sched/deadline: Fix hotplug admission control
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
029632fb
PZ
6#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
9f3660c2 9#include <linux/tick.h>
f809ca9a 10#include <linux/slab.h>
029632fb 11
391e43da 12#include "cpupri.h"
6bfd6d72 13#include "cpudeadline.h"
60fed789 14#include "cpuacct.h"
029632fb 15
45ceebf7
PG
16struct rq;
17
029632fb
PZ
18extern __read_mostly int scheduler_running;
19
45ceebf7
PG
20extern unsigned long calc_load_update;
21extern atomic_long_t calc_load_tasks;
22
23extern long calc_load_fold_active(struct rq *this_rq);
24extern void update_cpu_load_active(struct rq *this_rq);
25
029632fb
PZ
26/*
27 * Convert user-nice values [ -20 ... 0 ... 19 ]
28 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
29 * and back.
30 */
31#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
32#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
33#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
34
35/*
36 * 'User priority' is the nice value converted to something we
37 * can work with better when scaling various scheduler parameters,
38 * it's a [ 0 ... 39 ] range.
39 */
40#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
41#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
42#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
43
44/*
45 * Helpers for converting nanosecond timing to jiffy resolution
46 */
47#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
48
cc1f4b1f
LZ
49/*
50 * Increase resolution of nice-level calculations for 64-bit architectures.
51 * The extra resolution improves shares distribution and load balancing of
52 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
53 * hierarchies, especially on larger systems. This is not a user-visible change
54 * and does not change the user-interface for setting shares/weights.
55 *
56 * We increase resolution only if we have enough bits to allow this increased
57 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
58 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
59 * increased costs.
60 */
61#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
62# define SCHED_LOAD_RESOLUTION 10
63# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
64# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
65#else
66# define SCHED_LOAD_RESOLUTION 0
67# define scale_load(w) (w)
68# define scale_load_down(w) (w)
69#endif
70
71#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
72#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
73
029632fb
PZ
74#define NICE_0_LOAD SCHED_LOAD_SCALE
75#define NICE_0_SHIFT SCHED_LOAD_SHIFT
76
332ac17e
DF
77/*
78 * Single value that decides SCHED_DEADLINE internal math precision.
79 * 10 -> just above 1us
80 * 9 -> just above 0.5us
81 */
82#define DL_SCALE (10)
83
029632fb
PZ
84/*
85 * These are the 'tuning knobs' of the scheduler:
029632fb 86 */
029632fb
PZ
87
88/*
89 * single value that denotes runtime == period, ie unlimited time.
90 */
91#define RUNTIME_INF ((u64)~0ULL)
92
d50dde5a
DF
93static inline int fair_policy(int policy)
94{
95 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
96}
97
029632fb
PZ
98static inline int rt_policy(int policy)
99{
d50dde5a 100 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
101}
102
aab03e05
DF
103static inline int dl_policy(int policy)
104{
105 return policy == SCHED_DEADLINE;
106}
107
029632fb
PZ
108static inline int task_has_rt_policy(struct task_struct *p)
109{
110 return rt_policy(p->policy);
111}
112
aab03e05
DF
113static inline int task_has_dl_policy(struct task_struct *p)
114{
115 return dl_policy(p->policy);
116}
117
332ac17e 118static inline bool dl_time_before(u64 a, u64 b)
2d3d891d
DF
119{
120 return (s64)(a - b) < 0;
121}
122
123/*
124 * Tells if entity @a should preempt entity @b.
125 */
332ac17e
DF
126static inline bool
127dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
128{
129 return dl_time_before(a->deadline, b->deadline);
130}
131
029632fb
PZ
132/*
133 * This is the priority-queue data structure of the RT scheduling class:
134 */
135struct rt_prio_array {
136 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
137 struct list_head queue[MAX_RT_PRIO];
138};
139
140struct rt_bandwidth {
141 /* nests inside the rq lock: */
142 raw_spinlock_t rt_runtime_lock;
143 ktime_t rt_period;
144 u64 rt_runtime;
145 struct hrtimer rt_period_timer;
146};
332ac17e
DF
147/*
148 * To keep the bandwidth of -deadline tasks and groups under control
149 * we need some place where:
150 * - store the maximum -deadline bandwidth of the system (the group);
151 * - cache the fraction of that bandwidth that is currently allocated.
