sched: remove stale comment from sched_group_set_shares()
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
f5ff8422 64#include <linux/pagemap.h>
1da177e4 65
5517d86b 66#include <asm/tlb.h>
1da177e4 67
b035b6de
AD
68/*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73unsigned long long __attribute__((weak)) sched_clock(void)
74{
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76}
77
1da177e4
LT
78/*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87/*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96/*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
a4ec24b4 99#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
1da177e4
LT
100#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
5517d86b
ED
113#ifdef CONFIG_SMP
114/*
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
117 */
118static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
119{
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
121}
122
123/*
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
126 */
127static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
128{
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
131}
132#endif
133
e05606d3
IM
134static inline int rt_policy(int policy)
135{
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
139}
140
141static inline int task_has_rt_policy(struct task_struct *p)
142{
143 return rt_policy(p->policy);
144}
145
1da177e4 146/*
6aa645ea 147 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 148 */
6aa645ea
IM
149struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
152};
153
29f59db3
SV
154#ifdef CONFIG_FAIR_GROUP_SCHED
155
29f59db3
SV
156struct cfs_rq;
157
158/* task group related information */
4cf86d77 159struct task_group {
29f59db3
SV
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
5cb350ba
DG
165 /* spinlock to serialize modification to shares */
166 spinlock_t lock;
29f59db3
SV
167};
168
169/* Default task group's sched entity on each cpu */
170static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
171/* Default task group's cfs_rq on each cpu */
172static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
173
9b5b7751
SV
174static struct sched_entity *init_sched_entity_p[NR_CPUS];
175static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3
SV
176
177/* Default task group.
3a252015 178 * Every task in system belong to this group at bootup.
29f59db3 179 */
4cf86d77 180struct task_group init_task_group = {
3a252015
IM
181 .se = init_sched_entity_p,
182 .cfs_rq = init_cfs_rq_p,
183};
9b5b7751 184
24e377a8 185#ifdef CONFIG_FAIR_USER_SCHED
3a252015 186# define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
24e377a8 187#else
3a252015 188# define INIT_TASK_GRP_LOAD NICE_0_LOAD
24e377a8
SV
189#endif
190
4cf86d77 191static int init_task_group_load = INIT_TASK_GRP_LOAD;
29f59db3
SV
192
193/* return group to which a task belongs */
4cf86d77 194static inline struct task_group *task_group(struct task_struct *p)
29f59db3 195{
4cf86d77 196 struct task_group *tg;
9b5b7751 197
24e377a8
SV
198#ifdef CONFIG_FAIR_USER_SCHED
199 tg = p->user->tg;
200#else
4cf86d77 201 tg = &init_task_group;
24e377a8 202#endif
9b5b7751
SV
203
204 return tg;
29f59db3
SV
205}
206
207/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
208static inline void set_task_cfs_rq(struct task_struct *p)
209{
4cf86d77
IM
210 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
211 p->se.parent = task_group(p)->se[task_cpu(p)];
29f59db3
SV
212}
213
214#else
215
216static inline void set_task_cfs_rq(struct task_struct *p) { }
217
218#endif /* CONFIG_FAIR_GROUP_SCHED */
219
6aa645ea
IM
220/* CFS-related fields in a runqueue */
221struct cfs_rq {
222 struct load_weight load;
223 unsigned long nr_running;
224
6aa645ea 225 u64 exec_clock;
e9acbff6 226 u64 min_vruntime;
6aa645ea
IM
227
228 struct rb_root tasks_timeline;
229 struct rb_node *rb_leftmost;
230 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
231 /* 'curr' points to currently running entity on this cfs_rq.
232 * It is set to NULL otherwise (i.e when none are currently running).
233 */
234 struct sched_entity *curr;
ddc97297
PZ
235
236 unsigned long nr_spread_over;
237
62160e3f 238#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
239 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
240
241 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
242 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
243 * (like users, containers etc.)
244 *
245 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
246 * list is used during load balance.
247 */
248 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
4cf86d77 249 struct task_group *tg; /* group that "owns" this runqueue */
9b5b7751 250 struct rcu_head rcu;
6aa645ea
IM
251#endif
252};
1da177e4 253
6aa645ea
IM
254/* Real-Time classes' related field in a runqueue: */
255struct rt_rq {
256 struct rt_prio_array active;
257 int rt_load_balance_idx;
258 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
259};
260
1da177e4
LT
261/*
262 * This is the main, per-CPU runqueue data structure.
263 *
264 * Locking rule: those places that want to lock multiple runqueues
265 * (such as the load balancing or the thread migration code), lock
266 * acquire operations must be ordered by ascending &runqueue.
267 */
70b97a7f 268struct rq {
6aa645ea 269 spinlock_t lock; /* runqueue lock */
1da177e4
LT
270
271 /*
272 * nr_running and cpu_load should be in the same cacheline because
273 * remote CPUs use both these fields when doing load calculation.
274 */
275 unsigned long nr_running;
6aa645ea
IM
276 #define CPU_LOAD_IDX_MAX 5
277 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 278 unsigned char idle_at_tick;
46cb4b7c
SS
279#ifdef CONFIG_NO_HZ
280 unsigned char in_nohz_recently;
281#endif
495eca49 282 struct load_weight load; /* capture load from *all* tasks on this cpu */
6aa645ea
IM
283 unsigned long nr_load_updates;
284 u64 nr_switches;
285
286 struct cfs_rq cfs;
287#ifdef CONFIG_FAIR_GROUP_SCHED
288 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 289#endif
6aa645ea 290 struct rt_rq rt;
1da177e4
LT
291
292 /*
293 * This is part of a global counter where only the total sum
294 * over all CPUs matters. A task can increase this counter on
295 * one CPU and if it got migrated afterwards it may decrease
296 * it on another CPU. Always updated under the runqueue lock:
297 */
298 unsigned long nr_uninterruptible;
299
36c8b586 300 struct task_struct *curr, *idle;
c9819f45 301 unsigned long next_balance;
1da177e4 302 struct mm_struct *prev_mm;
6aa645ea 303
6aa645ea
IM
304 u64 clock, prev_clock_raw;
305 s64 clock_max_delta;
306
307 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
308 u64 idle_clock;
309 unsigned int clock_deep_idle_events;
529c7726 310 u64 tick_timestamp;
6aa645ea 311
1da177e4
LT
312 atomic_t nr_iowait;
313
314#ifdef CONFIG_SMP
315 struct sched_domain *sd;
316
317 /* For active balancing */
318 int active_balance;
319 int push_cpu;
0a2966b4 320 int cpu; /* cpu of this runqueue */
1da177e4 321
36c8b586 322 struct task_struct *migration_thread;
1da177e4
LT
323 struct list_head migration_queue;
324#endif
325
326#ifdef CONFIG_SCHEDSTATS
327 /* latency stats */
328 struct sched_info rq_sched_info;
329
330 /* sys_sched_yield() stats */
331 unsigned long yld_exp_empty;
332 unsigned long yld_act_empty;
333 unsigned long yld_both_empty;
2d72376b 334 unsigned long yld_count;
1da177e4
LT
335
336 /* schedule() stats */
337 unsigned long sched_switch;
2d72376b 338 unsigned long sched_count;
1da177e4
LT
339 unsigned long sched_goidle;
340
341 /* try_to_wake_up() stats */
2d72376b 342 unsigned long ttwu_count;
1da177e4 343 unsigned long ttwu_local;
b8efb561
IM
344
345 /* BKL stats */
2d72376b 346 unsigned long bkl_count;
1da177e4 347#endif
fcb99371 348 struct lock_class_key rq_lock_key;
1da177e4
LT
349};
350
f34e3b61 351static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 352static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 353
dd41f596
IM
354static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
355{
356 rq->curr->sched_class->check_preempt_curr(rq, p);
357}
358
0a2966b4
CL
359static inline int cpu_of(struct rq *rq)
360{
361#ifdef CONFIG_SMP
362 return rq->cpu;
363#else
364 return 0;
365#endif
366}
367
d5036e89
IM
368static inline int is_migration_thread(struct task_struct *p, struct rq *rq)
369{
370#ifdef CONFIG_SMP
371 return p == rq->migration_thread;
372#else
373 return 0;
374#endif
375}
376
20d315d4 377/*
b04a0f4c
IM
378 * Update the per-runqueue clock, as finegrained as the platform can give
379 * us, but without assuming monotonicity, etc.:
20d315d4 380 */
b04a0f4c 381static void __update_rq_clock(struct rq *rq)
20d315d4
IM
382{
383 u64 prev_raw = rq->prev_clock_raw;
384 u64 now = sched_clock();
385 s64 delta = now - prev_raw;
386 u64 clock = rq->clock;
387
b04a0f4c
IM
388#ifdef CONFIG_SCHED_DEBUG
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390#endif
20d315d4
IM
391 /*
392 * Protect against sched_clock() occasionally going backwards:
393 */
394 if (unlikely(delta < 0)) {
395 clock++;
396 rq->clock_warps++;
397 } else {
398 /*
399 * Catch too large forward jumps too:
400 */
529c7726
IM
401 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
402 if (clock < rq->tick_timestamp + TICK_NSEC)
403 clock = rq->tick_timestamp + TICK_NSEC;
404 else
405 clock++;
20d315d4
IM
406 rq->clock_overflows++;
407 } else {
408 if (unlikely(delta > rq->clock_max_delta))
409 rq->clock_max_delta = delta;
410 clock += delta;
411 }
412 }
413
414 rq->prev_clock_raw = now;
415 rq->clock = clock;
b04a0f4c 416}
20d315d4 417
b04a0f4c
IM
418static void update_rq_clock(struct rq *rq)
419{
420 if (likely(smp_processor_id() == cpu_of(rq)))
421 __update_rq_clock(rq);
20d315d4
IM
422}
423
674311d5
NP
424/*
425 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 426 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
427 *
428 * The domain tree of any CPU may only be accessed from within
429 * preempt-disabled sections.
430 */
48f24c4d
IM
431#define for_each_domain(cpu, __sd) \
432 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
433
434#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
435#define this_rq() (&__get_cpu_var(runqueues))
436#define task_rq(p) cpu_rq(task_cpu(p))
437#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
438
bf5c91ba
IM
439/*
440 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
441 */
442#ifdef CONFIG_SCHED_DEBUG
443# define const_debug __read_mostly
444#else
445# define const_debug static const
446#endif
447
448/*
449 * Debugging: various feature bits
450 */
451enum {
bbdba7c0
IM
452 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
453 SCHED_FEAT_START_DEBIT = 2,
06877c33 454 SCHED_FEAT_TREE_AVG = 4,
bbdba7c0 455 SCHED_FEAT_APPROX_AVG = 8,
ce6c1311 456 SCHED_FEAT_WAKEUP_PREEMPT = 16,
95938a35 457 SCHED_FEAT_PREEMPT_RESTRICT = 32,
bf5c91ba
IM
458};
459
460const_debug unsigned int sysctl_sched_features =
bf5c91ba 461 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
94dfb5e7 462 SCHED_FEAT_START_DEBIT *1 |
06877c33 463 SCHED_FEAT_TREE_AVG *0 |
ce6c1311 464 SCHED_FEAT_APPROX_AVG *0 |
95938a35
MG
465 SCHED_FEAT_WAKEUP_PREEMPT *1 |
466 SCHED_FEAT_PREEMPT_RESTRICT *1;
bf5c91ba
IM
467
468#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
469
e436d800
IM
470/*
471 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
472 * clock constructed from sched_clock():
473 */
474unsigned long long cpu_clock(int cpu)
475{
e436d800
IM
476 unsigned long long now;
477 unsigned long flags;
b04a0f4c 478 struct rq *rq;
e436d800 479
2cd4d0ea 480 local_irq_save(flags);
b04a0f4c
IM
481 rq = cpu_rq(cpu);
482 update_rq_clock(rq);
483 now = rq->clock;
2cd4d0ea 484 local_irq_restore(flags);
e436d800
IM
485
486 return now;
487}
a58f6f25 488EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 489
1da177e4 490#ifndef prepare_arch_switch
4866cde0
NP
491# define prepare_arch_switch(next) do { } while (0)
492#endif
493#ifndef finish_arch_switch
494# define finish_arch_switch(prev) do { } while (0)
495#endif
496
497#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 498static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
499{
500 return rq->curr == p;
501}
502
70b97a7f 503static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
504{
505}
506
70b97a7f 507static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 508{
da04c035
IM
509#ifdef CONFIG_DEBUG_SPINLOCK
510 /* this is a valid case when another task releases the spinlock */
511 rq->lock.owner = current;
512#endif
8a25d5de
IM
513 /*
514 * If we are tracking spinlock dependencies then we have to
515 * fix up the runqueue lock - which gets 'carried over' from
516 * prev into current:
517 */
518 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
519
4866cde0
NP
520 spin_unlock_irq(&rq->lock);
521}
522
523#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 524static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
525{
526#ifdef CONFIG_SMP
527 return p->oncpu;
528#else
529 return rq->curr == p;
530#endif
531}
532
70b97a7f 533static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
534{
535#ifdef CONFIG_SMP
536 /*
537 * We can optimise this out completely for !SMP, because the
538 * SMP rebalancing from interrupt is the only thing that cares
539 * here.
540 */
541 next->oncpu = 1;
542#endif
543#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
544 spin_unlock_irq(&rq->lock);
545#else
546 spin_unlock(&rq->lock);
547#endif
548}
549
70b97a7f 550static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
551{
552#ifdef CONFIG_SMP
553 /*
554 * After ->oncpu is cleared, the task can be moved to a different CPU.
555 * We must ensure this doesn't happen until the switch is completely
556 * finished.
557 */
558 smp_wmb();
559 prev->oncpu = 0;
560#endif
561#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
562 local_irq_enable();
1da177e4 563#endif
4866cde0
NP
564}
565#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 566
b29739f9
IM
567/*
568 * __task_rq_lock - lock the runqueue a given task resides on.
569 * Must be called interrupts disabled.
570 */
70b97a7f 571static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
572 __acquires(rq->lock)
573{
3a5c359a
AK
574 for (;;) {
575 struct rq *rq = task_rq(p);
576 spin_lock(&rq->lock);
577 if (likely(rq == task_rq(p)))
578 return rq;
b29739f9 579 spin_unlock(&rq->lock);
b29739f9 580 }
b29739f9
IM
581}
582
1da177e4
LT
583/*
584 * task_rq_lock - lock the runqueue a given task resides on and disable
585 * interrupts. Note the ordering: we can safely lookup the task_rq without
586 * explicitly disabling preemption.
587 */
70b97a7f 588static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
589 __acquires(rq->lock)
590{
70b97a7f 591 struct rq *rq;
1da177e4 592
3a5c359a
AK
593 for (;;) {
594 local_irq_save(*flags);
595 rq = task_rq(p);
596 spin_lock(&rq->lock);
597 if (likely(rq == task_rq(p)))
598 return rq;
1da177e4 599 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 600 }
1da177e4
LT
601}
602
a9957449 603static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
604 __releases(rq->lock)
605{
606 spin_unlock(&rq->lock);
607}
608
70b97a7f 609static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
610 __releases(rq->lock)
611{
612 spin_unlock_irqrestore(&rq->lock, *flags);
613}
614
1da177e4 615/*
cc2a73b5 616 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 617 */
a9957449 618static struct rq *this_rq_lock(void)
1da177e4
LT
619 __acquires(rq->lock)
620{
70b97a7f 621 struct rq *rq;
1da177e4
LT
622
623 local_irq_disable();
624 rq = this_rq();
625 spin_lock(&rq->lock);
626
627 return rq;
628}
629
1b9f19c2 630/*
2aa44d05 631 * We are going deep-idle (irqs are disabled):
1b9f19c2 632 */
2aa44d05 633void sched_clock_idle_sleep_event(void)
1b9f19c2 634{
2aa44d05
IM
635 struct rq *rq = cpu_rq(smp_processor_id());
636
637 spin_lock(&rq->lock);
638 __update_rq_clock(rq);
639 spin_unlock(&rq->lock);
640 rq->clock_deep_idle_events++;
641}
642EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
643
644/*
645 * We just idled delta nanoseconds (called with irqs disabled):
646 */
647void sched_clock_idle_wakeup_event(u64 delta_ns)
648{
649 struct rq *rq = cpu_rq(smp_processor_id());
650 u64 now = sched_clock();
1b9f19c2 651
2aa44d05
IM
652 rq->idle_clock += delta_ns;
653 /*
654 * Override the previous timestamp and ignore all
655 * sched_clock() deltas that occured while we idled,
656 * and use the PM-provided delta_ns to advance the
657 * rq clock:
658 */
659 spin_lock(&rq->lock);
660 rq->prev_clock_raw = now;
661 rq->clock += delta_ns;
662 spin_unlock(&rq->lock);
1b9f19c2 663}
2aa44d05 664EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 665
c24d20db
IM
666/*
667 * resched_task - mark a task 'to be rescheduled now'.
668 *
669 * On UP this means the setting of the need_resched flag, on SMP it
670 * might also involve a cross-CPU call to trigger the scheduler on
671 * the target CPU.
672 */
673#ifdef CONFIG_SMP
674
675#ifndef tsk_is_polling
676#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
677#endif
678
679static void resched_task(struct task_struct *p)
680{
681 int cpu;
682
683 assert_spin_locked(&task_rq(p)->lock);
684
685 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
686 return;
687
688 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
689
690 cpu = task_cpu(p);
691 if (cpu == smp_processor_id())
692 return;
693
694 /* NEED_RESCHED must be visible before we test polling */
695 smp_mb();
696 if (!tsk_is_polling(p))
697 smp_send_reschedule(cpu);
698}
699
700static void resched_cpu(int cpu)
701{
702 struct rq *rq = cpu_rq(cpu);
703 unsigned long flags;
704
705 if (!spin_trylock_irqsave(&rq->lock, flags))
706 return;
707 resched_task(cpu_curr(cpu));
708 spin_unlock_irqrestore(&rq->lock, flags);
709}
710#else
711static inline void resched_task(struct task_struct *p)
712{
713 assert_spin_locked(&task_rq(p)->lock);
714 set_tsk_need_resched(p);
715}
716#endif
717
45bf76df
IM
718#if BITS_PER_LONG == 32
719# define WMULT_CONST (~0UL)
720#else
721# define WMULT_CONST (1UL << 32)
722#endif
723
724#define WMULT_SHIFT 32
725
194081eb
IM
726/*
727 * Shift right and round:
728 */
cf2ab469 729#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 730
cb1c4fc9 731static unsigned long
45bf76df
IM
732calc_delta_mine(unsigned long delta_exec, unsigned long weight,
733 struct load_weight *lw)
734{
735 u64 tmp;
736
737 if (unlikely(!lw->inv_weight))
194081eb 738 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
739
740 tmp = (u64)delta_exec * weight;
741 /*
742 * Check whether we'd overflow the 64-bit multiplication:
743 */
194081eb 744 if (unlikely(tmp > WMULT_CONST))
cf2ab469 745 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
746 WMULT_SHIFT/2);
747 else
cf2ab469 748 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 749
ecf691da 750 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
751}
752
753static inline unsigned long
754calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
755{
756 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
757}
758
1091985b 759static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
760{
761 lw->weight += inc;
45bf76df
IM
762}
763
1091985b 764static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
765{
766 lw->weight -= dec;
45bf76df
IM
767}
768
2dd73a4f
PW
769/*
770 * To aid in avoiding the subversion of "niceness" due to uneven distribution
771 * of tasks with abnormal "nice" values across CPUs the contribution that
772 * each task makes to its run queue's load is weighted according to its
773 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
774 * scaled version of the new time slice allocation that they receive on time
775 * slice expiry etc.
776 */
777
dd41f596
IM
778#define WEIGHT_IDLEPRIO 2
779#define WMULT_IDLEPRIO (1 << 31)
780
781/*
782 * Nice levels are multiplicative, with a gentle 10% change for every
783 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
784 * nice 1, it will get ~10% less CPU time than another CPU-bound task
785 * that remained on nice 0.
786 *
787 * The "10% effect" is relative and cumulative: from _any_ nice level,
788 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
789 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
790 * If a task goes up by ~10% and another task goes down by ~10% then
791 * the relative distance between them is ~25%.)
dd41f596
IM
792 */
793static const int prio_to_weight[40] = {
254753dc
IM
794 /* -20 */ 88761, 71755, 56483, 46273, 36291,
795 /* -15 */ 29154, 23254, 18705, 14949, 11916,
796 /* -10 */ 9548, 7620, 6100, 4904, 3906,
797 /* -5 */ 3121, 2501, 1991, 1586, 1277,
798 /* 0 */ 1024, 820, 655, 526, 423,
799 /* 5 */ 335, 272, 215, 172, 137,
800 /* 10 */ 110, 87, 70, 56, 45,
801 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
802};
803
5714d2de
IM
804/*
805 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
806 *
807 * In cases where the weight does not change often, we can use the
808 * precalculated inverse to speed up arithmetics by turning divisions
809 * into multiplications:
810 */
dd41f596 811static const u32 prio_to_wmult[40] = {
254753dc
IM
812 /* -20 */ 48388, 59856, 76040, 92818, 118348,
813 /* -15 */ 147320, 184698, 229616, 287308, 360437,
814 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
815 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
816 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
817 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
818 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
819 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 820};
2dd73a4f 821
dd41f596
IM
822static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
823
824/*
825 * runqueue iterator, to support SMP load-balancing between different
826 * scheduling classes, without having to expose their internal data
827 * structures to the load-balancing proper:
828 */
829struct rq_iterator {
830 void *arg;
831 struct task_struct *(*start)(void *);
832 struct task_struct *(*next)(void *);
833};
834
835static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
836 unsigned long max_nr_move, unsigned long max_load_move,
837 struct sched_domain *sd, enum cpu_idle_type idle,
838 int *all_pinned, unsigned long *load_moved,
a4ac01c3 839 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
840
841#include "sched_stats.h"
dd41f596 842#include "sched_idletask.c"
5522d5d5
IM
843#include "sched_fair.c"
844#include "sched_rt.c"
dd41f596
IM
845#ifdef CONFIG_SCHED_DEBUG
846# include "sched_debug.c"
847#endif
848
849#define sched_class_highest (&rt_sched_class)
850
9c217245
IM
851/*
852 * Update delta_exec, delta_fair fields for rq.
853 *
854 * delta_fair clock advances at a rate inversely proportional to
495eca49 855 * total load (rq->load.weight) on the runqueue, while
9c217245
IM
856 * delta_exec advances at the same rate as wall-clock (provided
857 * cpu is not idle).
858 *
859 * delta_exec / delta_fair is a measure of the (smoothened) load on this
860 * runqueue over any given interval. This (smoothened) load is used
861 * during load balance.
862 *
495eca49 863 * This function is called /before/ updating rq->load
9c217245
IM
864 * and when switching tasks.
865 */
29b4b623 866static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 867{
495eca49 868 update_load_add(&rq->load, p->se.load.weight);
9c217245
IM
869}
870
79b5dddf 871static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 872{
495eca49 873 update_load_sub(&rq->load, p->se.load.weight);
9c217245
IM
874}
875
e5fa2237 876static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
877{
878 rq->nr_running++;
29b4b623 879 inc_load(rq, p);
9c217245
IM
880}
881
db53181e 882static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
883{
884 rq->nr_running--;
79b5dddf 885 dec_load(rq, p);
9c217245
IM
886}
887
45bf76df
IM
888static void set_load_weight(struct task_struct *p)
889{
890 if (task_has_rt_policy(p)) {
dd41f596
IM
891 p->se.load.weight = prio_to_weight[0] * 2;
892 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
893 return;
894 }
45bf76df 895
dd41f596
IM
896 /*
897 * SCHED_IDLE tasks get minimal weight:
898 */
899 if (p->policy == SCHED_IDLE) {
900 p->se.load.weight = WEIGHT_IDLEPRIO;
901 p->se.load.inv_weight = WMULT_IDLEPRIO;
902 return;
903 }
71f8bd46 904
dd41f596
IM
905 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
906 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
907}
908
8159f87e 909static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 910{
dd41f596 911 sched_info_queued(p);
fd390f6a 912 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 913 p->se.on_rq = 1;
71f8bd46
IM
914}
915
69be72c1 916static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 917{
f02231e5 918 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 919 p->se.on_rq = 0;
71f8bd46
IM
920}
921
14531189 922/*
dd41f596 923 * __normal_prio - return the priority that is based on the static prio
14531189 924 */
14531189
IM
925static inline int __normal_prio(struct task_struct *p)
926{
dd41f596 927 return p->static_prio;
14531189
IM
928}
929
b29739f9
IM
930/*
931 * Calculate the expected normal priority: i.e. priority
932 * without taking RT-inheritance into account. Might be
933 * boosted by interactivity modifiers. Changes upon fork,
934 * setprio syscalls, and whenever the interactivity
935 * estimator recalculates.
936 */
36c8b586 937static inline int normal_prio(struct task_struct *p)
b29739f9
IM
938{
939 int prio;
940
e05606d3 941 if (task_has_rt_policy(p))
b29739f9
IM
942 prio = MAX_RT_PRIO-1 - p->rt_priority;
943 else
944 prio = __normal_prio(p);
945 return prio;
946}
947
948/*
949 * Calculate the current priority, i.e. the priority
950 * taken into account by the scheduler. This value might
951 * be boosted by RT tasks, or might be boosted by
952 * interactivity modifiers. Will be RT if the task got
953 * RT-boosted. If not then it returns p->normal_prio.
954 */
36c8b586 955static int effective_prio(struct task_struct *p)
b29739f9
IM
956{
957 p->normal_prio = normal_prio(p);
958 /*
959 * If we are RT tasks or we were boosted to RT priority,
960 * keep the priority unchanged. Otherwise, update priority
961 * to the normal priority:
962 */
963 if (!rt_prio(p->prio))
964 return p->normal_prio;
965 return p->prio;
966}
967
1da177e4 968/*
dd41f596 969 * activate_task - move a task to the runqueue.
1da177e4 970 */
dd41f596 971static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 972{
dd41f596
IM
973 if (p->state == TASK_UNINTERRUPTIBLE)
974 rq->nr_uninterruptible--;
1da177e4 975
8159f87e 976 enqueue_task(rq, p, wakeup);
e5fa2237 977 inc_nr_running(p, rq);
1da177e4
LT
978}
979
1da177e4
LT
980/*
981 * deactivate_task - remove a task from the runqueue.
982 */
2e1cb74a 983static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 984{
dd41f596
IM
985 if (p->state == TASK_UNINTERRUPTIBLE)
986 rq->nr_uninterruptible++;
987
69be72c1 988 dequeue_task(rq, p, sleep);
db53181e 989 dec_nr_running(p, rq);
1da177e4
LT
990}
991
1da177e4
LT
992/**
993 * task_curr - is this task currently executing on a CPU?
994 * @p: the task in question.
