sched/fair: Don't move tasks to lower capacity CPUs unless necessary
[linux-block.git] / kernel / sched / topology.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
f2cb1360
IM
2/*
3 * Scheduler topology setup/handling methods
4 */
f2cb1360
IM
5#include "sched.h"
6
7DEFINE_MUTEX(sched_domains_mutex);
8
9/* Protected by sched_domains_mutex: */
10cpumask_var_t sched_domains_tmpmask;
1676330e 11cpumask_var_t sched_domains_tmpmask2;
f2cb1360
IM
12
13#ifdef CONFIG_SCHED_DEBUG
14
f2cb1360
IM
15static int __init sched_debug_setup(char *str)
16{
9469eb01 17 sched_debug_enabled = true;
f2cb1360
IM
18
19 return 0;
20}
21early_param("sched_debug", sched_debug_setup);
22
23static inline bool sched_debug(void)
24{
25 return sched_debug_enabled;
26}
27
28static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29 struct cpumask *groupmask)
30{
31 struct sched_group *group = sd->groups;
32
33 cpumask_clear(groupmask);
34
005f874d 35 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
f2cb1360
IM
36
37 if (!(sd->flags & SD_LOAD_BALANCE)) {
38 printk("does not load-balance\n");
39 if (sd->parent)
97fb7a0a 40 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
f2cb1360
IM
41 return -1;
42 }
43
005f874d 44 printk(KERN_CONT "span=%*pbl level=%s\n",
f2cb1360
IM
45 cpumask_pr_args(sched_domain_span(sd)), sd->name);
46
47 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
97fb7a0a 48 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
f2cb1360 49 }
6cd0c583 50 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
97fb7a0a 51 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
f2cb1360
IM
52 }
53
54 printk(KERN_DEBUG "%*s groups:", level + 1, "");
55 do {
56 if (!group) {
57 printk("\n");
58 printk(KERN_ERR "ERROR: group is NULL\n");
59 break;
60 }
61
ae4df9d6 62 if (!cpumask_weight(sched_group_span(group))) {
f2cb1360
IM
63 printk(KERN_CONT "\n");
64 printk(KERN_ERR "ERROR: empty group\n");
65 break;
66 }
67
68 if (!(sd->flags & SD_OVERLAP) &&
ae4df9d6 69 cpumask_intersects(groupmask, sched_group_span(group))) {
f2cb1360
IM
70 printk(KERN_CONT "\n");
71 printk(KERN_ERR "ERROR: repeated CPUs\n");
72 break;
73 }
74
ae4df9d6 75 cpumask_or(groupmask, groupmask, sched_group_span(group));
f2cb1360 76
005f874d
PZ
77 printk(KERN_CONT " %d:{ span=%*pbl",
78 group->sgc->id,
ae4df9d6 79 cpumask_pr_args(sched_group_span(group)));
b0151c25 80
af218122 81 if ((sd->flags & SD_OVERLAP) &&
ae4df9d6 82 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
005f874d 83 printk(KERN_CONT " mask=%*pbl",
e5c14b1f 84 cpumask_pr_args(group_balance_mask(group)));
b0151c25
PZ
85 }
86
005f874d
PZ
87 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
88 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
f2cb1360 89
a420b063
PZ
90 if (group == sd->groups && sd->child &&
91 !cpumask_equal(sched_domain_span(sd->child),
ae4df9d6 92 sched_group_span(group))) {
a420b063
PZ
93 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
94 }
95
005f874d
PZ
96 printk(KERN_CONT " }");
97
f2cb1360 98 group = group->next;
b0151c25
PZ
99
100 if (group != sd->groups)
101 printk(KERN_CONT ",");
102
f2cb1360
IM
103 } while (group != sd->groups);
104 printk(KERN_CONT "\n");
105
106 if (!cpumask_equal(sched_domain_span(sd), groupmask))
107 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
108
109 if (sd->parent &&
110 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
97fb7a0a 111 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
f2cb1360
IM
112 return 0;
113}
114
115static void sched_domain_debug(struct sched_domain *sd, int cpu)
116{
117 int level = 0;
118
119 if (!sched_debug_enabled)
120 return;
121
122 if (!sd) {
123 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
124 return;
125 }
126
005f874d 127 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
f2cb1360
IM
128
129 for (;;) {
130 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
131 break;
132 level++;
133 sd = sd->parent;
134 if (!sd)
135 break;
136 }
137}
138#else /* !CONFIG_SCHED_DEBUG */
139
140# define sched_debug_enabled 0
141# define sched_domain_debug(sd, cpu) do { } while (0)
142static inline bool sched_debug(void)
143{
144 return false;
145}
146#endif /* CONFIG_SCHED_DEBUG */
147
148static int sd_degenerate(struct sched_domain *sd)
149{
150 if (cpumask_weight(sched_domain_span(sd)) == 1)
151 return 1;
152
153 /* Following flags need at least 2 groups */
154 if (sd->flags & (SD_LOAD_BALANCE |
155 SD_BALANCE_NEWIDLE |
156 SD_BALANCE_FORK |
157 SD_BALANCE_EXEC |
158 SD_SHARE_CPUCAPACITY |
159 SD_ASYM_CPUCAPACITY |
160 SD_SHARE_PKG_RESOURCES |
161 SD_SHARE_POWERDOMAIN)) {
162 if (sd->groups != sd->groups->next)
163 return 0;
164 }
165
166 /* Following flags don't use groups */
167 if (sd->flags & (SD_WAKE_AFFINE))
168 return 0;
169
170 return 1;
171}
172
173static int
174sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
175{
176 unsigned long cflags = sd->flags, pflags = parent->flags;
177
178 if (sd_degenerate(parent))
179 return 1;
180
181 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
182 return 0;
183
184 /* Flags needing groups don't count if only 1 group in parent */
185 if (parent->groups == parent->groups->next) {
186 pflags &= ~(SD_LOAD_BALANCE |
187 SD_BALANCE_NEWIDLE |
188 SD_BALANCE_FORK |
189 SD_BALANCE_EXEC |
190 SD_ASYM_CPUCAPACITY |
191 SD_SHARE_CPUCAPACITY |
192 SD_SHARE_PKG_RESOURCES |
193 SD_PREFER_SIBLING |
194 SD_SHARE_POWERDOMAIN);
195 if (nr_node_ids == 1)
196 pflags &= ~SD_SERIALIZE;
197 }
198 if (~cflags & pflags)
199 return 0;
200
201 return 1;
202}
203
204static void free_rootdomain(struct rcu_head *rcu)
205{
206 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
207
208 cpupri_cleanup(&rd->cpupri);
209 cpudl_cleanup(&rd->cpudl);
210 free_cpumask_var(rd->dlo_mask);
211 free_cpumask_var(rd->rto_mask);
212 free_cpumask_var(rd->online);
213 free_cpumask_var(rd->span);
214 kfree(rd);
215}
216
217void rq_attach_root(struct rq *rq, struct root_domain *rd)
218{
219 struct root_domain *old_rd = NULL;
220 unsigned long flags;
221
222 raw_spin_lock_irqsave(&rq->lock, flags);
223
224 if (rq->rd) {
225 old_rd = rq->rd;
226
227 if (cpumask_test_cpu(rq->cpu, old_rd->online))
228 set_rq_offline(rq);
229
230 cpumask_clear_cpu(rq->cpu, old_rd->span);
231
232 /*
233 * If we dont want to free the old_rd yet then
234 * set old_rd to NULL to skip the freeing later
235 * in this function:
236 */
237 if (!atomic_dec_and_test(&old_rd->refcount))
238 old_rd = NULL;
239 }
240
241 atomic_inc(&rd->refcount);
242 rq->rd = rd;
243
244 cpumask_set_cpu(rq->cpu, rd->span);
245 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
246 set_rq_online(rq);
247
248 raw_spin_unlock_irqrestore(&rq->lock, flags);
249
250 if (old_rd)
251 call_rcu_sched(&old_rd->rcu, free_rootdomain);
252}
253
364f5665
SRV
254void sched_get_rd(struct root_domain *rd)
255{
256 atomic_inc(&rd->refcount);
257}
258
259void sched_put_rd(struct root_domain *rd)
260{
261 if (!atomic_dec_and_test(&rd->refcount))
262 return;
263
264 call_rcu_sched(&rd->rcu, free_rootdomain);
265}
266
f2cb1360
IM
267static int init_rootdomain(struct root_domain *rd)
268{
f2cb1360
IM
269 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
270 goto out;
271 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
272 goto free_span;
273 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
274 goto free_online;
275 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
276 goto free_dlo_mask;
277
4bdced5c
SRRH
278#ifdef HAVE_RT_PUSH_IPI
279 rd->rto_cpu = -1;
280 raw_spin_lock_init(&rd->rto_lock);
281 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
282#endif
283
f2cb1360
IM
284 init_dl_bw(&rd->dl_bw);
285 if (cpudl_init(&rd->cpudl) != 0)
286 goto free_rto_mask;
287
288 if (cpupri_init(&rd->cpupri) != 0)
289 goto free_cpudl;
290 return 0;
291
292free_cpudl:
293 cpudl_cleanup(&rd->cpudl);
294free_rto_mask:
295 free_cpumask_var(rd->rto_mask);
296free_dlo_mask:
297 free_cpumask_var(rd->dlo_mask);
298free_online:
299 free_cpumask_var(rd->online);
300free_span:
301 free_cpumask_var(rd->span);
302out:
303 return -ENOMEM;
304}
305
306/*
307 * By default the system creates a single root-domain with all CPUs as
308 * members (mimicking the global state we have today).
