sched/core: Streamle calls to task_rq_unlock()
[linux-block.git] / kernel / sched / topology.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
f2cb1360
IM
2/*
3 * Scheduler topology setup/handling methods
4 */
f2cb1360
IM
5#include "sched.h"
6
7DEFINE_MUTEX(sched_domains_mutex);
8
9/* Protected by sched_domains_mutex: */
ace80310 10static cpumask_var_t sched_domains_tmpmask;
11static cpumask_var_t sched_domains_tmpmask2;
f2cb1360
IM
12
13#ifdef CONFIG_SCHED_DEBUG
14
f2cb1360
IM
15static int __init sched_debug_setup(char *str)
16{
9469eb01 17 sched_debug_enabled = true;
f2cb1360
IM
18
19 return 0;
20}
21early_param("sched_debug", sched_debug_setup);
22
23static inline bool sched_debug(void)
24{
25 return sched_debug_enabled;
26}
27
28static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29 struct cpumask *groupmask)
30{
31 struct sched_group *group = sd->groups;
32
33 cpumask_clear(groupmask);
34
005f874d 35 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
f2cb1360
IM
36
37 if (!(sd->flags & SD_LOAD_BALANCE)) {
38 printk("does not load-balance\n");
39 if (sd->parent)
97fb7a0a 40 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
f2cb1360
IM
41 return -1;
42 }
43
005f874d 44 printk(KERN_CONT "span=%*pbl level=%s\n",
f2cb1360
IM
45 cpumask_pr_args(sched_domain_span(sd)), sd->name);
46
47 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
97fb7a0a 48 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
f2cb1360 49 }
6cd0c583 50 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
97fb7a0a 51 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
f2cb1360
IM
52 }
53
54 printk(KERN_DEBUG "%*s groups:", level + 1, "");
55 do {
56 if (!group) {
57 printk("\n");
58 printk(KERN_ERR "ERROR: group is NULL\n");
59 break;
60 }
61
ae4df9d6 62 if (!cpumask_weight(sched_group_span(group))) {
f2cb1360
IM
63 printk(KERN_CONT "\n");
64 printk(KERN_ERR "ERROR: empty group\n");
65 break;
66 }
67
68 if (!(sd->flags & SD_OVERLAP) &&
ae4df9d6 69 cpumask_intersects(groupmask, sched_group_span(group))) {
f2cb1360
IM
70 printk(KERN_CONT "\n");
71 printk(KERN_ERR "ERROR: repeated CPUs\n");
72 break;
73 }
74
ae4df9d6 75 cpumask_or(groupmask, groupmask, sched_group_span(group));
f2cb1360 76
005f874d
PZ
77 printk(KERN_CONT " %d:{ span=%*pbl",
78 group->sgc->id,
ae4df9d6 79 cpumask_pr_args(sched_group_span(group)));
b0151c25 80
af218122 81 if ((sd->flags & SD_OVERLAP) &&
ae4df9d6 82 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
005f874d 83 printk(KERN_CONT " mask=%*pbl",
e5c14b1f 84 cpumask_pr_args(group_balance_mask(group)));
b0151c25
PZ
85 }
86
005f874d
PZ
87 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
88 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
f2cb1360 89
a420b063
PZ
90 if (group == sd->groups && sd->child &&
91 !cpumask_equal(sched_domain_span(sd->child),
ae4df9d6 92 sched_group_span(group))) {
a420b063
PZ
93 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
94 }
95
005f874d
PZ
96 printk(KERN_CONT " }");
97
f2cb1360 98 group = group->next;
b0151c25
PZ
99
100 if (group != sd->groups)
101 printk(KERN_CONT ",");
102
f2cb1360
IM
103 } while (group != sd->groups);
104 printk(KERN_CONT "\n");
105
106 if (!cpumask_equal(sched_domain_span(sd), groupmask))
107 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
108
109 if (sd->parent &&
110 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
97fb7a0a 111 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
f2cb1360
IM
112 return 0;
113}
114
115static void sched_domain_debug(struct sched_domain *sd, int cpu)
116{
117 int level = 0;
118
119 if (!sched_debug_enabled)
120 return;
121
122 if (!sd) {
123 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
124 return;
125 }
126
005f874d 127 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
f2cb1360
IM
128
129 for (;;) {
130 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
131 break;
132 level++;
133 sd = sd->parent;
134 if (!sd)
135 break;
136 }
137}
138#else /* !CONFIG_SCHED_DEBUG */
139
140# define sched_debug_enabled 0
141# define sched_domain_debug(sd, cpu) do { } while (0)
142static inline bool sched_debug(void)
143{
144 return false;
145}
146#endif /* CONFIG_SCHED_DEBUG */
147
148static int sd_degenerate(struct sched_domain *sd)
149{
150 if (cpumask_weight(sched_domain_span(sd)) == 1)
151 return 1;
152
153 /* Following flags need at least 2 groups */
154 if (sd->flags & (SD_LOAD_BALANCE |
155 SD_BALANCE_NEWIDLE |
156 SD_BALANCE_FORK |
157 SD_BALANCE_EXEC |
158 SD_SHARE_CPUCAPACITY |
159 SD_ASYM_CPUCAPACITY |
160 SD_SHARE_PKG_RESOURCES |
161 SD_SHARE_POWERDOMAIN)) {
162 if (sd->groups != sd->groups->next)
163 return 0;
164 }
165
166 /* Following flags don't use groups */
167 if (sd->flags & (SD_WAKE_AFFINE))
168 return 0;
169
170 return 1;
171}
172
173static int
174sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
175{
176 unsigned long cflags = sd->flags, pflags = parent->flags;
177
178 if (sd_degenerate(parent))
179 return 1;
180
181 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
182 return 0;
183
184 /* Flags needing groups don't count if only 1 group in parent */
185 if (parent->groups == parent->groups->next) {
186 pflags &= ~(SD_LOAD_BALANCE |
187 SD_BALANCE_NEWIDLE |
188 SD_BALANCE_FORK |
189 SD_BALANCE_EXEC |
190 SD_ASYM_CPUCAPACITY |
191 SD_SHARE_CPUCAPACITY |
192 SD_SHARE_PKG_RESOURCES |
193 SD_PREFER_SIBLING |
194 SD_SHARE_POWERDOMAIN);
195 if (nr_node_ids == 1)
196 pflags &= ~SD_SERIALIZE;
197 }
198 if (~cflags & pflags)
199 return 0;
200
201 return 1;
202}
203
531b5c9f 204#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
f8a696f2 205DEFINE_STATIC_KEY_FALSE(sched_energy_present);
8d5d0cfb 206unsigned int sysctl_sched_energy_aware = 1;
531b5c9f
QP
207DEFINE_MUTEX(sched_energy_mutex);
208bool sched_energy_update;
209
8d5d0cfb
QP
210#ifdef CONFIG_PROC_SYSCTL
211int sched_energy_aware_handler(struct ctl_table *table, int write,
212 void __user *buffer, size_t *lenp, loff_t *ppos)
213{
214 int ret, state;
215
216 if (write && !capable(CAP_SYS_ADMIN))
217 return -EPERM;
218
219 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
220 if (!ret && write) {
221 state = static_branch_unlikely(&sched_energy_present);
222 if (state != sysctl_sched_energy_aware) {
223 mutex_lock(&sched_energy_mutex);
224 sched_energy_update = 1;
225 rebuild_sched_domains();
226 sched_energy_update = 0;
227 mutex_unlock(&sched_energy_mutex);
228 }
229 }
230
231 return ret;
232}
233#endif
234
6aa140fa
QP
235static void free_pd(struct perf_domain *pd)
236{
237 struct perf_domain *tmp;
238
239 while (pd) {
240 tmp = pd->next;
241 kfree(pd);
242 pd = tmp;
243 }
244}
245
246static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
247{
248 while (pd) {
249 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
250 return pd;
251 pd = pd->next;
252 }
253
254 return NULL;
255}
256
257static struct perf_domain *pd_init(int cpu)
258{
259 struct em_perf_domain *obj = em_cpu_get(cpu);
260 struct perf_domain *pd;
261
262 if (!obj) {
263 if (sched_debug())
264 pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
265 return NULL;
266 }
267
268 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
269 if (!pd)
270 return NULL;
271 pd->em_pd = obj;
272
273 return pd;
274}
275
276static void perf_domain_debug(const struct cpumask *cpu_map,
277 struct perf_domain *pd)
278{
279 if (!sched_debug() || !pd)
280 return;
281
282 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
283
284 while (pd) {
285 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }",
286 cpumask_first(perf_domain_span(pd)),
287 cpumask_pr_args(perf_domain_span(pd)),
288 em_pd_nr_cap_states(pd->em_pd));
289 pd = pd->next;
290 }
291
292 printk(KERN_CONT "\n");
293}
294
295static void destroy_perf_domain_rcu(struct rcu_head *rp)
296{
297 struct perf_domain *pd;
298
299 pd = container_of(rp, struct perf_domain, rcu);
300 free_pd(pd);
301}
302
1f74de87
QP
303static void sched_energy_set(bool has_eas)
304{
305 if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
306 if (sched_debug())
307 pr_info("%s: stopping EAS\n", __func__);
308 static_branch_disable_cpuslocked(&sched_energy_present);
309 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
310 if (sched_debug())
311 pr_info("%s: starting EAS\n", __func__);
312 static_branch_enable_cpuslocked(&sched_energy_present);
313 }
314}
315
b68a4c0d
QP
316/*
317 * EAS can be used on a root domain if it meets all the following conditions:
318 * 1. an Energy Model (EM) is available;
319 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
320 * 3. the EM complexity is low enough to keep scheduling overheads low;
531b5c9f 321 * 4. schedutil is driving the frequency of all CPUs of the rd;
b68a4c0d
QP
322 *
323 * The complexity of the Energy Model is defined as:
324 *
325 * C = nr_pd * (nr_cpus + nr_cs)
326 *
327 * with parameters defined as:
328 * - nr_pd: the number of performance domains
329 * - nr_cpus: the number of CPUs
330 * - nr_cs: the sum of the number of capacity states of all performance
331 * domains (for example, on a system with 2 performance domains,
332 * with 10 capacity states each, nr_cs = 2 * 10 = 20).