995 */
36c8b586 996inline int task_curr(const struct task_struct *p)
1da177e4
LT
997{
998 return cpu_curr(task_cpu(p)) == p;
999}
1000
2dd73a4f
PW
1001/* Used instead of source_load when we know the type == 0 */
1002unsigned long weighted_cpuload(const int cpu)
1003{
495eca49 1004 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1005}
1006
1007static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1008{
1009#ifdef CONFIG_SMP
1010 task_thread_info(p)->cpu = cpu;
dd41f596 1011#endif
29f59db3 1012 set_task_cfs_rq(p);
2dd73a4f
PW
1013}
1014
1da177e4 1015#ifdef CONFIG_SMP
c65cc870 1016
dd41f596 1017void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1018{
dd41f596
IM
1019 int old_cpu = task_cpu(p);
1020 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1021 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1022 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1023 u64 clock_offset;
dd41f596
IM
1024
1025 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1026
1027#ifdef CONFIG_SCHEDSTATS
1028 if (p->se.wait_start)
1029 p->se.wait_start -= clock_offset;
dd41f596
IM
1030 if (p->se.sleep_start)
1031 p->se.sleep_start -= clock_offset;
1032 if (p->se.block_start)
1033 p->se.block_start -= clock_offset;
6cfb0d5d 1034#endif
2830cf8c
SV
1035 p->se.vruntime -= old_cfsrq->min_vruntime -
1036 new_cfsrq->min_vruntime;
dd41f596
IM
1037
1038 __set_task_cpu(p, new_cpu);
c65cc870
IM
1039}
1040
70b97a7f 1041struct migration_req {
1da177e4 1042 struct list_head list;
1da177e4 1043
36c8b586 1044 struct task_struct *task;
1da177e4
LT
1045 int dest_cpu;
1046
1da177e4 1047 struct completion done;
70b97a7f 1048};
1da177e4
LT
1049
1050/*
1051 * The task's runqueue lock must be held.
1052 * Returns true if you have to wait for migration thread.
1053 */
36c8b586 1054static int
70b97a7f 1055migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1056{
70b97a7f 1057 struct rq *rq = task_rq(p);
1da177e4
LT
1058
1059 /*
1060 * If the task is not on a runqueue (and not running), then
1061 * it is sufficient to simply update the task's cpu field.
1062 */
dd41f596 1063 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1064 set_task_cpu(p, dest_cpu);
1065 return 0;
1066 }
1067
1068 init_completion(&req->done);
1da177e4
LT
1069 req->task = p;
1070 req->dest_cpu = dest_cpu;
1071 list_add(&req->list, &rq->migration_queue);
48f24c4d 1072
1da177e4
LT
1073 return 1;
1074}
1075
1076/*
1077 * wait_task_inactive - wait for a thread to unschedule.
1078 *
1079 * The caller must ensure that the task *will* unschedule sometime soon,
1080 * else this function might spin for a *long* time. This function can't
1081 * be called with interrupts off, or it may introduce deadlock with
1082 * smp_call_function() if an IPI is sent by the same process we are
1083 * waiting to become inactive.
1084 */
36c8b586 1085void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1086{
1087 unsigned long flags;
dd41f596 1088 int running, on_rq;
70b97a7f 1089 struct rq *rq;
1da177e4 1090
3a5c359a
AK
1091 for (;;) {
1092 /*
1093 * We do the initial early heuristics without holding
1094 * any task-queue locks at all. We'll only try to get
1095 * the runqueue lock when things look like they will
1096 * work out!
1097 */
1098 rq = task_rq(p);
fa490cfd 1099
3a5c359a
AK
1100 /*
1101 * If the task is actively running on another CPU
1102 * still, just relax and busy-wait without holding
1103 * any locks.
1104 *
1105 * NOTE! Since we don't hold any locks, it's not
1106 * even sure that "rq" stays as the right runqueue!
1107 * But we don't care, since "task_running()" will
1108 * return false if the runqueue has changed and p
1109 * is actually now running somewhere else!
1110 */
1111 while (task_running(rq, p))
1112 cpu_relax();
fa490cfd 1113
3a5c359a
AK
1114 /*
1115 * Ok, time to look more closely! We need the rq
1116 * lock now, to be *sure*. If we're wrong, we'll
1117 * just go back and repeat.
1118 */
1119 rq = task_rq_lock(p, &flags);
1120 running = task_running(rq, p);
1121 on_rq = p->se.on_rq;
1122 task_rq_unlock(rq, &flags);
fa490cfd 1123
3a5c359a
AK
1124 /*
1125 * Was it really running after all now that we
1126 * checked with the proper locks actually held?
1127 *
1128 * Oops. Go back and try again..
1129 */
1130 if (unlikely(running)) {
1131 cpu_relax();
1132 continue;
1133 }
fa490cfd 1134
3a5c359a
AK
1135 /*
1136 * It's not enough that it's not actively running,
1137 * it must be off the runqueue _entirely_, and not
1138 * preempted!
1139 *
1140 * So if it wa still runnable (but just not actively
1141 * running right now), it's preempted, and we should
1142 * yield - it could be a while.
1143 */
1144 if (unlikely(on_rq)) {
1145 schedule_timeout_uninterruptible(1);
1146 continue;
1147 }
fa490cfd 1148
3a5c359a
AK
1149 /*
1150 * Ahh, all good. It wasn't running, and it wasn't
1151 * runnable, which means that it will never become
1152 * running in the future either. We're all done!
1153 */
1154 break;
1155 }
1da177e4
LT
1156}
1157
1158/***
1159 * kick_process - kick a running thread to enter/exit the kernel
1160 * @p: the to-be-kicked thread
1161 *
1162 * Cause a process which is running on another CPU to enter
1163 * kernel-mode, without any delay. (to get signals handled.)
1164 *
1165 * NOTE: this function doesnt have to take the runqueue lock,
1166 * because all it wants to ensure is that the remote task enters
1167 * the kernel. If the IPI races and the task has been migrated
1168 * to another CPU then no harm is done and the purpose has been
1169 * achieved as well.
1170 */
36c8b586 1171void kick_process(struct task_struct *p)
1da177e4
LT
1172{
1173 int cpu;
1174
1175 preempt_disable();
1176 cpu = task_cpu(p);
1177 if ((cpu != smp_processor_id()) && task_curr(p))
1178 smp_send_reschedule(cpu);
1179 preempt_enable();
1180}
1181
1182/*
2dd73a4f
PW
1183 * Return a low guess at the load of a migration-source cpu weighted
1184 * according to the scheduling class and "nice" value.
1da177e4
LT
1185 *
1186 * We want to under-estimate the load of migration sources, to
1187 * balance conservatively.
1188 */
a9957449 1189static unsigned long source_load(int cpu, int type)
1da177e4 1190{
70b97a7f 1191 struct rq *rq = cpu_rq(cpu);
dd41f596 1192 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1193
3b0bd9bc 1194 if (type == 0)
dd41f596 1195 return total;
b910472d 1196
dd41f596 1197 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1198}
1199
1200/*
2dd73a4f
PW
1201 * Return a high guess at the load of a migration-target cpu weighted
1202 * according to the scheduling class and "nice" value.
1da177e4 1203 */
a9957449 1204static unsigned long target_load(int cpu, int type)
1da177e4 1205{
70b97a7f 1206 struct rq *rq = cpu_rq(cpu);
dd41f596 1207 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1208
7897986b 1209 if (type == 0)
dd41f596 1210 return total;
3b0bd9bc 1211
dd41f596 1212 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1213}
1214
1215/*
1216 * Return the average load per task on the cpu's run queue
1217 */
1218static inline unsigned long cpu_avg_load_per_task(int cpu)
1219{
70b97a7f 1220 struct rq *rq = cpu_rq(cpu);
dd41f596 1221 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1222 unsigned long n = rq->nr_running;
1223
dd41f596 1224 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1225}
1226
147cbb4b
NP
1227/*
1228 * find_idlest_group finds and returns the least busy CPU group within the
1229 * domain.
1230 */
1231static struct sched_group *
1232find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1233{
1234 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1235 unsigned long min_load = ULONG_MAX, this_load = 0;
1236 int load_idx = sd->forkexec_idx;
1237 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1238
1239 do {
1240 unsigned long load, avg_load;
1241 int local_group;
1242 int i;
1243
da5a5522
BD
1244 /* Skip over this group if it has no CPUs allowed */
1245 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1246 continue;
da5a5522 1247
147cbb4b 1248 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1249
1250 /* Tally up the load of all CPUs in the group */
1251 avg_load = 0;
1252
1253 for_each_cpu_mask(i, group->cpumask) {
1254 /* Bias balancing toward cpus of our domain */
1255 if (local_group)
1256 load = source_load(i, load_idx);
1257 else
1258 load = target_load(i, load_idx);
1259
1260 avg_load += load;
1261 }
1262
1263 /* Adjust by relative CPU power of the group */
5517d86b
ED
1264 avg_load = sg_div_cpu_power(group,
1265 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1266
1267 if (local_group) {
1268 this_load = avg_load;
1269 this = group;
1270 } else if (avg_load < min_load) {
1271 min_load = avg_load;
1272 idlest = group;
1273 }
3a5c359a 1274 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1275
1276 if (!idlest || 100*this_load < imbalance*min_load)
1277 return NULL;
1278 return idlest;
1279}
1280
1281/*
0feaece9 1282 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1283 */
95cdf3b7
IM
1284static int
1285find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1286{
da5a5522 1287 cpumask_t tmp;
147cbb4b
NP
1288 unsigned long load, min_load = ULONG_MAX;
1289 int idlest = -1;
1290 int i;
1291
da5a5522
BD
1292 /* Traverse only the allowed CPUs */
1293 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1294
1295 for_each_cpu_mask(i, tmp) {
2dd73a4f 1296 load = weighted_cpuload(i);
147cbb4b
NP
1297
1298 if (load < min_load || (load == min_load && i == this_cpu)) {
1299 min_load = load;
1300 idlest = i;
1301 }
1302 }
1303
1304 return idlest;
1305}
1306
476d139c
NP
1307/*
1308 * sched_balance_self: balance the current task (running on cpu) in domains
1309 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1310 * SD_BALANCE_EXEC.
1311 *
1312 * Balance, ie. select the least loaded group.
1313 *
1314 * Returns the target CPU number, or the same CPU if no balancing is needed.
1315 *
1316 * preempt must be disabled.
1317 */
1318static int sched_balance_self(int cpu, int flag)
1319{
1320 struct task_struct *t = current;
1321 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1322
c96d145e 1323 for_each_domain(cpu, tmp) {
9761eea8
IM
1324 /*
1325 * If power savings logic is enabled for a domain, stop there.
1326 */
5c45bf27
SS
1327 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1328 break;
476d139c
NP
1329 if (tmp->flags & flag)
1330 sd = tmp;
c96d145e 1331 }
476d139c
NP
1332
1333 while (sd) {
1334 cpumask_t span;
1335 struct sched_group *group;
1a848870
SS
1336 int new_cpu, weight;
1337
1338 if (!(sd->flags & flag)) {
1339 sd = sd->child;
1340 continue;
1341 }
476d139c
NP
1342
1343 span = sd->span;
1344 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1345 if (!group) {
1346 sd = sd->child;
1347 continue;
1348 }
476d139c 1349
da5a5522 1350 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1351 if (new_cpu == -1 || new_cpu == cpu) {
1352 /* Now try balancing at a lower domain level of cpu */
1353 sd = sd->child;
1354 continue;
1355 }
476d139c 1356
1a848870 1357 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1358 cpu = new_cpu;
476d139c
NP
1359 sd = NULL;
1360 weight = cpus_weight(span);
1361 for_each_domain(cpu, tmp) {
1362 if (weight <= cpus_weight(tmp->span))
1363 break;
1364 if (tmp->flags & flag)
1365 sd = tmp;
1366 }
1367 /* while loop will break here if sd == NULL */
1368 }
1369
1370 return cpu;
1371}
1372
1373#endif /* CONFIG_SMP */
1da177e4
LT
1374
1375/*
1376 * wake_idle() will wake a task on an idle cpu if task->cpu is
1377 * not idle and an idle cpu is available. The span of cpus to
1378 * search starts with cpus closest then further out as needed,
1379 * so we always favor a closer, idle cpu.
1380 *
1381 * Returns the CPU we should wake onto.
1382 */
1383#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1384static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1385{
1386 cpumask_t tmp;
1387 struct sched_domain *sd;
1388 int i;
1389
4953198b
SS
1390 /*
1391 * If it is idle, then it is the best cpu to run this task.
1392 *
1393 * This cpu is also the best, if it has more than one task already.
1394 * Siblings must be also busy(in most cases) as they didn't already
1395 * pickup the extra load from this cpu and hence we need not check
1396 * sibling runqueue info. This will avoid the checks and cache miss
1397 * penalities associated with that.
1398 */
1399 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1400 return cpu;
1401
1402 for_each_domain(cpu, sd) {
1403 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1404 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1405 for_each_cpu_mask(i, tmp) {
1406 if (idle_cpu(i))
1407 return i;
1408 }
9761eea8 1409 } else {
e0f364f4 1410 break;
9761eea8 1411 }
1da177e4
LT
1412 }
1413 return cpu;
1414}
1415#else
36c8b586 1416static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1417{
1418 return cpu;
1419}
1420#endif
1421
1422/***
1423 * try_to_wake_up - wake up a thread
1424 * @p: the to-be-woken-up thread
1425 * @state: the mask of task states that can be woken
1426 * @sync: do a synchronous wakeup?
1427 *
1428 * Put it on the run-queue if it's not already there. The "current"
1429 * thread is always on the run-queue (except when the actual
1430 * re-schedule is in progress), and as such you're allowed to do
1431 * the simpler "current->state = TASK_RUNNING" to mark yourself
1432 * runnable without the overhead of this.
1433 *
1434 * returns failure only if the task is already active.
1435 */
36c8b586 1436static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1437{
1438 int cpu, this_cpu, success = 0;
1439 unsigned long flags;
1440 long old_state;
70b97a7f 1441 struct rq *rq;
1da177e4 1442#ifdef CONFIG_SMP
7897986b 1443 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1444 unsigned long load, this_load;
1da177e4
LT
1445 int new_cpu;
1446#endif
1447
1448 rq = task_rq_lock(p, &flags);
1449 old_state = p->state;
1450 if (!(old_state & state))
1451 goto out;
1452
dd41f596 1453 if (p->se.on_rq)
1da177e4
LT
1454 goto out_running;
1455
1456 cpu = task_cpu(p);
1457 this_cpu = smp_processor_id();
1458
1459#ifdef CONFIG_SMP
1460 if (unlikely(task_running(rq, p)))
1461 goto out_activate;
1462
7897986b
NP
1463 new_cpu = cpu;
1464
2d72376b 1465 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1466 if (cpu == this_cpu) {
1467 schedstat_inc(rq, ttwu_local);
7897986b
NP
1468 goto out_set_cpu;
1469 }
1470
1471 for_each_domain(this_cpu, sd) {
1472 if (cpu_isset(cpu, sd->span)) {
1473 schedstat_inc(sd, ttwu_wake_remote);
1474 this_sd = sd;
1475 break;
1da177e4
LT
1476 }
1477 }
1da177e4 1478
7897986b 1479 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1480 goto out_set_cpu;
1481
1da177e4 1482 /*
7897986b 1483 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1484 */
7897986b
NP
1485 if (this_sd) {
1486 int idx = this_sd->wake_idx;
1487 unsigned int imbalance;
1da177e4 1488
a3f21bce
NP
1489 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1490
7897986b
NP
1491 load = source_load(cpu, idx);
1492 this_load = target_load(this_cpu, idx);
1da177e4 1493
7897986b
NP
1494 new_cpu = this_cpu; /* Wake to this CPU if we can */
1495
a3f21bce
NP
1496 if (this_sd->flags & SD_WAKE_AFFINE) {
1497 unsigned long tl = this_load;
33859f7f
MOS
1498 unsigned long tl_per_task;
1499
1500 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1501
1da177e4 1502 /*
a3f21bce
NP
1503 * If sync wakeup then subtract the (maximum possible)
1504 * effect of the currently running task from the load
1505 * of the current CPU:
1da177e4 1506 */
a3f21bce 1507 if (sync)
dd41f596 1508 tl -= current->se.load.weight;
a3f21bce
NP
1509
1510 if ((tl <= load &&
2dd73a4f 1511 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1512 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1513 /*
1514 * This domain has SD_WAKE_AFFINE and
1515 * p is cache cold in this domain, and
1516 * there is no bad imbalance.
1517 */
1518 schedstat_inc(this_sd, ttwu_move_affine);
1519 goto out_set_cpu;
1520 }
1521 }
1522
1523 /*
1524 * Start passive balancing when half the imbalance_pct
1525 * limit is reached.
1526 */
1527 if (this_sd->flags & SD_WAKE_BALANCE) {
1528 if (imbalance*this_load <= 100*load) {
1529 schedstat_inc(this_sd, ttwu_move_balance);
1530 goto out_set_cpu;
1531 }
1da177e4
LT
1532 }
1533 }
1534
1535 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1536out_set_cpu:
1537 new_cpu = wake_idle(new_cpu, p);
1538 if (new_cpu != cpu) {
1539 set_task_cpu(p, new_cpu);
1540 task_rq_unlock(rq, &flags);
1541 /* might preempt at this point */
1542 rq = task_rq_lock(p, &flags);
1543 old_state = p->state;
1544 if (!(old_state & state))
1545 goto out;
dd41f596 1546 if (p->se.on_rq)
1da177e4
LT
1547 goto out_running;
1548
1549 this_cpu = smp_processor_id();
1550 cpu = task_cpu(p);
1551 }
1552
1553out_activate:
1554#endif /* CONFIG_SMP */
2daa3577 1555 update_rq_clock(rq);
dd41f596 1556 activate_task(rq, p, 1);
1da177e4
LT
1557 /*
1558 * Sync wakeups (i.e. those types of wakeups where the waker
1559 * has indicated that it will leave the CPU in short order)
1560 * don't trigger a preemption, if the woken up task will run on
1561 * this cpu. (in this case the 'I will reschedule' promise of
1562 * the waker guarantees that the freshly woken up task is going
1563 * to be considered on this CPU.)
1564 */
dd41f596
IM
1565 if (!sync || cpu != this_cpu)
1566 check_preempt_curr(rq, p);
1da177e4
LT
1567 success = 1;
1568
1569out_running:
1570 p->state = TASK_RUNNING;
1571out:
1572 task_rq_unlock(rq, &flags);
1573
1574 return success;
1575}
1576
36c8b586 1577int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1578{
1579 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1580 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1581}
1da177e4
LT
1582EXPORT_SYMBOL(wake_up_process);
1583
36c8b586 1584int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1585{
1586 return try_to_wake_up(p, state, 0);
1587}
1588
1da177e4
LT
1589/*
1590 * Perform scheduler related setup for a newly forked process p.
1591 * p is forked by current.
dd41f596
IM
1592 *
1593 * __sched_fork() is basic setup used by init_idle() too:
1594 */
1595static void __sched_fork(struct task_struct *p)
1596{
dd41f596
IM
1597 p->se.exec_start = 0;
1598 p->se.sum_exec_runtime = 0;
f6cf891c 1599 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1600
1601#ifdef CONFIG_SCHEDSTATS
1602 p->se.wait_start = 0;
dd41f596
IM
1603 p->se.sum_sleep_runtime = 0;
1604 p->se.sleep_start = 0;
dd41f596
IM
1605 p->se.block_start = 0;
1606 p->se.sleep_max = 0;
1607 p->se.block_max = 0;
1608 p->se.exec_max = 0;
eba1ed4b 1609 p->se.slice_max = 0;
dd41f596 1610 p->se.wait_max = 0;
6cfb0d5d 1611#endif
476d139c 1612
dd41f596
IM
1613 INIT_LIST_HEAD(&p->run_list);
1614 p->se.on_rq = 0;
476d139c 1615
e107be36
AK
1616#ifdef CONFIG_PREEMPT_NOTIFIERS
1617 INIT_HLIST_HEAD(&p->preempt_notifiers);
1618#endif
1619
1da177e4
LT
1620 /*
1621 * We mark the process as running here, but have not actually
1622 * inserted it onto the runqueue yet. This guarantees that
1623 * nobody will actually run it, and a signal or other external
1624 * event cannot wake it up and insert it on the runqueue either.
1625 */
1626 p->state = TASK_RUNNING;
dd41f596
IM
1627}
1628
1629/*
1630 * fork()/clone()-time setup:
1631 */
1632void sched_fork(struct task_struct *p, int clone_flags)
1633{
1634 int cpu = get_cpu();
1635
1636 __sched_fork(p);
1637
1638#ifdef CONFIG_SMP
1639 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1640#endif
02e4bac2 1641 set_task_cpu(p, cpu);
b29739f9
IM
1642
1643 /*
1644 * Make sure we do not leak PI boosting priority to the child:
1645 */
1646 p->prio = current->normal_prio;
2ddbf952
HS
1647 if (!rt_prio(p->prio))
1648 p->sched_class = &fair_sched_class;
b29739f9 1649
52f17b6c 1650#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1651 if (likely(sched_info_on()))
52f17b6c 1652 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1653#endif
d6077cb8 1654#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1655 p->oncpu = 0;
1656#endif
1da177e4 1657#ifdef CONFIG_PREEMPT
4866cde0 1658 /* Want to start with kernel preemption disabled. */
a1261f54 1659 task_thread_info(p)->preempt_count = 1;
1da177e4 1660#endif
476d139c 1661 put_cpu();
1da177e4
LT
1662}
1663
1664/*
1665 * wake_up_new_task - wake up a newly created task for the first time.
1666 *
1667 * This function will do some initial scheduler statistics housekeeping
1668 * that must be done for every newly created context, then puts the task
1669 * on the runqueue and wakes it.
1670 */
36c8b586 1671void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1672{
1673 unsigned long flags;
dd41f596 1674 struct rq *rq;
1da177e4
LT
1675
1676 rq = task_rq_lock(p, &flags);
147cbb4b 1677 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1678 update_rq_clock(rq);
1da177e4
LT
1679
1680 p->prio = effective_prio(p);
1681
00bf7bfc 1682 if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
dd41f596 1683 activate_task(rq, p, 0);
1da177e4 1684 } else {
1da177e4 1685 /*
dd41f596
IM
1686 * Let the scheduling class do new task startup
1687 * management (if any):
1da177e4 1688 */
ee0827d8 1689 p->sched_class->task_new(rq, p);
e5fa2237 1690 inc_nr_running(p, rq);
1da177e4 1691 }
dd41f596
IM
1692 check_preempt_curr(rq, p);
1693 task_rq_unlock(rq, &flags);
1da177e4
LT
1694}
1695
e107be36
AK
1696#ifdef CONFIG_PREEMPT_NOTIFIERS
1697
1698/**
421cee29
RD
1699 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1700 * @notifier: notifier struct to register
e107be36
AK
1701 */
1702void preempt_notifier_register(struct preempt_notifier *notifier)
1703{
1704 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1705}
1706EXPORT_SYMBOL_GPL(preempt_notifier_register);
1707
1708/**
1709 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1710 * @notifier: notifier struct to unregister
e107be36
AK
1711 *
1712 * This is safe to call from within a preemption notifier.
1713 */
1714void preempt_notifier_unregister(struct preempt_notifier *notifier)
1715{
1716 hlist_del(&notifier->link);
1717}
1718EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1719
1720static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1721{
1722 struct preempt_notifier *notifier;
1723 struct hlist_node *node;
1724
1725 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1726 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1727}
1728
1729static void
1730fire_sched_out_preempt_notifiers(struct task_struct *curr,
1731 struct task_struct *next)
1732{
1733 struct preempt_notifier *notifier;
1734 struct hlist_node *node;
1735
1736 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1737 notifier->ops->sched_out(notifier, next);
1738}
1739
1740#else
1741
1742static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1743{
1744}
1745
1746static void
1747fire_sched_out_preempt_notifiers(struct task_struct *curr,
1748 struct task_struct *next)
1749{
1750}
1751
1752#endif
1753
4866cde0
NP
1754/**
1755 * prepare_task_switch - prepare to switch tasks
1756 * @rq: the runqueue preparing to switch
421cee29 1757 * @prev: the current task that is being switched out
4866cde0
NP
1758 * @next: the task we are going to switch to.
1759 *
1760 * This is called with the rq lock held and interrupts off. It must
1761 * be paired with a subsequent finish_task_switch after the context
1762 * switch.
1763 *
1764 * prepare_task_switch sets up locking and calls architecture specific
1765 * hooks.
1766 */
e107be36
AK
1767static inline void
1768prepare_task_switch(struct rq *rq, struct task_struct *prev,
1769 struct task_struct *next)
4866cde0 1770{
e107be36 1771 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1772 prepare_lock_switch(rq, next);
1773 prepare_arch_switch(next);
1774}
1775
1da177e4
LT
1776/**
1777 * finish_task_switch - clean up after a task-switch
344babaa 1778 * @rq: runqueue associated with task-switch
1da177e4
LT
1779 * @prev: the thread we just switched away from.
1780 *
4866cde0
NP
1781 * finish_task_switch must be called after the context switch, paired
1782 * with a prepare_task_switch call before the context switch.
1783 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1784 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1785 *
1786 * Note that we may have delayed dropping an mm in context_switch(). If
1787 * so, we finish that here outside of the runqueue lock. (Doing it
1788 * with the lock held can cause deadlocks; see schedule() for
1789 * details.)
1790 */
a9957449 1791static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1792 __releases(rq->lock)
1793{
1da177e4 1794 struct mm_struct *mm = rq->prev_mm;
55a101f8 1795 long prev_state;
1da177e4
LT
1796
1797 rq->prev_mm = NULL;
1798
1799 /*
1800 * A task struct has one reference for the use as "current".
c394cc9f 1801 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1802 * schedule one last time. The schedule call will never return, and
1803 * the scheduled task must drop that reference.
c394cc9f 1804 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1805 * still held, otherwise prev could be scheduled on another cpu, die
1806 * there before we look at prev->state, and then the reference would
1807 * be dropped twice.
1808 * Manfred Spraul <manfred@colorfullife.com>
1809 */
55a101f8 1810 prev_state = prev->state;
4866cde0
NP
1811 finish_arch_switch(prev);
1812 finish_lock_switch(rq, prev);
e107be36 1813 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1814 if (mm)
1815 mmdrop(mm);
c394cc9f 1816 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1817 /*
1818 * Remove function-return probe instances associated with this
1819 * task and put them back on the free list.
9761eea8 1820 */
c6fd91f0 1821 kprobe_flush_task(prev);
1da177e4 1822 put_task_struct(prev);
c6fd91f0 1823 }
1da177e4
LT
1824}
1825
1826/**
1827 * schedule_tail - first thing a freshly forked thread must call.
1828 * @prev: the thread we just switched away from.
1829 */
36c8b586 1830asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1831 __releases(rq->lock)
1832{
70b97a7f
IM
1833 struct rq *rq = this_rq();
1834
4866cde0
NP
1835 finish_task_switch(rq, prev);
1836#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1837 /* In this case, finish_task_switch does not reenable preemption */
1838 preempt_enable();
1839#endif
1da177e4
LT
1840 if (current->set_child_tid)
1841 put_user(current->pid, current->set_child_tid);
1842}
1843
1844/*
1845 * context_switch - switch to the new MM and the new
1846 * thread's register state.