309 */
310struct root_domain def_root_domain;
311
312void init_defrootdomain(void)
313{
314 init_rootdomain(&def_root_domain);
315
316 atomic_set(&def_root_domain.refcount, 1);
317}
318
319static struct root_domain *alloc_rootdomain(void)
320{
321 struct root_domain *rd;
322
4d13a06d 323 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
f2cb1360
IM
324 if (!rd)
325 return NULL;
326
327 if (init_rootdomain(rd) != 0) {
328 kfree(rd);
329 return NULL;
330 }
331
332 return rd;
333}
334
335static void free_sched_groups(struct sched_group *sg, int free_sgc)
336{
337 struct sched_group *tmp, *first;
338
339 if (!sg)
340 return;
341
342 first = sg;
343 do {
344 tmp = sg->next;
345
346 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
347 kfree(sg->sgc);
348
213c5a45
SW
349 if (atomic_dec_and_test(&sg->ref))
350 kfree(sg);
f2cb1360
IM
351 sg = tmp;
352 } while (sg != first);
353}
354
355static void destroy_sched_domain(struct sched_domain *sd)
356{
357 /*
a090c4f2
PZ
358 * A normal sched domain may have multiple group references, an
359 * overlapping domain, having private groups, only one. Iterate,
360 * dropping group/capacity references, freeing where none remain.
f2cb1360 361 */
213c5a45
SW
362 free_sched_groups(sd->groups, 1);
363
f2cb1360
IM
364 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
365 kfree(sd->shared);
366 kfree(sd);
367}
368
369static void destroy_sched_domains_rcu(struct rcu_head *rcu)
370{
371 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
372
373 while (sd) {
374 struct sched_domain *parent = sd->parent;
375 destroy_sched_domain(sd);
376 sd = parent;
377 }
378}
379
380static void destroy_sched_domains(struct sched_domain *sd)
381{
382 if (sd)
383 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
384}
385
386/*
387 * Keep a special pointer to the highest sched_domain that has
388 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
389 * allows us to avoid some pointer chasing select_idle_sibling().
390 *
391 * Also keep a unique ID per domain (we use the first CPU number in
392 * the cpumask of the domain), this allows us to quickly tell if
393 * two CPUs are in the same cache domain, see cpus_share_cache().
394 */
395DEFINE_PER_CPU(struct sched_domain *, sd_llc);
396DEFINE_PER_CPU(int, sd_llc_size);
397DEFINE_PER_CPU(int, sd_llc_id);
398DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
399DEFINE_PER_CPU(struct sched_domain *, sd_numa);
400DEFINE_PER_CPU(struct sched_domain *, sd_asym);
df054e84 401DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
f2cb1360
IM
402
403static void update_top_cache_domain(int cpu)
404{
405 struct sched_domain_shared *sds = NULL;
406 struct sched_domain *sd;
407 int id = cpu;
408 int size = 1;
409
410 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
411 if (sd) {
412 id = cpumask_first(sched_domain_span(sd));
413 size = cpumask_weight(sched_domain_span(sd));
414 sds = sd->shared;
415 }
416
417 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
418 per_cpu(sd_llc_size, cpu) = size;
419 per_cpu(sd_llc_id, cpu) = id;
420 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
421
422 sd = lowest_flag_domain(cpu, SD_NUMA);
423 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
424
425 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
426 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
427}
428
429/*
430 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
431 * hold the hotplug lock.
432 */
433static void
434cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
435{
436 struct rq *rq = cpu_rq(cpu);
437 struct sched_domain *tmp;
438
439 /* Remove the sched domains which do not contribute to scheduling. */
440 for (tmp = sd; tmp; ) {
441 struct sched_domain *parent = tmp->parent;
442 if (!parent)
443 break;
444
445 if (sd_parent_degenerate(tmp, parent)) {
446 tmp->parent = parent->parent;
447 if (parent->parent)
448 parent->parent->child = tmp;
449 /*
450 * Transfer SD_PREFER_SIBLING down in case of a
451 * degenerate parent; the spans match for this
452 * so the property transfers.
453 */
454 if (parent->flags & SD_PREFER_SIBLING)
455 tmp->flags |= SD_PREFER_SIBLING;
456 destroy_sched_domain(parent);
457 } else
458 tmp = tmp->parent;
459 }
460
461 if (sd && sd_degenerate(sd)) {
462 tmp = sd;
463 sd = sd->parent;
464 destroy_sched_domain(tmp);
465 if (sd)
466 sd->child = NULL;
467 }
468
469 sched_domain_debug(sd, cpu);
470
471 rq_attach_root(rq, rd);
472 tmp = rq->sd;
473 rcu_assign_pointer(rq->sd, sd);
bbdacdfe 474 dirty_sched_domain_sysctl(cpu);
f2cb1360
IM
475 destroy_sched_domains(tmp);
476
477 update_top_cache_domain(cpu);
478}
479
f2cb1360
IM
480struct s_data {
481 struct sched_domain ** __percpu sd;
482 struct root_domain *rd;
483};
484
485enum s_alloc {
486 sa_rootdomain,
487 sa_sd,
488 sa_sd_storage,
489 sa_none,
490};
491
35a566e6
PZ
492/*
493 * Return the canonical balance CPU for this group, this is the first CPU
e5c14b1f 494 * of this group that's also in the balance mask.
35a566e6 495 *
e5c14b1f
PZ
496 * The balance mask are all those CPUs that could actually end up at this
497 * group. See build_balance_mask().
35a566e6
PZ
498 *
499 * Also see should_we_balance().
500 */
501int group_balance_cpu(struct sched_group *sg)
502{
e5c14b1f 503 return cpumask_first(group_balance_mask(sg));
35a566e6
PZ
504}
505
506
507/*
508 * NUMA topology (first read the regular topology blurb below)
509 *
510 * Given a node-distance table, for example:
511 *
512 * node 0 1 2 3
513 * 0: 10 20 30 20
514 * 1: 20 10 20 30
515 * 2: 30 20 10 20
516 * 3: 20 30 20 10
517 *
518 * which represents a 4 node ring topology like:
519 *
520 * 0 ----- 1
521 * | |
522 * | |
523 * | |
524 * 3 ----- 2
525 *
526 * We want to construct domains and groups to represent this. The way we go
527 * about doing this is to build the domains on 'hops'. For each NUMA level we
528 * construct the mask of all nodes reachable in @level hops.