152 *
153 * This is all done in the data structure below. It is similar to the
154 * one used for RT-throttling (rt_bandwidth), with the main difference
155 * that, since here we are only interested in admission control, we
156 * do not decrease any runtime while the group "executes", neither we
157 * need a timer to replenish it.
158 *
159 * With respect to SMP, the bandwidth is given on a per-CPU basis,
160 * meaning that:
161 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
162 * - dl_total_bw array contains, in the i-eth element, the currently
163 * allocated bandwidth on the i-eth CPU.
164 * Moreover, groups consume bandwidth on each CPU, while tasks only
165 * consume bandwidth on the CPU they're running on.
166 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
167 * that will be shown the next time the proc or cgroup controls will
168 * be red. It on its turn can be changed by writing on its own
169 * control.
170 */
171struct dl_bandwidth {
172 raw_spinlock_t dl_runtime_lock;
173 u64 dl_runtime;
174 u64 dl_period;
175};
176
177static inline int dl_bandwidth_enabled(void)
178{
1724813d 179 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
180}
181
182extern struct dl_bw *dl_bw_of(int i);
183
184struct dl_bw {
185 raw_spinlock_t lock;
186 u64 bw, total_bw;
187};
188
029632fb
PZ
189extern struct mutex sched_domains_mutex;
190
191#ifdef CONFIG_CGROUP_SCHED
192
193#include <linux/cgroup.h>
194
195struct cfs_rq;
196struct rt_rq;
197
35cf4e50 198extern struct list_head task_groups;
029632fb
PZ
199
200struct cfs_bandwidth {
201#ifdef CONFIG_CFS_BANDWIDTH
202 raw_spinlock_t lock;
203 ktime_t period;
204 u64 quota, runtime;
205 s64 hierarchal_quota;
206 u64 runtime_expires;
207
208 int idle, timer_active;
209 struct hrtimer period_timer, slack_timer;
210 struct list_head throttled_cfs_rq;
211
212 /* statistics */
213 int nr_periods, nr_throttled;
214 u64 throttled_time;
215#endif
216};
217
218/* task group related information */
219struct task_group {
220 struct cgroup_subsys_state css;
221
222#ifdef CONFIG_FAIR_GROUP_SCHED
223 /* schedulable entities of this group on each cpu */
224 struct sched_entity **se;
225 /* runqueue "owned" by this group on each cpu */
226 struct cfs_rq **cfs_rq;
227 unsigned long shares;
228
fa6bddeb 229#ifdef CONFIG_SMP
bf5b986e 230 atomic_long_t load_avg;
bb17f655 231 atomic_t runnable_avg;
029632fb 232#endif
fa6bddeb 233#endif
029632fb
PZ
234
235#ifdef CONFIG_RT_GROUP_SCHED
236 struct sched_rt_entity **rt_se;
237 struct rt_rq **rt_rq;
238
239 struct rt_bandwidth rt_bandwidth;
240#endif
241
242 struct rcu_head rcu;
243 struct list_head list;
244
245 struct task_group *parent;
246 struct list_head siblings;
247 struct list_head children;
248
249#ifdef CONFIG_SCHED_AUTOGROUP
250 struct autogroup *autogroup;
251#endif
252
253 struct cfs_bandwidth cfs_bandwidth;
254};
255
256#ifdef CONFIG_FAIR_GROUP_SCHED
257#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
258
259/*
260 * A weight of 0 or 1 can cause arithmetics problems.
261 * A weight of a cfs_rq is the sum of weights of which entities
262 * are queued on this cfs_rq, so a weight of a entity should not be
263 * too large, so as the shares value of a task group.
264 * (The default weight is 1024 - so there's no practical
265 * limitation from this.)
