sched: fix newidle smp group balancing
[linux-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4 76
6e0534f2
GH
77#include "sched_cpupri.h"
78
1da177e4
LT
79/*
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
83 */
84#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87
88/*
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
92 */
93#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96
97/*
d7876a08 98 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 99 */
d6322faf 100#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
d0b27fa7
PZ
113/*
114 * single value that denotes runtime == period, ie unlimited time.
115 */
116#define RUNTIME_INF ((u64)~0ULL)
117
5517d86b
ED
118#ifdef CONFIG_SMP
119/*
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 */
123static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124{
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126}
127
128/*
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
131 */
132static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133{
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136}
137#endif
138
e05606d3
IM
139static inline int rt_policy(int policy)
140{
3f33a7ce 141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
142 return 1;
143 return 0;
144}
145
146static inline int task_has_rt_policy(struct task_struct *p)
147{
148 return rt_policy(p->policy);
149}
150
1da177e4 151/*
6aa645ea 152 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 153 */
6aa645ea
IM
154struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
20b6331b 156 struct list_head queue[MAX_RT_PRIO];
6aa645ea
IM
157};
158
d0b27fa7 159struct rt_bandwidth {
ea736ed5
IM
160 /* nests inside the rq lock: */
161 spinlock_t rt_runtime_lock;
162 ktime_t rt_period;
163 u64 rt_runtime;
164 struct hrtimer rt_period_timer;
d0b27fa7
PZ
165};
166
167static struct rt_bandwidth def_rt_bandwidth;
168
169static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
170
171static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
172{
173 struct rt_bandwidth *rt_b =
174 container_of(timer, struct rt_bandwidth, rt_period_timer);
175 ktime_t now;
176 int overrun;
177 int idle = 0;
178
179 for (;;) {
180 now = hrtimer_cb_get_time(timer);
181 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
182
183 if (!overrun)
184 break;
185
186 idle = do_sched_rt_period_timer(rt_b, overrun);
187 }
188
189 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
190}
191
192static
193void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
194{
195 rt_b->rt_period = ns_to_ktime(period);
196 rt_b->rt_runtime = runtime;
197
ac086bc2
PZ
198 spin_lock_init(&rt_b->rt_runtime_lock);
199
d0b27fa7
PZ
200 hrtimer_init(&rt_b->rt_period_timer,
201 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
202 rt_b->rt_period_timer.function = sched_rt_period_timer;
203 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
204}
205
206static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
207{
208 ktime_t now;
209
210 if (rt_b->rt_runtime == RUNTIME_INF)
211 return;
212
213 if (hrtimer_active(&rt_b->rt_period_timer))
214 return;
215
216 spin_lock(&rt_b->rt_runtime_lock);
217 for (;;) {
218 if (hrtimer_active(&rt_b->rt_period_timer))
219 break;
220
221 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
222 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
223 hrtimer_start(&rt_b->rt_period_timer,
224 rt_b->rt_period_timer.expires,
225 HRTIMER_MODE_ABS);
226 }
227 spin_unlock(&rt_b->rt_runtime_lock);
228}
229
230#ifdef CONFIG_RT_GROUP_SCHED
231static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
232{
233 hrtimer_cancel(&rt_b->rt_period_timer);
234}
235#endif
236
712555ee
HC
237/*
238 * sched_domains_mutex serializes calls to arch_init_sched_domains,
239 * detach_destroy_domains and partition_sched_domains.
240 */
241static DEFINE_MUTEX(sched_domains_mutex);
242
052f1dc7 243#ifdef CONFIG_GROUP_SCHED
29f59db3 244
68318b8e
SV
245#include <linux/cgroup.h>
246
29f59db3
SV
247struct cfs_rq;
248
6f505b16
PZ
249static LIST_HEAD(task_groups);
250
29f59db3 251/* task group related information */
4cf86d77 252struct task_group {
052f1dc7 253#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
254 struct cgroup_subsys_state css;
255#endif
052f1dc7
PZ
256
257#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
052f1dc7
PZ
263#endif
264
265#ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
268
d0b27fa7 269 struct rt_bandwidth rt_bandwidth;
052f1dc7 270#endif
6b2d7700 271
ae8393e5 272 struct rcu_head rcu;
6f505b16 273 struct list_head list;
f473aa5e
PZ
274
275 struct task_group *parent;
276 struct list_head siblings;
277 struct list_head children;
29f59db3
SV
278};
279
354d60c2 280#ifdef CONFIG_USER_SCHED
eff766a6
PZ
281
282/*
283 * Root task group.
284 * Every UID task group (including init_task_group aka UID-0) will
285 * be a child to this group.
286 */
287struct task_group root_task_group;
288
052f1dc7 289#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
290/* Default task group's sched entity on each cpu */
291static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
292/* Default task group's cfs_rq on each cpu */
293static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 294#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
295
296#ifdef CONFIG_RT_GROUP_SCHED
297static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
298static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
299#endif /* CONFIG_RT_GROUP_SCHED */
300#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 301#define root_task_group init_task_group
6d6bc0ad 302#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 303
8ed36996 304/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
305 * a task group's cpu shares.
306 */
8ed36996 307static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 308
052f1dc7 309#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
310#ifdef CONFIG_USER_SCHED
311# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 312#else /* !CONFIG_USER_SCHED */
052f1dc7 313# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 314#endif /* CONFIG_USER_SCHED */
052f1dc7 315
cb4ad1ff 316/*
2e084786
LJ
317 * A weight of 0 or 1 can cause arithmetics problems.
318 * A weight of a cfs_rq is the sum of weights of which entities
319 * are queued on this cfs_rq, so a weight of a entity should not be
320 * too large, so as the shares value of a task group.
cb4ad1ff
MX
321 * (The default weight is 1024 - so there's no practical
322 * limitation from this.)
323 */
18d95a28 324#define MIN_SHARES 2
2e084786 325#define MAX_SHARES (1UL << 18)
18d95a28 326
052f1dc7
PZ
327static int init_task_group_load = INIT_TASK_GROUP_LOAD;
328#endif
329
29f59db3 330/* Default task group.
3a252015 331 * Every task in system belong to this group at bootup.
29f59db3 332 */
434d53b0 333struct task_group init_task_group;
29f59db3
SV
334
335/* return group to which a task belongs */
4cf86d77 336static inline struct task_group *task_group(struct task_struct *p)
29f59db3 337{
4cf86d77 338 struct task_group *tg;
9b5b7751 339
052f1dc7 340#ifdef CONFIG_USER_SCHED
24e377a8 341 tg = p->user->tg;
052f1dc7 342#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
343 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
344 struct task_group, css);
24e377a8 345#else
41a2d6cf 346 tg = &init_task_group;
24e377a8 347#endif
9b5b7751 348 return tg;
29f59db3
SV
349}
350
351/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 352static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 353{
052f1dc7 354#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
355 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
356 p->se.parent = task_group(p)->se[cpu];
052f1dc7 357#endif
6f505b16 358
052f1dc7 359#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
360 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
361 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 362#endif
29f59db3
SV
363}
364
365#else
366
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 368
052f1dc7 369#endif /* CONFIG_GROUP_SCHED */
29f59db3 370
6aa645ea
IM
371/* CFS-related fields in a runqueue */
372struct cfs_rq {
373 struct load_weight load;
374 unsigned long nr_running;
375
6aa645ea 376 u64 exec_clock;
e9acbff6 377 u64 min_vruntime;
103638d9 378 u64 pair_start;
6aa645ea
IM
379
380 struct rb_root tasks_timeline;
381 struct rb_node *rb_leftmost;
4a55bd5e
PZ
382
383 struct list_head tasks;
384 struct list_head *balance_iterator;
385
386 /*
387 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
388 * It is set to NULL otherwise (i.e when none are currently running).
389 */
aa2ac252 390 struct sched_entity *curr, *next;
ddc97297
PZ
391
392 unsigned long nr_spread_over;
393
62160e3f 394#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
395 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
396
41a2d6cf
IM
397 /*
398 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
399 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
400 * (like users, containers etc.)
401 *
402 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
403 * list is used during load balance.
404 */
41a2d6cf
IM
405 struct list_head leaf_cfs_rq_list;
406 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
407
408#ifdef CONFIG_SMP
c09595f6 409 /*
c8cba857 410 * the part of load.weight contributed by tasks
c09595f6 411 */
c8cba857 412 unsigned long task_weight;
c09595f6 413
c8cba857
PZ
414 /*
415 * h_load = weight * f(tg)
416 *
417 * Where f(tg) is the recursive weight fraction assigned to
418 * this group.
419 */
420 unsigned long h_load;
c09595f6 421
c8cba857
PZ
422 /*
423 * this cpu's part of tg->shares
424 */
425 unsigned long shares;
c09595f6 426#endif
6aa645ea
IM
427#endif
428};
1da177e4 429
6aa645ea
IM
430/* Real-Time classes' related field in a runqueue: */
431struct rt_rq {
432 struct rt_prio_array active;
63489e45 433 unsigned long rt_nr_running;
052f1dc7 434#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
435 int highest_prio; /* highest queued rt task prio */
436#endif
fa85ae24 437#ifdef CONFIG_SMP
73fe6aae 438 unsigned long rt_nr_migratory;
a22d7fc1 439 int overloaded;
fa85ae24 440#endif
6f505b16 441 int rt_throttled;
fa85ae24 442 u64 rt_time;
ac086bc2 443 u64 rt_runtime;
ea736ed5 444 /* Nests inside the rq lock: */
ac086bc2 445 spinlock_t rt_runtime_lock;
6f505b16 446
052f1dc7 447#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
448 unsigned long rt_nr_boosted;
449
6f505b16
PZ
450 struct rq *rq;
451 struct list_head leaf_rt_rq_list;
452 struct task_group *tg;
453 struct sched_rt_entity *rt_se;
454#endif
6aa645ea
IM
455};
456
57d885fe
GH
457#ifdef CONFIG_SMP
458
459/*
460 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
461 * variables. Each exclusive cpuset essentially defines an island domain by
462 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
463 * exclusive cpuset is created, we also create and attach a new root-domain
464 * object.
465 *
57d885fe
GH
466 */
467struct root_domain {
468 atomic_t refcount;
469 cpumask_t span;
470 cpumask_t online;
637f5085 471
0eab9146 472 /*
637f5085
GH
473 * The "RT overload" flag: it gets set if a CPU has more than
474 * one runnable RT task.
475 */
476 cpumask_t rto_mask;
0eab9146 477 atomic_t rto_count;
6e0534f2
GH
478#ifdef CONFIG_SMP
479 struct cpupri cpupri;
480#endif
57d885fe
GH
481};
482
dc938520
GH
483/*
484 * By default the system creates a single root-domain with all cpus as
485 * members (mimicking the global state we have today).
486 */
57d885fe
GH
487static struct root_domain def_root_domain;
488
489#endif
490
1da177e4
LT
491/*
492 * This is the main, per-CPU runqueue data structure.
493 *
494 * Locking rule: those places that want to lock multiple runqueues
495 * (such as the load balancing or the thread migration code), lock
496 * acquire operations must be ordered by ascending &runqueue.
497 */
70b97a7f 498struct rq {
d8016491
IM
499 /* runqueue lock: */
500 spinlock_t lock;
1da177e4
LT
501
502 /*
503 * nr_running and cpu_load should be in the same cacheline because
504 * remote CPUs use both these fields when doing load calculation.
505 */
506 unsigned long nr_running;
6aa645ea
IM
507 #define CPU_LOAD_IDX_MAX 5
508 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 509 unsigned char idle_at_tick;
46cb4b7c 510#ifdef CONFIG_NO_HZ
15934a37 511 unsigned long last_tick_seen;
46cb4b7c
SS
512 unsigned char in_nohz_recently;
513#endif
d8016491
IM
514 /* capture load from *all* tasks on this cpu: */
515 struct load_weight load;
6aa645ea
IM
516 unsigned long nr_load_updates;
517 u64 nr_switches;
518
519 struct cfs_rq cfs;
6f505b16 520 struct rt_rq rt;
6f505b16 521
6aa645ea 522#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
523 /* list of leaf cfs_rq on this cpu: */
524 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
525#endif
526#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 527 struct list_head leaf_rt_rq_list;
1da177e4 528#endif
1da177e4
LT
529
530 /*
531 * This is part of a global counter where only the total sum
532 * over all CPUs matters. A task can increase this counter on
533 * one CPU and if it got migrated afterwards it may decrease
534 * it on another CPU. Always updated under the runqueue lock:
535 */
536 unsigned long nr_uninterruptible;
537
36c8b586 538 struct task_struct *curr, *idle;
c9819f45 539 unsigned long next_balance;
1da177e4 540 struct mm_struct *prev_mm;
6aa645ea 541
3e51f33f 542 u64 clock;
6aa645ea 543
1da177e4
LT
544 atomic_t nr_iowait;
545
546#ifdef CONFIG_SMP
0eab9146 547 struct root_domain *rd;
1da177e4
LT
548 struct sched_domain *sd;
549
550 /* For active balancing */
551 int active_balance;
552 int push_cpu;
d8016491
IM
553 /* cpu of this runqueue: */
554 int cpu;
1f11eb6a 555 int online;
1da177e4 556
36c8b586 557 struct task_struct *migration_thread;
1da177e4
LT
558 struct list_head migration_queue;
559#endif
560
8f4d37ec
PZ
561#ifdef CONFIG_SCHED_HRTICK
562 unsigned long hrtick_flags;
563 ktime_t hrtick_expire;
564 struct hrtimer hrtick_timer;
565#endif
566
1da177e4
LT
567#ifdef CONFIG_SCHEDSTATS
568 /* latency stats */
569 struct sched_info rq_sched_info;
570
571 /* sys_sched_yield() stats */
480b9434
KC
572 unsigned int yld_exp_empty;
573 unsigned int yld_act_empty;
574 unsigned int yld_both_empty;
575 unsigned int yld_count;
1da177e4
LT
576
577 /* schedule() stats */
480b9434
KC
578 unsigned int sched_switch;
579 unsigned int sched_count;
580 unsigned int sched_goidle;
1da177e4
LT
581
582 /* try_to_wake_up() stats */
480b9434
KC
583 unsigned int ttwu_count;
584 unsigned int ttwu_local;
b8efb561
IM
585
586 /* BKL stats */
480b9434 587 unsigned int bkl_count;
1da177e4 588#endif
fcb99371 589 struct lock_class_key rq_lock_key;
1da177e4
LT
590};
591
f34e3b61 592static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 593
dd41f596
IM
594static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
595{
596 rq->curr->sched_class->check_preempt_curr(rq, p);
597}
598
0a2966b4
CL
599static inline int cpu_of(struct rq *rq)
600{
601#ifdef CONFIG_SMP
602 return rq->cpu;
603#else
604 return 0;
605#endif
606}
607
674311d5
NP
608/*
609 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 610 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
611 *
612 * The domain tree of any CPU may only be accessed from within
613 * preempt-disabled sections.
614 */
48f24c4d
IM
615#define for_each_domain(cpu, __sd) \
616 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
617
618#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
619#define this_rq() (&__get_cpu_var(runqueues))
620#define task_rq(p) cpu_rq(task_cpu(p))
621#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
622
3e51f33f
PZ
623static inline void update_rq_clock(struct rq *rq)
624{
625 rq->clock = sched_clock_cpu(cpu_of(rq));
626}
627
bf5c91ba
IM
628/*
629 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
630 */
631#ifdef CONFIG_SCHED_DEBUG
632# define const_debug __read_mostly
633#else
634# define const_debug static const
635#endif
636
637/*
638 * Debugging: various feature bits
639 */
f00b45c1
PZ
640
641#define SCHED_FEAT(name, enabled) \
642 __SCHED_FEAT_##name ,
643
bf5c91ba 644enum {
f00b45c1 645#include "sched_features.h"
bf5c91ba
IM
646};
647
f00b45c1
PZ
648#undef SCHED_FEAT
649
650#define SCHED_FEAT(name, enabled) \
651 (1UL << __SCHED_FEAT_##name) * enabled |
652
bf5c91ba 653const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
654#include "sched_features.h"
655 0;
656
657#undef SCHED_FEAT
658
659#ifdef CONFIG_SCHED_DEBUG
660#define SCHED_FEAT(name, enabled) \
661 #name ,
662
983ed7a6 663static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
664#include "sched_features.h"
665 NULL
666};
667
668#undef SCHED_FEAT
669
983ed7a6 670static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
671{
672 filp->private_data = inode->i_private;
673 return 0;
674}
675
676static ssize_t
677sched_feat_read(struct file *filp, char __user *ubuf,
678 size_t cnt, loff_t *ppos)
679{
680 char *buf;
681 int r = 0;
682 int len = 0;
683 int i;
684
685 for (i = 0; sched_feat_names[i]; i++) {
686 len += strlen(sched_feat_names[i]);
687 len += 4;
688 }
689
690 buf = kmalloc(len + 2, GFP_KERNEL);
691 if (!buf)
692 return -ENOMEM;
693
694 for (i = 0; sched_feat_names[i]; i++) {
695 if (sysctl_sched_features & (1UL << i))
696 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
697 else
c24b7c52 698 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
699 }
700
701 r += sprintf(buf + r, "\n");
702 WARN_ON(r >= len + 2);
703
704 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
705
706 kfree(buf);
707
708 return r;
709}
710
711static ssize_t
712sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
714{
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
719
720 if (cnt > 63)
721 cnt = 63;
722
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
725
726 buf[cnt] = 0;
727
c24b7c52 728 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
729 neg = 1;
730 cmp += 3;
731 }
732
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
735
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
742 }
743 }
744
745 if (!sched_feat_names[i])
746 return -EINVAL;
747
748 filp->f_pos += cnt;
749
750 return cnt;
751}
752
753static struct file_operations sched_feat_fops = {
754 .open = sched_feat_open,
755 .read = sched_feat_read,
756 .write = sched_feat_write,
757};
758
759static __init int sched_init_debug(void)
760{
f00b45c1
PZ
761 debugfs_create_file("sched_features", 0644, NULL, NULL,
762 &sched_feat_fops);
763
764 return 0;
765}
766late_initcall(sched_init_debug);
767
768#endif
769
770#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 771
b82d9fdd
PZ
772/*
773 * Number of tasks to iterate in a single balance run.
774 * Limited because this is done with IRQs disabled.
775 */
776const_debug unsigned int sysctl_sched_nr_migrate = 32;
777
fa85ae24 778/*
9f0c1e56 779 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
780 * default: 1s
781 */
9f0c1e56 782unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 783
6892b75e
IM
784static __read_mostly int scheduler_running;
785
9f0c1e56
PZ
786/*
787 * part of the period that we allow rt tasks to run in us.
788 * default: 0.95s
789 */
790int sysctl_sched_rt_runtime = 950000;
fa85ae24 791
d0b27fa7
PZ
792static inline u64 global_rt_period(void)
793{
794 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
795}
796
797static inline u64 global_rt_runtime(void)
798{
799 if (sysctl_sched_rt_period < 0)
800 return RUNTIME_INF;
801
802 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
803}
fa85ae24 804
1da177e4 805#ifndef prepare_arch_switch
4866cde0
NP
806# define prepare_arch_switch(next) do { } while (0)
807#endif
808#ifndef finish_arch_switch
809# define finish_arch_switch(prev) do { } while (0)
810#endif
811
051a1d1a
DA
812static inline int task_current(struct rq *rq, struct task_struct *p)
813{
814 return rq->curr == p;
815}
816
4866cde0 817#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 818static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 819{
051a1d1a 820 return task_current(rq, p);
4866cde0
NP
821}
822
70b97a7f 823static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
824{
825}
826
70b97a7f 827static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 828{
da04c035
IM
829#ifdef CONFIG_DEBUG_SPINLOCK
830 /* this is a valid case when another task releases the spinlock */
831 rq->lock.owner = current;
832#endif
8a25d5de
IM
833 /*
834 * If we are tracking spinlock dependencies then we have to
835 * fix up the runqueue lock - which gets 'carried over' from
836 * prev into current:
837 */
838 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
839
4866cde0
NP
840 spin_unlock_irq(&rq->lock);
841}
842
843#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 844static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
845{
846#ifdef CONFIG_SMP
847 return p->oncpu;
848#else
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850#endif
851}
852
70b97a7f 853static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
854{
855#ifdef CONFIG_SMP
856 /*
857 * We can optimise this out completely for !SMP, because the
858 * SMP rebalancing from interrupt is the only thing that cares
859 * here.
860 */
861 next->oncpu = 1;
862#endif
863#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
864 spin_unlock_irq(&rq->lock);
865#else
866 spin_unlock(&rq->lock);
867#endif
868}
869
70b97a7f 870static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
871{
872#ifdef CONFIG_SMP
873 /*
874 * After ->oncpu is cleared, the task can be moved to a different CPU.
875 * We must ensure this doesn't happen until the switch is completely
876 * finished.
877 */
878 smp_wmb();
879 prev->oncpu = 0;
880#endif
881#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
882 local_irq_enable();
1da177e4 883#endif
4866cde0
NP
884}
885#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 886
b29739f9
IM
887/*
888 * __task_rq_lock - lock the runqueue a given task resides on.
889 * Must be called interrupts disabled.
890 */
70b97a7f 891static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
892 __acquires(rq->lock)
893{
3a5c359a
AK
894 for (;;) {
895 struct rq *rq = task_rq(p);
896 spin_lock(&rq->lock);
897 if (likely(rq == task_rq(p)))
898 return rq;
b29739f9 899 spin_unlock(&rq->lock);
b29739f9 900 }
b29739f9
IM
901}
902
1da177e4
LT
903/*
904 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 905 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
906 * explicitly disabling preemption.
907 */
70b97a7f 908static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
909 __acquires(rq->lock)
910{
70b97a7f 911 struct rq *rq;
1da177e4 912
3a5c359a
AK
913 for (;;) {
914 local_irq_save(*flags);
915 rq = task_rq(p);
916 spin_lock(&rq->lock);
917 if (likely(rq == task_rq(p)))
918 return rq;
1da177e4 919 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 920 }
1da177e4
LT
921}
922
a9957449 923static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
924 __releases(rq->lock)
925{
926 spin_unlock(&rq->lock);
927}
928
70b97a7f 929static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
930 __releases(rq->lock)
931{
932 spin_unlock_irqrestore(&rq->lock, *flags);
933}
934
1da177e4 935/*
cc2a73b5 936 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 937 */
a9957449 938static struct rq *this_rq_lock(void)
1da177e4
LT
939 __acquires(rq->lock)
940{
70b97a7f 941 struct rq *rq;
1da177e4
LT
942
943 local_irq_disable();
944 rq = this_rq();
945 spin_lock(&rq->lock);
946
947 return rq;
948}
949
8f4d37ec
PZ
950static void __resched_task(struct task_struct *p, int tif_bit);
951
952static inline void resched_task(struct task_struct *p)
953{
954 __resched_task(p, TIF_NEED_RESCHED);
955}
956
957#ifdef CONFIG_SCHED_HRTICK
958/*
959 * Use HR-timers to deliver accurate preemption points.
960 *
961 * Its all a bit involved since we cannot program an hrt while holding the
962 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
963 * reschedule event.
964 *
965 * When we get rescheduled we reprogram the hrtick_timer outside of the
966 * rq->lock.
967 */
968static inline void resched_hrt(struct task_struct *p)
969{
970 __resched_task(p, TIF_HRTICK_RESCHED);
971}
972
973static inline void resched_rq(struct rq *rq)
974{
975 unsigned long flags;
976
977 spin_lock_irqsave(&rq->lock, flags);
978 resched_task(rq->curr);
979 spin_unlock_irqrestore(&rq->lock, flags);
980}
981
982enum {
983 HRTICK_SET, /* re-programm hrtick_timer */
984 HRTICK_RESET, /* not a new slice */
b328ca18 985 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
986};
987
988/*
989 * Use hrtick when:
990 * - enabled by features
991 * - hrtimer is actually high res
992 */
993static inline int hrtick_enabled(struct rq *rq)
994{
995 if (!sched_feat(HRTICK))
996 return 0;
b328ca18
PZ
997 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
998 return 0;
8f4d37ec
PZ
999 return hrtimer_is_hres_active(&rq->hrtick_timer);
1000}
1001
1002/*
1003 * Called to set the hrtick timer state.
1004 *
1005 * called with rq->lock held and irqs disabled
1006 */
1007static void hrtick_start(struct rq *rq, u64 delay, int reset)
1008{
1009 assert_spin_locked(&rq->lock);
1010
1011 /*
1012 * preempt at: now + delay
1013 */
1014 rq->hrtick_expire =
1015 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1016 /*
1017 * indicate we need to program the timer
1018 */
1019 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1020 if (reset)
1021 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1022
1023 /*
1024 * New slices are called from the schedule path and don't need a
1025 * forced reschedule.
1026 */
1027 if (reset)
1028 resched_hrt(rq->curr);
1029}
1030
1031static void hrtick_clear(struct rq *rq)
1032{
1033 if (hrtimer_active(&rq->hrtick_timer))
1034 hrtimer_cancel(&rq->hrtick_timer);
1035}
1036
1037/*
1038 * Update the timer from the possible pending state.
1039 */
1040static void hrtick_set(struct rq *rq)
1041{
1042 ktime_t time;
1043 int set, reset;
1044 unsigned long flags;
1045
1046 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1047
1048 spin_lock_irqsave(&rq->lock, flags);
1049 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1050 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1051 time = rq->hrtick_expire;
1052 clear_thread_flag(TIF_HRTICK_RESCHED);
1053 spin_unlock_irqrestore(&rq->lock, flags);
1054
1055 if (set) {
1056 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1057 if (reset && !hrtimer_active(&rq->hrtick_timer))
1058 resched_rq(rq);
1059 } else
1060 hrtick_clear(rq);
1061}
1062
1063/*
1064 * High-resolution timer tick.
1065 * Runs from hardirq context with interrupts disabled.
1066 */
1067static enum hrtimer_restart hrtick(struct hrtimer *timer)
1068{
1069 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1070
1071 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1072
1073 spin_lock(&rq->lock);
3e51f33f 1074 update_rq_clock(rq);
8f4d37ec
PZ
1075 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1076 spin_unlock(&rq->lock);
1077
1078 return HRTIMER_NORESTART;
1079}
1080
81d41d7e 1081#ifdef CONFIG_SMP
b328ca18
PZ
1082static void hotplug_hrtick_disable(int cpu)
1083{
1084 struct rq *rq = cpu_rq(cpu);
1085 unsigned long flags;
1086
1087 spin_lock_irqsave(&rq->lock, flags);
1088 rq->hrtick_flags = 0;
1089 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1090 spin_unlock_irqrestore(&rq->lock, flags);
1091
1092 hrtick_clear(rq);
1093}
1094
1095static void hotplug_hrtick_enable(int cpu)
1096{
1097 struct rq *rq = cpu_rq(cpu);
1098 unsigned long flags;
1099
1100 spin_lock_irqsave(&rq->lock, flags);
1101 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1102 spin_unlock_irqrestore(&rq->lock, flags);
1103}
1104
1105static int
1106hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1107{
1108 int cpu = (int)(long)hcpu;
1109
1110 switch (action) {
1111 case CPU_UP_CANCELED:
1112 case CPU_UP_CANCELED_FROZEN:
1113 case CPU_DOWN_PREPARE:
1114 case CPU_DOWN_PREPARE_FROZEN:
1115 case CPU_DEAD:
1116 case CPU_DEAD_FROZEN:
1117 hotplug_hrtick_disable(cpu);
1118 return NOTIFY_OK;
1119
1120 case CPU_UP_PREPARE:
1121 case CPU_UP_PREPARE_FROZEN:
1122 case CPU_DOWN_FAILED:
1123 case CPU_DOWN_FAILED_FROZEN:
1124 case CPU_ONLINE:
1125 case CPU_ONLINE_FROZEN:
1126 hotplug_hrtick_enable(cpu);
1127 return NOTIFY_OK;
1128 }
1129
1130 return NOTIFY_DONE;
1131}
1132
1133static void init_hrtick(void)
1134{
1135 hotcpu_notifier(hotplug_hrtick, 0);
1136}
81d41d7e 1137#endif /* CONFIG_SMP */
b328ca18
PZ
1138
1139static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1140{
1141 rq->hrtick_flags = 0;
1142 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1143 rq->hrtick_timer.function = hrtick;
1144 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1145}
1146
1147void hrtick_resched(void)
1148{
1149 struct rq *rq;
1150 unsigned long flags;
1151
1152 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1153 return;
1154
1155 local_irq_save(flags);
1156 rq = cpu_rq(smp_processor_id());
1157 hrtick_set(rq);
1158 local_irq_restore(flags);
1159}
1160#else
1161static inline void hrtick_clear(struct rq *rq)
1162{
1163}
1164
1165static inline void hrtick_set(struct rq *rq)
1166{
1167}
1168
1169static inline void init_rq_hrtick(struct rq *rq)
1170{
1171}
1172
1173void hrtick_resched(void)
1174{
1175}
b328ca18
PZ
1176
1177static inline void init_hrtick(void)
1178{
1179}
8f4d37ec
PZ
1180#endif
1181
c24d20db
IM
1182/*
1183 * resched_task - mark a task 'to be rescheduled now'.
1184 *
1185 * On UP this means the setting of the need_resched flag, on SMP it
1186 * might also involve a cross-CPU call to trigger the scheduler on
1187 * the target CPU.
1188 */
1189#ifdef CONFIG_SMP
1190
1191#ifndef tsk_is_polling
1192#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1193#endif
1194
8f4d37ec 1195static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1196{
1197 int cpu;
1198
1199 assert_spin_locked(&task_rq(p)->lock);
1200
8f4d37ec 1201 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1202 return;
1203
8f4d37ec 1204 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1205
1206 cpu = task_cpu(p);
1207 if (cpu == smp_processor_id())
1208 return;
1209
1210 /* NEED_RESCHED must be visible before we test polling */
1211 smp_mb();
1212 if (!tsk_is_polling(p))
1213 smp_send_reschedule(cpu);
1214}
1215
1216static void resched_cpu(int cpu)
1217{
1218 struct rq *rq = cpu_rq(cpu);
1219 unsigned long flags;
1220
1221 if (!spin_trylock_irqsave(&rq->lock, flags))
1222 return;
1223 resched_task(cpu_curr(cpu));
1224 spin_unlock_irqrestore(&rq->lock, flags);
1225}
06d8308c
TG
1226
1227#ifdef CONFIG_NO_HZ
1228/*
1229 * When add_timer_on() enqueues a timer into the timer wheel of an
1230 * idle CPU then this timer might expire before the next timer event
1231 * which is scheduled to wake up that CPU. In case of a completely
1232 * idle system the next event might even be infinite time into the
1233 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1234 * leaves the inner idle loop so the newly added timer is taken into
1235 * account when the CPU goes back to idle and evaluates the timer
1236 * wheel for the next timer event.
1237 */
1238void wake_up_idle_cpu(int cpu)
1239{
1240 struct rq *rq = cpu_rq(cpu);
1241
1242 if (cpu == smp_processor_id())
1243 return;
1244
1245 /*
1246 * This is safe, as this function is called with the timer
1247 * wheel base lock of (cpu) held. When the CPU is on the way
1248 * to idle and has not yet set rq->curr to idle then it will
1249 * be serialized on the timer wheel base lock and take the new
1250 * timer into account automatically.
1251 */
1252 if (rq->curr != rq->idle)
1253 return;
1254
1255 /*
1256 * We can set TIF_RESCHED on the idle task of the other CPU
1257 * lockless. The worst case is that the other CPU runs the
1258 * idle task through an additional NOOP schedule()
1259 */
1260 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1261
1262 /* NEED_RESCHED must be visible before we test polling */
1263 smp_mb();
1264 if (!tsk_is_polling(rq->idle))
1265 smp_send_reschedule(cpu);
1266}
6d6bc0ad 1267#endif /* CONFIG_NO_HZ */
06d8308c 1268
6d6bc0ad 1269#else /* !CONFIG_SMP */
8f4d37ec 1270static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1271{
1272 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1273 set_tsk_thread_flag(p, tif_bit);
c24d20db 1274}
6d6bc0ad 1275#endif /* CONFIG_SMP */
c24d20db 1276
45bf76df
IM
1277#if BITS_PER_LONG == 32
1278# define WMULT_CONST (~0UL)
1279#else
1280# define WMULT_CONST (1UL << 32)
1281#endif
1282
1283#define WMULT_SHIFT 32
1284
194081eb
IM
1285/*
1286 * Shift right and round:
1287 */
cf2ab469 1288#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1289
a7be37ac
PZ
1290/*
1291 * delta *= weight / lw
1292 */
cb1c4fc9 1293static unsigned long
45bf76df
IM
1294calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1295 struct load_weight *lw)
1296{
1297 u64 tmp;
1298
7a232e03
LJ
1299 if (!lw->inv_weight) {
1300 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1301 lw->inv_weight = 1;
1302 else
1303 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1304 / (lw->weight+1);
1305 }
45bf76df
IM
1306
1307 tmp = (u64)delta_exec * weight;
1308 /*
1309 * Check whether we'd overflow the 64-bit multiplication:
1310 */
194081eb 1311 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1312 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1313 WMULT_SHIFT/2);
1314 else
cf2ab469 1315 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1316
ecf691da 1317 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1318}
1319
1091985b 1320static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1321{
1322 lw->weight += inc;
e89996ae 1323 lw->inv_weight = 0;
45bf76df
IM
1324}
1325
1091985b 1326static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1327{
1328 lw->weight -= dec;
e89996ae 1329 lw->inv_weight = 0;
45bf76df
IM
1330}
1331
2dd73a4f
PW
1332/*
1333 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1334 * of tasks with abnormal "nice" values across CPUs the contribution that
1335 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1336 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1337 * scaled version of the new time slice allocation that they receive on time
1338 * slice expiry etc.
1339 */
1340
dd41f596
IM
1341#define WEIGHT_IDLEPRIO 2
1342#define WMULT_IDLEPRIO (1 << 31)
1343
1344/*
1345 * Nice levels are multiplicative, with a gentle 10% change for every
1346 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1347 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1348 * that remained on nice 0.