529 *
530 * For the above NUMA topology that gives 3 levels:
531 *
532 * NUMA-2 0-3 0-3 0-3 0-3
533 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
534 *
535 * NUMA-1 0-1,3 0-2 1-3 0,2-3
536 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
537 *
538 * NUMA-0 0 1 2 3
539 *
540 *
541 * As can be seen; things don't nicely line up as with the regular topology.
542 * When we iterate a domain in child domain chunks some nodes can be
543 * represented multiple times -- hence the "overlap" naming for this part of
544 * the topology.
545 *
546 * In order to minimize this overlap, we only build enough groups to cover the
547 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
548 *
549 * Because:
550 *
551 * - the first group of each domain is its child domain; this
552 * gets us the first 0-1,3
553 * - the only uncovered node is 2, who's child domain is 1-3.
554 *
555 * However, because of the overlap, computing a unique CPU for each group is
556 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
557 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
558 * end up at those groups (they would end up in group: 0-1,3).
559 *
e5c14b1f 560 * To correct this we have to introduce the group balance mask. This mask
35a566e6
PZ
561 * will contain those CPUs in the group that can reach this group given the
562 * (child) domain tree.
563 *
564 * With this we can once again compute balance_cpu and sched_group_capacity
565 * relations.
566 *
567 * XXX include words on how balance_cpu is unique and therefore can be
568 * used for sched_group_capacity links.
569 *
570 *
571 * Another 'interesting' topology is:
572 *
573 * node 0 1 2 3
574 * 0: 10 20 20 30
575 * 1: 20 10 20 20
576 * 2: 20 20 10 20
577 * 3: 30 20 20 10
578 *
579 * Which looks a little like:
580 *
581 * 0 ----- 1
582 * | / |
583 * | / |
584 * | / |
585 * 2 ----- 3
586 *
587 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
588 * are not.
589 *
590 * This leads to a few particularly weird cases where the sched_domain's are
97fb7a0a 591 * not of the same number for each CPU. Consider:
35a566e6
PZ
592 *
593 * NUMA-2 0-3 0-3
594 * groups: {0-2},{1-3} {1-3},{0-2}
595 *
596 * NUMA-1 0-2 0-3 0-3 1-3
597 *
598 * NUMA-0 0 1 2 3
599 *
600 */
601
602
f2cb1360 603/*
e5c14b1f
PZ
604 * Build the balance mask; it contains only those CPUs that can arrive at this
605 * group and should be considered to continue balancing.
35a566e6
PZ
606 *
607 * We do this during the group creation pass, therefore the group information
608 * isn't complete yet, however since each group represents a (child) domain we
609 * can fully construct this using the sched_domain bits (which are already
610 * complete).
f2cb1360 611 */
1676330e 612static void
e5c14b1f 613build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
f2cb1360 614{
ae4df9d6 615 const struct cpumask *sg_span = sched_group_span(sg);
f2cb1360
IM
616 struct sd_data *sdd = sd->private;
617 struct sched_domain *sibling;
618 int i;
619
1676330e
PZ
620 cpumask_clear(mask);
621
f32d782e 622 for_each_cpu(i, sg_span) {
f2cb1360 623 sibling = *per_cpu_ptr(sdd->sd, i);
73bb059f
PZ
624
625 /*
626 * Can happen in the asymmetric case, where these siblings are
627 * unused. The mask will not be empty because those CPUs that
628 * do have the top domain _should_ span the domain.
629 */
630 if (!sibling->child)
631 continue;
632
633 /* If we would not end up here, we can't continue from here */
634 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
f2cb1360
IM
635 continue;
636
1676330e 637 cpumask_set_cpu(i, mask);
f2cb1360 638 }
73bb059f
PZ
639
640 /* We must not have empty masks here */
1676330e 641 WARN_ON_ONCE(cpumask_empty(mask));
f2cb1360
IM
642}
643
644/*
35a566e6
PZ
645 * XXX: This creates per-node group entries; since the load-balancer will
646 * immediately access remote memory to construct this group's load-balance
647 * statistics having the groups node local is of dubious benefit.
f2cb1360 648 */
8c033469
LRV
649static struct sched_group *
650build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
651{
652 struct sched_group *sg;
653 struct cpumask *sg_span;
654
655 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
656 GFP_KERNEL, cpu_to_node(cpu));
657
658 if (!sg)
659 return NULL;
660
ae4df9d6 661 sg_span = sched_group_span(sg);
8c033469
LRV
662 if (sd->child)
663 cpumask_copy(sg_span, sched_domain_span(sd->child));
664 else
665 cpumask_copy(sg_span, sched_domain_span(sd));
666
213c5a45 667 atomic_inc(&sg->ref);
8c033469
LRV
668 return sg;
669}
670
671static void init_overlap_sched_group(struct sched_domain *sd,
1676330e 672 struct sched_group *sg)
8c033469 673{
1676330e 674 struct cpumask *mask = sched_domains_tmpmask2;
8c033469
LRV
675 struct sd_data *sdd = sd->private;
676 struct cpumask *sg_span;
1676330e
PZ
677 int cpu;
678
e5c14b1f 679 build_balance_mask(sd, sg, mask);
ae4df9d6 680 cpu = cpumask_first_and(sched_group_span(sg), mask);
8c033469
LRV
681
682 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
683 if (atomic_inc_return(&sg->sgc->ref) == 1)
e5c14b1f 684 cpumask_copy(group_balance_mask(sg), mask);
35a566e6 685 else
e5c14b1f 686 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
8c033469
LRV
687
688 /*
689 * Initialize sgc->capacity such that even if we mess up the
690 * domains and no possible iteration will get us here, we won't
691 * die on a /0 trap.
692 */
ae4df9d6 693 sg_span = sched_group_span(sg);
8c033469
LRV
694 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
695 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
e3d6d0cb 696 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
8c033469
LRV
697}
698
f2cb1360
IM
699static int
700build_overlap_sched_groups(struct sched_domain *sd, int cpu)
701{
91eaed0d 702 struct sched_group *first = NULL, *last = NULL, *sg;
f2cb1360
IM
703 const struct cpumask *span = sched_domain_span(sd);
704 struct cpumask *covered = sched_domains_tmpmask;
705 struct sd_data *sdd = sd->private;
706 struct sched_domain *sibling;
707 int i;
708
709 cpumask_clear(covered);
710
0372dd27 711 for_each_cpu_wrap(i, span, cpu) {
f2cb1360
IM
712 struct cpumask *sg_span;
713
714 if (cpumask_test_cpu(i, covered))
715 continue;
716
717 sibling = *per_cpu_ptr(sdd->sd, i);
718
c20e1ea4
LRV
719 /*
720 * Asymmetric node setups can result in situations where the
721 * domain tree is of unequal depth, make sure to skip domains
722 * that already cover the entire range.
723 *
724 * In that case build_sched_domains() will have terminated the
725 * iteration early and our sibling sd spans will be empty.
726 * Domains should always include the CPU they're built on, so
727 * check that.
728 */
f2cb1360
IM
729 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
730 continue;
731
8c033469 732 sg = build_group_from_child_sched_domain(sibling, cpu);
f2cb1360
IM
733 if (!sg)
734 goto fail;
735
ae4df9d6 736 sg_span = sched_group_span(sg);
f2cb1360
IM
737 cpumask_or(covered, covered, sg_span);
738
1676330e 739 init_overlap_sched_group(sd, sg);
f2cb1360 740
f2cb1360
IM
741 if (!first)
742 first = sg;
743 if (last)
744 last->next = sg;
745 last = sg;
746 last->next = first;
747 }
91eaed0d 748 sd->groups = first;
f2cb1360
IM
749
750 return 0;
751
752fail:
753 free_sched_groups(first, 0);
754
755 return -ENOMEM;
756}
757
35a566e6
PZ
758
759/*
760 * Package topology (also see the load-balance blurb in fair.c)
761 *
762 * The scheduler builds a tree structure to represent a number of important
763 * topology features. By default (default_topology[]) these include:
764 *
765 * - Simultaneous multithreading (SMT)
766 * - Multi-Core Cache (MC)
767 * - Package (DIE)
768 *
769 * Where the last one more or less denotes everything up to a NUMA node.
