));
4687 }
4688 }
4689}
4690#endif /* CONFIG_HOTPLUG_CPU */
4691
4692/*
4693 * migration_call - callback that gets triggered when a CPU is added.
4694 * Here we can start up the necessary migration thread for the new CPU.
4695 */
4696static int migration_call(struct notifier_block *nfb, unsigned long action,
4697 void *hcpu)
4698{
4699 int cpu = (long)hcpu;
4700 struct task_struct *p;
4701 struct runqueue *rq;
4702 unsigned long flags;
4703
4704 switch (action) {
4705 case CPU_UP_PREPARE:
4706 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4707 if (IS_ERR(p))
4708 return NOTIFY_BAD;
4709 p->flags |= PF_NOFREEZE;
4710 kthread_bind(p, cpu);
4711 /* Must be high prio: stop_machine expects to yield to it. */
4712 rq = task_rq_lock(p, &flags);
4713 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4714 task_rq_unlock(rq, &flags);
4715 cpu_rq(cpu)->migration_thread = p;
4716 break;
4717 case CPU_ONLINE:
4718 /* Strictly unneccessary, as first user will wake it. */
4719 wake_up_process(cpu_rq(cpu)->migration_thread);
4720 break;
4721#ifdef CONFIG_HOTPLUG_CPU
4722 case CPU_UP_CANCELED:
4723 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
4724 kthread_bind(cpu_rq(cpu)->migration_thread,
4725 any_online_cpu(cpu_online_map));
1da177e4
LT
4726 kthread_stop(cpu_rq(cpu)->migration_thread);
4727 cpu_rq(cpu)->migration_thread = NULL;
4728 break;
4729 case CPU_DEAD:
4730 migrate_live_tasks(cpu);
4731 rq = cpu_rq(cpu);
4732 kthread_stop(rq->migration_thread);
4733 rq->migration_thread = NULL;
4734 /* Idle task back to normal (off runqueue, low prio) */
4735 rq = task_rq_lock(rq->idle, &flags);
4736 deactivate_task(rq->idle, rq);
4737 rq->idle->static_prio = MAX_PRIO;
4738 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4739 migrate_dead_tasks(cpu);
4740 task_rq_unlock(rq, &flags);
4741 migrate_nr_uninterruptible(rq);
4742 BUG_ON(rq->nr_running != 0);
4743
4744 /* No need to migrate the tasks: it was best-effort if
4745 * they didn't do lock_cpu_hotplug(). Just wake up
4746 * the requestors. */
4747 spin_lock_irq(&rq->lock);
4748 while (!list_empty(&rq->migration_queue)) {
4749 migration_req_t *req;
4750 req = list_entry(rq->migration_queue.next,
4751 migration_req_t, list);
1da177e4
LT
4752 list_del_init(&req->list);
4753 complete(&req->done);
4754 }
4755 spin_unlock_irq(&rq->lock);
4756 break;
4757#endif
4758 }
4759 return NOTIFY_OK;
4760}
4761
4762/* Register at highest priority so that task migration (migrate_all_tasks)
4763 * happens before everything else.
4764 */
4765static struct notifier_block __devinitdata migration_notifier = {
4766 .notifier_call = migration_call,
4767 .priority = 10
4768};
4769
4770int __init migration_init(void)
4771{
4772 void *cpu = (void *)(long)smp_processor_id();
4773 /* Start one for boot CPU. */
4774 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4775 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4776 register_cpu_notifier(&migration_notifier);
4777 return 0;
4778}
4779#endif
4780
4781#ifdef CONFIG_SMP
1a20ff27 4782#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
4783#ifdef SCHED_DOMAIN_DEBUG
4784static void sched_domain_debug(struct sched_domain *sd, int cpu)
4785{
4786 int level = 0;
4787
41c7ce9a
NP
4788 if (!sd) {
4789 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4790 return;
4791 }
4792
1da177e4
LT
4793 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4794
4795 do {
4796 int i;
4797 char str[NR_CPUS];
4798 struct sched_group *group = sd->groups;
4799 cpumask_t groupmask;
4800
4801 cpumask_scnprintf(str, NR_CPUS, sd->span);
4802 cpus_clear(groupmask);
4803
4804 printk(KERN_DEBUG);
4805 for (i = 0; i < level + 1; i++)
4806 printk(" ");
4807 printk("domain %d: ", level);
4808
4809 if (!(sd->flags & SD_LOAD_BALANCE)) {
4810 printk("does not load-balance\n");
4811 if (sd->parent)
4812 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4813 break;
4814 }
4815
4816 printk("span %s\n", str);
4817
4818 if (!cpu_isset(cpu, sd->span))
4819 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4820 if (!cpu_isset(cpu, group->cpumask))
4821 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4822
4823 printk(KERN_DEBUG);
4824 for (i = 0; i < level + 2; i++)
4825 printk(" ");
4826 printk("groups:");
4827 do {
4828 if (!group) {
4829 printk("\n");
4830 printk(KERN_ERR "ERROR: group is NULL\n");
4831 break;
4832 }
4833
4834 if (!group->cpu_power) {
4835 printk("\n");
4836 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4837 }
4838
4839 if (!cpus_weight(group->cpumask)) {
4840 printk("\n");
4841 printk(KERN_ERR "ERROR: empty group\n");
4842 }
4843
4844 if (cpus_intersects(groupmask, group->cpumask)) {
4845 printk("\n");
4846 printk(KERN_ERR "ERROR: repeated CPUs\n");
4847 }
4848
4849 cpus_or(groupmask, groupmask, group->cpumask);
4850
4851 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4852 printk(" %s", str);
4853
4854 group = group->next;
4855 } while (group != sd->groups);
4856 printk("\n");
4857
4858 if (!cpus_equal(sd->span, groupmask))
4859 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4860
4861 level++;
4862 sd = sd->parent;
4863
4864 if (sd) {
4865 if (!cpus_subset(groupmask, sd->span))
4866 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4867 }
4868
4869 } while (sd);
4870}
4871#else
4872#define sched_domain_debug(sd, cpu) {}
4873#endif
4874
1a20ff27 4875static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
4876{
4877 if (cpus_weight(sd->span) == 1)
4878 return 1;
4879
4880 /* Following flags need at least 2 groups */
4881 if (sd->flags & (SD_LOAD_BALANCE |
4882 SD_BALANCE_NEWIDLE |
4883 SD_BALANCE_FORK |
4884 SD_BALANCE_EXEC)) {
4885 if (sd->groups != sd->groups->next)
4886 return 0;
4887 }
4888
4889 /* Following flags don't use groups */
4890 if (sd->flags & (SD_WAKE_IDLE |
4891 SD_WAKE_AFFINE |
4892 SD_WAKE_BALANCE))
4893 return 0;
4894
4895 return 1;
4896}
4897
1a20ff27 4898static int sd_parent_degenerate(struct sched_domain *sd,
245af2c7
SS
4899 struct sched_domain *parent)
4900{
4901 unsigned long cflags = sd->flags, pflags = parent->flags;
4902
4903 if (sd_degenerate(parent))
4904 return 1;
4905
4906 if (!cpus_equal(sd->span, parent->span))
4907 return 0;
4908
4909 /* Does parent contain flags not in child? */
4910 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4911 if (cflags & SD_WAKE_AFFINE)
4912 pflags &= ~SD_WAKE_BALANCE;
4913 /* Flags needing groups don't count if only 1 group in parent */
4914 if (parent->groups == parent->groups->next) {
4915 pflags &= ~(SD_LOAD_BALANCE |
4916 SD_BALANCE_NEWIDLE |
4917 SD_BALANCE_FORK |
4918 SD_BALANCE_EXEC);
4919 }
4920 if (~cflags & pflags)
4921 return 0;
4922
4923 return 1;
4924}
4925
1da177e4
LT
4926/*
4927 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4928 * hold the hotplug lock.