1349 *
1350 * The "10% effect" is relative and cumulative: from _any_ nice level,
1351 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1352 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1353 * If a task goes up by ~10% and another task goes down by ~10% then
1354 * the relative distance between them is ~25%.)
dd41f596
IM
1355 */
1356static const int prio_to_weight[40] = {
254753dc
IM
1357 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1358 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1359 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1360 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1361 /* 0 */ 1024, 820, 655, 526, 423,
1362 /* 5 */ 335, 272, 215, 172, 137,
1363 /* 10 */ 110, 87, 70, 56, 45,
1364 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1365};
1366
5714d2de
IM
1367/*
1368 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1369 *
1370 * In cases where the weight does not change often, we can use the
1371 * precalculated inverse to speed up arithmetics by turning divisions
1372 * into multiplications:
1373 */
dd41f596 1374static const u32 prio_to_wmult[40] = {
254753dc
IM
1375 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1376 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1377 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1378 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1379 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1380 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1381 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1382 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1383};
2dd73a4f 1384
dd41f596
IM
1385static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1386
1387/*
1388 * runqueue iterator, to support SMP load-balancing between different
1389 * scheduling classes, without having to expose their internal data
1390 * structures to the load-balancing proper:
1391 */
1392struct rq_iterator {
1393 void *arg;
1394 struct task_struct *(*start)(void *);
1395 struct task_struct *(*next)(void *);
1396};
1397
e1d1484f
PW
1398#ifdef CONFIG_SMP
1399static unsigned long
1400balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1401 unsigned long max_load_move, struct sched_domain *sd,
1402 enum cpu_idle_type idle, int *all_pinned,
1403 int *this_best_prio, struct rq_iterator *iterator);
1404
1405static int
1406iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1407 struct sched_domain *sd, enum cpu_idle_type idle,
1408 struct rq_iterator *iterator);
e1d1484f 1409#endif
dd41f596 1410
d842de87
SV
1411#ifdef CONFIG_CGROUP_CPUACCT
1412static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1413#else
1414static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1415#endif
1416
18d95a28
PZ
1417static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1418{
1419 update_load_add(&rq->load, load);
1420}
1421
1422static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1423{
1424 update_load_sub(&rq->load, load);
1425}
1426
e7693a36
GH
1427#ifdef CONFIG_SMP
1428static unsigned long source_load(int cpu, int type);
1429static unsigned long target_load(int cpu, int type);
1430static unsigned long cpu_avg_load_per_task(int cpu);
1431static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
c09595f6
PZ
1432
1433#ifdef CONFIG_FAIR_GROUP_SCHED
1434
c8cba857 1435typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
c09595f6
PZ
1436
1437/*
1438 * Iterate the full tree, calling @down when first entering a node and @up when
1439 * leaving it for the final time.
1440 */
c8cba857
PZ
1441static void
1442walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
c09595f6
PZ
1443{
1444 struct task_group *parent, *child;
1445
1446 rcu_read_lock();
1447 parent = &root_task_group;
1448down:
b6a86c74 1449 (*down)(parent, cpu, sd);
c09595f6
PZ
1450 list_for_each_entry_rcu(child, &parent->children, siblings) {
1451 parent = child;
1452 goto down;
1453
1454up:
1455 continue;
1456 }
b6a86c74 1457 (*up)(parent, cpu, sd);
c09595f6
PZ
1458
1459 child = parent;
1460 parent = parent->parent;
1461 if (parent)
1462 goto up;
1463 rcu_read_unlock();
1464}
1465
c09595f6
PZ
1466static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1467
1468/*
1469 * Calculate and set the cpu's group shares.
1470 */
1471static void
b6a86c74 1472__update_group_shares_cpu(struct task_group *tg, int cpu,
c8cba857 1473 unsigned long sd_shares, unsigned long sd_rq_weight)
c09595f6
PZ
1474{
1475 int boost = 0;
1476 unsigned long shares;
1477 unsigned long rq_weight;
1478
c8cba857 1479 if (!tg->se[cpu])
c09595f6
PZ
1480 return;
1481
c8cba857 1482 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1483
1484 /*
1485 * If there are currently no tasks on the cpu pretend there is one of
1486 * average load so that when a new task gets to run here it will not
1487 * get delayed by group starvation.
1488 */
1489 if (!rq_weight) {
1490 boost = 1;
1491 rq_weight = NICE_0_LOAD;
1492 }
1493
c8cba857
PZ
1494 if (unlikely(rq_weight > sd_rq_weight))
1495 rq_weight = sd_rq_weight;
1496
c09595f6
PZ
1497 /*
1498 * \Sum shares * rq_weight
1499 * shares = -----------------------
1500 * \Sum rq_weight
1501 *
1502 */
c8cba857 1503 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
c09595f6
PZ
1504
1505 /*
1506 * record the actual number of shares, not the boosted amount.
1507 */
c8cba857 1508 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
c09595f6
PZ
1509
1510 if (shares < MIN_SHARES)
1511 shares = MIN_SHARES;
1512 else if (shares > MAX_SHARES)
1513 shares = MAX_SHARES;
1514
c8cba857 1515 __set_se_shares(tg->se[cpu], shares);
c09595f6
PZ
1516}
1517
1518/*
c8cba857
PZ
1519 * Re-compute the task group their per cpu shares over the given domain.
1520 * This needs to be done in a bottom-up fashion because the rq weight of a
1521 * parent group depends on the shares of its child groups.
c09595f6
PZ
1522 */
1523static void
c8cba857 1524tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1525{
c8cba857
PZ
1526 unsigned long rq_weight = 0;
1527 unsigned long shares = 0;
1528 int i;
c09595f6 1529
c8cba857
PZ
1530 for_each_cpu_mask(i, sd->span) {
1531 rq_weight += tg->cfs_rq[i]->load.weight;
1532 shares += tg->cfs_rq[i]->shares;
c09595f6 1533 }
c09595f6 1534
c8cba857
PZ
1535 if ((!shares && rq_weight) || shares > tg->shares)
1536 shares = tg->shares;
1537
1538 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1539 shares = tg->shares;
c09595f6
PZ
1540
1541 for_each_cpu_mask(i, sd->span) {
1542 struct rq *rq = cpu_rq(i);
1543 unsigned long flags;
1544
1545 spin_lock_irqsave(&rq->lock, flags);
c8cba857 1546 __update_group_shares_cpu(tg, i, shares, rq_weight);
c09595f6
PZ
1547 spin_unlock_irqrestore(&rq->lock, flags);
1548 }
c09595f6
PZ
1549}
1550
1551/*
c8cba857
PZ
1552 * Compute the cpu's hierarchical load factor for each task group.
1553 * This needs to be done in a top-down fashion because the load of a child
1554 * group is a fraction of its parents load.
c09595f6 1555 */
b6a86c74 1556static void
c8cba857 1557tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1558{
c8cba857 1559 unsigned long load;
c09595f6 1560
c8cba857
PZ
1561 if (!tg->parent) {
1562 load = cpu_rq(cpu)->load.weight;
1563 } else {
1564 load = tg->parent->cfs_rq[cpu]->h_load;
1565 load *= tg->cfs_rq[cpu]->shares;
1566 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1567 }
c09595f6 1568
c8cba857 1569 tg->cfs_rq[cpu]->h_load = load;
c09595f6
PZ
1570}
1571
c8cba857
PZ
1572static void
1573tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1574{
c09595f6
PZ
1575}
1576
c8cba857 1577static void update_shares(struct sched_domain *sd)
4d8d595d 1578{
c8cba857 1579 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
4d8d595d
PZ
1580}
1581
3e5459b4
PZ
1582static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1583{
1584 spin_unlock(&rq->lock);
1585 update_shares(sd);
1586 spin_lock(&rq->lock);
1587}
1588
c8cba857 1589static void update_h_load(int cpu)
c09595f6 1590{
c8cba857 1591 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
c09595f6
PZ
1592}
1593
1594static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1595{
1596 cfs_rq->shares = shares;
1597}
1598
1599#else
1600
c8cba857 1601static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1602{
1603}
1604
3e5459b4
PZ
1605static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1606{
1607}
1608
c09595f6
PZ
1609#endif
1610
18d95a28
PZ
1611#endif
1612
dd41f596 1613#include "sched_stats.h"
dd41f596 1614#include "sched_idletask.c"
5522d5d5
IM
1615#include "sched_fair.c"
1616#include "sched_rt.c"
dd41f596
IM
1617#ifdef CONFIG_SCHED_DEBUG
1618# include "sched_debug.c"
1619#endif
1620
1621#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1622#define for_each_class(class) \
1623 for (class = sched_class_highest; class; class = class->next)
dd41f596 1624
c09595f6 1625static void inc_nr_running(struct rq *rq)
9c217245
IM
1626{
1627 rq->nr_running++;
9c217245
IM
1628}
1629
c09595f6 1630static void dec_nr_running(struct rq *rq)
9c217245
IM
1631{
1632 rq->nr_running--;
9c217245
IM
1633}
1634
45bf76df
IM
1635static void set_load_weight(struct task_struct *p)
1636{
1637 if (task_has_rt_policy(p)) {
dd41f596
IM
1638 p->se.load.weight = prio_to_weight[0] * 2;
1639 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1640 return;
1641 }
45bf76df 1642
dd41f596
IM
1643 /*
1644 * SCHED_IDLE tasks get minimal weight:
1645 */
1646 if (p->policy == SCHED_IDLE) {
1647 p->se.load.weight = WEIGHT_IDLEPRIO;
1648 p->se.load.inv_weight = WMULT_IDLEPRIO;
1649 return;
1650 }
71f8bd46 1651
dd41f596
IM
1652 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1653 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1654}
1655
8159f87e 1656static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1657{
dd41f596 1658 sched_info_queued(p);
fd390f6a 1659 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1660 p->se.on_rq = 1;
71f8bd46
IM
1661}
1662
69be72c1 1663static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1664{
f02231e5 1665 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1666 p->se.on_rq = 0;
71f8bd46
IM
1667}
1668
14531189 1669/*
dd41f596 1670 * __normal_prio - return the priority that is based on the static prio
14531189 1671 */
14531189
IM
1672static inline int __normal_prio(struct task_struct *p)
1673{
dd41f596 1674 return p->static_prio;
14531189
IM
1675}
1676
b29739f9
IM
1677/*
1678 * Calculate the expected normal priority: i.e. priority
1679 * without taking RT-inheritance into account. Might be
1680 * boosted by interactivity modifiers. Changes upon fork,
1681 * setprio syscalls, and whenever the interactivity
1682 * estimator recalculates.
1683 */
36c8b586 1684static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1685{
1686 int prio;
1687
e05606d3 1688 if (task_has_rt_policy(p))
b29739f9
IM
1689 prio = MAX_RT_PRIO-1 - p->rt_priority;
1690 else
1691 prio = __normal_prio(p);
1692 return prio;
1693}
1694
1695/*
1696 * Calculate the current priority, i.e. the priority
1697 * taken into account by the scheduler. This value might
1698 * be boosted by RT tasks, or might be boosted by
1699 * interactivity modifiers. Will be RT if the task got
1700 * RT-boosted. If not then it returns p->normal_prio.
1701 */
36c8b586 1702static int effective_prio(struct task_struct *p)
b29739f9
IM
1703{
1704 p->normal_prio = normal_prio(p);
1705 /*
1706 * If we are RT tasks or we were boosted to RT priority,
1707 * keep the priority unchanged. Otherwise, update priority
1708 * to the normal priority:
1709 */
1710 if (!rt_prio(p->prio))
1711 return p->normal_prio;
1712 return p->prio;
1713}
1714
1da177e4 1715/*
dd41f596 1716 * activate_task - move a task to the runqueue.
1da177e4 1717 */
dd41f596 1718static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1719{
d9514f6c 1720 if (task_contributes_to_load(p))
dd41f596 1721 rq->nr_uninterruptible--;
1da177e4 1722
8159f87e 1723 enqueue_task(rq, p, wakeup);
c09595f6 1724 inc_nr_running(rq);
1da177e4
LT
1725}
1726
1da177e4
LT
1727/*
1728 * deactivate_task - remove a task from the runqueue.
1729 */
2e1cb74a 1730static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1731{
d9514f6c 1732 if (task_contributes_to_load(p))
dd41f596
IM
1733 rq->nr_uninterruptible++;
1734
69be72c1 1735 dequeue_task(rq, p, sleep);
c09595f6 1736 dec_nr_running(rq);
1da177e4
LT
1737}
1738
1da177e4
LT
1739/**
1740 * task_curr - is this task currently executing on a CPU?
1741 * @p: the task in question.
1742 */
36c8b586 1743inline int task_curr(const struct task_struct *p)
1da177e4
LT
1744{
1745 return cpu_curr(task_cpu(p)) == p;
1746}
1747
dd41f596
IM
1748static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1749{
6f505b16 1750 set_task_rq(p, cpu);
dd41f596 1751#ifdef CONFIG_SMP
ce96b5ac
DA
1752 /*
1753 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1754 * successfuly executed on another CPU. We must ensure that updates of
1755 * per-task data have been completed by this moment.
1756 */
1757 smp_wmb();
dd41f596 1758 task_thread_info(p)->cpu = cpu;
dd41f596 1759#endif
2dd73a4f
PW
1760}
1761
cb469845
SR
1762static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1763 const struct sched_class *prev_class,
1764 int oldprio, int running)
1765{
1766 if (prev_class != p->sched_class) {
1767 if (prev_class->switched_from)
1768 prev_class->switched_from(rq, p, running);
1769 p->sched_class->switched_to(rq, p, running);
1770 } else
1771 p->sched_class->prio_changed(rq, p, oldprio, running);
1772}
1773
1da177e4 1774#ifdef CONFIG_SMP
c65cc870 1775
e958b360
TG
1776/* Used instead of source_load when we know the type == 0 */
1777static unsigned long weighted_cpuload(const int cpu)
1778{
1779 return cpu_rq(cpu)->load.weight;
1780}
1781
cc367732
IM
1782/*
1783 * Is this task likely cache-hot:
1784 */
e7693a36 1785static int
cc367732
IM
1786task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1787{
1788 s64 delta;
1789
f540a608
IM
1790 /*
1791 * Buddy candidates are cache hot:
1792 */
d25ce4cd 1793 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1794 return 1;
1795
cc367732
IM
1796 if (p->sched_class != &fair_sched_class)
1797 return 0;
1798
6bc1665b
IM
1799 if (sysctl_sched_migration_cost == -1)
1800 return 1;
1801 if (sysctl_sched_migration_cost == 0)
1802 return 0;
1803
cc367732
IM
1804 delta = now - p->se.exec_start;
1805
1806 return delta < (s64)sysctl_sched_migration_cost;
1807}
1808
1809
dd41f596 1810void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1811{
dd41f596
IM
1812 int old_cpu = task_cpu(p);
1813 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1814 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1815 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1816 u64 clock_offset;
dd41f596
IM
1817
1818 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1819
1820#ifdef CONFIG_SCHEDSTATS
1821 if (p->se.wait_start)
1822 p->se.wait_start -= clock_offset;
dd41f596
IM
1823 if (p->se.sleep_start)
1824 p->se.sleep_start -= clock_offset;
1825 if (p->se.block_start)
1826 p->se.block_start -= clock_offset;
cc367732
IM
1827 if (old_cpu != new_cpu) {
1828 schedstat_inc(p, se.nr_migrations);
1829 if (task_hot(p, old_rq->clock, NULL))
1830 schedstat_inc(p, se.nr_forced2_migrations);
1831 }
6cfb0d5d 1832#endif
2830cf8c
SV
1833 p->se.vruntime -= old_cfsrq->min_vruntime -
1834 new_cfsrq->min_vruntime;
dd41f596
IM
1835
1836 __set_task_cpu(p, new_cpu);
c65cc870
IM
1837}
1838
70b97a7f 1839struct migration_req {
1da177e4 1840 struct list_head list;
1da177e4 1841
36c8b586 1842 struct task_struct *task;
1da177e4
LT
1843 int dest_cpu;
1844
1da177e4 1845 struct completion done;
70b97a7f 1846};
1da177e4
LT
1847
1848/*
1849 * The task's runqueue lock must be held.
1850 * Returns true if you have to wait for migration thread.
1851 */
36c8b586 1852static int
70b97a7f 1853migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1854{
70b97a7f 1855 struct rq *rq = task_rq(p);
1da177e4
LT
1856
1857 /*
1858 * If the task is not on a runqueue (and not running), then
1859 * it is sufficient to simply update the task's cpu field.
1860 */
dd41f596 1861 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1862 set_task_cpu(p, dest_cpu);
1863 return 0;
1864 }
1865
1866 init_completion(&req->done);
1da177e4
LT
1867 req->task = p;
1868 req->dest_cpu = dest_cpu;
1869 list_add(&req->list, &rq->migration_queue);
48f24c4d 1870
1da177e4
LT
1871 return 1;
1872}
1873
1874/*
1875 * wait_task_inactive - wait for a thread to unschedule.
1876 *
1877 * The caller must ensure that the task *will* unschedule sometime soon,
1878 * else this function might spin for a *long* time. This function can't
1879 * be called with interrupts off, or it may introduce deadlock with
1880 * smp_call_function() if an IPI is sent by the same process we are
1881 * waiting to become inactive.
1882 */
36c8b586 1883void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1884{
1885 unsigned long flags;
dd41f596 1886 int running, on_rq;
70b97a7f 1887 struct rq *rq;
1da177e4 1888
3a5c359a
AK
1889 for (;;) {
1890 /*
1891 * We do the initial early heuristics without holding
1892 * any task-queue locks at all. We'll only try to get
1893 * the runqueue lock when things look like they will
1894 * work out!
1895 */
1896 rq = task_rq(p);
fa490cfd 1897
3a5c359a
AK
1898 /*
1899 * If the task is actively running on another CPU
1900 * still, just relax and busy-wait without holding
1901 * any locks.
1902 *
1903 * NOTE! Since we don't hold any locks, it's not
1904 * even sure that "rq" stays as the right runqueue!
1905 * But we don't care, since "task_running()" will
1906 * return false if the runqueue has changed and p
1907 * is actually now running somewhere else!
1908 */
1909 while (task_running(rq, p))
1910 cpu_relax();
fa490cfd 1911
3a5c359a
AK
1912 /*
1913 * Ok, time to look more closely! We need the rq
1914 * lock now, to be *sure*. If we're wrong, we'll
1915 * just go back and repeat.
1916 */
1917 rq = task_rq_lock(p, &flags);
1918 running = task_running(rq, p);
1919 on_rq = p->se.on_rq;
1920 task_rq_unlock(rq, &flags);
fa490cfd 1921
3a5c359a
AK
1922 /*
1923 * Was it really running after all now that we
1924 * checked with the proper locks actually held?
1925 *
1926 * Oops. Go back and try again..
1927 */
1928 if (unlikely(running)) {
1929 cpu_relax();
1930 continue;
1931 }
fa490cfd 1932
3a5c359a
AK
1933 /*
1934 * It's not enough that it's not actively running,
1935 * it must be off the runqueue _entirely_, and not
1936 * preempted!
1937 *
1938 * So if it wa still runnable (but just not actively
1939 * running right now), it's preempted, and we should
1940 * yield - it could be a while.
1941 */
1942 if (unlikely(on_rq)) {
1943 schedule_timeout_uninterruptible(1);
1944 continue;
1945 }
fa490cfd 1946
3a5c359a
AK
1947 /*
1948 * Ahh, all good. It wasn't running, and it wasn't
1949 * runnable, which means that it will never become
1950 * running in the future either. We're all done!
1951 */
1952 break;
1953 }
1da177e4
LT
1954}
1955
1956/***
1957 * kick_process - kick a running thread to enter/exit the kernel
1958 * @p: the to-be-kicked thread
1959 *
1960 * Cause a process which is running on another CPU to enter
1961 * kernel-mode, without any delay. (to get signals handled.)
1962 *
1963 * NOTE: this function doesnt have to take the runqueue lock,
1964 * because all it wants to ensure is that the remote task enters
1965 * the kernel. If the IPI races and the task has been migrated
1966 * to another CPU then no harm is done and the purpose has been
1967 * achieved as well.
1968 */
36c8b586 1969void kick_process(struct task_struct *p)
1da177e4
LT
1970{
1971 int cpu;
1972
1973 preempt_disable();
1974 cpu = task_cpu(p);
1975 if ((cpu != smp_processor_id()) && task_curr(p))
1976 smp_send_reschedule(cpu);
1977 preempt_enable();
1978}
1979
1980/*
2dd73a4f
PW
1981 * Return a low guess at the load of a migration-source cpu weighted
1982 * according to the scheduling class and "nice" value.
1da177e4
LT
1983 *
1984 * We want to under-estimate the load of migration sources, to
1985 * balance conservatively.
1986 */
a9957449 1987static unsigned long source_load(int cpu, int type)
1da177e4 1988{
70b97a7f 1989 struct rq *rq = cpu_rq(cpu);
dd41f596 1990 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1991
3b0bd9bc 1992 if (type == 0)
dd41f596 1993 return total;
b910472d 1994
dd41f596 1995 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1996}
1997
1998/*
2dd73a4f
PW
1999 * Return a high guess at the load of a migration-target cpu weighted
2000 * according to the scheduling class and "nice" value.
1da177e4 2001 */
a9957449 2002static unsigned long target_load(int cpu, int type)
1da177e4 2003{
70b97a7f 2004 struct rq *rq = cpu_rq(cpu);
dd41f596 2005 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2006
7897986b 2007 if (type == 0)
dd41f596 2008 return total;
3b0bd9bc 2009
dd41f596 2010 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2011}
2012
2013/*
2014 * Return the average load per task on the cpu's run queue
2015 */
e7693a36 2016static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 2017{
70b97a7f 2018 struct rq *rq = cpu_rq(cpu);
dd41f596 2019 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
2020 unsigned long n = rq->nr_running;
2021
dd41f596 2022 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
2023}
2024
147cbb4b
NP
2025/*
2026 * find_idlest_group finds and returns the least busy CPU group within the
2027 * domain.
2028 */
2029static struct sched_group *
2030find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2031{
2032 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2033 unsigned long min_load = ULONG_MAX, this_load = 0;
2034 int load_idx = sd->forkexec_idx;
2035 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2036
2037 do {
2038 unsigned long load, avg_load;
2039 int local_group;
2040 int i;
2041
da5a5522
BD
2042 /* Skip over this group if it has no CPUs allowed */
2043 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2044 continue;
da5a5522 2045
147cbb4b 2046 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2047
2048 /* Tally up the load of all CPUs in the group */
2049 avg_load = 0;
2050
2051 for_each_cpu_mask(i, group->cpumask) {
2052 /* Bias balancing toward cpus of our domain */
2053 if (local_group)
2054 load = source_load(i, load_idx);
2055 else
2056 load = target_load(i, load_idx);
2057
2058 avg_load += load;
2059 }
2060
2061 /* Adjust by relative CPU power of the group */
5517d86b
ED
2062 avg_load = sg_div_cpu_power(group,
2063 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2064
2065 if (local_group) {
2066 this_load = avg_load;
2067 this = group;
2068 } else if (avg_load < min_load) {
2069 min_load = avg_load;
2070 idlest = group;
2071 }
3a5c359a 2072 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2073
2074 if (!idlest || 100*this_load < imbalance*min_load)
2075 return NULL;
2076 return idlest;
2077}
2078
2079/*
0feaece9 2080 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2081 */
95cdf3b7 2082static int
7c16ec58
MT
2083find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2084 cpumask_t *tmp)
147cbb4b
NP
2085{
2086 unsigned long load, min_load = ULONG_MAX;
2087 int idlest = -1;
2088 int i;
2089
da5a5522 2090 /* Traverse only the allowed CPUs */
7c16ec58 2091 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2092
7c16ec58 2093 for_each_cpu_mask(i, *tmp) {
2dd73a4f 2094 load = weighted_cpuload(i);
147cbb4b
NP
2095
2096 if (load < min_load || (load == min_load && i == this_cpu)) {
2097 min_load = load;
2098 idlest = i;
2099 }
2100 }
2101
2102 return idlest;
2103}
2104
476d139c
NP
2105/*
2106 * sched_balance_self: balance the current task (running on cpu) in domains
2107 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2108 * SD_BALANCE_EXEC.
2109 *
2110 * Balance, ie. select the least loaded group.
2111 *
2112 * Returns the target CPU number, or the same CPU if no balancing is needed.
2113 *
2114 * preempt must be disabled.
2115 */
2116static int sched_balance_self(int cpu, int flag)
2117{
2118 struct task_struct *t = current;
2119 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2120
c96d145e 2121 for_each_domain(cpu, tmp) {
9761eea8
IM
2122 /*
2123 * If power savings logic is enabled for a domain, stop there.
2124 */
5c45bf27
SS
2125 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2126 break;
476d139c
NP
2127 if (tmp->flags & flag)
2128 sd = tmp;
c96d145e 2129 }
476d139c
NP
2130
2131 while (sd) {
7c16ec58 2132 cpumask_t span, tmpmask;
476d139c 2133 struct sched_group *group;
1a848870
SS
2134 int new_cpu, weight;
2135
2136 if (!(sd->flags & flag)) {
2137 sd = sd->child;
2138 continue;
2139 }
476d139c
NP
2140
2141 span = sd->span;
2142 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2143 if (!group) {
2144 sd = sd->child;
2145 continue;
2146 }
476d139c 2147
7c16ec58 2148 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2149 if (new_cpu == -1 || new_cpu == cpu) {
2150 /* Now try balancing at a lower domain level of cpu */
2151 sd = sd->child;
2152 continue;
2153 }
476d139c 2154
1a848870 2155 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2156 cpu = new_cpu;
476d139c
NP
2157 sd = NULL;
2158 weight = cpus_weight(span);
2159 for_each_domain(cpu, tmp) {
2160 if (weight <= cpus_weight(tmp->span))
2161 break;
2162 if (tmp->flags & flag)
2163 sd = tmp;
2164 }
2165 /* while loop will break here if sd == NULL */
2166 }
2167
2168 return cpu;
2169}
2170
2171#endif /* CONFIG_SMP */
1da177e4 2172
1da177e4
LT
2173/***
2174 * try_to_wake_up - wake up a thread
2175 * @p: the to-be-woken-up thread
2176 * @state: the mask of task states that can be woken
2177 * @sync: do a synchronous wakeup?
2178 *
2179 * Put it on the run-queue if it's not already there. The "current"
2180 * thread is always on the run-queue (except when the actual
2181 * re-schedule is in progress), and as such you're allowed to do
2182 * the simpler "current->state = TASK_RUNNING" to mark yourself
2183 * runnable without the overhead of this.
2184 *
2185 * returns failure only if the task is already active.
2186 */
36c8b586 2187static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2188{
cc367732 2189 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2190 unsigned long flags;
2191 long old_state;
70b97a7f 2192 struct rq *rq;
1da177e4 2193
b85d0667
IM
2194 if (!sched_feat(SYNC_WAKEUPS))
2195 sync = 0;
2196
04e2f174 2197 smp_wmb();
1da177e4
LT
2198 rq = task_rq_lock(p, &flags);
2199 old_state = p->state;
2200 if (!(old_state & state))
2201 goto out;
2202
dd41f596 2203 if (p->se.on_rq)
1da177e4
LT
2204 goto out_running;
2205
2206 cpu = task_cpu(p);
cc367732 2207 orig_cpu = cpu;
1da177e4
LT
2208 this_cpu = smp_processor_id();
2209
2210#ifdef CONFIG_SMP
2211 if (unlikely(task_running(rq, p)))
2212 goto out_activate;
2213
5d2f5a61
DA
2214 cpu = p->sched_class->select_task_rq(p, sync);
2215 if (cpu != orig_cpu) {
2216 set_task_cpu(p, cpu);
1da177e4
LT
2217 task_rq_unlock(rq, &flags);
2218 /* might preempt at this point */
2219 rq = task_rq_lock(p, &flags);
2220 old_state = p->state;
2221 if (!(old_state & state))
2222 goto out;
dd41f596 2223 if (p->se.on_rq)
1da177e4
LT
2224 goto out_running;
2225
2226 this_cpu = smp_processor_id();
2227 cpu = task_cpu(p);
2228 }
2229
e7693a36
GH
2230#ifdef CONFIG_SCHEDSTATS
2231 schedstat_inc(rq, ttwu_count);
2232 if (cpu == this_cpu)
2233 schedstat_inc(rq, ttwu_local);
2234 else {
2235 struct sched_domain *sd;
2236 for_each_domain(this_cpu, sd) {
2237 if (cpu_isset(cpu, sd->span)) {
2238 schedstat_inc(sd, ttwu_wake_remote);
2239 break;
2240 }
2241 }
2242 }
6d6bc0ad 2243#endif /* CONFIG_SCHEDSTATS */
e7693a36 2244
1da177e4
LT
2245out_activate:
2246#endif /* CONFIG_SMP */
cc367732
IM
2247 schedstat_inc(p, se.nr_wakeups);
2248 if (sync)
2249 schedstat_inc(p, se.nr_wakeups_sync);
2250 if (orig_cpu != cpu)
2251 schedstat_inc(p, se.nr_wakeups_migrate);
2252 if (cpu == this_cpu)
2253 schedstat_inc(p, se.nr_wakeups_local);
2254 else
2255 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2256 update_rq_clock(rq);
dd41f596 2257 activate_task(rq, p, 1);
1da177e4
LT
2258 success = 1;
2259
2260out_running:
4ae7d5ce
IM
2261 check_preempt_curr(rq, p);
2262
1da177e4 2263 p->state = TASK_RUNNING;
9a897c5a
SR
2264#ifdef CONFIG_SMP
2265 if (p->sched_class->task_wake_up)
2266 p->sched_class->task_wake_up(rq, p);
2267#endif
1da177e4
LT
2268out:
2269 task_rq_unlock(rq, &flags);
2270
2271 return success;
2272}
2273
7ad5b3a5 2274int wake_up_process(struct task_struct *p)
1da177e4 2275{
d9514f6c 2276 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2277}
1da177e4
LT
2278EXPORT_SYMBOL(wake_up_process);
2279
7ad5b3a5 2280int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2281{
2282 return try_to_wake_up(p, state, 0);
2283}
2284
1da177e4
LT
2285/*
2286 * Perform scheduler related setup for a newly forked process p.
2287 * p is forked by current.
dd41f596
IM
2288 *
2289 * __sched_fork() is basic setup used by init_idle() too:
2290 */
2291static void __sched_fork(struct task_struct *p)
2292{
dd41f596
IM
2293 p->se.exec_start = 0;
2294 p->se.sum_exec_runtime = 0;
f6cf891c 2295 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2296 p->se.last_wakeup = 0;
2297 p->se.avg_overlap = 0;
6cfb0d5d
IM
2298
2299#ifdef CONFIG_SCHEDSTATS
2300 p->se.wait_start = 0;
dd41f596
IM
2301 p->se.sum_sleep_runtime = 0;
2302 p->se.sleep_start = 0;
dd41f596
IM
2303 p->se.block_start = 0;
2304 p->se.sleep_max = 0;
2305 p->se.block_max = 0;
2306 p->se.exec_max = 0;
eba1ed4b 2307 p->se.slice_max = 0;
dd41f596 2308 p->se.wait_max = 0;
6cfb0d5d 2309#endif
476d139c 2310
fa717060 2311 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2312 p->se.on_rq = 0;
4a55bd5e 2313 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2314
e107be36
AK
2315#ifdef CONFIG_PREEMPT_NOTIFIERS
2316 INIT_HLIST_HEAD(&p->preempt_notifiers);
2317#endif
2318
1da177e4
LT
2319 /*
2320 * We mark the process as running here, but have not actually
2321 * inserted it onto the runqueue yet. This guarantees that
2322 * nobody will actually run it, and a signal or other external
2323 * event cannot wake it up and insert it on the runqueue either.
2324 */
2325 p->state = TASK_RUNNING;
dd41f596
IM
2326}
2327
2328/*
2329 * fork()/clone()-time setup:
2330 */
2331void sched_fork(struct task_struct *p, int clone_flags)
2332{
2333 int cpu = get_cpu();
2334
2335 __sched_fork(p);
2336
2337#ifdef CONFIG_SMP
2338 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2339#endif
02e4bac2 2340 set_task_cpu(p, cpu);
b29739f9
IM
2341
2342 /*
2343 * Make sure we do not leak PI boosting priority to the child:
2344 */
2345 p->prio = current->normal_prio;
2ddbf952
HS
2346 if (!rt_prio(p->prio))
2347 p->sched_class = &fair_sched_class;
b29739f9 2348
52f17b6c 2349#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2350 if (likely(sched_info_on()))
52f17b6c 2351 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2352#endif
d6077cb8 2353#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2354 p->oncpu = 0;
2355#endif
1da177e4 2356#ifdef CONFIG_PREEMPT
4866cde0 2357 /* Want to start with kernel preemption disabled. */
a1261f54 2358 task_thread_info(p)->preempt_count = 1;
1da177e4 2359#endif
476d139c 2360 put_cpu();
1da177e4
LT
2361}
2362
2363/*
2364 * wake_up_new_task - wake up a newly created task for the first time.
2365 *
2366 * This function will do some initial scheduler statistics housekeeping
2367 * that must be done for every newly created context, then puts the task
2368 * on the runqueue and wakes it.
2369 */
7ad5b3a5 2370void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2371{
2372 unsigned long flags;
dd41f596 2373 struct rq *rq;
1da177e4
LT
2374
2375 rq = task_rq_lock(p, &flags);
147cbb4b 2376 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2377 update_rq_clock(rq);
1da177e4
LT
2378
2379 p->prio = effective_prio(p);
2380
b9dca1e0 2381 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2382 activate_task(rq, p, 0);
1da177e4 2383 } else {
1da177e4 2384 /*
dd41f596
IM
2385 * Let the scheduling class do new task startup
2386 * management (if any):
1da177e4 2387 */
ee0827d8 2388 p->sched_class->task_new(rq, p);
c09595f6 2389 inc_nr_running(rq);
1da177e4 2390 }
dd41f596 2391 check_preempt_curr(rq, p);
9a897c5a
SR
2392#ifdef CONFIG_SMP
2393 if (p->sched_class->task_wake_up)
2394 p->sched_class->task_wake_up(rq, p);
2395#endif
dd41f596 2396 task_rq_unlock(rq, &flags);
1da177e4
LT
2397}
2398
e107be36
AK
2399#ifdef CONFIG_PREEMPT_NOTIFIERS
2400
2401/**
421cee29
RD
2402 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2403 * @notifier: notifier struct to register
e107be36
AK
2404 */
2405void preempt_notifier_register(struct preempt_notifier *notifier)
2406{
2407 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2408}
2409EXPORT_SYMBOL_GPL(preempt_notifier_register);
2410
2411/**
2412 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2413 * @notifier: notifier struct to unregister
e107be36
AK
2414 *
2415 * This is safe to call from within a preemption notifier.
2416 */
2417void preempt_notifier_unregister(struct preempt_notifier *notifier)
2418{
2419 hlist_del(&notifier->link);
2420}
2421EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2422
2423static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2424{
2425 struct preempt_notifier *notifier;
2426 struct hlist_node *node;
2427
2428 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2429 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2430}
2431
2432static void
2433fire_sched_out_preempt_notifiers(struct task_struct *curr,
2434 struct task_struct *next)
2435{
2436 struct preempt_notifier *notifier;
2437 struct hlist_node *node;
2438
2439 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2440 notifier->ops->sched_out(notifier, next);
2441}
2442
6d6bc0ad 2443#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2444
2445static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2446{
2447}
2448
2449static void
2450fire_sched_out_preempt_notifiers(struct task_struct *curr,
2451 struct task_struct *next)
2452{
2453}
2454
6d6bc0ad 2455#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2456
4866cde0
NP
2457/**
2458 * prepare_task_switch - prepare to switch tasks
2459 * @rq: the runqueue preparing to switch
421cee29 2460 * @prev: the current task that is being switched out
4866cde0
NP
2461 * @next: the task we are going to switch to.