333 *
334 * It is generally not a good idea to use such a model in the wake-up path on
335 * very complex platforms because of the associated scheduling overheads. The
336 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
337 * with per-CPU DVFS and less than 8 capacity states each, for example.
338 */
339#define EM_MAX_COMPLEXITY 2048
340
531b5c9f 341extern struct cpufreq_governor schedutil_gov;
1f74de87 342static bool build_perf_domains(const struct cpumask *cpu_map)
6aa140fa 343{
b68a4c0d 344 int i, nr_pd = 0, nr_cs = 0, nr_cpus = cpumask_weight(cpu_map);
6aa140fa
QP
345 struct perf_domain *pd = NULL, *tmp;
346 int cpu = cpumask_first(cpu_map);
347 struct root_domain *rd = cpu_rq(cpu)->rd;
531b5c9f
QP
348 struct cpufreq_policy *policy;
349 struct cpufreq_governor *gov;
b68a4c0d 350
8d5d0cfb
QP
351 if (!sysctl_sched_energy_aware)
352 goto free;
353
b68a4c0d
QP
354 /* EAS is enabled for asymmetric CPU capacity topologies. */
355 if (!per_cpu(sd_asym_cpucapacity, cpu)) {
356 if (sched_debug()) {
357 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
358 cpumask_pr_args(cpu_map));
359 }
360 goto free;
361 }
6aa140fa
QP
362
363 for_each_cpu(i, cpu_map) {
364 /* Skip already covered CPUs. */
365 if (find_pd(pd, i))
366 continue;
367
531b5c9f
QP
368 /* Do not attempt EAS if schedutil is not being used. */
369 policy = cpufreq_cpu_get(i);
370 if (!policy)
371 goto free;
372 gov = policy->governor;
373 cpufreq_cpu_put(policy);
374 if (gov != &schedutil_gov) {
375 if (rd->pd)
376 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
377 cpumask_pr_args(cpu_map));
378 goto free;
379 }
380
6aa140fa
QP
381 /* Create the new pd and add it to the local list. */
382 tmp = pd_init(i);
383 if (!tmp)
384 goto free;
385 tmp->next = pd;
386 pd = tmp;
b68a4c0d
QP
387
388 /*
389 * Count performance domains and capacity states for the
390 * complexity check.
391 */
392 nr_pd++;
393 nr_cs += em_pd_nr_cap_states(pd->em_pd);
394 }
395
396 /* Bail out if the Energy Model complexity is too high. */
397 if (nr_pd * (nr_cs + nr_cpus) > EM_MAX_COMPLEXITY) {
398 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
399 cpumask_pr_args(cpu_map));
400 goto free;
6aa140fa
QP
401 }
402
403 perf_domain_debug(cpu_map, pd);
404
405 /* Attach the new list of performance domains to the root domain. */
406 tmp = rd->pd;
407 rcu_assign_pointer(rd->pd, pd);
408 if (tmp)
409 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
410
1f74de87 411 return !!pd;
6aa140fa
QP
412
413free:
414 free_pd(pd);
415 tmp = rd->pd;
416 rcu_assign_pointer(rd->pd, NULL);
417 if (tmp)
418 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
1f74de87
QP
419
420 return false;
6aa140fa
QP
421}
422#else
423static void free_pd(struct perf_domain *pd) { }
531b5c9f 424#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
6aa140fa 425
f2cb1360
IM
426static void free_rootdomain(struct rcu_head *rcu)
427{
428 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
429
430 cpupri_cleanup(&rd->cpupri);
431 cpudl_cleanup(&rd->cpudl);
432 free_cpumask_var(rd->dlo_mask);
433 free_cpumask_var(rd->rto_mask);
434 free_cpumask_var(rd->online);
435 free_cpumask_var(rd->span);
6aa140fa 436 free_pd(rd->pd);
f2cb1360
IM
437 kfree(rd);
438}
439
440void rq_attach_root(struct rq *rq, struct root_domain *rd)
441{
442 struct root_domain *old_rd = NULL;
443 unsigned long flags;
444
445 raw_spin_lock_irqsave(&rq->lock, flags);
446
447 if (rq->rd) {
448 old_rd = rq->rd;
449
450 if (cpumask_test_cpu(rq->cpu, old_rd->online))
451 set_rq_offline(rq);
452
453 cpumask_clear_cpu(rq->cpu, old_rd->span);
454
455 /*
456 * If we dont want to free the old_rd yet then
457 * set old_rd to NULL to skip the freeing later
458 * in this function:
459 */
460 if (!atomic_dec_and_test(&old_rd->refcount))
461 old_rd = NULL;
462 }
463
464 atomic_inc(&rd->refcount);
465 rq->rd = rd;
466
467 cpumask_set_cpu(rq->cpu, rd->span);
468 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
469 set_rq_online(rq);
470
471 raw_spin_unlock_irqrestore(&rq->lock, flags);
472
473 if (old_rd)
337e9b07 474 call_rcu(&old_rd->rcu, free_rootdomain);
f2cb1360
IM
475}
476
364f5665
SRV
477void sched_get_rd(struct root_domain *rd)
478{
479 atomic_inc(&rd->refcount);
480}
481
482void sched_put_rd(struct root_domain *rd)
483{
484 if (!atomic_dec_and_test(&rd->refcount))
485 return;
486
337e9b07 487 call_rcu(&rd->rcu, free_rootdomain);
364f5665
SRV
488}
489
f2cb1360
IM
490static int init_rootdomain(struct root_domain *rd)
491{
f2cb1360
IM
492 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
493 goto out;
494 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
495 goto free_span;
496 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
497 goto free_online;
498 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
499 goto free_dlo_mask;
500
4bdced5c
SRRH
501#ifdef HAVE_RT_PUSH_IPI
502 rd->rto_cpu = -1;
503 raw_spin_lock_init(&rd->rto_lock);
504 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
505#endif
506
f2cb1360
IM
507 init_dl_bw(&rd->dl_bw);
508 if (cpudl_init(&rd->cpudl) != 0)
509 goto free_rto_mask;
510
511 if (cpupri_init(&rd->cpupri) != 0)
512 goto free_cpudl;
513 return 0;
514
515free_cpudl:
516 cpudl_cleanup(&rd->cpudl);
517free_rto_mask:
518 free_cpumask_var(rd->rto_mask);
519free_dlo_mask:
520 free_cpumask_var(rd->dlo_mask);
521free_online:
522 free_cpumask_var(rd->online);
523free_span:
524 free_cpumask_var(rd->span);
525out:
526 return -ENOMEM;
527}
528
529/*
530 * By default the system creates a single root-domain with all CPUs as
531 * members (mimicking the global state we have today).
532 */
533struct root_domain def_root_domain;
534
535void init_defrootdomain(void)
536{
537 init_rootdomain(&def_root_domain);
538
539 atomic_set(&def_root_domain.refcount, 1);
540}
541
542static struct root_domain *alloc_rootdomain(void)
543{
544 struct root_domain *rd;
545
4d13a06d 546 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
f2cb1360
IM
547 if (!rd)
548 return NULL;
549
550 if (init_rootdomain(rd) != 0) {
551 kfree(rd);
552 return NULL;
553 }
554
555 return rd;
556}
557
558static void free_sched_groups(struct sched_group *sg, int free_sgc)
559{
560 struct sched_group *tmp, *first;
561
562 if (!sg)
563 return;
564
565 first = sg;
566 do {
567 tmp = sg->next;
568
569 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
570 kfree(sg->sgc);
571
213c5a45
SW
572 if (atomic_dec_and_test(&sg->ref))
573 kfree(sg);
f2cb1360
IM
574 sg = tmp;
575 } while (sg != first);
576}
577
578static void destroy_sched_domain(struct sched_domain *sd)
579{
580 /*
a090c4f2
PZ
581 * A normal sched domain may have multiple group references, an
582 * overlapping domain, having private groups, only one. Iterate,
583 * dropping group/capacity references, freeing where none remain.
f2cb1360 584 */
213c5a45
SW
585 free_sched_groups(sd->groups, 1);
586
f2cb1360
IM
587 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
588 kfree(sd->shared);
589 kfree(sd);
590}
591
592static void destroy_sched_domains_rcu(struct rcu_head *rcu)
593{
594 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
595
596 while (sd) {
597 struct sched_domain *parent = sd->parent;
598 destroy_sched_domain(sd);
599 sd = parent;
600 }
601}
602
603static void destroy_sched_domains(struct sched_domain *sd)
604{
605 if (sd)
606 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
607}
608
609/*
610 * Keep a special pointer to the highest sched_domain that has
611 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
612 * allows us to avoid some pointer chasing select_idle_sibling().