1847 */
dd41f596 1848static inline void
70b97a7f 1849context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1850 struct task_struct *next)
1da177e4 1851{
dd41f596 1852 struct mm_struct *mm, *oldmm;
1da177e4 1853
e107be36 1854 prepare_task_switch(rq, prev, next);
dd41f596
IM
1855 mm = next->mm;
1856 oldmm = prev->active_mm;
9226d125
ZA
1857 /*
1858 * For paravirt, this is coupled with an exit in switch_to to
1859 * combine the page table reload and the switch backend into
1860 * one hypercall.
1861 */
1862 arch_enter_lazy_cpu_mode();
1863
dd41f596 1864 if (unlikely(!mm)) {
1da177e4
LT
1865 next->active_mm = oldmm;
1866 atomic_inc(&oldmm->mm_count);
1867 enter_lazy_tlb(oldmm, next);
1868 } else
1869 switch_mm(oldmm, mm, next);
1870
dd41f596 1871 if (unlikely(!prev->mm)) {
1da177e4 1872 prev->active_mm = NULL;
1da177e4
LT
1873 rq->prev_mm = oldmm;
1874 }
3a5f5e48
IM
1875 /*
1876 * Since the runqueue lock will be released by the next
1877 * task (which is an invalid locking op but in the case
1878 * of the scheduler it's an obvious special-case), so we
1879 * do an early lockdep release here:
1880 */
1881#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1882 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1883#endif
1da177e4
LT
1884
1885 /* Here we just switch the register state and the stack. */
1886 switch_to(prev, next, prev);
1887
dd41f596
IM
1888 barrier();
1889 /*
1890 * this_rq must be evaluated again because prev may have moved
1891 * CPUs since it called schedule(), thus the 'rq' on its stack
1892 * frame will be invalid.
1893 */
1894 finish_task_switch(this_rq(), prev);
1da177e4
LT
1895}
1896
1897/*
1898 * nr_running, nr_uninterruptible and nr_context_switches:
1899 *
1900 * externally visible scheduler statistics: current number of runnable
1901 * threads, current number of uninterruptible-sleeping threads, total
1902 * number of context switches performed since bootup.
1903 */
1904unsigned long nr_running(void)
1905{
1906 unsigned long i, sum = 0;
1907
1908 for_each_online_cpu(i)
1909 sum += cpu_rq(i)->nr_running;
1910
1911 return sum;
1912}
1913
1914unsigned long nr_uninterruptible(void)
1915{
1916 unsigned long i, sum = 0;
1917
0a945022 1918 for_each_possible_cpu(i)
1da177e4
LT
1919 sum += cpu_rq(i)->nr_uninterruptible;
1920
1921 /*
1922 * Since we read the counters lockless, it might be slightly
1923 * inaccurate. Do not allow it to go below zero though:
1924 */
1925 if (unlikely((long)sum < 0))
1926 sum = 0;
1927
1928 return sum;
1929}
1930
1931unsigned long long nr_context_switches(void)
1932{
cc94abfc
SR
1933 int i;
1934 unsigned long long sum = 0;
1da177e4 1935
0a945022 1936 for_each_possible_cpu(i)
1da177e4
LT
1937 sum += cpu_rq(i)->nr_switches;
1938
1939 return sum;
1940}
1941
1942unsigned long nr_iowait(void)
1943{
1944 unsigned long i, sum = 0;
1945
0a945022 1946 for_each_possible_cpu(i)
1da177e4
LT
1947 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1948
1949 return sum;
1950}
1951
db1b1fef
JS
1952unsigned long nr_active(void)
1953{
1954 unsigned long i, running = 0, uninterruptible = 0;
1955
1956 for_each_online_cpu(i) {
1957 running += cpu_rq(i)->nr_running;
1958 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1959 }
1960
1961 if (unlikely((long)uninterruptible < 0))
1962 uninterruptible = 0;
1963
1964 return running + uninterruptible;
1965}
1966
48f24c4d 1967/*
dd41f596
IM
1968 * Update rq->cpu_load[] statistics. This function is usually called every
1969 * scheduler tick (TICK_NSEC).
48f24c4d 1970 */
dd41f596 1971static void update_cpu_load(struct rq *this_rq)
48f24c4d 1972{
495eca49 1973 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
1974 int i, scale;
1975
1976 this_rq->nr_load_updates++;
dd41f596
IM
1977
1978 /* Update our load: */
1979 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1980 unsigned long old_load, new_load;
1981
1982 /* scale is effectively 1 << i now, and >> i divides by scale */
1983
1984 old_load = this_rq->cpu_load[i];
1985 new_load = this_load;
a25707f3
IM
1986 /*
1987 * Round up the averaging division if load is increasing. This
1988 * prevents us from getting stuck on 9 if the load is 10, for
1989 * example.
1990 */
1991 if (new_load > old_load)
1992 new_load += scale-1;
dd41f596
IM
1993 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1994 }
48f24c4d
IM
1995}
1996
dd41f596
IM
1997#ifdef CONFIG_SMP
1998
1da177e4
LT
1999/*
2000 * double_rq_lock - safely lock two runqueues
2001 *
2002 * Note this does not disable interrupts like task_rq_lock,
2003 * you need to do so manually before calling.
2004 */
70b97a7f 2005static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2006 __acquires(rq1->lock)
2007 __acquires(rq2->lock)
2008{
054b9108 2009 BUG_ON(!irqs_disabled());
1da177e4
LT
2010 if (rq1 == rq2) {
2011 spin_lock(&rq1->lock);
2012 __acquire(rq2->lock); /* Fake it out ;) */
2013 } else {
c96d145e 2014 if (rq1 < rq2) {
1da177e4
LT
2015 spin_lock(&rq1->lock);
2016 spin_lock(&rq2->lock);
2017 } else {
2018 spin_lock(&rq2->lock);
2019 spin_lock(&rq1->lock);
2020 }
2021 }
6e82a3be
IM
2022 update_rq_clock(rq1);
2023 update_rq_clock(rq2);
1da177e4
LT
2024}
2025
2026/*
2027 * double_rq_unlock - safely unlock two runqueues
2028 *
2029 * Note this does not restore interrupts like task_rq_unlock,
2030 * you need to do so manually after calling.
2031 */
70b97a7f 2032static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2033 __releases(rq1->lock)
2034 __releases(rq2->lock)
2035{
2036 spin_unlock(&rq1->lock);
2037 if (rq1 != rq2)
2038 spin_unlock(&rq2->lock);
2039 else
2040 __release(rq2->lock);
2041}
2042
2043/*
2044 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2045 */
70b97a7f 2046static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2047 __releases(this_rq->lock)
2048 __acquires(busiest->lock)
2049 __acquires(this_rq->lock)
2050{
054b9108
KK
2051 if (unlikely(!irqs_disabled())) {
2052 /* printk() doesn't work good under rq->lock */
2053 spin_unlock(&this_rq->lock);
2054 BUG_ON(1);
2055 }
1da177e4 2056 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2057 if (busiest < this_rq) {
1da177e4
LT
2058 spin_unlock(&this_rq->lock);
2059 spin_lock(&busiest->lock);
2060 spin_lock(&this_rq->lock);
2061 } else
2062 spin_lock(&busiest->lock);
2063 }
2064}
2065
1da177e4
LT
2066/*
2067 * If dest_cpu is allowed for this process, migrate the task to it.
2068 * This is accomplished by forcing the cpu_allowed mask to only
2069 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2070 * the cpu_allowed mask is restored.
2071 */
36c8b586 2072static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2073{
70b97a7f 2074 struct migration_req req;
1da177e4 2075 unsigned long flags;
70b97a7f 2076 struct rq *rq;
1da177e4
LT
2077
2078 rq = task_rq_lock(p, &flags);
2079 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2080 || unlikely(cpu_is_offline(dest_cpu)))
2081 goto out;
2082
2083 /* force the process onto the specified CPU */
2084 if (migrate_task(p, dest_cpu, &req)) {
2085 /* Need to wait for migration thread (might exit: take ref). */
2086 struct task_struct *mt = rq->migration_thread;
36c8b586 2087
1da177e4
LT
2088 get_task_struct(mt);
2089 task_rq_unlock(rq, &flags);
2090 wake_up_process(mt);
2091 put_task_struct(mt);
2092 wait_for_completion(&req.done);
36c8b586 2093
1da177e4
LT
2094 return;
2095 }
2096out:
2097 task_rq_unlock(rq, &flags);
2098}
2099
2100/*
476d139c
NP
2101 * sched_exec - execve() is a valuable balancing opportunity, because at
2102 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2103 */
2104void sched_exec(void)
2105{
1da177e4 2106 int new_cpu, this_cpu = get_cpu();
476d139c 2107 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2108 put_cpu();
476d139c
NP
2109 if (new_cpu != this_cpu)
2110 sched_migrate_task(current, new_cpu);
1da177e4
LT
2111}
2112
2113/*
2114 * pull_task - move a task from a remote runqueue to the local runqueue.
2115 * Both runqueues must be locked.
2116 */
dd41f596
IM
2117static void pull_task(struct rq *src_rq, struct task_struct *p,
2118 struct rq *this_rq, int this_cpu)
1da177e4 2119{
2e1cb74a 2120 deactivate_task(src_rq, p, 0);
1da177e4 2121 set_task_cpu(p, this_cpu);
dd41f596 2122 activate_task(this_rq, p, 0);
1da177e4
LT
2123 /*
2124 * Note that idle threads have a prio of MAX_PRIO, for this test
2125 * to be always true for them.
2126 */
dd41f596 2127 check_preempt_curr(this_rq, p);
1da177e4
LT
2128}
2129
2130/*
2131 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2132 */
858119e1 2133static
70b97a7f 2134int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2135 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2136 int *all_pinned)
1da177e4
LT
2137{
2138 /*
2139 * We do not migrate tasks that are:
2140 * 1) running (obviously), or
2141 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2142 * 3) are cache-hot on their current CPU.
2143 */
1da177e4
LT
2144 if (!cpu_isset(this_cpu, p->cpus_allowed))
2145 return 0;
81026794
NP
2146 *all_pinned = 0;
2147
2148 if (task_running(rq, p))
2149 return 0;
1da177e4 2150
1da177e4
LT
2151 return 1;
2152}
2153
dd41f596 2154static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2155 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2156 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2157 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2158 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2159{
dd41f596
IM
2160 int pulled = 0, pinned = 0, skip_for_load;
2161 struct task_struct *p;
2162 long rem_load_move = max_load_move;
1da177e4 2163
2dd73a4f 2164 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2165 goto out;
2166
81026794
NP
2167 pinned = 1;
2168
1da177e4 2169 /*
dd41f596 2170 * Start the load-balancing iterator:
1da177e4 2171 */
dd41f596
IM
2172 p = iterator->start(iterator->arg);
2173next:
2174 if (!p)
1da177e4 2175 goto out;
50ddd969
PW
2176 /*
2177 * To help distribute high priority tasks accross CPUs we don't
2178 * skip a task if it will be the highest priority task (i.e. smallest
2179 * prio value) on its new queue regardless of its load weight
2180 */
dd41f596
IM
2181 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2182 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2183 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2184 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2185 p = iterator->next(iterator->arg);
2186 goto next;
1da177e4
LT
2187 }
2188
dd41f596 2189 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2190 pulled++;
dd41f596 2191 rem_load_move -= p->se.load.weight;
1da177e4 2192
2dd73a4f
PW
2193 /*
2194 * We only want to steal up to the prescribed number of tasks
2195 * and the prescribed amount of weighted load.
2196 */
2197 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2198 if (p->prio < *this_best_prio)
2199 *this_best_prio = p->prio;
dd41f596
IM
2200 p = iterator->next(iterator->arg);
2201 goto next;
1da177e4
LT
2202 }
2203out:
2204 /*
2205 * Right now, this is the only place pull_task() is called,
2206 * so we can safely collect pull_task() stats here rather than
2207 * inside pull_task().
2208 */
2209 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2210
2211 if (all_pinned)
2212 *all_pinned = pinned;
dd41f596 2213 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2214 return pulled;
2215}
2216
dd41f596 2217/*
43010659
PW
2218 * move_tasks tries to move up to max_load_move weighted load from busiest to
2219 * this_rq, as part of a balancing operation within domain "sd".
2220 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2221 *
2222 * Called with both runqueues locked.
2223 */
2224static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2225 unsigned long max_load_move,
dd41f596
IM
2226 struct sched_domain *sd, enum cpu_idle_type idle,
2227 int *all_pinned)
2228{
5522d5d5 2229 const struct sched_class *class = sched_class_highest;
43010659 2230 unsigned long total_load_moved = 0;
a4ac01c3 2231 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2232
2233 do {
43010659
PW
2234 total_load_moved +=
2235 class->load_balance(this_rq, this_cpu, busiest,
2236 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2237 sd, idle, all_pinned, &this_best_prio);
dd41f596 2238 class = class->next;
43010659 2239 } while (class && max_load_move > total_load_moved);
dd41f596 2240
43010659
PW
2241 return total_load_moved > 0;
2242}
2243
2244/*
2245 * move_one_task tries to move exactly one task from busiest to this_rq, as
2246 * part of active balancing operations within "domain".
2247 * Returns 1 if successful and 0 otherwise.
2248 *
2249 * Called with both runqueues locked.
2250 */
2251static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2252 struct sched_domain *sd, enum cpu_idle_type idle)
2253{
5522d5d5 2254 const struct sched_class *class;
a4ac01c3 2255 int this_best_prio = MAX_PRIO;
43010659
PW
2256
2257 for (class = sched_class_highest; class; class = class->next)
2258 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2259 1, ULONG_MAX, sd, idle, NULL,
2260 &this_best_prio))
43010659
PW
2261 return 1;
2262
2263 return 0;
dd41f596
IM
2264}
2265
1da177e4
LT
2266/*
2267 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2268 * domain. It calculates and returns the amount of weighted load which
2269 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2270 */
2271static struct sched_group *
2272find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2273 unsigned long *imbalance, enum cpu_idle_type idle,
2274 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2275{
2276 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2277 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2278 unsigned long max_pull;
2dd73a4f
PW
2279 unsigned long busiest_load_per_task, busiest_nr_running;
2280 unsigned long this_load_per_task, this_nr_running;
7897986b 2281 int load_idx;
5c45bf27
SS
2282#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2283 int power_savings_balance = 1;
2284 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2285 unsigned long min_nr_running = ULONG_MAX;
2286 struct sched_group *group_min = NULL, *group_leader = NULL;
2287#endif
1da177e4
LT
2288
2289 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2290 busiest_load_per_task = busiest_nr_running = 0;
2291 this_load_per_task = this_nr_running = 0;
d15bcfdb 2292 if (idle == CPU_NOT_IDLE)
7897986b 2293 load_idx = sd->busy_idx;
d15bcfdb 2294 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2295 load_idx = sd->newidle_idx;
2296 else
2297 load_idx = sd->idle_idx;
1da177e4
LT
2298
2299 do {
5c45bf27 2300 unsigned long load, group_capacity;
1da177e4
LT
2301 int local_group;
2302 int i;
783609c6 2303 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2304 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2305
2306 local_group = cpu_isset(this_cpu, group->cpumask);
2307
783609c6
SS
2308 if (local_group)
2309 balance_cpu = first_cpu(group->cpumask);
2310
1da177e4 2311 /* Tally up the load of all CPUs in the group */
2dd73a4f 2312 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2313
2314 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2315 struct rq *rq;
2316
2317 if (!cpu_isset(i, *cpus))
2318 continue;
2319
2320 rq = cpu_rq(i);
2dd73a4f 2321
9439aab8 2322 if (*sd_idle && rq->nr_running)
5969fe06
NP
2323 *sd_idle = 0;
2324
1da177e4 2325 /* Bias balancing toward cpus of our domain */
783609c6
SS
2326 if (local_group) {
2327 if (idle_cpu(i) && !first_idle_cpu) {
2328 first_idle_cpu = 1;
2329 balance_cpu = i;
2330 }
2331
a2000572 2332 load = target_load(i, load_idx);
783609c6 2333 } else
a2000572 2334 load = source_load(i, load_idx);
1da177e4
LT
2335
2336 avg_load += load;
2dd73a4f 2337 sum_nr_running += rq->nr_running;
dd41f596 2338 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2339 }
2340
783609c6
SS
2341 /*
2342 * First idle cpu or the first cpu(busiest) in this sched group
2343 * is eligible for doing load balancing at this and above
9439aab8
SS
2344 * domains. In the newly idle case, we will allow all the cpu's
2345 * to do the newly idle load balance.
783609c6 2346 */
9439aab8
SS
2347 if (idle != CPU_NEWLY_IDLE && local_group &&
2348 balance_cpu != this_cpu && balance) {
783609c6
SS
2349 *balance = 0;
2350 goto ret;
2351 }
2352
1da177e4 2353 total_load += avg_load;
5517d86b 2354 total_pwr += group->__cpu_power;
1da177e4
LT
2355
2356 /* Adjust by relative CPU power of the group */
5517d86b
ED
2357 avg_load = sg_div_cpu_power(group,
2358 avg_load * SCHED_LOAD_SCALE);
1da177e4 2359
5517d86b 2360 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2361
1da177e4
LT
2362 if (local_group) {
2363 this_load = avg_load;
2364 this = group;
2dd73a4f
PW
2365 this_nr_running = sum_nr_running;
2366 this_load_per_task = sum_weighted_load;
2367 } else if (avg_load > max_load &&
5c45bf27 2368 sum_nr_running > group_capacity) {
1da177e4
LT
2369 max_load = avg_load;
2370 busiest = group;
2dd73a4f
PW
2371 busiest_nr_running = sum_nr_running;
2372 busiest_load_per_task = sum_weighted_load;
1da177e4 2373 }
5c45bf27
SS
2374
2375#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2376 /*
2377 * Busy processors will not participate in power savings
2378 * balance.
2379 */
dd41f596
IM
2380 if (idle == CPU_NOT_IDLE ||
2381 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2382 goto group_next;
5c45bf27
SS
2383
2384 /*
2385 * If the local group is idle or completely loaded
2386 * no need to do power savings balance at this domain
2387 */
2388 if (local_group && (this_nr_running >= group_capacity ||
2389 !this_nr_running))
2390 power_savings_balance = 0;
2391
dd41f596 2392 /*
5c45bf27
SS
2393 * If a group is already running at full capacity or idle,
2394 * don't include that group in power savings calculations
dd41f596
IM
2395 */
2396 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2397 || !sum_nr_running)
dd41f596 2398 goto group_next;
5c45bf27 2399
dd41f596 2400 /*
5c45bf27 2401 * Calculate the group which has the least non-idle load.
dd41f596
IM
2402 * This is the group from where we need to pick up the load
2403 * for saving power
2404 */
2405 if ((sum_nr_running < min_nr_running) ||
2406 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2407 first_cpu(group->cpumask) <
2408 first_cpu(group_min->cpumask))) {
dd41f596
IM
2409 group_min = group;
2410 min_nr_running = sum_nr_running;
5c45bf27
SS
2411 min_load_per_task = sum_weighted_load /
2412 sum_nr_running;
dd41f596 2413 }
5c45bf27 2414
dd41f596 2415 /*
5c45bf27 2416 * Calculate the group which is almost near its
dd41f596
IM
2417 * capacity but still has some space to pick up some load
2418 * from other group and save more power
2419 */
2420 if (sum_nr_running <= group_capacity - 1) {
2421 if (sum_nr_running > leader_nr_running ||
2422 (sum_nr_running == leader_nr_running &&
2423 first_cpu(group->cpumask) >
2424 first_cpu(group_leader->cpumask))) {
2425 group_leader = group;
2426 leader_nr_running = sum_nr_running;
2427 }
48f24c4d 2428 }
5c45bf27
SS
2429group_next:
2430#endif
1da177e4
LT
2431 group = group->next;
2432 } while (group != sd->groups);
2433
2dd73a4f 2434 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2435 goto out_balanced;
2436
2437 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2438
2439 if (this_load >= avg_load ||
2440 100*max_load <= sd->imbalance_pct*this_load)
2441 goto out_balanced;
2442
2dd73a4f 2443 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2444 /*
2445 * We're trying to get all the cpus to the average_load, so we don't
2446 * want to push ourselves above the average load, nor do we wish to
2447 * reduce the max loaded cpu below the average load, as either of these
2448 * actions would just result in more rebalancing later, and ping-pong
2449 * tasks around. Thus we look for the minimum possible imbalance.
2450 * Negative imbalances (*we* are more loaded than anyone else) will
2451 * be counted as no imbalance for these purposes -- we can't fix that
2452 * by pulling tasks to us. Be careful of negative numbers as they'll
2453 * appear as very large values with unsigned longs.
2454 */
2dd73a4f
PW
2455 if (max_load <= busiest_load_per_task)
2456 goto out_balanced;
2457
2458 /*
2459 * In the presence of smp nice balancing, certain scenarios can have
2460 * max load less than avg load(as we skip the groups at or below
2461 * its cpu_power, while calculating max_load..)
2462 */
2463 if (max_load < avg_load) {
2464 *imbalance = 0;
2465 goto small_imbalance;
2466 }
0c117f1b
SS
2467
2468 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2469 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2470
1da177e4 2471 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2472 *imbalance = min(max_pull * busiest->__cpu_power,
2473 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2474 / SCHED_LOAD_SCALE;
2475
2dd73a4f
PW
2476 /*
2477 * if *imbalance is less than the average load per runnable task
2478 * there is no gaurantee that any tasks will be moved so we'll have
2479 * a think about bumping its value to force at least one task to be
2480 * moved
2481 */
7fd0d2dd 2482 if (*imbalance < busiest_load_per_task) {
48f24c4d 2483 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2484 unsigned int imbn;
2485
2486small_imbalance:
2487 pwr_move = pwr_now = 0;
2488 imbn = 2;
2489 if (this_nr_running) {
2490 this_load_per_task /= this_nr_running;
2491 if (busiest_load_per_task > this_load_per_task)
2492 imbn = 1;
2493 } else
2494 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2495
dd41f596
IM
2496 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2497 busiest_load_per_task * imbn) {
2dd73a4f 2498 *imbalance = busiest_load_per_task;
1da177e4
LT
2499 return busiest;
2500 }
2501
2502 /*
2503 * OK, we don't have enough imbalance to justify moving tasks,
2504 * however we may be able to increase total CPU power used by
2505 * moving them.
2506 */
2507
5517d86b
ED
2508 pwr_now += busiest->__cpu_power *
2509 min(busiest_load_per_task, max_load);
2510 pwr_now += this->__cpu_power *
2511 min(this_load_per_task, this_load);
1da177e4
LT
2512 pwr_now /= SCHED_LOAD_SCALE;
2513
2514 /* Amount of load we'd subtract */
5517d86b
ED
2515 tmp = sg_div_cpu_power(busiest,
2516 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2517 if (max_load > tmp)
5517d86b 2518 pwr_move += busiest->__cpu_power *
2dd73a4f 2519 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2520
2521 /* Amount of load we'd add */
5517d86b 2522 if (max_load * busiest->__cpu_power <
33859f7f 2523 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2524 tmp = sg_div_cpu_power(this,
2525 max_load * busiest->__cpu_power);
1da177e4 2526 else
5517d86b
ED
2527 tmp = sg_div_cpu_power(this,
2528 busiest_load_per_task * SCHED_LOAD_SCALE);
2529 pwr_move += this->__cpu_power *
2530 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2531 pwr_move /= SCHED_LOAD_SCALE;
2532
2533 /* Move if we gain throughput */
7fd0d2dd
SS
2534 if (pwr_move > pwr_now)
2535 *imbalance = busiest_load_per_task;
1da177e4
LT
2536 }
2537
1da177e4
LT
2538 return busiest;
2539
2540out_balanced:
5c45bf27 2541#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2542 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2543 goto ret;
1da177e4 2544
5c45bf27
SS
2545 if (this == group_leader && group_leader != group_min) {
2546 *imbalance = min_load_per_task;
2547 return group_min;
2548 }
5c45bf27 2549#endif
783609c6 2550ret:
1da177e4
LT
2551 *imbalance = 0;
2552 return NULL;
2553}
2554
2555/*
2556 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2557 */
70b97a7f 2558static struct rq *
d15bcfdb 2559find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2560 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2561{
70b97a7f 2562 struct rq *busiest = NULL, *rq;
2dd73a4f 2563 unsigned long max_load = 0;
1da177e4
LT
2564 int i;
2565
2566 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2567 unsigned long wl;
0a2966b4
CL
2568
2569 if (!cpu_isset(i, *cpus))
2570 continue;
2571
48f24c4d 2572 rq = cpu_rq(i);
dd41f596 2573 wl = weighted_cpuload(i);
2dd73a4f 2574
dd41f596 2575 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2576 continue;
1da177e4 2577
dd41f596
IM
2578 if (wl > max_load) {
2579 max_load = wl;
48f24c4d 2580 busiest = rq;
1da177e4
LT
2581 }
2582 }
2583
2584 return busiest;
2585}
2586
77391d71
NP
2587/*
2588 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2589 * so long as it is large enough.
2590 */
2591#define MAX_PINNED_INTERVAL 512
2592
1da177e4
LT
2593/*
2594 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2595 * tasks if there is an imbalance.
1da177e4 2596 */
70b97a7f 2597static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2598 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2599 int *balance)
1da177e4 2600{
43010659 2601 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2602 struct sched_group *group;
1da177e4 2603 unsigned long imbalance;
70b97a7f 2604 struct rq *busiest;
0a2966b4 2605 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2606 unsigned long flags;
5969fe06 2607
89c4710e
SS
2608 /*
2609 * When power savings policy is enabled for the parent domain, idle
2610 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2611 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2612 * portraying it as CPU_NOT_IDLE.
89c4710e 2613 */
d15bcfdb 2614 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2615 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2616 sd_idle = 1;
1da177e4 2617
2d72376b 2618 schedstat_inc(sd, lb_count[idle]);
1da177e4 2619
0a2966b4
CL
2620redo:
2621 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2622 &cpus, balance);
2623
06066714 2624 if (*balance == 0)
783609c6 2625 goto out_balanced;
783609c6 2626
1da177e4
LT
2627 if (!group) {
2628 schedstat_inc(sd, lb_nobusyg[idle]);
2629 goto out_balanced;
2630 }
2631
0a2966b4 2632 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2633 if (!busiest) {
2634 schedstat_inc(sd, lb_nobusyq[idle]);
2635 goto out_balanced;
2636 }
2637
db935dbd 2638 BUG_ON(busiest == this_rq);
1da177e4
LT
2639
2640 schedstat_add(sd, lb_imbalance[idle], imbalance);
2641
43010659 2642 ld_moved = 0;
1da177e4
LT
2643 if (busiest->nr_running > 1) {
2644 /*
2645 * Attempt to move tasks. If find_busiest_group has found
2646 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2647 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2648 * correctly treated as an imbalance.
2649 */
fe2eea3f 2650 local_irq_save(flags);
e17224bf 2651 double_rq_lock(this_rq, busiest);
43010659 2652 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2653 imbalance, sd, idle, &all_pinned);
e17224bf 2654 double_rq_unlock(this_rq, busiest);
fe2eea3f 2655 local_irq_restore(flags);
81026794 2656
46cb4b7c
SS
2657 /*
2658 * some other cpu did the load balance for us.