2462 *
2463 * This is called with the rq lock held and interrupts off. It must
2464 * be paired with a subsequent finish_task_switch after the context
2465 * switch.
2466 *
2467 * prepare_task_switch sets up locking and calls architecture specific
2468 * hooks.
2469 */
e107be36
AK
2470static inline void
2471prepare_task_switch(struct rq *rq, struct task_struct *prev,
2472 struct task_struct *next)
4866cde0 2473{
e107be36 2474 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2475 prepare_lock_switch(rq, next);
2476 prepare_arch_switch(next);
2477}
2478
1da177e4
LT
2479/**
2480 * finish_task_switch - clean up after a task-switch
344babaa 2481 * @rq: runqueue associated with task-switch
1da177e4
LT
2482 * @prev: the thread we just switched away from.
2483 *
4866cde0
NP
2484 * finish_task_switch must be called after the context switch, paired
2485 * with a prepare_task_switch call before the context switch.
2486 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2487 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2488 *
2489 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2490 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2491 * with the lock held can cause deadlocks; see schedule() for
2492 * details.)
2493 */
a9957449 2494static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2495 __releases(rq->lock)
2496{
1da177e4 2497 struct mm_struct *mm = rq->prev_mm;
55a101f8 2498 long prev_state;
1da177e4
LT
2499
2500 rq->prev_mm = NULL;
2501
2502 /*
2503 * A task struct has one reference for the use as "current".
c394cc9f 2504 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2505 * schedule one last time. The schedule call will never return, and
2506 * the scheduled task must drop that reference.
c394cc9f 2507 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2508 * still held, otherwise prev could be scheduled on another cpu, die
2509 * there before we look at prev->state, and then the reference would
2510 * be dropped twice.
2511 * Manfred Spraul <manfred@colorfullife.com>
2512 */
55a101f8 2513 prev_state = prev->state;
4866cde0
NP
2514 finish_arch_switch(prev);
2515 finish_lock_switch(rq, prev);
9a897c5a
SR
2516#ifdef CONFIG_SMP
2517 if (current->sched_class->post_schedule)
2518 current->sched_class->post_schedule(rq);
2519#endif
e8fa1362 2520
e107be36 2521 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2522 if (mm)
2523 mmdrop(mm);
c394cc9f 2524 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2525 /*
2526 * Remove function-return probe instances associated with this
2527 * task and put them back on the free list.
9761eea8 2528 */
c6fd91f0 2529 kprobe_flush_task(prev);
1da177e4 2530 put_task_struct(prev);
c6fd91f0 2531 }
1da177e4
LT
2532}
2533
2534/**
2535 * schedule_tail - first thing a freshly forked thread must call.
2536 * @prev: the thread we just switched away from.
2537 */
36c8b586 2538asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2539 __releases(rq->lock)
2540{
70b97a7f
IM
2541 struct rq *rq = this_rq();
2542
4866cde0
NP
2543 finish_task_switch(rq, prev);
2544#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2545 /* In this case, finish_task_switch does not reenable preemption */
2546 preempt_enable();
2547#endif
1da177e4 2548 if (current->set_child_tid)
b488893a 2549 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2550}
2551
2552/*
2553 * context_switch - switch to the new MM and the new
2554 * thread's register state.
2555 */
dd41f596 2556static inline void
70b97a7f 2557context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2558 struct task_struct *next)
1da177e4 2559{
dd41f596 2560 struct mm_struct *mm, *oldmm;
1da177e4 2561
e107be36 2562 prepare_task_switch(rq, prev, next);
dd41f596
IM
2563 mm = next->mm;
2564 oldmm = prev->active_mm;
9226d125
ZA
2565 /*
2566 * For paravirt, this is coupled with an exit in switch_to to
2567 * combine the page table reload and the switch backend into
2568 * one hypercall.
2569 */
2570 arch_enter_lazy_cpu_mode();
2571
dd41f596 2572 if (unlikely(!mm)) {
1da177e4
LT
2573 next->active_mm = oldmm;
2574 atomic_inc(&oldmm->mm_count);
2575 enter_lazy_tlb(oldmm, next);
2576 } else
2577 switch_mm(oldmm, mm, next);
2578
dd41f596 2579 if (unlikely(!prev->mm)) {
1da177e4 2580 prev->active_mm = NULL;
1da177e4
LT
2581 rq->prev_mm = oldmm;
2582 }
3a5f5e48
IM
2583 /*
2584 * Since the runqueue lock will be released by the next
2585 * task (which is an invalid locking op but in the case
2586 * of the scheduler it's an obvious special-case), so we
2587 * do an early lockdep release here:
2588 */
2589#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2590 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2591#endif
1da177e4
LT
2592
2593 /* Here we just switch the register state and the stack. */
2594 switch_to(prev, next, prev);
2595
dd41f596
IM
2596 barrier();
2597 /*
2598 * this_rq must be evaluated again because prev may have moved
2599 * CPUs since it called schedule(), thus the 'rq' on its stack
2600 * frame will be invalid.
2601 */
2602 finish_task_switch(this_rq(), prev);
1da177e4
LT
2603}
2604
2605/*
2606 * nr_running, nr_uninterruptible and nr_context_switches:
2607 *
2608 * externally visible scheduler statistics: current number of runnable
2609 * threads, current number of uninterruptible-sleeping threads, total
2610 * number of context switches performed since bootup.
2611 */
2612unsigned long nr_running(void)
2613{
2614 unsigned long i, sum = 0;
2615
2616 for_each_online_cpu(i)
2617 sum += cpu_rq(i)->nr_running;
2618
2619 return sum;
2620}
2621
2622unsigned long nr_uninterruptible(void)
2623{
2624 unsigned long i, sum = 0;
2625
0a945022 2626 for_each_possible_cpu(i)
1da177e4
LT
2627 sum += cpu_rq(i)->nr_uninterruptible;
2628
2629 /*
2630 * Since we read the counters lockless, it might be slightly
2631 * inaccurate. Do not allow it to go below zero though:
2632 */
2633 if (unlikely((long)sum < 0))
2634 sum = 0;
2635
2636 return sum;
2637}
2638
2639unsigned long long nr_context_switches(void)
2640{
cc94abfc
SR
2641 int i;
2642 unsigned long long sum = 0;
1da177e4 2643
0a945022 2644 for_each_possible_cpu(i)
1da177e4
LT
2645 sum += cpu_rq(i)->nr_switches;
2646
2647 return sum;
2648}
2649
2650unsigned long nr_iowait(void)
2651{
2652 unsigned long i, sum = 0;
2653
0a945022 2654 for_each_possible_cpu(i)
1da177e4
LT
2655 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2656
2657 return sum;
2658}
2659
db1b1fef
JS
2660unsigned long nr_active(void)
2661{
2662 unsigned long i, running = 0, uninterruptible = 0;
2663
2664 for_each_online_cpu(i) {
2665 running += cpu_rq(i)->nr_running;
2666 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2667 }
2668
2669 if (unlikely((long)uninterruptible < 0))
2670 uninterruptible = 0;
2671
2672 return running + uninterruptible;
2673}
2674
48f24c4d 2675/*
dd41f596
IM
2676 * Update rq->cpu_load[] statistics. This function is usually called every
2677 * scheduler tick (TICK_NSEC).
48f24c4d 2678 */
dd41f596 2679static void update_cpu_load(struct rq *this_rq)
48f24c4d 2680{
495eca49 2681 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2682 int i, scale;
2683
2684 this_rq->nr_load_updates++;
dd41f596
IM
2685
2686 /* Update our load: */
2687 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2688 unsigned long old_load, new_load;
2689
2690 /* scale is effectively 1 << i now, and >> i divides by scale */
2691
2692 old_load = this_rq->cpu_load[i];
2693 new_load = this_load;
a25707f3
IM
2694 /*
2695 * Round up the averaging division if load is increasing. This
2696 * prevents us from getting stuck on 9 if the load is 10, for
2697 * example.
2698 */
2699 if (new_load > old_load)
2700 new_load += scale-1;
dd41f596
IM
2701 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2702 }
48f24c4d
IM
2703}
2704
dd41f596
IM
2705#ifdef CONFIG_SMP
2706
1da177e4
LT
2707/*
2708 * double_rq_lock - safely lock two runqueues
2709 *
2710 * Note this does not disable interrupts like task_rq_lock,
2711 * you need to do so manually before calling.
2712 */
70b97a7f 2713static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2714 __acquires(rq1->lock)
2715 __acquires(rq2->lock)
2716{
054b9108 2717 BUG_ON(!irqs_disabled());
1da177e4
LT
2718 if (rq1 == rq2) {
2719 spin_lock(&rq1->lock);
2720 __acquire(rq2->lock); /* Fake it out ;) */
2721 } else {
c96d145e 2722 if (rq1 < rq2) {
1da177e4
LT
2723 spin_lock(&rq1->lock);
2724 spin_lock(&rq2->lock);
2725 } else {
2726 spin_lock(&rq2->lock);
2727 spin_lock(&rq1->lock);
2728 }
2729 }
6e82a3be
IM
2730 update_rq_clock(rq1);
2731 update_rq_clock(rq2);
1da177e4
LT
2732}
2733
2734/*
2735 * double_rq_unlock - safely unlock two runqueues
2736 *
2737 * Note this does not restore interrupts like task_rq_unlock,
2738 * you need to do so manually after calling.
2739 */
70b97a7f 2740static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2741 __releases(rq1->lock)
2742 __releases(rq2->lock)
2743{
2744 spin_unlock(&rq1->lock);
2745 if (rq1 != rq2)
2746 spin_unlock(&rq2->lock);
2747 else
2748 __release(rq2->lock);
2749}
2750
2751/*
2752 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2753 */
e8fa1362 2754static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2755 __releases(this_rq->lock)
2756 __acquires(busiest->lock)
2757 __acquires(this_rq->lock)
2758{
e8fa1362
SR
2759 int ret = 0;
2760
054b9108
KK
2761 if (unlikely(!irqs_disabled())) {
2762 /* printk() doesn't work good under rq->lock */
2763 spin_unlock(&this_rq->lock);
2764 BUG_ON(1);
2765 }
1da177e4 2766 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2767 if (busiest < this_rq) {
1da177e4
LT
2768 spin_unlock(&this_rq->lock);
2769 spin_lock(&busiest->lock);
2770 spin_lock(&this_rq->lock);
e8fa1362 2771 ret = 1;
1da177e4
LT
2772 } else
2773 spin_lock(&busiest->lock);
2774 }
e8fa1362 2775 return ret;
1da177e4
LT
2776}
2777
1da177e4
LT
2778/*
2779 * If dest_cpu is allowed for this process, migrate the task to it.
2780 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2781 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2782 * the cpu_allowed mask is restored.
2783 */
36c8b586 2784static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2785{
70b97a7f 2786 struct migration_req req;
1da177e4 2787 unsigned long flags;
70b97a7f 2788 struct rq *rq;
1da177e4
LT
2789
2790 rq = task_rq_lock(p, &flags);
2791 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2792 || unlikely(cpu_is_offline(dest_cpu)))
2793 goto out;
2794
2795 /* force the process onto the specified CPU */
2796 if (migrate_task(p, dest_cpu, &req)) {
2797 /* Need to wait for migration thread (might exit: take ref). */
2798 struct task_struct *mt = rq->migration_thread;
36c8b586 2799
1da177e4
LT
2800 get_task_struct(mt);
2801 task_rq_unlock(rq, &flags);
2802 wake_up_process(mt);
2803 put_task_struct(mt);
2804 wait_for_completion(&req.done);
36c8b586 2805
1da177e4
LT
2806 return;
2807 }
2808out:
2809 task_rq_unlock(rq, &flags);
2810}
2811
2812/*
476d139c
NP
2813 * sched_exec - execve() is a valuable balancing opportunity, because at
2814 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2815 */
2816void sched_exec(void)
2817{
1da177e4 2818 int new_cpu, this_cpu = get_cpu();
476d139c 2819 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2820 put_cpu();
476d139c
NP
2821 if (new_cpu != this_cpu)
2822 sched_migrate_task(current, new_cpu);
1da177e4
LT
2823}
2824
2825/*
2826 * pull_task - move a task from a remote runqueue to the local runqueue.
2827 * Both runqueues must be locked.
2828 */
dd41f596
IM
2829static void pull_task(struct rq *src_rq, struct task_struct *p,
2830 struct rq *this_rq, int this_cpu)
1da177e4 2831{
2e1cb74a 2832 deactivate_task(src_rq, p, 0);
1da177e4 2833 set_task_cpu(p, this_cpu);
dd41f596 2834 activate_task(this_rq, p, 0);
1da177e4
LT
2835 /*
2836 * Note that idle threads have a prio of MAX_PRIO, for this test
2837 * to be always true for them.
2838 */
dd41f596 2839 check_preempt_curr(this_rq, p);
1da177e4
LT
2840}
2841
2842/*
2843 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2844 */
858119e1 2845static
70b97a7f 2846int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2847 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2848 int *all_pinned)
1da177e4
LT
2849{
2850 /*
2851 * We do not migrate tasks that are:
2852 * 1) running (obviously), or
2853 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2854 * 3) are cache-hot on their current CPU.
2855 */
cc367732
IM
2856 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2857 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2858 return 0;
cc367732 2859 }
81026794
NP
2860 *all_pinned = 0;
2861
cc367732
IM
2862 if (task_running(rq, p)) {
2863 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2864 return 0;
cc367732 2865 }
1da177e4 2866
da84d961
IM
2867 /*
2868 * Aggressive migration if:
2869 * 1) task is cache cold, or
2870 * 2) too many balance attempts have failed.
2871 */
2872
6bc1665b
IM
2873 if (!task_hot(p, rq->clock, sd) ||
2874 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2875#ifdef CONFIG_SCHEDSTATS
cc367732 2876 if (task_hot(p, rq->clock, sd)) {
da84d961 2877 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2878 schedstat_inc(p, se.nr_forced_migrations);
2879 }
da84d961
IM
2880#endif
2881 return 1;
2882 }
2883
cc367732
IM
2884 if (task_hot(p, rq->clock, sd)) {
2885 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2886 return 0;
cc367732 2887 }
1da177e4
LT
2888 return 1;
2889}
2890
e1d1484f
PW
2891static unsigned long
2892balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2893 unsigned long max_load_move, struct sched_domain *sd,
2894 enum cpu_idle_type idle, int *all_pinned,
2895 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2896{
b82d9fdd 2897 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2898 struct task_struct *p;
2899 long rem_load_move = max_load_move;
1da177e4 2900
e1d1484f 2901 if (max_load_move == 0)
1da177e4
LT
2902 goto out;
2903
81026794
NP
2904 pinned = 1;
2905
1da177e4 2906 /*
dd41f596 2907 * Start the load-balancing iterator:
1da177e4 2908 */
dd41f596
IM
2909 p = iterator->start(iterator->arg);
2910next:
b82d9fdd 2911 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2912 goto out;
50ddd969 2913 /*
b82d9fdd 2914 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2915 * skip a task if it will be the highest priority task (i.e. smallest
2916 * prio value) on its new queue regardless of its load weight
2917 */
dd41f596
IM
2918 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2919 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2920 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2921 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2922 p = iterator->next(iterator->arg);
2923 goto next;
1da177e4
LT
2924 }
2925
dd41f596 2926 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2927 pulled++;
dd41f596 2928 rem_load_move -= p->se.load.weight;
1da177e4 2929
2dd73a4f 2930 /*
b82d9fdd 2931 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2932 */
e1d1484f 2933 if (rem_load_move > 0) {
a4ac01c3
PW
2934 if (p->prio < *this_best_prio)
2935 *this_best_prio = p->prio;
dd41f596
IM
2936 p = iterator->next(iterator->arg);
2937 goto next;
1da177e4
LT
2938 }
2939out:
2940 /*
e1d1484f 2941 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2942 * so we can safely collect pull_task() stats here rather than
2943 * inside pull_task().
2944 */
2945 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2946
2947 if (all_pinned)
2948 *all_pinned = pinned;
e1d1484f
PW
2949
2950 return max_load_move - rem_load_move;
1da177e4
LT
2951}
2952
dd41f596 2953/*
43010659
PW
2954 * move_tasks tries to move up to max_load_move weighted load from busiest to
2955 * this_rq, as part of a balancing operation within domain "sd".
2956 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2957 *
2958 * Called with both runqueues locked.
2959 */
2960static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2961 unsigned long max_load_move,
dd41f596
IM
2962 struct sched_domain *sd, enum cpu_idle_type idle,
2963 int *all_pinned)
2964{
5522d5d5 2965 const struct sched_class *class = sched_class_highest;
43010659 2966 unsigned long total_load_moved = 0;
a4ac01c3 2967 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2968
2969 do {
43010659
PW
2970 total_load_moved +=
2971 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2972 max_load_move - total_load_moved,
a4ac01c3 2973 sd, idle, all_pinned, &this_best_prio);
dd41f596 2974 class = class->next;
43010659 2975 } while (class && max_load_move > total_load_moved);
dd41f596 2976
43010659
PW
2977 return total_load_moved > 0;
2978}
2979
e1d1484f
PW
2980static int
2981iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2982 struct sched_domain *sd, enum cpu_idle_type idle,
2983 struct rq_iterator *iterator)
2984{
2985 struct task_struct *p = iterator->start(iterator->arg);
2986 int pinned = 0;
2987
2988 while (p) {
2989 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2990 pull_task(busiest, p, this_rq, this_cpu);
2991 /*
2992 * Right now, this is only the second place pull_task()
2993 * is called, so we can safely collect pull_task()
2994 * stats here rather than inside pull_task().
2995 */
2996 schedstat_inc(sd, lb_gained[idle]);
2997
2998 return 1;
2999 }
3000 p = iterator->next(iterator->arg);
3001 }
3002
3003 return 0;
3004}
3005
43010659
PW
3006/*
3007 * move_one_task tries to move exactly one task from busiest to this_rq, as
3008 * part of active balancing operations within "domain".
3009 * Returns 1 if successful and 0 otherwise.
3010 *
3011 * Called with both runqueues locked.
3012 */
3013static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3014 struct sched_domain *sd, enum cpu_idle_type idle)
3015{
5522d5d5 3016 const struct sched_class *class;
43010659
PW
3017
3018 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3019 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3020 return 1;
3021
3022 return 0;
dd41f596
IM
3023}
3024
1da177e4
LT
3025/*
3026 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3027 * domain. It calculates and returns the amount of weighted load which
3028 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3029 */
3030static struct sched_group *
3031find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3032 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3033 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3034{
3035 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3036 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3037 unsigned long max_pull;
2dd73a4f
PW
3038 unsigned long busiest_load_per_task, busiest_nr_running;
3039 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3040 int load_idx, group_imb = 0;
5c45bf27
SS
3041#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3042 int power_savings_balance = 1;
3043 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3044 unsigned long min_nr_running = ULONG_MAX;
3045 struct sched_group *group_min = NULL, *group_leader = NULL;
3046#endif
1da177e4
LT
3047
3048 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3049 busiest_load_per_task = busiest_nr_running = 0;
3050 this_load_per_task = this_nr_running = 0;
d15bcfdb 3051 if (idle == CPU_NOT_IDLE)
7897986b 3052 load_idx = sd->busy_idx;
d15bcfdb 3053 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3054 load_idx = sd->newidle_idx;
3055 else
3056 load_idx = sd->idle_idx;
1da177e4
LT
3057
3058 do {
908a7c1b 3059 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3060 int local_group;
3061 int i;
908a7c1b 3062 int __group_imb = 0;
783609c6 3063 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3064 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
3065
3066 local_group = cpu_isset(this_cpu, group->cpumask);
3067
783609c6
SS
3068 if (local_group)
3069 balance_cpu = first_cpu(group->cpumask);
3070
1da177e4 3071 /* Tally up the load of all CPUs in the group */
2dd73a4f 3072 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
3073 max_cpu_load = 0;
3074 min_cpu_load = ~0UL;
1da177e4
LT
3075
3076 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
3077 struct rq *rq;
3078
3079 if (!cpu_isset(i, *cpus))
3080 continue;
3081
3082 rq = cpu_rq(i);
2dd73a4f 3083
9439aab8 3084 if (*sd_idle && rq->nr_running)
5969fe06
NP
3085 *sd_idle = 0;
3086
1da177e4 3087 /* Bias balancing toward cpus of our domain */
783609c6
SS
3088 if (local_group) {
3089 if (idle_cpu(i) && !first_idle_cpu) {
3090 first_idle_cpu = 1;
3091 balance_cpu = i;
3092 }
3093
a2000572 3094 load = target_load(i, load_idx);
908a7c1b 3095 } else {
a2000572 3096 load = source_load(i, load_idx);
908a7c1b
KC
3097 if (load > max_cpu_load)
3098 max_cpu_load = load;
3099 if (min_cpu_load > load)
3100 min_cpu_load = load;
3101 }
1da177e4
LT
3102
3103 avg_load += load;
2dd73a4f 3104 sum_nr_running += rq->nr_running;
dd41f596 3105 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
3106 }
3107
783609c6
SS
3108 /*
3109 * First idle cpu or the first cpu(busiest) in this sched group
3110 * is eligible for doing load balancing at this and above
9439aab8
SS
3111 * domains. In the newly idle case, we will allow all the cpu's
3112 * to do the newly idle load balance.
783609c6 3113 */
9439aab8
SS
3114 if (idle != CPU_NEWLY_IDLE && local_group &&
3115 balance_cpu != this_cpu && balance) {
783609c6
SS
3116 *balance = 0;
3117 goto ret;
3118 }
3119
1da177e4 3120 total_load += avg_load;
5517d86b 3121 total_pwr += group->__cpu_power;
1da177e4
LT
3122
3123 /* Adjust by relative CPU power of the group */
5517d86b
ED
3124 avg_load = sg_div_cpu_power(group,
3125 avg_load * SCHED_LOAD_SCALE);
1da177e4 3126
908a7c1b
KC
3127 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3128 __group_imb = 1;
3129
5517d86b 3130 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3131
1da177e4
LT
3132 if (local_group) {
3133 this_load = avg_load;
3134 this = group;
2dd73a4f
PW
3135 this_nr_running = sum_nr_running;
3136 this_load_per_task = sum_weighted_load;
3137 } else if (avg_load > max_load &&
908a7c1b 3138 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3139 max_load = avg_load;
3140 busiest = group;
2dd73a4f
PW
3141 busiest_nr_running = sum_nr_running;
3142 busiest_load_per_task = sum_weighted_load;
908a7c1b 3143 group_imb = __group_imb;
1da177e4 3144 }
5c45bf27
SS
3145
3146#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3147 /*
3148 * Busy processors will not participate in power savings
3149 * balance.
3150 */
dd41f596
IM
3151 if (idle == CPU_NOT_IDLE ||
3152 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3153 goto group_next;
5c45bf27
SS
3154
3155 /*
3156 * If the local group is idle or completely loaded
3157 * no need to do power savings balance at this domain
3158 */
3159 if (local_group && (this_nr_running >= group_capacity ||
3160 !this_nr_running))
3161 power_savings_balance = 0;
3162
dd41f596 3163 /*
5c45bf27
SS
3164 * If a group is already running at full capacity or idle,
3165 * don't include that group in power savings calculations
dd41f596
IM
3166 */
3167 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3168 || !sum_nr_running)
dd41f596 3169 goto group_next;
5c45bf27 3170
dd41f596 3171 /*
5c45bf27 3172 * Calculate the group which has the least non-idle load.
dd41f596
IM
3173 * This is the group from where we need to pick up the load
3174 * for saving power
3175 */
3176 if ((sum_nr_running < min_nr_running) ||
3177 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3178 first_cpu(group->cpumask) <
3179 first_cpu(group_min->cpumask))) {
dd41f596
IM
3180 group_min = group;
3181 min_nr_running = sum_nr_running;
5c45bf27
SS
3182 min_load_per_task = sum_weighted_load /
3183 sum_nr_running;
dd41f596 3184 }
5c45bf27 3185
dd41f596 3186 /*
5c45bf27 3187 * Calculate the group which is almost near its
dd41f596
IM
3188 * capacity but still has some space to pick up some load
3189 * from other group and save more power
3190 */
3191 if (sum_nr_running <= group_capacity - 1) {
3192 if (sum_nr_running > leader_nr_running ||
3193 (sum_nr_running == leader_nr_running &&
3194 first_cpu(group->cpumask) >
3195 first_cpu(group_leader->cpumask))) {
3196 group_leader = group;
3197 leader_nr_running = sum_nr_running;
3198 }
48f24c4d 3199 }
5c45bf27
SS
3200group_next:
3201#endif
1da177e4
LT
3202 group = group->next;
3203 } while (group != sd->groups);
3204
2dd73a4f 3205 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3206 goto out_balanced;
3207
3208 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3209
3210 if (this_load >= avg_load ||
3211 100*max_load <= sd->imbalance_pct*this_load)
3212 goto out_balanced;
3213
2dd73a4f 3214 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3215 if (group_imb)
3216 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3217
1da177e4
LT
3218 /*
3219 * We're trying to get all the cpus to the average_load, so we don't
3220 * want to push ourselves above the average load, nor do we wish to
3221 * reduce the max loaded cpu below the average load, as either of these
3222 * actions would just result in more rebalancing later, and ping-pong
3223 * tasks around. Thus we look for the minimum possible imbalance.
3224 * Negative imbalances (*we* are more loaded than anyone else) will
3225 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3226 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3227 * appear as very large values with unsigned longs.
3228 */
2dd73a4f
PW
3229 if (max_load <= busiest_load_per_task)
3230 goto out_balanced;
3231
3232 /*
3233 * In the presence of smp nice balancing, certain scenarios can have
3234 * max load less than avg load(as we skip the groups at or below
3235 * its cpu_power, while calculating max_load..)
3236 */
3237 if (max_load < avg_load) {
3238 *imbalance = 0;
3239 goto small_imbalance;
3240 }
0c117f1b
SS
3241
3242 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3243 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3244
1da177e4 3245 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3246 *imbalance = min(max_pull * busiest->__cpu_power,
3247 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3248 / SCHED_LOAD_SCALE;
3249
2dd73a4f
PW
3250 /*
3251 * if *imbalance is less than the average load per runnable task
3252 * there is no gaurantee that any tasks will be moved so we'll have
3253 * a think about bumping its value to force at least one task to be
3254 * moved
3255 */
7fd0d2dd 3256 if (*imbalance < busiest_load_per_task) {
48f24c4d 3257 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3258 unsigned int imbn;
3259
3260small_imbalance:
3261 pwr_move = pwr_now = 0;
3262 imbn = 2;
3263 if (this_nr_running) {
3264 this_load_per_task /= this_nr_running;
3265 if (busiest_load_per_task > this_load_per_task)
3266 imbn = 1;
3267 } else
3268 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3269
dd41f596
IM
3270 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3271 busiest_load_per_task * imbn) {
2dd73a4f 3272 *imbalance = busiest_load_per_task;
1da177e4
LT
3273 return busiest;
3274 }
3275
3276 /*
3277 * OK, we don't have enough imbalance to justify moving tasks,
3278 * however we may be able to increase total CPU power used by
3279 * moving them.
3280 */
3281
5517d86b
ED
3282 pwr_now += busiest->__cpu_power *
3283 min(busiest_load_per_task, max_load);
3284 pwr_now += this->__cpu_power *
3285 min(this_load_per_task, this_load);
1da177e4
LT
3286 pwr_now /= SCHED_LOAD_SCALE;
3287
3288 /* Amount of load we'd subtract */
5517d86b
ED
3289 tmp = sg_div_cpu_power(busiest,
3290 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3291 if (max_load > tmp)
5517d86b 3292 pwr_move += busiest->__cpu_power *
2dd73a4f 3293 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3294
3295 /* Amount of load we'd add */
5517d86b 3296 if (max_load * busiest->__cpu_power <
33859f7f 3297 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3298 tmp = sg_div_cpu_power(this,
3299 max_load * busiest->__cpu_power);
1da177e4 3300 else
5517d86b
ED
3301 tmp = sg_div_cpu_power(this,
3302 busiest_load_per_task * SCHED_LOAD_SCALE);
3303 pwr_move += this->__cpu_power *
3304 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3305 pwr_move /= SCHED_LOAD_SCALE;
3306
3307 /* Move if we gain throughput */
7fd0d2dd
SS
3308 if (pwr_move > pwr_now)
3309 *imbalance = busiest_load_per_task;
1da177e4
LT
3310 }
3311
1da177e4
LT
3312 return busiest;
3313
3314out_balanced:
5c45bf27 3315#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3316 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3317 goto ret;
1da177e4 3318
5c45bf27
SS
3319 if (this == group_leader && group_leader != group_min) {
3320 *imbalance = min_load_per_task;
3321 return group_min;
3322 }
5c45bf27 3323#endif
783609c6 3324ret:
1da177e4
LT
3325 *imbalance = 0;
3326 return NULL;
3327}
3328
3329/*
3330 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3331 */
70b97a7f 3332static struct rq *
d15bcfdb 3333find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3334 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3335{
70b97a7f 3336 struct rq *busiest = NULL, *rq;
2dd73a4f 3337 unsigned long max_load = 0;
1da177e4
LT
3338 int i;
3339
3340 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3341 unsigned long wl;
0a2966b4
CL
3342
3343 if (!cpu_isset(i, *cpus))
3344 continue;
3345
48f24c4d 3346 rq = cpu_rq(i);
dd41f596 3347 wl = weighted_cpuload(i);
2dd73a4f 3348
dd41f596 3349 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3350 continue;
1da177e4 3351
dd41f596
IM
3352 if (wl > max_load) {
3353 max_load = wl;
48f24c4d 3354 busiest = rq;
1da177e4
LT
3355 }
3356 }
3357
3358 return busiest;
3359}
3360
77391d71
NP
3361/*
3362 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3363 * so long as it is large enough.
3364 */
3365#define MAX_PINNED_INTERVAL 512
3366
1da177e4
LT
3367/*
3368 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3369 * tasks if there is an imbalance.
1da177e4 3370 */
70b97a7f 3371static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3372 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3373 int *balance, cpumask_t *cpus)
1da177e4 3374{
43010659 3375 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3376 struct sched_group *group;
1da177e4 3377 unsigned long imbalance;
70b97a7f 3378 struct rq *busiest;
fe2eea3f 3379 unsigned long flags;
5969fe06 3380
7c16ec58
MT
3381 cpus_setall(*cpus);
3382
89c4710e
SS
3383 /*
3384 * When power savings policy is enabled for the parent domain, idle
3385 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3386 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3387 * portraying it as CPU_NOT_IDLE.
89c4710e 3388 */
d15bcfdb 3389 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3390 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3391 sd_idle = 1;
1da177e4 3392
2d72376b 3393 schedstat_inc(sd, lb_count[idle]);
1da177e4 3394
0a2966b4 3395redo:
c8cba857 3396 update_shares(sd);
0a2966b4 3397 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3398 cpus, balance);
783609c6 3399
06066714 3400 if (*balance == 0)
783609c6 3401 goto out_balanced;
783609c6 3402
1da177e4
LT
3403 if (!group) {
3404 schedstat_inc(sd, lb_nobusyg[idle]);
3405 goto out_balanced;
3406 }
3407
7c16ec58 3408 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3409 if (!busiest) {
3410 schedstat_inc(sd, lb_nobusyq[idle]);
3411 goto out_balanced;
3412 }
3413
db935dbd 3414 BUG_ON(busiest == this_rq);
1da177e4
LT
3415
3416 schedstat_add(sd, lb_imbalance[idle], imbalance);
3417
43010659 3418 ld_moved = 0;
1da177e4
LT
3419 if (busiest->nr_running > 1) {
3420 /*
3421 * Attempt to move tasks. If find_busiest_group has found
3422 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3423 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3424 * correctly treated as an imbalance.
3425 */
fe2eea3f 3426 local_irq_save(flags);
e17224bf 3427 double_rq_lock(this_rq, busiest);
43010659 3428 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3429 imbalance, sd, idle, &all_pinned);
e17224bf 3430 double_rq_unlock(this_rq, busiest);
fe2eea3f 3431 local_irq_restore(flags);
81026794 3432
46cb4b7c
SS
3433 /*
3434 * some other cpu did the load balance for us.
3435 */
43010659 3436 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3437 resched_cpu(this_cpu);
3438
81026794 3439 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3440 if (unlikely(all_pinned)) {
7c16ec58
MT
3441 cpu_clear(cpu_of(busiest), *cpus);
3442 if (!cpus_empty(*cpus))
0a2966b4 3443 goto redo;
81026794 3444 goto out_balanced;
0a2966b4 3445 }
1da177e4 3446 }
81026794 3447
43010659 3448 if (!ld_moved) {
1da177e4
LT
3449 schedstat_inc(sd, lb_failed[idle]);
3450 sd->nr_balance_failed++;
3451
3452 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3453
fe2eea3f 3454 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3455
3456 /* don't kick the migration_thread, if the curr
3457 * task on busiest cpu can't be moved to this_cpu
3458 */
3459 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3460 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3461 all_pinned = 1;
3462 goto out_one_pinned;
3463 }
3464
1da177e4
LT
3465 if (!busiest->active_balance) {
3466 busiest->active_balance = 1;
3467 busiest->push_cpu = this_cpu;
81026794 3468 active_balance = 1;
1da177e4 3469 }
fe2eea3f 3470 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3471 if (active_balance)
1da177e4
LT
3472 wake_up_process(busiest->migration_thread);
3473
3474 /*
3475 * We've kicked active balancing, reset the failure
3476 * counter.
3477 */
39507451 3478 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3479 }
81026794 3480 } else
1da177e4
LT
3481 sd->nr_balance_failed = 0;
3482
81026794 3483 if (likely(!active_balance)) {
1da177e4
LT
3484 /* We were unbalanced, so reset the balancing interval */
3485 sd->balance_interval = sd->min_interval;
81026794
NP
3486 } else {
3487 /*
3488 * If we've begun active balancing, start to back off. This
3489 * case may not be covered by the all_pinned logic if there
3490 * is only 1 task on the busy runqueue (because we don't call
3491 * move_tasks).
3492 */
3493 if (sd->balance_interval < sd->max_interval)
3494 sd->balance_interval *= 2;
1da177e4
LT
3495 }
3496
43010659 3497 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3498 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3499 ld_moved = -1;
3500
3501 goto out;
1da177e4
LT
3502
3503out_balanced:
1da177e4
LT
3504 schedstat_inc(sd, lb_balanced[idle]);
3505
16cfb1c0 3506 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3507
3508out_one_pinned:
1da177e4 3509 /* tune up the balancing interval */
77391d71
NP
3510 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3511 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3512 sd->balance_interval *= 2;
3513
48f24c4d 3514 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3515 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3516 ld_moved = -1;
3517 else
3518 ld_moved = 0;
3519out:
c8cba857
PZ
3520 if (ld_moved)
3521 update_shares(sd);
c09595f6 3522 return ld_moved;
1da177e4
LT
3523}
3524
3525/*
3526 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3527 * tasks if there is an imbalance.