770 *
771 * The tree consists of 3 primary data structures:
772 *
773 * sched_domain -> sched_group -> sched_group_capacity
774 * ^ ^ ^ ^
775 * `-' `-'
776 *
97fb7a0a 777 * The sched_domains are per-CPU and have a two way link (parent & child) and
35a566e6
PZ
778 * denote the ever growing mask of CPUs belonging to that level of topology.
779 *
780 * Each sched_domain has a circular (double) linked list of sched_group's, each
781 * denoting the domains of the level below (or individual CPUs in case of the
782 * first domain level). The sched_group linked by a sched_domain includes the
783 * CPU of that sched_domain [*].
784 *
785 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
786 *
787 * CPU 0 1 2 3 4 5 6 7
788 *
789 * DIE [ ]
790 * MC [ ] [ ]
791 * SMT [ ] [ ] [ ] [ ]
792 *
793 * - or -
794 *
795 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
796 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
797 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
798 *
799 * CPU 0 1 2 3 4 5 6 7
800 *
801 * One way to think about it is: sched_domain moves you up and down among these
802 * topology levels, while sched_group moves you sideways through it, at child
803 * domain granularity.
804 *
805 * sched_group_capacity ensures each unique sched_group has shared storage.
806 *
807 * There are two related construction problems, both require a CPU that
808 * uniquely identify each group (for a given domain):
809 *
810 * - The first is the balance_cpu (see should_we_balance() and the
811 * load-balance blub in fair.c); for each group we only want 1 CPU to
812 * continue balancing at a higher domain.
813 *
814 * - The second is the sched_group_capacity; we want all identical groups
815 * to share a single sched_group_capacity.
816 *
817 * Since these topologies are exclusive by construction. That is, its
818 * impossible for an SMT thread to belong to multiple cores, and cores to
819 * be part of multiple caches. There is a very clear and unique location
820 * for each CPU in the hierarchy.
821 *
822 * Therefore computing a unique CPU for each group is trivial (the iteration
823 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
824 * group), we can simply pick the first CPU in each group.
825 *
826 *
827 * [*] in other words, the first group of each domain is its child domain.
828 */
829
0c0e776a 830static struct sched_group *get_group(int cpu, struct sd_data *sdd)
f2cb1360
IM
831{
832 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
833 struct sched_domain *child = sd->child;
0c0e776a 834 struct sched_group *sg;
f2cb1360
IM
835
836 if (child)
837 cpu = cpumask_first(sched_domain_span(child));
838
0c0e776a
PZ
839 sg = *per_cpu_ptr(sdd->sg, cpu);
840 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
841
842 /* For claim_allocations: */
843 atomic_inc(&sg->ref);
844 atomic_inc(&sg->sgc->ref);
f2cb1360 845
0c0e776a 846 if (child) {
ae4df9d6
PZ
847 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
848 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
0c0e776a 849 } else {
ae4df9d6 850 cpumask_set_cpu(cpu, sched_group_span(sg));
e5c14b1f 851 cpumask_set_cpu(cpu, group_balance_mask(sg));
f2cb1360
IM
852 }
853
ae4df9d6 854 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
0c0e776a 855 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
e3d6d0cb 856 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
0c0e776a
PZ
857
858 return sg;
f2cb1360
IM
859}
860
861/*
862 * build_sched_groups will build a circular linked list of the groups
863 * covered by the given span, and will set each group's ->cpumask correctly,
864 * and ->cpu_capacity to 0.
865 *
866 * Assumes the sched_domain tree is fully constructed
867 */
868static int
869build_sched_groups(struct sched_domain *sd, int cpu)
870{
871 struct sched_group *first = NULL, *last = NULL;
872 struct sd_data *sdd = sd->private;
873 const struct cpumask *span = sched_domain_span(sd);
874 struct cpumask *covered;
875 int i;
876
f2cb1360
IM
877 lockdep_assert_held(&sched_domains_mutex);
878 covered = sched_domains_tmpmask;
879
880 cpumask_clear(covered);
881
0c0e776a 882 for_each_cpu_wrap(i, span, cpu) {
f2cb1360 883 struct sched_group *sg;
f2cb1360
IM
884
885 if (cpumask_test_cpu(i, covered))
886 continue;
887
0c0e776a 888 sg = get_group(i, sdd);
f2cb1360 889
ae4df9d6 890 cpumask_or(covered, covered, sched_group_span(sg));
f2cb1360
IM
891
892 if (!first)
893 first = sg;
894 if (last)
895 last->next = sg;
896 last = sg;
897 }
898 last->next = first;
0c0e776a 899 sd->groups = first;
f2cb1360
IM
900
901 return 0;
902}
903
904/*
905 * Initialize sched groups cpu_capacity.
906 *
907 * cpu_capacity indicates the capacity of sched group, which is used while
908 * distributing the load between different sched groups in a sched domain.
909 * Typically cpu_capacity for all the groups in a sched domain will be same
910 * unless there are asymmetries in the topology. If there are asymmetries,
911 * group having more cpu_capacity will pickup more load compared to the
912 * group having less cpu_capacity.
913 */
914static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
915{
916 struct sched_group *sg = sd->groups;
917
918 WARN_ON(!sg);
919
920 do {
921 int cpu, max_cpu = -1;
922
ae4df9d6 923 sg->group_weight = cpumask_weight(sched_group_span(sg));
f2cb1360
IM
924
925 if (!(sd->flags & SD_ASYM_PACKING))
926 goto next;
927
ae4df9d6 928 for_each_cpu(cpu, sched_group_span(sg)) {
f2cb1360
IM
929 if (max_cpu < 0)
930 max_cpu = cpu;
931 else if (sched_asym_prefer(cpu, max_cpu))
932 max_cpu = cpu;
933 }
934 sg->asym_prefer_cpu = max_cpu;
935
936next:
937 sg = sg->next;
938 } while (sg != sd->groups);
939
940 if (cpu != group_balance_cpu(sg))
941 return;
942
943 update_group_capacity(sd, cpu);
944}
945
946/*
947 * Initializers for schedule domains
948 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
949 */
950
951static int default_relax_domain_level = -1;
952int sched_domain_level_max;
953
954static int __init setup_relax_domain_level(char *str)
955{
956 if (kstrtoint(str, 0, &default_relax_domain_level))
957 pr_warn("Unable to set relax_domain_level\n");
958
959 return 1;
960}
961__setup("relax_domain_level=", setup_relax_domain_level);
962
963static void set_domain_attribute(struct sched_domain *sd,
964 struct sched_domain_attr *attr)
965{
966 int request;
967
968 if (!attr || attr->relax_domain_level < 0) {
969 if (default_relax_domain_level < 0)
970 return;
971 else
972 request = default_relax_domain_level;
973 } else
974 request = attr->relax_domain_level;
975 if (request < sd->level) {
976 /* Turn off idle balance on this domain: */
977 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
978 } else {
979 /* Turn on idle balance on this domain: */
980 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
981 }
982}
983
984static void __sdt_free(const struct cpumask *cpu_map);
985static int __sdt_alloc(const struct cpumask *cpu_map);
986
987static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
988 const struct cpumask *cpu_map)
989{
990 switch (what) {
991 case sa_rootdomain:
992 if (!atomic_read(&d->rd->refcount))
993 free_rootdomain(&d->rd->rcu);
994 /* Fall through */
995 case sa_sd:
996 free_percpu(d->sd);
997 /* Fall through */
998 case sa_sd_storage:
999 __sdt_free(cpu_map);
1000 /* Fall through */
1001 case sa_none:
1002 break;
1003 }
1004}
1005
1006static enum s_alloc
1007__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1008{
1009 memset(d, 0, sizeof(*d));
1010
1011 if (__sdt_alloc(cpu_map))
1012 return sa_sd_storage;
1013 d->sd = alloc_percpu(struct sched_domain *);
1014 if (!d->sd)
1015 return sa_sd_storage;
1016 d->rd = alloc_rootdomain();
1017 if (!d->rd)
1018 return sa_sd;
97fb7a0a 1019
f2cb1360
IM
1020 return sa_rootdomain;
1021}
1022
1023/*
1024 * NULL the sd_data elements we've used to build the sched_domain and
1025 * sched_group structure so that the subsequent __free_domain_allocs()
1026 * will not free the data we're using.