4929 */
9c1cfda2 4930static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 4931{
1da177e4 4932 runqueue_t *rq = cpu_rq(cpu);
245af2c7
SS
4933 struct sched_domain *tmp;
4934
4935 /* Remove the sched domains which do not contribute to scheduling. */
4936 for (tmp = sd; tmp; tmp = tmp->parent) {
4937 struct sched_domain *parent = tmp->parent;
4938 if (!parent)
4939 break;
4940 if (sd_parent_degenerate(tmp, parent))
4941 tmp->parent = parent->parent;
4942 }
4943
4944 if (sd && sd_degenerate(sd))
4945 sd = sd->parent;
1da177e4
LT
4946
4947 sched_domain_debug(sd, cpu);
4948
674311d5 4949 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
4950}
4951
4952/* cpus with isolated domains */
9c1cfda2 4953static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
4954
4955/* Setup the mask of cpus configured for isolated domains */
4956static int __init isolated_cpu_setup(char *str)
4957{
4958 int ints[NR_CPUS], i;
4959
4960 str = get_options(str, ARRAY_SIZE(ints), ints);
4961 cpus_clear(cpu_isolated_map);
4962 for (i = 1; i <= ints[0]; i++)
4963 if (ints[i] < NR_CPUS)
4964 cpu_set(ints[i], cpu_isolated_map);
4965 return 1;
4966}
4967
4968__setup ("isolcpus=", isolated_cpu_setup);
4969
4970/*
4971 * init_sched_build_groups takes an array of groups, the cpumask we wish
4972 * to span, and a pointer to a function which identifies what group a CPU
4973 * belongs to. The return value of group_fn must be a valid index into the
4974 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4975 * keep track of groups covered with a cpumask_t).
4976 *
4977 * init_sched_build_groups will build a circular linked list of the groups
4978 * covered by the given span, and will set each group's ->cpumask correctly,
4979 * and ->cpu_power to 0.
4980 */
9c1cfda2
JH
4981static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4982 int (*group_fn)(int cpu))
1da177e4
LT
4983{
4984 struct sched_group *first = NULL, *last = NULL;
4985 cpumask_t covered = CPU_MASK_NONE;
4986 int i;
4987
4988 for_each_cpu_mask(i, span) {
4989 int group = group_fn(i);
4990 struct sched_group *sg = &groups[group];
4991 int j;
4992
4993 if (cpu_isset(i, covered))
4994 continue;
4995
4996 sg->cpumask = CPU_MASK_NONE;
4997 sg->cpu_power = 0;
4998
4999 for_each_cpu_mask(j, span) {
5000 if (group_fn(j) != group)
5001 continue;
5002
5003 cpu_set(j, covered);
5004 cpu_set(j, sg->cpumask);
5005 }
5006 if (!first)
5007 first = sg;
5008 if (last)
5009 last->next = sg;
5010 last = sg;
5011 }
5012 last->next = first;
5013}
5014
9c1cfda2 5015#define SD_NODES_PER_DOMAIN 16
1da177e4 5016
198e2f18 5017/*
5018 * Self-tuning task migration cost measurement between source and target CPUs.
5019 *
5020 * This is done by measuring the cost of manipulating buffers of varying
5021 * sizes. For a given buffer-size here are the steps that are taken:
5022 *
5023 * 1) the source CPU reads+dirties a shared buffer
5024 * 2) the target CPU reads+dirties the same shared buffer
5025 *
5026 * We measure how long they take, in the following 4 scenarios:
5027 *
5028 * - source: CPU1, target: CPU2 | cost1
5029 * - source: CPU2, target: CPU1 | cost2
5030 * - source: CPU1, target: CPU1 | cost3
5031 * - source: CPU2, target: CPU2 | cost4
5032 *
5033 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5034 * the cost of migration.
5035 *
5036 * We then start off from a small buffer-size and iterate up to larger
5037 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5038 * doing a maximum search for the cost. (The maximum cost for a migration
5039 * normally occurs when the working set size is around the effective cache
5040 * size.)