2659 */
43010659 2660 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2661 resched_cpu(this_cpu);
2662
81026794 2663 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2664 if (unlikely(all_pinned)) {
2665 cpu_clear(cpu_of(busiest), cpus);
2666 if (!cpus_empty(cpus))
2667 goto redo;
81026794 2668 goto out_balanced;
0a2966b4 2669 }
1da177e4 2670 }
81026794 2671
43010659 2672 if (!ld_moved) {
1da177e4
LT
2673 schedstat_inc(sd, lb_failed[idle]);
2674 sd->nr_balance_failed++;
2675
2676 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2677
fe2eea3f 2678 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2679
2680 /* don't kick the migration_thread, if the curr
2681 * task on busiest cpu can't be moved to this_cpu
2682 */
2683 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2684 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2685 all_pinned = 1;
2686 goto out_one_pinned;
2687 }
2688
1da177e4
LT
2689 if (!busiest->active_balance) {
2690 busiest->active_balance = 1;
2691 busiest->push_cpu = this_cpu;
81026794 2692 active_balance = 1;
1da177e4 2693 }
fe2eea3f 2694 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2695 if (active_balance)
1da177e4
LT
2696 wake_up_process(busiest->migration_thread);
2697
2698 /*
2699 * We've kicked active balancing, reset the failure
2700 * counter.
2701 */
39507451 2702 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2703 }
81026794 2704 } else
1da177e4
LT
2705 sd->nr_balance_failed = 0;
2706
81026794 2707 if (likely(!active_balance)) {
1da177e4
LT
2708 /* We were unbalanced, so reset the balancing interval */
2709 sd->balance_interval = sd->min_interval;
81026794
NP
2710 } else {
2711 /*
2712 * If we've begun active balancing, start to back off. This
2713 * case may not be covered by the all_pinned logic if there
2714 * is only 1 task on the busy runqueue (because we don't call
2715 * move_tasks).
2716 */
2717 if (sd->balance_interval < sd->max_interval)
2718 sd->balance_interval *= 2;
1da177e4
LT
2719 }
2720
43010659 2721 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2722 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2723 return -1;
43010659 2724 return ld_moved;
1da177e4
LT
2725
2726out_balanced:
1da177e4
LT
2727 schedstat_inc(sd, lb_balanced[idle]);
2728
16cfb1c0 2729 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2730
2731out_one_pinned:
1da177e4 2732 /* tune up the balancing interval */
77391d71
NP
2733 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2734 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2735 sd->balance_interval *= 2;
2736
48f24c4d 2737 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2738 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2739 return -1;
1da177e4
LT
2740 return 0;
2741}
2742
2743/*
2744 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2745 * tasks if there is an imbalance.
2746 *
d15bcfdb 2747 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2748 * this_rq is locked.
2749 */
48f24c4d 2750static int
70b97a7f 2751load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2752{
2753 struct sched_group *group;
70b97a7f 2754 struct rq *busiest = NULL;
1da177e4 2755 unsigned long imbalance;
43010659 2756 int ld_moved = 0;
5969fe06 2757 int sd_idle = 0;
969bb4e4 2758 int all_pinned = 0;
0a2966b4 2759 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2760
89c4710e
SS
2761 /*
2762 * When power savings policy is enabled for the parent domain, idle
2763 * sibling can pick up load irrespective of busy siblings. In this case,
2764 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2765 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2766 */
2767 if (sd->flags & SD_SHARE_CPUPOWER &&
2768 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2769 sd_idle = 1;
1da177e4 2770
2d72376b 2771 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2772redo:
d15bcfdb 2773 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2774 &sd_idle, &cpus, NULL);
1da177e4 2775 if (!group) {
d15bcfdb 2776 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2777 goto out_balanced;
1da177e4
LT
2778 }
2779
d15bcfdb 2780 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2781 &cpus);
db935dbd 2782 if (!busiest) {
d15bcfdb 2783 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2784 goto out_balanced;
1da177e4
LT
2785 }
2786
db935dbd
NP
2787 BUG_ON(busiest == this_rq);
2788
d15bcfdb 2789 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2790
43010659 2791 ld_moved = 0;
d6d5cfaf
NP
2792 if (busiest->nr_running > 1) {
2793 /* Attempt to move tasks */
2794 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2795 /* this_rq->clock is already updated */
2796 update_rq_clock(busiest);
43010659 2797 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2798 imbalance, sd, CPU_NEWLY_IDLE,
2799 &all_pinned);
d6d5cfaf 2800 spin_unlock(&busiest->lock);
0a2966b4 2801
969bb4e4 2802 if (unlikely(all_pinned)) {
0a2966b4
CL
2803 cpu_clear(cpu_of(busiest), cpus);
2804 if (!cpus_empty(cpus))
2805 goto redo;
2806 }
d6d5cfaf
NP
2807 }
2808
43010659 2809 if (!ld_moved) {
d15bcfdb 2810 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2811 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2812 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2813 return -1;
2814 } else
16cfb1c0 2815 sd->nr_balance_failed = 0;
1da177e4 2816
43010659 2817 return ld_moved;
16cfb1c0
NP
2818
2819out_balanced:
d15bcfdb 2820 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2821 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2822 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2823 return -1;
16cfb1c0 2824 sd->nr_balance_failed = 0;
48f24c4d 2825
16cfb1c0 2826 return 0;
1da177e4
LT
2827}
2828
2829/*
2830 * idle_balance is called by schedule() if this_cpu is about to become
2831 * idle. Attempts to pull tasks from other CPUs.
2832 */
70b97a7f 2833static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2834{
2835 struct sched_domain *sd;
dd41f596
IM
2836 int pulled_task = -1;
2837 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2838
2839 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2840 unsigned long interval;
2841
2842 if (!(sd->flags & SD_LOAD_BALANCE))
2843 continue;
2844
2845 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2846 /* If we've pulled tasks over stop searching: */
1bd77f2d 2847 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2848 this_rq, sd);
2849
2850 interval = msecs_to_jiffies(sd->balance_interval);
2851 if (time_after(next_balance, sd->last_balance + interval))
2852 next_balance = sd->last_balance + interval;
2853 if (pulled_task)
2854 break;
1da177e4 2855 }
dd41f596 2856 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2857 /*
2858 * We are going idle. next_balance may be set based on
2859 * a busy processor. So reset next_balance.
2860 */
2861 this_rq->next_balance = next_balance;
dd41f596 2862 }
1da177e4
LT
2863}
2864
2865/*
2866 * active_load_balance is run by migration threads. It pushes running tasks
2867 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2868 * running on each physical CPU where possible, and avoids physical /
2869 * logical imbalances.
2870 *
2871 * Called with busiest_rq locked.
2872 */
70b97a7f 2873static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2874{
39507451 2875 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2876 struct sched_domain *sd;
2877 struct rq *target_rq;
39507451 2878
48f24c4d 2879 /* Is there any task to move? */
39507451 2880 if (busiest_rq->nr_running <= 1)
39507451
NP
2881 return;
2882
2883 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2884
2885 /*
39507451
NP
2886 * This condition is "impossible", if it occurs
2887 * we need to fix it. Originally reported by
2888 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2889 */
39507451 2890 BUG_ON(busiest_rq == target_rq);
1da177e4 2891
39507451
NP
2892 /* move a task from busiest_rq to target_rq */
2893 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2894 update_rq_clock(busiest_rq);
2895 update_rq_clock(target_rq);
39507451
NP
2896
2897 /* Search for an sd spanning us and the target CPU. */
c96d145e 2898 for_each_domain(target_cpu, sd) {
39507451 2899 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2900 cpu_isset(busiest_cpu, sd->span))
39507451 2901 break;
c96d145e 2902 }
39507451 2903
48f24c4d 2904 if (likely(sd)) {
2d72376b 2905 schedstat_inc(sd, alb_count);
39507451 2906
43010659
PW
2907 if (move_one_task(target_rq, target_cpu, busiest_rq,
2908 sd, CPU_IDLE))
48f24c4d
IM
2909 schedstat_inc(sd, alb_pushed);
2910 else
2911 schedstat_inc(sd, alb_failed);
2912 }
39507451 2913 spin_unlock(&target_rq->lock);
1da177e4
LT
2914}
2915
46cb4b7c
SS
2916#ifdef CONFIG_NO_HZ
2917static struct {
2918 atomic_t load_balancer;
2919 cpumask_t cpu_mask;
2920} nohz ____cacheline_aligned = {
2921 .load_balancer = ATOMIC_INIT(-1),
2922 .cpu_mask = CPU_MASK_NONE,
2923};
2924
7835b98b 2925/*
46cb4b7c
SS
2926 * This routine will try to nominate the ilb (idle load balancing)
2927 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2928 * load balancing on behalf of all those cpus. If all the cpus in the system
2929 * go into this tickless mode, then there will be no ilb owner (as there is
2930 * no need for one) and all the cpus will sleep till the next wakeup event
2931 * arrives...
2932 *
2933 * For the ilb owner, tick is not stopped. And this tick will be used
2934 * for idle load balancing. ilb owner will still be part of
2935 * nohz.cpu_mask..
7835b98b 2936 *
46cb4b7c
SS
2937 * While stopping the tick, this cpu will become the ilb owner if there
2938 * is no other owner. And will be the owner till that cpu becomes busy
2939 * or if all cpus in the system stop their ticks at which point
2940 * there is no need for ilb owner.
2941 *
2942 * When the ilb owner becomes busy, it nominates another owner, during the
2943 * next busy scheduler_tick()
2944 */
2945int select_nohz_load_balancer(int stop_tick)
2946{
2947 int cpu = smp_processor_id();
2948
2949 if (stop_tick) {
2950 cpu_set(cpu, nohz.cpu_mask);
2951 cpu_rq(cpu)->in_nohz_recently = 1;
2952
2953 /*
2954 * If we are going offline and still the leader, give up!
2955 */
2956 if (cpu_is_offline(cpu) &&
2957 atomic_read(&nohz.load_balancer) == cpu) {
2958 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2959 BUG();
2960 return 0;
2961 }
2962
2963 /* time for ilb owner also to sleep */
2964 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2965 if (atomic_read(&nohz.load_balancer) == cpu)
2966 atomic_set(&nohz.load_balancer, -1);
2967 return 0;
2968 }
2969
2970 if (atomic_read(&nohz.load_balancer) == -1) {
2971 /* make me the ilb owner */
2972 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2973 return 1;
2974 } else if (atomic_read(&nohz.load_balancer) == cpu)
2975 return 1;
2976 } else {
2977 if (!cpu_isset(cpu, nohz.cpu_mask))
2978 return 0;
2979
2980 cpu_clear(cpu, nohz.cpu_mask);
2981
2982 if (atomic_read(&nohz.load_balancer) == cpu)
2983 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2984 BUG();
2985 }
2986 return 0;
2987}
2988#endif
2989
2990static DEFINE_SPINLOCK(balancing);
2991
2992/*
7835b98b
CL
2993 * It checks each scheduling domain to see if it is due to be balanced,
2994 * and initiates a balancing operation if so.
2995 *
2996 * Balancing parameters are set up in arch_init_sched_domains.
2997 */
a9957449 2998static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 2999{
46cb4b7c
SS
3000 int balance = 1;
3001 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3002 unsigned long interval;
3003 struct sched_domain *sd;
46cb4b7c 3004 /* Earliest time when we have to do rebalance again */
c9819f45 3005 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3006 int update_next_balance = 0;
1da177e4 3007
46cb4b7c 3008 for_each_domain(cpu, sd) {
1da177e4
LT
3009 if (!(sd->flags & SD_LOAD_BALANCE))
3010 continue;
3011
3012 interval = sd->balance_interval;
d15bcfdb 3013 if (idle != CPU_IDLE)
1da177e4
LT
3014 interval *= sd->busy_factor;
3015
3016 /* scale ms to jiffies */
3017 interval = msecs_to_jiffies(interval);
3018 if (unlikely(!interval))
3019 interval = 1;
dd41f596
IM
3020 if (interval > HZ*NR_CPUS/10)
3021 interval = HZ*NR_CPUS/10;
3022
1da177e4 3023
08c183f3
CL
3024 if (sd->flags & SD_SERIALIZE) {
3025 if (!spin_trylock(&balancing))
3026 goto out;
3027 }
3028
c9819f45 3029 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3030 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3031 /*
3032 * We've pulled tasks over so either we're no
5969fe06
NP
3033 * longer idle, or one of our SMT siblings is
3034 * not idle.
3035 */
d15bcfdb 3036 idle = CPU_NOT_IDLE;
1da177e4 3037 }
1bd77f2d 3038 sd->last_balance = jiffies;
1da177e4 3039 }
08c183f3
CL
3040 if (sd->flags & SD_SERIALIZE)
3041 spin_unlock(&balancing);
3042out:
f549da84 3043 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3044 next_balance = sd->last_balance + interval;
f549da84
SS
3045 update_next_balance = 1;
3046 }
783609c6
SS
3047
3048 /*
3049 * Stop the load balance at this level. There is another
3050 * CPU in our sched group which is doing load balancing more
3051 * actively.
3052 */
3053 if (!balance)
3054 break;
1da177e4 3055 }
f549da84
SS
3056
3057 /*
3058 * next_balance will be updated only when there is a need.
3059 * When the cpu is attached to null domain for ex, it will not be
3060 * updated.
3061 */
3062 if (likely(update_next_balance))
3063 rq->next_balance = next_balance;
46cb4b7c
SS
3064}
3065
3066/*
3067 * run_rebalance_domains is triggered when needed from the scheduler tick.
3068 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3069 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3070 */
3071static void run_rebalance_domains(struct softirq_action *h)
3072{
dd41f596
IM
3073 int this_cpu = smp_processor_id();
3074 struct rq *this_rq = cpu_rq(this_cpu);
3075 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3076 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3077
dd41f596 3078 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3079
3080#ifdef CONFIG_NO_HZ
3081 /*
3082 * If this cpu is the owner for idle load balancing, then do the
3083 * balancing on behalf of the other idle cpus whose ticks are
3084 * stopped.
3085 */
dd41f596
IM
3086 if (this_rq->idle_at_tick &&
3087 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3088 cpumask_t cpus = nohz.cpu_mask;
3089 struct rq *rq;
3090 int balance_cpu;
3091
dd41f596 3092 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3093 for_each_cpu_mask(balance_cpu, cpus) {
3094 /*
3095 * If this cpu gets work to do, stop the load balancing
3096 * work being done for other cpus. Next load
3097 * balancing owner will pick it up.
3098 */
3099 if (need_resched())
3100 break;
3101
de0cf899 3102 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3103
3104 rq = cpu_rq(balance_cpu);
dd41f596
IM
3105 if (time_after(this_rq->next_balance, rq->next_balance))
3106 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3107 }
3108 }
3109#endif
3110}
3111
3112/*
3113 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3114 *
3115 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3116 * idle load balancing owner or decide to stop the periodic load balancing,
3117 * if the whole system is idle.
3118 */
dd41f596 3119static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3120{
46cb4b7c
SS
3121#ifdef CONFIG_NO_HZ
3122 /*
3123 * If we were in the nohz mode recently and busy at the current
3124 * scheduler tick, then check if we need to nominate new idle
3125 * load balancer.
3126 */
3127 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3128 rq->in_nohz_recently = 0;
3129
3130 if (atomic_read(&nohz.load_balancer) == cpu) {
3131 cpu_clear(cpu, nohz.cpu_mask);
3132 atomic_set(&nohz.load_balancer, -1);
3133 }
3134
3135 if (atomic_read(&nohz.load_balancer) == -1) {
3136 /*
3137 * simple selection for now: Nominate the
3138 * first cpu in the nohz list to be the next
3139 * ilb owner.
3140 *
3141 * TBD: Traverse the sched domains and nominate
3142 * the nearest cpu in the nohz.cpu_mask.
3143 */
3144 int ilb = first_cpu(nohz.cpu_mask);
3145
3146 if (ilb != NR_CPUS)
3147 resched_cpu(ilb);
3148 }
3149 }
3150
3151 /*
3152 * If this cpu is idle and doing idle load balancing for all the
3153 * cpus with ticks stopped, is it time for that to stop?
3154 */
3155 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3156 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3157 resched_cpu(cpu);
3158 return;
3159 }
3160
3161 /*
3162 * If this cpu is idle and the idle load balancing is done by
3163 * someone else, then no need raise the SCHED_SOFTIRQ
3164 */
3165 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3166 cpu_isset(cpu, nohz.cpu_mask))
3167 return;
3168#endif
3169 if (time_after_eq(jiffies, rq->next_balance))
3170 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3171}
dd41f596
IM
3172
3173#else /* CONFIG_SMP */
3174
1da177e4
LT
3175/*
3176 * on UP we do not need to balance between CPUs:
3177 */
70b97a7f 3178static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3179{
3180}
dd41f596
IM
3181
3182/* Avoid "used but not defined" warning on UP */
3183static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3184 unsigned long max_nr_move, unsigned long max_load_move,
3185 struct sched_domain *sd, enum cpu_idle_type idle,
3186 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3187 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3188{
3189 *load_moved = 0;
3190
3191 return 0;
3192}
3193
1da177e4
LT
3194#endif
3195
1da177e4
LT
3196DEFINE_PER_CPU(struct kernel_stat, kstat);
3197
3198EXPORT_PER_CPU_SYMBOL(kstat);
3199
3200/*
41b86e9c
IM
3201 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3202 * that have not yet been banked in case the task is currently running.
1da177e4 3203 */
41b86e9c 3204unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3205{
1da177e4 3206 unsigned long flags;
41b86e9c
IM
3207 u64 ns, delta_exec;
3208 struct rq *rq;
48f24c4d 3209
41b86e9c
IM
3210 rq = task_rq_lock(p, &flags);
3211 ns = p->se.sum_exec_runtime;
3212 if (rq->curr == p) {
a8e504d2
IM
3213 update_rq_clock(rq);
3214 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3215 if ((s64)delta_exec > 0)
3216 ns += delta_exec;
3217 }
3218 task_rq_unlock(rq, &flags);
48f24c4d 3219
1da177e4
LT
3220 return ns;
3221}
3222
1da177e4
LT
3223/*
3224 * Account user cpu time to a process.
3225 * @p: the process that the cpu time gets accounted to
3226 * @hardirq_offset: the offset to subtract from hardirq_count()
3227 * @cputime: the cpu time spent in user space since the last update
3228 */
3229void account_user_time(struct task_struct *p, cputime_t cputime)
3230{
3231 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3232 cputime64_t tmp;
3233
3234 p->utime = cputime_add(p->utime, cputime);
3235
3236 /* Add user time to cpustat. */
3237 tmp = cputime_to_cputime64(cputime);
3238 if (TASK_NICE(p) > 0)
3239 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3240 else
3241 cpustat->user = cputime64_add(cpustat->user, tmp);
3242}
3243
3244/*
3245 * Account system cpu time to a process.
3246 * @p: the process that the cpu time gets accounted to
3247 * @hardirq_offset: the offset to subtract from hardirq_count()
3248 * @cputime: the cpu time spent in kernel space since the last update
3249 */
3250void account_system_time(struct task_struct *p, int hardirq_offset,
3251 cputime_t cputime)
3252{
3253 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3254 struct rq *rq = this_rq();
1da177e4
LT
3255 cputime64_t tmp;
3256
3257 p->stime = cputime_add(p->stime, cputime);
3258
3259 /* Add system time to cpustat. */
3260 tmp = cputime_to_cputime64(cputime);
3261 if (hardirq_count() - hardirq_offset)
3262 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3263 else if (softirq_count())
3264 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3265 else if (p != rq->idle)
3266 cpustat->system = cputime64_add(cpustat->system, tmp);
3267 else if (atomic_read(&rq->nr_iowait) > 0)
3268 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3269 else
3270 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3271 /* Account for system time used */
3272 acct_update_integrals(p);
1da177e4
LT
3273}
3274
3275/*
3276 * Account for involuntary wait time.
3277 * @p: the process from which the cpu time has been stolen
3278 * @steal: the cpu time spent in involuntary wait
3279 */
3280void account_steal_time(struct task_struct *p, cputime_t steal)
3281{
3282 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3283 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3284 struct rq *rq = this_rq();
1da177e4
LT
3285
3286 if (p == rq->idle) {
3287 p->stime = cputime_add(p->stime, steal);
3288 if (atomic_read(&rq->nr_iowait) > 0)
3289 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3290 else
3291 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3292 } else
3293 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3294}
3295
7835b98b
CL
3296/*
3297 * This function gets called by the timer code, with HZ frequency.
3298 * We call it with interrupts disabled.
3299 *
3300 * It also gets called by the fork code, when changing the parent's
3301 * timeslices.
3302 */
3303void scheduler_tick(void)
3304{
7835b98b
CL
3305 int cpu = smp_processor_id();
3306 struct rq *rq = cpu_rq(cpu);
dd41f596 3307 struct task_struct *curr = rq->curr;
529c7726 3308 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3309
3310 spin_lock(&rq->lock);
546fe3c9 3311 __update_rq_clock(rq);
529c7726
IM
3312 /*
3313 * Let rq->clock advance by at least TICK_NSEC:
3314 */
3315 if (unlikely(rq->clock < next_tick))
3316 rq->clock = next_tick;
3317 rq->tick_timestamp = rq->clock;
f1a438d8 3318 update_cpu_load(rq);
dd41f596
IM
3319 if (curr != rq->idle) /* FIXME: needed? */
3320 curr->sched_class->task_tick(rq, curr);
dd41f596 3321 spin_unlock(&rq->lock);
7835b98b 3322
e418e1c2 3323#ifdef CONFIG_SMP
dd41f596
IM
3324 rq->idle_at_tick = idle_cpu(cpu);
3325 trigger_load_balance(rq, cpu);
e418e1c2 3326#endif
1da177e4
LT
3327}
3328
1da177e4
LT
3329#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3330
3331void fastcall add_preempt_count(int val)
3332{
3333 /*
3334 * Underflow?
3335 */
9a11b49a
IM
3336 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3337 return;
1da177e4
LT
3338 preempt_count() += val;
3339 /*
3340 * Spinlock count overflowing soon?
3341 */
33859f7f
MOS
3342 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3343 PREEMPT_MASK - 10);
1da177e4
LT
3344}
3345EXPORT_SYMBOL(add_preempt_count);
3346
3347void fastcall sub_preempt_count(int val)
3348{
3349 /*
3350 * Underflow?
3351 */
9a11b49a
IM
3352 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3353 return;
1da177e4
LT
3354 /*
3355 * Is the spinlock portion underflowing?
3356 */
9a11b49a
IM
3357 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3358 !(preempt_count() & PREEMPT_MASK)))
3359 return;
3360
1da177e4
LT
3361 preempt_count() -= val;
3362}
3363EXPORT_SYMBOL(sub_preempt_count);
3364
3365#endif
3366
3367/*
dd41f596 3368 * Print scheduling while atomic bug:
1da177e4 3369 */
dd41f596 3370static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3371{
dd41f596
IM
3372 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3373 prev->comm, preempt_count(), prev->pid);
3374 debug_show_held_locks(prev);
3375 if (irqs_disabled())
3376 print_irqtrace_events(prev);
3377 dump_stack();
3378}
1da177e4 3379
dd41f596
IM
3380/*
3381 * Various schedule()-time debugging checks and statistics:
3382 */
3383static inline void schedule_debug(struct task_struct *prev)
3384{
1da177e4
LT
3385 /*
3386 * Test if we are atomic. Since do_exit() needs to call into
3387 * schedule() atomically, we ignore that path for now.
3388 * Otherwise, whine if we are scheduling when we should not be.
3389 */
dd41f596
IM
3390 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3391 __schedule_bug(prev);
3392
1da177e4
LT
3393 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3394
2d72376b 3395 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3396#ifdef CONFIG_SCHEDSTATS
3397 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3398 schedstat_inc(this_rq(), bkl_count);
3399 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3400 }
3401#endif
dd41f596
IM
3402}
3403
3404/*
3405 * Pick up the highest-prio task:
3406 */
3407static inline struct task_struct *
ff95f3df 3408pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3409{
5522d5d5 3410 const struct sched_class *class;
dd41f596 3411 struct task_struct *p;
1da177e4
LT
3412
3413 /*
dd41f596
IM
3414 * Optimization: we know that if all tasks are in
3415 * the fair class we can call that function directly:
1da177e4 3416 */
dd41f596 3417 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3418 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3419 if (likely(p))
3420 return p;
1da177e4
LT
3421 }
3422
dd41f596
IM
3423 class = sched_class_highest;
3424 for ( ; ; ) {
fb8d4724 3425 p = class->pick_next_task(rq);
dd41f596
IM
3426 if (p)
3427 return p;
3428 /*
3429 * Will never be NULL as the idle class always
3430 * returns a non-NULL p:
3431 */
3432 class = class->next;
3433 }
3434}
1da177e4 3435
dd41f596
IM
3436/*
3437 * schedule() is the main scheduler function.
3438 */
3439asmlinkage void __sched schedule(void)
3440{
3441 struct task_struct *prev, *next;
3442 long *switch_count;
3443 struct rq *rq;
dd41f596
IM
3444 int cpu;
3445
3446need_resched:
3447 preempt_disable();
3448 cpu = smp_processor_id();
3449 rq = cpu_rq(cpu);
3450 rcu_qsctr_inc(cpu);
3451 prev = rq->curr;
3452 switch_count = &prev->nivcsw;
3453
3454 release_kernel_lock(prev);
3455need_resched_nonpreemptible:
3456
3457 schedule_debug(prev);
1da177e4 3458
1e819950
IM
3459 /*
3460 * Do the rq-clock update outside the rq lock:
3461 */
3462 local_irq_disable();
c1b3da3e 3463 __update_rq_clock(rq);
1e819950
IM
3464 spin_lock(&rq->lock);
3465 clear_tsk_need_resched(prev);
1da177e4 3466
1da177e4 3467 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3468 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3469 unlikely(signal_pending(prev)))) {
1da177e4 3470 prev->state = TASK_RUNNING;
dd41f596 3471 } else {
2e1cb74a 3472 deactivate_task(rq, prev, 1);
1da177e4 3473 }
dd41f596 3474 switch_count = &prev->nvcsw;
1da177e4
LT
3475 }
3476
dd41f596 3477 if (unlikely(!rq->nr_running))
1da177e4 3478 idle_balance(cpu, rq);
1da177e4 3479
31ee529c 3480 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3481 next = pick_next_task(rq, prev);
1da177e4
LT
3482
3483 sched_info_switch(prev, next);
dd41f596 3484
1da177e4 3485 if (likely(prev != next)) {
1da177e4
LT
3486 rq->nr_switches++;
3487 rq->curr = next;
3488 ++*switch_count;
3489
dd41f596 3490 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3491 } else
3492 spin_unlock_irq(&rq->lock);
3493
dd41f596
IM
3494 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3495 cpu = smp_processor_id();
3496 rq = cpu_rq(cpu);
1da177e4 3497 goto need_resched_nonpreemptible;
dd41f596 3498 }
1da177e4
LT
3499 preempt_enable_no_resched();
3500 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3501 goto need_resched;
3502}
1da177e4
LT
3503EXPORT_SYMBOL(schedule);
3504
3505#ifdef CONFIG_PREEMPT
3506/*
2ed6e34f 3507 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3508 * off of preempt_enable. Kernel preemptions off return from interrupt
3509 * occur there and call schedule directly.