1027 */
1028static void claim_allocations(int cpu, struct sched_domain *sd)
1029{
1030 struct sd_data *sdd = sd->private;
1031
1032 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1033 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1034
1035 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1036 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1037
1038 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1039 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1040
1041 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1042 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1043}
1044
1045#ifdef CONFIG_NUMA
f2cb1360 1046enum numa_topology_type sched_numa_topology_type;
97fb7a0a
IM
1047
1048static int sched_domains_numa_levels;
1049static int sched_domains_curr_level;
1050
1051int sched_max_numa_distance;
1052static int *sched_domains_numa_distance;
1053static struct cpumask ***sched_domains_numa_masks;
f2cb1360
IM
1054#endif
1055
1056/*
1057 * SD_flags allowed in topology descriptions.
1058 *
1059 * These flags are purely descriptive of the topology and do not prescribe
1060 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1061 * function:
1062 *
1063 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1064 * SD_SHARE_PKG_RESOURCES - describes shared caches
1065 * SD_NUMA - describes NUMA topologies
1066 * SD_SHARE_POWERDOMAIN - describes shared power domain
f2cb1360
IM
1067 *
1068 * Odd one out, which beside describing the topology has a quirk also
1069 * prescribes the desired behaviour that goes along with it:
1070 *
1071 * SD_ASYM_PACKING - describes SMT quirks
1072 */
1073#define TOPOLOGY_SD_FLAGS \
97fb7a0a 1074 (SD_SHARE_CPUCAPACITY | \
f2cb1360 1075 SD_SHARE_PKG_RESOURCES | \
97fb7a0a
IM
1076 SD_NUMA | \
1077 SD_ASYM_PACKING | \
f2cb1360
IM
1078 SD_SHARE_POWERDOMAIN)
1079
1080static struct sched_domain *
1081sd_init(struct sched_domain_topology_level *tl,
1082 const struct cpumask *cpu_map,
05484e09 1083 struct sched_domain *child, int dflags, int cpu)
f2cb1360
IM
1084{
1085 struct sd_data *sdd = &tl->data;
1086 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1087 int sd_id, sd_weight, sd_flags = 0;
1088
1089#ifdef CONFIG_NUMA
1090 /*
1091 * Ugly hack to pass state to sd_numa_mask()...
1092 */
1093 sched_domains_curr_level = tl->numa_level;
1094#endif
1095
1096 sd_weight = cpumask_weight(tl->mask(cpu));
1097
1098 if (tl->sd_flags)
1099 sd_flags = (*tl->sd_flags)();
1100 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1101 "wrong sd_flags in topology description\n"))
1102 sd_flags &= ~TOPOLOGY_SD_FLAGS;
1103
05484e09
MR
1104 /* Apply detected topology flags */
1105 sd_flags |= dflags;
1106
f2cb1360
IM
1107 *sd = (struct sched_domain){
1108 .min_interval = sd_weight,
1109 .max_interval = 2*sd_weight,
1110 .busy_factor = 32,
1111 .imbalance_pct = 125,
1112
1113 .cache_nice_tries = 0,
1114 .busy_idx = 0,
1115 .idle_idx = 0,
1116 .newidle_idx = 0,
1117 .wake_idx = 0,
1118 .forkexec_idx = 0,
1119
1120 .flags = 1*SD_LOAD_BALANCE
1121 | 1*SD_BALANCE_NEWIDLE
1122 | 1*SD_BALANCE_EXEC
1123 | 1*SD_BALANCE_FORK
1124 | 0*SD_BALANCE_WAKE
1125 | 1*SD_WAKE_AFFINE
1126 | 0*SD_SHARE_CPUCAPACITY
1127 | 0*SD_SHARE_PKG_RESOURCES
1128 | 0*SD_SERIALIZE
1129 | 0*SD_PREFER_SIBLING
1130 | 0*SD_NUMA
1131 | sd_flags
1132 ,
1133
1134 .last_balance = jiffies,
1135 .balance_interval = sd_weight,
1136 .smt_gain = 0,
1137 .max_newidle_lb_cost = 0,
1138 .next_decay_max_lb_cost = jiffies,
1139 .child = child,
1140#ifdef CONFIG_SCHED_DEBUG
1141 .name = tl->name,
1142#endif
1143 };
1144
1145 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1146 sd_id = cpumask_first(sched_domain_span(sd));
1147
1148 /*
1149 * Convert topological properties into behaviour.
1150 */
1151
1152 if (sd->flags & SD_ASYM_CPUCAPACITY) {
1153 struct sched_domain *t = sd;
1154
1155 for_each_lower_domain(t)
1156 t->flags |= SD_BALANCE_WAKE;
1157 }
1158
1159 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1160 sd->flags |= SD_PREFER_SIBLING;
1161 sd->imbalance_pct = 110;
1162 sd->smt_gain = 1178; /* ~15% */
1163
1164 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
ed4ad1ca 1165 sd->flags |= SD_PREFER_SIBLING;
f2cb1360
IM
1166 sd->imbalance_pct = 117;
1167 sd->cache_nice_tries = 1;
1168 sd->busy_idx = 2;
1169
1170#ifdef CONFIG_NUMA
1171 } else if (sd->flags & SD_NUMA) {
1172 sd->cache_nice_tries = 2;
1173 sd->busy_idx = 3;
1174 sd->idle_idx = 2;
1175
1176 sd->flags |= SD_SERIALIZE;
1177 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1178 sd->flags &= ~(SD_BALANCE_EXEC |
1179 SD_BALANCE_FORK |
1180 SD_WAKE_AFFINE);
1181 }
1182
1183#endif
1184 } else {
1185 sd->flags |= SD_PREFER_SIBLING;
1186 sd->cache_nice_tries = 1;
1187 sd->busy_idx = 2;
1188 sd->idle_idx = 1;
1189 }
1190
1191 /*
1192 * For all levels sharing cache; connect a sched_domain_shared
1193 * instance.
1194 */
1195 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1196 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1197 atomic_inc(&sd->shared->ref);
1198 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1199 }
1200
1201 sd->private = sdd;
1202
1203 return sd;
1204}
1205
1206/*
1207 * Topology list, bottom-up.
1208 */
1209static struct sched_domain_topology_level default_topology[] = {
1210#ifdef CONFIG_SCHED_SMT
1211 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1212#endif
1213#ifdef CONFIG_SCHED_MC
1214 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1215#endif
1216 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1217 { NULL, },
1218};
1219
1220static struct sched_domain_topology_level *sched_domain_topology =
1221 default_topology;
1222
1223#define for_each_sd_topology(tl) \
1224 for (tl = sched_domain_topology; tl->mask; tl++)
1225
1226void set_sched_topology(struct sched_domain_topology_level *tl)
1227{
1228 if (WARN_ON_ONCE(sched_smp_initialized))
1229 return;
1230
1231 sched_domain_topology = tl;
1232}
1233
1234#ifdef CONFIG_NUMA
1235
1236static const struct cpumask *sd_numa_mask(int cpu)
1237{
1238 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1239}
1240
1241static void sched_numa_warn(const char *str)
1242{
1243 static int done = false;
1244 int i,j;
1245
1246 if (done)
1247 return;
1248
1249 done = true;
1250
1251 printk(KERN_WARNING "ERROR: %s\n\n", str);
1252
1253 for (i = 0; i < nr_node_ids; i++) {
1254 printk(KERN_WARNING " ");
1255 for (j = 0; j < nr_node_ids; j++)
1256 printk(KERN_CONT "%02d ", node_distance(i,j));
1257 printk(KERN_CONT "\n");
1258 }
1259 printk(KERN_WARNING "\n");
1260}
1261
1262bool find_numa_distance(int distance)
1263{
1264 int i;
1265
1266 if (distance == node_distance(0, 0))
1267 return true;
1268
1269 for (i = 0; i < sched_domains_numa_levels; i++) {
1270 if (sched_domains_numa_distance[i] == distance)
1271 return true;
1272 }
1273
1274 return false;
1275}
1276
1277/*
1278 * A system can have three types of NUMA topology:
1279 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1280 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1281 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1282 *
1283 * The difference between a glueless mesh topology and a backplane
1284 * topology lies in whether communication between not directly
1285 * connected nodes goes through intermediary nodes (where programs
1286 * could run), or through backplane controllers. This affects
1287 * placement of programs.