5041 */
5042#define SEARCH_SCOPE 2
5043#define MIN_CACHE_SIZE (64*1024U)
5044#define DEFAULT_CACHE_SIZE (5*1024*1024U)
70b4d63e 5045#define ITERATIONS 1
198e2f18 5046#define SIZE_THRESH 130
5047#define COST_THRESH 130
5048
5049/*
5050 * The migration cost is a function of 'domain distance'. Domain
5051 * distance is the number of steps a CPU has to iterate down its
5052 * domain tree to share a domain with the other CPU. The farther
5053 * two CPUs are from each other, the larger the distance gets.
5054 *
5055 * Note that we use the distance only to cache measurement results,
5056 * the distance value is not used numerically otherwise. When two
5057 * CPUs have the same distance it is assumed that the migration
5058 * cost is the same. (this is a simplification but quite practical)
5059 */
5060#define MAX_DOMAIN_DISTANCE 32
5061
5062static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
4bbf39c2
IM
5063 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5064/*
5065 * Architectures may override the migration cost and thus avoid
5066 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5067 * virtualized hardware:
5068 */
5069#ifdef CONFIG_DEFAULT_MIGRATION_COST
5070 CONFIG_DEFAULT_MIGRATION_COST
5071#else
5072 -1LL
5073#endif
5074};
198e2f18 5075
5076/*
5077 * Allow override of migration cost - in units of microseconds.
5078 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5079 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5080 */
5081static int __init migration_cost_setup(char *str)
5082{
5083 int ints[MAX_DOMAIN_DISTANCE+1], i;
5084
5085 str = get_options(str, ARRAY_SIZE(ints), ints);
5086
5087 printk("#ints: %d\n", ints[0]);
5088 for (i = 1; i <= ints[0]; i++) {
5089 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5090 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5091 }
5092 return 1;
5093}
5094
5095__setup ("migration_cost=", migration_cost_setup);
5096
5097/*
5098 * Global multiplier (divisor) for migration-cutoff values,
5099 * in percentiles. E.g. use a value of 150 to get 1.5 times
5100 * longer cache-hot cutoff times.
5101 *
5102 * (We scale it from 100 to 128 to long long handling easier.)
5103 */
5104
5105#define MIGRATION_FACTOR_SCALE 128
5106
5107static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5108
5109static int __init setup_migration_factor(char *str)
5110{
5111 get_option(&str, &migration_factor);
5112 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5113 return 1;
5114}
5115
5116__setup("migration_factor=", setup_migration_factor);
5117
5118/*
5119 * Estimated distance of two CPUs, measured via the number of domains
5120 * we have to pass for the two CPUs to be in the same span:
5121 */
5122static unsigned long domain_distance(int cpu1, int cpu2)
5123{
5124 unsigned long distance = 0;
5125 struct sched_domain *sd;
5126
5127 for_each_domain(cpu1, sd) {
5128 WARN_ON(!cpu_isset(cpu1, sd->span));
5129 if (cpu_isset(cpu2, sd->span))
5130 return distance;
5131 distance++;
5132 }
5133 if (distance >= MAX_DOMAIN_DISTANCE) {
5134 WARN_ON(1);
5135 distance = MAX_DOMAIN_DISTANCE-1;
5136 }
5137
5138 return distance;
5139}
5140
5141static unsigned int migration_debug;
5142
5143static int __init setup_migration_debug(char *str)
5144{
5145 get_option(&str, &migration_debug);
5146 return 1;
5147}
5148
5149__setup("migration_debug=", setup_migration_debug);
5150
5151/*
5152 * Maximum cache-size that the scheduler should try to measure.
5153 * Architectures with larger caches should tune this up during
5154 * bootup. Gets used in the domain-setup code (i.e. during SMP
5155 * bootup).
5156 */
5157unsigned int max_cache_size;
5158
5159static int __init setup_max_cache_size(char *str)
5160{
5161 get_option(&str, &max_cache_size);
5162 return 1;
5163}
5164
5165__setup("max_cache_size=", setup_max_cache_size);
5166
5167/*
5168 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5169 * is the operation that is timed, so we try to generate unpredictable
5170 * cachemisses that still end up filling the L2 cache:
5171 */
5172static void touch_cache(void *__cache, unsigned long __size)
5173{
5174 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5175 chunk2 = 2*size/3;
5176 unsigned long *cache = __cache;
5177 int i;
5178
5179 for (i = 0; i < size/6; i += 8) {
5180 switch (i % 6) {
5181 case 0: cache[i]++;
5182 case 1: cache[size-1-i]++;
5183 case 2: cache[chunk1-i]++;
5184 case 3: cache[chunk1+i]++;
5185 case 4: cache[chunk2-i]++;
5186 case 5: cache[chunk2+i]++;
5187 }
5188 }
5189}
5190
5191/*
5192 * Measure the cache-cost of one task migration. Returns in units of nsec.
5193 */
5194static unsigned long long measure_one(void *cache, unsigned long size,
5195 int source, int target)
5196{
5197 cpumask_t mask, saved_mask;
5198 unsigned long long t0, t1, t2, t3, cost;
5199
5200 saved_mask = current->cpus_allowed;
5201
5202 /*
5203 * Flush source caches to RAM and invalidate them:
5204 */
5205 sched_cacheflush();
5206
5207 /*
5208 * Migrate to the source CPU:
5209 */
5210 mask = cpumask_of_cpu(source);
5211 set_cpus_allowed(current, mask);
5212 WARN_ON(smp_processor_id() != source);
5213
5214 /*
5215 * Dirty the working set:
5216 */
5217 t0 = sched_clock();
5218 touch_cache(cache, size);
5219 t1 = sched_clock();
5220
5221 /*
5222 * Migrate to the target CPU, dirty the L2 cache and access
5223 * the shared buffer. (which represents the working set
5224 * of a migrated task.)
5225 */
5226 mask = cpumask_of_cpu(target);
5227 set_cpus_allowed(current, mask);
5228 WARN_ON(smp_processor_id() != target);
5229
5230 t2 = sched_clock();
5231 touch_cache(cache, size);
5232 t3 = sched_clock();
5233
5234 cost = t1-t0 + t3-t2;
5235
5236 if (migration_debug >= 2)
5237 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5238 source, target, t1-t0, t1-t0, t3-t2, cost);
5239 /*
5240 * Flush target caches to RAM and invalidate them:
5241 */
5242 sched_cacheflush();
5243
5244 set_cpus_allowed(current, saved_mask);
5245
5246 return cost;
5247}
5248
5249/*
5250 * Measure a series of task migrations and return the average
5251 * result. Since this code runs early during bootup the system
5252 * is 'undisturbed' and the average latency makes sense.