613 *
614 * Also keep a unique ID per domain (we use the first CPU number in
615 * the cpumask of the domain), this allows us to quickly tell if
616 * two CPUs are in the same cache domain, see cpus_share_cache().
617 */
994aeb7a 618DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
f2cb1360
IM
619DEFINE_PER_CPU(int, sd_llc_size);
620DEFINE_PER_CPU(int, sd_llc_id);
994aeb7a
JFG
621DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
622DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
623DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
624DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
df054e84 625DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
f2cb1360
IM
626
627static void update_top_cache_domain(int cpu)
628{
629 struct sched_domain_shared *sds = NULL;
630 struct sched_domain *sd;
631 int id = cpu;
632 int size = 1;
633
634 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
635 if (sd) {
636 id = cpumask_first(sched_domain_span(sd));
637 size = cpumask_weight(sched_domain_span(sd));
638 sds = sd->shared;
639 }
640
641 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
642 per_cpu(sd_llc_size, cpu) = size;
643 per_cpu(sd_llc_id, cpu) = id;
644 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
645
646 sd = lowest_flag_domain(cpu, SD_NUMA);
647 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
648
649 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
011b27bb
QP
650 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
651
652 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
653 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
f2cb1360
IM
654}
655
656/*
657 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
658 * hold the hotplug lock.
659 */
660static void
661cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
662{
663 struct rq *rq = cpu_rq(cpu);
664 struct sched_domain *tmp;
665
666 /* Remove the sched domains which do not contribute to scheduling. */
667 for (tmp = sd; tmp; ) {
668 struct sched_domain *parent = tmp->parent;
669 if (!parent)
670 break;
671
672 if (sd_parent_degenerate(tmp, parent)) {
673 tmp->parent = parent->parent;
674 if (parent->parent)
675 parent->parent->child = tmp;
676 /*
677 * Transfer SD_PREFER_SIBLING down in case of a
678 * degenerate parent; the spans match for this
679 * so the property transfers.
680 */
681 if (parent->flags & SD_PREFER_SIBLING)
682 tmp->flags |= SD_PREFER_SIBLING;
683 destroy_sched_domain(parent);
684 } else
685 tmp = tmp->parent;
686 }
687
688 if (sd && sd_degenerate(sd)) {
689 tmp = sd;
690 sd = sd->parent;
691 destroy_sched_domain(tmp);
692 if (sd)
693 sd->child = NULL;
694 }
695
696 sched_domain_debug(sd, cpu);
697
698 rq_attach_root(rq, rd);
699 tmp = rq->sd;
700 rcu_assign_pointer(rq->sd, sd);
bbdacdfe 701 dirty_sched_domain_sysctl(cpu);
f2cb1360
IM
702 destroy_sched_domains(tmp);
703
704 update_top_cache_domain(cpu);
705}
706
f2cb1360 707struct s_data {
99687cdb 708 struct sched_domain * __percpu *sd;
f2cb1360
IM
709 struct root_domain *rd;
710};
711
712enum s_alloc {
713 sa_rootdomain,
714 sa_sd,
715 sa_sd_storage,
716 sa_none,
717};
718
35a566e6
PZ
719/*
720 * Return the canonical balance CPU for this group, this is the first CPU
e5c14b1f 721 * of this group that's also in the balance mask.
35a566e6 722 *
e5c14b1f
PZ
723 * The balance mask are all those CPUs that could actually end up at this
724 * group. See build_balance_mask().
35a566e6
PZ
725 *
726 * Also see should_we_balance().
727 */
728int group_balance_cpu(struct sched_group *sg)
729{
e5c14b1f 730 return cpumask_first(group_balance_mask(sg));
35a566e6
PZ
731}
732
733
734/*
735 * NUMA topology (first read the regular topology blurb below)
736 *
737 * Given a node-distance table, for example:
738 *
739 * node 0 1 2 3
740 * 0: 10 20 30 20
741 * 1: 20 10 20 30
742 * 2: 30 20 10 20
743 * 3: 20 30 20 10
744 *
745 * which represents a 4 node ring topology like:
746 *
747 * 0 ----- 1
748 * | |
749 * | |
750 * | |
751 * 3 ----- 2
752 *
753 * We want to construct domains and groups to represent this. The way we go
754 * about doing this is to build the domains on 'hops'. For each NUMA level we
755 * construct the mask of all nodes reachable in @level hops.
756 *
757 * For the above NUMA topology that gives 3 levels:
758 *
759 * NUMA-2 0-3 0-3 0-3 0-3
760 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
761 *
762 * NUMA-1 0-1,3 0-2 1-3 0,2-3
763 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
764 *
765 * NUMA-0 0 1 2 3
766 *
767 *
768 * As can be seen; things don't nicely line up as with the regular topology.
769 * When we iterate a domain in child domain chunks some nodes can be
770 * represented multiple times -- hence the "overlap" naming for this part of
771 * the topology.
772 *
773 * In order to minimize this overlap, we only build enough groups to cover the
774 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
775 *
776 * Because:
777 *
778 * - the first group of each domain is its child domain; this
779 * gets us the first 0-1,3
780 * - the only uncovered node is 2, who's child domain is 1-3.
781 *
782 * However, because of the overlap, computing a unique CPU for each group is
783 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
784 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
785 * end up at those groups (they would end up in group: 0-1,3).
786 *
e5c14b1f 787 * To correct this we have to introduce the group balance mask. This mask
35a566e6
PZ
788 * will contain those CPUs in the group that can reach this group given the
789 * (child) domain tree.
790 *
791 * With this we can once again compute balance_cpu and sched_group_capacity
792 * relations.
793 *
794 * XXX include words on how balance_cpu is unique and therefore can be
795 * used for sched_group_capacity links.
796 *
797 *
798 * Another 'interesting' topology is:
799 *
800 * node 0 1 2 3
801 * 0: 10 20 20 30
802 * 1: 20 10 20 20
803 * 2: 20 20 10 20
804 * 3: 30 20 20 10
805 *
806 * Which looks a little like:
807 *
808 * 0 ----- 1
809 * | / |
810 * | / |
811 * | / |
812 * 2 ----- 3
813 *
814 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
815 * are not.
816 *
817 * This leads to a few particularly weird cases where the sched_domain's are
97fb7a0a 818 * not of the same number for each CPU. Consider:
35a566e6
PZ
819 *
820 * NUMA-2 0-3 0-3
821 * groups: {0-2},{1-3} {1-3},{0-2}
822 *
823 * NUMA-1 0-2 0-3 0-3 1-3
824 *
825 * NUMA-0 0 1 2 3
826 *
827 */
828
829
f2cb1360 830/*
e5c14b1f
PZ
831 * Build the balance mask; it contains only those CPUs that can arrive at this
832 * group and should be considered to continue balancing.
35a566e6
PZ
833 *
834 * We do this during the group creation pass, therefore the group information
835 * isn't complete yet, however since each group represents a (child) domain we
836 * can fully construct this using the sched_domain bits (which are already
837 * complete).
f2cb1360 838 */
1676330e 839static void
e5c14b1f 840build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
f2cb1360 841{
ae4df9d6 842 const struct cpumask *sg_span = sched_group_span(sg);
f2cb1360
IM
843 struct sd_data *sdd = sd->private;
844 struct sched_domain *sibling;
845 int i;
846
1676330e
PZ
847 cpumask_clear(mask);
848
f32d782e 849 for_each_cpu(i, sg_span) {
f2cb1360 850 sibling = *per_cpu_ptr(sdd->sd, i);
73bb059f
PZ
851
852 /*
853 * Can happen in the asymmetric case, where these siblings are
854 * unused. The mask will not be empty because those CPUs that
855 * do have the top domain _should_ span the domain.
856 */
857 if (!sibling->child)
858 continue;
859
860 /* If we would not end up here, we can't continue from here */
861 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
f2cb1360
IM
862 continue;
863
1676330e 864 cpumask_set_cpu(i, mask);
f2cb1360 865 }
73bb059f
PZ
866
867 /* We must not have empty masks here */
1676330e 868 WARN_ON_ONCE(cpumask_empty(mask));
f2cb1360
IM
869}
870
871/*
35a566e6
PZ
872 * XXX: This creates per-node group entries; since the load-balancer will
873 * immediately access remote memory to construct this group's load-balance
874 * statistics having the groups node local is of dubious benefit.
f2cb1360 875 */
8c033469
LRV
876static struct sched_group *
877build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
878{
879 struct sched_group *sg;
880 struct cpumask *sg_span;
881
882 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
883 GFP_KERNEL, cpu_to_node(cpu));
884
885 if (!sg)
886 return NULL;
887
ae4df9d6 888 sg_span = sched_group_span(sg);
8c033469
LRV
889 if (sd->child)
890 cpumask_copy(sg_span, sched_domain_span(sd->child));
891 else
892 cpumask_copy(sg_span, sched_domain_span(sd));
893
213c5a45 894 atomic_inc(&sg->ref);
8c033469
LRV
895 return sg;
896}
897
898static void init_overlap_sched_group(struct sched_domain *sd,
1676330e 899 struct sched_group *sg)
8c033469 900{
1676330e 901 struct cpumask *mask = sched_domains_tmpmask2;
8c033469
LRV
902 struct sd_data *sdd = sd->private;
903 struct cpumask *sg_span;
1676330e
PZ
904 int cpu;
905
e5c14b1f 906 build_balance_mask(sd, sg, mask);
ae4df9d6 907 cpu = cpumask_first_and(sched_group_span(sg), mask);
8c033469
LRV
908
909 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
910 if (atomic_inc_return(&sg->sgc->ref) == 1)
e5c14b1f 911 cpumask_copy(group_balance_mask(sg), mask);
35a566e6 912 else
e5c14b1f 913 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
8c033469
LRV
914
915 /*
916 * Initialize sgc->capacity such that even if we mess up the
917 * domains and no possible iteration will get us here, we won't
918 * die on a /0 trap.
