Merge tag 'v4.17-rc5' into sched/core, to pick up fixes and dependencies
[linux-block.git] / kernel / sched / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97fb7a0a
IM
2/*
3 * Scheduler internal types and methods:
4 */
029632fb 5#include <linux/sched.h>
325ea10c 6
dfc3401a 7#include <linux/sched/autogroup.h>
e6017571 8#include <linux/sched/clock.h>
325ea10c 9#include <linux/sched/coredump.h>
55687da1 10#include <linux/sched/cpufreq.h>
325ea10c
IM
11#include <linux/sched/cputime.h>
12#include <linux/sched/deadline.h>
b17b0153 13#include <linux/sched/debug.h>
ef8bd77f 14#include <linux/sched/hotplug.h>
325ea10c
IM
15#include <linux/sched/idle.h>
16#include <linux/sched/init.h>
17#include <linux/sched/isolation.h>
18#include <linux/sched/jobctl.h>
19#include <linux/sched/loadavg.h>
20#include <linux/sched/mm.h>
21#include <linux/sched/nohz.h>
22#include <linux/sched/numa_balancing.h>
23#include <linux/sched/prio.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/signal.h>
26#include <linux/sched/stat.h>
27#include <linux/sched/sysctl.h>
29930025 28#include <linux/sched/task.h>
68db0cf1 29#include <linux/sched/task_stack.h>
325ea10c
IM
30#include <linux/sched/topology.h>
31#include <linux/sched/user.h>
32#include <linux/sched/wake_q.h>
33#include <linux/sched/xacct.h>
34
35#include <uapi/linux/sched/types.h>
ef8bd77f 36
3866e845 37#include <linux/binfmts.h>
325ea10c
IM
38#include <linux/blkdev.h>
39#include <linux/compat.h>
40#include <linux/context_tracking.h>
41#include <linux/cpufreq.h>
42#include <linux/cpuidle.h>
43#include <linux/cpuset.h>
44#include <linux/ctype.h>
45#include <linux/debugfs.h>
46#include <linux/delayacct.h>
47#include <linux/init_task.h>
48#include <linux/kprobes.h>
49#include <linux/kthread.h>
50#include <linux/membarrier.h>
51#include <linux/migrate.h>
52#include <linux/mmu_context.h>
53#include <linux/nmi.h>
54#include <linux/proc_fs.h>
55#include <linux/prefetch.h>
56#include <linux/profile.h>
57#include <linux/rcupdate_wait.h>
58#include <linux/security.h>
59#include <linux/stackprotector.h>
029632fb 60#include <linux/stop_machine.h>
325ea10c
IM
61#include <linux/suspend.h>
62#include <linux/swait.h>
63#include <linux/syscalls.h>
64#include <linux/task_work.h>
65#include <linux/tsacct_kern.h>
66
67#include <asm/tlb.h>
029632fb 68
7fce777c 69#ifdef CONFIG_PARAVIRT
325ea10c 70# include <asm/paravirt.h>
7fce777c
IM
71#endif
72
391e43da 73#include "cpupri.h"
6bfd6d72 74#include "cpudeadline.h"
029632fb 75
9148a3a1 76#ifdef CONFIG_SCHED_DEBUG
6d3aed3d 77# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
9148a3a1 78#else
6d3aed3d 79# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
9148a3a1
PZ
80#endif
81
45ceebf7 82struct rq;
442bf3aa 83struct cpuidle_state;
45ceebf7 84
da0c1e65
KT
85/* task_struct::on_rq states: */
86#define TASK_ON_RQ_QUEUED 1
cca26e80 87#define TASK_ON_RQ_MIGRATING 2
da0c1e65 88
029632fb
PZ
89extern __read_mostly int scheduler_running;
90
45ceebf7
PG
91extern unsigned long calc_load_update;
92extern atomic_long_t calc_load_tasks;
93
3289bdb4 94extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 95extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4
PZ
96
97#ifdef CONFIG_SMP
cee1afce 98extern void cpu_load_update_active(struct rq *this_rq);
3289bdb4 99#else
cee1afce 100static inline void cpu_load_update_active(struct rq *this_rq) { }
3289bdb4 101#endif
45ceebf7 102
029632fb
PZ
103/*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
cc1f4b1f
LZ
108/*
109 * Increase resolution of nice-level calculations for 64-bit architectures.
110 * The extra resolution improves shares distribution and load balancing of
111 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112 * hierarchies, especially on larger systems. This is not a user-visible change
113 * and does not change the user-interface for setting shares/weights.
114 *
115 * We increase resolution only if we have enough bits to allow this increased
97fb7a0a
IM
116 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117 * are pretty high and the returns do not justify the increased costs.
2159197d 118 *
97fb7a0a
IM
119 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120 * increase coverage and consistency always enable it on 64-bit platforms.
cc1f4b1f 121 */
2159197d 122#ifdef CONFIG_64BIT
172895e6 123# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749
YD
124# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
125# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f 126#else
172895e6 127# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
128# define scale_load(w) (w)
129# define scale_load_down(w) (w)
130#endif
131
6ecdd749 132/*
172895e6
YD
133 * Task weight (visible to users) and its load (invisible to users) have
134 * independent resolution, but they should be well calibrated. We use
135 * scale_load() and scale_load_down(w) to convert between them. The
136 * following must be true:
137 *
138 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
139 *
6ecdd749 140 */
172895e6 141#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 142
332ac17e
DF
143/*
144 * Single value that decides SCHED_DEADLINE internal math precision.
145 * 10 -> just above 1us
146 * 9 -> just above 0.5us
147 */
97fb7a0a 148#define DL_SCALE 10
029632fb
PZ
149
150/*
97fb7a0a 151 * Single value that denotes runtime == period, ie unlimited time.
029632fb 152 */
97fb7a0a 153#define RUNTIME_INF ((u64)~0ULL)
029632fb 154
20f9cd2a
HA
155static inline int idle_policy(int policy)
156{
157 return policy == SCHED_IDLE;
158}
d50dde5a
DF
159static inline int fair_policy(int policy)
160{
161 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
162}
163
029632fb
PZ
164static inline int rt_policy(int policy)
165{
d50dde5a 166 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
167}
168
aab03e05
DF
169static inline int dl_policy(int policy)
170{
171 return policy == SCHED_DEADLINE;
172}
20f9cd2a
HA
173static inline bool valid_policy(int policy)
174{
175 return idle_policy(policy) || fair_policy(policy) ||
176 rt_policy(policy) || dl_policy(policy);
177}
aab03e05 178
029632fb
PZ
179static inline int task_has_rt_policy(struct task_struct *p)
180{
181 return rt_policy(p->policy);
182}
183
aab03e05
DF
184static inline int task_has_dl_policy(struct task_struct *p)
185{
186 return dl_policy(p->policy);
187}
188
07881166
JL
189#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
190
794a56eb
JL
191/*
192 * !! For sched_setattr_nocheck() (kernel) only !!
193 *
194 * This is actually gross. :(
195 *
196 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
197 * tasks, but still be able to sleep. We need this on platforms that cannot
198 * atomically change clock frequency. Remove once fast switching will be
199 * available on such platforms.
200 *
201 * SUGOV stands for SchedUtil GOVernor.
202 */
203#define SCHED_FLAG_SUGOV 0x10000000
204
205static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
206{
207#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
208 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
209#else
210 return false;
211#endif
212}
213
2d3d891d
DF
214/*
215 * Tells if entity @a should preempt entity @b.
216 */
332ac17e
DF
217static inline bool
218dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d 219{
794a56eb
JL
220 return dl_entity_is_special(a) ||
221 dl_time_before(a->deadline, b->deadline);
2d3d891d
DF
222}
223
029632fb
PZ
224/*
225 * This is the priority-queue data structure of the RT scheduling class:
226 */
227struct rt_prio_array {
228 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
229 struct list_head queue[MAX_RT_PRIO];
230};
231
232struct rt_bandwidth {
233 /* nests inside the rq lock: */
234 raw_spinlock_t rt_runtime_lock;
235 ktime_t rt_period;
236 u64 rt_runtime;
237 struct hrtimer rt_period_timer;
4cfafd30 238 unsigned int rt_period_active;
029632fb 239};
a5e7be3b
JL
240
241void __dl_clear_params(struct task_struct *p);
242
332ac17e
DF
243/*
244 * To keep the bandwidth of -deadline tasks and groups under control
245 * we need some place where:
246 * - store the maximum -deadline bandwidth of the system (the group);
247 * - cache the fraction of that bandwidth that is currently allocated.
248 *
249 * This is all done in the data structure below. It is similar to the
250 * one used for RT-throttling (rt_bandwidth), with the main difference
251 * that, since here we are only interested in admission control, we
252 * do not decrease any runtime while the group "executes", neither we
253 * need a timer to replenish it.
254 *
255 * With respect to SMP, the bandwidth is given on a per-CPU basis,
256 * meaning that:
257 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
258 * - dl_total_bw array contains, in the i-eth element, the currently
259 * allocated bandwidth on the i-eth CPU.
260 * Moreover, groups consume bandwidth on each CPU, while tasks only
261 * consume bandwidth on the CPU they're running on.