5253 *
5254 * The algorithm in essence auto-detects the relevant cache-size,
5255 * so it will properly detect different cachesizes for different
5256 * cache-hierarchies, depending on how the CPUs are connected.
5257 *
5258 * Architectures can prime the upper limit of the search range via
5259 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5260 */
5261static unsigned long long
5262measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5263{
5264 unsigned long long cost1, cost2;
5265 int i;
5266
5267 /*
5268 * Measure the migration cost of 'size' bytes, over an
5269 * average of 10 runs:
5270 *
5271 * (We perturb the cache size by a small (0..4k)
5272 * value to compensate size/alignment related artifacts.
5273 * We also subtract the cost of the operation done on
5274 * the same CPU.)
5275 */
5276 cost1 = 0;
5277
5278 /*
5279 * dry run, to make sure we start off cache-cold on cpu1,
5280 * and to get any vmalloc pagefaults in advance:
5281 */
5282 measure_one(cache, size, cpu1, cpu2);
5283 for (i = 0; i < ITERATIONS; i++)
5284 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5285
5286 measure_one(cache, size, cpu2, cpu1);
5287 for (i = 0; i < ITERATIONS; i++)
5288 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5289
5290 /*
5291 * (We measure the non-migrating [cached] cost on both
5292 * cpu1 and cpu2, to handle CPUs with different speeds)
5293 */
5294 cost2 = 0;
5295
5296 measure_one(cache, size, cpu1, cpu1);
5297 for (i = 0; i < ITERATIONS; i++)
5298 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5299
5300 measure_one(cache, size, cpu2, cpu2);
5301 for (i = 0; i < ITERATIONS; i++)
5302 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5303
5304 /*
5305 * Get the per-iteration migration cost:
5306 */
5307 do_div(cost1, 2*ITERATIONS);
5308 do_div(cost2, 2*ITERATIONS);
5309
5310 return cost1 - cost2;
5311}
5312
5313static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5314{
5315 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5316 unsigned int max_size, size, size_found = 0;
5317 long long cost = 0, prev_cost;
5318 void *cache;
5319
5320 /*
5321 * Search from max_cache_size*5 down to 64K - the real relevant
5322 * cachesize has to lie somewhere inbetween.
5323 */
5324 if (max_cache_size) {
5325 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5326 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5327 } else {
5328 /*
5329 * Since we have no estimation about the relevant
5330 * search range
5331 */
5332 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5333 size = MIN_CACHE_SIZE;
5334 }
5335
5336 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5337 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5338 return 0;
5339 }
5340
5341 /*
5342 * Allocate the working set:
5343 */
5344 cache = vmalloc(max_size);
5345 if (!cache) {
5346 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5347 return 1000000; // return 1 msec on very small boxen
5348 }
5349
5350 while (size <= max_size) {
5351 prev_cost = cost;
5352 cost = measure_cost(cpu1, cpu2, cache, size);
5353
5354 /*
5355 * Update the max:
5356 */
5357 if (cost > 0) {
5358 if (max_cost < cost) {
5359 max_cost = cost;
5360 size_found = size;
5361 }
5362 }
5363 /*
5364 * Calculate average fluctuation, we use this to prevent
5365 * noise from triggering an early break out of the loop:
5366 */
5367 fluct = abs(cost - prev_cost);
5368 avg_fluct = (avg_fluct + fluct)/2;
5369
5370 if (migration_debug)
5371 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5372 cpu1, cpu2, size,
5373 (long)cost / 1000000,
5374 ((long)cost / 100000) % 10,
5375 (long)max_cost / 1000000,
5376 ((long)max_cost / 100000) % 10,
5377 domain_distance(cpu1, cpu2),
5378 cost, avg_fluct);
5379
5380 /*
5381 * If we iterated at least 20% past the previous maximum,
5382 * and the cost has dropped by more than 20% already,
5383 * (taking fluctuations into account) then we assume to
5384 * have found the maximum and break out of the loop early:
5385 */
5386 if (size_found && (size*100 > size_found*SIZE_THRESH))
5387 if (cost+avg_fluct <= 0 ||
5388 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5389
5390 if (migration_debug)
5391 printk("-> found max.\n");
5392 break;
5393 }
5394 /*
70b4d63e 5395 * Increase the cachesize in 10% steps:
198e2f18 5396 */
70b4d63e 5397 size = size * 10 / 9;
198e2f18 5398 }
5399
5400 if (migration_debug)
5401 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5402 cpu1, cpu2, size_found, max_cost);
5403
5404 vfree(cache);
5405
5406 /*
5407 * A task is considered 'cache cold' if at least 2 times
5408 * the worst-case cost of migration has passed.
5409 *
5410 * (this limit is only listened to if the load-balancing
5411 * situation is 'nice' - if there is a large imbalance we
5412 * ignore it for the sake of CPU utilization and
5413 * processing fairness.)
5414 */
5415 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5416}
5417
5418static void calibrate_migration_costs(const cpumask_t *cpu_map)
5419{
5420 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5421 unsigned long j0, j1, distance, max_distance = 0;
5422 struct sched_domain *sd;
5423
5424 j0 = jiffies;
5425
5426 /*
5427 * First pass - calculate the cacheflush times:
5428 */
5429 for_each_cpu_mask(cpu1, *cpu_map) {
5430 for_each_cpu_mask(cpu2, *cpu_map) {
5431 if (cpu1 == cpu2)
5432 continue;
5433 distance = domain_distance(cpu1, cpu2);
5434 max_distance = max(max_distance, distance);
5435 /*
5436 * No result cached yet?