266 */
267#define MIN_SHARES (1UL << 1)
268#define MAX_SHARES (1UL << 18)
269#endif
270
029632fb
PZ
271typedef int (*tg_visitor)(struct task_group *, void *);
272
273extern int walk_tg_tree_from(struct task_group *from,
274 tg_visitor down, tg_visitor up, void *data);
275
276/*
277 * Iterate the full tree, calling @down when first entering a node and @up when
278 * leaving it for the final time.
279 *
280 * Caller must hold rcu_lock or sufficient equivalent.
281 */
282static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
283{
284 return walk_tg_tree_from(&root_task_group, down, up, data);
285}
286
287extern int tg_nop(struct task_group *tg, void *data);
288
289extern void free_fair_sched_group(struct task_group *tg);
290extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
291extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
292extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
293 struct sched_entity *se, int cpu,
294 struct sched_entity *parent);
295extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
296extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
297
298extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
299extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
300extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
301
302extern void free_rt_sched_group(struct task_group *tg);
303extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
304extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
305 struct sched_rt_entity *rt_se, int cpu,
306 struct sched_rt_entity *parent);
307
25cc7da7
LZ
308extern struct task_group *sched_create_group(struct task_group *parent);
309extern void sched_online_group(struct task_group *tg,
310 struct task_group *parent);
311extern void sched_destroy_group(struct task_group *tg);
312extern void sched_offline_group(struct task_group *tg);
313
314extern void sched_move_task(struct task_struct *tsk);
315
316#ifdef CONFIG_FAIR_GROUP_SCHED
317extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
318#endif
319
029632fb
PZ
320#else /* CONFIG_CGROUP_SCHED */
321
322struct cfs_bandwidth { };
323
324#endif /* CONFIG_CGROUP_SCHED */
325
326/* CFS-related fields in a runqueue */
327struct cfs_rq {
328 struct load_weight load;
c82513e5 329 unsigned int nr_running, h_nr_running;
029632fb
PZ
330
331 u64 exec_clock;
332 u64 min_vruntime;
333#ifndef CONFIG_64BIT
334 u64 min_vruntime_copy;
335#endif
336
337 struct rb_root tasks_timeline;
338 struct rb_node *rb_leftmost;
339
029632fb
PZ
340 /*
341 * 'curr' points to currently running entity on this cfs_rq.
342 * It is set to NULL otherwise (i.e when none are currently running).
343 */
344 struct sched_entity *curr, *next, *last, *skip;
345
346#ifdef CONFIG_SCHED_DEBUG
347 unsigned int nr_spread_over;
348#endif
349
2dac754e
PT
350#ifdef CONFIG_SMP
351 /*
352 * CFS Load tracking
353 * Under CFS, load is tracked on a per-entity basis and aggregated up.
354 * This allows for the description of both thread and group usage (in
355 * the FAIR_GROUP_SCHED case).
356 */
72a4cf20 357 unsigned long runnable_load_avg, blocked_load_avg;
2509940f 358 atomic64_t decay_counter;
9ee474f5 359 u64 last_decay;
2509940f 360 atomic_long_t removed_load;
141965c7 361
c566e8e9 362#ifdef CONFIG_FAIR_GROUP_SCHED
141965c7 363 /* Required to track per-cpu representation of a task_group */
bb17f655 364 u32 tg_runnable_contrib;
bf5b986e 365 unsigned long tg_load_contrib;
82958366
PT
366
367 /*
368 * h_load = weight * f(tg)
369 *
370 * Where f(tg) is the recursive weight fraction assigned to
371 * this group.