262 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
263 * that will be shown the next time the proc or cgroup controls will
264 * be red. It on its turn can be changed by writing on its own
265 * control.
266 */
267struct dl_bandwidth {
97fb7a0a
IM
268 raw_spinlock_t dl_runtime_lock;
269 u64 dl_runtime;
270 u64 dl_period;
332ac17e
DF
271};
272
273static inline int dl_bandwidth_enabled(void)
274{
1724813d 275 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
276}
277
332ac17e 278struct dl_bw {
97fb7a0a
IM
279 raw_spinlock_t lock;
280 u64 bw;
281 u64 total_bw;
332ac17e
DF
282};
283
daec5798
LA
284static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
285
7f51412a 286static inline
8c0944ce 287void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
288{
289 dl_b->total_bw -= tsk_bw;
daec5798 290 __dl_update(dl_b, (s32)tsk_bw / cpus);
7f51412a
JL
291}
292
293static inline
daec5798 294void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
295{
296 dl_b->total_bw += tsk_bw;
daec5798 297 __dl_update(dl_b, -((s32)tsk_bw / cpus));
7f51412a
JL
298}
299
300static inline
301bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
302{
303 return dl_b->bw != -1 &&
304 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
305}
306
97fb7a0a 307extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
f2cb1360 308extern void init_dl_bw(struct dl_bw *dl_b);
97fb7a0a 309extern int sched_dl_global_validate(void);
06a76fe0 310extern void sched_dl_do_global(void);
97fb7a0a 311extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
06a76fe0
NP
312extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
313extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
314extern bool __checkparam_dl(const struct sched_attr *attr);
06a76fe0 315extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
97fb7a0a
IM
316extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
317extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
06a76fe0 318extern bool dl_cpu_busy(unsigned int cpu);
029632fb
PZ
319
320#ifdef CONFIG_CGROUP_SCHED
321
322#include <linux/cgroup.h>
323
324struct cfs_rq;
325struct rt_rq;
326
35cf4e50 327extern struct list_head task_groups;
029632fb
PZ
328
329struct cfs_bandwidth {
330#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a
IM
331 raw_spinlock_t lock;
332 ktime_t period;
333 u64 quota;
334 u64 runtime;
335 s64 hierarchical_quota;
336 u64 runtime_expires;
337
338 int idle;
339 int period_active;
340 struct hrtimer period_timer;
341 struct hrtimer slack_timer;
342 struct list_head throttled_cfs_rq;
343
344 /* Statistics: */
345 int nr_periods;
346 int nr_throttled;
347 u64 throttled_time;
029632fb
PZ
348#endif
349};
350
97fb7a0a 351/* Task group related information */
029632fb
PZ
352struct task_group {
353 struct cgroup_subsys_state css;
354
355#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
356 /* schedulable entities of this group on each CPU */
357 struct sched_entity **se;
358 /* runqueue "owned" by this group on each CPU */
359 struct cfs_rq **cfs_rq;
360 unsigned long shares;
029632fb 361
fa6bddeb 362#ifdef CONFIG_SMP
b0367629
WL
363 /*
364 * load_avg can be heavily contended at clock tick time, so put
365 * it in its own cacheline separated from the fields above which
366 * will also be accessed at each tick.
367 */
97fb7a0a 368 atomic_long_t load_avg ____cacheline_aligned;
029632fb 369#endif
fa6bddeb 370#endif
029632fb
PZ
371
372#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a
IM
373 struct sched_rt_entity **rt_se;
374 struct rt_rq **rt_rq;
029632fb 375
97fb7a0a 376 struct rt_bandwidth rt_bandwidth;
029632fb
PZ
377#endif
378
97fb7a0a
IM
379 struct rcu_head rcu;
380 struct list_head list;
029632fb 381
97fb7a0a
IM
382 struct task_group *parent;
383 struct list_head siblings;
384 struct list_head children;
029632fb
PZ
385
386#ifdef CONFIG_SCHED_AUTOGROUP
97fb7a0a 387 struct autogroup *autogroup;
029632fb
PZ
388#endif
389
97fb7a0a 390 struct cfs_bandwidth cfs_bandwidth;
029632fb
PZ
391};
392
393#ifdef CONFIG_FAIR_GROUP_SCHED
394#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
395
396/*
397 * A weight of 0 or 1 can cause arithmetics problems.
398 * A weight of a cfs_rq is the sum of weights of which entities
399 * are queued on this cfs_rq, so a weight of a entity should not be
400 * too large, so as the shares value of a task group.
401 * (The default weight is 1024 - so there's no practical
402 * limitation from this.)
403 */
97fb7a0a
IM
404#define MIN_SHARES (1UL << 1)
405#define MAX_SHARES (1UL << 18)
029632fb
PZ
406#endif
407
029632fb
PZ
408typedef int (*tg_visitor)(struct task_group *, void *);
409
410extern int walk_tg_tree_from(struct task_group *from,
411 tg_visitor down, tg_visitor up, void *data);
412
413/*
414 * Iterate the full tree, calling @down when first entering a node and @up when
415 * leaving it for the final time.
416 *
417 * Caller must hold rcu_lock or sufficient equivalent.
418 */
419static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
420{
421 return walk_tg_tree_from(&root_task_group, down, up, data);
422}
423
424extern int tg_nop(struct task_group *tg, void *data);
425
426extern void free_fair_sched_group(struct task_group *tg);
427extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 428extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 429extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
430extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
431 struct sched_entity *se, int cpu,
432 struct sched_entity *parent);
433extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
434
435extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 436extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
437extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
438
439extern void free_rt_sched_group(struct task_group *tg);
440extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
441extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
442 struct sched_rt_entity *rt_se, int cpu,
443 struct sched_rt_entity *parent);
8887cd99
NP
444extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
445extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
446extern long sched_group_rt_runtime(struct task_group *tg);
447extern long sched_group_rt_period(struct task_group *tg);
448extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
029632fb 449
25cc7da7
LZ
450extern struct task_group *sched_create_group(struct task_group *parent);
451extern void sched_online_group(struct task_group *tg,
452 struct task_group *parent);
453extern void sched_destroy_group(struct task_group *tg);
454extern void sched_offline_group(struct task_group *tg);
455
456extern void sched_move_task(struct task_struct *tsk);
457
458#ifdef CONFIG_FAIR_GROUP_SCHED
459extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
460
461#ifdef CONFIG_SMP
462extern void set_task_rq_fair(struct sched_entity *se,
463 struct cfs_rq *prev, struct cfs_rq *next);
464#else /* !CONFIG_SMP */
465static inline void set_task_rq_fair(struct sched_entity *se,
466 struct cfs_rq *prev, struct cfs_rq *next) { }
467#endif /* CONFIG_SMP */
468#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 469
029632fb
PZ
470#else /* CONFIG_CGROUP_SCHED */
471
472struct cfs_bandwidth { };
473
474#endif /* CONFIG_CGROUP_SCHED */
475
476/* CFS-related fields in a runqueue */
477struct cfs_rq {
97fb7a0a
IM
478 struct load_weight load;
479 unsigned long runnable_weight;
480 unsigned int nr_running;
481 unsigned int h_nr_running;
029632fb 482
97fb7a0a
IM
483 u64 exec_clock;
484 u64 min_vruntime;
029632fb 485#ifndef CONFIG_64BIT
97fb7a0a 486 u64 min_vruntime_copy;
029632fb
PZ
487#endif
488
97fb7a0a 489 struct rb_root_cached tasks_timeline;
029632fb 490
029632fb
PZ
491 /*
492 * 'curr' points to currently running entity on this cfs_rq.
493 * It is set to NULL otherwise (i.e when none are currently running).
494 */
97fb7a0a
IM
495 struct sched_entity *curr;
496 struct sched_entity *next;
497 struct sched_entity *last;
498 struct sched_entity *skip;
029632fb
PZ
499
500#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 501 unsigned int nr_spread_over;
029632fb
PZ
502#endif
503
2dac754e
PT
504#ifdef CONFIG_SMP
505 /*
9d89c257 506 * CFS load tracking
2dac754e 507 */
97fb7a0a 508 struct sched_avg avg;
2a2f5d4e 509#ifndef CONFIG_64BIT
97fb7a0a 510 u64 load_last_update_time_copy;
9d89c257 511#endif
2a2f5d4e
PZ
512 struct {
513 raw_spinlock_t lock ____cacheline_aligned;
514 int nr;
515 unsigned long load_avg;
516 unsigned long util_avg;
0e2d2aaa 517 unsigned long runnable_sum;
2a2f5d4e 518 } removed;
82958366 519
9d89c257 520#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
521 unsigned long tg_load_avg_contrib;
522 long propagate;
523 long prop_runnable_sum;
0e2d2aaa 524
82958366
PT
525 /*
526 * h_load = weight * f(tg)
527 *
528 * Where f(tg) is the recursive weight fraction assigned to
529 * this group.
530 */
97fb7a0a
IM
531 unsigned long h_load;
532 u64 last_h_load_update;
533 struct sched_entity *h_load_next;
68520796 534#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
535#endif /* CONFIG_SMP */
536
029632fb 537#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 538 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
029632fb
PZ
539
540 /*
541 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
542 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
543 * (like users, containers etc.)