3528 *
d15bcfdb 3529 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3530 * this_rq is locked.
3531 */
48f24c4d 3532static int
7c16ec58
MT
3533load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3534 cpumask_t *cpus)
1da177e4
LT
3535{
3536 struct sched_group *group;
70b97a7f 3537 struct rq *busiest = NULL;
1da177e4 3538 unsigned long imbalance;
43010659 3539 int ld_moved = 0;
5969fe06 3540 int sd_idle = 0;
969bb4e4 3541 int all_pinned = 0;
7c16ec58
MT
3542
3543 cpus_setall(*cpus);
5969fe06 3544
89c4710e
SS
3545 /*
3546 * When power savings policy is enabled for the parent domain, idle
3547 * sibling can pick up load irrespective of busy siblings. In this case,
3548 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3549 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3550 */
3551 if (sd->flags & SD_SHARE_CPUPOWER &&
3552 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3553 sd_idle = 1;
1da177e4 3554
2d72376b 3555 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3556redo:
3e5459b4 3557 update_shares_locked(this_rq, sd);
d15bcfdb 3558 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3559 &sd_idle, cpus, NULL);
1da177e4 3560 if (!group) {
d15bcfdb 3561 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3562 goto out_balanced;
1da177e4
LT
3563 }
3564
7c16ec58 3565 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3566 if (!busiest) {
d15bcfdb 3567 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3568 goto out_balanced;
1da177e4
LT
3569 }
3570
db935dbd
NP
3571 BUG_ON(busiest == this_rq);
3572
d15bcfdb 3573 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3574
43010659 3575 ld_moved = 0;
d6d5cfaf
NP
3576 if (busiest->nr_running > 1) {
3577 /* Attempt to move tasks */
3578 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3579 /* this_rq->clock is already updated */
3580 update_rq_clock(busiest);
43010659 3581 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3582 imbalance, sd, CPU_NEWLY_IDLE,
3583 &all_pinned);
d6d5cfaf 3584 spin_unlock(&busiest->lock);
0a2966b4 3585
969bb4e4 3586 if (unlikely(all_pinned)) {
7c16ec58
MT
3587 cpu_clear(cpu_of(busiest), *cpus);
3588 if (!cpus_empty(*cpus))
0a2966b4
CL
3589 goto redo;
3590 }
d6d5cfaf
NP
3591 }
3592
43010659 3593 if (!ld_moved) {
d15bcfdb 3594 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3595 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3596 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3597 return -1;
3598 } else
16cfb1c0 3599 sd->nr_balance_failed = 0;
1da177e4 3600
3e5459b4 3601 update_shares_locked(this_rq, sd);
43010659 3602 return ld_moved;
16cfb1c0
NP
3603
3604out_balanced:
d15bcfdb 3605 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3606 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3607 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3608 return -1;
16cfb1c0 3609 sd->nr_balance_failed = 0;
48f24c4d 3610
16cfb1c0 3611 return 0;
1da177e4
LT
3612}
3613
3614/*
3615 * idle_balance is called by schedule() if this_cpu is about to become
3616 * idle. Attempts to pull tasks from other CPUs.
3617 */
70b97a7f 3618static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3619{
3620 struct sched_domain *sd;
dd41f596
IM
3621 int pulled_task = -1;
3622 unsigned long next_balance = jiffies + HZ;
7c16ec58 3623 cpumask_t tmpmask;
1da177e4
LT
3624
3625 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3626 unsigned long interval;
3627
3628 if (!(sd->flags & SD_LOAD_BALANCE))
3629 continue;
3630
3631 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3632 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3633 pulled_task = load_balance_newidle(this_cpu, this_rq,
3634 sd, &tmpmask);
92c4ca5c
CL
3635
3636 interval = msecs_to_jiffies(sd->balance_interval);
3637 if (time_after(next_balance, sd->last_balance + interval))
3638 next_balance = sd->last_balance + interval;
3639 if (pulled_task)
3640 break;
1da177e4 3641 }
dd41f596 3642 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3643 /*
3644 * We are going idle. next_balance may be set based on
3645 * a busy processor. So reset next_balance.
3646 */
3647 this_rq->next_balance = next_balance;
dd41f596 3648 }
1da177e4
LT
3649}
3650
3651/*
3652 * active_load_balance is run by migration threads. It pushes running tasks
3653 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3654 * running on each physical CPU where possible, and avoids physical /
3655 * logical imbalances.
3656 *
3657 * Called with busiest_rq locked.
3658 */
70b97a7f 3659static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3660{
39507451 3661 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3662 struct sched_domain *sd;
3663 struct rq *target_rq;
39507451 3664
48f24c4d 3665 /* Is there any task to move? */
39507451 3666 if (busiest_rq->nr_running <= 1)
39507451
NP
3667 return;
3668
3669 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3670
3671 /*
39507451 3672 * This condition is "impossible", if it occurs
41a2d6cf 3673 * we need to fix it. Originally reported by
39507451 3674 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3675 */
39507451 3676 BUG_ON(busiest_rq == target_rq);
1da177e4 3677
39507451
NP
3678 /* move a task from busiest_rq to target_rq */
3679 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3680 update_rq_clock(busiest_rq);
3681 update_rq_clock(target_rq);
39507451
NP
3682
3683 /* Search for an sd spanning us and the target CPU. */
c96d145e 3684 for_each_domain(target_cpu, sd) {
39507451 3685 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3686 cpu_isset(busiest_cpu, sd->span))
39507451 3687 break;
c96d145e 3688 }
39507451 3689
48f24c4d 3690 if (likely(sd)) {
2d72376b 3691 schedstat_inc(sd, alb_count);
39507451 3692
43010659
PW
3693 if (move_one_task(target_rq, target_cpu, busiest_rq,
3694 sd, CPU_IDLE))
48f24c4d
IM
3695 schedstat_inc(sd, alb_pushed);
3696 else
3697 schedstat_inc(sd, alb_failed);
3698 }
39507451 3699 spin_unlock(&target_rq->lock);
1da177e4
LT
3700}
3701
46cb4b7c
SS
3702#ifdef CONFIG_NO_HZ
3703static struct {
3704 atomic_t load_balancer;
41a2d6cf 3705 cpumask_t cpu_mask;
46cb4b7c
SS
3706} nohz ____cacheline_aligned = {
3707 .load_balancer = ATOMIC_INIT(-1),
3708 .cpu_mask = CPU_MASK_NONE,
3709};
3710
7835b98b 3711/*
46cb4b7c
SS
3712 * This routine will try to nominate the ilb (idle load balancing)
3713 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3714 * load balancing on behalf of all those cpus. If all the cpus in the system
3715 * go into this tickless mode, then there will be no ilb owner (as there is
3716 * no need for one) and all the cpus will sleep till the next wakeup event
3717 * arrives...
3718 *
3719 * For the ilb owner, tick is not stopped. And this tick will be used
3720 * for idle load balancing. ilb owner will still be part of
3721 * nohz.cpu_mask..
7835b98b 3722 *
46cb4b7c
SS
3723 * While stopping the tick, this cpu will become the ilb owner if there
3724 * is no other owner. And will be the owner till that cpu becomes busy
3725 * or if all cpus in the system stop their ticks at which point
3726 * there is no need for ilb owner.
3727 *
3728 * When the ilb owner becomes busy, it nominates another owner, during the
3729 * next busy scheduler_tick()
3730 */
3731int select_nohz_load_balancer(int stop_tick)
3732{
3733 int cpu = smp_processor_id();
3734
3735 if (stop_tick) {
3736 cpu_set(cpu, nohz.cpu_mask);
3737 cpu_rq(cpu)->in_nohz_recently = 1;
3738
3739 /*
3740 * If we are going offline and still the leader, give up!
3741 */
3742 if (cpu_is_offline(cpu) &&
3743 atomic_read(&nohz.load_balancer) == cpu) {
3744 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3745 BUG();
3746 return 0;
3747 }
3748
3749 /* time for ilb owner also to sleep */
3750 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3751 if (atomic_read(&nohz.load_balancer) == cpu)
3752 atomic_set(&nohz.load_balancer, -1);
3753 return 0;
3754 }
3755
3756 if (atomic_read(&nohz.load_balancer) == -1) {
3757 /* make me the ilb owner */
3758 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3759 return 1;
3760 } else if (atomic_read(&nohz.load_balancer) == cpu)
3761 return 1;
3762 } else {
3763 if (!cpu_isset(cpu, nohz.cpu_mask))
3764 return 0;
3765
3766 cpu_clear(cpu, nohz.cpu_mask);
3767
3768 if (atomic_read(&nohz.load_balancer) == cpu)
3769 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3770 BUG();
3771 }
3772 return 0;
3773}
3774#endif
3775
3776static DEFINE_SPINLOCK(balancing);
3777
3778/*
7835b98b
CL
3779 * It checks each scheduling domain to see if it is due to be balanced,
3780 * and initiates a balancing operation if so.
3781 *
3782 * Balancing parameters are set up in arch_init_sched_domains.
3783 */
a9957449 3784static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3785{
46cb4b7c
SS
3786 int balance = 1;
3787 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3788 unsigned long interval;
3789 struct sched_domain *sd;
46cb4b7c 3790 /* Earliest time when we have to do rebalance again */
c9819f45 3791 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3792 int update_next_balance = 0;
d07355f5 3793 int need_serialize;
7c16ec58 3794 cpumask_t tmp;
1da177e4 3795
46cb4b7c 3796 for_each_domain(cpu, sd) {
1da177e4
LT
3797 if (!(sd->flags & SD_LOAD_BALANCE))
3798 continue;
3799
3800 interval = sd->balance_interval;
d15bcfdb 3801 if (idle != CPU_IDLE)
1da177e4
LT
3802 interval *= sd->busy_factor;
3803
3804 /* scale ms to jiffies */
3805 interval = msecs_to_jiffies(interval);
3806 if (unlikely(!interval))
3807 interval = 1;
dd41f596
IM
3808 if (interval > HZ*NR_CPUS/10)
3809 interval = HZ*NR_CPUS/10;
3810
d07355f5 3811 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3812
d07355f5 3813 if (need_serialize) {
08c183f3
CL
3814 if (!spin_trylock(&balancing))
3815 goto out;
3816 }
3817
c9819f45 3818 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3819 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3820 /*
3821 * We've pulled tasks over so either we're no
5969fe06
NP
3822 * longer idle, or one of our SMT siblings is
3823 * not idle.
3824 */
d15bcfdb 3825 idle = CPU_NOT_IDLE;
1da177e4 3826 }
1bd77f2d 3827 sd->last_balance = jiffies;
1da177e4 3828 }
d07355f5 3829 if (need_serialize)
08c183f3
CL
3830 spin_unlock(&balancing);
3831out:
f549da84 3832 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3833 next_balance = sd->last_balance + interval;
f549da84
SS
3834 update_next_balance = 1;
3835 }
783609c6
SS
3836
3837 /*
3838 * Stop the load balance at this level. There is another
3839 * CPU in our sched group which is doing load balancing more
3840 * actively.
3841 */
3842 if (!balance)
3843 break;
1da177e4 3844 }
f549da84
SS
3845
3846 /*
3847 * next_balance will be updated only when there is a need.
3848 * When the cpu is attached to null domain for ex, it will not be
3849 * updated.
3850 */
3851 if (likely(update_next_balance))
3852 rq->next_balance = next_balance;
46cb4b7c
SS
3853}
3854
3855/*
3856 * run_rebalance_domains is triggered when needed from the scheduler tick.
3857 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3858 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3859 */
3860static void run_rebalance_domains(struct softirq_action *h)
3861{
dd41f596
IM
3862 int this_cpu = smp_processor_id();
3863 struct rq *this_rq = cpu_rq(this_cpu);
3864 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3865 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3866
dd41f596 3867 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3868
3869#ifdef CONFIG_NO_HZ
3870 /*
3871 * If this cpu is the owner for idle load balancing, then do the
3872 * balancing on behalf of the other idle cpus whose ticks are
3873 * stopped.
3874 */
dd41f596
IM
3875 if (this_rq->idle_at_tick &&
3876 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3877 cpumask_t cpus = nohz.cpu_mask;
3878 struct rq *rq;
3879 int balance_cpu;
3880
dd41f596 3881 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3882 for_each_cpu_mask(balance_cpu, cpus) {
3883 /*
3884 * If this cpu gets work to do, stop the load balancing
3885 * work being done for other cpus. Next load
3886 * balancing owner will pick it up.
3887 */
3888 if (need_resched())
3889 break;
3890
de0cf899 3891 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3892
3893 rq = cpu_rq(balance_cpu);
dd41f596
IM
3894 if (time_after(this_rq->next_balance, rq->next_balance))
3895 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3896 }
3897 }
3898#endif
3899}
3900
3901/*
3902 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3903 *
3904 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3905 * idle load balancing owner or decide to stop the periodic load balancing,
3906 * if the whole system is idle.
3907 */
dd41f596 3908static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3909{
46cb4b7c
SS
3910#ifdef CONFIG_NO_HZ
3911 /*
3912 * If we were in the nohz mode recently and busy at the current
3913 * scheduler tick, then check if we need to nominate new idle
3914 * load balancer.
3915 */
3916 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3917 rq->in_nohz_recently = 0;
3918
3919 if (atomic_read(&nohz.load_balancer) == cpu) {
3920 cpu_clear(cpu, nohz.cpu_mask);
3921 atomic_set(&nohz.load_balancer, -1);
3922 }
3923
3924 if (atomic_read(&nohz.load_balancer) == -1) {
3925 /*
3926 * simple selection for now: Nominate the
3927 * first cpu in the nohz list to be the next
3928 * ilb owner.
3929 *
3930 * TBD: Traverse the sched domains and nominate
3931 * the nearest cpu in the nohz.cpu_mask.
3932 */
3933 int ilb = first_cpu(nohz.cpu_mask);
3934
434d53b0 3935 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3936 resched_cpu(ilb);
3937 }
3938 }
3939
3940 /*
3941 * If this cpu is idle and doing idle load balancing for all the
3942 * cpus with ticks stopped, is it time for that to stop?
3943 */
3944 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3945 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3946 resched_cpu(cpu);
3947 return;
3948 }
3949
3950 /*
3951 * If this cpu is idle and the idle load balancing is done by
3952 * someone else, then no need raise the SCHED_SOFTIRQ
3953 */
3954 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3955 cpu_isset(cpu, nohz.cpu_mask))
3956 return;
3957#endif
3958 if (time_after_eq(jiffies, rq->next_balance))
3959 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3960}
dd41f596
IM
3961
3962#else /* CONFIG_SMP */
3963
1da177e4
LT
3964/*
3965 * on UP we do not need to balance between CPUs:
3966 */
70b97a7f 3967static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3968{
3969}
dd41f596 3970
1da177e4
LT
3971#endif
3972
1da177e4
LT
3973DEFINE_PER_CPU(struct kernel_stat, kstat);
3974
3975EXPORT_PER_CPU_SYMBOL(kstat);
3976
3977/*
41b86e9c
IM
3978 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3979 * that have not yet been banked in case the task is currently running.
1da177e4 3980 */
41b86e9c 3981unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3982{
1da177e4 3983 unsigned long flags;
41b86e9c
IM
3984 u64 ns, delta_exec;
3985 struct rq *rq;
48f24c4d 3986
41b86e9c
IM
3987 rq = task_rq_lock(p, &flags);
3988 ns = p->se.sum_exec_runtime;
051a1d1a 3989 if (task_current(rq, p)) {
a8e504d2
IM
3990 update_rq_clock(rq);
3991 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3992 if ((s64)delta_exec > 0)
3993 ns += delta_exec;
3994 }
3995 task_rq_unlock(rq, &flags);
48f24c4d 3996
1da177e4
LT
3997 return ns;
3998}
3999
1da177e4
LT
4000/*
4001 * Account user cpu time to a process.
4002 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4003 * @cputime: the cpu time spent in user space since the last update
4004 */
4005void account_user_time(struct task_struct *p, cputime_t cputime)
4006{
4007 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4008 cputime64_t tmp;
4009
4010 p->utime = cputime_add(p->utime, cputime);
4011
4012 /* Add user time to cpustat. */
4013 tmp = cputime_to_cputime64(cputime);
4014 if (TASK_NICE(p) > 0)
4015 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4016 else
4017 cpustat->user = cputime64_add(cpustat->user, tmp);
4018}
4019
94886b84
LV
4020/*
4021 * Account guest cpu time to a process.
4022 * @p: the process that the cpu time gets accounted to
4023 * @cputime: the cpu time spent in virtual machine since the last update
4024 */
f7402e03 4025static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4026{
4027 cputime64_t tmp;
4028 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4029
4030 tmp = cputime_to_cputime64(cputime);
4031
4032 p->utime = cputime_add(p->utime, cputime);
4033 p->gtime = cputime_add(p->gtime, cputime);
4034
4035 cpustat->user = cputime64_add(cpustat->user, tmp);
4036 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4037}
4038
c66f08be
MN
4039/*
4040 * Account scaled user cpu time to a process.
4041 * @p: the process that the cpu time gets accounted to
4042 * @cputime: the cpu time spent in user space since the last update
4043 */
4044void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4045{
4046 p->utimescaled = cputime_add(p->utimescaled, cputime);
4047}
4048
1da177e4
LT
4049/*
4050 * Account system cpu time to a process.
4051 * @p: the process that the cpu time gets accounted to
4052 * @hardirq_offset: the offset to subtract from hardirq_count()
4053 * @cputime: the cpu time spent in kernel space since the last update
4054 */
4055void account_system_time(struct task_struct *p, int hardirq_offset,
4056 cputime_t cputime)
4057{
4058 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4059 struct rq *rq = this_rq();
1da177e4
LT
4060 cputime64_t tmp;
4061
983ed7a6
HH
4062 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4063 account_guest_time(p, cputime);
4064 return;
4065 }
94886b84 4066
1da177e4
LT
4067 p->stime = cputime_add(p->stime, cputime);
4068
4069 /* Add system time to cpustat. */
4070 tmp = cputime_to_cputime64(cputime);
4071 if (hardirq_count() - hardirq_offset)
4072 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4073 else if (softirq_count())
4074 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4075 else if (p != rq->idle)
1da177e4 4076 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4077 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4078 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4079 else
4080 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4081 /* Account for system time used */
4082 acct_update_integrals(p);
1da177e4
LT
4083}
4084
c66f08be
MN
4085/*
4086 * Account scaled system cpu time to a process.
4087 * @p: the process that the cpu time gets accounted to
4088 * @hardirq_offset: the offset to subtract from hardirq_count()
4089 * @cputime: the cpu time spent in kernel space since the last update
4090 */
4091void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4092{
4093 p->stimescaled = cputime_add(p->stimescaled, cputime);
4094}
4095
1da177e4
LT
4096/*
4097 * Account for involuntary wait time.
4098 * @p: the process from which the cpu time has been stolen
4099 * @steal: the cpu time spent in involuntary wait
4100 */
4101void account_steal_time(struct task_struct *p, cputime_t steal)
4102{
4103 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4104 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4105 struct rq *rq = this_rq();
1da177e4
LT
4106
4107 if (p == rq->idle) {
4108 p->stime = cputime_add(p->stime, steal);
4109 if (atomic_read(&rq->nr_iowait) > 0)
4110 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4111 else
4112 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4113 } else
1da177e4
LT
4114 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4115}
4116
7835b98b
CL
4117/*
4118 * This function gets called by the timer code, with HZ frequency.
4119 * We call it with interrupts disabled.
4120 *
4121 * It also gets called by the fork code, when changing the parent's
4122 * timeslices.
4123 */
4124void scheduler_tick(void)
4125{
7835b98b
CL
4126 int cpu = smp_processor_id();
4127 struct rq *rq = cpu_rq(cpu);
dd41f596 4128 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4129
4130 sched_clock_tick();
dd41f596
IM
4131
4132 spin_lock(&rq->lock);
3e51f33f 4133 update_rq_clock(rq);
f1a438d8 4134 update_cpu_load(rq);
fa85ae24 4135 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4136 spin_unlock(&rq->lock);
7835b98b 4137
e418e1c2 4138#ifdef CONFIG_SMP
dd41f596
IM
4139 rq->idle_at_tick = idle_cpu(cpu);
4140 trigger_load_balance(rq, cpu);
e418e1c2 4141#endif
1da177e4
LT
4142}
4143
1da177e4
LT
4144#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4145
43627582 4146void __kprobes add_preempt_count(int val)
1da177e4
LT
4147{
4148 /*
4149 * Underflow?
4150 */
9a11b49a
IM
4151 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4152 return;
1da177e4
LT
4153 preempt_count() += val;
4154 /*
4155 * Spinlock count overflowing soon?
4156 */
33859f7f
MOS
4157 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4158 PREEMPT_MASK - 10);
1da177e4
LT
4159}
4160EXPORT_SYMBOL(add_preempt_count);
4161
43627582 4162void __kprobes sub_preempt_count(int val)
1da177e4
LT
4163{
4164 /*
4165 * Underflow?
4166 */
9a11b49a
IM
4167 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4168 return;
1da177e4
LT
4169 /*
4170 * Is the spinlock portion underflowing?
4171 */
9a11b49a
IM
4172 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4173 !(preempt_count() & PREEMPT_MASK)))
4174 return;
4175
1da177e4
LT
4176 preempt_count() -= val;
4177}
4178EXPORT_SYMBOL(sub_preempt_count);
4179
4180#endif
4181
4182/*
dd41f596 4183 * Print scheduling while atomic bug:
1da177e4 4184 */
dd41f596 4185static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4186{
838225b4
SS
4187 struct pt_regs *regs = get_irq_regs();
4188
4189 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4190 prev->comm, prev->pid, preempt_count());
4191
dd41f596 4192 debug_show_held_locks(prev);
e21f5b15 4193 print_modules();
dd41f596
IM
4194 if (irqs_disabled())
4195 print_irqtrace_events(prev);
838225b4
SS
4196
4197 if (regs)
4198 show_regs(regs);
4199 else
4200 dump_stack();
dd41f596 4201}
1da177e4 4202
dd41f596
IM
4203/*
4204 * Various schedule()-time debugging checks and statistics:
4205 */
4206static inline void schedule_debug(struct task_struct *prev)
4207{
1da177e4 4208 /*
41a2d6cf 4209 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4210 * schedule() atomically, we ignore that path for now.
4211 * Otherwise, whine if we are scheduling when we should not be.
4212 */
3f33a7ce 4213 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4214 __schedule_bug(prev);
4215
1da177e4
LT
4216 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4217
2d72376b 4218 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4219#ifdef CONFIG_SCHEDSTATS
4220 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4221 schedstat_inc(this_rq(), bkl_count);
4222 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4223 }
4224#endif
dd41f596
IM
4225}
4226
4227/*
4228 * Pick up the highest-prio task:
4229 */
4230static inline struct task_struct *
ff95f3df 4231pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4232{
5522d5d5 4233 const struct sched_class *class;
dd41f596 4234 struct task_struct *p;
1da177e4
LT
4235
4236 /*
dd41f596
IM
4237 * Optimization: we know that if all tasks are in
4238 * the fair class we can call that function directly:
1da177e4 4239 */
dd41f596 4240 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4241 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4242 if (likely(p))
4243 return p;
1da177e4
LT
4244 }
4245
dd41f596
IM
4246 class = sched_class_highest;
4247 for ( ; ; ) {
fb8d4724 4248 p = class->pick_next_task(rq);
dd41f596
IM
4249 if (p)
4250 return p;
4251 /*
4252 * Will never be NULL as the idle class always
4253 * returns a non-NULL p:
4254 */
4255 class = class->next;
4256 }
4257}
1da177e4 4258
dd41f596
IM
4259/*
4260 * schedule() is the main scheduler function.
4261 */
4262asmlinkage void __sched schedule(void)
4263{
4264 struct task_struct *prev, *next;
67ca7bde 4265 unsigned long *switch_count;
dd41f596 4266 struct rq *rq;
f333fdc9 4267 int cpu, hrtick = sched_feat(HRTICK);
dd41f596
IM
4268
4269need_resched:
4270 preempt_disable();
4271 cpu = smp_processor_id();
4272 rq = cpu_rq(cpu);
4273 rcu_qsctr_inc(cpu);
4274 prev = rq->curr;
4275 switch_count = &prev->nivcsw;
4276
4277 release_kernel_lock(prev);
4278need_resched_nonpreemptible:
4279
4280 schedule_debug(prev);
1da177e4 4281
f333fdc9
MG
4282 if (hrtick)
4283 hrtick_clear(rq);
8f4d37ec 4284
1e819950
IM
4285 /*
4286 * Do the rq-clock update outside the rq lock:
4287 */
4288 local_irq_disable();
3e51f33f 4289 update_rq_clock(rq);
1e819950
IM
4290 spin_lock(&rq->lock);
4291 clear_tsk_need_resched(prev);
1da177e4 4292
1da177e4 4293 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4294 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4295 prev->state = TASK_RUNNING;
16882c1e 4296 else
2e1cb74a 4297 deactivate_task(rq, prev, 1);
dd41f596 4298 switch_count = &prev->nvcsw;
1da177e4
LT
4299 }
4300
9a897c5a
SR
4301#ifdef CONFIG_SMP
4302 if (prev->sched_class->pre_schedule)
4303 prev->sched_class->pre_schedule(rq, prev);
4304#endif
f65eda4f 4305
dd41f596 4306 if (unlikely(!rq->nr_running))
1da177e4 4307 idle_balance(cpu, rq);
1da177e4 4308
31ee529c 4309 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4310 next = pick_next_task(rq, prev);
1da177e4 4311
1da177e4 4312 if (likely(prev != next)) {
673a90a1
DS
4313 sched_info_switch(prev, next);
4314
1da177e4
LT
4315 rq->nr_switches++;
4316 rq->curr = next;
4317 ++*switch_count;
4318
dd41f596 4319 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4320 /*
4321 * the context switch might have flipped the stack from under
4322 * us, hence refresh the local variables.
4323 */
4324 cpu = smp_processor_id();
4325 rq = cpu_rq(cpu);
1da177e4
LT
4326 } else
4327 spin_unlock_irq(&rq->lock);
4328
f333fdc9
MG
4329 if (hrtick)
4330 hrtick_set(rq);
8f4d37ec
PZ
4331
4332 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4333 goto need_resched_nonpreemptible;
8f4d37ec 4334
1da177e4
LT
4335 preempt_enable_no_resched();
4336 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4337 goto need_resched;
4338}
1da177e4
LT
4339EXPORT_SYMBOL(schedule);
4340
4341#ifdef CONFIG_PREEMPT
4342/*
2ed6e34f 4343 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4344 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4345 * occur there and call schedule directly.
4346 */
4347asmlinkage void __sched preempt_schedule(void)
4348{
4349 struct thread_info *ti = current_thread_info();
6478d880 4350
1da177e4
LT
4351 /*
4352 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4353 * we do not want to preempt the current task. Just return..
1da177e4 4354 */
beed33a8 4355 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4356 return;
4357
3a5c359a
AK
4358 do {
4359 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4360 schedule();
3a5c359a 4361 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4362
3a5c359a
AK
4363 /*
4364 * Check again in case we missed a preemption opportunity
4365 * between schedule and now.
4366 */
4367 barrier();
4368 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4369}
1da177e4
LT
4370EXPORT_SYMBOL(preempt_schedule);
4371
4372/*
2ed6e34f 4373 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4374 * off of irq context.
4375 * Note, that this is called and return with irqs disabled. This will
4376 * protect us against recursive calling from irq.
4377 */
4378asmlinkage void __sched preempt_schedule_irq(void)
4379{
4380 struct thread_info *ti = current_thread_info();
6478d880 4381
2ed6e34f 4382 /* Catch callers which need to be fixed */
1da177e4
LT
4383 BUG_ON(ti->preempt_count || !irqs_disabled());
4384
3a5c359a
AK
4385 do {
4386 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4387 local_irq_enable();
4388 schedule();
4389 local_irq_disable();
3a5c359a 4390 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4391
3a5c359a
AK
4392 /*
4393 * Check again in case we missed a preemption opportunity
4394 * between schedule and now.
4395 */
4396 barrier();
4397 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4398}
4399
4400#endif /* CONFIG_PREEMPT */
4401
95cdf3b7
IM
4402int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4403 void *key)
1da177e4 4404{
48f24c4d 4405 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4406}
1da177e4
LT
4407EXPORT_SYMBOL(default_wake_function);
4408
4409/*
41a2d6cf
IM
4410 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4411 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4412 * number) then we wake all the non-exclusive tasks and one exclusive task.
4413 *
4414 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4415 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4416 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4417 */
4418static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4419 int nr_exclusive, int sync, void *key)
4420{
2e45874c 4421 wait_queue_t *curr, *next;
1da177e4 4422
2e45874c 4423 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4424 unsigned flags = curr->flags;
4425
1da177e4 4426 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4427 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4428 break;
4429 }
4430}
4431
4432/**
4433 * __wake_up - wake up threads blocked on a waitqueue.
4434 * @q: the waitqueue
4435 * @mode: which threads
4436 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4437 * @key: is directly passed to the wakeup function
1da177e4 4438 */
7ad5b3a5 4439void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4440 int nr_exclusive, void *key)
1da177e4
LT
4441{
4442 unsigned long flags;
4443
4444 spin_lock_irqsave(&q->lock, flags);
4445 __wake_up_common(q, mode, nr_exclusive, 0, key);
4446 spin_unlock_irqrestore(&q->lock, flags);
4447}
1da177e4
LT
4448EXPORT_SYMBOL(__wake_up);
4449
4450/*
4451 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4452 */
7ad5b3a5 4453void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4454{
4455 __wake_up_common(q, mode, 1, 0, NULL);
4456}
4457
4458/**
67be2dd1 4459 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4460 * @q: the waitqueue
4461 * @mode: which threads
4462 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4463 *
4464 * The sync wakeup differs that the waker knows that it will schedule
4465 * away soon, so while the target thread will be woken up, it will not
4466 * be migrated to another CPU - ie. the two threads are 'synchronized'
4467 * with each other. This can prevent needless bouncing between CPUs.
4468 *
4469 * On UP it can prevent extra preemption.
4470 */
7ad5b3a5 4471void
95cdf3b7 4472__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4473{
4474 unsigned long flags;
4475 int sync = 1;
4476
4477 if (unlikely(!q))
4478 return;
4479
4480 if (unlikely(!nr_exclusive))
4481 sync = 0;
4482
4483 spin_lock_irqsave(&q->lock, flags);
4484 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4485 spin_unlock_irqrestore(&q->lock, flags);
4486}
4487EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4488
b15136e9 4489void complete(struct completion *x)
1da177e4
LT
4490{
4491 unsigned long flags;
4492
4493 spin_lock_irqsave(&x->wait.lock, flags);
4494 x->done++;
d9514f6c 4495 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4496 spin_unlock_irqrestore(&x->wait.lock, flags);
4497}
4498EXPORT_SYMBOL(complete);
4499
b15136e9 4500void complete_all(struct completion *x)
1da177e4
LT
4501{
4502 unsigned long flags;
4503
4504 spin_lock_irqsave(&x->wait.lock, flags);
4505 x->done += UINT_MAX/2;
d9514f6c 4506 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4507 spin_unlock_irqrestore(&x->wait.lock, flags);
4508}
4509EXPORT_SYMBOL(complete_all);
4510
8cbbe86d
AK
4511static inline long __sched
4512do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4513{
1da177e4
LT
4514 if (!x->done) {
4515 DECLARE_WAITQUEUE(wait, current);
4516
4517 wait.flags |= WQ_FLAG_EXCLUSIVE;
4518 __add_wait_queue_tail(&x->wait, &wait);
4519 do {
009e577e
MW
4520 if ((state == TASK_INTERRUPTIBLE &&
4521 signal_pending(current)) ||
4522 (state == TASK_KILLABLE &&
4523 fatal_signal_pending(current))) {
ea71a546
ON
4524 timeout = -ERESTARTSYS;
4525 break;
8cbbe86d
AK
4526 }
4527 __set_current_state(state);
1da177e4
LT
4528 spin_unlock_irq(&x->wait.lock);
4529 timeout = schedule_timeout(timeout);
4530 spin_lock_irq(&x->wait.lock);
ea71a546 4531 } while (!x->done && timeout);
1da177e4 4532 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4533 if (!x->done)
4534 return timeout;
1da177e4
LT
4535 }
4536 x->done--;
ea71a546 4537 return timeout ?: 1;
1da177e4 4538}
1da177e4 4539
8cbbe86d
AK
4540static long __sched
4541wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4542{
1da177e4
LT
4543 might_sleep();
4544
4545 spin_lock_irq(&x->wait.lock);
8cbbe86d 4546 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4547 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4548 return timeout;
4549}
1da177e4 4550
b15136e9 4551void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4552{
4553 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4554}
8cbbe86d 4555EXPORT_SYMBOL(wait_for_completion);
1da177e4 4556
b15136e9 4557unsigned long __sched
8cbbe86d 4558wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4559{
8cbbe86d 4560 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4561}
8cbbe86d 4562EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4563
8cbbe86d 4564int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4565{
51e97990
AK
4566 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4567 if (t == -ERESTARTSYS)
4568 return t;
4569 return 0;
0fec171c 4570}
8cbbe86d 4571EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4572
b15136e9 4573unsigned long __sched
8cbbe86d
AK
4574wait_for_completion_interruptible_timeout(struct completion *x,
4575 unsigned long timeout)
0fec171c 4576{
8cbbe86d 4577 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4578}
8cbbe86d 4579EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4580
009e577e
MW
4581int __sched wait_for_completion_killable(struct completion *x)
4582{
4583 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4584 if (t == -ERESTARTSYS)
4585 return t;
4586 return 0;
4587}
4588EXPORT_SYMBOL(wait_for_completion_killable);
4589
8cbbe86d
AK
4590static long __sched
4591sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4592{
0fec171c
IM
4593 unsigned long flags;
4594 wait_queue_t wait;
4595
4596 init_waitqueue_entry(&wait, current);
1da177e4 4597
8cbbe86d 4598 __set_current_state(state);
1da177e4 4599
8cbbe86d
AK
4600 spin_lock_irqsave(&q->lock, flags);
4601 __add_wait_queue(q, &wait);
4602 spin_unlock(&q->lock);
4603 timeout = schedule_timeout(timeout);
4604 spin_lock_irq(&q->lock);
4605 __remove_wait_queue(q, &wait);
4606 spin_unlock_irqrestore(&q->lock, flags);
4607
4608 return timeout;
4609}
4610
4611void __sched interruptible_sleep_on(wait_queue_head_t *q)
4612{
4613 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4614}
1da177e4
LT
4615EXPORT_SYMBOL(interruptible_sleep_on);
4616
0fec171c 4617long __sched
95cdf3b7 4618interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4619{
8cbbe86d 4620 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4621}
1da177e4
LT
4622EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4623
0fec171c 4624void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4625{
8cbbe86d 4626 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4627}
1da177e4
LT
4628EXPORT_SYMBOL(sleep_on);
4629
0fec171c 4630long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4631{
8cbbe86d 4632 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4633}
1da177e4
LT
4634EXPORT_SYMBOL(sleep_on_timeout);
4635
b29739f9
IM
4636#ifdef CONFIG_RT_MUTEXES
4637
4638/*
4639 * rt_mutex_setprio - set the current priority of a task
4640 * @p: task
4641 * @prio: prio value (kernel-internal form)
4642 *
4643 * This function changes the 'effective' priority of a task. It does
4644 * not touch ->normal_prio like __setscheduler().