372 */
373 unsigned long h_load;
68520796
VD
374 u64 last_h_load_update;
375 struct sched_entity *h_load_next;
376#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
377#endif /* CONFIG_SMP */
378
029632fb
PZ
379#ifdef CONFIG_FAIR_GROUP_SCHED
380 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
381
382 /*
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
386 *
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
389 */
390 int on_list;
391 struct list_head leaf_cfs_rq_list;
392 struct task_group *tg; /* group that "owns" this runqueue */
393
029632fb
PZ
394#ifdef CONFIG_CFS_BANDWIDTH
395 int runtime_enabled;
396 u64 runtime_expires;
397 s64 runtime_remaining;
398
f1b17280
PT
399 u64 throttled_clock, throttled_clock_task;
400 u64 throttled_clock_task_time;
029632fb
PZ
401 int throttled, throttle_count;
402 struct list_head throttled_list;
403#endif /* CONFIG_CFS_BANDWIDTH */
404#endif /* CONFIG_FAIR_GROUP_SCHED */
405};
406
407static inline int rt_bandwidth_enabled(void)
408{
409 return sysctl_sched_rt_runtime >= 0;
410}
411
412/* Real-Time classes' related field in a runqueue: */
413struct rt_rq {
414 struct rt_prio_array active;
c82513e5 415 unsigned int rt_nr_running;
029632fb
PZ
416#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
417 struct {
418 int curr; /* highest queued rt task prio */
419#ifdef CONFIG_SMP
420 int next; /* next highest */
421#endif
422 } highest_prio;
423#endif
424#ifdef CONFIG_SMP
425 unsigned long rt_nr_migratory;
426 unsigned long rt_nr_total;
427 int overloaded;
428 struct plist_head pushable_tasks;
429#endif
430 int rt_throttled;
431 u64 rt_time;
432 u64 rt_runtime;
433 /* Nests inside the rq lock: */
434 raw_spinlock_t rt_runtime_lock;
435
436#ifdef CONFIG_RT_GROUP_SCHED
437 unsigned long rt_nr_boosted;
438
439 struct rq *rq;
029632fb
PZ
440 struct task_group *tg;
441#endif
442};
443
aab03e05
DF
444/* Deadline class' related fields in a runqueue */
445struct dl_rq {
446 /* runqueue is an rbtree, ordered by deadline */
447 struct rb_root rb_root;
448 struct rb_node *rb_leftmost;
449
450 unsigned long dl_nr_running;
1baca4ce
JL
451
452#ifdef CONFIG_SMP
453 /*
454 * Deadline values of the currently executing and the
455 * earliest ready task on this rq. Caching these facilitates
456 * the decision wether or not a ready but not running task
457 * should migrate somewhere else.
458 */
459 struct {
460 u64 curr;
461 u64 next;
462 } earliest_dl;
463
464 unsigned long dl_nr_migratory;
465 unsigned long dl_nr_total;
466 int overloaded;
467
468 /*
469 * Tasks on this rq that can be pushed away. They are kept in
470 * an rb-tree, ordered by tasks' deadlines, with caching
471 * of the leftmost (earliest deadline) element.
472 */
473 struct rb_root pushable_dl_tasks_root;
474 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
475#else
476 struct dl_bw dl_bw;
1baca4ce 477#endif
aab03e05
DF
478};
479
029632fb
PZ
480#ifdef CONFIG_SMP
481
482/*
483 * We add the notion of a root-domain which will be used to define per-domain
484 * variables. Each exclusive cpuset essentially defines an island domain by
485 * fully partitioning the member cpus from any other cpuset. Whenever a new
486 * exclusive cpuset is created, we also create and attach a new root-domain
487 * object.
488 *
489 */
490struct root_domain {
491 atomic_t refcount;
492 atomic_t rto_count;
493 struct rcu_head rcu;
494 cpumask_var_t span;
495 cpumask_var_t online;
496
1baca4ce
JL
497 /*
498 * The bit corresponding to a CPU gets set here if such CPU has more
499 * than one runnable -deadline task (as it is below for RT tasks).
500 */
501 cpumask_var_t dlo_mask;
502 atomic_t dlo_count;
332ac17e 503 struct dl_bw dl_bw;
6bfd6d72 504 struct cpudl cpudl;
1baca4ce 505
029632fb
PZ
506 /*
507 * The "RT overload" flag: it gets set if a CPU has more than
508 * one runnable RT task.
509 */
510 cpumask_var_t rto_mask;
511 struct cpupri cpupri;
512};
513
514extern struct root_domain def_root_domain;
515
516#endif /* CONFIG_SMP */
517
518/*
519 * This is the main, per-CPU runqueue data structure.