544 *
97fb7a0a
IM
545 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
546 * This list is used during load balance.
029632fb 547 */
97fb7a0a
IM
548 int on_list;
549 struct list_head leaf_cfs_rq_list;
550 struct task_group *tg; /* group that "owns" this runqueue */
029632fb 551
029632fb 552#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a
IM
553 int runtime_enabled;
554 u64 runtime_expires;
555 s64 runtime_remaining;
556
557 u64 throttled_clock;
558 u64 throttled_clock_task;
559 u64 throttled_clock_task_time;
560 int throttled;
561 int throttle_count;
562 struct list_head throttled_list;
029632fb
PZ
563#endif /* CONFIG_CFS_BANDWIDTH */
564#endif /* CONFIG_FAIR_GROUP_SCHED */
565};
566
567static inline int rt_bandwidth_enabled(void)
568{
569 return sysctl_sched_rt_runtime >= 0;
570}
571
b6366f04 572/* RT IPI pull logic requires IRQ_WORK */
4bdced5c 573#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
b6366f04
SR
574# define HAVE_RT_PUSH_IPI
575#endif
576
029632fb
PZ
577/* Real-Time classes' related field in a runqueue: */
578struct rt_rq {
97fb7a0a
IM
579 struct rt_prio_array active;
580 unsigned int rt_nr_running;
581 unsigned int rr_nr_running;
029632fb
PZ
582#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
583 struct {
97fb7a0a 584 int curr; /* highest queued rt task prio */
029632fb 585#ifdef CONFIG_SMP
97fb7a0a 586 int next; /* next highest */
029632fb
PZ
587#endif
588 } highest_prio;
589#endif
590#ifdef CONFIG_SMP
97fb7a0a
IM
591 unsigned long rt_nr_migratory;
592 unsigned long rt_nr_total;
593 int overloaded;
594 struct plist_head pushable_tasks;
b6366f04 595#endif /* CONFIG_SMP */
97fb7a0a 596 int rt_queued;
f4ebcbc0 597
97fb7a0a
IM
598 int rt_throttled;
599 u64 rt_time;
600 u64 rt_runtime;
029632fb 601 /* Nests inside the rq lock: */
97fb7a0a 602 raw_spinlock_t rt_runtime_lock;
029632fb
PZ
603
604#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a 605 unsigned long rt_nr_boosted;
029632fb 606
97fb7a0a
IM
607 struct rq *rq;
608 struct task_group *tg;
029632fb
PZ
609#endif
610};
611
aab03e05
DF
612/* Deadline class' related fields in a runqueue */
613struct dl_rq {
614 /* runqueue is an rbtree, ordered by deadline */
97fb7a0a 615 struct rb_root_cached root;
aab03e05 616
97fb7a0a 617 unsigned long dl_nr_running;
1baca4ce
JL
618
619#ifdef CONFIG_SMP
620 /*
621 * Deadline values of the currently executing and the
622 * earliest ready task on this rq. Caching these facilitates
623 * the decision wether or not a ready but not running task
624 * should migrate somewhere else.
625 */
626 struct {
97fb7a0a
IM
627 u64 curr;
628 u64 next;
1baca4ce
JL
629 } earliest_dl;
630
97fb7a0a
IM
631 unsigned long dl_nr_migratory;
632 int overloaded;
1baca4ce
JL
633
634 /*
635 * Tasks on this rq that can be pushed away. They are kept in
636 * an rb-tree, ordered by tasks' deadlines, with caching
637 * of the leftmost (earliest deadline) element.
638 */
97fb7a0a 639 struct rb_root_cached pushable_dl_tasks_root;
332ac17e 640#else
97fb7a0a 641 struct dl_bw dl_bw;
1baca4ce 642#endif
e36d8677
LA
643 /*
644 * "Active utilization" for this runqueue: increased when a
645 * task wakes up (becomes TASK_RUNNING) and decreased when a
646 * task blocks
647 */
97fb7a0a 648 u64 running_bw;
4da3abce 649
8fd27231
LA
650 /*
651 * Utilization of the tasks "assigned" to this runqueue (including
652 * the tasks that are in runqueue and the tasks that executed on this
653 * CPU and blocked). Increased when a task moves to this runqueue, and
654 * decreased when the task moves away (migrates, changes scheduling
655 * policy, or terminates).
656 * This is needed to compute the "inactive utilization" for the
657 * runqueue (inactive utilization = this_bw - running_bw).
658 */
97fb7a0a
IM
659 u64 this_bw;
660 u64 extra_bw;
8fd27231 661
4da3abce
LA
662 /*
663 * Inverse of the fraction of CPU utilization that can be reclaimed
664 * by the GRUB algorithm.
665 */
97fb7a0a 666 u64 bw_ratio;
aab03e05
DF
667};
668
029632fb
PZ
669#ifdef CONFIG_SMP
670
afe06efd
TC
671static inline bool sched_asym_prefer(int a, int b)
672{
673 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
674}
675
029632fb
PZ
676/*
677 * We add the notion of a root-domain which will be used to define per-domain
678 * variables. Each exclusive cpuset essentially defines an island domain by
97fb7a0a 679 * fully partitioning the member CPUs from any other cpuset. Whenever a new
029632fb
PZ
680 * exclusive cpuset is created, we also create and attach a new root-domain
681 * object.
682 *
683 */
684struct root_domain {
97fb7a0a
IM
685 atomic_t refcount;
686 atomic_t rto_count;
687 struct rcu_head rcu;
688 cpumask_var_t span;
689 cpumask_var_t online;
029632fb 690
4486edd1 691 /* Indicate more than one runnable task for any CPU */
97fb7a0a 692 bool overload;
4486edd1 693
1baca4ce
JL
694 /*
695 * The bit corresponding to a CPU gets set here if such CPU has more
696 * than one runnable -deadline task (as it is below for RT tasks).
697 */
97fb7a0a
IM
698 cpumask_var_t dlo_mask;
699 atomic_t dlo_count;
700 struct dl_bw dl_bw;
701 struct cpudl cpudl;
1baca4ce 702
4bdced5c
SRRH
703#ifdef HAVE_RT_PUSH_IPI
704 /*
705 * For IPI pull requests, loop across the rto_mask.
706 */
97fb7a0a
IM
707 struct irq_work rto_push_work;
708 raw_spinlock_t rto_lock;
4bdced5c 709 /* These are only updated and read within rto_lock */
97fb7a0a
IM
710 int rto_loop;
711 int rto_cpu;
4bdced5c 712 /* These atomics are updated outside of a lock */
97fb7a0a
IM
713 atomic_t rto_loop_next;
714 atomic_t rto_loop_start;
4bdced5c 715#endif
029632fb
PZ
716 /*
717 * The "RT overload" flag: it gets set if a CPU has more than
718 * one runnable RT task.
719 */
97fb7a0a
IM
720 cpumask_var_t rto_mask;
721 struct cpupri cpupri;
cd92bfd3 722
97fb7a0a 723 unsigned long max_cpu_capacity;
029632fb
PZ
724};
725
726extern struct root_domain def_root_domain;
f2cb1360 727extern struct mutex sched_domains_mutex;
f2cb1360
IM
728
729extern void init_defrootdomain(void);
8d5dc512 730extern int sched_init_domains(const struct cpumask *cpu_map);
f2cb1360 731extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
364f5665
SRV
732extern void sched_get_rd(struct root_domain *rd);
733extern void sched_put_rd(struct root_domain *rd);
029632fb 734
4bdced5c
SRRH
735#ifdef HAVE_RT_PUSH_IPI
736extern void rto_push_irq_work_func(struct irq_work *work);
737#endif
029632fb
PZ
738#endif /* CONFIG_SMP */
739
740/*
741 * This is the main, per-CPU runqueue data structure.
742 *
743 * Locking rule: those places that want to lock multiple runqueues
744 * (such as the load balancing or the thread migration code), lock
745 * acquire operations must be ordered by ascending &runqueue.
746 */
747struct rq {
748 /* runqueue lock: */
97fb7a0a 749 raw_spinlock_t lock;
029632fb
PZ
750
751 /*
752 * nr_running and cpu_load should be in the same cacheline because
753 * remote CPUs use both these fields when doing load calculation.