919 */
ae4df9d6 920 sg_span = sched_group_span(sg);
8c033469
LRV
921 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
922 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
e3d6d0cb 923 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
8c033469
LRV
924}
925
f2cb1360
IM
926static int
927build_overlap_sched_groups(struct sched_domain *sd, int cpu)
928{
91eaed0d 929 struct sched_group *first = NULL, *last = NULL, *sg;
f2cb1360
IM
930 const struct cpumask *span = sched_domain_span(sd);
931 struct cpumask *covered = sched_domains_tmpmask;
932 struct sd_data *sdd = sd->private;
933 struct sched_domain *sibling;
934 int i;
935
936 cpumask_clear(covered);
937
0372dd27 938 for_each_cpu_wrap(i, span, cpu) {
f2cb1360
IM
939 struct cpumask *sg_span;
940
941 if (cpumask_test_cpu(i, covered))
942 continue;
943
944 sibling = *per_cpu_ptr(sdd->sd, i);
945
c20e1ea4
LRV
946 /*
947 * Asymmetric node setups can result in situations where the
948 * domain tree is of unequal depth, make sure to skip domains
949 * that already cover the entire range.
950 *
951 * In that case build_sched_domains() will have terminated the
952 * iteration early and our sibling sd spans will be empty.
953 * Domains should always include the CPU they're built on, so
954 * check that.
955 */
f2cb1360
IM
956 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
957 continue;
958
8c033469 959 sg = build_group_from_child_sched_domain(sibling, cpu);
f2cb1360
IM
960 if (!sg)
961 goto fail;
962
ae4df9d6 963 sg_span = sched_group_span(sg);
f2cb1360
IM
964 cpumask_or(covered, covered, sg_span);
965
1676330e 966 init_overlap_sched_group(sd, sg);
f2cb1360 967
f2cb1360
IM
968 if (!first)
969 first = sg;
970 if (last)
971 last->next = sg;
972 last = sg;
973 last->next = first;
974 }
91eaed0d 975 sd->groups = first;
f2cb1360
IM
976
977 return 0;
978
979fail:
980 free_sched_groups(first, 0);
981
982 return -ENOMEM;
983}
984
35a566e6
PZ
985
986/*
987 * Package topology (also see the load-balance blurb in fair.c)
988 *
989 * The scheduler builds a tree structure to represent a number of important
990 * topology features. By default (default_topology[]) these include:
991 *
992 * - Simultaneous multithreading (SMT)
993 * - Multi-Core Cache (MC)
994 * - Package (DIE)
995 *
996 * Where the last one more or less denotes everything up to a NUMA node.
997 *
998 * The tree consists of 3 primary data structures:
999 *
1000 * sched_domain -> sched_group -> sched_group_capacity
1001 * ^ ^ ^ ^
1002 * `-' `-'
1003 *
97fb7a0a 1004 * The sched_domains are per-CPU and have a two way link (parent & child) and
35a566e6
PZ
1005 * denote the ever growing mask of CPUs belonging to that level of topology.
1006 *
1007 * Each sched_domain has a circular (double) linked list of sched_group's, each
1008 * denoting the domains of the level below (or individual CPUs in case of the
1009 * first domain level). The sched_group linked by a sched_domain includes the
1010 * CPU of that sched_domain [*].
1011 *
1012 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1013 *
1014 * CPU 0 1 2 3 4 5 6 7
1015 *
1016 * DIE [ ]
1017 * MC [ ] [ ]
1018 * SMT [ ] [ ] [ ] [ ]
1019 *
1020 * - or -
1021 *
1022 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1023 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1024 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1025 *
1026 * CPU 0 1 2 3 4 5 6 7
1027 *
1028 * One way to think about it is: sched_domain moves you up and down among these
1029 * topology levels, while sched_group moves you sideways through it, at child
1030 * domain granularity.
1031 *
1032 * sched_group_capacity ensures each unique sched_group has shared storage.
1033 *
1034 * There are two related construction problems, both require a CPU that
1035 * uniquely identify each group (for a given domain):
1036 *
1037 * - The first is the balance_cpu (see should_we_balance() and the
1038 * load-balance blub in fair.c); for each group we only want 1 CPU to
1039 * continue balancing at a higher domain.
1040 *
1041 * - The second is the sched_group_capacity; we want all identical groups
1042 * to share a single sched_group_capacity.
1043 *
1044 * Since these topologies are exclusive by construction. That is, its
1045 * impossible for an SMT thread to belong to multiple cores, and cores to
1046 * be part of multiple caches. There is a very clear and unique location
1047 * for each CPU in the hierarchy.
1048 *
1049 * Therefore computing a unique CPU for each group is trivial (the iteration
1050 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1051 * group), we can simply pick the first CPU in each group.
1052 *
1053 *
1054 * [*] in other words, the first group of each domain is its child domain.
1055 */
1056
0c0e776a 1057static struct sched_group *get_group(int cpu, struct sd_data *sdd)
f2cb1360
IM
1058{
1059 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1060 struct sched_domain *child = sd->child;
0c0e776a 1061 struct sched_group *sg;
67d4f6ff 1062 bool already_visited;
f2cb1360
IM
1063
1064 if (child)
1065 cpu = cpumask_first(sched_domain_span(child));
1066
0c0e776a
PZ
1067 sg = *per_cpu_ptr(sdd->sg, cpu);
1068 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1069
67d4f6ff
VS
1070 /* Increase refcounts for claim_allocations: */
1071 already_visited = atomic_inc_return(&sg->ref) > 1;
1072 /* sgc visits should follow a similar trend as sg */
1073 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1074
1075 /* If we have already visited that group, it's already initialized. */
1076 if (already_visited)
1077 return sg;
f2cb1360 1078
0c0e776a 1079 if (child) {
ae4df9d6
PZ
1080 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1081 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
0c0e776a 1082 } else {
ae4df9d6 1083 cpumask_set_cpu(cpu, sched_group_span(sg));
e5c14b1f 1084 cpumask_set_cpu(cpu, group_balance_mask(sg));
f2cb1360
IM
1085 }
1086
ae4df9d6 1087 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
0c0e776a 1088 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
e3d6d0cb 1089 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
0c0e776a
PZ
1090
1091 return sg;
f2cb1360
IM
1092}
1093
1094/*
1095 * build_sched_groups will build a circular linked list of the groups
d8743230
VS
1096 * covered by the given span, will set each group's ->cpumask correctly,
1097 * and will initialize their ->sgc.
f2cb1360
IM
1098 *
1099 * Assumes the sched_domain tree is fully constructed
1100 */
1101static int
1102build_sched_groups(struct sched_domain *sd, int cpu)
1103{
1104 struct sched_group *first = NULL, *last = NULL;
1105 struct sd_data *sdd = sd->private;
1106 const struct cpumask *span = sched_domain_span(sd);
1107 struct cpumask *covered;
1108 int i;
1109
f2cb1360
IM
1110 lockdep_assert_held(&sched_domains_mutex);
1111 covered = sched_domains_tmpmask;
1112
1113 cpumask_clear(covered);
1114
0c0e776a 1115 for_each_cpu_wrap(i, span, cpu) {
f2cb1360 1116 struct sched_group *sg;
f2cb1360
IM
1117
1118 if (cpumask_test_cpu(i, covered))
1119 continue;
1120
0c0e776a 1121 sg = get_group(i, sdd);
f2cb1360 1122
ae4df9d6 1123 cpumask_or(covered, covered, sched_group_span(sg));
f2cb1360
IM
1124
1125 if (!first)
1126 first = sg;
1127 if (last)
1128 last->next = sg;
1129 last = sg;
1130 }
1131 last->next = first;
0c0e776a 1132 sd->groups = first;
f2cb1360
IM
1133
1134 return 0;
1135}
1136
1137/*
1138 * Initialize sched groups cpu_capacity.
1139 *
1140 * cpu_capacity indicates the capacity of sched group, which is used while
1141 * distributing the load between different sched groups in a sched domain.
1142 * Typically cpu_capacity for all the groups in a sched domain will be same
1143 * unless there are asymmetries in the topology. If there are asymmetries,
1144 * group having more cpu_capacity will pickup more load compared to the
1145 * group having less cpu_capacity.