3510 */
3511asmlinkage void __sched preempt_schedule(void)
3512{
3513 struct thread_info *ti = current_thread_info();
3514#ifdef CONFIG_PREEMPT_BKL
3515 struct task_struct *task = current;
3516 int saved_lock_depth;
3517#endif
3518 /*
3519 * If there is a non-zero preempt_count or interrupts are disabled,
3520 * we do not want to preempt the current task. Just return..
3521 */
beed33a8 3522 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3523 return;
3524
3a5c359a
AK
3525 do {
3526 add_preempt_count(PREEMPT_ACTIVE);
3527
3528 /*
3529 * We keep the big kernel semaphore locked, but we
3530 * clear ->lock_depth so that schedule() doesnt
3531 * auto-release the semaphore:
3532 */
1da177e4 3533#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3534 saved_lock_depth = task->lock_depth;
3535 task->lock_depth = -1;
1da177e4 3536#endif
3a5c359a 3537 schedule();
1da177e4 3538#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3539 task->lock_depth = saved_lock_depth;
1da177e4 3540#endif
3a5c359a 3541 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3542
3a5c359a
AK
3543 /*
3544 * Check again in case we missed a preemption opportunity
3545 * between schedule and now.
3546 */
3547 barrier();
3548 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3549}
1da177e4
LT
3550EXPORT_SYMBOL(preempt_schedule);
3551
3552/*
2ed6e34f 3553 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3554 * off of irq context.
3555 * Note, that this is called and return with irqs disabled. This will
3556 * protect us against recursive calling from irq.
3557 */
3558asmlinkage void __sched preempt_schedule_irq(void)
3559{
3560 struct thread_info *ti = current_thread_info();
3561#ifdef CONFIG_PREEMPT_BKL
3562 struct task_struct *task = current;
3563 int saved_lock_depth;
3564#endif
2ed6e34f 3565 /* Catch callers which need to be fixed */
1da177e4
LT
3566 BUG_ON(ti->preempt_count || !irqs_disabled());
3567
3a5c359a
AK
3568 do {
3569 add_preempt_count(PREEMPT_ACTIVE);
3570
3571 /*
3572 * We keep the big kernel semaphore locked, but we
3573 * clear ->lock_depth so that schedule() doesnt
3574 * auto-release the semaphore:
3575 */
1da177e4 3576#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3577 saved_lock_depth = task->lock_depth;
3578 task->lock_depth = -1;
1da177e4 3579#endif
3a5c359a
AK
3580 local_irq_enable();
3581 schedule();
3582 local_irq_disable();
1da177e4 3583#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3584 task->lock_depth = saved_lock_depth;
1da177e4 3585#endif
3a5c359a 3586 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3587
3a5c359a
AK
3588 /*
3589 * Check again in case we missed a preemption opportunity
3590 * between schedule and now.
3591 */
3592 barrier();
3593 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3594}
3595
3596#endif /* CONFIG_PREEMPT */
3597
95cdf3b7
IM
3598int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3599 void *key)
1da177e4 3600{
48f24c4d 3601 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3602}
1da177e4
LT
3603EXPORT_SYMBOL(default_wake_function);
3604
3605/*
3606 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3607 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3608 * number) then we wake all the non-exclusive tasks and one exclusive task.
3609 *
3610 * There are circumstances in which we can try to wake a task which has already
3611 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3612 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3613 */
3614static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3615 int nr_exclusive, int sync, void *key)
3616{
2e45874c 3617 wait_queue_t *curr, *next;
1da177e4 3618
2e45874c 3619 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3620 unsigned flags = curr->flags;
3621
1da177e4 3622 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3623 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3624 break;
3625 }
3626}
3627
3628/**
3629 * __wake_up - wake up threads blocked on a waitqueue.
3630 * @q: the waitqueue
3631 * @mode: which threads
3632 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3633 * @key: is directly passed to the wakeup function
1da177e4
LT
3634 */
3635void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3636 int nr_exclusive, void *key)
1da177e4
LT
3637{
3638 unsigned long flags;
3639
3640 spin_lock_irqsave(&q->lock, flags);
3641 __wake_up_common(q, mode, nr_exclusive, 0, key);
3642 spin_unlock_irqrestore(&q->lock, flags);
3643}
1da177e4
LT
3644EXPORT_SYMBOL(__wake_up);
3645
3646/*
3647 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3648 */
3649void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3650{
3651 __wake_up_common(q, mode, 1, 0, NULL);
3652}
3653
3654/**
67be2dd1 3655 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3656 * @q: the waitqueue
3657 * @mode: which threads
3658 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3659 *
3660 * The sync wakeup differs that the waker knows that it will schedule
3661 * away soon, so while the target thread will be woken up, it will not
3662 * be migrated to another CPU - ie. the two threads are 'synchronized'
3663 * with each other. This can prevent needless bouncing between CPUs.
3664 *
3665 * On UP it can prevent extra preemption.
3666 */
95cdf3b7
IM
3667void fastcall
3668__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3669{
3670 unsigned long flags;
3671 int sync = 1;
3672
3673 if (unlikely(!q))
3674 return;
3675
3676 if (unlikely(!nr_exclusive))
3677 sync = 0;
3678
3679 spin_lock_irqsave(&q->lock, flags);
3680 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3681 spin_unlock_irqrestore(&q->lock, flags);
3682}
3683EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3684
3685void fastcall complete(struct completion *x)
3686{
3687 unsigned long flags;
3688
3689 spin_lock_irqsave(&x->wait.lock, flags);
3690 x->done++;
3691 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3692 1, 0, NULL);
3693 spin_unlock_irqrestore(&x->wait.lock, flags);
3694}
3695EXPORT_SYMBOL(complete);
3696
3697void fastcall complete_all(struct completion *x)
3698{
3699 unsigned long flags;
3700
3701 spin_lock_irqsave(&x->wait.lock, flags);
3702 x->done += UINT_MAX/2;
3703 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3704 0, 0, NULL);
3705 spin_unlock_irqrestore(&x->wait.lock, flags);
3706}
3707EXPORT_SYMBOL(complete_all);
3708
8cbbe86d
AK
3709static inline long __sched
3710do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3711{
1da177e4
LT
3712 if (!x->done) {
3713 DECLARE_WAITQUEUE(wait, current);
3714
3715 wait.flags |= WQ_FLAG_EXCLUSIVE;
3716 __add_wait_queue_tail(&x->wait, &wait);
3717 do {
8cbbe86d
AK
3718 if (state == TASK_INTERRUPTIBLE &&
3719 signal_pending(current)) {
3720 __remove_wait_queue(&x->wait, &wait);
3721 return -ERESTARTSYS;
3722 }
3723 __set_current_state(state);
1da177e4
LT
3724 spin_unlock_irq(&x->wait.lock);
3725 timeout = schedule_timeout(timeout);
3726 spin_lock_irq(&x->wait.lock);
3727 if (!timeout) {
3728 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3729 return timeout;
1da177e4
LT
3730 }
3731 } while (!x->done);
3732 __remove_wait_queue(&x->wait, &wait);
3733 }
3734 x->done--;
1da177e4
LT
3735 return timeout;
3736}
1da177e4 3737
8cbbe86d
AK
3738static long __sched
3739wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3740{
1da177e4
LT
3741 might_sleep();
3742
3743 spin_lock_irq(&x->wait.lock);
8cbbe86d 3744 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3745 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3746 return timeout;
3747}
1da177e4 3748
8cbbe86d
AK
3749void fastcall __sched wait_for_completion(struct completion *x)
3750{
3751 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3752}
8cbbe86d 3753EXPORT_SYMBOL(wait_for_completion);
1da177e4
LT
3754
3755unsigned long fastcall __sched
8cbbe86d 3756wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3757{
8cbbe86d 3758 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3759}
8cbbe86d 3760EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3761
8cbbe86d 3762int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3763{
8cbbe86d 3764 return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
0fec171c 3765}
8cbbe86d 3766EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3767
8cbbe86d
AK
3768unsigned long fastcall __sched
3769wait_for_completion_interruptible_timeout(struct completion *x,
3770 unsigned long timeout)
0fec171c 3771{
8cbbe86d 3772 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3773}
8cbbe86d 3774EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3775
8cbbe86d
AK
3776static long __sched
3777sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3778{
0fec171c
IM
3779 unsigned long flags;
3780 wait_queue_t wait;
3781
3782 init_waitqueue_entry(&wait, current);
1da177e4 3783
8cbbe86d 3784 __set_current_state(state);
1da177e4 3785
8cbbe86d
AK
3786 spin_lock_irqsave(&q->lock, flags);
3787 __add_wait_queue(q, &wait);
3788 spin_unlock(&q->lock);
3789 timeout = schedule_timeout(timeout);
3790 spin_lock_irq(&q->lock);
3791 __remove_wait_queue(q, &wait);
3792 spin_unlock_irqrestore(&q->lock, flags);
3793
3794 return timeout;
3795}
3796
3797void __sched interruptible_sleep_on(wait_queue_head_t *q)
3798{
3799 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3800}
1da177e4
LT
3801EXPORT_SYMBOL(interruptible_sleep_on);
3802
0fec171c 3803long __sched
95cdf3b7 3804interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3805{
8cbbe86d 3806 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3807}
1da177e4
LT
3808EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3809
0fec171c 3810void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3811{
8cbbe86d 3812 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3813}
1da177e4
LT
3814EXPORT_SYMBOL(sleep_on);
3815
0fec171c 3816long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3817{
8cbbe86d 3818 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3819}
1da177e4
LT
3820EXPORT_SYMBOL(sleep_on_timeout);
3821
b29739f9
IM
3822#ifdef CONFIG_RT_MUTEXES
3823
3824/*
3825 * rt_mutex_setprio - set the current priority of a task
3826 * @p: task
3827 * @prio: prio value (kernel-internal form)
3828 *
3829 * This function changes the 'effective' priority of a task. It does
3830 * not touch ->normal_prio like __setscheduler().
3831 *
3832 * Used by the rt_mutex code to implement priority inheritance logic.
3833 */
36c8b586 3834void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3835{
3836 unsigned long flags;
83b699ed 3837 int oldprio, on_rq, running;
70b97a7f 3838 struct rq *rq;
b29739f9
IM
3839
3840 BUG_ON(prio < 0 || prio > MAX_PRIO);
3841
3842 rq = task_rq_lock(p, &flags);
a8e504d2 3843 update_rq_clock(rq);
b29739f9 3844
d5f9f942 3845 oldprio = p->prio;
dd41f596 3846 on_rq = p->se.on_rq;
83b699ed
SV
3847 running = task_running(rq, p);
3848 if (on_rq) {
69be72c1 3849 dequeue_task(rq, p, 0);
83b699ed
SV
3850 if (running)
3851 p->sched_class->put_prev_task(rq, p);
3852 }
dd41f596
IM
3853
3854 if (rt_prio(prio))
3855 p->sched_class = &rt_sched_class;
3856 else
3857 p->sched_class = &fair_sched_class;
3858
b29739f9
IM
3859 p->prio = prio;
3860
dd41f596 3861 if (on_rq) {
83b699ed
SV
3862 if (running)
3863 p->sched_class->set_curr_task(rq);
8159f87e 3864 enqueue_task(rq, p, 0);
b29739f9
IM
3865 /*
3866 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3867 * our priority decreased, or if we are not currently running on
3868 * this runqueue and our priority is higher than the current's
b29739f9 3869 */
83b699ed 3870 if (running) {
d5f9f942
AM
3871 if (p->prio > oldprio)
3872 resched_task(rq->curr);
dd41f596
IM
3873 } else {
3874 check_preempt_curr(rq, p);
3875 }
b29739f9
IM
3876 }
3877 task_rq_unlock(rq, &flags);
3878}
3879
3880#endif
3881
36c8b586 3882void set_user_nice(struct task_struct *p, long nice)
1da177e4 3883{
dd41f596 3884 int old_prio, delta, on_rq;
1da177e4 3885 unsigned long flags;
70b97a7f 3886 struct rq *rq;
1da177e4
LT
3887
3888 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3889 return;
3890 /*
3891 * We have to be careful, if called from sys_setpriority(),
3892 * the task might be in the middle of scheduling on another CPU.
3893 */
3894 rq = task_rq_lock(p, &flags);
a8e504d2 3895 update_rq_clock(rq);
1da177e4
LT
3896 /*
3897 * The RT priorities are set via sched_setscheduler(), but we still
3898 * allow the 'normal' nice value to be set - but as expected
3899 * it wont have any effect on scheduling until the task is
dd41f596 3900 * SCHED_FIFO/SCHED_RR:
1da177e4 3901 */
e05606d3 3902 if (task_has_rt_policy(p)) {
1da177e4
LT
3903 p->static_prio = NICE_TO_PRIO(nice);
3904 goto out_unlock;
3905 }
dd41f596
IM
3906 on_rq = p->se.on_rq;
3907 if (on_rq) {
69be72c1 3908 dequeue_task(rq, p, 0);
79b5dddf 3909 dec_load(rq, p);
2dd73a4f 3910 }
1da177e4 3911
1da177e4 3912 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3913 set_load_weight(p);
b29739f9
IM
3914 old_prio = p->prio;
3915 p->prio = effective_prio(p);
3916 delta = p->prio - old_prio;
1da177e4 3917
dd41f596 3918 if (on_rq) {
8159f87e 3919 enqueue_task(rq, p, 0);
29b4b623 3920 inc_load(rq, p);
1da177e4 3921 /*
d5f9f942
AM
3922 * If the task increased its priority or is running and
3923 * lowered its priority, then reschedule its CPU:
1da177e4 3924 */
d5f9f942 3925 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3926 resched_task(rq->curr);
3927 }
3928out_unlock:
3929 task_rq_unlock(rq, &flags);
3930}
1da177e4
LT
3931EXPORT_SYMBOL(set_user_nice);
3932
e43379f1
MM
3933/*
3934 * can_nice - check if a task can reduce its nice value
3935 * @p: task
3936 * @nice: nice value
3937 */
36c8b586 3938int can_nice(const struct task_struct *p, const int nice)
e43379f1 3939{
024f4747
MM
3940 /* convert nice value [19,-20] to rlimit style value [1,40] */
3941 int nice_rlim = 20 - nice;
48f24c4d 3942
e43379f1
MM
3943 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3944 capable(CAP_SYS_NICE));
3945}
3946
1da177e4
LT
3947#ifdef __ARCH_WANT_SYS_NICE
3948
3949/*
3950 * sys_nice - change the priority of the current process.
3951 * @increment: priority increment
3952 *
3953 * sys_setpriority is a more generic, but much slower function that
3954 * does similar things.
3955 */
3956asmlinkage long sys_nice(int increment)
3957{
48f24c4d 3958 long nice, retval;
1da177e4
LT
3959
3960 /*
3961 * Setpriority might change our priority at the same moment.
3962 * We don't have to worry. Conceptually one call occurs first
3963 * and we have a single winner.
3964 */
e43379f1
MM
3965 if (increment < -40)
3966 increment = -40;
1da177e4
LT
3967 if (increment > 40)
3968 increment = 40;
3969
3970 nice = PRIO_TO_NICE(current->static_prio) + increment;
3971 if (nice < -20)
3972 nice = -20;
3973 if (nice > 19)
3974 nice = 19;
3975
e43379f1
MM
3976 if (increment < 0 && !can_nice(current, nice))
3977 return -EPERM;
3978
1da177e4
LT
3979 retval = security_task_setnice(current, nice);
3980 if (retval)
3981 return retval;
3982
3983 set_user_nice(current, nice);
3984 return 0;
3985}
3986
3987#endif
3988
3989/**
3990 * task_prio - return the priority value of a given task.
3991 * @p: the task in question.
3992 *
3993 * This is the priority value as seen by users in /proc.
3994 * RT tasks are offset by -200. Normal tasks are centered
3995 * around 0, value goes from -16 to +15.
3996 */
36c8b586 3997int task_prio(const struct task_struct *p)
1da177e4
LT
3998{
3999 return p->prio - MAX_RT_PRIO;
4000}
4001
4002/**
4003 * task_nice - return the nice value of a given task.
4004 * @p: the task in question.
4005 */
36c8b586 4006int task_nice(const struct task_struct *p)
1da177e4
LT
4007{
4008 return TASK_NICE(p);
4009}
1da177e4 4010EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4011
4012/**
4013 * idle_cpu - is a given cpu idle currently?
4014 * @cpu: the processor in question.
4015 */
4016int idle_cpu(int cpu)
4017{
4018 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4019}
4020
1da177e4
LT
4021/**
4022 * idle_task - return the idle task for a given cpu.
4023 * @cpu: the processor in question.
4024 */
36c8b586 4025struct task_struct *idle_task(int cpu)
1da177e4
LT
4026{
4027 return cpu_rq(cpu)->idle;
4028}
4029
4030/**
4031 * find_process_by_pid - find a process with a matching PID value.
4032 * @pid: the pid in question.
4033 */
a9957449 4034static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4035{
4036 return pid ? find_task_by_pid(pid) : current;
4037}
4038
4039/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4040static void
4041__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4042{
dd41f596 4043 BUG_ON(p->se.on_rq);
48f24c4d 4044
1da177e4 4045 p->policy = policy;
dd41f596
IM
4046 switch (p->policy) {
4047 case SCHED_NORMAL:
4048 case SCHED_BATCH:
4049 case SCHED_IDLE:
4050 p->sched_class = &fair_sched_class;
4051 break;
4052 case SCHED_FIFO:
4053 case SCHED_RR:
4054 p->sched_class = &rt_sched_class;
4055 break;
4056 }
4057
1da177e4 4058 p->rt_priority = prio;
b29739f9
IM
4059 p->normal_prio = normal_prio(p);
4060 /* we are holding p->pi_lock already */
4061 p->prio = rt_mutex_getprio(p);
2dd73a4f 4062 set_load_weight(p);
1da177e4
LT
4063}
4064
4065/**
72fd4a35 4066 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4067 * @p: the task in question.
4068 * @policy: new policy.
4069 * @param: structure containing the new RT priority.
5fe1d75f 4070 *
72fd4a35 4071 * NOTE that the task may be already dead.
1da177e4 4072 */
95cdf3b7
IM
4073int sched_setscheduler(struct task_struct *p, int policy,
4074 struct sched_param *param)
1da177e4 4075{
83b699ed 4076 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4077 unsigned long flags;
70b97a7f 4078 struct rq *rq;
1da177e4 4079
66e5393a
SR
4080 /* may grab non-irq protected spin_locks */
4081 BUG_ON(in_interrupt());
1da177e4
LT
4082recheck:
4083 /* double check policy once rq lock held */
4084 if (policy < 0)
4085 policy = oldpolicy = p->policy;
4086 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4087 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4088 policy != SCHED_IDLE)
b0a9499c 4089 return -EINVAL;
1da177e4
LT
4090 /*
4091 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4092 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4093 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4094 */
4095 if (param->sched_priority < 0 ||
95cdf3b7 4096 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4097 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4098 return -EINVAL;
e05606d3 4099 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4100 return -EINVAL;
4101
37e4ab3f
OC
4102 /*
4103 * Allow unprivileged RT tasks to decrease priority:
4104 */
4105 if (!capable(CAP_SYS_NICE)) {
e05606d3 4106 if (rt_policy(policy)) {
8dc3e909 4107 unsigned long rlim_rtprio;
8dc3e909
ON
4108
4109 if (!lock_task_sighand(p, &flags))
4110 return -ESRCH;
4111 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4112 unlock_task_sighand(p, &flags);
4113
4114 /* can't set/change the rt policy */
4115 if (policy != p->policy && !rlim_rtprio)
4116 return -EPERM;
4117
4118 /* can't increase priority */
4119 if (param->sched_priority > p->rt_priority &&
4120 param->sched_priority > rlim_rtprio)
4121 return -EPERM;
4122 }
dd41f596
IM
4123 /*
4124 * Like positive nice levels, dont allow tasks to
4125 * move out of SCHED_IDLE either:
4126 */
4127 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4128 return -EPERM;
5fe1d75f 4129
37e4ab3f
OC
4130 /* can't change other user's priorities */
4131 if ((current->euid != p->euid) &&
4132 (current->euid != p->uid))
4133 return -EPERM;
4134 }
1da177e4
LT
4135
4136 retval = security_task_setscheduler(p, policy, param);
4137 if (retval)
4138 return retval;
b29739f9
IM
4139 /*
4140 * make sure no PI-waiters arrive (or leave) while we are
4141 * changing the priority of the task:
4142 */
4143 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4144 /*
4145 * To be able to change p->policy safely, the apropriate
4146 * runqueue lock must be held.
4147 */
b29739f9 4148 rq = __task_rq_lock(p);
1da177e4
LT
4149 /* recheck policy now with rq lock held */
4150 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4151 policy = oldpolicy = -1;
b29739f9
IM
4152 __task_rq_unlock(rq);
4153 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4154 goto recheck;
4155 }
2daa3577 4156 update_rq_clock(rq);
dd41f596 4157 on_rq = p->se.on_rq;
83b699ed
SV
4158 running = task_running(rq, p);
4159 if (on_rq) {
2e1cb74a 4160 deactivate_task(rq, p, 0);
83b699ed
SV
4161 if (running)
4162 p->sched_class->put_prev_task(rq, p);
4163 }
f6b53205 4164
1da177e4 4165 oldprio = p->prio;
dd41f596 4166 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4167
dd41f596 4168 if (on_rq) {
83b699ed
SV
4169 if (running)
4170 p->sched_class->set_curr_task(rq);
dd41f596 4171 activate_task(rq, p, 0);
1da177e4
LT
4172 /*
4173 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4174 * our priority decreased, or if we are not currently running on
4175 * this runqueue and our priority is higher than the current's
1da177e4 4176 */
83b699ed 4177 if (running) {
d5f9f942
AM
4178 if (p->prio > oldprio)
4179 resched_task(rq->curr);
dd41f596
IM
4180 } else {
4181 check_preempt_curr(rq, p);
4182 }
1da177e4 4183 }
b29739f9
IM
4184 __task_rq_unlock(rq);
4185 spin_unlock_irqrestore(&p->pi_lock, flags);
4186
95e02ca9
TG
4187 rt_mutex_adjust_pi(p);
4188
1da177e4
LT
4189 return 0;
4190}
4191EXPORT_SYMBOL_GPL(sched_setscheduler);
4192
95cdf3b7
IM
4193static int
4194do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4195{
1da177e4
LT
4196 struct sched_param lparam;
4197 struct task_struct *p;
36c8b586 4198 int retval;
1da177e4
LT
4199
4200 if (!param || pid < 0)
4201 return -EINVAL;
4202 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4203 return -EFAULT;
5fe1d75f
ON
4204
4205 rcu_read_lock();
4206 retval = -ESRCH;
1da177e4 4207 p = find_process_by_pid(pid);
5fe1d75f
ON
4208 if (p != NULL)
4209 retval = sched_setscheduler(p, policy, &lparam);
4210 rcu_read_unlock();
36c8b586 4211
1da177e4
LT
4212 return retval;
4213}
4214
4215/**
4216 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4217 * @pid: the pid in question.
4218 * @policy: new policy.
4219 * @param: structure containing the new RT priority.
4220 */
4221asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4222 struct sched_param __user *param)
4223{
c21761f1
JB
4224 /* negative values for policy are not valid */
4225 if (policy < 0)
4226 return -EINVAL;
4227
1da177e4
LT
4228 return do_sched_setscheduler(pid, policy, param);
4229}
4230
4231/**
4232 * sys_sched_setparam - set/change the RT priority of a thread
4233 * @pid: the pid in question.
4234 * @param: structure containing the new RT priority.
4235 */
4236asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4237{
4238 return do_sched_setscheduler(pid, -1, param);
4239}
4240
4241/**
4242 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4243 * @pid: the pid in question.
4244 */
4245asmlinkage long sys_sched_getscheduler(pid_t pid)
4246{
36c8b586 4247 struct task_struct *p;
3a5c359a 4248 int retval;
1da177e4
LT
4249
4250 if (pid < 0)
3a5c359a 4251 return -EINVAL;
1da177e4
LT
4252
4253 retval = -ESRCH;
4254 read_lock(&tasklist_lock);
4255 p = find_process_by_pid(pid);
4256 if (p) {
4257 retval = security_task_getscheduler(p);
4258 if (!retval)
4259 retval = p->policy;
4260 }
4261 read_unlock(&tasklist_lock);
1da177e4
LT
4262 return retval;
4263}
4264
4265/**
4266 * sys_sched_getscheduler - get the RT priority of a thread
4267 * @pid: the pid in question.
4268 * @param: structure containing the RT priority.
4269 */
4270asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4271{
4272 struct sched_param lp;
36c8b586 4273 struct task_struct *p;
3a5c359a 4274 int retval;
1da177e4
LT
4275
4276 if (!param || pid < 0)
3a5c359a 4277 return -EINVAL;
1da177e4
LT
4278
4279 read_lock(&tasklist_lock);
4280 p = find_process_by_pid(pid);
4281 retval = -ESRCH;
4282 if (!p)
4283 goto out_unlock;
4284
4285 retval = security_task_getscheduler(p);
4286 if (retval)
4287 goto out_unlock;
4288
4289 lp.sched_priority = p->rt_priority;
4290 read_unlock(&tasklist_lock);
4291
4292 /*
4293 * This one might sleep, we cannot do it with a spinlock held ...
4294 */
4295 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4296
1da177e4
LT
4297 return retval;
4298
4299out_unlock:
4300 read_unlock(&tasklist_lock);
4301 return retval;
4302}
4303
4304long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4305{
1da177e4 4306 cpumask_t cpus_allowed;
36c8b586
IM
4307 struct task_struct *p;
4308 int retval;
1da177e4 4309
5be9361c 4310 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4311 read_lock(&tasklist_lock);
4312
4313 p = find_process_by_pid(pid);
4314 if (!p) {
4315 read_unlock(&tasklist_lock);
5be9361c 4316 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4317 return -ESRCH;
4318 }
4319
4320 /*
4321 * It is not safe to call set_cpus_allowed with the
4322 * tasklist_lock held. We will bump the task_struct's
4323 * usage count and then drop tasklist_lock.
4324 */
4325 get_task_struct(p);
4326 read_unlock(&tasklist_lock);
4327
4328 retval = -EPERM;
4329 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4330 !capable(CAP_SYS_NICE))
4331 goto out_unlock;
4332
e7834f8f
DQ
4333 retval = security_task_setscheduler(p, 0, NULL);
4334 if (retval)
4335 goto out_unlock;
4336
1da177e4
LT
4337 cpus_allowed = cpuset_cpus_allowed(p);
4338 cpus_and(new_mask, new_mask, cpus_allowed);
4339 retval = set_cpus_allowed(p, new_mask);
4340
4341out_unlock:
4342 put_task_struct(p);
5be9361c 4343 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4344 return retval;
4345}
4346
4347static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4348 cpumask_t *new_mask)
4349{
4350 if (len < sizeof(cpumask_t)) {
4351 memset(new_mask, 0, sizeof(cpumask_t));
4352 } else if (len > sizeof(cpumask_t)) {
4353 len = sizeof(cpumask_t);
4354 }
4355 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4356}
4357
4358/**
4359 * sys_sched_setaffinity - set the cpu affinity of a process
4360 * @pid: pid of the process
4361 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4362 * @user_mask_ptr: user-space pointer to the new cpu mask
4363 */
4364asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4365 unsigned long __user *user_mask_ptr)
4366{
4367 cpumask_t new_mask;
4368 int retval;
4369
4370 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4371 if (retval)
4372 return retval;
4373
4374 return sched_setaffinity(pid, new_mask);
4375}
4376
4377/*
4378 * Represents all cpu's present in the system
4379 * In systems capable of hotplug, this map could dynamically grow
4380 * as new cpu's are detected in the system via any platform specific
4381 * method, such as ACPI for e.g.