1288 *
1289 * The type of topology can be discerned with the following tests:
1290 * - If the maximum distance between any nodes is 1 hop, the system
1291 * is directly connected.
1292 * - If for two nodes A and B, located N > 1 hops away from each other,
1293 * there is an intermediary node C, which is < N hops away from both
1294 * nodes A and B, the system is a glueless mesh.
1295 */
1296static void init_numa_topology_type(void)
1297{
1298 int a, b, c, n;
1299
1300 n = sched_max_numa_distance;
1301
e5e96faf 1302 if (sched_domains_numa_levels <= 2) {
f2cb1360
IM
1303 sched_numa_topology_type = NUMA_DIRECT;
1304 return;
1305 }
1306
1307 for_each_online_node(a) {
1308 for_each_online_node(b) {
1309 /* Find two nodes furthest removed from each other. */
1310 if (node_distance(a, b) < n)
1311 continue;
1312
1313 /* Is there an intermediary node between a and b? */
1314 for_each_online_node(c) {
1315 if (node_distance(a, c) < n &&
1316 node_distance(b, c) < n) {
1317 sched_numa_topology_type =
1318 NUMA_GLUELESS_MESH;
1319 return;
1320 }
1321 }
1322
1323 sched_numa_topology_type = NUMA_BACKPLANE;
1324 return;
1325 }
1326 }
1327}
1328
1329void sched_init_numa(void)
1330{
1331 int next_distance, curr_distance = node_distance(0, 0);
1332 struct sched_domain_topology_level *tl;
1333 int level = 0;
1334 int i, j, k;
1335
1336 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1337 if (!sched_domains_numa_distance)
1338 return;
1339
051f3ca0
SS
1340 /* Includes NUMA identity node at level 0. */
1341 sched_domains_numa_distance[level++] = curr_distance;
1342 sched_domains_numa_levels = level;
1343
f2cb1360
IM
1344 /*
1345 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1346 * unique distances in the node_distance() table.
1347 *
1348 * Assumes node_distance(0,j) includes all distances in
1349 * node_distance(i,j) in order to avoid cubic time.
1350 */
1351 next_distance = curr_distance;
1352 for (i = 0; i < nr_node_ids; i++) {
1353 for (j = 0; j < nr_node_ids; j++) {
1354 for (k = 0; k < nr_node_ids; k++) {
1355 int distance = node_distance(i, k);
1356
1357 if (distance > curr_distance &&
1358 (distance < next_distance ||
1359 next_distance == curr_distance))
1360 next_distance = distance;
1361
1362 /*
1363 * While not a strong assumption it would be nice to know
1364 * about cases where if node A is connected to B, B is not
1365 * equally connected to A.
1366 */
1367 if (sched_debug() && node_distance(k, i) != distance)
1368 sched_numa_warn("Node-distance not symmetric");
1369
1370 if (sched_debug() && i && !find_numa_distance(distance))
1371 sched_numa_warn("Node-0 not representative");
1372 }
1373 if (next_distance != curr_distance) {
1374 sched_domains_numa_distance[level++] = next_distance;
1375 sched_domains_numa_levels = level;
1376 curr_distance = next_distance;
1377 } else break;
1378 }
1379
1380 /*
1381 * In case of sched_debug() we verify the above assumption.
1382 */
1383 if (!sched_debug())
1384 break;
1385 }
1386
f2cb1360 1387 /*
051f3ca0 1388 * 'level' contains the number of unique distances
f2cb1360
IM
1389 *
1390 * The sched_domains_numa_distance[] array includes the actual distance
1391 * numbers.
1392 */
1393
1394 /*
1395 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1396 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1397 * the array will contain less then 'level' members. This could be
1398 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1399 * in other functions.
1400 *
1401 * We reset it to 'level' at the end of this function.
1402 */
1403 sched_domains_numa_levels = 0;
1404
1405 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1406 if (!sched_domains_numa_masks)
1407 return;
1408
1409 /*
1410 * Now for each level, construct a mask per node which contains all
1411 * CPUs of nodes that are that many hops away from us.
1412 */
1413 for (i = 0; i < level; i++) {
1414 sched_domains_numa_masks[i] =
1415 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1416 if (!sched_domains_numa_masks[i])
1417 return;
1418
1419 for (j = 0; j < nr_node_ids; j++) {
1420 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1421 if (!mask)
1422 return;
1423
1424 sched_domains_numa_masks[i][j] = mask;
1425
1426 for_each_node(k) {
1427 if (node_distance(j, k) > sched_domains_numa_distance[i])
1428 continue;
1429
1430 cpumask_or(mask, mask, cpumask_of_node(k));
1431 }
1432 }
1433 }
1434
1435 /* Compute default topology size */
1436 for (i = 0; sched_domain_topology[i].mask; i++);
1437
1438 tl = kzalloc((i + level + 1) *
1439 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1440 if (!tl)
1441 return;
1442
1443 /*
1444 * Copy the default topology bits..
1445 */
1446 for (i = 0; sched_domain_topology[i].mask; i++)
1447 tl[i] = sched_domain_topology[i];
1448
051f3ca0
SS
1449 /*
1450 * Add the NUMA identity distance, aka single NODE.
1451 */
1452 tl[i++] = (struct sched_domain_topology_level){
1453 .mask = sd_numa_mask,
1454 .numa_level = 0,
1455 SD_INIT_NAME(NODE)
1456 };
1457
f2cb1360
IM
1458 /*
1459 * .. and append 'j' levels of NUMA goodness.