4645 *
4646 * Used by the rt_mutex code to implement priority inheritance logic.
4647 */
36c8b586 4648void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4649{
4650 unsigned long flags;
83b699ed 4651 int oldprio, on_rq, running;
70b97a7f 4652 struct rq *rq;
cb469845 4653 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4654
4655 BUG_ON(prio < 0 || prio > MAX_PRIO);
4656
4657 rq = task_rq_lock(p, &flags);
a8e504d2 4658 update_rq_clock(rq);
b29739f9 4659
d5f9f942 4660 oldprio = p->prio;
dd41f596 4661 on_rq = p->se.on_rq;
051a1d1a 4662 running = task_current(rq, p);
0e1f3483 4663 if (on_rq)
69be72c1 4664 dequeue_task(rq, p, 0);
0e1f3483
HS
4665 if (running)
4666 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4667
4668 if (rt_prio(prio))
4669 p->sched_class = &rt_sched_class;
4670 else
4671 p->sched_class = &fair_sched_class;
4672
b29739f9
IM
4673 p->prio = prio;
4674
0e1f3483
HS
4675 if (running)
4676 p->sched_class->set_curr_task(rq);
dd41f596 4677 if (on_rq) {
8159f87e 4678 enqueue_task(rq, p, 0);
cb469845
SR
4679
4680 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4681 }
4682 task_rq_unlock(rq, &flags);
4683}
4684
4685#endif
4686
36c8b586 4687void set_user_nice(struct task_struct *p, long nice)
1da177e4 4688{
dd41f596 4689 int old_prio, delta, on_rq;
1da177e4 4690 unsigned long flags;
70b97a7f 4691 struct rq *rq;
1da177e4
LT
4692
4693 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4694 return;
4695 /*
4696 * We have to be careful, if called from sys_setpriority(),
4697 * the task might be in the middle of scheduling on another CPU.
4698 */
4699 rq = task_rq_lock(p, &flags);
a8e504d2 4700 update_rq_clock(rq);
1da177e4
LT
4701 /*
4702 * The RT priorities are set via sched_setscheduler(), but we still
4703 * allow the 'normal' nice value to be set - but as expected
4704 * it wont have any effect on scheduling until the task is
dd41f596 4705 * SCHED_FIFO/SCHED_RR:
1da177e4 4706 */
e05606d3 4707 if (task_has_rt_policy(p)) {
1da177e4
LT
4708 p->static_prio = NICE_TO_PRIO(nice);
4709 goto out_unlock;
4710 }
dd41f596 4711 on_rq = p->se.on_rq;
c09595f6 4712 if (on_rq)
69be72c1 4713 dequeue_task(rq, p, 0);
1da177e4 4714
1da177e4 4715 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4716 set_load_weight(p);
b29739f9
IM
4717 old_prio = p->prio;
4718 p->prio = effective_prio(p);
4719 delta = p->prio - old_prio;
1da177e4 4720
dd41f596 4721 if (on_rq) {
8159f87e 4722 enqueue_task(rq, p, 0);
1da177e4 4723 /*
d5f9f942
AM
4724 * If the task increased its priority or is running and
4725 * lowered its priority, then reschedule its CPU:
1da177e4 4726 */
d5f9f942 4727 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4728 resched_task(rq->curr);
4729 }
4730out_unlock:
4731 task_rq_unlock(rq, &flags);
4732}
1da177e4
LT
4733EXPORT_SYMBOL(set_user_nice);
4734
e43379f1
MM
4735/*
4736 * can_nice - check if a task can reduce its nice value
4737 * @p: task
4738 * @nice: nice value
4739 */
36c8b586 4740int can_nice(const struct task_struct *p, const int nice)
e43379f1 4741{
024f4747
MM
4742 /* convert nice value [19,-20] to rlimit style value [1,40] */
4743 int nice_rlim = 20 - nice;
48f24c4d 4744
e43379f1
MM
4745 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4746 capable(CAP_SYS_NICE));
4747}
4748
1da177e4
LT
4749#ifdef __ARCH_WANT_SYS_NICE
4750
4751/*
4752 * sys_nice - change the priority of the current process.
4753 * @increment: priority increment
4754 *
4755 * sys_setpriority is a more generic, but much slower function that
4756 * does similar things.
4757 */
4758asmlinkage long sys_nice(int increment)
4759{
48f24c4d 4760 long nice, retval;
1da177e4
LT
4761
4762 /*
4763 * Setpriority might change our priority at the same moment.
4764 * We don't have to worry. Conceptually one call occurs first
4765 * and we have a single winner.
4766 */
e43379f1
MM
4767 if (increment < -40)
4768 increment = -40;
1da177e4
LT
4769 if (increment > 40)
4770 increment = 40;
4771
4772 nice = PRIO_TO_NICE(current->static_prio) + increment;
4773 if (nice < -20)
4774 nice = -20;
4775 if (nice > 19)
4776 nice = 19;
4777
e43379f1
MM
4778 if (increment < 0 && !can_nice(current, nice))
4779 return -EPERM;
4780
1da177e4
LT
4781 retval = security_task_setnice(current, nice);
4782 if (retval)
4783 return retval;
4784
4785 set_user_nice(current, nice);
4786 return 0;
4787}
4788
4789#endif
4790
4791/**
4792 * task_prio - return the priority value of a given task.
4793 * @p: the task in question.
4794 *
4795 * This is the priority value as seen by users in /proc.
4796 * RT tasks are offset by -200. Normal tasks are centered
4797 * around 0, value goes from -16 to +15.
4798 */
36c8b586 4799int task_prio(const struct task_struct *p)
1da177e4
LT
4800{
4801 return p->prio - MAX_RT_PRIO;
4802}
4803
4804/**
4805 * task_nice - return the nice value of a given task.
4806 * @p: the task in question.
4807 */
36c8b586 4808int task_nice(const struct task_struct *p)
1da177e4
LT
4809{
4810 return TASK_NICE(p);
4811}
150d8bed 4812EXPORT_SYMBOL(task_nice);
1da177e4
LT
4813
4814/**
4815 * idle_cpu - is a given cpu idle currently?
4816 * @cpu: the processor in question.
4817 */
4818int idle_cpu(int cpu)
4819{
4820 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4821}
4822
1da177e4
LT
4823/**
4824 * idle_task - return the idle task for a given cpu.
4825 * @cpu: the processor in question.
4826 */
36c8b586 4827struct task_struct *idle_task(int cpu)
1da177e4
LT
4828{
4829 return cpu_rq(cpu)->idle;
4830}
4831
4832/**
4833 * find_process_by_pid - find a process with a matching PID value.
4834 * @pid: the pid in question.
4835 */
a9957449 4836static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4837{
228ebcbe 4838 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4839}
4840
4841/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4842static void
4843__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4844{
dd41f596 4845 BUG_ON(p->se.on_rq);
48f24c4d 4846
1da177e4 4847 p->policy = policy;
dd41f596
IM
4848 switch (p->policy) {
4849 case SCHED_NORMAL:
4850 case SCHED_BATCH:
4851 case SCHED_IDLE:
4852 p->sched_class = &fair_sched_class;
4853 break;
4854 case SCHED_FIFO:
4855 case SCHED_RR:
4856 p->sched_class = &rt_sched_class;
4857 break;
4858 }
4859
1da177e4 4860 p->rt_priority = prio;
b29739f9
IM
4861 p->normal_prio = normal_prio(p);
4862 /* we are holding p->pi_lock already */
4863 p->prio = rt_mutex_getprio(p);
2dd73a4f 4864 set_load_weight(p);
1da177e4
LT
4865}
4866
4867/**
72fd4a35 4868 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4869 * @p: the task in question.
4870 * @policy: new policy.
4871 * @param: structure containing the new RT priority.
5fe1d75f 4872 *
72fd4a35 4873 * NOTE that the task may be already dead.
1da177e4 4874 */
95cdf3b7
IM
4875int sched_setscheduler(struct task_struct *p, int policy,
4876 struct sched_param *param)
1da177e4 4877{
83b699ed 4878 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4879 unsigned long flags;
cb469845 4880 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4881 struct rq *rq;
1da177e4 4882
66e5393a
SR
4883 /* may grab non-irq protected spin_locks */
4884 BUG_ON(in_interrupt());
1da177e4
LT
4885recheck:
4886 /* double check policy once rq lock held */
4887 if (policy < 0)
4888 policy = oldpolicy = p->policy;
4889 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4890 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4891 policy != SCHED_IDLE)
b0a9499c 4892 return -EINVAL;
1da177e4
LT
4893 /*
4894 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4895 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4896 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4897 */
4898 if (param->sched_priority < 0 ||
95cdf3b7 4899 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4900 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4901 return -EINVAL;
e05606d3 4902 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4903 return -EINVAL;
4904
37e4ab3f
OC
4905 /*
4906 * Allow unprivileged RT tasks to decrease priority:
4907 */
4908 if (!capable(CAP_SYS_NICE)) {
e05606d3 4909 if (rt_policy(policy)) {
8dc3e909 4910 unsigned long rlim_rtprio;
8dc3e909
ON
4911
4912 if (!lock_task_sighand(p, &flags))
4913 return -ESRCH;
4914 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4915 unlock_task_sighand(p, &flags);
4916
4917 /* can't set/change the rt policy */
4918 if (policy != p->policy && !rlim_rtprio)
4919 return -EPERM;
4920
4921 /* can't increase priority */
4922 if (param->sched_priority > p->rt_priority &&
4923 param->sched_priority > rlim_rtprio)
4924 return -EPERM;
4925 }
dd41f596
IM
4926 /*
4927 * Like positive nice levels, dont allow tasks to
4928 * move out of SCHED_IDLE either:
4929 */
4930 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4931 return -EPERM;
5fe1d75f 4932
37e4ab3f
OC
4933 /* can't change other user's priorities */
4934 if ((current->euid != p->euid) &&
4935 (current->euid != p->uid))
4936 return -EPERM;
4937 }
1da177e4 4938
b68aa230
PZ
4939#ifdef CONFIG_RT_GROUP_SCHED
4940 /*
4941 * Do not allow realtime tasks into groups that have no runtime
4942 * assigned.
4943 */
d0b27fa7 4944 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4945 return -EPERM;
4946#endif
4947
1da177e4
LT
4948 retval = security_task_setscheduler(p, policy, param);
4949 if (retval)
4950 return retval;
b29739f9
IM
4951 /*
4952 * make sure no PI-waiters arrive (or leave) while we are
4953 * changing the priority of the task:
4954 */
4955 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4956 /*
4957 * To be able to change p->policy safely, the apropriate
4958 * runqueue lock must be held.
4959 */
b29739f9 4960 rq = __task_rq_lock(p);
1da177e4
LT
4961 /* recheck policy now with rq lock held */
4962 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4963 policy = oldpolicy = -1;
b29739f9
IM
4964 __task_rq_unlock(rq);
4965 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4966 goto recheck;
4967 }
2daa3577 4968 update_rq_clock(rq);
dd41f596 4969 on_rq = p->se.on_rq;
051a1d1a 4970 running = task_current(rq, p);
0e1f3483 4971 if (on_rq)
2e1cb74a 4972 deactivate_task(rq, p, 0);
0e1f3483
HS
4973 if (running)
4974 p->sched_class->put_prev_task(rq, p);
f6b53205 4975
1da177e4 4976 oldprio = p->prio;
dd41f596 4977 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4978
0e1f3483
HS
4979 if (running)
4980 p->sched_class->set_curr_task(rq);
dd41f596
IM
4981 if (on_rq) {
4982 activate_task(rq, p, 0);
cb469845
SR
4983
4984 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4985 }
b29739f9
IM
4986 __task_rq_unlock(rq);
4987 spin_unlock_irqrestore(&p->pi_lock, flags);
4988
95e02ca9
TG
4989 rt_mutex_adjust_pi(p);
4990
1da177e4
LT
4991 return 0;
4992}
4993EXPORT_SYMBOL_GPL(sched_setscheduler);
4994
95cdf3b7
IM
4995static int
4996do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4997{
1da177e4
LT
4998 struct sched_param lparam;
4999 struct task_struct *p;
36c8b586 5000 int retval;
1da177e4
LT
5001
5002 if (!param || pid < 0)
5003 return -EINVAL;
5004 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5005 return -EFAULT;
5fe1d75f
ON
5006
5007 rcu_read_lock();
5008 retval = -ESRCH;
1da177e4 5009 p = find_process_by_pid(pid);
5fe1d75f
ON
5010 if (p != NULL)
5011 retval = sched_setscheduler(p, policy, &lparam);
5012 rcu_read_unlock();
36c8b586 5013
1da177e4
LT
5014 return retval;
5015}
5016
5017/**
5018 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5019 * @pid: the pid in question.
5020 * @policy: new policy.
5021 * @param: structure containing the new RT priority.
5022 */
41a2d6cf
IM
5023asmlinkage long
5024sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5025{
c21761f1
JB
5026 /* negative values for policy are not valid */
5027 if (policy < 0)
5028 return -EINVAL;
5029
1da177e4
LT
5030 return do_sched_setscheduler(pid, policy, param);
5031}
5032
5033/**
5034 * sys_sched_setparam - set/change the RT priority of a thread
5035 * @pid: the pid in question.
5036 * @param: structure containing the new RT priority.
5037 */
5038asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5039{
5040 return do_sched_setscheduler(pid, -1, param);
5041}
5042
5043/**
5044 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5045 * @pid: the pid in question.
5046 */
5047asmlinkage long sys_sched_getscheduler(pid_t pid)
5048{
36c8b586 5049 struct task_struct *p;
3a5c359a 5050 int retval;
1da177e4
LT
5051
5052 if (pid < 0)
3a5c359a 5053 return -EINVAL;
1da177e4
LT
5054
5055 retval = -ESRCH;
5056 read_lock(&tasklist_lock);
5057 p = find_process_by_pid(pid);
5058 if (p) {
5059 retval = security_task_getscheduler(p);
5060 if (!retval)
5061 retval = p->policy;
5062 }
5063 read_unlock(&tasklist_lock);
1da177e4
LT
5064 return retval;
5065}
5066
5067/**
5068 * sys_sched_getscheduler - get the RT priority of a thread
5069 * @pid: the pid in question.
5070 * @param: structure containing the RT priority.
5071 */
5072asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5073{
5074 struct sched_param lp;
36c8b586 5075 struct task_struct *p;
3a5c359a 5076 int retval;
1da177e4
LT
5077
5078 if (!param || pid < 0)
3a5c359a 5079 return -EINVAL;
1da177e4
LT
5080
5081 read_lock(&tasklist_lock);
5082 p = find_process_by_pid(pid);
5083 retval = -ESRCH;
5084 if (!p)
5085 goto out_unlock;
5086
5087 retval = security_task_getscheduler(p);
5088 if (retval)
5089 goto out_unlock;
5090
5091 lp.sched_priority = p->rt_priority;
5092 read_unlock(&tasklist_lock);
5093
5094 /*
5095 * This one might sleep, we cannot do it with a spinlock held ...
5096 */
5097 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5098
1da177e4
LT
5099 return retval;
5100
5101out_unlock:
5102 read_unlock(&tasklist_lock);
5103 return retval;
5104}
5105
b53e921b 5106long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5107{
1da177e4 5108 cpumask_t cpus_allowed;
b53e921b 5109 cpumask_t new_mask = *in_mask;
36c8b586
IM
5110 struct task_struct *p;
5111 int retval;
1da177e4 5112
95402b38 5113 get_online_cpus();
1da177e4
LT
5114 read_lock(&tasklist_lock);
5115
5116 p = find_process_by_pid(pid);
5117 if (!p) {
5118 read_unlock(&tasklist_lock);
95402b38 5119 put_online_cpus();
1da177e4
LT
5120 return -ESRCH;
5121 }
5122
5123 /*
5124 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5125 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5126 * usage count and then drop tasklist_lock.
5127 */
5128 get_task_struct(p);
5129 read_unlock(&tasklist_lock);
5130
5131 retval = -EPERM;
5132 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5133 !capable(CAP_SYS_NICE))
5134 goto out_unlock;
5135
e7834f8f
DQ
5136 retval = security_task_setscheduler(p, 0, NULL);
5137 if (retval)
5138 goto out_unlock;
5139
f9a86fcb 5140 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5141 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5142 again:
7c16ec58 5143 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5144
8707d8b8 5145 if (!retval) {
f9a86fcb 5146 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5147 if (!cpus_subset(new_mask, cpus_allowed)) {
5148 /*
5149 * We must have raced with a concurrent cpuset
5150 * update. Just reset the cpus_allowed to the
5151 * cpuset's cpus_allowed
5152 */
5153 new_mask = cpus_allowed;
5154 goto again;
5155 }
5156 }
1da177e4
LT
5157out_unlock:
5158 put_task_struct(p);
95402b38 5159 put_online_cpus();
1da177e4
LT
5160 return retval;
5161}
5162
5163static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5164 cpumask_t *new_mask)
5165{
5166 if (len < sizeof(cpumask_t)) {
5167 memset(new_mask, 0, sizeof(cpumask_t));
5168 } else if (len > sizeof(cpumask_t)) {
5169 len = sizeof(cpumask_t);
5170 }
5171 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5172}
5173
5174/**
5175 * sys_sched_setaffinity - set the cpu affinity of a process
5176 * @pid: pid of the process
5177 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5178 * @user_mask_ptr: user-space pointer to the new cpu mask
5179 */
5180asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5181 unsigned long __user *user_mask_ptr)
5182{
5183 cpumask_t new_mask;
5184 int retval;
5185
5186 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5187 if (retval)
5188 return retval;
5189
b53e921b 5190 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5191}
5192
1da177e4
LT
5193long sched_getaffinity(pid_t pid, cpumask_t *mask)
5194{
36c8b586 5195 struct task_struct *p;
1da177e4 5196 int retval;
1da177e4 5197
95402b38 5198 get_online_cpus();
1da177e4
LT
5199 read_lock(&tasklist_lock);
5200
5201 retval = -ESRCH;
5202 p = find_process_by_pid(pid);
5203 if (!p)
5204 goto out_unlock;
5205
e7834f8f
DQ
5206 retval = security_task_getscheduler(p);
5207 if (retval)
5208 goto out_unlock;
5209
2f7016d9 5210 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5211
5212out_unlock:
5213 read_unlock(&tasklist_lock);
95402b38 5214 put_online_cpus();
1da177e4 5215
9531b62f 5216 return retval;
1da177e4
LT
5217}
5218
5219/**
5220 * sys_sched_getaffinity - get the cpu affinity of a process
5221 * @pid: pid of the process
5222 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5223 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5224 */
5225asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5226 unsigned long __user *user_mask_ptr)
5227{
5228 int ret;
5229 cpumask_t mask;
5230
5231 if (len < sizeof(cpumask_t))
5232 return -EINVAL;
5233
5234 ret = sched_getaffinity(pid, &mask);
5235 if (ret < 0)
5236 return ret;
5237
5238 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5239 return -EFAULT;
5240
5241 return sizeof(cpumask_t);
5242}
5243
5244/**
5245 * sys_sched_yield - yield the current processor to other threads.
5246 *
dd41f596
IM
5247 * This function yields the current CPU to other tasks. If there are no
5248 * other threads running on this CPU then this function will return.
1da177e4
LT
5249 */
5250asmlinkage long sys_sched_yield(void)
5251{
70b97a7f 5252 struct rq *rq = this_rq_lock();
1da177e4 5253
2d72376b 5254 schedstat_inc(rq, yld_count);
4530d7ab 5255 current->sched_class->yield_task(rq);
1da177e4
LT
5256
5257 /*
5258 * Since we are going to call schedule() anyway, there's
5259 * no need to preempt or enable interrupts:
5260 */
5261 __release(rq->lock);
8a25d5de 5262 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5263 _raw_spin_unlock(&rq->lock);
5264 preempt_enable_no_resched();
5265
5266 schedule();
5267
5268 return 0;
5269}
5270
e7b38404 5271static void __cond_resched(void)
1da177e4 5272{
8e0a43d8
IM
5273#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5274 __might_sleep(__FILE__, __LINE__);
5275#endif
5bbcfd90
IM
5276 /*
5277 * The BKS might be reacquired before we have dropped
5278 * PREEMPT_ACTIVE, which could trigger a second
5279 * cond_resched() call.
5280 */
1da177e4
LT
5281 do {
5282 add_preempt_count(PREEMPT_ACTIVE);
5283 schedule();
5284 sub_preempt_count(PREEMPT_ACTIVE);
5285 } while (need_resched());
5286}
5287
02b67cc3 5288int __sched _cond_resched(void)
1da177e4 5289{
9414232f
IM
5290 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5291 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5292 __cond_resched();
5293 return 1;
5294 }
5295 return 0;
5296}
02b67cc3 5297EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5298
5299/*
5300 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5301 * call schedule, and on return reacquire the lock.
5302 *
41a2d6cf 5303 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5304 * operations here to prevent schedule() from being called twice (once via
5305 * spin_unlock(), once by hand).
5306 */
95cdf3b7 5307int cond_resched_lock(spinlock_t *lock)
1da177e4 5308{
95c354fe 5309 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5310 int ret = 0;
5311
95c354fe 5312 if (spin_needbreak(lock) || resched) {
1da177e4 5313 spin_unlock(lock);
95c354fe
NP
5314 if (resched && need_resched())
5315 __cond_resched();
5316 else
5317 cpu_relax();
6df3cecb 5318 ret = 1;
1da177e4 5319 spin_lock(lock);
1da177e4 5320 }
6df3cecb 5321 return ret;
1da177e4 5322}
1da177e4
LT
5323EXPORT_SYMBOL(cond_resched_lock);
5324
5325int __sched cond_resched_softirq(void)
5326{
5327 BUG_ON(!in_softirq());
5328
9414232f 5329 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5330 local_bh_enable();
1da177e4
LT
5331 __cond_resched();
5332 local_bh_disable();
5333 return 1;
5334 }
5335 return 0;
5336}
1da177e4
LT
5337EXPORT_SYMBOL(cond_resched_softirq);
5338
1da177e4
LT
5339/**
5340 * yield - yield the current processor to other threads.
5341 *
72fd4a35 5342 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5343 * thread runnable and calls sys_sched_yield().
5344 */
5345void __sched yield(void)
5346{
5347 set_current_state(TASK_RUNNING);
5348 sys_sched_yield();
5349}
1da177e4
LT
5350EXPORT_SYMBOL(yield);
5351
5352/*
41a2d6cf 5353 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5354 * that process accounting knows that this is a task in IO wait state.
5355 *
5356 * But don't do that if it is a deliberate, throttling IO wait (this task
5357 * has set its backing_dev_info: the queue against which it should throttle)
5358 */
5359void __sched io_schedule(void)
5360{
70b97a7f 5361 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5362
0ff92245 5363 delayacct_blkio_start();
1da177e4
LT
5364 atomic_inc(&rq->nr_iowait);
5365 schedule();
5366 atomic_dec(&rq->nr_iowait);
0ff92245 5367 delayacct_blkio_end();
1da177e4 5368}
1da177e4
LT
5369EXPORT_SYMBOL(io_schedule);
5370
5371long __sched io_schedule_timeout(long timeout)
5372{
70b97a7f 5373 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5374 long ret;
5375
0ff92245 5376 delayacct_blkio_start();
1da177e4
LT
5377 atomic_inc(&rq->nr_iowait);
5378 ret = schedule_timeout(timeout);
5379 atomic_dec(&rq->nr_iowait);
0ff92245 5380 delayacct_blkio_end();
1da177e4
LT
5381 return ret;
5382}
5383
5384/**
5385 * sys_sched_get_priority_max - return maximum RT priority.
5386 * @policy: scheduling class.
5387 *
5388 * this syscall returns the maximum rt_priority that can be used
5389 * by a given scheduling class.
5390 */
5391asmlinkage long sys_sched_get_priority_max(int policy)
5392{
5393 int ret = -EINVAL;
5394
5395 switch (policy) {
5396 case SCHED_FIFO:
5397 case SCHED_RR:
5398 ret = MAX_USER_RT_PRIO-1;
5399 break;
5400 case SCHED_NORMAL:
b0a9499c 5401 case SCHED_BATCH:
dd41f596 5402 case SCHED_IDLE:
1da177e4
LT
5403 ret = 0;
5404 break;
5405 }
5406 return ret;
5407}
5408
5409/**
5410 * sys_sched_get_priority_min - return minimum RT priority.
5411 * @policy: scheduling class.
5412 *
5413 * this syscall returns the minimum rt_priority that can be used
5414 * by a given scheduling class.
5415 */
5416asmlinkage long sys_sched_get_priority_min(int policy)
5417{
5418 int ret = -EINVAL;
5419
5420 switch (policy) {
5421 case SCHED_FIFO:
5422 case SCHED_RR:
5423 ret = 1;
5424 break;
5425 case SCHED_NORMAL:
b0a9499c 5426 case SCHED_BATCH:
dd41f596 5427 case SCHED_IDLE:
1da177e4
LT
5428 ret = 0;
5429 }
5430 return ret;
5431}
5432
5433/**
5434 * sys_sched_rr_get_interval - return the default timeslice of a process.
5435 * @pid: pid of the process.
5436 * @interval: userspace pointer to the timeslice value.
5437 *
5438 * this syscall writes the default timeslice value of a given process
5439 * into the user-space timespec buffer. A value of '0' means infinity.
5440 */
5441asmlinkage
5442long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5443{
36c8b586 5444 struct task_struct *p;
a4ec24b4 5445 unsigned int time_slice;
3a5c359a 5446 int retval;
1da177e4 5447 struct timespec t;
1da177e4
LT
5448
5449 if (pid < 0)
3a5c359a 5450 return -EINVAL;
1da177e4
LT
5451
5452 retval = -ESRCH;
5453 read_lock(&tasklist_lock);
5454 p = find_process_by_pid(pid);
5455 if (!p)
5456 goto out_unlock;
5457
5458 retval = security_task_getscheduler(p);
5459 if (retval)
5460 goto out_unlock;
5461
77034937
IM
5462 /*
5463 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5464 * tasks that are on an otherwise idle runqueue:
5465 */
5466 time_slice = 0;
5467 if (p->policy == SCHED_RR) {
a4ec24b4 5468 time_slice = DEF_TIMESLICE;
1868f958 5469 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5470 struct sched_entity *se = &p->se;
5471 unsigned long flags;
5472 struct rq *rq;
5473
5474 rq = task_rq_lock(p, &flags);
77034937
IM
5475 if (rq->cfs.load.weight)
5476 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5477 task_rq_unlock(rq, &flags);
5478 }
1da177e4 5479 read_unlock(&tasklist_lock);
a4ec24b4 5480 jiffies_to_timespec(time_slice, &t);
1da177e4 5481 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5482 return retval;
3a5c359a 5483
1da177e4
LT
5484out_unlock:
5485 read_unlock(&tasklist_lock);
5486 return retval;
5487}
5488
2ed6e34f 5489static const char stat_nam[] = "RSDTtZX";
36c8b586 5490
82a1fcb9 5491void sched_show_task(struct task_struct *p)
1da177e4 5492{
1da177e4 5493 unsigned long free = 0;
36c8b586 5494 unsigned state;
1da177e4 5495
1da177e4 5496 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5497 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5498 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5499#if BITS_PER_LONG == 32
1da177e4 5500 if (state == TASK_RUNNING)
cc4ea795 5501 printk(KERN_CONT " running ");
1da177e4 5502 else
cc4ea795 5503 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5504#else
5505 if (state == TASK_RUNNING)
cc4ea795 5506 printk(KERN_CONT " running task ");
1da177e4 5507 else
cc4ea795 5508 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5509#endif
5510#ifdef CONFIG_DEBUG_STACK_USAGE
5511 {
10ebffde 5512 unsigned long *n = end_of_stack(p);
1da177e4
LT
5513 while (!*n)
5514 n++;
10ebffde 5515 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5516 }
5517#endif
ba25f9dc 5518 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5519 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5520
5fb5e6de 5521 show_stack(p, NULL);
1da177e4
LT
5522}
5523
e59e2ae2 5524void show_state_filter(unsigned long state_filter)
1da177e4 5525{
36c8b586 5526 struct task_struct *g, *p;
1da177e4 5527
4bd77321
IM
5528#if BITS_PER_LONG == 32
5529 printk(KERN_INFO
5530 " task PC stack pid father\n");
1da177e4 5531#else
4bd77321
IM
5532 printk(KERN_INFO
5533 " task PC stack pid father\n");
1da177e4
LT
5534#endif
5535 read_lock(&tasklist_lock);
5536 do_each_thread(g, p) {
5537 /*
5538 * reset the NMI-timeout, listing all files on a slow
5539 * console might take alot of time:
5540 */
5541 touch_nmi_watchdog();
39bc89fd 5542 if (!state_filter || (p->state & state_filter))
82a1fcb9 5543 sched_show_task(p);
1da177e4
LT
5544 } while_each_thread(g, p);
5545
04c9167f
JF
5546 touch_all_softlockup_watchdogs();
5547
dd41f596
IM
5548#ifdef CONFIG_SCHED_DEBUG
5549 sysrq_sched_debug_show();
5550#endif
1da177e4 5551 read_unlock(&tasklist_lock);
e59e2ae2
IM
5552 /*
5553 * Only show locks if all tasks are dumped:
5554 */
5555 if (state_filter == -1)
5556 debug_show_all_locks();
1da177e4
LT
5557}
5558
1df21055
IM
5559void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5560{
dd41f596 5561 idle->sched_class = &idle_sched_class;
1df21055
IM
5562}
5563
f340c0d1
IM
5564/**
5565 * init_idle - set up an idle thread for a given CPU
5566 * @idle: task in question
5567 * @cpu: cpu the idle task belongs to
5568 *
5569 * NOTE: this function does not set the idle thread's NEED_RESCHED
5570 * flag, to make booting more robust.
5571 */
5c1e1767 5572void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5573{
70b97a7f 5574 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5575 unsigned long flags;
5576
dd41f596
IM
5577 __sched_fork(idle);
5578 idle->se.exec_start = sched_clock();
5579
b29739f9 5580 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5581 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5582 __set_task_cpu(idle, cpu);
1da177e4
LT
5583
5584 spin_lock_irqsave(&rq->lock, flags);
5585 rq->curr = rq->idle = idle;
4866cde0
NP
5586#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5587 idle->oncpu = 1;
5588#endif
1da177e4
LT
5589 spin_unlock_irqrestore(&rq->lock, flags);
5590
5591 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5592#if defined(CONFIG_PREEMPT)
5593 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5594#else
a1261f54 5595 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5596#endif
dd41f596
IM
5597 /*
5598 * The idle tasks have their own, simple scheduling class:
5599 */
5600 idle->sched_class = &idle_sched_class;
1da177e4
LT
5601}
5602
5603/*
5604 * In a system that switches off the HZ timer nohz_cpu_mask
5605 * indicates which cpus entered this state. This is used
5606 * in the rcu update to wait only for active cpus. For system
5607 * which do not switch off the HZ timer nohz_cpu_mask should
5608 * always be CPU_MASK_NONE.
5609 */
5610cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5611
19978ca6
IM
5612/*
5613 * Increase the granularity value when there are more CPUs,
5614 * because with more CPUs the 'effective latency' as visible
5615 * to users decreases. But the relationship is not linear,
5616 * so pick a second-best guess by going with the log2 of the
5617 * number of CPUs.
5618 *
5619 * This idea comes from the SD scheduler of Con Kolivas:
5620 */
5621static inline void sched_init_granularity(void)
5622{
5623 unsigned int factor = 1 + ilog2(num_online_cpus());
5624 const unsigned long limit = 200000000;
5625
5626 sysctl_sched_min_granularity *= factor;
5627 if (sysctl_sched_min_granularity > limit)
5628 sysctl_sched_min_granularity = limit;
5629
5630 sysctl_sched_latency *= factor;
5631 if (sysctl_sched_latency > limit)
5632 sysctl_sched_latency = limit;
5633
5634 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5635}
5636
1da177e4
LT
5637#ifdef CONFIG_SMP
5638/*
5639 * This is how migration works:
5640 *
70b97a7f 5641 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5642 * runqueue and wake up that CPU's migration thread.
5643 * 2) we down() the locked semaphore => thread blocks.
5644 * 3) migration thread wakes up (implicitly it forces the migrated
5645 * thread off the CPU)
5646 * 4) it gets the migration request and checks whether the migrated
5647 * task is still in the wrong runqueue.
5648 * 5) if it's in the wrong runqueue then the migration thread removes
5649 * it and puts it into the right queue.
5650 * 6) migration thread up()s the semaphore.
5651 * 7) we wake up and the migration is done.
5652 */
5653
5654/*
5655 * Change a given task's CPU affinity. Migrate the thread to a
5656 * proper CPU and schedule it away if the CPU it's executing on
5657 * is removed from the allowed bitmask.
5658 *
5659 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5660 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5661 * call is not atomic; no spinlocks may be held.
5662 */
cd8ba7cd 5663int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5664{
70b97a7f 5665 struct migration_req req;
1da177e4 5666 unsigned long flags;
70b97a7f 5667 struct rq *rq;
48f24c4d 5668 int ret = 0;
1da177e4
LT
5669
5670 rq = task_rq_lock(p, &flags);
cd8ba7cd 5671 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5672 ret = -EINVAL;
5673 goto out;
5674 }
5675
9985b0ba
DR
5676 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5677 !cpus_equal(p->cpus_allowed, *new_mask))) {
5678 ret = -EINVAL;
5679 goto out;
5680 }
5681
73fe6aae 5682 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5683 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5684 else {
cd8ba7cd
MT
5685 p->cpus_allowed = *new_mask;
5686 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5687 }
5688
1da177e4 5689 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5690 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5691 goto out;
5692
cd8ba7cd 5693 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5694 /* Need help from migration thread: drop lock and wait. */
5695 task_rq_unlock(rq, &flags);
5696 wake_up_process(rq->migration_thread);
5697 wait_for_completion(&req.done);
5698 tlb_migrate_finish(p->mm);
5699 return 0;
5700 }
5701out:
5702 task_rq_unlock(rq, &flags);
48f24c4d 5703
1da177e4
LT
5704 return ret;
5705}
cd8ba7cd 5706EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5707
5708/*
41a2d6cf 5709 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5710 * this because either it can't run here any more (set_cpus_allowed()
5711 * away from this CPU, or CPU going down), or because we're
5712 * attempting to rebalance this task on exec (sched_exec).