4382 */
4383
4cef0c61 4384cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4385EXPORT_SYMBOL(cpu_present_map);
4386
4387#ifndef CONFIG_SMP
4cef0c61 4388cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4389EXPORT_SYMBOL(cpu_online_map);
4390
4cef0c61 4391cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4392EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4393#endif
4394
4395long sched_getaffinity(pid_t pid, cpumask_t *mask)
4396{
36c8b586 4397 struct task_struct *p;
1da177e4 4398 int retval;
1da177e4 4399
5be9361c 4400 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4401 read_lock(&tasklist_lock);
4402
4403 retval = -ESRCH;
4404 p = find_process_by_pid(pid);
4405 if (!p)
4406 goto out_unlock;
4407
e7834f8f
DQ
4408 retval = security_task_getscheduler(p);
4409 if (retval)
4410 goto out_unlock;
4411
2f7016d9 4412 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4413
4414out_unlock:
4415 read_unlock(&tasklist_lock);
5be9361c 4416 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4417
9531b62f 4418 return retval;
1da177e4
LT
4419}
4420
4421/**
4422 * sys_sched_getaffinity - get the cpu affinity of a process
4423 * @pid: pid of the process
4424 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4425 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4426 */
4427asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4428 unsigned long __user *user_mask_ptr)
4429{
4430 int ret;
4431 cpumask_t mask;
4432
4433 if (len < sizeof(cpumask_t))
4434 return -EINVAL;
4435
4436 ret = sched_getaffinity(pid, &mask);
4437 if (ret < 0)
4438 return ret;
4439
4440 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4441 return -EFAULT;
4442
4443 return sizeof(cpumask_t);
4444}
4445
4446/**
4447 * sys_sched_yield - yield the current processor to other threads.
4448 *
dd41f596
IM
4449 * This function yields the current CPU to other tasks. If there are no
4450 * other threads running on this CPU then this function will return.
1da177e4
LT
4451 */
4452asmlinkage long sys_sched_yield(void)
4453{
70b97a7f 4454 struct rq *rq = this_rq_lock();
1da177e4 4455
2d72376b 4456 schedstat_inc(rq, yld_count);
4530d7ab 4457 current->sched_class->yield_task(rq);
1da177e4
LT
4458
4459 /*
4460 * Since we are going to call schedule() anyway, there's
4461 * no need to preempt or enable interrupts:
4462 */
4463 __release(rq->lock);
8a25d5de 4464 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4465 _raw_spin_unlock(&rq->lock);
4466 preempt_enable_no_resched();
4467
4468 schedule();
4469
4470 return 0;
4471}
4472
e7b38404 4473static void __cond_resched(void)
1da177e4 4474{
8e0a43d8
IM
4475#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4476 __might_sleep(__FILE__, __LINE__);
4477#endif
5bbcfd90
IM
4478 /*
4479 * The BKS might be reacquired before we have dropped
4480 * PREEMPT_ACTIVE, which could trigger a second
4481 * cond_resched() call.
4482 */
1da177e4
LT
4483 do {
4484 add_preempt_count(PREEMPT_ACTIVE);
4485 schedule();
4486 sub_preempt_count(PREEMPT_ACTIVE);
4487 } while (need_resched());
4488}
4489
4490int __sched cond_resched(void)
4491{
9414232f
IM
4492 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4493 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4494 __cond_resched();
4495 return 1;
4496 }
4497 return 0;
4498}
1da177e4
LT
4499EXPORT_SYMBOL(cond_resched);
4500
4501/*
4502 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4503 * call schedule, and on return reacquire the lock.
4504 *
4505 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4506 * operations here to prevent schedule() from being called twice (once via
4507 * spin_unlock(), once by hand).
4508 */
95cdf3b7 4509int cond_resched_lock(spinlock_t *lock)
1da177e4 4510{
6df3cecb
JK
4511 int ret = 0;
4512
1da177e4
LT
4513 if (need_lockbreak(lock)) {
4514 spin_unlock(lock);
4515 cpu_relax();
6df3cecb 4516 ret = 1;
1da177e4
LT
4517 spin_lock(lock);
4518 }
9414232f 4519 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4520 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4521 _raw_spin_unlock(lock);
4522 preempt_enable_no_resched();
4523 __cond_resched();
6df3cecb 4524 ret = 1;
1da177e4 4525 spin_lock(lock);
1da177e4 4526 }
6df3cecb 4527 return ret;
1da177e4 4528}
1da177e4
LT
4529EXPORT_SYMBOL(cond_resched_lock);
4530
4531int __sched cond_resched_softirq(void)
4532{
4533 BUG_ON(!in_softirq());
4534
9414232f 4535 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4536 local_bh_enable();
1da177e4
LT
4537 __cond_resched();
4538 local_bh_disable();
4539 return 1;
4540 }
4541 return 0;
4542}
1da177e4
LT
4543EXPORT_SYMBOL(cond_resched_softirq);
4544
1da177e4
LT
4545/**
4546 * yield - yield the current processor to other threads.
4547 *
72fd4a35 4548 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4549 * thread runnable and calls sys_sched_yield().
4550 */
4551void __sched yield(void)
4552{
4553 set_current_state(TASK_RUNNING);
4554 sys_sched_yield();
4555}
1da177e4
LT
4556EXPORT_SYMBOL(yield);
4557
4558/*
4559 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4560 * that process accounting knows that this is a task in IO wait state.
4561 *
4562 * But don't do that if it is a deliberate, throttling IO wait (this task
4563 * has set its backing_dev_info: the queue against which it should throttle)
4564 */
4565void __sched io_schedule(void)
4566{
70b97a7f 4567 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4568
0ff92245 4569 delayacct_blkio_start();
1da177e4
LT
4570 atomic_inc(&rq->nr_iowait);
4571 schedule();
4572 atomic_dec(&rq->nr_iowait);
0ff92245 4573 delayacct_blkio_end();
1da177e4 4574}
1da177e4
LT
4575EXPORT_SYMBOL(io_schedule);
4576
4577long __sched io_schedule_timeout(long timeout)
4578{
70b97a7f 4579 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4580 long ret;
4581
0ff92245 4582 delayacct_blkio_start();
1da177e4
LT
4583 atomic_inc(&rq->nr_iowait);
4584 ret = schedule_timeout(timeout);
4585 atomic_dec(&rq->nr_iowait);
0ff92245 4586 delayacct_blkio_end();
1da177e4
LT
4587 return ret;
4588}
4589
4590/**
4591 * sys_sched_get_priority_max - return maximum RT priority.
4592 * @policy: scheduling class.
4593 *
4594 * this syscall returns the maximum rt_priority that can be used
4595 * by a given scheduling class.
4596 */
4597asmlinkage long sys_sched_get_priority_max(int policy)
4598{
4599 int ret = -EINVAL;
4600
4601 switch (policy) {
4602 case SCHED_FIFO:
4603 case SCHED_RR:
4604 ret = MAX_USER_RT_PRIO-1;
4605 break;
4606 case SCHED_NORMAL:
b0a9499c 4607 case SCHED_BATCH:
dd41f596 4608 case SCHED_IDLE:
1da177e4
LT
4609 ret = 0;
4610 break;
4611 }
4612 return ret;
4613}
4614
4615/**
4616 * sys_sched_get_priority_min - return minimum RT priority.
4617 * @policy: scheduling class.
4618 *
4619 * this syscall returns the minimum rt_priority that can be used
4620 * by a given scheduling class.
4621 */
4622asmlinkage long sys_sched_get_priority_min(int policy)
4623{
4624 int ret = -EINVAL;
4625
4626 switch (policy) {
4627 case SCHED_FIFO:
4628 case SCHED_RR:
4629 ret = 1;
4630 break;
4631 case SCHED_NORMAL:
b0a9499c 4632 case SCHED_BATCH:
dd41f596 4633 case SCHED_IDLE:
1da177e4
LT
4634 ret = 0;
4635 }
4636 return ret;
4637}
4638
4639/**
4640 * sys_sched_rr_get_interval - return the default timeslice of a process.
4641 * @pid: pid of the process.
4642 * @interval: userspace pointer to the timeslice value.
4643 *
4644 * this syscall writes the default timeslice value of a given process
4645 * into the user-space timespec buffer. A value of '0' means infinity.
4646 */
4647asmlinkage
4648long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4649{
36c8b586 4650 struct task_struct *p;
a4ec24b4 4651 unsigned int time_slice;
3a5c359a 4652 int retval;
1da177e4 4653 struct timespec t;
1da177e4
LT
4654
4655 if (pid < 0)
3a5c359a 4656 return -EINVAL;
1da177e4
LT
4657
4658 retval = -ESRCH;
4659 read_lock(&tasklist_lock);
4660 p = find_process_by_pid(pid);
4661 if (!p)
4662 goto out_unlock;
4663
4664 retval = security_task_getscheduler(p);
4665 if (retval)
4666 goto out_unlock;
4667
a4ec24b4
DA
4668 if (p->policy == SCHED_FIFO)
4669 time_slice = 0;
4670 else if (p->policy == SCHED_RR)
4671 time_slice = DEF_TIMESLICE;
4672 else {
4673 struct sched_entity *se = &p->se;
4674 unsigned long flags;
4675 struct rq *rq;
4676
4677 rq = task_rq_lock(p, &flags);
4678 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4679 task_rq_unlock(rq, &flags);
4680 }
1da177e4 4681 read_unlock(&tasklist_lock);
a4ec24b4 4682 jiffies_to_timespec(time_slice, &t);
1da177e4 4683 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4684 return retval;
3a5c359a 4685
1da177e4
LT
4686out_unlock:
4687 read_unlock(&tasklist_lock);
4688 return retval;
4689}
4690
2ed6e34f 4691static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4692
4693static void show_task(struct task_struct *p)
1da177e4 4694{
1da177e4 4695 unsigned long free = 0;
36c8b586 4696 unsigned state;
1da177e4 4697
1da177e4 4698 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4699 printk("%-13.13s %c", p->comm,
4700 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4701#if BITS_PER_LONG == 32
1da177e4 4702 if (state == TASK_RUNNING)
4bd77321 4703 printk(" running ");
1da177e4 4704 else
4bd77321 4705 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4706#else
4707 if (state == TASK_RUNNING)
4bd77321 4708 printk(" running task ");
1da177e4
LT
4709 else
4710 printk(" %016lx ", thread_saved_pc(p));
4711#endif
4712#ifdef CONFIG_DEBUG_STACK_USAGE
4713 {
10ebffde 4714 unsigned long *n = end_of_stack(p);
1da177e4
LT
4715 while (!*n)
4716 n++;
10ebffde 4717 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4718 }
4719#endif
4bd77321 4720 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4721
4722 if (state != TASK_RUNNING)
4723 show_stack(p, NULL);
4724}
4725
e59e2ae2 4726void show_state_filter(unsigned long state_filter)
1da177e4 4727{
36c8b586 4728 struct task_struct *g, *p;
1da177e4 4729
4bd77321
IM
4730#if BITS_PER_LONG == 32
4731 printk(KERN_INFO
4732 " task PC stack pid father\n");
1da177e4 4733#else
4bd77321
IM
4734 printk(KERN_INFO
4735 " task PC stack pid father\n");
1da177e4
LT
4736#endif
4737 read_lock(&tasklist_lock);
4738 do_each_thread(g, p) {
4739 /*
4740 * reset the NMI-timeout, listing all files on a slow
4741 * console might take alot of time:
4742 */
4743 touch_nmi_watchdog();
39bc89fd 4744 if (!state_filter || (p->state & state_filter))
e59e2ae2 4745 show_task(p);
1da177e4
LT
4746 } while_each_thread(g, p);
4747
04c9167f
JF
4748 touch_all_softlockup_watchdogs();
4749
dd41f596
IM
4750#ifdef CONFIG_SCHED_DEBUG
4751 sysrq_sched_debug_show();
4752#endif
1da177e4 4753 read_unlock(&tasklist_lock);
e59e2ae2
IM
4754 /*
4755 * Only show locks if all tasks are dumped:
4756 */
4757 if (state_filter == -1)
4758 debug_show_all_locks();
1da177e4
LT
4759}
4760
1df21055
IM
4761void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4762{
dd41f596 4763 idle->sched_class = &idle_sched_class;
1df21055
IM
4764}
4765
f340c0d1
IM
4766/**
4767 * init_idle - set up an idle thread for a given CPU
4768 * @idle: task in question
4769 * @cpu: cpu the idle task belongs to
4770 *
4771 * NOTE: this function does not set the idle thread's NEED_RESCHED
4772 * flag, to make booting more robust.
4773 */
5c1e1767 4774void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4775{
70b97a7f 4776 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4777 unsigned long flags;
4778
dd41f596
IM
4779 __sched_fork(idle);
4780 idle->se.exec_start = sched_clock();
4781
b29739f9 4782 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4783 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4784 __set_task_cpu(idle, cpu);
1da177e4
LT
4785
4786 spin_lock_irqsave(&rq->lock, flags);
4787 rq->curr = rq->idle = idle;
4866cde0
NP
4788#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4789 idle->oncpu = 1;
4790#endif
1da177e4
LT
4791 spin_unlock_irqrestore(&rq->lock, flags);
4792
4793 /* Set the preempt count _outside_ the spinlocks! */
4794#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4795 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4796#else
a1261f54 4797 task_thread_info(idle)->preempt_count = 0;
1da177e4 4798#endif
dd41f596
IM
4799 /*
4800 * The idle tasks have their own, simple scheduling class:
4801 */
4802 idle->sched_class = &idle_sched_class;
1da177e4
LT
4803}
4804
4805/*
4806 * In a system that switches off the HZ timer nohz_cpu_mask
4807 * indicates which cpus entered this state. This is used
4808 * in the rcu update to wait only for active cpus. For system
4809 * which do not switch off the HZ timer nohz_cpu_mask should
4810 * always be CPU_MASK_NONE.
4811 */
4812cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4813
4814#ifdef CONFIG_SMP
4815/*
4816 * This is how migration works:
4817 *
70b97a7f 4818 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4819 * runqueue and wake up that CPU's migration thread.
4820 * 2) we down() the locked semaphore => thread blocks.
4821 * 3) migration thread wakes up (implicitly it forces the migrated
4822 * thread off the CPU)
4823 * 4) it gets the migration request and checks whether the migrated
4824 * task is still in the wrong runqueue.
4825 * 5) if it's in the wrong runqueue then the migration thread removes
4826 * it and puts it into the right queue.
4827 * 6) migration thread up()s the semaphore.
4828 * 7) we wake up and the migration is done.
4829 */
4830
4831/*
4832 * Change a given task's CPU affinity. Migrate the thread to a
4833 * proper CPU and schedule it away if the CPU it's executing on
4834 * is removed from the allowed bitmask.
4835 *
4836 * NOTE: the caller must have a valid reference to the task, the
4837 * task must not exit() & deallocate itself prematurely. The
4838 * call is not atomic; no spinlocks may be held.
4839 */
36c8b586 4840int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4841{
70b97a7f 4842 struct migration_req req;
1da177e4 4843 unsigned long flags;
70b97a7f 4844 struct rq *rq;
48f24c4d 4845 int ret = 0;
1da177e4
LT
4846
4847 rq = task_rq_lock(p, &flags);
4848 if (!cpus_intersects(new_mask, cpu_online_map)) {
4849 ret = -EINVAL;
4850 goto out;
4851 }
4852
4853 p->cpus_allowed = new_mask;
4854 /* Can the task run on the task's current CPU? If so, we're done */
4855 if (cpu_isset(task_cpu(p), new_mask))
4856 goto out;
4857
4858 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4859 /* Need help from migration thread: drop lock and wait. */
4860 task_rq_unlock(rq, &flags);
4861 wake_up_process(rq->migration_thread);
4862 wait_for_completion(&req.done);
4863 tlb_migrate_finish(p->mm);
4864 return 0;
4865 }
4866out:
4867 task_rq_unlock(rq, &flags);
48f24c4d 4868
1da177e4
LT
4869 return ret;
4870}
1da177e4
LT
4871EXPORT_SYMBOL_GPL(set_cpus_allowed);
4872
4873/*
4874 * Move (not current) task off this cpu, onto dest cpu. We're doing
4875 * this because either it can't run here any more (set_cpus_allowed()
4876 * away from this CPU, or CPU going down), or because we're
4877 * attempting to rebalance this task on exec (sched_exec).
4878 *
4879 * So we race with normal scheduler movements, but that's OK, as long
4880 * as the task is no longer on this CPU.
efc30814
KK
4881 *
4882 * Returns non-zero if task was successfully migrated.
1da177e4 4883 */
efc30814 4884static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4885{
70b97a7f 4886 struct rq *rq_dest, *rq_src;
dd41f596 4887 int ret = 0, on_rq;
1da177e4
LT
4888
4889 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4890 return ret;
1da177e4
LT
4891
4892 rq_src = cpu_rq(src_cpu);
4893 rq_dest = cpu_rq(dest_cpu);
4894
4895 double_rq_lock(rq_src, rq_dest);
4896 /* Already moved. */
4897 if (task_cpu(p) != src_cpu)
4898 goto out;
4899 /* Affinity changed (again). */
4900 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4901 goto out;
4902
dd41f596 4903 on_rq = p->se.on_rq;
6e82a3be 4904 if (on_rq)
2e1cb74a 4905 deactivate_task(rq_src, p, 0);
6e82a3be 4906
1da177e4 4907 set_task_cpu(p, dest_cpu);
dd41f596
IM
4908 if (on_rq) {
4909 activate_task(rq_dest, p, 0);
4910 check_preempt_curr(rq_dest, p);
1da177e4 4911 }
efc30814 4912 ret = 1;
1da177e4
LT
4913out:
4914 double_rq_unlock(rq_src, rq_dest);
efc30814 4915 return ret;
1da177e4
LT
4916}
4917
4918/*
4919 * migration_thread - this is a highprio system thread that performs
4920 * thread migration by bumping thread off CPU then 'pushing' onto
4921 * another runqueue.
4922 */
95cdf3b7 4923static int migration_thread(void *data)
1da177e4 4924{
1da177e4 4925 int cpu = (long)data;
70b97a7f 4926 struct rq *rq;
1da177e4
LT
4927
4928 rq = cpu_rq(cpu);
4929 BUG_ON(rq->migration_thread != current);
4930
4931 set_current_state(TASK_INTERRUPTIBLE);
4932 while (!kthread_should_stop()) {
70b97a7f 4933 struct migration_req *req;
1da177e4 4934 struct list_head *head;
1da177e4 4935
1da177e4
LT
4936 spin_lock_irq(&rq->lock);
4937
4938 if (cpu_is_offline(cpu)) {
4939 spin_unlock_irq(&rq->lock);
4940 goto wait_to_die;
4941 }
4942
4943 if (rq->active_balance) {
4944 active_load_balance(rq, cpu);
4945 rq->active_balance = 0;
4946 }
4947
4948 head = &rq->migration_queue;
4949
4950 if (list_empty(head)) {
4951 spin_unlock_irq(&rq->lock);
4952 schedule();
4953 set_current_state(TASK_INTERRUPTIBLE);
4954 continue;
4955 }
70b97a7f 4956 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
4957 list_del_init(head->next);
4958
674311d5
NP
4959 spin_unlock(&rq->lock);
4960 __migrate_task(req->task, cpu, req->dest_cpu);
4961 local_irq_enable();
1da177e4
LT
4962
4963 complete(&req->done);
4964 }
4965 __set_current_state(TASK_RUNNING);
4966 return 0;
4967
4968wait_to_die:
4969 /* Wait for kthread_stop */
4970 set_current_state(TASK_INTERRUPTIBLE);
4971 while (!kthread_should_stop()) {
4972 schedule();
4973 set_current_state(TASK_INTERRUPTIBLE);
4974 }
4975 __set_current_state(TASK_RUNNING);
4976 return 0;
4977}
4978
4979#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
4980/*
4981 * Figure out where task on dead CPU should go, use force if neccessary.
4982 * NOTE: interrupts should be disabled by the caller
4983 */
48f24c4d 4984static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 4985{
efc30814 4986 unsigned long flags;
1da177e4 4987 cpumask_t mask;
70b97a7f
IM
4988 struct rq *rq;
4989 int dest_cpu;
1da177e4 4990
3a5c359a
AK
4991 do {
4992 /* On same node? */
4993 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4994 cpus_and(mask, mask, p->cpus_allowed);
4995 dest_cpu = any_online_cpu(mask);
4996
4997 /* On any allowed CPU? */
4998 if (dest_cpu == NR_CPUS)
4999 dest_cpu = any_online_cpu(p->cpus_allowed);
5000
5001 /* No more Mr. Nice Guy. */
5002 if (dest_cpu == NR_CPUS) {
5003 rq = task_rq_lock(p, &flags);
5004 cpus_setall(p->cpus_allowed);
5005 dest_cpu = any_online_cpu(p->cpus_allowed);
5006 task_rq_unlock(rq, &flags);
1da177e4 5007
3a5c359a
AK
5008 /*
5009 * Don't tell them about moving exiting tasks or
5010 * kernel threads (both mm NULL), since they never
5011 * leave kernel.
5012 */
5013 if (p->mm && printk_ratelimit())
5014 printk(KERN_INFO "process %d (%s) no "
5015 "longer affine to cpu%d\n",
5016 p->pid, p->comm, dead_cpu);
5017 }
5018 } while (!__migrate_task(p, dead_cpu, dest_cpu));
1da177e4
LT
5019}
5020
5021/*
5022 * While a dead CPU has no uninterruptible tasks queued at this point,
5023 * it might still have a nonzero ->nr_uninterruptible counter, because
5024 * for performance reasons the counter is not stricly tracking tasks to
5025 * their home CPUs. So we just add the counter to another CPU's counter,
5026 * to keep the global sum constant after CPU-down:
5027 */
70b97a7f 5028static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5029{
70b97a7f 5030 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5031 unsigned long flags;
5032
5033 local_irq_save(flags);
5034 double_rq_lock(rq_src, rq_dest);
5035 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5036 rq_src->nr_uninterruptible = 0;
5037 double_rq_unlock(rq_src, rq_dest);
5038 local_irq_restore(flags);
5039}
5040
5041/* Run through task list and migrate tasks from the dead cpu. */
5042static void migrate_live_tasks(int src_cpu)
5043{
48f24c4d 5044 struct task_struct *p, *t;
1da177e4
LT
5045
5046 write_lock_irq(&tasklist_lock);
5047
48f24c4d
IM
5048 do_each_thread(t, p) {
5049 if (p == current)
1da177e4
LT
5050 continue;
5051
48f24c4d
IM
5052 if (task_cpu(p) == src_cpu)
5053 move_task_off_dead_cpu(src_cpu, p);
5054 } while_each_thread(t, p);
1da177e4
LT
5055
5056 write_unlock_irq(&tasklist_lock);
5057}
5058
a9957449
AD
5059/*
5060 * activate_idle_task - move idle task to the _front_ of runqueue.
5061 */
5062static void activate_idle_task(struct task_struct *p, struct rq *rq)
5063{
5064 update_rq_clock(rq);
5065
5066 if (p->state == TASK_UNINTERRUPTIBLE)
5067 rq->nr_uninterruptible--;
5068
5069 enqueue_task(rq, p, 0);
5070 inc_nr_running(p, rq);
5071}
5072
dd41f596
IM
5073/*
5074 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5075 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5076 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5077 */
5078void sched_idle_next(void)
5079{
48f24c4d 5080 int this_cpu = smp_processor_id();
70b97a7f 5081 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5082 struct task_struct *p = rq->idle;
5083 unsigned long flags;
5084
5085 /* cpu has to be offline */
48f24c4d 5086 BUG_ON(cpu_online(this_cpu));
1da177e4 5087
48f24c4d
IM
5088 /*
5089 * Strictly not necessary since rest of the CPUs are stopped by now
5090 * and interrupts disabled on the current cpu.
1da177e4
LT
5091 */
5092 spin_lock_irqsave(&rq->lock, flags);
5093
dd41f596 5094 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5095
5096 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5097 activate_idle_task(p, rq);
1da177e4
LT
5098
5099 spin_unlock_irqrestore(&rq->lock, flags);
5100}
5101
48f24c4d
IM
5102/*
5103 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5104 * offline.
5105 */
5106void idle_task_exit(void)
5107{
5108 struct mm_struct *mm = current->active_mm;
5109
5110 BUG_ON(cpu_online(smp_processor_id()));
5111
5112 if (mm != &init_mm)
5113 switch_mm(mm, &init_mm, current);
5114 mmdrop(mm);
5115}
5116
054b9108 5117/* called under rq->lock with disabled interrupts */
36c8b586 5118static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5119{
70b97a7f 5120 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5121
5122 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5123 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5124
5125 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5126 BUG_ON(p->state == TASK_DEAD);
1da177e4 5127
48f24c4d 5128 get_task_struct(p);
1da177e4
LT
5129
5130 /*
5131 * Drop lock around migration; if someone else moves it,
5132 * that's OK. No task can be added to this CPU, so iteration is
5133 * fine.