754 */
97fb7a0a 755 unsigned int nr_running;
0ec8aa00 756#ifdef CONFIG_NUMA_BALANCING
97fb7a0a
IM
757 unsigned int nr_numa_running;
758 unsigned int nr_preferred_running;
0ec8aa00 759#endif
029632fb 760 #define CPU_LOAD_IDX_MAX 5
97fb7a0a 761 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
3451d024 762#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 763#ifdef CONFIG_SMP
97fb7a0a 764 unsigned long last_load_update_tick;
e022e0d3 765 unsigned long last_blocked_load_update_tick;
f643ea22 766 unsigned int has_blocked_load;
9fd81dd5 767#endif /* CONFIG_SMP */
00357f5e 768 unsigned int nohz_tick_stopped;
a22e47a4 769 atomic_t nohz_flags;
9fd81dd5 770#endif /* CONFIG_NO_HZ_COMMON */
dcdedb24 771
97fb7a0a
IM
772 /* capture load from *all* tasks on this CPU: */
773 struct load_weight load;
774 unsigned long nr_load_updates;
775 u64 nr_switches;
029632fb 776
97fb7a0a
IM
777 struct cfs_rq cfs;
778 struct rt_rq rt;
779 struct dl_rq dl;
029632fb
PZ
780
781#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
782 /* list of leaf cfs_rq on this CPU: */
783 struct list_head leaf_cfs_rq_list;
784 struct list_head *tmp_alone_branch;
a35b6466
PZ
785#endif /* CONFIG_FAIR_GROUP_SCHED */
786
029632fb
PZ
787 /*
788 * This is part of a global counter where only the total sum
789 * over all CPUs matters. A task can increase this counter on
790 * one CPU and if it got migrated afterwards it may decrease
791 * it on another CPU. Always updated under the runqueue lock:
792 */
97fb7a0a 793 unsigned long nr_uninterruptible;
029632fb 794
97fb7a0a
IM
795 struct task_struct *curr;
796 struct task_struct *idle;
797 struct task_struct *stop;
798 unsigned long next_balance;
799 struct mm_struct *prev_mm;
029632fb 800
97fb7a0a
IM
801 unsigned int clock_update_flags;
802 u64 clock;
803 u64 clock_task;
029632fb 804
97fb7a0a 805 atomic_t nr_iowait;
029632fb
PZ
806
807#ifdef CONFIG_SMP
97fb7a0a
IM
808 struct root_domain *rd;
809 struct sched_domain *sd;
810
811 unsigned long cpu_capacity;
812 unsigned long cpu_capacity_orig;
029632fb 813
97fb7a0a 814 struct callback_head *balance_callback;
029632fb 815
97fb7a0a 816 unsigned char idle_balance;
e3fca9e7 817
029632fb 818 /* For active balancing */
97fb7a0a
IM
819 int active_balance;
820 int push_cpu;
821 struct cpu_stop_work active_balance_work;
822
823 /* CPU of this runqueue: */
824 int cpu;
825 int online;
029632fb 826
367456c7
PZ
827 struct list_head cfs_tasks;
828
97fb7a0a
IM
829 u64 rt_avg;
830 u64 age_stamp;
831 u64 idle_stamp;
832 u64 avg_idle;
9bd721c5
JL
833
834 /* This is used to determine avg_idle's max value */
97fb7a0a 835 u64 max_idle_balance_cost;
029632fb
PZ
836#endif
837
838#ifdef CONFIG_IRQ_TIME_ACCOUNTING
97fb7a0a 839 u64 prev_irq_time;
029632fb
PZ
840#endif
841#ifdef CONFIG_PARAVIRT
97fb7a0a 842 u64 prev_steal_time;
029632fb
PZ
843#endif
844#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
97fb7a0a 845 u64 prev_steal_time_rq;
029632fb
PZ
846#endif
847
848 /* calc_load related fields */
97fb7a0a
IM
849 unsigned long calc_load_update;
850 long calc_load_active;
029632fb
PZ
851
852#ifdef CONFIG_SCHED_HRTICK
853#ifdef CONFIG_SMP
97fb7a0a
IM
854 int hrtick_csd_pending;
855 call_single_data_t hrtick_csd;
029632fb 856#endif
97fb7a0a 857 struct hrtimer hrtick_timer;
029632fb
PZ
858#endif
859
860#ifdef CONFIG_SCHEDSTATS
861 /* latency stats */
97fb7a0a
IM
862 struct sched_info rq_sched_info;
863 unsigned long long rq_cpu_time;
029632fb
PZ
864 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
865
866 /* sys_sched_yield() stats */
97fb7a0a 867 unsigned int yld_count;
029632fb
PZ
868
869 /* schedule() stats */
97fb7a0a
IM
870 unsigned int sched_count;
871 unsigned int sched_goidle;
029632fb
PZ
872
873 /* try_to_wake_up() stats */
97fb7a0a
IM
874 unsigned int ttwu_count;
875 unsigned int ttwu_local;
029632fb
PZ
876#endif
877
878#ifdef CONFIG_SMP
97fb7a0a 879 struct llist_head wake_list;
029632fb 880#endif
442bf3aa
DL
881
882#ifdef CONFIG_CPU_IDLE
883 /* Must be inspected within a rcu lock section */
97fb7a0a 884 struct cpuidle_state *idle_state;
442bf3aa 885#endif
029632fb
PZ
886};
887
888static inline int cpu_of(struct rq *rq)
889{
890#ifdef CONFIG_SMP
891 return rq->cpu;
892#else
893 return 0;
894#endif
895}
896
1b568f0a
PZ
897
898#ifdef CONFIG_SCHED_SMT
899
900extern struct static_key_false sched_smt_present;
901
902extern void __update_idle_core(struct rq *rq);
903
904static inline void update_idle_core(struct rq *rq)
905{
906 if (static_branch_unlikely(&sched_smt_present))
907 __update_idle_core(rq);
908}
909
910#else
911static inline void update_idle_core(struct rq *rq) { }
912#endif
913
8b06c55b 914DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 915
518cd623 916#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 917#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
918#define task_rq(p) cpu_rq(task_cpu(p))
919#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 920#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 921
cebde6d6
PZ
922static inline u64 __rq_clock_broken(struct rq *rq)
923{
316c1608 924 return READ_ONCE(rq->clock);
cebde6d6
PZ
925}
926
cb42c9a3
MF
927/*
928 * rq::clock_update_flags bits
929 *
930 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
931 * call to __schedule(). This is an optimisation to avoid
932 * neighbouring rq clock updates.
933 *
934 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
935 * in effect and calls to update_rq_clock() are being ignored.
936 *
937 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
938 * made to update_rq_clock() since the last time rq::lock was pinned.
939 *
940 * If inside of __schedule(), clock_update_flags will have been
941 * shifted left (a left shift is a cheap operation for the fast path
942 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
943 *
944 * if (rq-clock_update_flags >= RQCF_UPDATED)
945 *
946 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
947 * one position though, because the next rq_unpin_lock() will shift it
948 * back.
949 */
97fb7a0a
IM
950#define RQCF_REQ_SKIP 0x01
951#define RQCF_ACT_SKIP 0x02
952#define RQCF_UPDATED 0x04
cb42c9a3
MF
953
954static inline void assert_clock_updated(struct rq *rq)
955{
956 /*
957 * The only reason for not seeing a clock update since the
958 * last rq_pin_lock() is if we're currently skipping updates.
959 */
960 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
961}
962
78becc27
FW
963static inline u64 rq_clock(struct rq *rq)
964{
cebde6d6 965 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
966 assert_clock_updated(rq);
967
78becc27
FW
968 return rq->clock;
969}
970
971static inline u64 rq_clock_task(struct rq *rq)
972{
cebde6d6 973 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
974 assert_clock_updated(rq);
975
78becc27
FW
976 return rq->clock_task;
977}
978
adcc8da8 979static inline void rq_clock_skip_update(struct rq *rq)
9edfbfed
PZ
980{
981 lockdep_assert_held(&rq->lock);
adcc8da8
DB
982 rq->clock_update_flags |= RQCF_REQ_SKIP;
983}
984
985/*
986 * See rt task throttoling, which is the only time a skip
987 * request is cancelled.
988 */
989static inline void rq_clock_cancel_skipupdate(struct rq *rq)
990{
991 lockdep_assert_held(&rq->lock);
992 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
993}
994
d8ac8971
MF
995struct rq_flags {
996 unsigned long flags;
997 struct pin_cookie cookie;
cb42c9a3
MF
998#ifdef CONFIG_SCHED_DEBUG
999 /*
1000 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1001 * current pin context is stashed here in case it needs to be
1002 * restored in rq_repin_lock().
1003 */
1004 unsigned int clock_update_flags;
1005#endif
d8ac8971
MF
1006};
1007
1008static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1009{
1010 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
1011
1012#ifdef CONFIG_SCHED_DEBUG
1013 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1014 rf->clock_update_flags = 0;
1015#endif
d8ac8971
MF
1016}
1017
1018static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1019{
cb42c9a3
MF
1020#ifdef CONFIG_SCHED_DEBUG
1021 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1022 rf->clock_update_flags = RQCF_UPDATED;
1023#endif
1024
d8ac8971
MF
1025 lockdep_unpin_lock(&rq->lock, rf->cookie);
1026}
1027
1028static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1029{
1030 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
1031
1032#ifdef CONFIG_SCHED_DEBUG
1033 /*
1034 * Restore the value we stashed in @rf for this pin context.