5437 */
5438 if (migration_cost[distance] == -1LL)
5439 migration_cost[distance] =
5440 measure_migration_cost(cpu1, cpu2);
5441 }
5442 }
5443 /*
5444 * Second pass - update the sched domain hierarchy with
5445 * the new cache-hot-time estimations:
5446 */
5447 for_each_cpu_mask(cpu, *cpu_map) {
5448 distance = 0;
5449 for_each_domain(cpu, sd) {
5450 sd->cache_hot_time = migration_cost[distance];
5451 distance++;
5452 }
5453 }
5454 /*
5455 * Print the matrix:
5456 */
5457 if (migration_debug)
5458 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5459 max_cache_size,
5460#ifdef CONFIG_X86
5461 cpu_khz/1000
5462#else
5463 -1
5464#endif
5465 );
bd576c95
CE
5466 if (system_state == SYSTEM_BOOTING) {
5467 printk("migration_cost=");
5468 for (distance = 0; distance <= max_distance; distance++) {
5469 if (distance)
5470 printk(",");
5471 printk("%ld", (long)migration_cost[distance] / 1000);
5472 }
5473 printk("\n");
198e2f18 5474 }
198e2f18 5475 j1 = jiffies;
5476 if (migration_debug)
5477 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5478
5479 /*
5480 * Move back to the original CPU. NUMA-Q gets confused
5481 * if we migrate to another quad during bootup.
5482 */
5483 if (raw_smp_processor_id() != orig_cpu) {
5484 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5485 saved_mask = current->cpus_allowed;
5486
5487 set_cpus_allowed(current, mask);
5488 set_cpus_allowed(current, saved_mask);
5489 }
5490}
5491
9c1cfda2 5492#ifdef CONFIG_NUMA
198e2f18 5493
9c1cfda2
JH
5494/**
5495 * find_next_best_node - find the next node to include in a sched_domain
5496 * @node: node whose sched_domain we're building
5497 * @used_nodes: nodes already in the sched_domain
5498 *
5499 * Find the next node to include in a given scheduling domain. Simply
5500 * finds the closest node not already in the @used_nodes map.
5501 *
5502 * Should use nodemask_t.
5503 */
5504static int find_next_best_node(int node, unsigned long *used_nodes)
5505{
5506 int i, n, val, min_val, best_node = 0;
5507
5508 min_val = INT_MAX;
5509
5510 for (i = 0; i < MAX_NUMNODES; i++) {
5511 /* Start at @node */
5512 n = (node + i) % MAX_NUMNODES;
5513
5514 if (!nr_cpus_node(n))
5515 continue;
5516
5517 /* Skip already used nodes */
5518 if (test_bit(n, used_nodes))
5519 continue;
5520
5521 /* Simple min distance search */
5522 val = node_distance(node, n);
5523
5524 if (val < min_val) {
5525 min_val = val;
5526 best_node = n;
5527 }
5528 }
5529
5530 set_bit(best_node, used_nodes);
5531 return best_node;
5532}
5533
5534/**
5535 * sched_domain_node_span - get a cpumask for a node's sched_domain
5536 * @node: node whose cpumask we're constructing
5537 * @size: number of nodes to include in this span
5538 *
5539 * Given a node, construct a good cpumask for its sched_domain to span. It
5540 * should be one that prevents unnecessary balancing, but also spreads tasks
5541 * out optimally.
5542 */
5543static cpumask_t sched_domain_node_span(int node)
5544{
5545 int i;
5546 cpumask_t span, nodemask;
5547 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5548
5549 cpus_clear(span);
5550 bitmap_zero(used_nodes, MAX_NUMNODES);
5551
5552 nodemask = node_to_cpumask(node);
5553 cpus_or(span, span, nodemask);
5554 set_bit(node, used_nodes);
5555
5556 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5557 int next_node = find_next_best_node(node, used_nodes);
5558 nodemask = node_to_cpumask(next_node);
5559 cpus_or(span, span, nodemask);
5560 }
5561
5562 return span;
5563}
5564#endif
5565
5566/*
5567 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5568 * can switch it on easily if needed.
5569 */
1da177e4
LT
5570#ifdef CONFIG_SCHED_SMT
5571static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5572static struct sched_group sched_group_cpus[NR_CPUS];
1a20ff27 5573static int cpu_to_cpu_group(int cpu)
1da177e4
LT
5574{
5575 return cpu;
5576}
5577#endif
5578
5579static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5580static struct sched_group sched_group_phys[NR_CPUS];
1a20ff27 5581static int cpu_to_phys_group(int cpu)
1da177e4
LT
5582{
5583#ifdef CONFIG_SCHED_SMT
5584 return first_cpu(cpu_sibling_map[cpu]);
5585#else
5586 return cpu;
5587#endif
5588}
5589
5590#ifdef CONFIG_NUMA
1da177e4 5591/*
9c1cfda2
JH
5592 * The init_sched_build_groups can't handle what we want to do with node
5593 * groups, so roll our own. Now each node has its own list of groups which
5594 * gets dynamically allocated.
1da177e4 5595 */
9c1cfda2 5596static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5597static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5598
9c1cfda2 5599static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
d1b55138 5600static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
9c1cfda2
JH
5601
5602static int cpu_to_allnodes_group(int cpu)
5603{
5604 return cpu_to_node(cpu);
1da177e4
LT
5605}
5606#endif
5607
5608/*
1a20ff27
DG
5609 * Build sched domains for a given set of cpus and attach the sched domains
5610 * to the individual cpus
1da177e4 5611 */
9c1cfda2 5612void build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5613{
5614 int i;
d1b55138
JH
5615#ifdef CONFIG_NUMA
5616 struct sched_group **sched_group_nodes = NULL;
5617 struct sched_group *sched_group_allnodes = NULL;
5618
5619 /*
5620 * Allocate the per-node list of sched groups
5621 */
5622 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5623 GFP_ATOMIC);
5624 if (!sched_group_nodes) {
5625 printk(KERN_WARNING "Can not alloc sched group node list\n");
5626 return;
5627 }
5628 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5629#endif
1da177e4
LT
5630
5631 /*
1a20ff27 5632 * Set up domains for cpus specified by the cpu_map.