1146 */
1147static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1148{
1149 struct sched_group *sg = sd->groups;
1150
1151 WARN_ON(!sg);
1152
1153 do {
1154 int cpu, max_cpu = -1;
1155
ae4df9d6 1156 sg->group_weight = cpumask_weight(sched_group_span(sg));
f2cb1360
IM
1157
1158 if (!(sd->flags & SD_ASYM_PACKING))
1159 goto next;
1160
ae4df9d6 1161 for_each_cpu(cpu, sched_group_span(sg)) {
f2cb1360
IM
1162 if (max_cpu < 0)
1163 max_cpu = cpu;
1164 else if (sched_asym_prefer(cpu, max_cpu))
1165 max_cpu = cpu;
1166 }
1167 sg->asym_prefer_cpu = max_cpu;
1168
1169next:
1170 sg = sg->next;
1171 } while (sg != sd->groups);
1172
1173 if (cpu != group_balance_cpu(sg))
1174 return;
1175
1176 update_group_capacity(sd, cpu);
1177}
1178
1179/*
1180 * Initializers for schedule domains
1181 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1182 */
1183
1184static int default_relax_domain_level = -1;
1185int sched_domain_level_max;
1186
1187static int __init setup_relax_domain_level(char *str)
1188{
1189 if (kstrtoint(str, 0, &default_relax_domain_level))
1190 pr_warn("Unable to set relax_domain_level\n");
1191
1192 return 1;
1193}
1194__setup("relax_domain_level=", setup_relax_domain_level);
1195
1196static void set_domain_attribute(struct sched_domain *sd,
1197 struct sched_domain_attr *attr)
1198{
1199 int request;
1200
1201 if (!attr || attr->relax_domain_level < 0) {
1202 if (default_relax_domain_level < 0)
1203 return;
1204 else
1205 request = default_relax_domain_level;
1206 } else
1207 request = attr->relax_domain_level;
1208 if (request < sd->level) {
1209 /* Turn off idle balance on this domain: */
1210 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1211 } else {
1212 /* Turn on idle balance on this domain: */
1213 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1214 }
1215}
1216
1217static void __sdt_free(const struct cpumask *cpu_map);
1218static int __sdt_alloc(const struct cpumask *cpu_map);
1219
1220static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1221 const struct cpumask *cpu_map)
1222{
1223 switch (what) {
1224 case sa_rootdomain:
1225 if (!atomic_read(&d->rd->refcount))
1226 free_rootdomain(&d->rd->rcu);
1227 /* Fall through */
1228 case sa_sd:
1229 free_percpu(d->sd);
1230 /* Fall through */
1231 case sa_sd_storage:
1232 __sdt_free(cpu_map);
1233 /* Fall through */
1234 case sa_none:
1235 break;
1236 }
1237}
1238
1239static enum s_alloc
1240__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1241{
1242 memset(d, 0, sizeof(*d));
1243
1244 if (__sdt_alloc(cpu_map))
1245 return sa_sd_storage;
1246 d->sd = alloc_percpu(struct sched_domain *);
1247 if (!d->sd)
1248 return sa_sd_storage;
1249 d->rd = alloc_rootdomain();
1250 if (!d->rd)
1251 return sa_sd;
97fb7a0a 1252
f2cb1360
IM
1253 return sa_rootdomain;
1254}
1255
1256/*
1257 * NULL the sd_data elements we've used to build the sched_domain and
1258 * sched_group structure so that the subsequent __free_domain_allocs()
1259 * will not free the data we're using.
1260 */
1261static void claim_allocations(int cpu, struct sched_domain *sd)
1262{
1263 struct sd_data *sdd = sd->private;
1264
1265 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1266 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1267
1268 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1269 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1270
1271 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1272 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1273
1274 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1275 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1276}
1277
1278#ifdef CONFIG_NUMA
f2cb1360 1279enum numa_topology_type sched_numa_topology_type;
97fb7a0a
IM
1280
1281static int sched_domains_numa_levels;
1282static int sched_domains_curr_level;
1283
1284int sched_max_numa_distance;
1285static int *sched_domains_numa_distance;
1286static struct cpumask ***sched_domains_numa_masks;
f2cb1360
IM
1287#endif
1288
1289/*
1290 * SD_flags allowed in topology descriptions.
1291 *
1292 * These flags are purely descriptive of the topology and do not prescribe
1293 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1294 * function:
1295 *
1296 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1297 * SD_SHARE_PKG_RESOURCES - describes shared caches
1298 * SD_NUMA - describes NUMA topologies
1299 * SD_SHARE_POWERDOMAIN - describes shared power domain
f2cb1360
IM
1300 *
1301 * Odd one out, which beside describing the topology has a quirk also
1302 * prescribes the desired behaviour that goes along with it:
1303 *
1304 * SD_ASYM_PACKING - describes SMT quirks
1305 */
1306#define TOPOLOGY_SD_FLAGS \
97fb7a0a 1307 (SD_SHARE_CPUCAPACITY | \
f2cb1360 1308 SD_SHARE_PKG_RESOURCES | \
97fb7a0a
IM
1309 SD_NUMA | \
1310 SD_ASYM_PACKING | \
f2cb1360
IM
1311 SD_SHARE_POWERDOMAIN)
1312
1313static struct sched_domain *
1314sd_init(struct sched_domain_topology_level *tl,
1315 const struct cpumask *cpu_map,
05484e09 1316 struct sched_domain *child, int dflags, int cpu)
f2cb1360
IM
1317{
1318 struct sd_data *sdd = &tl->data;
1319 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1320 int sd_id, sd_weight, sd_flags = 0;
1321
1322#ifdef CONFIG_NUMA
1323 /*
1324 * Ugly hack to pass state to sd_numa_mask()...
1325 */
1326 sched_domains_curr_level = tl->numa_level;
1327#endif
1328
1329 sd_weight = cpumask_weight(tl->mask(cpu));
1330
1331 if (tl->sd_flags)
1332 sd_flags = (*tl->sd_flags)();
1333 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1334 "wrong sd_flags in topology description\n"))
1335 sd_flags &= ~TOPOLOGY_SD_FLAGS;
1336
05484e09
MR
1337 /* Apply detected topology flags */
1338 sd_flags |= dflags;
1339
f2cb1360
IM
1340 *sd = (struct sched_domain){
1341 .min_interval = sd_weight,
1342 .max_interval = 2*sd_weight,
1343 .busy_factor = 32,
1344 .imbalance_pct = 125,
1345
1346 .cache_nice_tries = 0,
f2cb1360
IM
1347
1348 .flags = 1*SD_LOAD_BALANCE
1349 | 1*SD_BALANCE_NEWIDLE
1350 | 1*SD_BALANCE_EXEC
1351 | 1*SD_BALANCE_FORK
1352 | 0*SD_BALANCE_WAKE
1353 | 1*SD_WAKE_AFFINE
1354 | 0*SD_SHARE_CPUCAPACITY
1355 | 0*SD_SHARE_PKG_RESOURCES
1356 | 0*SD_SERIALIZE
9c63e84d 1357 | 1*SD_PREFER_SIBLING
f2cb1360
IM
1358 | 0*SD_NUMA
1359 | sd_flags
1360 ,
1361
1362 .last_balance = jiffies,
1363 .balance_interval = sd_weight,
f2cb1360
IM
1364 .max_newidle_lb_cost = 0,
1365 .next_decay_max_lb_cost = jiffies,
1366 .child = child,
1367#ifdef CONFIG_SCHED_DEBUG
1368 .name = tl->name,
1369#endif
1370 };
1371
1372 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1373 sd_id = cpumask_first(sched_domain_span(sd));
1374
1375 /*
1376 * Convert topological properties into behaviour.
1377 */
1378
1379 if (sd->flags & SD_ASYM_CPUCAPACITY) {
1380 struct sched_domain *t = sd;
1381
9c63e84d
MR
1382 /*
1383 * Don't attempt to spread across CPUs of different capacities.
1384 */
1385 if (sd->child)
1386 sd->child->flags &= ~SD_PREFER_SIBLING;
1387
f2cb1360
IM
1388 for_each_lower_domain(t)
1389 t->flags |= SD_BALANCE_WAKE;
1390 }
1391
1392 if (sd->flags & SD_SHARE_CPUCAPACITY) {
f2cb1360 1393 sd->imbalance_pct = 110;
f2cb1360
IM
1394
1395 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1396 sd->imbalance_pct = 117;
1397 sd->cache_nice_tries = 1;
f2cb1360
IM
1398
1399#ifdef CONFIG_NUMA
1400 } else if (sd->flags & SD_NUMA) {
1401 sd->cache_nice_tries = 2;
f2cb1360 1402
9c63e84d 1403 sd->flags &= ~SD_PREFER_SIBLING;
f2cb1360
IM
1404 sd->flags |= SD_SERIALIZE;
1405 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1406 sd->flags &= ~(SD_BALANCE_EXEC |
1407 SD_BALANCE_FORK |
1408 SD_WAKE_AFFINE);
1409 }
1410
1411#endif
1412 } else {
f2cb1360 1413 sd->cache_nice_tries = 1;
f2cb1360
IM
1414 }
1415
1416 /*
1417 * For all levels sharing cache; connect a sched_domain_shared
1418 * instance.
1419 */
1420 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1421 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1422 atomic_inc(&sd->shared->ref);
1423 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1424 }
1425
1426 sd->private = sdd;
1427
1428 return sd;
1429}
1430
1431/*
1432 * Topology list, bottom-up.