1035 */
1036 rq->clock_update_flags |= rf->clock_update_flags;
1037#endif
d8ac8971
MF
1038}
1039
9942f79b 1040#ifdef CONFIG_NUMA
e3fe70b1
RR
1041enum numa_topology_type {
1042 NUMA_DIRECT,
1043 NUMA_GLUELESS_MESH,
1044 NUMA_BACKPLANE,
1045};
1046extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
1047extern int sched_max_numa_distance;
1048extern bool find_numa_distance(int distance);
1049#endif
1050
f2cb1360
IM
1051#ifdef CONFIG_NUMA
1052extern void sched_init_numa(void);
1053extern void sched_domains_numa_masks_set(unsigned int cpu);
1054extern void sched_domains_numa_masks_clear(unsigned int cpu);
1055#else
1056static inline void sched_init_numa(void) { }
1057static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1058static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1059#endif
1060
f809ca9a 1061#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
1062/* The regions in numa_faults array from task_struct */
1063enum numa_faults_stats {
1064 NUMA_MEM = 0,
1065 NUMA_CPU,
1066 NUMA_MEMBUF,
1067 NUMA_CPUBUF
1068};
0ec8aa00 1069extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 1070extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 1071extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
1072#endif /* CONFIG_NUMA_BALANCING */
1073
518cd623
PZ
1074#ifdef CONFIG_SMP
1075
e3fca9e7
PZ
1076static inline void
1077queue_balance_callback(struct rq *rq,
1078 struct callback_head *head,
1079 void (*func)(struct rq *rq))
1080{
1081 lockdep_assert_held(&rq->lock);
1082
1083 if (unlikely(head->next))
1084 return;
1085
1086 head->func = (void (*)(struct callback_head *))func;
1087 head->next = rq->balance_callback;
1088 rq->balance_callback = head;
1089}
1090
e3baac47
PZ
1091extern void sched_ttwu_pending(void);
1092
029632fb
PZ
1093#define rcu_dereference_check_sched_domain(p) \
1094 rcu_dereference_check((p), \
1095 lockdep_is_held(&sched_domains_mutex))
1096
1097/*
1098 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1099 * See detach_destroy_domains: synchronize_sched for details.
1100 *
1101 * The domain tree of any CPU may only be accessed from within
1102 * preempt-disabled sections.
1103 */
1104#define for_each_domain(cpu, __sd) \
518cd623
PZ
1105 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1106 __sd; __sd = __sd->parent)
029632fb 1107
77e81365
SS
1108#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1109
518cd623
PZ
1110/**
1111 * highest_flag_domain - Return highest sched_domain containing flag.
97fb7a0a 1112 * @cpu: The CPU whose highest level of sched domain is to
518cd623
PZ
1113 * be returned.
1114 * @flag: The flag to check for the highest sched_domain
97fb7a0a 1115 * for the given CPU.
518cd623 1116 *
97fb7a0a 1117 * Returns the highest sched_domain of a CPU which contains the given flag.
518cd623
PZ
1118 */
1119static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1120{
1121 struct sched_domain *sd, *hsd = NULL;
1122
1123 for_each_domain(cpu, sd) {
1124 if (!(sd->flags & flag))
1125 break;
1126 hsd = sd;
1127 }
1128
1129 return hsd;
1130}
1131
fb13c7ee
MG
1132static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1133{
1134 struct sched_domain *sd;
1135
1136 for_each_domain(cpu, sd) {
1137 if (sd->flags & flag)
1138 break;
1139 }
1140
1141 return sd;
1142}
1143
518cd623 1144DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 1145DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1146DECLARE_PER_CPU(int, sd_llc_id);
0e369d75 1147DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 1148DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 1149DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 1150
63b2ca30 1151struct sched_group_capacity {
97fb7a0a 1152 atomic_t ref;
5e6521ea 1153 /*
172895e6 1154 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1155 * for a single CPU.
5e6521ea 1156 */
97fb7a0a
IM
1157 unsigned long capacity;
1158 unsigned long min_capacity; /* Min per-CPU capacity in group */
1159 unsigned long next_update;
1160 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea 1161
005f874d 1162#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 1163 int id;
005f874d
PZ
1164#endif
1165
97fb7a0a 1166 unsigned long cpumask[0]; /* Balance mask */
5e6521ea
LZ
1167};
1168
1169struct sched_group {
97fb7a0a
IM
1170 struct sched_group *next; /* Must be a circular list */
1171 atomic_t ref;
5e6521ea 1172
97fb7a0a 1173 unsigned int group_weight;
63b2ca30 1174 struct sched_group_capacity *sgc;
97fb7a0a 1175 int asym_prefer_cpu; /* CPU of highest priority in group */
5e6521ea
LZ
1176
1177 /*
1178 * The CPUs this group covers.
1179 *
1180 * NOTE: this field is variable length. (Allocated dynamically
1181 * by attaching extra space to the end of the structure,
1182 * depending on how many CPUs the kernel has booted up with)
1183 */
97fb7a0a 1184 unsigned long cpumask[0];
5e6521ea
LZ
1185};
1186
ae4df9d6 1187static inline struct cpumask *sched_group_span(struct sched_group *sg)
5e6521ea
LZ
1188{
1189 return to_cpumask(sg->cpumask);
1190}
1191
1192/*
e5c14b1f 1193 * See build_balance_mask().
5e6521ea 1194 */
e5c14b1f 1195static inline struct cpumask *group_balance_mask(struct sched_group *sg)
5e6521ea 1196{
63b2ca30 1197 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1198}
1199
1200/**
97fb7a0a
IM
1201 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1202 * @group: The group whose first CPU is to be returned.
5e6521ea
LZ
1203 */
1204static inline unsigned int group_first_cpu(struct sched_group *group)
1205{
ae4df9d6 1206 return cpumask_first(sched_group_span(group));
5e6521ea
LZ
1207}
1208
c1174876
PZ
1209extern int group_balance_cpu(struct sched_group *sg);
1210
3866e845
SRRH
1211#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1212void register_sched_domain_sysctl(void);
bbdacdfe 1213void dirty_sched_domain_sysctl(int cpu);
3866e845
SRRH
1214void unregister_sched_domain_sysctl(void);
1215#else
1216static inline void register_sched_domain_sysctl(void)
1217{
1218}
bbdacdfe
PZ
1219static inline void dirty_sched_domain_sysctl(int cpu)
1220{
1221}
3866e845
SRRH
1222static inline void unregister_sched_domain_sysctl(void)
1223{
1224}
1225#endif
1226
e3baac47
PZ
1227#else
1228
1229static inline void sched_ttwu_pending(void) { }
1230
518cd623 1231#endif /* CONFIG_SMP */
029632fb 1232
391e43da 1233#include "stats.h"
1051408f 1234#include "autogroup.h"
029632fb
PZ
1235
1236#ifdef CONFIG_CGROUP_SCHED
1237
1238/*
1239 * Return the group to which this tasks belongs.
1240 *
8af01f56
TH
1241 * We cannot use task_css() and friends because the cgroup subsystem
1242 * changes that value before the cgroup_subsys::attach() method is called,
1243 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1244 *
1245 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1246 * core changes this before calling sched_move_task().
1247 *
1248 * Instead we use a 'copy' which is updated from sched_move_task() while
1249 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1250 */
1251static inline struct task_group *task_group(struct task_struct *p)
1252{
8323f26c 1253 return p->sched_task_group;
029632fb
PZ
1254}
1255
1256/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1257static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1258{
1259#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1260 struct task_group *tg = task_group(p);
1261#endif
1262
1263#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1264 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1265 p->se.cfs_rq = tg->cfs_rq[cpu];
1266 p->se.parent = tg->se[cpu];
1267#endif
1268
1269#ifdef CONFIG_RT_GROUP_SCHED
1270 p->rt.rt_rq = tg->rt_rq[cpu];
1271 p->rt.parent = tg->rt_se[cpu];
1272#endif
1273}
1274
1275#else /* CONFIG_CGROUP_SCHED */
1276
1277static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1278static inline struct task_group *task_group(struct task_struct *p)
1279{
1280 return NULL;
1281}
1282
1283#endif /* CONFIG_CGROUP_SCHED */
1284
1285static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1286{
1287 set_task_rq(p, cpu);
1288#ifdef CONFIG_SMP
1289 /*
1290 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1291 * successfuly executed on another CPU. We must ensure that updates of
1292 * per-task data have been completed by this moment.
1293 */
1294 smp_wmb();
c65eacbe
AL
1295#ifdef CONFIG_THREAD_INFO_IN_TASK
1296 p->cpu = cpu;
1297#else
029632fb 1298 task_thread_info(p)->cpu = cpu;
c65eacbe 1299#endif
ac66f547 1300 p->wake_cpu = cpu;
029632fb
PZ
1301#endif
1302}
1303
1304/*
1305 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1306 */
1307#ifdef CONFIG_SCHED_DEBUG
c5905afb 1308# include <linux/static_key.h>
029632fb
PZ
1309# define const_debug __read_mostly
1310#else
1311# define const_debug const
1312#endif
1313
029632fb
PZ
1314#define SCHED_FEAT(name, enabled) \
1315 __SCHED_FEAT_##name ,
1316
1317enum {
391e43da 1318#include "features.h"
f8b6d1cc 1319 __SCHED_FEAT_NR,
029632fb
PZ
1320};
1321
1322#undef SCHED_FEAT
1323
f8b6d1cc 1324#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
765cc3a4
PB
1325
1326/*
1327 * To support run-time toggling of sched features, all the translation units
1328 * (but core.c) reference the sysctl_sched_features defined in core.c.