1460 */
051f3ca0 1461 for (j = 1; j < level; i++, j++) {
f2cb1360
IM
1462 tl[i] = (struct sched_domain_topology_level){
1463 .mask = sd_numa_mask,
1464 .sd_flags = cpu_numa_flags,
1465 .flags = SDTL_OVERLAP,
1466 .numa_level = j,
1467 SD_INIT_NAME(NUMA)
1468 };
1469 }
1470
1471 sched_domain_topology = tl;
1472
1473 sched_domains_numa_levels = level;
1474 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1475
1476 init_numa_topology_type();
1477}
1478
1479void sched_domains_numa_masks_set(unsigned int cpu)
1480{
1481 int node = cpu_to_node(cpu);
1482 int i, j;
1483
1484 for (i = 0; i < sched_domains_numa_levels; i++) {
1485 for (j = 0; j < nr_node_ids; j++) {
1486 if (node_distance(j, node) <= sched_domains_numa_distance[i])
1487 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1488 }
1489 }
1490}
1491
1492void sched_domains_numa_masks_clear(unsigned int cpu)
1493{
1494 int i, j;
1495
1496 for (i = 0; i < sched_domains_numa_levels; i++) {
1497 for (j = 0; j < nr_node_ids; j++)
1498 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1499 }
1500}
1501
1502#endif /* CONFIG_NUMA */
1503
1504static int __sdt_alloc(const struct cpumask *cpu_map)
1505{
1506 struct sched_domain_topology_level *tl;
1507 int j;
1508
1509 for_each_sd_topology(tl) {
1510 struct sd_data *sdd = &tl->data;
1511
1512 sdd->sd = alloc_percpu(struct sched_domain *);
1513 if (!sdd->sd)
1514 return -ENOMEM;
1515
1516 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1517 if (!sdd->sds)
1518 return -ENOMEM;
1519
1520 sdd->sg = alloc_percpu(struct sched_group *);
1521 if (!sdd->sg)
1522 return -ENOMEM;
1523
1524 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1525 if (!sdd->sgc)
1526 return -ENOMEM;
1527
1528 for_each_cpu(j, cpu_map) {
1529 struct sched_domain *sd;
1530 struct sched_domain_shared *sds;
1531 struct sched_group *sg;
1532 struct sched_group_capacity *sgc;
1533
1534 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1535 GFP_KERNEL, cpu_to_node(j));
1536 if (!sd)
1537 return -ENOMEM;
1538
1539 *per_cpu_ptr(sdd->sd, j) = sd;
1540
1541 sds = kzalloc_node(sizeof(struct sched_domain_shared),
1542 GFP_KERNEL, cpu_to_node(j));
1543 if (!sds)
1544 return -ENOMEM;
1545
1546 *per_cpu_ptr(sdd->sds, j) = sds;
1547
1548 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1549 GFP_KERNEL, cpu_to_node(j));
1550 if (!sg)
1551 return -ENOMEM;
1552
1553 sg->next = sg;
1554
1555 *per_cpu_ptr(sdd->sg, j) = sg;
1556
1557 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1558 GFP_KERNEL, cpu_to_node(j));
1559 if (!sgc)
1560 return -ENOMEM;
1561
005f874d
PZ
1562#ifdef CONFIG_SCHED_DEBUG
1563 sgc->id = j;
1564#endif
1565
f2cb1360
IM
1566 *per_cpu_ptr(sdd->sgc, j) = sgc;
1567 }
1568 }
1569
1570 return 0;
1571}
1572
1573static void __sdt_free(const struct cpumask *cpu_map)
1574{
1575 struct sched_domain_topology_level *tl;
1576 int j;
1577
1578 for_each_sd_topology(tl) {
1579 struct sd_data *sdd = &tl->data;
1580
1581 for_each_cpu(j, cpu_map) {
1582 struct sched_domain *sd;
1583
1584 if (sdd->sd) {
1585 sd = *per_cpu_ptr(sdd->sd, j);
1586 if (sd && (sd->flags & SD_OVERLAP))
1587 free_sched_groups(sd->groups, 0);
1588 kfree(*per_cpu_ptr(sdd->sd, j));
1589 }
1590
1591 if (sdd->sds)
1592 kfree(*per_cpu_ptr(sdd->sds, j));
1593 if (sdd->sg)
1594 kfree(*per_cpu_ptr(sdd->sg, j));
1595 if (sdd->sgc)
1596 kfree(*per_cpu_ptr(sdd->sgc, j));
1597 }
1598 free_percpu(sdd->sd);
1599 sdd->sd = NULL;
1600 free_percpu(sdd->sds);
1601 sdd->sds = NULL;
1602 free_percpu(sdd->sg);
1603 sdd->sg = NULL;
1604 free_percpu(sdd->sgc);
1605 sdd->sgc = NULL;
1606 }
1607}
1608
181a80d1 1609static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
f2cb1360 1610 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
05484e09 1611 struct sched_domain *child, int dflags, int cpu)
f2cb1360 1612{
05484e09 1613 struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
f2cb1360
IM
1614
1615 if (child) {
1616 sd->level = child->level + 1;
1617 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1618 child->parent = sd;
1619
1620 if (!cpumask_subset(sched_domain_span(child),
1621 sched_domain_span(sd))) {
1622 pr_err("BUG: arch topology borken\n");
1623#ifdef CONFIG_SCHED_DEBUG
1624 pr_err(" the %s domain not a subset of the %s domain\n",
1625 child->name, sd->name);
1626#endif
97fb7a0a 1627 /* Fixup, ensure @sd has at least @child CPUs. */
f2cb1360
IM
1628 cpumask_or(sched_domain_span(sd),
1629 sched_domain_span(sd),
1630 sched_domain_span(child));
1631 }
1632
1633 }
1634 set_domain_attribute(sd, attr);
1635
1636 return sd;
1637}
1638
05484e09
MR
1639/*
1640 * Find the sched_domain_topology_level where all CPU capacities are visible
1641 * for all CPUs.
1642 */
1643static struct sched_domain_topology_level
1644*asym_cpu_capacity_level(const struct cpumask *cpu_map)
1645{
1646 int i, j, asym_level = 0;
1647 bool asym = false;
1648 struct sched_domain_topology_level *tl, *asym_tl = NULL;
1649 unsigned long cap;
1650
1651 /* Is there any asymmetry? */
1652 cap = arch_scale_cpu_capacity(NULL, cpumask_first(cpu_map));
1653
1654 for_each_cpu(i, cpu_map) {
1655 if (arch_scale_cpu_capacity(NULL, i) != cap) {
1656 asym = true;
1657 break;
1658 }
1659 }
1660
1661 if (!asym)
1662 return NULL;
1663
1664 /*
1665 * Examine topology from all CPU's point of views to detect the lowest
1666 * sched_domain_topology_level where a highest capacity CPU is visible
1667 * to everyone.
1668 */
1669 for_each_cpu(i, cpu_map) {
1670 unsigned long max_capacity = arch_scale_cpu_capacity(NULL, i);
1671 int tl_id = 0;
1672
1673 for_each_sd_topology(tl) {
1674 if (tl_id < asym_level)
1675 goto next_level;
1676
1677 for_each_cpu_and(j, tl->mask(i), cpu_map) {
1678 unsigned long capacity;
1679
1680 capacity = arch_scale_cpu_capacity(NULL, j);
1681
1682 if (capacity <= max_capacity)
1683 continue;
1684
1685 max_capacity = capacity;
1686 asym_level = tl_id;
1687 asym_tl = tl;
1688 }
1689next_level:
1690 tl_id++;
1691 }
1692 }
1693
1694 return asym_tl;
1695}
1696
1697
f2cb1360
IM
1698/*
1699 * Build sched domains for a given set of CPUs and attach the sched domains
1700 * to the individual CPUs
1701 */
1702static int
1703build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1704{
1705 enum s_alloc alloc_state;
1706 struct sched_domain *sd;
1707 struct s_data d;
1708 struct rq *rq = NULL;
1709 int i, ret = -ENOMEM;
05484e09 1710 struct sched_domain_topology_level *tl_asym;
df054e84 1711 bool has_asym = false;
f2cb1360
IM
1712
1713 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1714 if (alloc_state != sa_rootdomain)
1715 goto error;
1716
05484e09
MR
1717 tl_asym = asym_cpu_capacity_level(cpu_map);
1718
f2cb1360
IM
1719 /* Set up domains for CPUs specified by the cpu_map: */
1720 for_each_cpu(i, cpu_map) {
1721 struct sched_domain_topology_level *tl;
1722
1723 sd = NULL;
1724 for_each_sd_topology(tl) {
05484e09
MR
1725 int dflags = 0;
1726
df054e84 1727 if (tl == tl_asym) {
05484e09 1728 dflags |= SD_ASYM_CPUCAPACITY;
df054e84
MR
1729 has_asym = true;
1730 }
05484e09
MR
1731
1732 sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
1733
f2cb1360
IM
1734 if (tl == sched_domain_topology)
1735 *per_cpu_ptr(d.sd, i) = sd;
af85596c 1736 if (tl->flags & SDTL_OVERLAP)
f2cb1360
IM
1737 sd->flags |= SD_OVERLAP;
1738 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1739 break;
1740 }
1741 }
1742
1743 /* Build the groups for the domains */
1744 for_each_cpu(i, cpu_map) {
1745 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1746 sd->span_weight = cpumask_weight(sched_domain_span(sd));
1747 if (sd->flags & SD_OVERLAP) {
1748 if (build_overlap_sched_groups(sd, i))
1749 goto error;
1750 } else {
1751 if (build_sched_groups(sd, i))
1752 goto error;
1753 }
1754 }
1755 }
1756
1757 /* Calculate CPU capacity for physical packages and nodes */
1758 for (i = nr_cpumask_bits-1; i >= 0; i--) {
1759 if (!cpumask_test_cpu(i, cpu_map))
1760 continue;
1761
1762 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1763 claim_allocations(i, sd);
1764 init_sched_groups_capacity(i, sd);
1765 }
1766 }
1767
1768 /* Attach the domains */
1769 rcu_read_lock();
1770 for_each_cpu(i, cpu_map) {
1771 rq = cpu_rq(i);
1772 sd = *per_cpu_ptr(d.sd, i);
1773
1774 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1775 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1776 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1777
1778 cpu_attach_domain(sd, d.rd, i);
1779 }
1780 rcu_read_unlock();
1781
df054e84
MR
1782 if (has_asym)
1783 static_branch_enable_cpuslocked(&sched_asym_cpucapacity);
1784
f2cb1360 1785 if (rq && sched_debug_enabled) {
bf5015a5 1786 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
f2cb1360
IM
1787 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1788 }
1789
1790 ret = 0;
1791error:
1792 __free_domain_allocs(&d, alloc_state, cpu_map);
97fb7a0a 1793
f2cb1360
IM
1794 return ret;
1795}
1796
1797/* Current sched domains: */
1798static cpumask_var_t *doms_cur;
1799
1800/* Number of sched domains in 'doms_cur': */
1801static int ndoms_cur;
1802
1803/* Attribues of custom domains in 'doms_cur' */
1804static struct sched_domain_attr *dattr_cur;
1805
1806/*
1807 * Special case: If a kmalloc() of a doms_cur partition (array of
1808 * cpumask) fails, then fallback to a single sched domain,
1809 * as determined by the single cpumask fallback_doms.