1433 */
1434static struct sched_domain_topology_level default_topology[] = {
1435#ifdef CONFIG_SCHED_SMT
1436 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1437#endif
1438#ifdef CONFIG_SCHED_MC
1439 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1440#endif
1441 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1442 { NULL, },
1443};
1444
1445static struct sched_domain_topology_level *sched_domain_topology =
1446 default_topology;
1447
1448#define for_each_sd_topology(tl) \
1449 for (tl = sched_domain_topology; tl->mask; tl++)
1450
1451void set_sched_topology(struct sched_domain_topology_level *tl)
1452{
1453 if (WARN_ON_ONCE(sched_smp_initialized))
1454 return;
1455
1456 sched_domain_topology = tl;
1457}
1458
1459#ifdef CONFIG_NUMA
1460
1461static const struct cpumask *sd_numa_mask(int cpu)
1462{
1463 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1464}
1465
1466static void sched_numa_warn(const char *str)
1467{
1468 static int done = false;
1469 int i,j;
1470
1471 if (done)
1472 return;
1473
1474 done = true;
1475
1476 printk(KERN_WARNING "ERROR: %s\n\n", str);
1477
1478 for (i = 0; i < nr_node_ids; i++) {
1479 printk(KERN_WARNING " ");
1480 for (j = 0; j < nr_node_ids; j++)
1481 printk(KERN_CONT "%02d ", node_distance(i,j));
1482 printk(KERN_CONT "\n");
1483 }
1484 printk(KERN_WARNING "\n");
1485}
1486
1487bool find_numa_distance(int distance)
1488{
1489 int i;
1490
1491 if (distance == node_distance(0, 0))
1492 return true;
1493
1494 for (i = 0; i < sched_domains_numa_levels; i++) {
1495 if (sched_domains_numa_distance[i] == distance)
1496 return true;
1497 }
1498
1499 return false;
1500}
1501
1502/*
1503 * A system can have three types of NUMA topology:
1504 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1505 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1506 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1507 *
1508 * The difference between a glueless mesh topology and a backplane
1509 * topology lies in whether communication between not directly
1510 * connected nodes goes through intermediary nodes (where programs
1511 * could run), or through backplane controllers. This affects
1512 * placement of programs.
1513 *
1514 * The type of topology can be discerned with the following tests:
1515 * - If the maximum distance between any nodes is 1 hop, the system
1516 * is directly connected.
1517 * - If for two nodes A and B, located N > 1 hops away from each other,
1518 * there is an intermediary node C, which is < N hops away from both
1519 * nodes A and B, the system is a glueless mesh.
1520 */
1521static void init_numa_topology_type(void)
1522{
1523 int a, b, c, n;
1524
1525 n = sched_max_numa_distance;
1526
e5e96faf 1527 if (sched_domains_numa_levels <= 2) {
f2cb1360
IM
1528 sched_numa_topology_type = NUMA_DIRECT;
1529 return;
1530 }
1531
1532 for_each_online_node(a) {
1533 for_each_online_node(b) {
1534 /* Find two nodes furthest removed from each other. */
1535 if (node_distance(a, b) < n)
1536 continue;
1537
1538 /* Is there an intermediary node between a and b? */
1539 for_each_online_node(c) {
1540 if (node_distance(a, c) < n &&
1541 node_distance(b, c) < n) {
1542 sched_numa_topology_type =
1543 NUMA_GLUELESS_MESH;
1544 return;
1545 }
1546 }
1547
1548 sched_numa_topology_type = NUMA_BACKPLANE;
1549 return;
1550 }
1551 }
1552}
1553
1554void sched_init_numa(void)
1555{
1556 int next_distance, curr_distance = node_distance(0, 0);
1557 struct sched_domain_topology_level *tl;
1558 int level = 0;
1559 int i, j, k;
1560
993f0b05 1561 sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
f2cb1360
IM
1562 if (!sched_domains_numa_distance)
1563 return;
1564
051f3ca0
SS
1565 /* Includes NUMA identity node at level 0. */
1566 sched_domains_numa_distance[level++] = curr_distance;
1567 sched_domains_numa_levels = level;
1568
f2cb1360
IM
1569 /*
1570 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1571 * unique distances in the node_distance() table.
1572 *
1573 * Assumes node_distance(0,j) includes all distances in
1574 * node_distance(i,j) in order to avoid cubic time.
1575 */
1576 next_distance = curr_distance;
1577 for (i = 0; i < nr_node_ids; i++) {
1578 for (j = 0; j < nr_node_ids; j++) {
1579 for (k = 0; k < nr_node_ids; k++) {
1580 int distance = node_distance(i, k);
1581
1582 if (distance > curr_distance &&
1583 (distance < next_distance ||
1584 next_distance == curr_distance))
1585 next_distance = distance;
1586
1587 /*
1588 * While not a strong assumption it would be nice to know
1589 * about cases where if node A is connected to B, B is not
1590 * equally connected to A.
1591 */
1592 if (sched_debug() && node_distance(k, i) != distance)
1593 sched_numa_warn("Node-distance not symmetric");
1594
1595 if (sched_debug() && i && !find_numa_distance(distance))
1596 sched_numa_warn("Node-0 not representative");
1597 }
1598 if (next_distance != curr_distance) {
1599 sched_domains_numa_distance[level++] = next_distance;
1600 sched_domains_numa_levels = level;
1601 curr_distance = next_distance;
1602 } else break;
1603 }
1604
1605 /*
1606 * In case of sched_debug() we verify the above assumption.
1607 */
1608 if (!sched_debug())
1609 break;
1610 }
1611
f2cb1360 1612 /*
051f3ca0 1613 * 'level' contains the number of unique distances
f2cb1360
IM
1614 *
1615 * The sched_domains_numa_distance[] array includes the actual distance
1616 * numbers.
1617 */
1618
1619 /*
1620 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1621 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1622 * the array will contain less then 'level' members. This could be
1623 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1624 * in other functions.
1625 *
1626 * We reset it to 'level' at the end of this function.
1627 */
1628 sched_domains_numa_levels = 0;
1629
1630 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1631 if (!sched_domains_numa_masks)
1632 return;
1633
1634 /*
1635 * Now for each level, construct a mask per node which contains all
1636 * CPUs of nodes that are that many hops away from us.
1637 */
1638 for (i = 0; i < level; i++) {
1639 sched_domains_numa_masks[i] =
1640 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1641 if (!sched_domains_numa_masks[i])
1642 return;
1643
1644 for (j = 0; j < nr_node_ids; j++) {
1645 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1646 if (!mask)
1647 return;
1648
1649 sched_domains_numa_masks[i][j] = mask;
1650
1651 for_each_node(k) {
1652 if (node_distance(j, k) > sched_domains_numa_distance[i])
1653 continue;
1654
1655 cpumask_or(mask, mask, cpumask_of_node(k));
1656 }
1657 }
1658 }
1659
1660 /* Compute default topology size */
1661 for (i = 0; sched_domain_topology[i].mask; i++);
1662
1663 tl = kzalloc((i + level + 1) *
1664 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1665 if (!tl)
1666 return;
1667
1668 /*
1669 * Copy the default topology bits..
1670 */
1671 for (i = 0; sched_domain_topology[i].mask; i++)
1672 tl[i] = sched_domain_topology[i];
1673
051f3ca0
SS
1674 /*
1675 * Add the NUMA identity distance, aka single NODE.
1676 */
1677 tl[i++] = (struct sched_domain_topology_level){
1678 .mask = sd_numa_mask,
1679 .numa_level = 0,
1680 SD_INIT_NAME(NODE)
1681 };
1682
f2cb1360
IM
1683 /*
1684 * .. and append 'j' levels of NUMA goodness.
1685 */
051f3ca0 1686 for (j = 1; j < level; i++, j++) {
f2cb1360
IM
1687 tl[i] = (struct sched_domain_topology_level){
1688 .mask = sd_numa_mask,
1689 .sd_flags = cpu_numa_flags,
1690 .flags = SDTL_OVERLAP,
1691 .numa_level = j,
1692 SD_INIT_NAME(NUMA)
1693 };
1694 }
1695
1696 sched_domain_topology = tl;
1697
1698 sched_domains_numa_levels = level;
1699 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1700
1701 init_numa_topology_type();
1702}
1703
1704void sched_domains_numa_masks_set(unsigned int cpu)
1705{
1706 int node = cpu_to_node(cpu);
1707 int i, j;
1708
1709 for (i = 0; i < sched_domains_numa_levels; i++) {
1710 for (j = 0; j < nr_node_ids; j++) {
1711 if (node_distance(j, node) <= sched_domains_numa_distance[i])
1712 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1713 }
1714 }
1715}
1716
1717void sched_domains_numa_masks_clear(unsigned int cpu)
1718{
1719 int i, j;
1720
1721 for (i = 0; i < sched_domains_numa_levels; i++) {
1722 for (j = 0; j < nr_node_ids; j++)
1723 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1724 }
1725}
1726
e0e8d491
WL
1727/*
1728 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1729 * closest to @cpu from @cpumask.
1730 * cpumask: cpumask to find a cpu from
1731 * cpu: cpu to be close to
1732 *
1733 * returns: cpu, or nr_cpu_ids when nothing found.