1329 */
1330extern const_debug unsigned int sysctl_sched_features;
1331
f8b6d1cc 1332#define SCHED_FEAT(name, enabled) \
c5905afb 1333static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1334{ \
6e76ea8a 1335 return static_key_##enabled(key); \
f8b6d1cc
PZ
1336}
1337
1338#include "features.h"
f8b6d1cc
PZ
1339#undef SCHED_FEAT
1340
c5905afb 1341extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc 1342#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765cc3a4 1343
f8b6d1cc 1344#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
765cc3a4
PB
1345
1346/*
1347 * Each translation unit has its own copy of sysctl_sched_features to allow
1348 * constants propagation at compile time and compiler optimization based on
1349 * features default.
1350 */
1351#define SCHED_FEAT(name, enabled) \
1352 (1UL << __SCHED_FEAT_##name) * enabled |
1353static const_debug __maybe_unused unsigned int sysctl_sched_features =
1354#include "features.h"
1355 0;
1356#undef SCHED_FEAT
1357
029632fb 1358#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
765cc3a4 1359
f8b6d1cc 1360#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1361
2a595721 1362extern struct static_key_false sched_numa_balancing;
cb251765 1363extern struct static_key_false sched_schedstats;
cbee9f88 1364
029632fb
PZ
1365static inline u64 global_rt_period(void)
1366{
1367 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1368}
1369
1370static inline u64 global_rt_runtime(void)
1371{
1372 if (sysctl_sched_rt_runtime < 0)
1373 return RUNTIME_INF;
1374
1375 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1376}
1377
029632fb
PZ
1378static inline int task_current(struct rq *rq, struct task_struct *p)
1379{
1380 return rq->curr == p;
1381}
1382
1383static inline int task_running(struct rq *rq, struct task_struct *p)
1384{
1385#ifdef CONFIG_SMP
1386 return p->on_cpu;
1387#else
1388 return task_current(rq, p);
1389#endif
1390}
1391
da0c1e65
KT
1392static inline int task_on_rq_queued(struct task_struct *p)
1393{
1394 return p->on_rq == TASK_ON_RQ_QUEUED;
1395}
029632fb 1396
cca26e80
KT
1397static inline int task_on_rq_migrating(struct task_struct *p)
1398{
1399 return p->on_rq == TASK_ON_RQ_MIGRATING;
1400}
1401
b13095f0
LZ
1402/*
1403 * wake flags
1404 */
97fb7a0a
IM
1405#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1406#define WF_FORK 0x02 /* Child wakeup after fork */
1407#define WF_MIGRATED 0x4 /* Internal use, task got migrated */
b13095f0 1408
029632fb
PZ
1409/*
1410 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1411 * of tasks with abnormal "nice" values across CPUs the contribution that
1412 * each task makes to its run queue's load is weighted according to its
1413 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1414 * scaled version of the new time slice allocation that they receive on time
1415 * slice expiry etc.
1416 */
1417
97fb7a0a
IM
1418#define WEIGHT_IDLEPRIO 3
1419#define WMULT_IDLEPRIO 1431655765
029632fb 1420
97fb7a0a
IM
1421extern const int sched_prio_to_weight[40];
1422extern const u32 sched_prio_to_wmult[40];
029632fb 1423
ff77e468
PZ
1424/*
1425 * {de,en}queue flags:
1426 *
1427 * DEQUEUE_SLEEP - task is no longer runnable
1428 * ENQUEUE_WAKEUP - task just became runnable
1429 *
1430 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1431 * are in a known state which allows modification. Such pairs
1432 * should preserve as much state as possible.
1433 *
1434 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1435 * in the runqueue.
1436 *
1437 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1438 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1439 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1440 *
1441 */
1442
1443#define DEQUEUE_SLEEP 0x01
97fb7a0a
IM
1444#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1445#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1446#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
ff77e468 1447
1de64443 1448#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1449#define ENQUEUE_RESTORE 0x02
1450#define ENQUEUE_MOVE 0x04
0a67d1ee 1451#define ENQUEUE_NOCLOCK 0x08
ff77e468 1452
0a67d1ee
PZ
1453#define ENQUEUE_HEAD 0x10
1454#define ENQUEUE_REPLENISH 0x20
c82ba9fa 1455#ifdef CONFIG_SMP
0a67d1ee 1456#define ENQUEUE_MIGRATED 0x40
c82ba9fa 1457#else
59efa0ba 1458#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1459#endif
c82ba9fa 1460
37e117c0
PZ
1461#define RETRY_TASK ((void *)-1UL)
1462
c82ba9fa
LZ
1463struct sched_class {
1464 const struct sched_class *next;
1465
1466 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1467 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
97fb7a0a
IM
1468 void (*yield_task) (struct rq *rq);
1469 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
c82ba9fa 1470
97fb7a0a 1471 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
c82ba9fa 1472
606dba2e
PZ
1473 /*
1474 * It is the responsibility of the pick_next_task() method that will
1475 * return the next task to call put_prev_task() on the @prev task or
1476 * something equivalent.
37e117c0
PZ
1477 *
1478 * May return RETRY_TASK when it finds a higher prio class has runnable
1479 * tasks.
606dba2e 1480 */
97fb7a0a
IM
1481 struct task_struct * (*pick_next_task)(struct rq *rq,
1482 struct task_struct *prev,
1483 struct rq_flags *rf);
1484 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
c82ba9fa
LZ
1485
1486#ifdef CONFIG_SMP
ac66f547 1487 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
5a4fd036 1488 void (*migrate_task_rq)(struct task_struct *p);
c82ba9fa 1489
97fb7a0a 1490 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
c82ba9fa
LZ
1491
1492 void (*set_cpus_allowed)(struct task_struct *p,
1493 const struct cpumask *newmask);
1494
1495 void (*rq_online)(struct rq *rq);
1496 void (*rq_offline)(struct rq *rq);
1497#endif
1498
97fb7a0a
IM
1499 void (*set_curr_task)(struct rq *rq);
1500 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1501 void (*task_fork)(struct task_struct *p);
1502 void (*task_dead)(struct task_struct *p);
c82ba9fa 1503
67dfa1b7
KT
1504 /*
1505 * The switched_from() call is allowed to drop rq->lock, therefore we
1506 * cannot assume the switched_from/switched_to pair is serliazed by
1507 * rq->lock. They are however serialized by p->pi_lock.
1508 */
97fb7a0a
IM
1509 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1510 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
c82ba9fa 1511 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
97fb7a0a 1512 int oldprio);
c82ba9fa 1513
97fb7a0a
IM
1514 unsigned int (*get_rr_interval)(struct rq *rq,
1515 struct task_struct *task);
c82ba9fa 1516
97fb7a0a 1517 void (*update_curr)(struct rq *rq);
6e998916 1518
97fb7a0a
IM
1519#define TASK_SET_GROUP 0
1520#define TASK_MOVE_GROUP 1
ea86cb4b 1521
c82ba9fa 1522#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 1523 void (*task_change_group)(struct task_struct *p, int type);
c82ba9fa
LZ
1524#endif
1525};
029632fb 1526
3f1d2a31
PZ
1527static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1528{
1529 prev->sched_class->put_prev_task(rq, prev);
1530}
1531
b2bf6c31
PZ
1532static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1533{
1534 curr->sched_class->set_curr_task(rq);
1535}
1536
f5832c19 1537#ifdef CONFIG_SMP
029632fb 1538#define sched_class_highest (&stop_sched_class)
f5832c19
NP
1539#else
1540#define sched_class_highest (&dl_sched_class)
1541#endif
029632fb
PZ
1542#define for_each_class(class) \
1543 for (class = sched_class_highest; class; class = class->next)
1544
1545extern const struct sched_class stop_sched_class;
aab03e05 1546extern const struct sched_class dl_sched_class;
029632fb
PZ
1547extern const struct sched_class rt_sched_class;
1548extern const struct sched_class fair_sched_class;
1549extern const struct sched_class idle_sched_class;
1550
1551
1552#ifdef CONFIG_SMP
1553
63b2ca30 1554extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1555
7caff66f 1556extern void trigger_load_balance(struct rq *rq);
029632fb 1557
c5b28038
PZ
1558extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1559
029632fb
PZ
1560#endif
1561
442bf3aa
DL
1562#ifdef CONFIG_CPU_IDLE
1563static inline void idle_set_state(struct rq *rq,
1564 struct cpuidle_state *idle_state)
1565{
1566 rq->idle_state = idle_state;
1567}
1568
1569static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1570{
9148a3a1 1571 SCHED_WARN_ON(!rcu_read_lock_held());
97fb7a0a 1572
442bf3aa
DL
1573 return rq->idle_state;
1574}
1575#else
1576static inline void idle_set_state(struct rq *rq,
1577 struct cpuidle_state *idle_state)
1578{
1579}
1580
1581static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1582{
1583 return NULL;
1584}
1585#endif
1586
8663effb
SRV
1587extern void schedule_idle(void);
1588
029632fb
PZ
1589extern void sysrq_sched_debug_show(void);
1590extern void sched_init_granularity(void);
1591extern void update_max_interval(void);
1baca4ce
JL
1592
1593extern void init_sched_dl_class(void);
029632fb
PZ
1594extern void init_sched_rt_class(void);
1595extern void init_sched_fair_class(void);
1596
9059393e
VG
1597extern void reweight_task(struct task_struct *p, int prio);
1598
8875125e 1599extern void resched_curr(struct rq *rq);
029632fb
PZ
1600extern void resched_cpu(int cpu);
1601
1602extern struct rt_bandwidth def_rt_bandwidth;
1603extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1604
332ac17e
DF
1605extern struct dl_bandwidth def_dl_bandwidth;
1606extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05 1607extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
209a0cbd 1608extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
4da3abce 1609extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
aab03e05 1610
97fb7a0a
IM
1611#define BW_SHIFT 20
1612#define BW_UNIT (1 << BW_SHIFT)
1613#define RATIO_SHIFT 8
332ac17e
DF
1614unsigned long to_ratio(u64 period, u64 runtime);
1615
540247fb 1616extern void init_entity_runnable_average(struct sched_entity *se);
2b8c41da 1617extern void post_init_entity_util_avg(struct sched_entity *se);
a75cdaa9 1618
76d92ac3
FW
1619#ifdef CONFIG_NO_HZ_FULL
1620extern bool sched_can_stop_tick(struct rq *rq);
d84b3131 1621extern int __init sched_tick_offload_init(void);
76d92ac3
FW
1622
1623/*
1624 * Tick may be needed by tasks in the runqueue depending on their policy and
1625 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1626 * nohz mode if necessary.