054b9108 5134 * NOTE: interrupts should be left disabled --dev@
1da177e4 5135 */
054b9108 5136 spin_unlock(&rq->lock);
48f24c4d 5137 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5138 spin_lock(&rq->lock);
1da177e4 5139
48f24c4d 5140 put_task_struct(p);
1da177e4
LT
5141}
5142
5143/* release_task() removes task from tasklist, so we won't find dead tasks. */
5144static void migrate_dead_tasks(unsigned int dead_cpu)
5145{
70b97a7f 5146 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5147 struct task_struct *next;
48f24c4d 5148
dd41f596
IM
5149 for ( ; ; ) {
5150 if (!rq->nr_running)
5151 break;
a8e504d2 5152 update_rq_clock(rq);
ff95f3df 5153 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5154 if (!next)
5155 break;
5156 migrate_dead(dead_cpu, next);
e692ab53 5157
1da177e4
LT
5158 }
5159}
5160#endif /* CONFIG_HOTPLUG_CPU */
5161
e692ab53
NP
5162#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5163
5164static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5165 {
5166 .procname = "sched_domain",
c57baf1e 5167 .mode = 0555,
e0361851 5168 },
e692ab53
NP
5169 {0,},
5170};
5171
5172static struct ctl_table sd_ctl_root[] = {
e0361851 5173 {
c57baf1e 5174 .ctl_name = CTL_KERN,
e0361851 5175 .procname = "kernel",
c57baf1e 5176 .mode = 0555,
e0361851
AD
5177 .child = sd_ctl_dir,
5178 },
e692ab53
NP
5179 {0,},
5180};
5181
5182static struct ctl_table *sd_alloc_ctl_entry(int n)
5183{
5184 struct ctl_table *entry =
5185 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5186
5187 BUG_ON(!entry);
5188 memset(entry, 0, n * sizeof(struct ctl_table));
5189
5190 return entry;
5191}
5192
5193static void
e0361851 5194set_table_entry(struct ctl_table *entry,
e692ab53
NP
5195 const char *procname, void *data, int maxlen,
5196 mode_t mode, proc_handler *proc_handler)
5197{
e692ab53
NP
5198 entry->procname = procname;
5199 entry->data = data;
5200 entry->maxlen = maxlen;
5201 entry->mode = mode;
5202 entry->proc_handler = proc_handler;
5203}
5204
5205static struct ctl_table *
5206sd_alloc_ctl_domain_table(struct sched_domain *sd)
5207{
ace8b3d6 5208 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5209
e0361851 5210 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5211 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5212 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5213 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5214 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5215 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5216 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5217 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5218 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5219 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5220 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5221 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5222 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5223 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5224 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5225 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5226 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5227 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5228 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5229 &sd->cache_nice_tries,
5230 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5231 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53
NP
5232 sizeof(int), 0644, proc_dointvec_minmax);
5233
5234 return table;
5235}
5236
5237static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5238{
5239 struct ctl_table *entry, *table;
5240 struct sched_domain *sd;
5241 int domain_num = 0, i;
5242 char buf[32];
5243
5244 for_each_domain(cpu, sd)
5245 domain_num++;
5246 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5247
5248 i = 0;
5249 for_each_domain(cpu, sd) {
5250 snprintf(buf, 32, "domain%d", i);
e692ab53 5251 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5252 entry->mode = 0555;
e692ab53
NP
5253 entry->child = sd_alloc_ctl_domain_table(sd);
5254 entry++;
5255 i++;
5256 }
5257 return table;
5258}
5259
5260static struct ctl_table_header *sd_sysctl_header;
5261static void init_sched_domain_sysctl(void)
5262{
5263 int i, cpu_num = num_online_cpus();
5264 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5265 char buf[32];
5266
5267 sd_ctl_dir[0].child = entry;
5268
5269 for (i = 0; i < cpu_num; i++, entry++) {
5270 snprintf(buf, 32, "cpu%d", i);
e692ab53 5271 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5272 entry->mode = 0555;
e692ab53
NP
5273 entry->child = sd_alloc_ctl_cpu_table(i);
5274 }
5275 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5276}
5277#else
5278static void init_sched_domain_sysctl(void)
5279{
5280}
5281#endif
5282
1da177e4
LT
5283/*
5284 * migration_call - callback that gets triggered when a CPU is added.
5285 * Here we can start up the necessary migration thread for the new CPU.
5286 */
48f24c4d
IM
5287static int __cpuinit
5288migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5289{
1da177e4 5290 struct task_struct *p;
48f24c4d 5291 int cpu = (long)hcpu;
1da177e4 5292 unsigned long flags;
70b97a7f 5293 struct rq *rq;
1da177e4
LT
5294
5295 switch (action) {
5be9361c
GS
5296 case CPU_LOCK_ACQUIRE:
5297 mutex_lock(&sched_hotcpu_mutex);
5298 break;
5299
1da177e4 5300 case CPU_UP_PREPARE:
8bb78442 5301 case CPU_UP_PREPARE_FROZEN:
dd41f596 5302 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5303 if (IS_ERR(p))
5304 return NOTIFY_BAD;
1da177e4
LT
5305 kthread_bind(p, cpu);
5306 /* Must be high prio: stop_machine expects to yield to it. */
5307 rq = task_rq_lock(p, &flags);
dd41f596 5308 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5309 task_rq_unlock(rq, &flags);
5310 cpu_rq(cpu)->migration_thread = p;
5311 break;
48f24c4d 5312
1da177e4 5313 case CPU_ONLINE:
8bb78442 5314 case CPU_ONLINE_FROZEN:
1da177e4
LT
5315 /* Strictly unneccessary, as first user will wake it. */
5316 wake_up_process(cpu_rq(cpu)->migration_thread);
5317 break;
48f24c4d 5318
1da177e4
LT
5319#ifdef CONFIG_HOTPLUG_CPU
5320 case CPU_UP_CANCELED:
8bb78442 5321 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5322 if (!cpu_rq(cpu)->migration_thread)
5323 break;
1da177e4 5324 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5325 kthread_bind(cpu_rq(cpu)->migration_thread,
5326 any_online_cpu(cpu_online_map));
1da177e4
LT
5327 kthread_stop(cpu_rq(cpu)->migration_thread);
5328 cpu_rq(cpu)->migration_thread = NULL;
5329 break;
48f24c4d 5330
1da177e4 5331 case CPU_DEAD:
8bb78442 5332 case CPU_DEAD_FROZEN:
1da177e4
LT
5333 migrate_live_tasks(cpu);
5334 rq = cpu_rq(cpu);
5335 kthread_stop(rq->migration_thread);
5336 rq->migration_thread = NULL;
5337 /* Idle task back to normal (off runqueue, low prio) */
5338 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5339 update_rq_clock(rq);
2e1cb74a 5340 deactivate_task(rq, rq->idle, 0);
1da177e4 5341 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5342 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5343 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5344 migrate_dead_tasks(cpu);
5345 task_rq_unlock(rq, &flags);
5346 migrate_nr_uninterruptible(rq);
5347 BUG_ON(rq->nr_running != 0);
5348
5349 /* No need to migrate the tasks: it was best-effort if
5be9361c 5350 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5351 * the requestors. */
5352 spin_lock_irq(&rq->lock);
5353 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5354 struct migration_req *req;
5355
1da177e4 5356 req = list_entry(rq->migration_queue.next,
70b97a7f 5357 struct migration_req, list);
1da177e4
LT
5358 list_del_init(&req->list);
5359 complete(&req->done);
5360 }
5361 spin_unlock_irq(&rq->lock);
5362 break;
5363#endif
5be9361c
GS
5364 case CPU_LOCK_RELEASE:
5365 mutex_unlock(&sched_hotcpu_mutex);
5366 break;
1da177e4
LT
5367 }
5368 return NOTIFY_OK;
5369}
5370
5371/* Register at highest priority so that task migration (migrate_all_tasks)
5372 * happens before everything else.
5373 */
26c2143b 5374static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5375 .notifier_call = migration_call,
5376 .priority = 10
5377};
5378
5379int __init migration_init(void)
5380{
5381 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5382 int err;
48f24c4d
IM
5383
5384 /* Start one for the boot CPU: */
07dccf33
AM
5385 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5386 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5387 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5388 register_cpu_notifier(&migration_notifier);
48f24c4d 5389
1da177e4
LT
5390 return 0;
5391}
5392#endif
5393
5394#ifdef CONFIG_SMP
476f3534
CL
5395
5396/* Number of possible processor ids */
5397int nr_cpu_ids __read_mostly = NR_CPUS;
5398EXPORT_SYMBOL(nr_cpu_ids);
5399
3e9830dc 5400#ifdef CONFIG_SCHED_DEBUG
1da177e4
LT
5401static void sched_domain_debug(struct sched_domain *sd, int cpu)
5402{
5403 int level = 0;
5404
41c7ce9a
NP
5405 if (!sd) {
5406 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5407 return;
5408 }
5409
1da177e4
LT
5410 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5411
5412 do {
5413 int i;
5414 char str[NR_CPUS];
5415 struct sched_group *group = sd->groups;
5416 cpumask_t groupmask;
5417
5418 cpumask_scnprintf(str, NR_CPUS, sd->span);
5419 cpus_clear(groupmask);
5420
5421 printk(KERN_DEBUG);
5422 for (i = 0; i < level + 1; i++)
5423 printk(" ");
5424 printk("domain %d: ", level);
5425
5426 if (!(sd->flags & SD_LOAD_BALANCE)) {
5427 printk("does not load-balance\n");
5428 if (sd->parent)
33859f7f
MOS
5429 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5430 " has parent");
1da177e4
LT
5431 break;
5432 }
5433
5434 printk("span %s\n", str);
5435
5436 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5437 printk(KERN_ERR "ERROR: domain->span does not contain "
5438 "CPU%d\n", cpu);
1da177e4 5439 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5440 printk(KERN_ERR "ERROR: domain->groups does not contain"
5441 " CPU%d\n", cpu);
1da177e4
LT
5442
5443 printk(KERN_DEBUG);
5444 for (i = 0; i < level + 2; i++)
5445 printk(" ");
5446 printk("groups:");
5447 do {
5448 if (!group) {
5449 printk("\n");
5450 printk(KERN_ERR "ERROR: group is NULL\n");
5451 break;
5452 }
5453
5517d86b 5454 if (!group->__cpu_power) {
1da177e4 5455 printk("\n");
33859f7f
MOS
5456 printk(KERN_ERR "ERROR: domain->cpu_power not "
5457 "set\n");
26797a34 5458 break;
1da177e4
LT
5459 }
5460
5461 if (!cpus_weight(group->cpumask)) {
5462 printk("\n");
5463 printk(KERN_ERR "ERROR: empty group\n");
26797a34 5464 break;
1da177e4
LT
5465 }
5466
5467 if (cpus_intersects(groupmask, group->cpumask)) {
5468 printk("\n");
5469 printk(KERN_ERR "ERROR: repeated CPUs\n");
26797a34 5470 break;
1da177e4
LT
5471 }
5472
5473 cpus_or(groupmask, groupmask, group->cpumask);
5474
5475 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5476 printk(" %s", str);
5477
5478 group = group->next;
5479 } while (group != sd->groups);
5480 printk("\n");
5481
5482 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5483 printk(KERN_ERR "ERROR: groups don't span "
5484 "domain->span\n");
1da177e4
LT
5485
5486 level++;
5487 sd = sd->parent;
33859f7f
MOS
5488 if (!sd)
5489 continue;
1da177e4 5490
33859f7f
MOS
5491 if (!cpus_subset(groupmask, sd->span))
5492 printk(KERN_ERR "ERROR: parent span is not a superset "
5493 "of domain->span\n");
1da177e4
LT
5494
5495 } while (sd);
5496}
5497#else
48f24c4d 5498# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5499#endif
5500
1a20ff27 5501static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5502{
5503 if (cpus_weight(sd->span) == 1)
5504 return 1;
5505
5506 /* Following flags need at least 2 groups */
5507 if (sd->flags & (SD_LOAD_BALANCE |
5508 SD_BALANCE_NEWIDLE |
5509 SD_BALANCE_FORK |
89c4710e
SS
5510 SD_BALANCE_EXEC |
5511 SD_SHARE_CPUPOWER |
5512 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5513 if (sd->groups != sd->groups->next)
5514 return 0;
5515 }
5516
5517 /* Following flags don't use groups */
5518 if (sd->flags & (SD_WAKE_IDLE |
5519 SD_WAKE_AFFINE |
5520 SD_WAKE_BALANCE))
5521 return 0;
5522
5523 return 1;
5524}
5525
48f24c4d
IM
5526static int
5527sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5528{
5529 unsigned long cflags = sd->flags, pflags = parent->flags;
5530
5531 if (sd_degenerate(parent))
5532 return 1;
5533
5534 if (!cpus_equal(sd->span, parent->span))
5535 return 0;
5536
5537 /* Does parent contain flags not in child? */
5538 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5539 if (cflags & SD_WAKE_AFFINE)
5540 pflags &= ~SD_WAKE_BALANCE;
5541 /* Flags needing groups don't count if only 1 group in parent */
5542 if (parent->groups == parent->groups->next) {
5543 pflags &= ~(SD_LOAD_BALANCE |
5544 SD_BALANCE_NEWIDLE |
5545 SD_BALANCE_FORK |
89c4710e
SS
5546 SD_BALANCE_EXEC |
5547 SD_SHARE_CPUPOWER |
5548 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5549 }
5550 if (~cflags & pflags)
5551 return 0;
5552
5553 return 1;
5554}
5555
1da177e4
LT
5556/*
5557 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5558 * hold the hotplug lock.
5559 */
9c1cfda2 5560static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5561{
70b97a7f 5562 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5563 struct sched_domain *tmp;
5564
5565 /* Remove the sched domains which do not contribute to scheduling. */
5566 for (tmp = sd; tmp; tmp = tmp->parent) {
5567 struct sched_domain *parent = tmp->parent;
5568 if (!parent)
5569 break;
1a848870 5570 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5571 tmp->parent = parent->parent;
1a848870
SS
5572 if (parent->parent)
5573 parent->parent->child = tmp;
5574 }
245af2c7
SS
5575 }
5576
1a848870 5577 if (sd && sd_degenerate(sd)) {
245af2c7 5578 sd = sd->parent;
1a848870
SS
5579 if (sd)
5580 sd->child = NULL;
5581 }
1da177e4
LT
5582
5583 sched_domain_debug(sd, cpu);
5584
674311d5 5585 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5586}
5587
5588/* cpus with isolated domains */
67af63a6 5589static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5590
5591/* Setup the mask of cpus configured for isolated domains */
5592static int __init isolated_cpu_setup(char *str)
5593{
5594 int ints[NR_CPUS], i;
5595
5596 str = get_options(str, ARRAY_SIZE(ints), ints);
5597 cpus_clear(cpu_isolated_map);
5598 for (i = 1; i <= ints[0]; i++)
5599 if (ints[i] < NR_CPUS)
5600 cpu_set(ints[i], cpu_isolated_map);
5601 return 1;
5602}
5603
8927f494 5604__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5605
5606/*
6711cab4
SS
5607 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5608 * to a function which identifies what group(along with sched group) a CPU
5609 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5610 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5611 *
5612 * init_sched_build_groups will build a circular linked list of the groups
5613 * covered by the given span, and will set each group's ->cpumask correctly,
5614 * and ->cpu_power to 0.
5615 */
a616058b 5616static void
6711cab4
SS
5617init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5618 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5619 struct sched_group **sg))
1da177e4
LT
5620{
5621 struct sched_group *first = NULL, *last = NULL;
5622 cpumask_t covered = CPU_MASK_NONE;
5623 int i;
5624
5625 for_each_cpu_mask(i, span) {
6711cab4
SS
5626 struct sched_group *sg;
5627 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5628 int j;
5629
5630 if (cpu_isset(i, covered))
5631 continue;
5632
5633 sg->cpumask = CPU_MASK_NONE;
5517d86b 5634 sg->__cpu_power = 0;
1da177e4
LT
5635
5636 for_each_cpu_mask(j, span) {
6711cab4 5637 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5638 continue;
5639
5640 cpu_set(j, covered);
5641 cpu_set(j, sg->cpumask);
5642 }
5643 if (!first)
5644 first = sg;
5645 if (last)
5646 last->next = sg;
5647 last = sg;
5648 }
5649 last->next = first;
5650}
5651
9c1cfda2 5652#define SD_NODES_PER_DOMAIN 16
1da177e4 5653
9c1cfda2 5654#ifdef CONFIG_NUMA
198e2f18 5655
9c1cfda2
JH
5656/**
5657 * find_next_best_node - find the next node to include in a sched_domain
5658 * @node: node whose sched_domain we're building
5659 * @used_nodes: nodes already in the sched_domain
5660 *
5661 * Find the next node to include in a given scheduling domain. Simply
5662 * finds the closest node not already in the @used_nodes map.
5663 *
5664 * Should use nodemask_t.
5665 */
5666static int find_next_best_node(int node, unsigned long *used_nodes)
5667{
5668 int i, n, val, min_val, best_node = 0;
5669
5670 min_val = INT_MAX;
5671
5672 for (i = 0; i < MAX_NUMNODES; i++) {
5673 /* Start at @node */
5674 n = (node + i) % MAX_NUMNODES;
5675
5676 if (!nr_cpus_node(n))
5677 continue;
5678
5679 /* Skip already used nodes */
5680 if (test_bit(n, used_nodes))
5681 continue;
5682
5683 /* Simple min distance search */
5684 val = node_distance(node, n);
5685
5686 if (val < min_val) {
5687 min_val = val;
5688 best_node = n;
5689 }
5690 }
5691
5692 set_bit(best_node, used_nodes);
5693 return best_node;
5694}
5695
5696/**
5697 * sched_domain_node_span - get a cpumask for a node's sched_domain
5698 * @node: node whose cpumask we're constructing
5699 * @size: number of nodes to include in this span
5700 *
5701 * Given a node, construct a good cpumask for its sched_domain to span. It
5702 * should be one that prevents unnecessary balancing, but also spreads tasks
5703 * out optimally.
5704 */
5705static cpumask_t sched_domain_node_span(int node)
5706{
9c1cfda2 5707 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5708 cpumask_t span, nodemask;
5709 int i;
9c1cfda2
JH
5710
5711 cpus_clear(span);
5712 bitmap_zero(used_nodes, MAX_NUMNODES);
5713
5714 nodemask = node_to_cpumask(node);
5715 cpus_or(span, span, nodemask);
5716 set_bit(node, used_nodes);
5717
5718 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5719 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5720
9c1cfda2
JH
5721 nodemask = node_to_cpumask(next_node);
5722 cpus_or(span, span, nodemask);
5723 }
5724
5725 return span;
5726}
5727#endif
5728
5c45bf27 5729int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5730
9c1cfda2 5731/*
48f24c4d 5732 * SMT sched-domains:
9c1cfda2 5733 */
1da177e4
LT
5734#ifdef CONFIG_SCHED_SMT
5735static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5736static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5737
6711cab4
SS
5738static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5739 struct sched_group **sg)
1da177e4 5740{
6711cab4
SS
5741 if (sg)
5742 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5743 return cpu;
5744}
5745#endif
5746
48f24c4d
IM
5747/*
5748 * multi-core sched-domains:
5749 */
1e9f28fa
SS
5750#ifdef CONFIG_SCHED_MC
5751static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5752static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5753#endif
5754
5755#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5756static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5757 struct sched_group **sg)
1e9f28fa 5758{
6711cab4 5759 int group;
a616058b
SS
5760 cpumask_t mask = cpu_sibling_map[cpu];
5761 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5762 group = first_cpu(mask);
5763 if (sg)
5764 *sg = &per_cpu(sched_group_core, group);
5765 return group;
1e9f28fa
SS
5766}
5767#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5768static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5769 struct sched_group **sg)
1e9f28fa 5770{
6711cab4
SS
5771 if (sg)
5772 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5773 return cpu;
5774}
5775#endif
5776
1da177e4 5777static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5778static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5779
6711cab4
SS
5780static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5781 struct sched_group **sg)
1da177e4 5782{
6711cab4 5783 int group;
48f24c4d 5784#ifdef CONFIG_SCHED_MC
1e9f28fa 5785 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5786 cpus_and(mask, mask, *cpu_map);
6711cab4 5787 group = first_cpu(mask);
1e9f28fa 5788#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5789 cpumask_t mask = cpu_sibling_map[cpu];
5790 cpus_and(mask, mask, *cpu_map);
6711cab4 5791 group = first_cpu(mask);
1da177e4 5792#else
6711cab4 5793 group = cpu;
1da177e4 5794#endif
6711cab4
SS
5795 if (sg)
5796 *sg = &per_cpu(sched_group_phys, group);
5797 return group;
1da177e4
LT
5798}
5799
5800#ifdef CONFIG_NUMA
1da177e4 5801/*
9c1cfda2
JH
5802 * The init_sched_build_groups can't handle what we want to do with node
5803 * groups, so roll our own. Now each node has its own list of groups which
5804 * gets dynamically allocated.
1da177e4 5805 */
9c1cfda2 5806static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5807static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5808
9c1cfda2 5809static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5810static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5811
6711cab4
SS
5812static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5813 struct sched_group **sg)
9c1cfda2 5814{
6711cab4
SS
5815 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5816 int group;
5817
5818 cpus_and(nodemask, nodemask, *cpu_map);
5819 group = first_cpu(nodemask);
5820
5821 if (sg)
5822 *sg = &per_cpu(sched_group_allnodes, group);
5823 return group;
1da177e4 5824}
6711cab4 5825
08069033
SS
5826static void init_numa_sched_groups_power(struct sched_group *group_head)
5827{
5828 struct sched_group *sg = group_head;
5829 int j;
5830
5831 if (!sg)
5832 return;
3a5c359a
AK
5833 do {
5834 for_each_cpu_mask(j, sg->cpumask) {
5835 struct sched_domain *sd;
08069033 5836
3a5c359a
AK
5837 sd = &per_cpu(phys_domains, j);
5838 if (j != first_cpu(sd->groups->cpumask)) {
5839 /*
5840 * Only add "power" once for each
5841 * physical package.
5842 */
5843 continue;
5844 }
08069033 5845
3a5c359a
AK
5846 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5847 }
5848 sg = sg->next;
5849 } while (sg != group_head);
08069033 5850}
1da177e4
LT
5851#endif
5852
a616058b 5853#ifdef CONFIG_NUMA
51888ca2
SV
5854/* Free memory allocated for various sched_group structures */
5855static void free_sched_groups(const cpumask_t *cpu_map)
5856{
a616058b 5857 int cpu, i;
51888ca2
SV
5858
5859 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5860 struct sched_group **sched_group_nodes
5861 = sched_group_nodes_bycpu[cpu];
5862
51888ca2
SV
5863 if (!sched_group_nodes)
5864 continue;
5865
5866 for (i = 0; i < MAX_NUMNODES; i++) {
5867 cpumask_t nodemask = node_to_cpumask(i);
5868 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5869
5870 cpus_and(nodemask, nodemask, *cpu_map);
5871 if (cpus_empty(nodemask))
5872 continue;
5873
5874 if (sg == NULL)
5875 continue;
5876 sg = sg->next;
5877next_sg:
5878 oldsg = sg;
5879 sg = sg->next;
5880 kfree(oldsg);
5881 if (oldsg != sched_group_nodes[i])
5882 goto next_sg;
5883 }
5884 kfree(sched_group_nodes);
5885 sched_group_nodes_bycpu[cpu] = NULL;
5886 }
51888ca2 5887}
a616058b
SS
5888#else
5889static void free_sched_groups(const cpumask_t *cpu_map)
5890{
5891}
5892#endif
51888ca2 5893
89c4710e
SS
5894/*
5895 * Initialize sched groups cpu_power.
5896 *
5897 * cpu_power indicates the capacity of sched group, which is used while
5898 * distributing the load between different sched groups in a sched domain.
5899 * Typically cpu_power for all the groups in a sched domain will be same unless
5900 * there are asymmetries in the topology. If there are asymmetries, group
5901 * having more cpu_power will pickup more load compared to the group having
5902 * less cpu_power.
5903 *
5904 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5905 * the maximum number of tasks a group can handle in the presence of other idle
5906 * or lightly loaded groups in the same sched domain.
5907 */
5908static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5909{
5910 struct sched_domain *child;
5911 struct sched_group *group;
5912
5913 WARN_ON(!sd || !sd->groups);
5914
5915 if (cpu != first_cpu(sd->groups->cpumask))
5916 return;
5917
5918 child = sd->child;
5919
5517d86b
ED
5920 sd->groups->__cpu_power = 0;
5921
89c4710e
SS
5922 /*
5923 * For perf policy, if the groups in child domain share resources
5924 * (for example cores sharing some portions of the cache hierarchy
5925 * or SMT), then set this domain groups cpu_power such that each group
5926 * can handle only one task, when there are other idle groups in the
5927 * same sched domain.
5928 */
5929 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5930 (child->flags &
5931 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5932 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5933 return;
5934 }
5935
89c4710e
SS
5936 /*
5937 * add cpu_power of each child group to this groups cpu_power
5938 */
5939 group = child->groups;
5940 do {
5517d86b 5941 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
5942 group = group->next;
5943 } while (group != child->groups);
5944}
5945
1da177e4 5946/*
1a20ff27
DG
5947 * Build sched domains for a given set of cpus and attach the sched domains
5948 * to the individual cpus
1da177e4 5949 */
51888ca2 5950static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5951{
5952 int i;
d1b55138
JH
5953#ifdef CONFIG_NUMA
5954 struct sched_group **sched_group_nodes = NULL;
6711cab4 5955 int sd_allnodes = 0;
d1b55138
JH
5956
5957 /*
5958 * Allocate the per-node list of sched groups
5959 */
dd41f596 5960 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 5961 GFP_KERNEL);
d1b55138
JH
5962 if (!sched_group_nodes) {
5963 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 5964 return -ENOMEM;
d1b55138
JH
5965 }
5966 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5967#endif
1da177e4
LT
5968
5969 /*
1a20ff27 5970 * Set up domains for cpus specified by the cpu_map.