1734 */
1735int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1736{
1737 int i, j = cpu_to_node(cpu);
1738
1739 for (i = 0; i < sched_domains_numa_levels; i++) {
1740 cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1741 if (cpu < nr_cpu_ids)
1742 return cpu;
1743 }
1744 return nr_cpu_ids;
1745}
1746
f2cb1360
IM
1747#endif /* CONFIG_NUMA */
1748
1749static int __sdt_alloc(const struct cpumask *cpu_map)
1750{
1751 struct sched_domain_topology_level *tl;
1752 int j;
1753
1754 for_each_sd_topology(tl) {
1755 struct sd_data *sdd = &tl->data;
1756
1757 sdd->sd = alloc_percpu(struct sched_domain *);
1758 if (!sdd->sd)
1759 return -ENOMEM;
1760
1761 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1762 if (!sdd->sds)
1763 return -ENOMEM;
1764
1765 sdd->sg = alloc_percpu(struct sched_group *);
1766 if (!sdd->sg)
1767 return -ENOMEM;
1768
1769 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1770 if (!sdd->sgc)
1771 return -ENOMEM;
1772
1773 for_each_cpu(j, cpu_map) {
1774 struct sched_domain *sd;
1775 struct sched_domain_shared *sds;
1776 struct sched_group *sg;
1777 struct sched_group_capacity *sgc;
1778
1779 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1780 GFP_KERNEL, cpu_to_node(j));
1781 if (!sd)
1782 return -ENOMEM;
1783
1784 *per_cpu_ptr(sdd->sd, j) = sd;
1785
1786 sds = kzalloc_node(sizeof(struct sched_domain_shared),
1787 GFP_KERNEL, cpu_to_node(j));
1788 if (!sds)
1789 return -ENOMEM;
1790
1791 *per_cpu_ptr(sdd->sds, j) = sds;
1792
1793 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1794 GFP_KERNEL, cpu_to_node(j));
1795 if (!sg)
1796 return -ENOMEM;
1797
1798 sg->next = sg;
1799
1800 *per_cpu_ptr(sdd->sg, j) = sg;
1801
1802 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1803 GFP_KERNEL, cpu_to_node(j));
1804 if (!sgc)
1805 return -ENOMEM;
1806
005f874d
PZ
1807#ifdef CONFIG_SCHED_DEBUG
1808 sgc->id = j;
1809#endif
1810
f2cb1360
IM
1811 *per_cpu_ptr(sdd->sgc, j) = sgc;
1812 }
1813 }
1814
1815 return 0;
1816}
1817
1818static void __sdt_free(const struct cpumask *cpu_map)
1819{
1820 struct sched_domain_topology_level *tl;
1821 int j;
1822
1823 for_each_sd_topology(tl) {
1824 struct sd_data *sdd = &tl->data;
1825
1826 for_each_cpu(j, cpu_map) {
1827 struct sched_domain *sd;
1828
1829 if (sdd->sd) {
1830 sd = *per_cpu_ptr(sdd->sd, j);
1831 if (sd && (sd->flags & SD_OVERLAP))
1832 free_sched_groups(sd->groups, 0);
1833 kfree(*per_cpu_ptr(sdd->sd, j));
1834 }
1835
1836 if (sdd->sds)
1837 kfree(*per_cpu_ptr(sdd->sds, j));
1838 if (sdd->sg)
1839 kfree(*per_cpu_ptr(sdd->sg, j));
1840 if (sdd->sgc)
1841 kfree(*per_cpu_ptr(sdd->sgc, j));
1842 }
1843 free_percpu(sdd->sd);
1844 sdd->sd = NULL;
1845 free_percpu(sdd->sds);
1846 sdd->sds = NULL;
1847 free_percpu(sdd->sg);
1848 sdd->sg = NULL;
1849 free_percpu(sdd->sgc);
1850 sdd->sgc = NULL;
1851 }
1852}
1853
181a80d1 1854static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
f2cb1360 1855 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
05484e09 1856 struct sched_domain *child, int dflags, int cpu)
f2cb1360 1857{
05484e09 1858 struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
f2cb1360
IM
1859
1860 if (child) {
1861 sd->level = child->level + 1;
1862 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1863 child->parent = sd;
1864
1865 if (!cpumask_subset(sched_domain_span(child),
1866 sched_domain_span(sd))) {
1867 pr_err("BUG: arch topology borken\n");
1868#ifdef CONFIG_SCHED_DEBUG
1869 pr_err(" the %s domain not a subset of the %s domain\n",
1870 child->name, sd->name);
1871#endif
97fb7a0a 1872 /* Fixup, ensure @sd has at least @child CPUs. */
f2cb1360
IM
1873 cpumask_or(sched_domain_span(sd),
1874 sched_domain_span(sd),
1875 sched_domain_span(child));
1876 }
1877
1878 }
1879 set_domain_attribute(sd, attr);
1880
1881 return sd;
1882}
1883
05484e09
MR
1884/*
1885 * Find the sched_domain_topology_level where all CPU capacities are visible
1886 * for all CPUs.
1887 */
1888static struct sched_domain_topology_level
1889*asym_cpu_capacity_level(const struct cpumask *cpu_map)
1890{
1891 int i, j, asym_level = 0;
1892 bool asym = false;
1893 struct sched_domain_topology_level *tl, *asym_tl = NULL;
1894 unsigned long cap;
1895
1896 /* Is there any asymmetry? */
8ec59c0f 1897 cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
05484e09
MR
1898
1899 for_each_cpu(i, cpu_map) {
8ec59c0f 1900 if (arch_scale_cpu_capacity(i) != cap) {
05484e09
MR
1901 asym = true;
1902 break;
1903 }
1904 }
1905
1906 if (!asym)
1907 return NULL;
1908
1909 /*
1910 * Examine topology from all CPU's point of views to detect the lowest
1911 * sched_domain_topology_level where a highest capacity CPU is visible
1912 * to everyone.
1913 */
1914 for_each_cpu(i, cpu_map) {
8ec59c0f 1915 unsigned long max_capacity = arch_scale_cpu_capacity(i);
05484e09
MR
1916 int tl_id = 0;
1917
1918 for_each_sd_topology(tl) {
1919 if (tl_id < asym_level)
1920 goto next_level;
1921
1922 for_each_cpu_and(j, tl->mask(i), cpu_map) {
1923 unsigned long capacity;
1924
8ec59c0f 1925 capacity = arch_scale_cpu_capacity(j);
05484e09
MR
1926
1927 if (capacity <= max_capacity)
1928 continue;
1929
1930 max_capacity = capacity;
1931 asym_level = tl_id;
1932 asym_tl = tl;
1933 }
1934next_level:
1935 tl_id++;
1936 }
1937 }
1938
1939 return asym_tl;
1940}
1941
1942
f2cb1360
IM
1943/*
1944 * Build sched domains for a given set of CPUs and attach the sched domains
1945 * to the individual CPUs
1946 */
1947static int
1948build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1949{
1950 enum s_alloc alloc_state;
1951 struct sched_domain *sd;
1952 struct s_data d;
1953 struct rq *rq = NULL;
1954 int i, ret = -ENOMEM;
05484e09 1955 struct sched_domain_topology_level *tl_asym;
df054e84 1956 bool has_asym = false;
f2cb1360
IM
1957
1958 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1959 if (alloc_state != sa_rootdomain)
1960 goto error;
1961
05484e09
MR
1962 tl_asym = asym_cpu_capacity_level(cpu_map);
1963
f2cb1360
IM
1964 /* Set up domains for CPUs specified by the cpu_map: */
1965 for_each_cpu(i, cpu_map) {
1966 struct sched_domain_topology_level *tl;
1967
1968 sd = NULL;
1969 for_each_sd_topology(tl) {
05484e09
MR
1970 int dflags = 0;
1971
df054e84 1972 if (tl == tl_asym) {
05484e09 1973 dflags |= SD_ASYM_CPUCAPACITY;
df054e84
MR
1974 has_asym = true;
1975 }
05484e09
MR
1976
1977 sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
1978
f2cb1360
IM
1979 if (tl == sched_domain_topology)
1980 *per_cpu_ptr(d.sd, i) = sd;
af85596c 1981 if (tl->flags & SDTL_OVERLAP)
f2cb1360
IM
1982 sd->flags |= SD_OVERLAP;
1983 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1984 break;
1985 }
1986 }
1987
1988 /* Build the groups for the domains */
1989 for_each_cpu(i, cpu_map) {
1990 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1991 sd->span_weight = cpumask_weight(sched_domain_span(sd));
1992 if (sd->flags & SD_OVERLAP) {
1993 if (build_overlap_sched_groups(sd, i))
1994 goto error;
1995 } else {
1996 if (build_sched_groups(sd, i))
1997 goto error;
1998 }
1999 }
2000 }
2001
2002 /* Calculate CPU capacity for physical packages and nodes */
2003 for (i = nr_cpumask_bits-1; i >= 0; i--) {
2004 if (!cpumask_test_cpu(i, cpu_map))
2005 continue;
2006
2007 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2008 claim_allocations(i, sd);
2009 init_sched_groups_capacity(i, sd);
2010 }
2011 }
2012
2013 /* Attach the domains */
2014 rcu_read_lock();
2015 for_each_cpu(i, cpu_map) {
2016 rq = cpu_rq(i);
2017 sd = *per_cpu_ptr(d.sd, i);
2018
2019 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2020 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2021 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2022
2023 cpu_attach_domain(sd, d.rd, i);
2024 }
2025 rcu_read_unlock();
2026
df054e84
MR
2027 if (has_asym)
2028 static_branch_enable_cpuslocked(&sched_asym_cpucapacity);
2029
f2cb1360 2030 if (rq && sched_debug_enabled) {
bf5015a5 2031 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
f2cb1360
IM
2032 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2033 }
2034
2035 ret = 0;
2036error:
2037 __free_domain_allocs(&d, alloc_state, cpu_map);
97fb7a0a 2038
f2cb1360
IM
2039 return ret;
2040}
2041
2042/* Current sched domains: */
2043static cpumask_var_t *doms_cur;
2044
2045/* Number of sched domains in 'doms_cur': */
2046static int ndoms_cur;
2047
2048/* Attribues of custom domains in 'doms_cur' */
2049static struct sched_domain_attr *dattr_cur;
2050
2051/*
2052 * Special case: If a kmalloc() of a doms_cur partition (array of
2053 * cpumask) fails, then fallback to a single sched domain,
2054 * as determined by the single cpumask fallback_doms.