1da177e4 5633 */
1a20ff27 5634 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5635 int group;
5636 struct sched_domain *sd = NULL, *p;
5637 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5638
1a20ff27 5639 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5640
5641#ifdef CONFIG_NUMA
d1b55138 5642 if (cpus_weight(*cpu_map)
9c1cfda2 5643 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
d1b55138
JH
5644 if (!sched_group_allnodes) {
5645 sched_group_allnodes
5646 = kmalloc(sizeof(struct sched_group)
5647 * MAX_NUMNODES,
5648 GFP_KERNEL);
5649 if (!sched_group_allnodes) {
5650 printk(KERN_WARNING
5651 "Can not alloc allnodes sched group\n");
5652 break;
5653 }
5654 sched_group_allnodes_bycpu[i]
5655 = sched_group_allnodes;
5656 }
9c1cfda2
JH
5657 sd = &per_cpu(allnodes_domains, i);
5658 *sd = SD_ALLNODES_INIT;
5659 sd->span = *cpu_map;
5660 group = cpu_to_allnodes_group(i);
5661 sd->groups = &sched_group_allnodes[group];
5662 p = sd;
5663 } else
5664 p = NULL;
5665
1da177e4 5666 sd = &per_cpu(node_domains, i);
1da177e4 5667 *sd = SD_NODE_INIT;
9c1cfda2
JH
5668 sd->span = sched_domain_node_span(cpu_to_node(i));
5669 sd->parent = p;
5670 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5671#endif
5672
5673 p = sd;
5674 sd = &per_cpu(phys_domains, i);
5675 group = cpu_to_phys_group(i);
5676 *sd = SD_CPU_INIT;
5677 sd->span = nodemask;
5678 sd->parent = p;
5679 sd->groups = &sched_group_phys[group];
5680
5681#ifdef CONFIG_SCHED_SMT
5682 p = sd;
5683 sd = &per_cpu(cpu_domains, i);
5684 group = cpu_to_cpu_group(i);
5685 *sd = SD_SIBLING_INIT;
5686 sd->span = cpu_sibling_map[i];
1a20ff27 5687 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5688 sd->parent = p;
5689 sd->groups = &sched_group_cpus[group];
5690#endif
5691 }
5692
5693#ifdef CONFIG_SCHED_SMT
5694 /* Set up CPU (sibling) groups */
9c1cfda2 5695 for_each_cpu_mask(i, *cpu_map) {
1da177e4 5696 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 5697 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
5698 if (i != first_cpu(this_sibling_map))
5699 continue;
5700
5701 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5702 &cpu_to_cpu_group);
5703 }
5704#endif
5705
5706 /* Set up physical groups */
5707 for (i = 0; i < MAX_NUMNODES; i++) {
5708 cpumask_t nodemask = node_to_cpumask(i);
5709
1a20ff27 5710 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5711 if (cpus_empty(nodemask))
5712 continue;
5713
5714 init_sched_build_groups(sched_group_phys, nodemask,
5715 &cpu_to_phys_group);
5716 }
5717
5718#ifdef CONFIG_NUMA
5719 /* Set up node groups */
d1b55138
JH
5720 if (sched_group_allnodes)
5721 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5722 &cpu_to_allnodes_group);
9c1cfda2
JH
5723
5724 for (i = 0; i < MAX_NUMNODES; i++) {
5725 /* Set up node groups */
5726 struct sched_group *sg, *prev;
5727 cpumask_t nodemask = node_to_cpumask(i);
5728 cpumask_t domainspan;
5729 cpumask_t covered = CPU_MASK_NONE;
5730 int j;
5731
5732 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
5733 if (cpus_empty(nodemask)) {
5734 sched_group_nodes[i] = NULL;
9c1cfda2 5735 continue;
d1b55138 5736 }
9c1cfda2
JH
5737
5738 domainspan = sched_domain_node_span(i);
5739 cpus_and(domainspan, domainspan, *cpu_map);
5740
5741 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5742 sched_group_nodes[i] = sg;
5743 for_each_cpu_mask(j, nodemask) {
5744 struct sched_domain *sd;
5745 sd = &per_cpu(node_domains, j);
5746 sd->groups = sg;
5747 if (sd->groups == NULL) {
5748 /* Turn off balancing if we have no groups */
5749 sd->flags = 0;
5750 }
5751 }
5752 if (!sg) {
5753 printk(KERN_WARNING
5754 "Can not alloc domain group for node %d\n", i);
5755 continue;
5756 }
5757 sg->cpu_power = 0;
5758 sg->cpumask = nodemask;
5759 cpus_or(covered, covered, nodemask);
5760 prev = sg;
5761
5762 for (j = 0; j < MAX_NUMNODES; j++) {
5763 cpumask_t tmp, notcovered;
5764 int n = (i + j) % MAX_NUMNODES;
5765
5766 cpus_complement(notcovered, covered);
5767 cpus_and(tmp, notcovered, *cpu_map);
5768 cpus_and(tmp, tmp, domainspan);
5769 if (cpus_empty(tmp))
5770 break;
5771
5772 nodemask = node_to_cpumask(n);
5773 cpus_and(tmp, tmp, nodemask);
5774 if (cpus_empty(tmp))
5775 continue;
5776
5777 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5778 if (!sg) {
5779 printk(KERN_WARNING
5780 "Can not alloc domain group for node %d\n", j);
5781 break;
5782 }
5783 sg->cpu_power = 0;
5784 sg->cpumask = tmp;
5785 cpus_or(covered, covered, tmp);
5786 prev->next = sg;
5787 prev = sg;
5788 }
5789 prev->next = sched_group_nodes[i];
5790 }
1da177e4
LT
5791#endif
5792
5793 /* Calculate CPU power for physical packages and nodes */
1a20ff27 5794 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5795 int power;
5796 struct sched_domain *sd;
5797#ifdef CONFIG_SCHED_SMT
5798 sd = &per_cpu(cpu_domains, i);
5799 power = SCHED_LOAD_SCALE;
5800 sd->groups->cpu_power = power;
5801#endif
5802
5803 sd = &per_cpu(phys_domains, i);
5804 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5805 (cpus_weight(sd->groups->cpumask)-1) / 10;
5806 sd->groups->cpu_power = power;
5807
5808#ifdef CONFIG_NUMA
9c1cfda2
JH
5809 sd = &per_cpu(allnodes_domains, i);
5810 if (sd->groups) {
5811 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5812 (cpus_weight(sd->groups->cpumask)-1) / 10;
5813 sd->groups->cpu_power = power;
1da177e4
LT
5814 }
5815#endif
5816 }
5817
9c1cfda2
JH
5818#ifdef CONFIG_NUMA
5819 for (i = 0; i < MAX_NUMNODES; i++) {
5820 struct sched_group *sg = sched_group_nodes[i];
5821 int j;
5822
5823 if (sg == NULL)
5824 continue;
5825next_sg:
5826 for_each_cpu_mask(j, sg->cpumask) {
5827 struct sched_domain *sd;
5828 int power;
5829
5830 sd = &per_cpu(phys_domains, j);
5831 if (j != first_cpu(sd->groups->cpumask)) {
5832 /*
5833 * Only add "power" once for each
5834 * physical package.