1da177e4 5971 */
1a20ff27 5972 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5973 struct sched_domain *sd = NULL, *p;
5974 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5975
1a20ff27 5976 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5977
5978#ifdef CONFIG_NUMA
dd41f596
IM
5979 if (cpus_weight(*cpu_map) >
5980 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
5981 sd = &per_cpu(allnodes_domains, i);
5982 *sd = SD_ALLNODES_INIT;
5983 sd->span = *cpu_map;
6711cab4 5984 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 5985 p = sd;
6711cab4 5986 sd_allnodes = 1;
9c1cfda2
JH
5987 } else
5988 p = NULL;
5989
1da177e4 5990 sd = &per_cpu(node_domains, i);
1da177e4 5991 *sd = SD_NODE_INIT;
9c1cfda2
JH
5992 sd->span = sched_domain_node_span(cpu_to_node(i));
5993 sd->parent = p;
1a848870
SS
5994 if (p)
5995 p->child = sd;
9c1cfda2 5996 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5997#endif
5998
5999 p = sd;
6000 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6001 *sd = SD_CPU_INIT;
6002 sd->span = nodemask;
6003 sd->parent = p;
1a848870
SS
6004 if (p)
6005 p->child = sd;
6711cab4 6006 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6007
1e9f28fa
SS
6008#ifdef CONFIG_SCHED_MC
6009 p = sd;
6010 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6011 *sd = SD_MC_INIT;
6012 sd->span = cpu_coregroup_map(i);
6013 cpus_and(sd->span, sd->span, *cpu_map);
6014 sd->parent = p;
1a848870 6015 p->child = sd;
6711cab4 6016 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6017#endif
6018
1da177e4
LT
6019#ifdef CONFIG_SCHED_SMT
6020 p = sd;
6021 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6022 *sd = SD_SIBLING_INIT;
6023 sd->span = cpu_sibling_map[i];
1a20ff27 6024 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6025 sd->parent = p;
1a848870 6026 p->child = sd;
6711cab4 6027 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6028#endif
6029 }
6030
6031#ifdef CONFIG_SCHED_SMT
6032 /* Set up CPU (sibling) groups */
9c1cfda2 6033 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6034 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6035 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6036 if (i != first_cpu(this_sibling_map))
6037 continue;
6038
dd41f596
IM
6039 init_sched_build_groups(this_sibling_map, cpu_map,
6040 &cpu_to_cpu_group);
1da177e4
LT
6041 }
6042#endif
6043
1e9f28fa
SS
6044#ifdef CONFIG_SCHED_MC
6045 /* Set up multi-core groups */
6046 for_each_cpu_mask(i, *cpu_map) {
6047 cpumask_t this_core_map = cpu_coregroup_map(i);
6048 cpus_and(this_core_map, this_core_map, *cpu_map);
6049 if (i != first_cpu(this_core_map))
6050 continue;
dd41f596
IM
6051 init_sched_build_groups(this_core_map, cpu_map,
6052 &cpu_to_core_group);
1e9f28fa
SS
6053 }
6054#endif
6055
1da177e4
LT
6056 /* Set up physical groups */
6057 for (i = 0; i < MAX_NUMNODES; i++) {
6058 cpumask_t nodemask = node_to_cpumask(i);
6059
1a20ff27 6060 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6061 if (cpus_empty(nodemask))
6062 continue;
6063
6711cab4 6064 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6065 }
6066
6067#ifdef CONFIG_NUMA
6068 /* Set up node groups */
6711cab4 6069 if (sd_allnodes)
dd41f596
IM
6070 init_sched_build_groups(*cpu_map, cpu_map,
6071 &cpu_to_allnodes_group);
9c1cfda2
JH
6072
6073 for (i = 0; i < MAX_NUMNODES; i++) {
6074 /* Set up node groups */
6075 struct sched_group *sg, *prev;
6076 cpumask_t nodemask = node_to_cpumask(i);
6077 cpumask_t domainspan;
6078 cpumask_t covered = CPU_MASK_NONE;
6079 int j;
6080
6081 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6082 if (cpus_empty(nodemask)) {
6083 sched_group_nodes[i] = NULL;
9c1cfda2 6084 continue;
d1b55138 6085 }
9c1cfda2
JH
6086
6087 domainspan = sched_domain_node_span(i);
6088 cpus_and(domainspan, domainspan, *cpu_map);
6089
15f0b676 6090 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6091 if (!sg) {
6092 printk(KERN_WARNING "Can not alloc domain group for "
6093 "node %d\n", i);
6094 goto error;
6095 }
9c1cfda2
JH
6096 sched_group_nodes[i] = sg;
6097 for_each_cpu_mask(j, nodemask) {
6098 struct sched_domain *sd;
9761eea8 6099
9c1cfda2
JH
6100 sd = &per_cpu(node_domains, j);
6101 sd->groups = sg;
9c1cfda2 6102 }
5517d86b 6103 sg->__cpu_power = 0;
9c1cfda2 6104 sg->cpumask = nodemask;
51888ca2 6105 sg->next = sg;
9c1cfda2
JH
6106 cpus_or(covered, covered, nodemask);
6107 prev = sg;
6108
6109 for (j = 0; j < MAX_NUMNODES; j++) {
6110 cpumask_t tmp, notcovered;
6111 int n = (i + j) % MAX_NUMNODES;
6112
6113 cpus_complement(notcovered, covered);
6114 cpus_and(tmp, notcovered, *cpu_map);
6115 cpus_and(tmp, tmp, domainspan);
6116 if (cpus_empty(tmp))
6117 break;
6118
6119 nodemask = node_to_cpumask(n);
6120 cpus_and(tmp, tmp, nodemask);
6121 if (cpus_empty(tmp))
6122 continue;
6123
15f0b676
SV
6124 sg = kmalloc_node(sizeof(struct sched_group),
6125 GFP_KERNEL, i);
9c1cfda2
JH
6126 if (!sg) {
6127 printk(KERN_WARNING
6128 "Can not alloc domain group for node %d\n", j);
51888ca2 6129 goto error;
9c1cfda2 6130 }
5517d86b 6131 sg->__cpu_power = 0;
9c1cfda2 6132 sg->cpumask = tmp;
51888ca2 6133 sg->next = prev->next;
9c1cfda2
JH
6134 cpus_or(covered, covered, tmp);
6135 prev->next = sg;
6136 prev = sg;
6137 }
9c1cfda2 6138 }
1da177e4
LT
6139#endif
6140
6141 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6142#ifdef CONFIG_SCHED_SMT
1a20ff27 6143 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6144 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6145
89c4710e 6146 init_sched_groups_power(i, sd);
5c45bf27 6147 }
1da177e4 6148#endif
1e9f28fa 6149#ifdef CONFIG_SCHED_MC
5c45bf27 6150 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6151 struct sched_domain *sd = &per_cpu(core_domains, i);
6152
89c4710e 6153 init_sched_groups_power(i, sd);
5c45bf27
SS
6154 }
6155#endif
1e9f28fa 6156
5c45bf27 6157 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6158 struct sched_domain *sd = &per_cpu(phys_domains, i);
6159
89c4710e 6160 init_sched_groups_power(i, sd);
1da177e4
LT
6161 }
6162
9c1cfda2 6163#ifdef CONFIG_NUMA
08069033
SS
6164 for (i = 0; i < MAX_NUMNODES; i++)
6165 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6166
6711cab4
SS
6167 if (sd_allnodes) {
6168 struct sched_group *sg;
f712c0c7 6169
6711cab4 6170 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6171 init_numa_sched_groups_power(sg);
6172 }
9c1cfda2
JH
6173#endif
6174
1da177e4 6175 /* Attach the domains */
1a20ff27 6176 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6177 struct sched_domain *sd;
6178#ifdef CONFIG_SCHED_SMT
6179 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6180#elif defined(CONFIG_SCHED_MC)
6181 sd = &per_cpu(core_domains, i);
1da177e4
LT
6182#else
6183 sd = &per_cpu(phys_domains, i);
6184#endif
6185 cpu_attach_domain(sd, i);
6186 }
51888ca2
SV
6187
6188 return 0;
6189
a616058b 6190#ifdef CONFIG_NUMA
51888ca2
SV
6191error:
6192 free_sched_groups(cpu_map);
6193 return -ENOMEM;
a616058b 6194#endif
1da177e4 6195}
1a20ff27
DG
6196/*
6197 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6198 */
51888ca2 6199static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6200{
6201 cpumask_t cpu_default_map;
51888ca2 6202 int err;
1da177e4 6203
1a20ff27
DG
6204 /*
6205 * Setup mask for cpus without special case scheduling requirements.
6206 * For now this just excludes isolated cpus, but could be used to
6207 * exclude other special cases in the future.
6208 */
6209 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6210
51888ca2
SV
6211 err = build_sched_domains(&cpu_default_map);
6212
6213 return err;
1a20ff27
DG
6214}
6215
6216static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6217{
51888ca2 6218 free_sched_groups(cpu_map);
9c1cfda2 6219}
1da177e4 6220
1a20ff27
DG
6221/*
6222 * Detach sched domains from a group of cpus specified in cpu_map
6223 * These cpus will now be attached to the NULL domain
6224 */
858119e1 6225static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6226{
6227 int i;
6228
6229 for_each_cpu_mask(i, *cpu_map)
6230 cpu_attach_domain(NULL, i);
6231 synchronize_sched();
6232 arch_destroy_sched_domains(cpu_map);
6233}
6234
6235/*
6236 * Partition sched domains as specified by the cpumasks below.
6237 * This attaches all cpus from the cpumasks to the NULL domain,
6238 * waits for a RCU quiescent period, recalculates sched
6239 * domain information and then attaches them back to the
6240 * correct sched domains
6241 * Call with hotplug lock held
6242 */
51888ca2 6243int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6244{
6245 cpumask_t change_map;
51888ca2 6246 int err = 0;
1a20ff27
DG
6247
6248 cpus_and(*partition1, *partition1, cpu_online_map);
6249 cpus_and(*partition2, *partition2, cpu_online_map);
6250 cpus_or(change_map, *partition1, *partition2);
6251
6252 /* Detach sched domains from all of the affected cpus */
6253 detach_destroy_domains(&change_map);
6254 if (!cpus_empty(*partition1))
51888ca2
SV
6255 err = build_sched_domains(partition1);
6256 if (!err && !cpus_empty(*partition2))
6257 err = build_sched_domains(partition2);
6258
6259 return err;
1a20ff27
DG
6260}
6261
5c45bf27 6262#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6263static int arch_reinit_sched_domains(void)
5c45bf27
SS
6264{
6265 int err;
6266
5be9361c 6267 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6268 detach_destroy_domains(&cpu_online_map);
6269 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6270 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6271
6272 return err;
6273}
6274
6275static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6276{
6277 int ret;
6278
6279 if (buf[0] != '0' && buf[0] != '1')
6280 return -EINVAL;
6281
6282 if (smt)
6283 sched_smt_power_savings = (buf[0] == '1');
6284 else
6285 sched_mc_power_savings = (buf[0] == '1');
6286
6287 ret = arch_reinit_sched_domains();
6288
6289 return ret ? ret : count;
6290}
6291
5c45bf27
SS
6292#ifdef CONFIG_SCHED_MC
6293static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6294{
6295 return sprintf(page, "%u\n", sched_mc_power_savings);
6296}
48f24c4d
IM
6297static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6298 const char *buf, size_t count)
5c45bf27
SS
6299{
6300 return sched_power_savings_store(buf, count, 0);
6301}
6707de00
AB
6302static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6303 sched_mc_power_savings_store);
5c45bf27
SS
6304#endif
6305
6306#ifdef CONFIG_SCHED_SMT
6307static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6308{
6309 return sprintf(page, "%u\n", sched_smt_power_savings);
6310}
48f24c4d
IM
6311static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6312 const char *buf, size_t count)
5c45bf27
SS
6313{
6314 return sched_power_savings_store(buf, count, 1);
6315}
6707de00
AB
6316static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6317 sched_smt_power_savings_store);
6318#endif
6319
6320int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6321{
6322 int err = 0;
6323
6324#ifdef CONFIG_SCHED_SMT
6325 if (smt_capable())
6326 err = sysfs_create_file(&cls->kset.kobj,
6327 &attr_sched_smt_power_savings.attr);
6328#endif
6329#ifdef CONFIG_SCHED_MC
6330 if (!err && mc_capable())
6331 err = sysfs_create_file(&cls->kset.kobj,
6332 &attr_sched_mc_power_savings.attr);
6333#endif
6334 return err;
6335}
5c45bf27
SS
6336#endif
6337
1da177e4
LT
6338/*
6339 * Force a reinitialization of the sched domains hierarchy. The domains
6340 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6341 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6342 * which will prevent rebalancing while the sched domains are recalculated.
6343 */
6344static int update_sched_domains(struct notifier_block *nfb,
6345 unsigned long action, void *hcpu)
6346{
1da177e4
LT
6347 switch (action) {
6348 case CPU_UP_PREPARE:
8bb78442 6349 case CPU_UP_PREPARE_FROZEN:
1da177e4 6350 case CPU_DOWN_PREPARE:
8bb78442 6351 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6352 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6353 return NOTIFY_OK;
6354
6355 case CPU_UP_CANCELED:
8bb78442 6356 case CPU_UP_CANCELED_FROZEN:
1da177e4 6357 case CPU_DOWN_FAILED:
8bb78442 6358 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6359 case CPU_ONLINE:
8bb78442 6360 case CPU_ONLINE_FROZEN:
1da177e4 6361 case CPU_DEAD:
8bb78442 6362 case CPU_DEAD_FROZEN:
1da177e4
LT
6363 /*
6364 * Fall through and re-initialise the domains.
6365 */
6366 break;
6367 default:
6368 return NOTIFY_DONE;
6369 }
6370
6371 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6372 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6373
6374 return NOTIFY_OK;
6375}
1da177e4
LT
6376
6377void __init sched_init_smp(void)
6378{
5c1e1767
NP
6379 cpumask_t non_isolated_cpus;
6380
5be9361c 6381 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6382 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6383 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6384 if (cpus_empty(non_isolated_cpus))
6385 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6386 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6387 /* XXX: Theoretical race here - CPU may be hotplugged now */
6388 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6389
e692ab53
NP
6390 init_sched_domain_sysctl();
6391
5c1e1767
NP
6392 /* Move init over to a non-isolated CPU */
6393 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6394 BUG();
1da177e4
LT
6395}
6396#else
6397void __init sched_init_smp(void)
6398{
6399}
6400#endif /* CONFIG_SMP */
6401
6402int in_sched_functions(unsigned long addr)
6403{
6404 /* Linker adds these: start and end of __sched functions */
6405 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6406
1da177e4
LT
6407 return in_lock_functions(addr) ||
6408 (addr >= (unsigned long)__sched_text_start
6409 && addr < (unsigned long)__sched_text_end);
6410}
6411
a9957449 6412static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6413{
6414 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6415#ifdef CONFIG_FAIR_GROUP_SCHED
6416 cfs_rq->rq = rq;
6417#endif
67e9fb2a 6418 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6419}
6420
1da177e4
LT
6421void __init sched_init(void)
6422{
476f3534 6423 int highest_cpu = 0;
dd41f596
IM
6424 int i, j;
6425
0a945022 6426 for_each_possible_cpu(i) {
dd41f596 6427 struct rt_prio_array *array;
70b97a7f 6428 struct rq *rq;
1da177e4
LT
6429
6430 rq = cpu_rq(i);
6431 spin_lock_init(&rq->lock);
fcb99371 6432 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6433 rq->nr_running = 0;
dd41f596
IM
6434 rq->clock = 1;
6435 init_cfs_rq(&rq->cfs, rq);
6436#ifdef CONFIG_FAIR_GROUP_SCHED
6437 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6438 {
6439 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6440 struct sched_entity *se =
6441 &per_cpu(init_sched_entity, i);
6442
6443 init_cfs_rq_p[i] = cfs_rq;
6444 init_cfs_rq(cfs_rq, rq);
4cf86d77 6445 cfs_rq->tg = &init_task_group;
3a252015 6446 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6447 &rq->leaf_cfs_rq_list);
6448
3a252015
IM
6449 init_sched_entity_p[i] = se;
6450 se->cfs_rq = &rq->cfs;
6451 se->my_q = cfs_rq;
4cf86d77 6452 se->load.weight = init_task_group_load;
9b5b7751 6453 se->load.inv_weight =
4cf86d77 6454 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6455 se->parent = NULL;
6456 }
4cf86d77 6457 init_task_group.shares = init_task_group_load;
5cb350ba 6458 spin_lock_init(&init_task_group.lock);
dd41f596 6459#endif
1da177e4 6460
dd41f596
IM
6461 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6462 rq->cpu_load[j] = 0;
1da177e4 6463#ifdef CONFIG_SMP
41c7ce9a 6464 rq->sd = NULL;
1da177e4 6465 rq->active_balance = 0;
dd41f596 6466 rq->next_balance = jiffies;
1da177e4 6467 rq->push_cpu = 0;
0a2966b4 6468 rq->cpu = i;
1da177e4
LT
6469 rq->migration_thread = NULL;
6470 INIT_LIST_HEAD(&rq->migration_queue);
6471#endif
6472 atomic_set(&rq->nr_iowait, 0);
6473
dd41f596
IM
6474 array = &rq->rt.active;
6475 for (j = 0; j < MAX_RT_PRIO; j++) {
6476 INIT_LIST_HEAD(array->queue + j);
6477 __clear_bit(j, array->bitmap);
1da177e4 6478 }
476f3534 6479 highest_cpu = i;
dd41f596
IM
6480 /* delimiter for bitsearch: */
6481 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6482 }
6483
2dd73a4f 6484 set_load_weight(&init_task);
b50f60ce 6485
e107be36
AK
6486#ifdef CONFIG_PREEMPT_NOTIFIERS
6487 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6488#endif
6489
c9819f45 6490#ifdef CONFIG_SMP
476f3534 6491 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6492 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6493#endif
6494
b50f60ce
HC
6495#ifdef CONFIG_RT_MUTEXES
6496 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6497#endif
6498
1da177e4
LT
6499 /*
6500 * The boot idle thread does lazy MMU switching as well:
6501 */
6502 atomic_inc(&init_mm.mm_count);
6503 enter_lazy_tlb(&init_mm, current);
6504
6505 /*
6506 * Make us the idle thread. Technically, schedule() should not be
6507 * called from this thread, however somewhere below it might be,
6508 * but because we are the idle thread, we just pick up running again
6509 * when this runqueue becomes "idle".
6510 */
6511 init_idle(current, smp_processor_id());
dd41f596
IM
6512 /*
6513 * During early bootup we pretend to be a normal task:
6514 */
6515 current->sched_class = &fair_sched_class;
1da177e4
LT
6516}
6517
6518#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6519void __might_sleep(char *file, int line)
6520{
48f24c4d 6521#ifdef in_atomic
1da177e4
LT
6522 static unsigned long prev_jiffy; /* ratelimiting */
6523
6524 if ((in_atomic() || irqs_disabled()) &&
6525 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6526 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6527 return;
6528 prev_jiffy = jiffies;
91368d73 6529 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6530 " context at %s:%d\n", file, line);
6531 printk("in_atomic():%d, irqs_disabled():%d\n",
6532 in_atomic(), irqs_disabled());
a4c410f0 6533 debug_show_held_locks(current);
3117df04
IM
6534 if (irqs_disabled())
6535 print_irqtrace_events(current);
1da177e4
LT
6536 dump_stack();
6537 }
6538#endif
6539}
6540EXPORT_SYMBOL(__might_sleep);
6541#endif
6542
6543#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6544static void normalize_task(struct rq *rq, struct task_struct *p)
6545{
6546 int on_rq;
6547 update_rq_clock(rq);
6548 on_rq = p->se.on_rq;
6549 if (on_rq)
6550 deactivate_task(rq, p, 0);
6551 __setscheduler(rq, p, SCHED_NORMAL, 0);
6552 if (on_rq) {
6553 activate_task(rq, p, 0);
6554 resched_task(rq->curr);
6555 }
6556}
6557
1da177e4
LT
6558void normalize_rt_tasks(void)
6559{
a0f98a1c 6560 struct task_struct *g, *p;
1da177e4 6561 unsigned long flags;
70b97a7f 6562 struct rq *rq;
1da177e4
LT
6563
6564 read_lock_irq(&tasklist_lock);
a0f98a1c 6565 do_each_thread(g, p) {
6cfb0d5d 6566 p->se.exec_start = 0;
6cfb0d5d 6567#ifdef CONFIG_SCHEDSTATS
dd41f596 6568 p->se.wait_start = 0;
dd41f596 6569 p->se.sleep_start = 0;
dd41f596 6570 p->se.block_start = 0;
6cfb0d5d 6571#endif
dd41f596
IM
6572 task_rq(p)->clock = 0;
6573
6574 if (!rt_task(p)) {
6575 /*
6576 * Renice negative nice level userspace
6577 * tasks back to 0:
6578 */
6579 if (TASK_NICE(p) < 0 && p->mm)
6580 set_user_nice(p, 0);
1da177e4 6581 continue;
dd41f596 6582 }
1da177e4 6583
b29739f9
IM
6584 spin_lock_irqsave(&p->pi_lock, flags);
6585 rq = __task_rq_lock(p);
1da177e4 6586
3a5e4dc1
AK
6587 if (!is_migration_thread(p, rq))
6588 normalize_task(rq, p);
6589
b29739f9
IM
6590 __task_rq_unlock(rq);
6591 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6592 } while_each_thread(g, p);
6593
1da177e4
LT
6594 read_unlock_irq(&tasklist_lock);
6595}
6596
6597#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6598
6599#ifdef CONFIG_IA64
6600/*
6601 * These functions are only useful for the IA64 MCA handling.
6602 *
6603 * They can only be called when the whole system has been
6604 * stopped - every CPU needs to be quiescent, and no scheduling
6605 * activity can take place. Using them for anything else would
6606 * be a serious bug, and as a result, they aren't even visible
6607 * under any other configuration.
6608 */
6609
6610/**
6611 * curr_task - return the current task for a given cpu.
6612 * @cpu: the processor in question.
6613 *
6614 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6615 */
36c8b586 6616struct task_struct *curr_task(int cpu)
1df5c10a
LT
6617{
6618 return cpu_curr(cpu);
6619}
6620
6621/**
6622 * set_curr_task - set the current task for a given cpu.
6623 * @cpu: the processor in question.
6624 * @p: the task pointer to set.
6625 *
6626 * Description: This function must only be used when non-maskable interrupts
6627 * are serviced on a separate stack. It allows the architecture to switch the
6628 * notion of the current task on a cpu in a non-blocking manner. This function
6629 * must be called with all CPU's synchronized, and interrupts disabled, the
6630 * and caller must save the original value of the current task (see
6631 * curr_task() above) and restore that value before reenabling interrupts and
6632 * re-starting the system.
6633 *
6634 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6635 */
36c8b586 6636void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6637{
6638 cpu_curr(cpu) = p;
6639}
6640
6641#endif
29f59db3
SV
6642
6643#ifdef CONFIG_FAIR_GROUP_SCHED
6644
29f59db3 6645/* allocate runqueue etc for a new task group */
4cf86d77 6646struct task_group *sched_create_group(void)
29f59db3 6647{
4cf86d77 6648 struct task_group *tg;
29f59db3
SV
6649 struct cfs_rq *cfs_rq;
6650 struct sched_entity *se;
9b5b7751 6651 struct rq *rq;
29f59db3
SV
6652 int i;
6653
29f59db3
SV
6654 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6655 if (!tg)
6656 return ERR_PTR(-ENOMEM);
6657
9b5b7751 6658 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6659 if (!tg->cfs_rq)
6660 goto err;
9b5b7751 6661 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6662 if (!tg->se)
6663 goto err;
6664
6665 for_each_possible_cpu(i) {
9b5b7751 6666 rq = cpu_rq(i);
29f59db3
SV
6667
6668 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6669 cpu_to_node(i));
6670 if (!cfs_rq)
6671 goto err;
6672
6673 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6674 cpu_to_node(i));
6675 if (!se)
6676 goto err;
6677
6678 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6679 memset(se, 0, sizeof(struct sched_entity));
6680
6681 tg->cfs_rq[i] = cfs_rq;
6682 init_cfs_rq(cfs_rq, rq);
6683 cfs_rq->tg = tg;
29f59db3
SV
6684
6685 tg->se[i] = se;
6686 se->cfs_rq = &rq->cfs;
6687 se->my_q = cfs_rq;
6688 se->load.weight = NICE_0_LOAD;
6689 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6690 se->parent = NULL;
6691 }
6692
9b5b7751
SV
6693 for_each_possible_cpu(i) {
6694 rq = cpu_rq(i);
6695 cfs_rq = tg->cfs_rq[i];
6696 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6697 }
29f59db3 6698
9b5b7751 6699 tg->shares = NICE_0_LOAD;
5cb350ba 6700 spin_lock_init(&tg->lock);
29f59db3 6701
9b5b7751 6702 return tg;
29f59db3
SV
6703
6704err:
6705 for_each_possible_cpu(i) {
a65914b3 6706 if (tg->cfs_rq)
29f59db3 6707 kfree(tg->cfs_rq[i]);
a65914b3 6708 if (tg->se)
29f59db3
SV
6709 kfree(tg->se[i]);
6710 }
a65914b3
IM
6711 kfree(tg->cfs_rq);
6712 kfree(tg->se);
6713 kfree(tg);
29f59db3
SV
6714
6715 return ERR_PTR(-ENOMEM);
6716}
6717
9b5b7751
SV
6718/* rcu callback to free various structures associated with a task group */
6719static void free_sched_group(struct rcu_head *rhp)
29f59db3 6720{
9b5b7751 6721 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
4cf86d77 6722 struct task_group *tg = cfs_rq->tg;
29f59db3
SV
6723 struct sched_entity *se;
6724 int i;
6725
29f59db3
SV
6726 /* now it should be safe to free those cfs_rqs */
6727 for_each_possible_cpu(i) {
6728 cfs_rq = tg->cfs_rq[i];
6729 kfree(cfs_rq);
6730
6731 se = tg->se[i];
6732 kfree(se);
6733 }
6734
6735 kfree(tg->cfs_rq);
6736 kfree(tg->se);
6737 kfree(tg);
6738}
6739
9b5b7751 6740/* Destroy runqueue etc associated with a task group */
4cf86d77 6741void sched_destroy_group(struct task_group *tg)
29f59db3 6742{
9b5b7751
SV
6743 struct cfs_rq *cfs_rq;
6744 int i;
29f59db3 6745
9b5b7751
SV
6746 for_each_possible_cpu(i) {
6747 cfs_rq = tg->cfs_rq[i];
6748 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6749 }
6750
6751 cfs_rq = tg->cfs_rq[0];
6752
6753 /* wait for possible concurrent references to cfs_rqs complete */
6754 call_rcu(&cfs_rq->rcu, free_sched_group);
29f59db3
SV
6755}
6756
9b5b7751 6757/* change task's runqueue when it moves between groups.
3a252015
IM
6758 * The caller of this function should have put the task in its new group
6759 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6760 * reflect its new group.
9b5b7751
SV
6761 */
6762void sched_move_task(struct task_struct *tsk)
29f59db3
SV
6763{
6764 int on_rq, running;
6765 unsigned long flags;
6766 struct rq *rq;
6767
6768 rq = task_rq_lock(tsk, &flags);
6769
6770 if (tsk->sched_class != &fair_sched_class)
6771 goto done;
6772
6773 update_rq_clock(rq);
6774
6775 running = task_running(rq, tsk);
6776 on_rq = tsk->se.on_rq;
6777
83b699ed 6778 if (on_rq) {
29f59db3 6779 dequeue_task(rq, tsk, 0);
83b699ed
SV
6780 if (unlikely(running))
6781 tsk->sched_class->put_prev_task(rq, tsk);
6782 }
29f59db3
SV
6783
6784 set_task_cfs_rq(tsk);
6785
83b699ed
SV
6786 if (on_rq) {
6787 if (unlikely(running))
6788 tsk->sched_class->set_curr_task(rq);
7074badb 6789 enqueue_task(rq, tsk, 0);
83b699ed 6790 }
29f59db3
SV
6791
6792done:
6793 task_rq_unlock(rq, &flags);
6794}
6795
6796static void set_se_shares(struct sched_entity *se, unsigned long shares)
6797{
6798 struct cfs_rq *cfs_rq = se->cfs_rq;
6799 struct rq *rq = cfs_rq->rq;
6800 int on_rq;
6801
6802 spin_lock_irq(&rq->lock);
6803
6804 on_rq = se->on_rq;
6805 if (on_rq)
6806 dequeue_entity(cfs_rq, se, 0);
6807
6808 se->load.weight = shares;
6809 se->load.inv_weight = div64_64((1ULL<<32), shares);
6810
6811 if (on_rq)
6812 enqueue_entity(cfs_rq, se, 0);
6813
6814 spin_unlock_irq(&rq->lock);
6815}
6816
4cf86d77 6817int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
6818{
6819 int i;
29f59db3 6820
5cb350ba 6821 spin_lock(&tg->lock);
9b5b7751 6822 if (tg->shares == shares)
5cb350ba 6823 goto done;
29f59db3 6824
9b5b7751 6825 tg->shares = shares;
29f59db3 6826 for_each_possible_cpu(i)
9b5b7751 6827 set_se_shares(tg->se[i], shares);
29f59db3 6828
5cb350ba
DG
6829done:
6830 spin_unlock(&tg->lock);
9b5b7751 6831 return 0;
29f59db3
SV
6832}
6833
5cb350ba
DG
6834unsigned long sched_group_shares(struct task_group *tg)
6835{
6836 return tg->shares;
6837}
6838
3a252015 6839#endif /* CONFIG_FAIR_GROUP_SCHED */