1627 */
1628static inline void sched_update_tick_dependency(struct rq *rq)
1629{
1630 int cpu;
1631
1632 if (!tick_nohz_full_enabled())
1633 return;
1634
1635 cpu = cpu_of(rq);
1636
1637 if (!tick_nohz_full_cpu(cpu))
1638 return;
1639
1640 if (sched_can_stop_tick(rq))
1641 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1642 else
1643 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1644}
1645#else
d84b3131 1646static inline int sched_tick_offload_init(void) { return 0; }
76d92ac3
FW
1647static inline void sched_update_tick_dependency(struct rq *rq) { }
1648#endif
1649
72465447 1650static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1651{
72465447
KT
1652 unsigned prev_nr = rq->nr_running;
1653
1654 rq->nr_running = prev_nr + count;
9f3660c2 1655
72465447 1656 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1657#ifdef CONFIG_SMP
1658 if (!rq->rd->overload)
1659 rq->rd->overload = true;
1660#endif
4486edd1 1661 }
76d92ac3
FW
1662
1663 sched_update_tick_dependency(rq);
029632fb
PZ
1664}
1665
72465447 1666static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1667{
72465447 1668 rq->nr_running -= count;
76d92ac3
FW
1669 /* Check if we still need preemption */
1670 sched_update_tick_dependency(rq);
029632fb
PZ
1671}
1672
1673extern void update_rq_clock(struct rq *rq);
1674
1675extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1676extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1677
1678extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1679
1680extern const_debug unsigned int sysctl_sched_time_avg;
1681extern const_debug unsigned int sysctl_sched_nr_migrate;
1682extern const_debug unsigned int sysctl_sched_migration_cost;
1683
1684static inline u64 sched_avg_period(void)
1685{
1686 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1687}
1688
029632fb
PZ
1689#ifdef CONFIG_SCHED_HRTICK
1690
1691/*
1692 * Use hrtick when:
1693 * - enabled by features
1694 * - hrtimer is actually high res
1695 */
1696static inline int hrtick_enabled(struct rq *rq)
1697{
1698 if (!sched_feat(HRTICK))
1699 return 0;
1700 if (!cpu_active(cpu_of(rq)))
1701 return 0;
1702 return hrtimer_is_hres_active(&rq->hrtick_timer);
1703}
1704
1705void hrtick_start(struct rq *rq, u64 delay);
1706
b39e66ea
MG
1707#else
1708
1709static inline int hrtick_enabled(struct rq *rq)
1710{
1711 return 0;
1712}
1713
029632fb
PZ
1714#endif /* CONFIG_SCHED_HRTICK */
1715
dfbca41f
PZ
1716#ifndef arch_scale_freq_capacity
1717static __always_inline
7673c8a4 1718unsigned long arch_scale_freq_capacity(int cpu)
dfbca41f
PZ
1719{
1720 return SCHED_CAPACITY_SCALE;
1721}
1722#endif
b5b4860d 1723
7e1a9208
JL
1724#ifdef CONFIG_SMP
1725extern void sched_avg_update(struct rq *rq);
1726
8cd5601c
MR
1727#ifndef arch_scale_cpu_capacity
1728static __always_inline
1729unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1730{
e3279a2e 1731 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
8cd5601c
MR
1732 return sd->smt_gain / sd->span_weight;
1733
1734 return SCHED_CAPACITY_SCALE;
1735}
1736#endif
1737
029632fb
PZ
1738static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1739{
7673c8a4 1740 rq->rt_avg += rt_delta * arch_scale_freq_capacity(cpu_of(rq));
029632fb
PZ
1741 sched_avg_update(rq);
1742}
1743#else
7e1a9208
JL
1744#ifndef arch_scale_cpu_capacity
1745static __always_inline
1746unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1747{
1748 return SCHED_CAPACITY_SCALE;
1749}
1750#endif
029632fb
PZ
1751static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1752static inline void sched_avg_update(struct rq *rq) { }
1753#endif
1754
eb580751 1755struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462 1756 __acquires(rq->lock);
8a8c69c3 1757
eb580751 1758struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3960c8c0 1759 __acquires(p->pi_lock)
3e71a462 1760 __acquires(rq->lock);
3960c8c0 1761
eb580751 1762static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
3960c8c0
PZ
1763 __releases(rq->lock)
1764{
d8ac8971 1765 rq_unpin_lock(rq, rf);
3960c8c0
PZ
1766 raw_spin_unlock(&rq->lock);
1767}
1768
1769static inline void
eb580751 1770task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
3960c8c0
PZ
1771 __releases(rq->lock)
1772 __releases(p->pi_lock)
1773{
d8ac8971 1774 rq_unpin_lock(rq, rf);
3960c8c0 1775 raw_spin_unlock(&rq->lock);
eb580751 1776 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3960c8c0
PZ
1777}
1778
8a8c69c3
PZ
1779static inline void
1780rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1781 __acquires(rq->lock)
1782{
1783 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1784 rq_pin_lock(rq, rf);
1785}
1786
1787static inline void
1788rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1789 __acquires(rq->lock)
1790{
1791 raw_spin_lock_irq(&rq->lock);
1792 rq_pin_lock(rq, rf);
1793}
1794
1795static inline void
1796rq_lock(struct rq *rq, struct rq_flags *rf)
1797 __acquires(rq->lock)
1798{
1799 raw_spin_lock(&rq->lock);
1800 rq_pin_lock(rq, rf);
1801}
1802
1803static inline void
1804rq_relock(struct rq *rq, struct rq_flags *rf)
1805 __acquires(rq->lock)
1806{
1807 raw_spin_lock(&rq->lock);
1808 rq_repin_lock(rq, rf);
1809}
1810
1811static inline void
1812rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1813 __releases(rq->lock)
1814{
1815 rq_unpin_lock(rq, rf);
1816 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1817}
1818
1819static inline void
1820rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1821 __releases(rq->lock)
1822{
1823 rq_unpin_lock(rq, rf);
1824 raw_spin_unlock_irq(&rq->lock);
1825}
1826
1827static inline void
1828rq_unlock(struct rq *rq, struct rq_flags *rf)
1829 __releases(rq->lock)
1830{
1831 rq_unpin_lock(rq, rf);
1832 raw_spin_unlock(&rq->lock);
1833}
1834
029632fb
PZ
1835#ifdef CONFIG_SMP
1836#ifdef CONFIG_PREEMPT
1837
1838static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1839
1840/*
1841 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1842 * way at the expense of forcing extra atomic operations in all
1843 * invocations. This assures that the double_lock is acquired using the
1844 * same underlying policy as the spinlock_t on this architecture, which
1845 * reduces latency compared to the unfair variant below. However, it
1846 * also adds more overhead and therefore may reduce throughput.
1847 */
1848static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1849 __releases(this_rq->lock)
1850 __acquires(busiest->lock)
1851 __acquires(this_rq->lock)
1852{
1853 raw_spin_unlock(&this_rq->lock);
1854 double_rq_lock(this_rq, busiest);
1855
1856 return 1;
1857}
1858
1859#else
1860/*
1861 * Unfair double_lock_balance: Optimizes throughput at the expense of
1862 * latency by eliminating extra atomic operations when the locks are
97fb7a0a
IM
1863 * already in proper order on entry. This favors lower CPU-ids and will
1864 * grant the double lock to lower CPUs over higher ids under contention,
029632fb
PZ
1865 * regardless of entry order into the function.