5713 *
5714 * So we race with normal scheduler movements, but that's OK, as long
5715 * as the task is no longer on this CPU.
efc30814
KK
5716 *
5717 * Returns non-zero if task was successfully migrated.
1da177e4 5718 */
efc30814 5719static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5720{
70b97a7f 5721 struct rq *rq_dest, *rq_src;
dd41f596 5722 int ret = 0, on_rq;
1da177e4
LT
5723
5724 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5725 return ret;
1da177e4
LT
5726
5727 rq_src = cpu_rq(src_cpu);
5728 rq_dest = cpu_rq(dest_cpu);
5729
5730 double_rq_lock(rq_src, rq_dest);
5731 /* Already moved. */
5732 if (task_cpu(p) != src_cpu)
5733 goto out;
5734 /* Affinity changed (again). */
5735 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5736 goto out;
5737
dd41f596 5738 on_rq = p->se.on_rq;
6e82a3be 5739 if (on_rq)
2e1cb74a 5740 deactivate_task(rq_src, p, 0);
6e82a3be 5741
1da177e4 5742 set_task_cpu(p, dest_cpu);
dd41f596
IM
5743 if (on_rq) {
5744 activate_task(rq_dest, p, 0);
5745 check_preempt_curr(rq_dest, p);
1da177e4 5746 }
efc30814 5747 ret = 1;
1da177e4
LT
5748out:
5749 double_rq_unlock(rq_src, rq_dest);
efc30814 5750 return ret;
1da177e4
LT
5751}
5752
5753/*
5754 * migration_thread - this is a highprio system thread that performs
5755 * thread migration by bumping thread off CPU then 'pushing' onto
5756 * another runqueue.
5757 */
95cdf3b7 5758static int migration_thread(void *data)
1da177e4 5759{
1da177e4 5760 int cpu = (long)data;
70b97a7f 5761 struct rq *rq;
1da177e4
LT
5762
5763 rq = cpu_rq(cpu);
5764 BUG_ON(rq->migration_thread != current);
5765
5766 set_current_state(TASK_INTERRUPTIBLE);
5767 while (!kthread_should_stop()) {
70b97a7f 5768 struct migration_req *req;
1da177e4 5769 struct list_head *head;
1da177e4 5770
1da177e4
LT
5771 spin_lock_irq(&rq->lock);
5772
5773 if (cpu_is_offline(cpu)) {
5774 spin_unlock_irq(&rq->lock);
5775 goto wait_to_die;
5776 }
5777
5778 if (rq->active_balance) {
5779 active_load_balance(rq, cpu);
5780 rq->active_balance = 0;
5781 }
5782
5783 head = &rq->migration_queue;
5784
5785 if (list_empty(head)) {
5786 spin_unlock_irq(&rq->lock);
5787 schedule();
5788 set_current_state(TASK_INTERRUPTIBLE);
5789 continue;
5790 }
70b97a7f 5791 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5792 list_del_init(head->next);
5793
674311d5
NP
5794 spin_unlock(&rq->lock);
5795 __migrate_task(req->task, cpu, req->dest_cpu);
5796 local_irq_enable();
1da177e4
LT
5797
5798 complete(&req->done);
5799 }
5800 __set_current_state(TASK_RUNNING);
5801 return 0;
5802
5803wait_to_die:
5804 /* Wait for kthread_stop */
5805 set_current_state(TASK_INTERRUPTIBLE);
5806 while (!kthread_should_stop()) {
5807 schedule();
5808 set_current_state(TASK_INTERRUPTIBLE);
5809 }
5810 __set_current_state(TASK_RUNNING);
5811 return 0;
5812}
5813
5814#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5815
5816static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5817{
5818 int ret;
5819
5820 local_irq_disable();
5821 ret = __migrate_task(p, src_cpu, dest_cpu);
5822 local_irq_enable();
5823 return ret;
5824}
5825
054b9108 5826/*
3a4fa0a2 5827 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5828 * NOTE: interrupts should be disabled by the caller
5829 */
48f24c4d 5830static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5831{
efc30814 5832 unsigned long flags;
1da177e4 5833 cpumask_t mask;
70b97a7f
IM
5834 struct rq *rq;
5835 int dest_cpu;
1da177e4 5836
3a5c359a
AK
5837 do {
5838 /* On same node? */
5839 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5840 cpus_and(mask, mask, p->cpus_allowed);
5841 dest_cpu = any_online_cpu(mask);
5842
5843 /* On any allowed CPU? */
434d53b0 5844 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5845 dest_cpu = any_online_cpu(p->cpus_allowed);
5846
5847 /* No more Mr. Nice Guy. */
434d53b0 5848 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5849 cpumask_t cpus_allowed;
5850
5851 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5852 /*
5853 * Try to stay on the same cpuset, where the
5854 * current cpuset may be a subset of all cpus.
5855 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5856 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5857 * called within calls to cpuset_lock/cpuset_unlock.
5858 */
3a5c359a 5859 rq = task_rq_lock(p, &flags);
470fd646 5860 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5861 dest_cpu = any_online_cpu(p->cpus_allowed);
5862 task_rq_unlock(rq, &flags);
1da177e4 5863
3a5c359a
AK
5864 /*
5865 * Don't tell them about moving exiting tasks or
5866 * kernel threads (both mm NULL), since they never
5867 * leave kernel.
5868 */
41a2d6cf 5869 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5870 printk(KERN_INFO "process %d (%s) no "
5871 "longer affine to cpu%d\n",
41a2d6cf
IM
5872 task_pid_nr(p), p->comm, dead_cpu);
5873 }
3a5c359a 5874 }
f7b4cddc 5875 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5876}
5877
5878/*
5879 * While a dead CPU has no uninterruptible tasks queued at this point,
5880 * it might still have a nonzero ->nr_uninterruptible counter, because
5881 * for performance reasons the counter is not stricly tracking tasks to
5882 * their home CPUs. So we just add the counter to another CPU's counter,
5883 * to keep the global sum constant after CPU-down:
5884 */
70b97a7f 5885static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5886{
7c16ec58 5887 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5888 unsigned long flags;
5889
5890 local_irq_save(flags);
5891 double_rq_lock(rq_src, rq_dest);
5892 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5893 rq_src->nr_uninterruptible = 0;
5894 double_rq_unlock(rq_src, rq_dest);
5895 local_irq_restore(flags);
5896}
5897
5898/* Run through task list and migrate tasks from the dead cpu. */
5899static void migrate_live_tasks(int src_cpu)
5900{
48f24c4d 5901 struct task_struct *p, *t;
1da177e4 5902
f7b4cddc 5903 read_lock(&tasklist_lock);
1da177e4 5904
48f24c4d
IM
5905 do_each_thread(t, p) {
5906 if (p == current)
1da177e4
LT
5907 continue;
5908
48f24c4d
IM
5909 if (task_cpu(p) == src_cpu)
5910 move_task_off_dead_cpu(src_cpu, p);
5911 } while_each_thread(t, p);
1da177e4 5912
f7b4cddc 5913 read_unlock(&tasklist_lock);
1da177e4
LT
5914}
5915
dd41f596
IM
5916/*
5917 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5918 * It does so by boosting its priority to highest possible.
5919 * Used by CPU offline code.
1da177e4
LT
5920 */
5921void sched_idle_next(void)
5922{
48f24c4d 5923 int this_cpu = smp_processor_id();
70b97a7f 5924 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5925 struct task_struct *p = rq->idle;
5926 unsigned long flags;
5927
5928 /* cpu has to be offline */
48f24c4d 5929 BUG_ON(cpu_online(this_cpu));
1da177e4 5930
48f24c4d
IM
5931 /*
5932 * Strictly not necessary since rest of the CPUs are stopped by now
5933 * and interrupts disabled on the current cpu.
1da177e4
LT
5934 */
5935 spin_lock_irqsave(&rq->lock, flags);
5936
dd41f596 5937 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5938
94bc9a7b
DA
5939 update_rq_clock(rq);
5940 activate_task(rq, p, 0);
1da177e4
LT
5941
5942 spin_unlock_irqrestore(&rq->lock, flags);
5943}
5944
48f24c4d
IM
5945/*
5946 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5947 * offline.
5948 */
5949void idle_task_exit(void)
5950{
5951 struct mm_struct *mm = current->active_mm;
5952
5953 BUG_ON(cpu_online(smp_processor_id()));
5954
5955 if (mm != &init_mm)
5956 switch_mm(mm, &init_mm, current);
5957 mmdrop(mm);
5958}
5959
054b9108 5960/* called under rq->lock with disabled interrupts */
36c8b586 5961static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5962{
70b97a7f 5963 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5964
5965 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5966 BUG_ON(!p->exit_state);
1da177e4
LT
5967
5968 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5969 BUG_ON(p->state == TASK_DEAD);
1da177e4 5970
48f24c4d 5971 get_task_struct(p);
1da177e4
LT
5972
5973 /*
5974 * Drop lock around migration; if someone else moves it,
41a2d6cf 5975 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5976 * fine.
5977 */
f7b4cddc 5978 spin_unlock_irq(&rq->lock);
48f24c4d 5979 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5980 spin_lock_irq(&rq->lock);
1da177e4 5981
48f24c4d 5982 put_task_struct(p);
1da177e4
LT
5983}
5984
5985/* release_task() removes task from tasklist, so we won't find dead tasks. */
5986static void migrate_dead_tasks(unsigned int dead_cpu)
5987{
70b97a7f 5988 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5989 struct task_struct *next;
48f24c4d 5990
dd41f596
IM
5991 for ( ; ; ) {
5992 if (!rq->nr_running)
5993 break;
a8e504d2 5994 update_rq_clock(rq);
ff95f3df 5995 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5996 if (!next)
5997 break;
5998 migrate_dead(dead_cpu, next);
e692ab53 5999
1da177e4
LT
6000 }
6001}
6002#endif /* CONFIG_HOTPLUG_CPU */
6003
e692ab53
NP
6004#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6005
6006static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6007 {
6008 .procname = "sched_domain",
c57baf1e 6009 .mode = 0555,
e0361851 6010 },
38605cae 6011 {0, },
e692ab53
NP
6012};
6013
6014static struct ctl_table sd_ctl_root[] = {
e0361851 6015 {
c57baf1e 6016 .ctl_name = CTL_KERN,
e0361851 6017 .procname = "kernel",
c57baf1e 6018 .mode = 0555,
e0361851
AD
6019 .child = sd_ctl_dir,
6020 },
38605cae 6021 {0, },
e692ab53
NP
6022};
6023
6024static struct ctl_table *sd_alloc_ctl_entry(int n)
6025{
6026 struct ctl_table *entry =
5cf9f062 6027 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6028
e692ab53
NP
6029 return entry;
6030}
6031
6382bc90
MM
6032static void sd_free_ctl_entry(struct ctl_table **tablep)
6033{
cd790076 6034 struct ctl_table *entry;
6382bc90 6035
cd790076
MM
6036 /*
6037 * In the intermediate directories, both the child directory and
6038 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6039 * will always be set. In the lowest directory the names are
cd790076
MM
6040 * static strings and all have proc handlers.
6041 */
6042 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6043 if (entry->child)
6044 sd_free_ctl_entry(&entry->child);
cd790076
MM
6045 if (entry->proc_handler == NULL)
6046 kfree(entry->procname);
6047 }
6382bc90
MM
6048
6049 kfree(*tablep);
6050 *tablep = NULL;
6051}
6052
e692ab53 6053static void
e0361851 6054set_table_entry(struct ctl_table *entry,
e692ab53
NP
6055 const char *procname, void *data, int maxlen,
6056 mode_t mode, proc_handler *proc_handler)
6057{
e692ab53
NP
6058 entry->procname = procname;
6059 entry->data = data;
6060 entry->maxlen = maxlen;
6061 entry->mode = mode;
6062 entry->proc_handler = proc_handler;
6063}
6064
6065static struct ctl_table *
6066sd_alloc_ctl_domain_table(struct sched_domain *sd)
6067{
ace8b3d6 6068 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6069
ad1cdc1d
MM
6070 if (table == NULL)
6071 return NULL;
6072
e0361851 6073 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6074 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6075 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6076 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6077 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6078 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6079 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6080 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6081 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6082 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6083 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6084 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6085 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6086 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6087 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6088 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6089 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6090 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6091 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6092 &sd->cache_nice_tries,
6093 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6094 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6095 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6096 /* &table[11] is terminator */
e692ab53
NP
6097
6098 return table;
6099}
6100
9a4e7159 6101static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6102{
6103 struct ctl_table *entry, *table;
6104 struct sched_domain *sd;
6105 int domain_num = 0, i;
6106 char buf[32];
6107
6108 for_each_domain(cpu, sd)
6109 domain_num++;
6110 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6111 if (table == NULL)
6112 return NULL;
e692ab53
NP
6113
6114 i = 0;
6115 for_each_domain(cpu, sd) {
6116 snprintf(buf, 32, "domain%d", i);
e692ab53 6117 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6118 entry->mode = 0555;
e692ab53
NP
6119 entry->child = sd_alloc_ctl_domain_table(sd);
6120 entry++;
6121 i++;
6122 }
6123 return table;
6124}
6125
6126static struct ctl_table_header *sd_sysctl_header;
6382bc90 6127static void register_sched_domain_sysctl(void)
e692ab53
NP
6128{
6129 int i, cpu_num = num_online_cpus();
6130 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6131 char buf[32];
6132
7378547f
MM
6133 WARN_ON(sd_ctl_dir[0].child);
6134 sd_ctl_dir[0].child = entry;
6135
ad1cdc1d
MM
6136 if (entry == NULL)
6137 return;
6138
97b6ea7b 6139 for_each_online_cpu(i) {
e692ab53 6140 snprintf(buf, 32, "cpu%d", i);
e692ab53 6141 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6142 entry->mode = 0555;
e692ab53 6143 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6144 entry++;
e692ab53 6145 }
7378547f
MM
6146
6147 WARN_ON(sd_sysctl_header);
e692ab53
NP
6148 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6149}
6382bc90 6150
7378547f 6151/* may be called multiple times per register */
6382bc90
MM
6152static void unregister_sched_domain_sysctl(void)
6153{
7378547f
MM
6154 if (sd_sysctl_header)
6155 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6156 sd_sysctl_header = NULL;
7378547f
MM
6157 if (sd_ctl_dir[0].child)
6158 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6159}
e692ab53 6160#else
6382bc90
MM
6161static void register_sched_domain_sysctl(void)
6162{
6163}
6164static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6165{
6166}
6167#endif
6168
1f11eb6a
GH
6169static void set_rq_online(struct rq *rq)
6170{
6171 if (!rq->online) {
6172 const struct sched_class *class;
6173
6174 cpu_set(rq->cpu, rq->rd->online);
6175 rq->online = 1;
6176
6177 for_each_class(class) {
6178 if (class->rq_online)
6179 class->rq_online(rq);
6180 }
6181 }
6182}
6183
6184static void set_rq_offline(struct rq *rq)
6185{
6186 if (rq->online) {
6187 const struct sched_class *class;
6188
6189 for_each_class(class) {
6190 if (class->rq_offline)
6191 class->rq_offline(rq);
6192 }
6193
6194 cpu_clear(rq->cpu, rq->rd->online);
6195 rq->online = 0;
6196 }
6197}
6198
1da177e4
LT
6199/*
6200 * migration_call - callback that gets triggered when a CPU is added.
6201 * Here we can start up the necessary migration thread for the new CPU.
6202 */
48f24c4d
IM
6203static int __cpuinit
6204migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6205{
1da177e4 6206 struct task_struct *p;
48f24c4d 6207 int cpu = (long)hcpu;
1da177e4 6208 unsigned long flags;
70b97a7f 6209 struct rq *rq;
1da177e4
LT
6210
6211 switch (action) {
5be9361c 6212
1da177e4 6213 case CPU_UP_PREPARE:
8bb78442 6214 case CPU_UP_PREPARE_FROZEN:
dd41f596 6215 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6216 if (IS_ERR(p))
6217 return NOTIFY_BAD;
1da177e4
LT
6218 kthread_bind(p, cpu);
6219 /* Must be high prio: stop_machine expects to yield to it. */
6220 rq = task_rq_lock(p, &flags);
dd41f596 6221 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6222 task_rq_unlock(rq, &flags);
6223 cpu_rq(cpu)->migration_thread = p;
6224 break;
48f24c4d 6225
1da177e4 6226 case CPU_ONLINE:
8bb78442 6227 case CPU_ONLINE_FROZEN:
3a4fa0a2 6228 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6229 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6230
6231 /* Update our root-domain */
6232 rq = cpu_rq(cpu);
6233 spin_lock_irqsave(&rq->lock, flags);
6234 if (rq->rd) {
6235 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6236
6237 set_rq_online(rq);
1f94ef59
GH
6238 }
6239 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6240 break;
48f24c4d 6241
1da177e4
LT
6242#ifdef CONFIG_HOTPLUG_CPU
6243 case CPU_UP_CANCELED:
8bb78442 6244 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6245 if (!cpu_rq(cpu)->migration_thread)
6246 break;
41a2d6cf 6247 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6248 kthread_bind(cpu_rq(cpu)->migration_thread,
6249 any_online_cpu(cpu_online_map));
1da177e4
LT
6250 kthread_stop(cpu_rq(cpu)->migration_thread);
6251 cpu_rq(cpu)->migration_thread = NULL;
6252 break;
48f24c4d 6253
1da177e4 6254 case CPU_DEAD:
8bb78442 6255 case CPU_DEAD_FROZEN:
470fd646 6256 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6257 migrate_live_tasks(cpu);
6258 rq = cpu_rq(cpu);
6259 kthread_stop(rq->migration_thread);
6260 rq->migration_thread = NULL;
6261 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6262 spin_lock_irq(&rq->lock);
a8e504d2 6263 update_rq_clock(rq);
2e1cb74a 6264 deactivate_task(rq, rq->idle, 0);
1da177e4 6265 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6266 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6267 rq->idle->sched_class = &idle_sched_class;
1da177e4 6268 migrate_dead_tasks(cpu);
d2da272a 6269 spin_unlock_irq(&rq->lock);
470fd646 6270 cpuset_unlock();
1da177e4
LT
6271 migrate_nr_uninterruptible(rq);
6272 BUG_ON(rq->nr_running != 0);
6273
41a2d6cf
IM
6274 /*
6275 * No need to migrate the tasks: it was best-effort if
6276 * they didn't take sched_hotcpu_mutex. Just wake up
6277 * the requestors.
6278 */
1da177e4
LT
6279 spin_lock_irq(&rq->lock);
6280 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6281 struct migration_req *req;
6282
1da177e4 6283 req = list_entry(rq->migration_queue.next,
70b97a7f 6284 struct migration_req, list);
1da177e4
LT
6285 list_del_init(&req->list);
6286 complete(&req->done);
6287 }
6288 spin_unlock_irq(&rq->lock);
6289 break;
57d885fe 6290
08f503b0
GH
6291 case CPU_DYING:
6292 case CPU_DYING_FROZEN:
57d885fe
GH
6293 /* Update our root-domain */
6294 rq = cpu_rq(cpu);
6295 spin_lock_irqsave(&rq->lock, flags);
6296 if (rq->rd) {
6297 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6298 set_rq_offline(rq);
57d885fe
GH
6299 }
6300 spin_unlock_irqrestore(&rq->lock, flags);
6301 break;
1da177e4
LT
6302#endif
6303 }
6304 return NOTIFY_OK;
6305}
6306
6307/* Register at highest priority so that task migration (migrate_all_tasks)
6308 * happens before everything else.
6309 */
26c2143b 6310static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6311 .notifier_call = migration_call,
6312 .priority = 10
6313};
6314
e6fe6649 6315void __init migration_init(void)
1da177e4
LT
6316{
6317 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6318 int err;
48f24c4d
IM
6319
6320 /* Start one for the boot CPU: */
07dccf33
AM
6321 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6322 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6323 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6324 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6325}
6326#endif
6327
6328#ifdef CONFIG_SMP
476f3534 6329
3e9830dc 6330#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6331
099f98c8
GS
6332static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6333{
6334 switch (lvl) {
6335 case SD_LV_NONE:
6336 return "NONE";
6337 case SD_LV_SIBLING:
6338 return "SIBLING";
6339 case SD_LV_MC:
6340 return "MC";
6341 case SD_LV_CPU:
6342 return "CPU";
6343 case SD_LV_NODE:
6344 return "NODE";
6345 case SD_LV_ALLNODES:
6346 return "ALLNODES";
6347 case SD_LV_MAX:
6348 return "MAX";
6349
6350 }
6351 return "MAX";
6352}
6353
7c16ec58
MT
6354static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6355 cpumask_t *groupmask)
1da177e4 6356{
4dcf6aff 6357 struct sched_group *group = sd->groups;
434d53b0 6358 char str[256];
1da177e4 6359
434d53b0 6360 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6361 cpus_clear(*groupmask);
4dcf6aff
IM
6362
6363 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6364
6365 if (!(sd->flags & SD_LOAD_BALANCE)) {
6366 printk("does not load-balance\n");
6367 if (sd->parent)
6368 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6369 " has parent");
6370 return -1;
41c7ce9a
NP
6371 }
6372
099f98c8
GS
6373 printk(KERN_CONT "span %s level %s\n",
6374 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6375
6376 if (!cpu_isset(cpu, sd->span)) {
6377 printk(KERN_ERR "ERROR: domain->span does not contain "
6378 "CPU%d\n", cpu);
6379 }
6380 if (!cpu_isset(cpu, group->cpumask)) {
6381 printk(KERN_ERR "ERROR: domain->groups does not contain"
6382 " CPU%d\n", cpu);
6383 }
1da177e4 6384
4dcf6aff 6385 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6386 do {
4dcf6aff
IM
6387 if (!group) {
6388 printk("\n");
6389 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6390 break;
6391 }
6392
4dcf6aff
IM
6393 if (!group->__cpu_power) {
6394 printk(KERN_CONT "\n");
6395 printk(KERN_ERR "ERROR: domain->cpu_power not "
6396 "set\n");
6397 break;
6398 }
1da177e4 6399
4dcf6aff
IM
6400 if (!cpus_weight(group->cpumask)) {
6401 printk(KERN_CONT "\n");
6402 printk(KERN_ERR "ERROR: empty group\n");
6403 break;
6404 }
1da177e4 6405
7c16ec58 6406 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6407 printk(KERN_CONT "\n");
6408 printk(KERN_ERR "ERROR: repeated CPUs\n");
6409 break;
6410 }
1da177e4 6411
7c16ec58 6412 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6413
434d53b0 6414 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6415 printk(KERN_CONT " %s", str);
1da177e4 6416
4dcf6aff
IM
6417 group = group->next;
6418 } while (group != sd->groups);
6419 printk(KERN_CONT "\n");
1da177e4 6420
7c16ec58 6421 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6422 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6423
7c16ec58 6424 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6425 printk(KERN_ERR "ERROR: parent span is not a superset "
6426 "of domain->span\n");
6427 return 0;
6428}
1da177e4 6429
4dcf6aff
IM
6430static void sched_domain_debug(struct sched_domain *sd, int cpu)
6431{
7c16ec58 6432 cpumask_t *groupmask;
4dcf6aff 6433 int level = 0;
1da177e4 6434
4dcf6aff
IM
6435 if (!sd) {
6436 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6437 return;
6438 }
1da177e4 6439
4dcf6aff
IM
6440 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6441
7c16ec58
MT
6442 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6443 if (!groupmask) {
6444 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6445 return;
6446 }
6447
4dcf6aff 6448 for (;;) {
7c16ec58 6449 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6450 break;
1da177e4
LT
6451 level++;
6452 sd = sd->parent;
33859f7f 6453 if (!sd)
4dcf6aff
IM
6454 break;
6455 }
7c16ec58 6456 kfree(groupmask);
1da177e4 6457}
6d6bc0ad 6458#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6459# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6460#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6461
1a20ff27 6462static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6463{
6464 if (cpus_weight(sd->span) == 1)
6465 return 1;
6466
6467 /* Following flags need at least 2 groups */
6468 if (sd->flags & (SD_LOAD_BALANCE |
6469 SD_BALANCE_NEWIDLE |
6470 SD_BALANCE_FORK |
89c4710e
SS
6471 SD_BALANCE_EXEC |
6472 SD_SHARE_CPUPOWER |
6473 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6474 if (sd->groups != sd->groups->next)
6475 return 0;
6476 }
6477
6478 /* Following flags don't use groups */
6479 if (sd->flags & (SD_WAKE_IDLE |
6480 SD_WAKE_AFFINE |
6481 SD_WAKE_BALANCE))
6482 return 0;
6483
6484 return 1;
6485}
6486
48f24c4d
IM
6487static int
6488sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6489{
6490 unsigned long cflags = sd->flags, pflags = parent->flags;
6491
6492 if (sd_degenerate(parent))
6493 return 1;
6494
6495 if (!cpus_equal(sd->span, parent->span))
6496 return 0;
6497
6498 /* Does parent contain flags not in child? */
6499 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6500 if (cflags & SD_WAKE_AFFINE)
6501 pflags &= ~SD_WAKE_BALANCE;
6502 /* Flags needing groups don't count if only 1 group in parent */
6503 if (parent->groups == parent->groups->next) {
6504 pflags &= ~(SD_LOAD_BALANCE |
6505 SD_BALANCE_NEWIDLE |
6506 SD_BALANCE_FORK |
89c4710e
SS
6507 SD_BALANCE_EXEC |
6508 SD_SHARE_CPUPOWER |
6509 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6510 }
6511 if (~cflags & pflags)
6512 return 0;
6513
6514 return 1;
6515}
6516
57d885fe
GH
6517static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6518{
6519 unsigned long flags;
57d885fe
GH
6520
6521 spin_lock_irqsave(&rq->lock, flags);
6522
6523 if (rq->rd) {
6524 struct root_domain *old_rd = rq->rd;
6525
1f11eb6a
GH
6526 if (cpu_isset(rq->cpu, old_rd->online))
6527 set_rq_offline(rq);
57d885fe 6528
dc938520 6529 cpu_clear(rq->cpu, old_rd->span);
dc938520 6530
57d885fe
GH
6531 if (atomic_dec_and_test(&old_rd->refcount))
6532 kfree(old_rd);
6533 }
6534
6535 atomic_inc(&rd->refcount);
6536 rq->rd = rd;
6537
dc938520 6538 cpu_set(rq->cpu, rd->span);
1f94ef59 6539 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6540 set_rq_online(rq);
57d885fe
GH
6541
6542 spin_unlock_irqrestore(&rq->lock, flags);
6543}
6544
dc938520 6545static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6546{
6547 memset(rd, 0, sizeof(*rd));
6548
dc938520
GH
6549 cpus_clear(rd->span);
6550 cpus_clear(rd->online);
6e0534f2
GH
6551
6552 cpupri_init(&rd->cpupri);
57d885fe
GH
6553}
6554
6555static void init_defrootdomain(void)
6556{
dc938520 6557 init_rootdomain(&def_root_domain);
57d885fe
GH
6558 atomic_set(&def_root_domain.refcount, 1);
6559}
6560
dc938520 6561static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6562{
6563 struct root_domain *rd;
6564
6565 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6566 if (!rd)
6567 return NULL;
6568
dc938520 6569 init_rootdomain(rd);
57d885fe
GH
6570
6571 return rd;
6572}
6573
1da177e4 6574/*
0eab9146 6575 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6576 * hold the hotplug lock.
6577 */
0eab9146
IM
6578static void
6579cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6580{
70b97a7f 6581 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6582 struct sched_domain *tmp;
6583
6584 /* Remove the sched domains which do not contribute to scheduling. */
6585 for (tmp = sd; tmp; tmp = tmp->parent) {
6586 struct sched_domain *parent = tmp->parent;
6587 if (!parent)
6588 break;
1a848870 6589 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6590 tmp->parent = parent->parent;
1a848870
SS
6591 if (parent->parent)
6592 parent->parent->child = tmp;
6593 }
245af2c7
SS
6594 }
6595
1a848870 6596 if (sd && sd_degenerate(sd)) {
245af2c7 6597 sd = sd->parent;
1a848870
SS
6598 if (sd)
6599 sd->child = NULL;
6600 }
1da177e4
LT
6601
6602 sched_domain_debug(sd, cpu);
6603
57d885fe 6604 rq_attach_root(rq, rd);
674311d5 6605 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6606}
6607
6608/* cpus with isolated domains */
67af63a6 6609static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6610
6611/* Setup the mask of cpus configured for isolated domains */
6612static int __init isolated_cpu_setup(char *str)
6613{
6614 int ints[NR_CPUS], i;
6615
6616 str = get_options(str, ARRAY_SIZE(ints), ints);
6617 cpus_clear(cpu_isolated_map);
6618 for (i = 1; i <= ints[0]; i++)
6619 if (ints[i] < NR_CPUS)
6620 cpu_set(ints[i], cpu_isolated_map);
6621 return 1;
6622}
6623
8927f494 6624__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6625
6626/*
6711cab4
SS
6627 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6628 * to a function which identifies what group(along with sched group) a CPU
6629 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6630 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6631 *
6632 * init_sched_build_groups will build a circular linked list of the groups
6633 * covered by the given span, and will set each group's ->cpumask correctly,
6634 * and ->cpu_power to 0.
6635 */
a616058b 6636static void
7c16ec58 6637init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6638 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6639 struct sched_group **sg,
6640 cpumask_t *tmpmask),
6641 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6642{
6643 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6644 int i;
6645
7c16ec58
MT
6646 cpus_clear(*covered);
6647
6648 for_each_cpu_mask(i, *span) {
6711cab4 6649 struct sched_group *sg;
7c16ec58 6650 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6651 int j;
6652
7c16ec58 6653 if (cpu_isset(i, *covered))
1da177e4
LT
6654 continue;
6655
7c16ec58 6656 cpus_clear(sg->cpumask);
5517d86b 6657 sg->__cpu_power = 0;
1da177e4 6658
7c16ec58
MT
6659 for_each_cpu_mask(j, *span) {
6660 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6661 continue;
6662
7c16ec58 6663 cpu_set(j, *covered);
1da177e4
LT
6664 cpu_set(j, sg->cpumask);
6665 }
6666 if (!first)
6667 first = sg;
6668 if (last)
6669 last->next = sg;
6670 last = sg;
6671 }
6672 last->next = first;
6673}
6674
9c1cfda2 6675#define SD_NODES_PER_DOMAIN 16
1da177e4 6676
9c1cfda2 6677#ifdef CONFIG_NUMA
198e2f18 6678
9c1cfda2
JH
6679/**
6680 * find_next_best_node - find the next node to include in a sched_domain
6681 * @node: node whose sched_domain we're building
6682 * @used_nodes: nodes already in the sched_domain
6683 *
41a2d6cf 6684 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6685 * finds the closest node not already in the @used_nodes map.
6686 *
6687 * Should use nodemask_t.
6688 */
c5f59f08 6689static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6690{
6691 int i, n, val, min_val, best_node = 0;
6692
6693 min_val = INT_MAX;
6694
6695 for (i = 0; i < MAX_NUMNODES; i++) {
6696 /* Start at @node */
6697 n = (node + i) % MAX_NUMNODES;
6698
6699 if (!nr_cpus_node(n))
6700 continue;
6701
6702 /* Skip already used nodes */
c5f59f08 6703 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6704 continue;
6705
6706 /* Simple min distance search */
6707 val = node_distance(node, n);
6708
6709 if (val < min_val) {
6710 min_val = val;
6711 best_node = n;
6712 }
6713 }
6714
c5f59f08 6715 node_set(best_node, *used_nodes);
9c1cfda2
JH
6716 return best_node;
6717}
6718
6719/**
6720 * sched_domain_node_span - get a cpumask for a node's sched_domain
6721 * @node: node whose cpumask we're constructing
73486722 6722 * @span: resulting cpumask
9c1cfda2 6723 *
41a2d6cf 6724 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6725 * should be one that prevents unnecessary balancing, but also spreads tasks
6726 * out optimally.
6727 */
4bdbaad3 6728static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6729{
c5f59f08 6730 nodemask_t used_nodes;
c5f59f08 6731 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6732 int i;
9c1cfda2 6733
4bdbaad3 6734 cpus_clear(*span);
c5f59f08 6735 nodes_clear(used_nodes);
9c1cfda2 6736
4bdbaad3 6737 cpus_or(*span, *span, *nodemask);
c5f59f08 6738 node_set(node, used_nodes);
9c1cfda2
JH
6739
6740 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6741 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6742
c5f59f08 6743 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6744 cpus_or(*span, *span, *nodemask);
9c1cfda2 6745 }
9c1cfda2 6746}
6d6bc0ad 6747#endif /* CONFIG_NUMA */
9c1cfda2 6748
5c45bf27 6749int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6750
9c1cfda2 6751/*
48f24c4d 6752 * SMT sched-domains:
9c1cfda2 6753 */
1da177e4
LT
6754#ifdef CONFIG_SCHED_SMT
6755static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6756static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6757
41a2d6cf 6758static int
7c16ec58
MT
6759cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6760 cpumask_t *unused)
1da177e4 6761{
6711cab4
SS
6762 if (sg)
6763 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6764 return cpu;
6765}
6d6bc0ad 6766#endif /* CONFIG_SCHED_SMT */
1da177e4 6767
48f24c4d
IM
6768/*
6769 * multi-core sched-domains:
6770 */
1e9f28fa
SS
6771#ifdef CONFIG_SCHED_MC
6772static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6773static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6774#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6775
6776#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6777static int
7c16ec58
MT
6778cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6779 cpumask_t *mask)
1e9f28fa 6780{
6711cab4 6781 int group;
7c16ec58
MT
6782
6783 *mask = per_cpu(cpu_sibling_map, cpu);
6784 cpus_and(*mask, *mask, *cpu_map);
6785 group = first_cpu(*mask);
6711cab4
SS
6786 if (sg)
6787 *sg = &per_cpu(sched_group_core, group);
6788 return group;
1e9f28fa
SS
6789}
6790#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6791static int
7c16ec58
MT
6792cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6793 cpumask_t *unused)
1e9f28fa 6794{
6711cab4
SS
6795 if (sg)
6796 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6797 return cpu;
6798}
6799#endif
6800
1da177e4 6801static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6802static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6803
41a2d6cf 6804static int
7c16ec58
MT
6805cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6806 cpumask_t *mask)
1da177e4 6807{
6711cab4 6808 int group;
48f24c4d 6809#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6810 *mask = cpu_coregroup_map(cpu);
6811 cpus_and(*mask, *mask, *cpu_map);
6812 group = first_cpu(*mask);
1e9f28fa 6813#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6814 *mask = per_cpu(cpu_sibling_map, cpu);
6815 cpus_and(*mask, *mask, *cpu_map);
6816 group = first_cpu(*mask);
1da177e4 6817#else
6711cab4 6818 group = cpu;
1da177e4 6819#endif
6711cab4
SS
6820 if (sg)
6821 *sg = &per_cpu(sched_group_phys, group);
6822 return group;
1da177e4
LT
6823}
6824
6825#ifdef CONFIG_NUMA
1da177e4 6826/*
9c1cfda2
JH
6827 * The init_sched_build_groups can't handle what we want to do with node
6828 * groups, so roll our own. Now each node has its own list of groups which
6829 * gets dynamically allocated.