5835 */
5836 continue;
5837 }
5838 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5839 (cpus_weight(sd->groups->cpumask)-1) / 10;
5840
5841 sg->cpu_power += power;
5842 }
5843 sg = sg->next;
5844 if (sg != sched_group_nodes[i])
5845 goto next_sg;
5846 }
5847#endif
5848
1da177e4 5849 /* Attach the domains */
1a20ff27 5850 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5851 struct sched_domain *sd;
5852#ifdef CONFIG_SCHED_SMT
5853 sd = &per_cpu(cpu_domains, i);
5854#else
5855 sd = &per_cpu(phys_domains, i);
5856#endif
5857 cpu_attach_domain(sd, i);
5858 }
198e2f18 5859 /*
5860 * Tune cache-hot values:
5861 */
5862 calibrate_migration_costs(cpu_map);
1da177e4 5863}
1a20ff27
DG
5864/*
5865 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5866 */
9c1cfda2 5867static void arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
5868{
5869 cpumask_t cpu_default_map;
1da177e4 5870
1a20ff27
DG
5871 /*
5872 * Setup mask for cpus without special case scheduling requirements.
5873 * For now this just excludes isolated cpus, but could be used to
5874 * exclude other special cases in the future.
5875 */
5876 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5877
5878 build_sched_domains(&cpu_default_map);
5879}
5880
5881static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 5882{
9c1cfda2
JH
5883#ifdef CONFIG_NUMA
5884 int i;
d1b55138 5885 int cpu;
1da177e4 5886
d1b55138
JH
5887 for_each_cpu_mask(cpu, *cpu_map) {
5888 struct sched_group *sched_group_allnodes
5889 = sched_group_allnodes_bycpu[cpu];
5890 struct sched_group **sched_group_nodes
5891 = sched_group_nodes_bycpu[cpu];
9c1cfda2 5892
d1b55138
JH
5893 if (sched_group_allnodes) {
5894 kfree(sched_group_allnodes);
5895 sched_group_allnodes_bycpu[cpu] = NULL;
5896 }
5897
5898 if (!sched_group_nodes)
9c1cfda2 5899 continue;
d1b55138
JH
5900
5901 for (i = 0; i < MAX_NUMNODES; i++) {
5902 cpumask_t nodemask = node_to_cpumask(i);
5903 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5904
5905 cpus_and(nodemask, nodemask, *cpu_map);
5906 if (cpus_empty(nodemask))
5907 continue;
5908
5909 if (sg == NULL)
5910 continue;
5911 sg = sg->next;
9c1cfda2 5912next_sg:
d1b55138
JH
5913 oldsg = sg;
5914 sg = sg->next;
5915 kfree(oldsg);
5916 if (oldsg != sched_group_nodes[i])
5917 goto next_sg;
5918 }
5919 kfree(sched_group_nodes);
5920 sched_group_nodes_bycpu[cpu] = NULL;
9c1cfda2
JH
5921 }
5922#endif
5923}
1da177e4 5924
1a20ff27
DG
5925/*
5926 * Detach sched domains from a group of cpus specified in cpu_map
5927 * These cpus will now be attached to the NULL domain
5928 */
858119e1 5929static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
5930{
5931 int i;
5932
5933 for_each_cpu_mask(i, *cpu_map)
5934 cpu_attach_domain(NULL, i);
5935 synchronize_sched();
5936 arch_destroy_sched_domains(cpu_map);
5937}
5938
5939/*
5940 * Partition sched domains as specified by the cpumasks below.
5941 * This attaches all cpus from the cpumasks to the NULL domain,
5942 * waits for a RCU quiescent period, recalculates sched
5943 * domain information and then attaches them back to the
5944 * correct sched domains
5945 * Call with hotplug lock held
5946 */
5947void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5948{
5949 cpumask_t change_map;
5950
5951 cpus_and(*partition1, *partition1, cpu_online_map);
5952 cpus_and(*partition2, *partition2, cpu_online_map);
5953 cpus_or(change_map, *partition1, *partition2);
5954
5955 /* Detach sched domains from all of the affected cpus */
5956 detach_destroy_domains(&change_map);
5957 if (!cpus_empty(*partition1))
5958 build_sched_domains(partition1);
5959 if (!cpus_empty(*partition2))
5960 build_sched_domains(partition2);
5961}
5962
1da177e4
LT
5963#ifdef CONFIG_HOTPLUG_CPU
5964/*
5965 * Force a reinitialization of the sched domains hierarchy. The domains
5966 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 5967 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
5968 * which will prevent rebalancing while the sched domains are recalculated.
5969 */
5970static int update_sched_domains(struct notifier_block *nfb,
5971 unsigned long action, void *hcpu)
5972{
1da177e4
LT
5973 switch (action) {
5974 case CPU_UP_PREPARE:
5975 case CPU_DOWN_PREPARE:
1a20ff27 5976 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
5977 return NOTIFY_OK;
5978
5979 case CPU_UP_CANCELED:
5980 case CPU_DOWN_FAILED:
5981 case CPU_ONLINE:
5982 case CPU_DEAD:
5983 /*
5984 * Fall through and re-initialise the domains.