2055 */
8d5dc512 2056static cpumask_var_t fallback_doms;
f2cb1360
IM
2057
2058/*
2059 * arch_update_cpu_topology lets virtualized architectures update the
2060 * CPU core maps. It is supposed to return 1 if the topology changed
2061 * or 0 if it stayed the same.
2062 */
2063int __weak arch_update_cpu_topology(void)
2064{
2065 return 0;
2066}
2067
2068cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2069{
2070 int i;
2071 cpumask_var_t *doms;
2072
6da2ec56 2073 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
f2cb1360
IM
2074 if (!doms)
2075 return NULL;
2076 for (i = 0; i < ndoms; i++) {
2077 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2078 free_sched_domains(doms, i);
2079 return NULL;
2080 }
2081 }
2082 return doms;
2083}
2084
2085void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2086{
2087 unsigned int i;
2088 for (i = 0; i < ndoms; i++)
2089 free_cpumask_var(doms[i]);
2090 kfree(doms);
2091}
2092
2093/*
cb0c0414
JL
2094 * Set up scheduler domains and groups. For now this just excludes isolated
2095 * CPUs, but could be used to exclude other special cases in the future.
f2cb1360 2096 */
8d5dc512 2097int sched_init_domains(const struct cpumask *cpu_map)
f2cb1360
IM
2098{
2099 int err;
2100
8d5dc512 2101 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
1676330e 2102 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
8d5dc512
PZ
2103 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2104
f2cb1360
IM
2105 arch_update_cpu_topology();
2106 ndoms_cur = 1;
2107 doms_cur = alloc_sched_domains(ndoms_cur);
2108 if (!doms_cur)
2109 doms_cur = &fallback_doms;
edb93821 2110 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
f2cb1360
IM
2111 err = build_sched_domains(doms_cur[0], NULL);
2112 register_sched_domain_sysctl();
2113
2114 return err;
2115}
2116
2117/*
2118 * Detach sched domains from a group of CPUs specified in cpu_map
2119 * These CPUs will now be attached to the NULL domain
2120 */
2121static void detach_destroy_domains(const struct cpumask *cpu_map)
2122{
2123 int i;
2124
2125 rcu_read_lock();
2126 for_each_cpu(i, cpu_map)
2127 cpu_attach_domain(NULL, &def_root_domain, i);
2128 rcu_read_unlock();
2129}
2130
2131/* handle null as "default" */
2132static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2133 struct sched_domain_attr *new, int idx_new)
2134{
2135 struct sched_domain_attr tmp;
2136
2137 /* Fast path: */
2138 if (!new && !cur)
2139 return 1;
2140
2141 tmp = SD_ATTR_INIT;
97fb7a0a 2142
f2cb1360
IM
2143 return !memcmp(cur ? (cur + idx_cur) : &tmp,
2144 new ? (new + idx_new) : &tmp,
2145 sizeof(struct sched_domain_attr));
2146}
2147
2148/*
2149 * Partition sched domains as specified by the 'ndoms_new'
2150 * cpumasks in the array doms_new[] of cpumasks. This compares
2151 * doms_new[] to the current sched domain partitioning, doms_cur[].
2152 * It destroys each deleted domain and builds each new domain.
2153 *
2154 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2155 * The masks don't intersect (don't overlap.) We should setup one
2156 * sched domain for each mask. CPUs not in any of the cpumasks will
2157 * not be load balanced. If the same cpumask appears both in the
2158 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2159 * it as it is.
2160 *
2161 * The passed in 'doms_new' should be allocated using
2162 * alloc_sched_domains. This routine takes ownership of it and will
2163 * free_sched_domains it when done with it. If the caller failed the
2164 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2165 * and partition_sched_domains() will fallback to the single partition
2166 * 'fallback_doms', it also forces the domains to be rebuilt.
2167 *
2168 * If doms_new == NULL it will be replaced with cpu_online_mask.
2169 * ndoms_new == 0 is a special case for destroying existing domains,
2170 * and it will not create the default domain.
2171 *
c22645f4 2172 * Call with hotplug lock and sched_domains_mutex held
f2cb1360 2173 */
c22645f4
MP
2174void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2175 struct sched_domain_attr *dattr_new)
f2cb1360 2176{
1f74de87 2177 bool __maybe_unused has_eas = false;
f2cb1360
IM
2178 int i, j, n;
2179 int new_topology;
2180
c22645f4 2181 lockdep_assert_held(&sched_domains_mutex);
f2cb1360
IM
2182
2183 /* Always unregister in case we don't destroy any domains: */
2184 unregister_sched_domain_sysctl();
2185
2186 /* Let the architecture update CPU core mappings: */
2187 new_topology = arch_update_cpu_topology();
2188
09e0dd8e
PZ
2189 if (!doms_new) {
2190 WARN_ON_ONCE(dattr_new);
2191 n = 0;
2192 doms_new = alloc_sched_domains(1);
2193 if (doms_new) {
2194 n = 1;
edb93821
FW
2195 cpumask_and(doms_new[0], cpu_active_mask,
2196 housekeeping_cpumask(HK_FLAG_DOMAIN));
09e0dd8e
PZ
2197 }
2198 } else {
2199 n = ndoms_new;
2200 }
f2cb1360
IM
2201
2202 /* Destroy deleted domains: */
2203 for (i = 0; i < ndoms_cur; i++) {
2204 for (j = 0; j < n && !new_topology; j++) {
6aa140fa
QP
2205 if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2206 dattrs_equal(dattr_cur, i, dattr_new, j))
f2cb1360
IM
2207 goto match1;
2208 }
2209 /* No match - a current sched domain not in new doms_new[] */
2210 detach_destroy_domains(doms_cur[i]);
2211match1:
2212 ;
2213 }
2214
2215 n = ndoms_cur;
09e0dd8e 2216 if (!doms_new) {
f2cb1360
IM
2217 n = 0;
2218 doms_new = &fallback_doms;
edb93821
FW
2219 cpumask_and(doms_new[0], cpu_active_mask,
2220 housekeeping_cpumask(HK_FLAG_DOMAIN));
f2cb1360
IM
2221 }
2222
2223 /* Build new domains: */
2224 for (i = 0; i < ndoms_new; i++) {
2225 for (j = 0; j < n && !new_topology; j++) {
6aa140fa
QP
2226 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2227 dattrs_equal(dattr_new, i, dattr_cur, j))
f2cb1360
IM
2228 goto match2;
2229 }
2230 /* No match - add a new doms_new */
2231 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2232match2:
2233 ;
2234 }
2235
531b5c9f 2236#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
6aa140fa
QP
2237 /* Build perf. domains: */
2238 for (i = 0; i < ndoms_new; i++) {
531b5c9f 2239 for (j = 0; j < n && !sched_energy_update; j++) {
6aa140fa 2240 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
1f74de87
QP
2241 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2242 has_eas = true;
6aa140fa 2243 goto match3;
1f74de87 2244 }
6aa140fa
QP
2245 }
2246 /* No match - add perf. domains for a new rd */
1f74de87 2247 has_eas |= build_perf_domains(doms_new[i]);
6aa140fa
QP
2248match3:
2249 ;
2250 }
1f74de87 2251 sched_energy_set(has_eas);
6aa140fa
QP
2252#endif
2253
f2cb1360
IM
2254 /* Remember the new sched domains: */
2255 if (doms_cur != &fallback_doms)
2256 free_sched_domains(doms_cur, ndoms_cur);
2257
2258 kfree(dattr_cur);
2259 doms_cur = doms_new;
2260 dattr_cur = dattr_new;
2261 ndoms_cur = ndoms_new;
2262
2263 register_sched_domain_sysctl();
c22645f4 2264}
f2cb1360 2265
c22645f4
MP
2266/*
2267 * Call with hotplug lock held
2268 */
2269void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2270 struct sched_domain_attr *dattr_new)
2271{
2272 mutex_lock(&sched_domains_mutex);
2273 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
f2cb1360
IM
2274 mutex_unlock(&sched_domains_mutex);
2275}