1810 */
8d5dc512 1811static cpumask_var_t fallback_doms;
f2cb1360
IM
1812
1813/*
1814 * arch_update_cpu_topology lets virtualized architectures update the
1815 * CPU core maps. It is supposed to return 1 if the topology changed
1816 * or 0 if it stayed the same.
1817 */
1818int __weak arch_update_cpu_topology(void)
1819{
1820 return 0;
1821}
1822
1823cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1824{
1825 int i;
1826 cpumask_var_t *doms;
1827
6da2ec56 1828 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
f2cb1360
IM
1829 if (!doms)
1830 return NULL;
1831 for (i = 0; i < ndoms; i++) {
1832 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1833 free_sched_domains(doms, i);
1834 return NULL;
1835 }
1836 }
1837 return doms;
1838}
1839
1840void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1841{
1842 unsigned int i;
1843 for (i = 0; i < ndoms; i++)
1844 free_cpumask_var(doms[i]);
1845 kfree(doms);
1846}
1847
1848/*
1849 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1850 * For now this just excludes isolated CPUs, but could be used to
1851 * exclude other special cases in the future.
1852 */
8d5dc512 1853int sched_init_domains(const struct cpumask *cpu_map)
f2cb1360
IM
1854{
1855 int err;
1856
8d5dc512 1857 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
1676330e 1858 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
8d5dc512
PZ
1859 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
1860
f2cb1360
IM
1861 arch_update_cpu_topology();
1862 ndoms_cur = 1;
1863 doms_cur = alloc_sched_domains(ndoms_cur);
1864 if (!doms_cur)
1865 doms_cur = &fallback_doms;
edb93821 1866 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
f2cb1360
IM
1867 err = build_sched_domains(doms_cur[0], NULL);
1868 register_sched_domain_sysctl();
1869
1870 return err;
1871}
1872
1873/*
1874 * Detach sched domains from a group of CPUs specified in cpu_map
1875 * These CPUs will now be attached to the NULL domain
1876 */
1877static void detach_destroy_domains(const struct cpumask *cpu_map)
1878{
1879 int i;
1880
1881 rcu_read_lock();
1882 for_each_cpu(i, cpu_map)
1883 cpu_attach_domain(NULL, &def_root_domain, i);
1884 rcu_read_unlock();
1885}
1886
1887/* handle null as "default" */
1888static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1889 struct sched_domain_attr *new, int idx_new)
1890{
1891 struct sched_domain_attr tmp;
1892
1893 /* Fast path: */
1894 if (!new && !cur)
1895 return 1;
1896
1897 tmp = SD_ATTR_INIT;
97fb7a0a 1898
f2cb1360
IM
1899 return !memcmp(cur ? (cur + idx_cur) : &tmp,
1900 new ? (new + idx_new) : &tmp,
1901 sizeof(struct sched_domain_attr));
1902}
1903
1904/*
1905 * Partition sched domains as specified by the 'ndoms_new'
1906 * cpumasks in the array doms_new[] of cpumasks. This compares
1907 * doms_new[] to the current sched domain partitioning, doms_cur[].
1908 * It destroys each deleted domain and builds each new domain.
1909 *
1910 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1911 * The masks don't intersect (don't overlap.) We should setup one
1912 * sched domain for each mask. CPUs not in any of the cpumasks will
1913 * not be load balanced. If the same cpumask appears both in the
1914 * current 'doms_cur' domains and in the new 'doms_new', we can leave
1915 * it as it is.
1916 *
1917 * The passed in 'doms_new' should be allocated using
1918 * alloc_sched_domains. This routine takes ownership of it and will
1919 * free_sched_domains it when done with it. If the caller failed the
1920 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1921 * and partition_sched_domains() will fallback to the single partition
1922 * 'fallback_doms', it also forces the domains to be rebuilt.
1923 *
1924 * If doms_new == NULL it will be replaced with cpu_online_mask.
1925 * ndoms_new == 0 is a special case for destroying existing domains,
1926 * and it will not create the default domain.
1927 *
1928 * Call with hotplug lock held
1929 */
1930void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1931 struct sched_domain_attr *dattr_new)
1932{
1933 int i, j, n;
1934 int new_topology;
1935
1936 mutex_lock(&sched_domains_mutex);
1937
1938 /* Always unregister in case we don't destroy any domains: */
1939 unregister_sched_domain_sysctl();
1940
1941 /* Let the architecture update CPU core mappings: */
1942 new_topology = arch_update_cpu_topology();
1943
09e0dd8e
PZ
1944 if (!doms_new) {
1945 WARN_ON_ONCE(dattr_new);
1946 n = 0;
1947 doms_new = alloc_sched_domains(1);
1948 if (doms_new) {
1949 n = 1;
edb93821
FW
1950 cpumask_and(doms_new[0], cpu_active_mask,
1951 housekeeping_cpumask(HK_FLAG_DOMAIN));
09e0dd8e
PZ
1952 }
1953 } else {
1954 n = ndoms_new;
1955 }
f2cb1360
IM
1956
1957 /* Destroy deleted domains: */
1958 for (i = 0; i < ndoms_cur; i++) {
1959 for (j = 0; j < n && !new_topology; j++) {
1960 if (cpumask_equal(doms_cur[i], doms_new[j])
1961 && dattrs_equal(dattr_cur, i, dattr_new, j))
1962 goto match1;
1963 }
1964 /* No match - a current sched domain not in new doms_new[] */
1965 detach_destroy_domains(doms_cur[i]);
1966match1:
1967 ;
1968 }
1969
1970 n = ndoms_cur;
09e0dd8e 1971 if (!doms_new) {
f2cb1360
IM
1972 n = 0;
1973 doms_new = &fallback_doms;
edb93821
FW
1974 cpumask_and(doms_new[0], cpu_active_mask,
1975 housekeeping_cpumask(HK_FLAG_DOMAIN));
f2cb1360
IM
1976 }
1977
1978 /* Build new domains: */
1979 for (i = 0; i < ndoms_new; i++) {
1980 for (j = 0; j < n && !new_topology; j++) {
1981 if (cpumask_equal(doms_new[i], doms_cur[j])
1982 && dattrs_equal(dattr_new, i, dattr_cur, j))
1983 goto match2;
1984 }
1985 /* No match - add a new doms_new */
1986 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1987match2:
1988 ;
1989 }
1990
1991 /* Remember the new sched domains: */
1992 if (doms_cur != &fallback_doms)
1993 free_sched_domains(doms_cur, ndoms_cur);
1994
1995 kfree(dattr_cur);
1996 doms_cur = doms_new;
1997 dattr_cur = dattr_new;
1998 ndoms_cur = ndoms_new;
1999
2000 register_sched_domain_sysctl();
2001
2002 mutex_unlock(&sched_domains_mutex);
2003}