5985 */
5986 break;
5987 default:
5988 return NOTIFY_DONE;
5989 }
5990
5991 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 5992 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
5993
5994 return NOTIFY_OK;
5995}
5996#endif
5997
5998void __init sched_init_smp(void)
5999{
6000 lock_cpu_hotplug();
1a20ff27 6001 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6002 unlock_cpu_hotplug();
6003 /* XXX: Theoretical race here - CPU may be hotplugged now */
6004 hotcpu_notifier(update_sched_domains, 0);
6005}
6006#else
6007void __init sched_init_smp(void)
6008{
6009}
6010#endif /* CONFIG_SMP */
6011
6012int in_sched_functions(unsigned long addr)
6013{
6014 /* Linker adds these: start and end of __sched functions */
6015 extern char __sched_text_start[], __sched_text_end[];
6016 return in_lock_functions(addr) ||
6017 (addr >= (unsigned long)__sched_text_start
6018 && addr < (unsigned long)__sched_text_end);
6019}
6020
6021void __init sched_init(void)
6022{
6023 runqueue_t *rq;
6024 int i, j, k;
6025
88a2a4ac 6026 for_each_cpu(i) {
1da177e4
LT
6027 prio_array_t *array;
6028
6029 rq = cpu_rq(i);
6030 spin_lock_init(&rq->lock);
7897986b 6031 rq->nr_running = 0;
1da177e4
LT
6032 rq->active = rq->arrays;
6033 rq->expired = rq->arrays + 1;
6034 rq->best_expired_prio = MAX_PRIO;
6035
6036#ifdef CONFIG_SMP
41c7ce9a 6037 rq->sd = NULL;
7897986b
NP
6038 for (j = 1; j < 3; j++)
6039 rq->cpu_load[j] = 0;
1da177e4
LT
6040 rq->active_balance = 0;
6041 rq->push_cpu = 0;
6042 rq->migration_thread = NULL;
6043 INIT_LIST_HEAD(&rq->migration_queue);
6044#endif
6045 atomic_set(&rq->nr_iowait, 0);
6046
6047 for (j = 0; j < 2; j++) {
6048 array = rq->arrays + j;
6049 for (k = 0; k < MAX_PRIO; k++) {
6050 INIT_LIST_HEAD(array->queue + k);
6051 __clear_bit(k, array->bitmap);
6052 }
6053 // delimiter for bitsearch
6054 __set_bit(MAX_PRIO, array->bitmap);
6055 }
6056 }
6057
6058 /*
6059 * The boot idle thread does lazy MMU switching as well:
6060 */
6061 atomic_inc(&init_mm.mm_count);
6062 enter_lazy_tlb(&init_mm, current);
6063
6064 /*
6065 * Make us the idle thread. Technically, schedule() should not be
6066 * called from this thread, however somewhere below it might be,
6067 * but because we are the idle thread, we just pick up running again
6068 * when this runqueue becomes "idle".
6069 */
6070 init_idle(current, smp_processor_id());
6071}
6072
6073#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6074void __might_sleep(char *file, int line)
6075{
6076#if defined(in_atomic)
6077 static unsigned long prev_jiffy; /* ratelimiting */
6078
6079 if ((in_atomic() || irqs_disabled()) &&
6080 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6081 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6082 return;
6083 prev_jiffy = jiffies;
6084 printk(KERN_ERR "Debug: sleeping function called from invalid"
6085 " context at %s:%d\n", file, line);
6086 printk("in_atomic():%d, irqs_disabled():%d\n",
6087 in_atomic(), irqs_disabled());
6088 dump_stack();
6089 }
6090#endif
6091}
6092EXPORT_SYMBOL(__might_sleep);
6093#endif
6094
6095#ifdef CONFIG_MAGIC_SYSRQ
6096void normalize_rt_tasks(void)
6097{
6098 struct task_struct *p;
6099 prio_array_t *array;
6100 unsigned long flags;
6101 runqueue_t *rq;
6102
6103 read_lock_irq(&tasklist_lock);
6104 for_each_process (p) {
6105 if (!rt_task(p))
6106 continue;
6107
6108 rq = task_rq_lock(p, &flags);
6109
6110 array = p->array;
6111 if (array)
6112 deactivate_task(p, task_rq(p));
6113 __setscheduler(p, SCHED_NORMAL, 0);
6114 if (array) {
6115 __activate_task(p, task_rq(p));
6116 resched_task(rq->curr);
6117 }
6118
6119 task_rq_unlock(rq, &flags);
6120 }
6121 read_unlock_irq(&tasklist_lock);
6122}
6123
6124#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6125
6126#ifdef CONFIG_IA64
6127/*
6128 * These functions are only useful for the IA64 MCA handling.
6129 *
6130 * They can only be called when the whole system has been
6131 * stopped - every CPU needs to be quiescent, and no scheduling
6132 * activity can take place. Using them for anything else would
6133 * be a serious bug, and as a result, they aren't even visible
6134 * under any other configuration.
6135 */
6136
6137/**
6138 * curr_task - return the current task for a given cpu.
6139 * @cpu: the processor in question.
6140 *
6141 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6142 */
6143task_t *curr_task(int cpu)
6144{
6145 return cpu_curr(cpu);
6146}
6147
6148/**
6149 * set_curr_task - set the current task for a given cpu.
6150 * @cpu: the processor in question.
6151 * @p: the task pointer to set.
6152 *
6153 * Description: This function must only be used when non-maskable interrupts
6154 * are serviced on a separate stack. It allows the architecture to switch the
6155 * notion of the current task on a cpu in a non-blocking manner. This function
6156 * must be called with all CPU's synchronized, and interrupts disabled, the
6157 * and caller must save the original value of the current task (see
6158 * curr_task() above) and restore that value before reenabling interrupts and
6159 * re-starting the system.
6160 *
6161 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6162 */
6163void set_curr_task(int cpu, task_t *p)
6164{
6165 cpu_curr(cpu) = p;
6166}
6167
6168#endif