1da177e4 6830 */
9c1cfda2 6831static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6832static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6833
9c1cfda2 6834static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6835static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6836
6711cab4 6837static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6838 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6839{
6711cab4
SS
6840 int group;
6841
7c16ec58
MT
6842 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6843 cpus_and(*nodemask, *nodemask, *cpu_map);
6844 group = first_cpu(*nodemask);
6711cab4
SS
6845
6846 if (sg)
6847 *sg = &per_cpu(sched_group_allnodes, group);
6848 return group;
1da177e4 6849}
6711cab4 6850
08069033
SS
6851static void init_numa_sched_groups_power(struct sched_group *group_head)
6852{
6853 struct sched_group *sg = group_head;
6854 int j;
6855
6856 if (!sg)
6857 return;
3a5c359a
AK
6858 do {
6859 for_each_cpu_mask(j, sg->cpumask) {
6860 struct sched_domain *sd;
08069033 6861
3a5c359a
AK
6862 sd = &per_cpu(phys_domains, j);
6863 if (j != first_cpu(sd->groups->cpumask)) {
6864 /*
6865 * Only add "power" once for each
6866 * physical package.
6867 */
6868 continue;
6869 }
08069033 6870
3a5c359a
AK
6871 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6872 }
6873 sg = sg->next;
6874 } while (sg != group_head);
08069033 6875}
6d6bc0ad 6876#endif /* CONFIG_NUMA */
1da177e4 6877
a616058b 6878#ifdef CONFIG_NUMA
51888ca2 6879/* Free memory allocated for various sched_group structures */
7c16ec58 6880static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6881{
a616058b 6882 int cpu, i;
51888ca2
SV
6883
6884 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6885 struct sched_group **sched_group_nodes
6886 = sched_group_nodes_bycpu[cpu];
6887
51888ca2
SV
6888 if (!sched_group_nodes)
6889 continue;
6890
6891 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6892 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6893
7c16ec58
MT
6894 *nodemask = node_to_cpumask(i);
6895 cpus_and(*nodemask, *nodemask, *cpu_map);
6896 if (cpus_empty(*nodemask))
51888ca2
SV
6897 continue;
6898
6899 if (sg == NULL)
6900 continue;
6901 sg = sg->next;
6902next_sg:
6903 oldsg = sg;
6904 sg = sg->next;
6905 kfree(oldsg);
6906 if (oldsg != sched_group_nodes[i])
6907 goto next_sg;
6908 }
6909 kfree(sched_group_nodes);
6910 sched_group_nodes_bycpu[cpu] = NULL;
6911 }
51888ca2 6912}
6d6bc0ad 6913#else /* !CONFIG_NUMA */
7c16ec58 6914static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6915{
6916}
6d6bc0ad 6917#endif /* CONFIG_NUMA */
51888ca2 6918
89c4710e
SS
6919/*
6920 * Initialize sched groups cpu_power.
6921 *
6922 * cpu_power indicates the capacity of sched group, which is used while
6923 * distributing the load between different sched groups in a sched domain.
6924 * Typically cpu_power for all the groups in a sched domain will be same unless
6925 * there are asymmetries in the topology. If there are asymmetries, group
6926 * having more cpu_power will pickup more load compared to the group having
6927 * less cpu_power.
6928 *
6929 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6930 * the maximum number of tasks a group can handle in the presence of other idle
6931 * or lightly loaded groups in the same sched domain.
6932 */
6933static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6934{
6935 struct sched_domain *child;
6936 struct sched_group *group;
6937
6938 WARN_ON(!sd || !sd->groups);
6939
6940 if (cpu != first_cpu(sd->groups->cpumask))
6941 return;
6942
6943 child = sd->child;
6944
5517d86b
ED
6945 sd->groups->__cpu_power = 0;
6946
89c4710e
SS
6947 /*
6948 * For perf policy, if the groups in child domain share resources
6949 * (for example cores sharing some portions of the cache hierarchy
6950 * or SMT), then set this domain groups cpu_power such that each group
6951 * can handle only one task, when there are other idle groups in the
6952 * same sched domain.
6953 */
6954 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6955 (child->flags &
6956 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6957 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6958 return;
6959 }
6960
89c4710e
SS
6961 /*
6962 * add cpu_power of each child group to this groups cpu_power
6963 */
6964 group = child->groups;
6965 do {
5517d86b 6966 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6967 group = group->next;
6968 } while (group != child->groups);
6969}
6970
7c16ec58
MT
6971/*
6972 * Initializers for schedule domains
6973 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6974 */
6975
6976#define SD_INIT(sd, type) sd_init_##type(sd)
6977#define SD_INIT_FUNC(type) \
6978static noinline void sd_init_##type(struct sched_domain *sd) \
6979{ \
6980 memset(sd, 0, sizeof(*sd)); \
6981 *sd = SD_##type##_INIT; \
1d3504fc 6982 sd->level = SD_LV_##type; \
7c16ec58
MT
6983}
6984
6985SD_INIT_FUNC(CPU)
6986#ifdef CONFIG_NUMA
6987 SD_INIT_FUNC(ALLNODES)
6988 SD_INIT_FUNC(NODE)
6989#endif
6990#ifdef CONFIG_SCHED_SMT
6991 SD_INIT_FUNC(SIBLING)
6992#endif
6993#ifdef CONFIG_SCHED_MC
6994 SD_INIT_FUNC(MC)
6995#endif
6996
6997/*
6998 * To minimize stack usage kmalloc room for cpumasks and share the
6999 * space as the usage in build_sched_domains() dictates. Used only
7000 * if the amount of space is significant.
7001 */
7002struct allmasks {
7003 cpumask_t tmpmask; /* make this one first */
7004 union {
7005 cpumask_t nodemask;
7006 cpumask_t this_sibling_map;
7007 cpumask_t this_core_map;
7008 };
7009 cpumask_t send_covered;
7010
7011#ifdef CONFIG_NUMA
7012 cpumask_t domainspan;
7013 cpumask_t covered;
7014 cpumask_t notcovered;
7015#endif
7016};
7017
7018#if NR_CPUS > 128
7019#define SCHED_CPUMASK_ALLOC 1
7020#define SCHED_CPUMASK_FREE(v) kfree(v)
7021#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7022#else
7023#define SCHED_CPUMASK_ALLOC 0
7024#define SCHED_CPUMASK_FREE(v)
7025#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7026#endif
7027
7028#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7029 ((unsigned long)(a) + offsetof(struct allmasks, v))
7030
1d3504fc
HS
7031static int default_relax_domain_level = -1;
7032
7033static int __init setup_relax_domain_level(char *str)
7034{
30e0e178
LZ
7035 unsigned long val;
7036
7037 val = simple_strtoul(str, NULL, 0);
7038 if (val < SD_LV_MAX)
7039 default_relax_domain_level = val;
7040
1d3504fc
HS
7041 return 1;
7042}
7043__setup("relax_domain_level=", setup_relax_domain_level);
7044
7045static void set_domain_attribute(struct sched_domain *sd,
7046 struct sched_domain_attr *attr)
7047{
7048 int request;
7049
7050 if (!attr || attr->relax_domain_level < 0) {
7051 if (default_relax_domain_level < 0)
7052 return;
7053 else
7054 request = default_relax_domain_level;
7055 } else
7056 request = attr->relax_domain_level;
7057 if (request < sd->level) {
7058 /* turn off idle balance on this domain */
7059 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7060 } else {
7061 /* turn on idle balance on this domain */
7062 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7063 }
7064}
7065
1da177e4 7066/*
1a20ff27
DG
7067 * Build sched domains for a given set of cpus and attach the sched domains
7068 * to the individual cpus
1da177e4 7069 */
1d3504fc
HS
7070static int __build_sched_domains(const cpumask_t *cpu_map,
7071 struct sched_domain_attr *attr)
1da177e4
LT
7072{
7073 int i;
57d885fe 7074 struct root_domain *rd;
7c16ec58
MT
7075 SCHED_CPUMASK_DECLARE(allmasks);
7076 cpumask_t *tmpmask;
d1b55138
JH
7077#ifdef CONFIG_NUMA
7078 struct sched_group **sched_group_nodes = NULL;
6711cab4 7079 int sd_allnodes = 0;
d1b55138
JH
7080
7081 /*
7082 * Allocate the per-node list of sched groups
7083 */
5cf9f062 7084 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 7085 GFP_KERNEL);
d1b55138
JH
7086 if (!sched_group_nodes) {
7087 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7088 return -ENOMEM;
d1b55138 7089 }
d1b55138 7090#endif
1da177e4 7091
dc938520 7092 rd = alloc_rootdomain();
57d885fe
GH
7093 if (!rd) {
7094 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7095#ifdef CONFIG_NUMA
7096 kfree(sched_group_nodes);
7097#endif
57d885fe
GH
7098 return -ENOMEM;
7099 }
7100
7c16ec58
MT
7101#if SCHED_CPUMASK_ALLOC
7102 /* get space for all scratch cpumask variables */
7103 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7104 if (!allmasks) {
7105 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7106 kfree(rd);
7107#ifdef CONFIG_NUMA
7108 kfree(sched_group_nodes);
7109#endif
7110 return -ENOMEM;
7111 }
7112#endif
7113 tmpmask = (cpumask_t *)allmasks;
7114
7115
7116#ifdef CONFIG_NUMA
7117 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7118#endif
7119
1da177e4 7120 /*
1a20ff27 7121 * Set up domains for cpus specified by the cpu_map.
1da177e4 7122 */
1a20ff27 7123 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7124 struct sched_domain *sd = NULL, *p;
7c16ec58 7125 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7126
7c16ec58
MT
7127 *nodemask = node_to_cpumask(cpu_to_node(i));
7128 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7129
7130#ifdef CONFIG_NUMA
dd41f596 7131 if (cpus_weight(*cpu_map) >
7c16ec58 7132 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7133 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7134 SD_INIT(sd, ALLNODES);
1d3504fc 7135 set_domain_attribute(sd, attr);
9c1cfda2 7136 sd->span = *cpu_map;
7c16ec58 7137 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7138 p = sd;
6711cab4 7139 sd_allnodes = 1;
9c1cfda2
JH
7140 } else
7141 p = NULL;
7142
1da177e4 7143 sd = &per_cpu(node_domains, i);
7c16ec58 7144 SD_INIT(sd, NODE);
1d3504fc 7145 set_domain_attribute(sd, attr);
4bdbaad3 7146 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7147 sd->parent = p;
1a848870
SS
7148 if (p)
7149 p->child = sd;
9c1cfda2 7150 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7151#endif
7152
7153 p = sd;
7154 sd = &per_cpu(phys_domains, i);
7c16ec58 7155 SD_INIT(sd, CPU);
1d3504fc 7156 set_domain_attribute(sd, attr);
7c16ec58 7157 sd->span = *nodemask;
1da177e4 7158 sd->parent = p;
1a848870
SS
7159 if (p)
7160 p->child = sd;
7c16ec58 7161 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7162
1e9f28fa
SS
7163#ifdef CONFIG_SCHED_MC
7164 p = sd;
7165 sd = &per_cpu(core_domains, i);
7c16ec58 7166 SD_INIT(sd, MC);
1d3504fc 7167 set_domain_attribute(sd, attr);
1e9f28fa
SS
7168 sd->span = cpu_coregroup_map(i);
7169 cpus_and(sd->span, sd->span, *cpu_map);
7170 sd->parent = p;
1a848870 7171 p->child = sd;
7c16ec58 7172 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7173#endif
7174
1da177e4
LT
7175#ifdef CONFIG_SCHED_SMT
7176 p = sd;
7177 sd = &per_cpu(cpu_domains, i);
7c16ec58 7178 SD_INIT(sd, SIBLING);
1d3504fc 7179 set_domain_attribute(sd, attr);
d5a7430d 7180 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7181 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7182 sd->parent = p;
1a848870 7183 p->child = sd;
7c16ec58 7184 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7185#endif
7186 }
7187
7188#ifdef CONFIG_SCHED_SMT
7189 /* Set up CPU (sibling) groups */
9c1cfda2 7190 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7191 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7192 SCHED_CPUMASK_VAR(send_covered, allmasks);
7193
7194 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7195 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7196 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7197 continue;
7198
dd41f596 7199 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7200 &cpu_to_cpu_group,
7201 send_covered, tmpmask);
1da177e4
LT
7202 }
7203#endif
7204
1e9f28fa
SS
7205#ifdef CONFIG_SCHED_MC
7206 /* Set up multi-core groups */
7207 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7208 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7209 SCHED_CPUMASK_VAR(send_covered, allmasks);
7210
7211 *this_core_map = cpu_coregroup_map(i);
7212 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7213 if (i != first_cpu(*this_core_map))
1e9f28fa 7214 continue;
7c16ec58 7215
dd41f596 7216 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7217 &cpu_to_core_group,
7218 send_covered, tmpmask);
1e9f28fa
SS
7219 }
7220#endif
7221
1da177e4
LT
7222 /* Set up physical groups */
7223 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7224 SCHED_CPUMASK_VAR(nodemask, allmasks);
7225 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7226
7c16ec58
MT
7227 *nodemask = node_to_cpumask(i);
7228 cpus_and(*nodemask, *nodemask, *cpu_map);
7229 if (cpus_empty(*nodemask))
1da177e4
LT
7230 continue;
7231
7c16ec58
MT
7232 init_sched_build_groups(nodemask, cpu_map,
7233 &cpu_to_phys_group,
7234 send_covered, tmpmask);
1da177e4
LT
7235 }
7236
7237#ifdef CONFIG_NUMA
7238 /* Set up node groups */
7c16ec58
MT
7239 if (sd_allnodes) {
7240 SCHED_CPUMASK_VAR(send_covered, allmasks);
7241
7242 init_sched_build_groups(cpu_map, cpu_map,
7243 &cpu_to_allnodes_group,
7244 send_covered, tmpmask);
7245 }
9c1cfda2
JH
7246
7247 for (i = 0; i < MAX_NUMNODES; i++) {
7248 /* Set up node groups */
7249 struct sched_group *sg, *prev;
7c16ec58
MT
7250 SCHED_CPUMASK_VAR(nodemask, allmasks);
7251 SCHED_CPUMASK_VAR(domainspan, allmasks);
7252 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7253 int j;
7254
7c16ec58
MT
7255 *nodemask = node_to_cpumask(i);
7256 cpus_clear(*covered);
7257
7258 cpus_and(*nodemask, *nodemask, *cpu_map);
7259 if (cpus_empty(*nodemask)) {
d1b55138 7260 sched_group_nodes[i] = NULL;
9c1cfda2 7261 continue;
d1b55138 7262 }
9c1cfda2 7263
4bdbaad3 7264 sched_domain_node_span(i, domainspan);
7c16ec58 7265 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7266
15f0b676 7267 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7268 if (!sg) {
7269 printk(KERN_WARNING "Can not alloc domain group for "
7270 "node %d\n", i);
7271 goto error;
7272 }
9c1cfda2 7273 sched_group_nodes[i] = sg;
7c16ec58 7274 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7275 struct sched_domain *sd;
9761eea8 7276
9c1cfda2
JH
7277 sd = &per_cpu(node_domains, j);
7278 sd->groups = sg;
9c1cfda2 7279 }
5517d86b 7280 sg->__cpu_power = 0;
7c16ec58 7281 sg->cpumask = *nodemask;
51888ca2 7282 sg->next = sg;
7c16ec58 7283 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7284 prev = sg;
7285
7286 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7287 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7288 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7289 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7290
7c16ec58
MT
7291 cpus_complement(*notcovered, *covered);
7292 cpus_and(*tmpmask, *notcovered, *cpu_map);
7293 cpus_and(*tmpmask, *tmpmask, *domainspan);
7294 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7295 break;
7296
7c16ec58
MT
7297 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7298 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7299 continue;
7300
15f0b676
SV
7301 sg = kmalloc_node(sizeof(struct sched_group),
7302 GFP_KERNEL, i);
9c1cfda2
JH
7303 if (!sg) {
7304 printk(KERN_WARNING
7305 "Can not alloc domain group for node %d\n", j);
51888ca2 7306 goto error;
9c1cfda2 7307 }
5517d86b 7308 sg->__cpu_power = 0;
7c16ec58 7309 sg->cpumask = *tmpmask;
51888ca2 7310 sg->next = prev->next;
7c16ec58 7311 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7312 prev->next = sg;
7313 prev = sg;
7314 }
9c1cfda2 7315 }
1da177e4
LT
7316#endif
7317
7318 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7319#ifdef CONFIG_SCHED_SMT
1a20ff27 7320 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7321 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7322
89c4710e 7323 init_sched_groups_power(i, sd);
5c45bf27 7324 }
1da177e4 7325#endif
1e9f28fa 7326#ifdef CONFIG_SCHED_MC
5c45bf27 7327 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7328 struct sched_domain *sd = &per_cpu(core_domains, i);
7329
89c4710e 7330 init_sched_groups_power(i, sd);
5c45bf27
SS
7331 }
7332#endif
1e9f28fa 7333
5c45bf27 7334 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7335 struct sched_domain *sd = &per_cpu(phys_domains, i);
7336
89c4710e 7337 init_sched_groups_power(i, sd);
1da177e4
LT
7338 }
7339
9c1cfda2 7340#ifdef CONFIG_NUMA
08069033
SS
7341 for (i = 0; i < MAX_NUMNODES; i++)
7342 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7343
6711cab4
SS
7344 if (sd_allnodes) {
7345 struct sched_group *sg;
f712c0c7 7346
7c16ec58
MT
7347 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7348 tmpmask);
f712c0c7
SS
7349 init_numa_sched_groups_power(sg);
7350 }
9c1cfda2
JH
7351#endif
7352
1da177e4 7353 /* Attach the domains */
1a20ff27 7354 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7355 struct sched_domain *sd;
7356#ifdef CONFIG_SCHED_SMT
7357 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7358#elif defined(CONFIG_SCHED_MC)
7359 sd = &per_cpu(core_domains, i);
1da177e4
LT
7360#else
7361 sd = &per_cpu(phys_domains, i);
7362#endif
57d885fe 7363 cpu_attach_domain(sd, rd, i);
1da177e4 7364 }
51888ca2 7365
7c16ec58 7366 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7367 return 0;
7368
a616058b 7369#ifdef CONFIG_NUMA
51888ca2 7370error:
7c16ec58
MT
7371 free_sched_groups(cpu_map, tmpmask);
7372 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7373 return -ENOMEM;
a616058b 7374#endif
1da177e4 7375}
029190c5 7376
1d3504fc
HS
7377static int build_sched_domains(const cpumask_t *cpu_map)
7378{
7379 return __build_sched_domains(cpu_map, NULL);
7380}
7381
029190c5
PJ
7382static cpumask_t *doms_cur; /* current sched domains */
7383static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7384static struct sched_domain_attr *dattr_cur;
7385 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7386
7387/*
7388 * Special case: If a kmalloc of a doms_cur partition (array of
7389 * cpumask_t) fails, then fallback to a single sched domain,
7390 * as determined by the single cpumask_t fallback_doms.
7391 */
7392static cpumask_t fallback_doms;
7393
22e52b07
HC
7394void __attribute__((weak)) arch_update_cpu_topology(void)
7395{
7396}
7397
5c8e1ed1
MK
7398/*
7399 * Free current domain masks.
7400 * Called after all cpus are attached to NULL domain.
7401 */
7402static void free_sched_domains(void)
7403{
7404 ndoms_cur = 0;
7405 if (doms_cur != &fallback_doms)
7406 kfree(doms_cur);
7407 doms_cur = &fallback_doms;
7408}
7409
1a20ff27 7410/*
41a2d6cf 7411 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7412 * For now this just excludes isolated cpus, but could be used to
7413 * exclude other special cases in the future.
1a20ff27 7414 */
51888ca2 7415static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7416{
7378547f
MM
7417 int err;
7418
22e52b07 7419 arch_update_cpu_topology();
029190c5
PJ
7420 ndoms_cur = 1;
7421 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7422 if (!doms_cur)
7423 doms_cur = &fallback_doms;
7424 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7425 dattr_cur = NULL;
7378547f 7426 err = build_sched_domains(doms_cur);
6382bc90 7427 register_sched_domain_sysctl();
7378547f
MM
7428
7429 return err;
1a20ff27
DG
7430}
7431
7c16ec58
MT
7432static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7433 cpumask_t *tmpmask)
1da177e4 7434{
7c16ec58 7435 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7436}
1da177e4 7437
1a20ff27
DG
7438/*
7439 * Detach sched domains from a group of cpus specified in cpu_map
7440 * These cpus will now be attached to the NULL domain
7441 */
858119e1 7442static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7443{
7c16ec58 7444 cpumask_t tmpmask;
1a20ff27
DG
7445 int i;
7446
6382bc90
MM
7447 unregister_sched_domain_sysctl();
7448
1a20ff27 7449 for_each_cpu_mask(i, *cpu_map)
57d885fe 7450 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7451 synchronize_sched();
7c16ec58 7452 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7453}
7454
1d3504fc
HS
7455/* handle null as "default" */
7456static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7457 struct sched_domain_attr *new, int idx_new)
7458{
7459 struct sched_domain_attr tmp;
7460
7461 /* fast path */
7462 if (!new && !cur)
7463 return 1;
7464
7465 tmp = SD_ATTR_INIT;
7466 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7467 new ? (new + idx_new) : &tmp,
7468 sizeof(struct sched_domain_attr));
7469}
7470
029190c5
PJ
7471/*
7472 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7473 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7474 * doms_new[] to the current sched domain partitioning, doms_cur[].
7475 * It destroys each deleted domain and builds each new domain.
7476 *
7477 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7478 * The masks don't intersect (don't overlap.) We should setup one
7479 * sched domain for each mask. CPUs not in any of the cpumasks will
7480 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7481 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7482 * it as it is.
7483 *
41a2d6cf
IM
7484 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7485 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7486 * failed the kmalloc call, then it can pass in doms_new == NULL,
7487 * and partition_sched_domains() will fallback to the single partition
7488 * 'fallback_doms'.
7489 *
7490 * Call with hotplug lock held
7491 */
1d3504fc
HS
7492void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7493 struct sched_domain_attr *dattr_new)
029190c5
PJ
7494{
7495 int i, j;
7496
712555ee 7497 mutex_lock(&sched_domains_mutex);
a1835615 7498
7378547f
MM
7499 /* always unregister in case we don't destroy any domains */
7500 unregister_sched_domain_sysctl();
7501
029190c5
PJ
7502 if (doms_new == NULL) {
7503 ndoms_new = 1;
7504 doms_new = &fallback_doms;
7505 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7506 dattr_new = NULL;
029190c5
PJ
7507 }
7508
7509 /* Destroy deleted domains */
7510 for (i = 0; i < ndoms_cur; i++) {
7511 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7512 if (cpus_equal(doms_cur[i], doms_new[j])
7513 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7514 goto match1;
7515 }
7516 /* no match - a current sched domain not in new doms_new[] */
7517 detach_destroy_domains(doms_cur + i);
7518match1:
7519 ;
7520 }
7521
7522 /* Build new domains */
7523 for (i = 0; i < ndoms_new; i++) {
7524 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7525 if (cpus_equal(doms_new[i], doms_cur[j])
7526 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7527 goto match2;
7528 }
7529 /* no match - add a new doms_new */
1d3504fc
HS
7530 __build_sched_domains(doms_new + i,
7531 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7532match2:
7533 ;
7534 }
7535
7536 /* Remember the new sched domains */
7537 if (doms_cur != &fallback_doms)
7538 kfree(doms_cur);
1d3504fc 7539 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7540 doms_cur = doms_new;
1d3504fc 7541 dattr_cur = dattr_new;
029190c5 7542 ndoms_cur = ndoms_new;
7378547f
MM
7543
7544 register_sched_domain_sysctl();
a1835615 7545
712555ee 7546 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7547}
7548
5c45bf27 7549#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7550int arch_reinit_sched_domains(void)
5c45bf27
SS
7551{
7552 int err;
7553
95402b38 7554 get_online_cpus();
712555ee 7555 mutex_lock(&sched_domains_mutex);
5c45bf27 7556 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7557 free_sched_domains();
5c45bf27 7558 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7559 mutex_unlock(&sched_domains_mutex);
95402b38 7560 put_online_cpus();
5c45bf27
SS
7561
7562 return err;
7563}
7564
7565static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7566{
7567 int ret;
7568
7569 if (buf[0] != '0' && buf[0] != '1')
7570 return -EINVAL;
7571
7572 if (smt)
7573 sched_smt_power_savings = (buf[0] == '1');
7574 else
7575 sched_mc_power_savings = (buf[0] == '1');
7576
7577 ret = arch_reinit_sched_domains();
7578
7579 return ret ? ret : count;
7580}
7581
5c45bf27
SS
7582#ifdef CONFIG_SCHED_MC
7583static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7584{
7585 return sprintf(page, "%u\n", sched_mc_power_savings);
7586}
48f24c4d
IM
7587static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7588 const char *buf, size_t count)
5c45bf27
SS
7589{
7590 return sched_power_savings_store(buf, count, 0);
7591}
6707de00
AB
7592static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7593 sched_mc_power_savings_store);
5c45bf27
SS
7594#endif
7595
7596#ifdef CONFIG_SCHED_SMT
7597static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7598{
7599 return sprintf(page, "%u\n", sched_smt_power_savings);
7600}
48f24c4d
IM
7601static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7602 const char *buf, size_t count)
5c45bf27
SS
7603{
7604 return sched_power_savings_store(buf, count, 1);
7605}
6707de00
AB
7606static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7607 sched_smt_power_savings_store);
7608#endif
7609
7610int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7611{
7612 int err = 0;
7613
7614#ifdef CONFIG_SCHED_SMT
7615 if (smt_capable())
7616 err = sysfs_create_file(&cls->kset.kobj,
7617 &attr_sched_smt_power_savings.attr);
7618#endif
7619#ifdef CONFIG_SCHED_MC
7620 if (!err && mc_capable())
7621 err = sysfs_create_file(&cls->kset.kobj,
7622 &attr_sched_mc_power_savings.attr);
7623#endif
7624 return err;
7625}
6d6bc0ad 7626#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7627
1da177e4 7628/*
41a2d6cf 7629 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7630 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7631 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7632 * which will prevent rebalancing while the sched domains are recalculated.
7633 */
7634static int update_sched_domains(struct notifier_block *nfb,
7635 unsigned long action, void *hcpu)
7636{
7def2be1
PZ
7637 int cpu = (int)(long)hcpu;
7638
1da177e4 7639 switch (action) {
1da177e4 7640 case CPU_DOWN_PREPARE:
8bb78442 7641 case CPU_DOWN_PREPARE_FROZEN:
7def2be1
PZ
7642 disable_runtime(cpu_rq(cpu));
7643 /* fall-through */
7644 case CPU_UP_PREPARE:
7645 case CPU_UP_PREPARE_FROZEN:
1a20ff27 7646 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7647 free_sched_domains();
1da177e4
LT
7648 return NOTIFY_OK;
7649
7def2be1 7650
1da177e4 7651 case CPU_DOWN_FAILED:
8bb78442 7652 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7653 case CPU_ONLINE:
8bb78442 7654 case CPU_ONLINE_FROZEN:
7def2be1
PZ
7655 enable_runtime(cpu_rq(cpu));
7656 /* fall-through */
7657 case CPU_UP_CANCELED:
7658 case CPU_UP_CANCELED_FROZEN:
1da177e4 7659 case CPU_DEAD:
8bb78442 7660 case CPU_DEAD_FROZEN:
1da177e4
LT
7661 /*
7662 * Fall through and re-initialise the domains.
7663 */
7664 break;
7665 default:
7666 return NOTIFY_DONE;
7667 }
7668
5c8e1ed1
MK
7669#ifndef CONFIG_CPUSETS
7670 /*
7671 * Create default domain partitioning if cpusets are disabled.
7672 * Otherwise we let cpusets rebuild the domains based on the
7673 * current setup.
7674 */
7675
1da177e4 7676 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7677 arch_init_sched_domains(&cpu_online_map);
5c8e1ed1 7678#endif
1da177e4
LT
7679
7680 return NOTIFY_OK;
7681}
1da177e4
LT
7682
7683void __init sched_init_smp(void)
7684{
5c1e1767
NP
7685 cpumask_t non_isolated_cpus;
7686
434d53b0
MT
7687#if defined(CONFIG_NUMA)
7688 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7689 GFP_KERNEL);
7690 BUG_ON(sched_group_nodes_bycpu == NULL);
7691#endif
95402b38 7692 get_online_cpus();
712555ee 7693 mutex_lock(&sched_domains_mutex);
1a20ff27 7694 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7695 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7696 if (cpus_empty(non_isolated_cpus))
7697 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7698 mutex_unlock(&sched_domains_mutex);
95402b38 7699 put_online_cpus();
1da177e4
LT
7700 /* XXX: Theoretical race here - CPU may be hotplugged now */
7701 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7702 init_hrtick();
5c1e1767
NP
7703
7704 /* Move init over to a non-isolated CPU */
7c16ec58 7705 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7706 BUG();
19978ca6 7707 sched_init_granularity();
1da177e4
LT
7708}
7709#else
7710void __init sched_init_smp(void)
7711{
19978ca6 7712 sched_init_granularity();
1da177e4
LT
7713}
7714#endif /* CONFIG_SMP */
7715
7716int in_sched_functions(unsigned long addr)
7717{
1da177e4
LT
7718 return in_lock_functions(addr) ||
7719 (addr >= (unsigned long)__sched_text_start
7720 && addr < (unsigned long)__sched_text_end);
7721}
7722
a9957449 7723static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7724{
7725 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7726 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7727#ifdef CONFIG_FAIR_GROUP_SCHED
7728 cfs_rq->rq = rq;
7729#endif
67e9fb2a 7730 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7731}
7732
fa85ae24
PZ
7733static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7734{
7735 struct rt_prio_array *array;
7736 int i;
7737
7738 array = &rt_rq->active;
7739 for (i = 0; i < MAX_RT_PRIO; i++) {
20b6331b 7740 INIT_LIST_HEAD(array->queue + i);
fa85ae24
PZ
7741 __clear_bit(i, array->bitmap);
7742 }
7743 /* delimiter for bitsearch: */
7744 __set_bit(MAX_RT_PRIO, array->bitmap);
7745
052f1dc7 7746#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7747 rt_rq->highest_prio = MAX_RT_PRIO;
7748#endif
fa85ae24
PZ
7749#ifdef CONFIG_SMP
7750 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7751 rt_rq->overloaded = 0;
7752#endif
7753
7754 rt_rq->rt_time = 0;
7755 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7756 rt_rq->rt_runtime = 0;
7757 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7758
052f1dc7 7759#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7760 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7761 rt_rq->rq = rq;
7762#endif
fa85ae24
PZ
7763}
7764
6f505b16 7765#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7766static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7767 struct sched_entity *se, int cpu, int add,
7768 struct sched_entity *parent)
6f505b16 7769{
ec7dc8ac 7770 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7771 tg->cfs_rq[cpu] = cfs_rq;
7772 init_cfs_rq(cfs_rq, rq);
7773 cfs_rq->tg = tg;
7774 if (add)
7775 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7776
7777 tg->se[cpu] = se;
354d60c2
DG
7778 /* se could be NULL for init_task_group */
7779 if (!se)
7780 return;
7781
ec7dc8ac
DG
7782 if (!parent)
7783 se->cfs_rq = &rq->cfs;
7784 else
7785 se->cfs_rq = parent->my_q;
7786
6f505b16
PZ
7787 se->my_q = cfs_rq;
7788 se->load.weight = tg->shares;
e05510d0 7789 se->load.inv_weight = 0;
ec7dc8ac 7790 se->parent = parent;
6f505b16 7791}
052f1dc7 7792#endif
6f505b16 7793
052f1dc7 7794#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7795static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7796 struct sched_rt_entity *rt_se, int cpu, int add,
7797 struct sched_rt_entity *parent)
6f505b16 7798{
ec7dc8ac
DG
7799 struct rq *rq = cpu_rq(cpu);
7800
6f505b16
PZ
7801 tg->rt_rq[cpu] = rt_rq;
7802 init_rt_rq(rt_rq, rq);
7803 rt_rq->tg = tg;
7804 rt_rq->rt_se = rt_se;
ac086bc2 7805 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7806 if (add)
7807 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7808
7809 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7810 if (!rt_se)
7811 return;
7812
ec7dc8ac
DG
7813 if (!parent)
7814 rt_se->rt_rq = &rq->rt;
7815 else
7816 rt_se->rt_rq = parent->my_q;
7817
6f505b16 7818 rt_se->my_q = rt_rq;
ec7dc8ac 7819 rt_se->parent = parent;
6f505b16
PZ
7820 INIT_LIST_HEAD(&rt_se->run_list);
7821}
7822#endif
7823
1da177e4
LT
7824void __init sched_init(void)
7825{
dd41f596 7826 int i, j;
434d53b0
MT
7827 unsigned long alloc_size = 0, ptr;
7828
7829#ifdef CONFIG_FAIR_GROUP_SCHED
7830 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7831#endif
7832#ifdef CONFIG_RT_GROUP_SCHED
7833 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7834#endif
7835#ifdef CONFIG_USER_SCHED
7836 alloc_size *= 2;
434d53b0
MT
7837#endif
7838 /*
7839 * As sched_init() is called before page_alloc is setup,
7840 * we use alloc_bootmem().