1866 */
1867static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1868 __releases(this_rq->lock)
1869 __acquires(busiest->lock)
1870 __acquires(this_rq->lock)
1871{
1872 int ret = 0;
1873
1874 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1875 if (busiest < this_rq) {
1876 raw_spin_unlock(&this_rq->lock);
1877 raw_spin_lock(&busiest->lock);
1878 raw_spin_lock_nested(&this_rq->lock,
1879 SINGLE_DEPTH_NESTING);
1880 ret = 1;
1881 } else
1882 raw_spin_lock_nested(&busiest->lock,
1883 SINGLE_DEPTH_NESTING);
1884 }
1885 return ret;
1886}
1887
1888#endif /* CONFIG_PREEMPT */
1889
1890/*
1891 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1892 */
1893static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1894{
1895 if (unlikely(!irqs_disabled())) {
97fb7a0a 1896 /* printk() doesn't work well under rq->lock */
029632fb
PZ
1897 raw_spin_unlock(&this_rq->lock);
1898 BUG_ON(1);
1899 }
1900
1901 return _double_lock_balance(this_rq, busiest);
1902}
1903
1904static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1905 __releases(busiest->lock)
1906{
1907 raw_spin_unlock(&busiest->lock);
1908 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1909}
1910
74602315
PZ
1911static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1912{
1913 if (l1 > l2)
1914 swap(l1, l2);
1915
1916 spin_lock(l1);
1917 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1918}
1919
60e69eed
MG
1920static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1921{
1922 if (l1 > l2)
1923 swap(l1, l2);
1924
1925 spin_lock_irq(l1);
1926 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1927}
1928
74602315
PZ
1929static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1930{
1931 if (l1 > l2)
1932 swap(l1, l2);
1933
1934 raw_spin_lock(l1);
1935 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1936}
1937
029632fb
PZ
1938/*
1939 * double_rq_lock - safely lock two runqueues
1940 *
1941 * Note this does not disable interrupts like task_rq_lock,
1942 * you need to do so manually before calling.
1943 */
1944static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1945 __acquires(rq1->lock)
1946 __acquires(rq2->lock)
1947{
1948 BUG_ON(!irqs_disabled());
1949 if (rq1 == rq2) {
1950 raw_spin_lock(&rq1->lock);
1951 __acquire(rq2->lock); /* Fake it out ;) */
1952 } else {
1953 if (rq1 < rq2) {
1954 raw_spin_lock(&rq1->lock);
1955 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1956 } else {
1957 raw_spin_lock(&rq2->lock);
1958 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1959 }
1960 }
1961}
1962
1963/*
1964 * double_rq_unlock - safely unlock two runqueues
1965 *
1966 * Note this does not restore interrupts like task_rq_unlock,
1967 * you need to do so manually after calling.
1968 */
1969static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1970 __releases(rq1->lock)
1971 __releases(rq2->lock)
1972{
1973 raw_spin_unlock(&rq1->lock);
1974 if (rq1 != rq2)
1975 raw_spin_unlock(&rq2->lock);
1976 else
1977 __release(rq2->lock);
1978}
1979
f2cb1360
IM
1980extern void set_rq_online (struct rq *rq);
1981extern void set_rq_offline(struct rq *rq);
1982extern bool sched_smp_initialized;
1983
029632fb
PZ
1984#else /* CONFIG_SMP */
1985
1986/*
1987 * double_rq_lock - safely lock two runqueues
1988 *
1989 * Note this does not disable interrupts like task_rq_lock,
1990 * you need to do so manually before calling.
1991 */
1992static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1993 __acquires(rq1->lock)
1994 __acquires(rq2->lock)
1995{
1996 BUG_ON(!irqs_disabled());
1997 BUG_ON(rq1 != rq2);
1998 raw_spin_lock(&rq1->lock);
1999 __acquire(rq2->lock); /* Fake it out ;) */
2000}
2001
2002/*
2003 * double_rq_unlock - safely unlock two runqueues
2004 *
2005 * Note this does not restore interrupts like task_rq_unlock,
2006 * you need to do so manually after calling.
2007 */
2008static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2009 __releases(rq1->lock)
2010 __releases(rq2->lock)
2011{
2012 BUG_ON(rq1 != rq2);
2013 raw_spin_unlock(&rq1->lock);
2014 __release(rq2->lock);
2015}
2016
2017#endif
2018
2019extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2020extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
2021
2022#ifdef CONFIG_SCHED_DEBUG
9469eb01
PZ
2023extern bool sched_debug_enabled;
2024
029632fb
PZ
2025extern void print_cfs_stats(struct seq_file *m, int cpu);
2026extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 2027extern void print_dl_stats(struct seq_file *m, int cpu);
6b55c965
SD
2028extern void
2029print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
397f2378
SD
2030#ifdef CONFIG_NUMA_BALANCING
2031extern void
2032show_numa_stats(struct task_struct *p, struct seq_file *m);
2033extern void
2034print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2035 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2036#endif /* CONFIG_NUMA_BALANCING */
2037#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
2038
2039extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
2040extern void init_rt_rq(struct rt_rq *rt_rq);
2041extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 2042
1ee14e6c
BS
2043extern void cfs_bandwidth_usage_inc(void);
2044extern void cfs_bandwidth_usage_dec(void);
1c792db7 2045
3451d024 2046#ifdef CONFIG_NO_HZ_COMMON
00357f5e
PZ
2047#define NOHZ_BALANCE_KICK_BIT 0
2048#define NOHZ_STATS_KICK_BIT 1
a22e47a4 2049
a22e47a4 2050#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
b7031a02
PZ
2051#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2052
2053#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
1c792db7
SS
2054
2055#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc 2056
00357f5e 2057extern void nohz_balance_exit_idle(struct rq *rq);
20a5c8cc 2058#else
00357f5e 2059static inline void nohz_balance_exit_idle(struct rq *rq) { }
1c792db7 2060#endif
73fbec60 2061
daec5798
LA
2062
2063#ifdef CONFIG_SMP
2064static inline
2065void __dl_update(struct dl_bw *dl_b, s64 bw)
2066{
2067 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2068 int i;
2069
2070 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2071 "sched RCU must be held");
2072 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2073 struct rq *rq = cpu_rq(i);
2074
2075 rq->dl.extra_bw += bw;
2076 }
2077}
2078#else
2079static inline
2080void __dl_update(struct dl_bw *dl_b, s64 bw)
2081{
2082 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2083
2084 dl->extra_bw += bw;
2085}
2086#endif
2087
2088
73fbec60 2089#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 2090struct irqtime {
25e2d8c1 2091 u64 total;
a499a5a1 2092 u64 tick_delta;
19d23dbf
FW
2093 u64 irq_start_time;
2094 struct u64_stats_sync sync;
2095};
73fbec60 2096
19d23dbf 2097DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 2098
25e2d8c1
FW
2099/*
2100 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2101 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2102 * and never move forward.
2103 */
73fbec60
FW
2104static inline u64 irq_time_read(int cpu)
2105{
19d23dbf
FW
2106 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2107 unsigned int seq;
2108 u64 total;
73fbec60
FW
2109
2110 do {
19d23dbf 2111 seq = __u64_stats_fetch_begin(&irqtime->sync);
25e2d8c1 2112 total = irqtime->total;
19d23dbf 2113 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 2114
19d23dbf 2115 return total;
73fbec60 2116}
73fbec60 2117#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
2118
2119#ifdef CONFIG_CPU_FREQ
2120DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2121
2122/**
2123 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 2124 * @rq: Runqueue to carry out the update for.
58919e83 2125 * @flags: Update reason flags.
adaf9fcd 2126 *
58919e83
RW
2127 * This function is called by the scheduler on the CPU whose utilization is
2128 * being updated.
adaf9fcd
RW
2129 *
2130 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
2131 *
2132 * The way cpufreq is currently arranged requires it to evaluate the CPU
2133 * performance state (frequency/voltage) on a regular basis to prevent it from
2134 * being stuck in a completely inadequate performance level for too long.
e0367b12
JL
2135 * That is not guaranteed to happen if the updates are only triggered from CFS
2136 * and DL, though, because they may not be coming in if only RT tasks are
2137 * active all the time (or there are RT tasks only).
adaf9fcd 2138 *
e0367b12
JL
2139 * As a workaround for that issue, this function is called periodically by the
2140 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
adaf9fcd 2141 * but that really is a band-aid. Going forward it should be replaced with
e0367b12 2142 * solutions targeted more specifically at RT tasks.
adaf9fcd 2143 */
12bde33d 2144static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 2145{
58919e83
RW
2146 struct update_util_data *data;
2147
674e7541
VK
2148 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2149 cpu_of(rq)));
58919e83 2150 if (data)
12bde33d
RW
2151 data->func(data, rq_clock(rq), flags);
2152}
adaf9fcd 2153#else
12bde33d 2154static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
adaf9fcd 2155#endif /* CONFIG_CPU_FREQ */
be53f58f 2156
9bdcb44e 2157#ifdef arch_scale_freq_capacity
97fb7a0a
IM
2158# ifndef arch_scale_freq_invariant
2159# define arch_scale_freq_invariant() true
2160# endif
2161#else
2162# define arch_scale_freq_invariant() false
9bdcb44e 2163#endif
d4edd662 2164
794a56eb 2165#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
d4edd662
JL
2166static inline unsigned long cpu_util_dl(struct rq *rq)
2167{
2168 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2169}
2170
2171static inline unsigned long cpu_util_cfs(struct rq *rq)
2172{
a07630b8
PB
2173 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2174
2175 if (sched_feat(UTIL_EST)) {
2176 util = max_t(unsigned long, util,
2177 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2178 }
2179
2180 return util;
d4edd662 2181}
794a56eb 2182#endif