7841 */
7842 if (alloc_size) {
5a9d3225 7843 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7844
7845#ifdef CONFIG_FAIR_GROUP_SCHED
7846 init_task_group.se = (struct sched_entity **)ptr;
7847 ptr += nr_cpu_ids * sizeof(void **);
7848
7849 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7850 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7851
7852#ifdef CONFIG_USER_SCHED
7853 root_task_group.se = (struct sched_entity **)ptr;
7854 ptr += nr_cpu_ids * sizeof(void **);
7855
7856 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7857 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7858#endif /* CONFIG_USER_SCHED */
7859#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7860#ifdef CONFIG_RT_GROUP_SCHED
7861 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7862 ptr += nr_cpu_ids * sizeof(void **);
7863
7864 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7865 ptr += nr_cpu_ids * sizeof(void **);
7866
7867#ifdef CONFIG_USER_SCHED
7868 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7869 ptr += nr_cpu_ids * sizeof(void **);
7870
7871 root_task_group.rt_rq = (struct rt_rq **)ptr;
7872 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7873#endif /* CONFIG_USER_SCHED */
7874#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 7875 }
dd41f596 7876
57d885fe
GH
7877#ifdef CONFIG_SMP
7878 init_defrootdomain();
7879#endif
7880
d0b27fa7
PZ
7881 init_rt_bandwidth(&def_rt_bandwidth,
7882 global_rt_period(), global_rt_runtime());
7883
7884#ifdef CONFIG_RT_GROUP_SCHED
7885 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7886 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7887#ifdef CONFIG_USER_SCHED
7888 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7889 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
7890#endif /* CONFIG_USER_SCHED */
7891#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7892
052f1dc7 7893#ifdef CONFIG_GROUP_SCHED
6f505b16 7894 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7895 INIT_LIST_HEAD(&init_task_group.children);
7896
7897#ifdef CONFIG_USER_SCHED
7898 INIT_LIST_HEAD(&root_task_group.children);
7899 init_task_group.parent = &root_task_group;
7900 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
7901#endif /* CONFIG_USER_SCHED */
7902#endif /* CONFIG_GROUP_SCHED */
6f505b16 7903
0a945022 7904 for_each_possible_cpu(i) {
70b97a7f 7905 struct rq *rq;
1da177e4
LT
7906
7907 rq = cpu_rq(i);
7908 spin_lock_init(&rq->lock);
fcb99371 7909 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7910 rq->nr_running = 0;
dd41f596 7911 init_cfs_rq(&rq->cfs, rq);
6f505b16 7912 init_rt_rq(&rq->rt, rq);
dd41f596 7913#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7914 init_task_group.shares = init_task_group_load;
6f505b16 7915 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7916#ifdef CONFIG_CGROUP_SCHED
7917 /*
7918 * How much cpu bandwidth does init_task_group get?
7919 *
7920 * In case of task-groups formed thr' the cgroup filesystem, it
7921 * gets 100% of the cpu resources in the system. This overall
7922 * system cpu resource is divided among the tasks of
7923 * init_task_group and its child task-groups in a fair manner,
7924 * based on each entity's (task or task-group's) weight
7925 * (se->load.weight).
7926 *
7927 * In other words, if init_task_group has 10 tasks of weight
7928 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7929 * then A0's share of the cpu resource is:
7930 *
7931 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7932 *
7933 * We achieve this by letting init_task_group's tasks sit
7934 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7935 */
ec7dc8ac 7936 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7937#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7938 root_task_group.shares = NICE_0_LOAD;
7939 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7940 /*
7941 * In case of task-groups formed thr' the user id of tasks,
7942 * init_task_group represents tasks belonging to root user.
7943 * Hence it forms a sibling of all subsequent groups formed.
7944 * In this case, init_task_group gets only a fraction of overall
7945 * system cpu resource, based on the weight assigned to root
7946 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7947 * by letting tasks of init_task_group sit in a separate cfs_rq
7948 * (init_cfs_rq) and having one entity represent this group of
7949 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7950 */
ec7dc8ac 7951 init_tg_cfs_entry(&init_task_group,
6f505b16 7952 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
7953 &per_cpu(init_sched_entity, i), i, 1,
7954 root_task_group.se[i]);
6f505b16 7955
052f1dc7 7956#endif
354d60c2
DG
7957#endif /* CONFIG_FAIR_GROUP_SCHED */
7958
7959 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7960#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7961 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7962#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7963 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7964#elif defined CONFIG_USER_SCHED
eff766a6 7965 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 7966 init_tg_rt_entry(&init_task_group,
6f505b16 7967 &per_cpu(init_rt_rq, i),
eff766a6
PZ
7968 &per_cpu(init_sched_rt_entity, i), i, 1,
7969 root_task_group.rt_se[i]);
354d60c2 7970#endif
dd41f596 7971#endif
1da177e4 7972
dd41f596
IM
7973 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7974 rq->cpu_load[j] = 0;
1da177e4 7975#ifdef CONFIG_SMP
41c7ce9a 7976 rq->sd = NULL;
57d885fe 7977 rq->rd = NULL;
1da177e4 7978 rq->active_balance = 0;
dd41f596 7979 rq->next_balance = jiffies;
1da177e4 7980 rq->push_cpu = 0;
0a2966b4 7981 rq->cpu = i;
1f11eb6a 7982 rq->online = 0;
1da177e4
LT
7983 rq->migration_thread = NULL;
7984 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7985 rq_attach_root(rq, &def_root_domain);
1da177e4 7986#endif
8f4d37ec 7987 init_rq_hrtick(rq);
1da177e4 7988 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7989 }
7990
2dd73a4f 7991 set_load_weight(&init_task);
b50f60ce 7992
e107be36
AK
7993#ifdef CONFIG_PREEMPT_NOTIFIERS
7994 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7995#endif
7996
c9819f45
CL
7997#ifdef CONFIG_SMP
7998 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7999#endif
8000
b50f60ce
HC
8001#ifdef CONFIG_RT_MUTEXES
8002 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8003#endif
8004
1da177e4
LT
8005 /*
8006 * The boot idle thread does lazy MMU switching as well:
8007 */
8008 atomic_inc(&init_mm.mm_count);
8009 enter_lazy_tlb(&init_mm, current);
8010
8011 /*
8012 * Make us the idle thread. Technically, schedule() should not be
8013 * called from this thread, however somewhere below it might be,
8014 * but because we are the idle thread, we just pick up running again
8015 * when this runqueue becomes "idle".
8016 */
8017 init_idle(current, smp_processor_id());
dd41f596
IM
8018 /*
8019 * During early bootup we pretend to be a normal task:
8020 */
8021 current->sched_class = &fair_sched_class;
6892b75e
IM
8022
8023 scheduler_running = 1;
1da177e4
LT
8024}
8025
8026#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8027void __might_sleep(char *file, int line)
8028{
48f24c4d 8029#ifdef in_atomic
1da177e4
LT
8030 static unsigned long prev_jiffy; /* ratelimiting */
8031
8032 if ((in_atomic() || irqs_disabled()) &&
8033 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8034 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8035 return;
8036 prev_jiffy = jiffies;
91368d73 8037 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8038 " context at %s:%d\n", file, line);
8039 printk("in_atomic():%d, irqs_disabled():%d\n",
8040 in_atomic(), irqs_disabled());
a4c410f0 8041 debug_show_held_locks(current);
3117df04
IM
8042 if (irqs_disabled())
8043 print_irqtrace_events(current);
1da177e4
LT
8044 dump_stack();
8045 }
8046#endif
8047}
8048EXPORT_SYMBOL(__might_sleep);
8049#endif
8050
8051#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8052static void normalize_task(struct rq *rq, struct task_struct *p)
8053{
8054 int on_rq;
3e51f33f 8055
3a5e4dc1
AK
8056 update_rq_clock(rq);
8057 on_rq = p->se.on_rq;
8058 if (on_rq)
8059 deactivate_task(rq, p, 0);
8060 __setscheduler(rq, p, SCHED_NORMAL, 0);
8061 if (on_rq) {
8062 activate_task(rq, p, 0);
8063 resched_task(rq->curr);
8064 }
8065}
8066
1da177e4
LT
8067void normalize_rt_tasks(void)
8068{
a0f98a1c 8069 struct task_struct *g, *p;
1da177e4 8070 unsigned long flags;
70b97a7f 8071 struct rq *rq;
1da177e4 8072
4cf5d77a 8073 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8074 do_each_thread(g, p) {
178be793
IM
8075 /*
8076 * Only normalize user tasks:
8077 */
8078 if (!p->mm)
8079 continue;
8080
6cfb0d5d 8081 p->se.exec_start = 0;
6cfb0d5d 8082#ifdef CONFIG_SCHEDSTATS
dd41f596 8083 p->se.wait_start = 0;
dd41f596 8084 p->se.sleep_start = 0;
dd41f596 8085 p->se.block_start = 0;
6cfb0d5d 8086#endif
dd41f596
IM
8087
8088 if (!rt_task(p)) {
8089 /*
8090 * Renice negative nice level userspace
8091 * tasks back to 0:
8092 */
8093 if (TASK_NICE(p) < 0 && p->mm)
8094 set_user_nice(p, 0);
1da177e4 8095 continue;
dd41f596 8096 }
1da177e4 8097
4cf5d77a 8098 spin_lock(&p->pi_lock);
b29739f9 8099 rq = __task_rq_lock(p);
1da177e4 8100
178be793 8101 normalize_task(rq, p);
3a5e4dc1 8102
b29739f9 8103 __task_rq_unlock(rq);
4cf5d77a 8104 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8105 } while_each_thread(g, p);
8106
4cf5d77a 8107 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8108}
8109
8110#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8111
8112#ifdef CONFIG_IA64
8113/*
8114 * These functions are only useful for the IA64 MCA handling.
8115 *
8116 * They can only be called when the whole system has been
8117 * stopped - every CPU needs to be quiescent, and no scheduling
8118 * activity can take place. Using them for anything else would
8119 * be a serious bug, and as a result, they aren't even visible
8120 * under any other configuration.
8121 */
8122
8123/**
8124 * curr_task - return the current task for a given cpu.
8125 * @cpu: the processor in question.
8126 *
8127 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8128 */
36c8b586 8129struct task_struct *curr_task(int cpu)
1df5c10a
LT
8130{
8131 return cpu_curr(cpu);
8132}
8133
8134/**
8135 * set_curr_task - set the current task for a given cpu.
8136 * @cpu: the processor in question.
8137 * @p: the task pointer to set.
8138 *
8139 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8140 * are serviced on a separate stack. It allows the architecture to switch the
8141 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8142 * must be called with all CPU's synchronized, and interrupts disabled, the
8143 * and caller must save the original value of the current task (see
8144 * curr_task() above) and restore that value before reenabling interrupts and
8145 * re-starting the system.
8146 *
8147 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8148 */
36c8b586 8149void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8150{
8151 cpu_curr(cpu) = p;
8152}
8153
8154#endif
29f59db3 8155
bccbe08a
PZ
8156#ifdef CONFIG_FAIR_GROUP_SCHED
8157static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8158{
8159 int i;
8160
8161 for_each_possible_cpu(i) {
8162 if (tg->cfs_rq)
8163 kfree(tg->cfs_rq[i]);
8164 if (tg->se)
8165 kfree(tg->se[i]);
6f505b16
PZ
8166 }
8167
8168 kfree(tg->cfs_rq);
8169 kfree(tg->se);
6f505b16
PZ
8170}
8171
ec7dc8ac
DG
8172static
8173int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8174{
29f59db3 8175 struct cfs_rq *cfs_rq;
ec7dc8ac 8176 struct sched_entity *se, *parent_se;
9b5b7751 8177 struct rq *rq;
29f59db3
SV
8178 int i;
8179
434d53b0 8180 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8181 if (!tg->cfs_rq)
8182 goto err;
434d53b0 8183 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8184 if (!tg->se)
8185 goto err;
052f1dc7
PZ
8186
8187 tg->shares = NICE_0_LOAD;
29f59db3
SV
8188
8189 for_each_possible_cpu(i) {
9b5b7751 8190 rq = cpu_rq(i);
29f59db3 8191
6f505b16
PZ
8192 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8193 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8194 if (!cfs_rq)
8195 goto err;
8196
6f505b16
PZ
8197 se = kmalloc_node(sizeof(struct sched_entity),
8198 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8199 if (!se)
8200 goto err;
8201
ec7dc8ac
DG
8202 parent_se = parent ? parent->se[i] : NULL;
8203 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8204 }
8205
8206 return 1;
8207
8208 err:
8209 return 0;
8210}
8211
8212static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8213{
8214 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8215 &cpu_rq(cpu)->leaf_cfs_rq_list);
8216}
8217
8218static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8219{
8220 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8221}
6d6bc0ad 8222#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8223static inline void free_fair_sched_group(struct task_group *tg)
8224{
8225}
8226
ec7dc8ac
DG
8227static inline
8228int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8229{
8230 return 1;
8231}
8232
8233static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8234{
8235}
8236
8237static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8238{
8239}
6d6bc0ad 8240#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8241
8242#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8243static void free_rt_sched_group(struct task_group *tg)
8244{
8245 int i;
8246
d0b27fa7
PZ
8247 destroy_rt_bandwidth(&tg->rt_bandwidth);
8248
bccbe08a
PZ
8249 for_each_possible_cpu(i) {
8250 if (tg->rt_rq)
8251 kfree(tg->rt_rq[i]);
8252 if (tg->rt_se)
8253 kfree(tg->rt_se[i]);
8254 }
8255
8256 kfree(tg->rt_rq);
8257 kfree(tg->rt_se);
8258}
8259
ec7dc8ac
DG
8260static
8261int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8262{
8263 struct rt_rq *rt_rq;
ec7dc8ac 8264 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8265 struct rq *rq;
8266 int i;
8267
434d53b0 8268 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8269 if (!tg->rt_rq)
8270 goto err;
434d53b0 8271 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8272 if (!tg->rt_se)
8273 goto err;
8274
d0b27fa7
PZ
8275 init_rt_bandwidth(&tg->rt_bandwidth,
8276 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8277
8278 for_each_possible_cpu(i) {
8279 rq = cpu_rq(i);
8280
6f505b16
PZ
8281 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8282 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8283 if (!rt_rq)
8284 goto err;
29f59db3 8285
6f505b16
PZ
8286 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8287 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8288 if (!rt_se)
8289 goto err;
29f59db3 8290
ec7dc8ac
DG
8291 parent_se = parent ? parent->rt_se[i] : NULL;
8292 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8293 }
8294
bccbe08a
PZ
8295 return 1;
8296
8297 err:
8298 return 0;
8299}
8300
8301static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8302{
8303 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8304 &cpu_rq(cpu)->leaf_rt_rq_list);
8305}
8306
8307static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8308{
8309 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8310}
6d6bc0ad 8311#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8312static inline void free_rt_sched_group(struct task_group *tg)
8313{
8314}
8315
ec7dc8ac
DG
8316static inline
8317int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8318{
8319 return 1;
8320}
8321
8322static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8323{
8324}
8325
8326static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8327{
8328}
6d6bc0ad 8329#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8330
d0b27fa7 8331#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8332static void free_sched_group(struct task_group *tg)
8333{
8334 free_fair_sched_group(tg);
8335 free_rt_sched_group(tg);
8336 kfree(tg);
8337}
8338
8339/* allocate runqueue etc for a new task group */
ec7dc8ac 8340struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8341{
8342 struct task_group *tg;
8343 unsigned long flags;
8344 int i;
8345
8346 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8347 if (!tg)
8348 return ERR_PTR(-ENOMEM);
8349
ec7dc8ac 8350 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8351 goto err;
8352
ec7dc8ac 8353 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8354 goto err;
8355
8ed36996 8356 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8357 for_each_possible_cpu(i) {
bccbe08a
PZ
8358 register_fair_sched_group(tg, i);
8359 register_rt_sched_group(tg, i);
9b5b7751 8360 }
6f505b16 8361 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8362
8363 WARN_ON(!parent); /* root should already exist */
8364
8365 tg->parent = parent;
8366 list_add_rcu(&tg->siblings, &parent->children);
8367 INIT_LIST_HEAD(&tg->children);
8ed36996 8368 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8369
9b5b7751 8370 return tg;
29f59db3
SV
8371
8372err:
6f505b16 8373 free_sched_group(tg);
29f59db3
SV
8374 return ERR_PTR(-ENOMEM);
8375}
8376
9b5b7751 8377/* rcu callback to free various structures associated with a task group */
6f505b16 8378static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8379{
29f59db3 8380 /* now it should be safe to free those cfs_rqs */
6f505b16 8381 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8382}
8383
9b5b7751 8384/* Destroy runqueue etc associated with a task group */
4cf86d77 8385void sched_destroy_group(struct task_group *tg)
29f59db3 8386{
8ed36996 8387 unsigned long flags;
9b5b7751 8388 int i;
29f59db3 8389
8ed36996 8390 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8391 for_each_possible_cpu(i) {
bccbe08a
PZ
8392 unregister_fair_sched_group(tg, i);
8393 unregister_rt_sched_group(tg, i);
9b5b7751 8394 }
6f505b16 8395 list_del_rcu(&tg->list);
f473aa5e 8396 list_del_rcu(&tg->siblings);
8ed36996 8397 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8398
9b5b7751 8399 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8400 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8401}
8402
9b5b7751 8403/* change task's runqueue when it moves between groups.
3a252015
IM
8404 * The caller of this function should have put the task in its new group
8405 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8406 * reflect its new group.
9b5b7751
SV
8407 */
8408void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8409{
8410 int on_rq, running;
8411 unsigned long flags;
8412 struct rq *rq;
8413
8414 rq = task_rq_lock(tsk, &flags);
8415
29f59db3
SV
8416 update_rq_clock(rq);
8417
051a1d1a 8418 running = task_current(rq, tsk);
29f59db3
SV
8419 on_rq = tsk->se.on_rq;
8420
0e1f3483 8421 if (on_rq)
29f59db3 8422 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8423 if (unlikely(running))
8424 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8425
6f505b16 8426 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8427
810b3817
PZ
8428#ifdef CONFIG_FAIR_GROUP_SCHED
8429 if (tsk->sched_class->moved_group)
8430 tsk->sched_class->moved_group(tsk);
8431#endif
8432
0e1f3483
HS
8433 if (unlikely(running))
8434 tsk->sched_class->set_curr_task(rq);
8435 if (on_rq)
7074badb 8436 enqueue_task(rq, tsk, 0);
29f59db3 8437
29f59db3
SV
8438 task_rq_unlock(rq, &flags);
8439}
6d6bc0ad 8440#endif /* CONFIG_GROUP_SCHED */
29f59db3 8441
052f1dc7 8442#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8443static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8444{
8445 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8446 int on_rq;
8447
29f59db3 8448 on_rq = se->on_rq;
62fb1851 8449 if (on_rq)
29f59db3
SV
8450 dequeue_entity(cfs_rq, se, 0);
8451
8452 se->load.weight = shares;
e05510d0 8453 se->load.inv_weight = 0;
29f59db3 8454
62fb1851 8455 if (on_rq)
29f59db3 8456 enqueue_entity(cfs_rq, se, 0);
c09595f6 8457}
62fb1851 8458
c09595f6
PZ
8459static void set_se_shares(struct sched_entity *se, unsigned long shares)
8460{
8461 struct cfs_rq *cfs_rq = se->cfs_rq;
8462 struct rq *rq = cfs_rq->rq;
8463 unsigned long flags;
8464
8465 spin_lock_irqsave(&rq->lock, flags);
8466 __set_se_shares(se, shares);
8467 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8468}
8469
8ed36996
PZ
8470static DEFINE_MUTEX(shares_mutex);
8471
4cf86d77 8472int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8473{
8474 int i;
8ed36996 8475 unsigned long flags;
c61935fd 8476
ec7dc8ac
DG
8477 /*
8478 * We can't change the weight of the root cgroup.
8479 */
8480 if (!tg->se[0])
8481 return -EINVAL;
8482
18d95a28
PZ
8483 if (shares < MIN_SHARES)
8484 shares = MIN_SHARES;
cb4ad1ff
MX
8485 else if (shares > MAX_SHARES)
8486 shares = MAX_SHARES;
62fb1851 8487
8ed36996 8488 mutex_lock(&shares_mutex);
9b5b7751 8489 if (tg->shares == shares)
5cb350ba 8490 goto done;
29f59db3 8491
8ed36996 8492 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8493 for_each_possible_cpu(i)
8494 unregister_fair_sched_group(tg, i);
f473aa5e 8495 list_del_rcu(&tg->siblings);
8ed36996 8496 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8497
8498 /* wait for any ongoing reference to this group to finish */
8499 synchronize_sched();
8500
8501 /*
8502 * Now we are free to modify the group's share on each cpu
8503 * w/o tripping rebalance_share or load_balance_fair.
8504 */
9b5b7751 8505 tg->shares = shares;
c09595f6
PZ
8506 for_each_possible_cpu(i) {
8507 /*
8508 * force a rebalance
8509 */
8510 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8511 set_se_shares(tg->se[i], shares);
c09595f6 8512 }
29f59db3 8513
6b2d7700
SV
8514 /*
8515 * Enable load balance activity on this group, by inserting it back on
8516 * each cpu's rq->leaf_cfs_rq_list.
8517 */
8ed36996 8518 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8519 for_each_possible_cpu(i)
8520 register_fair_sched_group(tg, i);
f473aa5e 8521 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8522 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8523done:
8ed36996 8524 mutex_unlock(&shares_mutex);
9b5b7751 8525 return 0;
29f59db3
SV
8526}
8527
5cb350ba
DG
8528unsigned long sched_group_shares(struct task_group *tg)
8529{
8530 return tg->shares;
8531}
052f1dc7 8532#endif
5cb350ba 8533
052f1dc7 8534#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8535/*
9f0c1e56 8536 * Ensure that the real time constraints are schedulable.
6f505b16 8537 */
9f0c1e56
PZ
8538static DEFINE_MUTEX(rt_constraints_mutex);
8539
8540static unsigned long to_ratio(u64 period, u64 runtime)
8541{
8542 if (runtime == RUNTIME_INF)
8543 return 1ULL << 16;
8544
6f6d6a1a 8545 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8546}
8547
b40b2e8e
PZ
8548#ifdef CONFIG_CGROUP_SCHED
8549static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8550{
10b612f4 8551 struct task_group *tgi, *parent = tg->parent;
b40b2e8e
PZ
8552 unsigned long total = 0;
8553
8554 if (!parent) {
8555 if (global_rt_period() < period)
8556 return 0;
8557
8558 return to_ratio(period, runtime) <
8559 to_ratio(global_rt_period(), global_rt_runtime());
8560 }
8561
8562 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8563 return 0;
8564
8565 rcu_read_lock();
8566 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8567 if (tgi == tg)
8568 continue;
8569
8570 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8571 tgi->rt_bandwidth.rt_runtime);
8572 }
8573 rcu_read_unlock();
8574
10b612f4 8575 return total + to_ratio(period, runtime) <=
b40b2e8e
PZ
8576 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8577 parent->rt_bandwidth.rt_runtime);
8578}
8579#elif defined CONFIG_USER_SCHED
9f0c1e56 8580static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8581{
8582 struct task_group *tgi;
8583 unsigned long total = 0;
9f0c1e56 8584 unsigned long global_ratio =
d0b27fa7 8585 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8586
8587 rcu_read_lock();
9f0c1e56
PZ
8588 list_for_each_entry_rcu(tgi, &task_groups, list) {
8589 if (tgi == tg)
8590 continue;
6f505b16 8591
d0b27fa7
PZ
8592 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8593 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8594 }
8595 rcu_read_unlock();
6f505b16 8596
9f0c1e56 8597 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8598}
b40b2e8e 8599#endif
6f505b16 8600
521f1a24
DG
8601/* Must be called with tasklist_lock held */
8602static inline int tg_has_rt_tasks(struct task_group *tg)
8603{
8604 struct task_struct *g, *p;
8605 do_each_thread(g, p) {
8606 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8607 return 1;
8608 } while_each_thread(g, p);
8609 return 0;
8610}
8611
d0b27fa7
PZ
8612static int tg_set_bandwidth(struct task_group *tg,
8613 u64 rt_period, u64 rt_runtime)
6f505b16 8614{
ac086bc2 8615 int i, err = 0;
9f0c1e56 8616
9f0c1e56 8617 mutex_lock(&rt_constraints_mutex);
521f1a24 8618 read_lock(&tasklist_lock);
ac086bc2 8619 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8620 err = -EBUSY;
8621 goto unlock;
8622 }
9f0c1e56
PZ
8623 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8624 err = -EINVAL;
8625 goto unlock;
8626 }
ac086bc2
PZ
8627
8628 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8629 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8630 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8631
8632 for_each_possible_cpu(i) {
8633 struct rt_rq *rt_rq = tg->rt_rq[i];
8634
8635 spin_lock(&rt_rq->rt_runtime_lock);
8636 rt_rq->rt_runtime = rt_runtime;
8637 spin_unlock(&rt_rq->rt_runtime_lock);
8638 }
8639 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8640 unlock:
521f1a24 8641 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8642 mutex_unlock(&rt_constraints_mutex);
8643
8644 return err;
6f505b16
PZ
8645}
8646
d0b27fa7
PZ
8647int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8648{
8649 u64 rt_runtime, rt_period;
8650
8651 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8652 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8653 if (rt_runtime_us < 0)
8654 rt_runtime = RUNTIME_INF;
8655
8656 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8657}
8658
9f0c1e56
PZ
8659long sched_group_rt_runtime(struct task_group *tg)
8660{
8661 u64 rt_runtime_us;
8662
d0b27fa7 8663 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8664 return -1;
8665
d0b27fa7 8666 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8667 do_div(rt_runtime_us, NSEC_PER_USEC);
8668 return rt_runtime_us;
8669}
d0b27fa7
PZ
8670
8671int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8672{
8673 u64 rt_runtime, rt_period;
8674
8675 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8676 rt_runtime = tg->rt_bandwidth.rt_runtime;
8677
8678 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8679}
8680
8681long sched_group_rt_period(struct task_group *tg)
8682{
8683 u64 rt_period_us;
8684
8685 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8686 do_div(rt_period_us, NSEC_PER_USEC);
8687 return rt_period_us;
8688}
8689
8690static int sched_rt_global_constraints(void)
8691{
10b612f4
PZ
8692 struct task_group *tg = &root_task_group;
8693 u64 rt_runtime, rt_period;
d0b27fa7
PZ
8694 int ret = 0;
8695
10b612f4
PZ
8696 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8697 rt_runtime = tg->rt_bandwidth.rt_runtime;
8698
d0b27fa7 8699 mutex_lock(&rt_constraints_mutex);
10b612f4 8700 if (!__rt_schedulable(tg, rt_period, rt_runtime))
d0b27fa7
PZ
8701 ret = -EINVAL;
8702 mutex_unlock(&rt_constraints_mutex);
8703
8704 return ret;
8705}
6d6bc0ad 8706#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8707static int sched_rt_global_constraints(void)
8708{
ac086bc2
PZ
8709 unsigned long flags;
8710 int i;
8711
8712 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8713 for_each_possible_cpu(i) {
8714 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8715
8716 spin_lock(&rt_rq->rt_runtime_lock);
8717 rt_rq->rt_runtime = global_rt_runtime();
8718 spin_unlock(&rt_rq->rt_runtime_lock);
8719 }
8720 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8721
d0b27fa7
PZ
8722 return 0;
8723}
6d6bc0ad 8724#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8725
8726int sched_rt_handler(struct ctl_table *table, int write,
8727 struct file *filp, void __user *buffer, size_t *lenp,
8728 loff_t *ppos)
8729{
8730 int ret;
8731 int old_period, old_runtime;
8732 static DEFINE_MUTEX(mutex);
8733
8734 mutex_lock(&mutex);
8735 old_period = sysctl_sched_rt_period;
8736 old_runtime = sysctl_sched_rt_runtime;
8737
8738 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8739
8740 if (!ret && write) {
8741 ret = sched_rt_global_constraints();
8742 if (ret) {
8743 sysctl_sched_rt_period = old_period;
8744 sysctl_sched_rt_runtime = old_runtime;
8745 } else {
8746 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8747 def_rt_bandwidth.rt_period =
8748 ns_to_ktime(global_rt_period());
8749 }
8750 }
8751 mutex_unlock(&mutex);
8752
8753 return ret;
8754}
68318b8e 8755
052f1dc7 8756#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8757
8758/* return corresponding task_group object of a cgroup */
2b01dfe3 8759static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8760{
2b01dfe3
PM
8761 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8762 struct task_group, css);
68318b8e
SV
8763}
8764
8765static struct cgroup_subsys_state *
2b01dfe3 8766cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8767{
ec7dc8ac 8768 struct task_group *tg, *parent;
68318b8e 8769
2b01dfe3 8770 if (!cgrp->parent) {
68318b8e 8771 /* This is early initialization for the top cgroup */
2b01dfe3 8772 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8773 return &init_task_group.css;
8774 }
8775
ec7dc8ac
DG
8776 parent = cgroup_tg(cgrp->parent);
8777 tg = sched_create_group(parent);
68318b8e
SV
8778 if (IS_ERR(tg))
8779 return ERR_PTR(-ENOMEM);
8780
8781 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8782 tg->css.cgroup = cgrp;
68318b8e
SV
8783
8784 return &tg->css;
8785}
8786
41a2d6cf
IM
8787static void
8788cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8789{
2b01dfe3 8790 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8791
8792 sched_destroy_group(tg);
8793}
8794
41a2d6cf
IM
8795static int
8796cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8797 struct task_struct *tsk)
68318b8e 8798{
b68aa230
PZ
8799#ifdef CONFIG_RT_GROUP_SCHED
8800 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8801 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8802 return -EINVAL;
8803#else
68318b8e
SV
8804 /* We don't support RT-tasks being in separate groups */
8805 if (tsk->sched_class != &fair_sched_class)
8806 return -EINVAL;
b68aa230 8807#endif
68318b8e
SV
8808
8809 return 0;
8810}
8811
8812static void
2b01dfe3 8813cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8814 struct cgroup *old_cont, struct task_struct *tsk)
8815{
8816 sched_move_task(tsk);
8817}
8818
052f1dc7 8819#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8820static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8821 u64 shareval)
68318b8e 8822{
2b01dfe3 8823 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8824}
8825
f4c753b7 8826static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8827{
2b01dfe3 8828 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8829
8830 return (u64) tg->shares;
8831}
6d6bc0ad 8832#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8833
052f1dc7 8834#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8835static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8836 s64 val)
6f505b16 8837{
06ecb27c 8838 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8839}
8840
06ecb27c 8841static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8842{
06ecb27c 8843 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8844}
d0b27fa7
PZ
8845
8846static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8847 u64 rt_period_us)
8848{
8849 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8850}
8851
8852static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8853{
8854 return sched_group_rt_period(cgroup_tg(cgrp));
8855}
6d6bc0ad 8856#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8857
fe5c7cc2 8858static struct cftype cpu_files[] = {
052f1dc7 8859#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8860 {
8861 .name = "shares",
f4c753b7
PM
8862 .read_u64 = cpu_shares_read_u64,
8863 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8864 },
052f1dc7
PZ
8865#endif
8866#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8867 {
9f0c1e56 8868 .name = "rt_runtime_us",
06ecb27c
PM
8869 .read_s64 = cpu_rt_runtime_read,
8870 .write_s64 = cpu_rt_runtime_write,
6f505b16 8871 },
d0b27fa7
PZ
8872 {
8873 .name = "rt_period_us",
f4c753b7
PM
8874 .read_u64 = cpu_rt_period_read_uint,
8875 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8876 },
052f1dc7 8877#endif
68318b8e
SV
8878};
8879
8880static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8881{
fe5c7cc2 8882 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8883}
8884
8885struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8886 .name = "cpu",
8887 .create = cpu_cgroup_create,
8888 .destroy = cpu_cgroup_destroy,
8889 .can_attach = cpu_cgroup_can_attach,
8890 .attach = cpu_cgroup_attach,
8891 .populate = cpu_cgroup_populate,
8892 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8893 .early_init = 1,
8894};
8895
052f1dc7 8896#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8897
8898#ifdef CONFIG_CGROUP_CPUACCT
8899
8900/*
8901 * CPU accounting code for task groups.
8902 *
8903 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8904 * (balbir@in.ibm.com).
8905 */
8906
8907/* track cpu usage of a group of tasks */
8908struct cpuacct {
8909 struct cgroup_subsys_state css;
8910 /* cpuusage holds pointer to a u64-type object on every cpu */
8911 u64 *cpuusage;
8912};
8913
8914struct cgroup_subsys cpuacct_subsys;
8915
8916/* return cpu accounting group corresponding to this container */
32cd756a 8917static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8918{
32cd756a 8919 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8920 struct cpuacct, css);
8921}
8922
8923/* return cpu accounting group to which this task belongs */
8924static inline struct cpuacct *task_ca(struct task_struct *tsk)
8925{
8926 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8927 struct cpuacct, css);
8928}
8929
8930/* create a new cpu accounting group */
8931static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8932 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8933{
8934 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8935
8936 if (!ca)
8937 return ERR_PTR(-ENOMEM);
8938
8939 ca->cpuusage = alloc_percpu(u64);
8940 if (!ca->cpuusage) {
8941 kfree(ca);
8942 return ERR_PTR(-ENOMEM);
8943 }
8944
8945 return &ca->css;
8946}
8947
8948/* destroy an existing cpu accounting group */
41a2d6cf 8949static void
32cd756a 8950cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8951{
32cd756a 8952 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8953
8954 free_percpu(ca->cpuusage);
8955 kfree(ca);
8956}
8957
8958/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8959static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8960{
32cd756a 8961 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8962 u64 totalcpuusage = 0;
8963 int i;
8964
8965 for_each_possible_cpu(i) {
8966 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8967
8968 /*
8969 * Take rq->lock to make 64-bit addition safe on 32-bit
8970 * platforms.
8971 */
8972 spin_lock_irq(&cpu_rq(i)->lock);
8973 totalcpuusage += *cpuusage;
8974 spin_unlock_irq(&cpu_rq(i)->lock);
8975 }
8976
8977 return totalcpuusage;
8978}
8979
0297b803
DG
8980static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8981 u64 reset)
8982{
8983 struct cpuacct *ca = cgroup_ca(cgrp);
8984 int err = 0;
8985 int i;
8986
8987 if (reset) {
8988 err = -EINVAL;
8989 goto out;
8990 }
8991
8992 for_each_possible_cpu(i) {
8993 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8994
8995 spin_lock_irq(&cpu_rq(i)->lock);
8996 *cpuusage = 0;
8997 spin_unlock_irq(&cpu_rq(i)->lock);
8998 }
8999out:
9000 return err;
9001}
9002
d842de87
SV
9003static struct cftype files[] = {
9004 {
9005 .name = "usage",
f4c753b7
PM
9006 .read_u64 = cpuusage_read,
9007 .write_u64 = cpuusage_write,
d842de87
SV
9008 },
9009};
9010
32cd756a 9011static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9012{
32cd756a 9013 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9014}
9015
9016/*
9017 * charge this task's execution time to its accounting group.
9018 *
9019 * called with rq->lock held.
9020 */
9021static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9022{
9023 struct cpuacct *ca;
9024
9025 if (!cpuacct_subsys.active)
9026 return;
9027
9028 ca = task_ca(tsk);
9029 if (ca) {
9030 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9031
9032 *cpuusage += cputime;
9033 }
9034}
9035
9036struct cgroup_subsys cpuacct_subsys = {
9037 .name = "cpuacct",
9038 .create = cpuacct_create,
9039 .destroy = cpuacct_destroy,
9040 .populate = cpuacct_populate,
9041 .subsys_id = cpuacct_subsys_id,
9042};
9043#endif /* CONFIG_CGROUP_CPUACCT */