520 *
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
524 */
525struct rq {
526 /* runqueue lock: */
527 raw_spinlock_t lock;
528
529 /*
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
532 */
c82513e5 533 unsigned int nr_running;
0ec8aa00
PZ
534#ifdef CONFIG_NUMA_BALANCING
535 unsigned int nr_numa_running;
536 unsigned int nr_preferred_running;
537#endif
029632fb
PZ
538 #define CPU_LOAD_IDX_MAX 5
539 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
540 unsigned long last_load_update_tick;
3451d024 541#ifdef CONFIG_NO_HZ_COMMON
029632fb 542 u64 nohz_stamp;
1c792db7 543 unsigned long nohz_flags;
265f22a9
FW
544#endif
545#ifdef CONFIG_NO_HZ_FULL
546 unsigned long last_sched_tick;
029632fb
PZ
547#endif
548 int skip_clock_update;
549
550 /* capture load from *all* tasks on this cpu: */
551 struct load_weight load;
552 unsigned long nr_load_updates;
553 u64 nr_switches;
554
555 struct cfs_rq cfs;
556 struct rt_rq rt;
aab03e05 557 struct dl_rq dl;
029632fb
PZ
558
559#ifdef CONFIG_FAIR_GROUP_SCHED
560 /* list of leaf cfs_rq on this cpu: */
561 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
562#endif /* CONFIG_FAIR_GROUP_SCHED */
563
029632fb
PZ
564#ifdef CONFIG_RT_GROUP_SCHED
565 struct list_head leaf_rt_rq_list;
566#endif
567
568 /*
569 * This is part of a global counter where only the total sum
570 * over all CPUs matters. A task can increase this counter on
571 * one CPU and if it got migrated afterwards it may decrease
572 * it on another CPU. Always updated under the runqueue lock:
573 */
574 unsigned long nr_uninterruptible;
575
576 struct task_struct *curr, *idle, *stop;
577 unsigned long next_balance;
578 struct mm_struct *prev_mm;
579
580 u64 clock;
581 u64 clock_task;
582
583 atomic_t nr_iowait;
584
585#ifdef CONFIG_SMP
586 struct root_domain *rd;
587 struct sched_domain *sd;
588
589 unsigned long cpu_power;
590
591 unsigned char idle_balance;
592 /* For active balancing */
593 int post_schedule;
594 int active_balance;
595 int push_cpu;
596 struct cpu_stop_work active_balance_work;
597 /* cpu of this runqueue: */
598 int cpu;
599 int online;
600
367456c7
PZ
601 struct list_head cfs_tasks;
602
029632fb
PZ
603 u64 rt_avg;
604 u64 age_stamp;
605 u64 idle_stamp;
606 u64 avg_idle;
9bd721c5
JL
607
608 /* This is used to determine avg_idle's max value */
609 u64 max_idle_balance_cost;
029632fb
PZ
610#endif
611
612#ifdef CONFIG_IRQ_TIME_ACCOUNTING
613 u64 prev_irq_time;
614#endif
615#ifdef CONFIG_PARAVIRT
616 u64 prev_steal_time;
617#endif
618#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
619 u64 prev_steal_time_rq;
620#endif
621
622 /* calc_load related fields */
623 unsigned long calc_load_update;
624 long calc_load_active;
625
626#ifdef CONFIG_SCHED_HRTICK
627#ifdef CONFIG_SMP
628 int hrtick_csd_pending;
629 struct call_single_data hrtick_csd;
630#endif
631 struct hrtimer hrtick_timer;
632#endif
633
634#ifdef CONFIG_SCHEDSTATS
635 /* latency stats */
636 struct sched_info rq_sched_info;
637 unsigned long long rq_cpu_time;
638 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
639
640 /* sys_sched_yield() stats */
641 unsigned int yld_count;
642
643 /* schedule() stats */
029632fb
PZ
644 unsigned int sched_count;
645 unsigned int sched_goidle;
646
647 /* try_to_wake_up() stats */
648 unsigned int ttwu_count;
649 unsigned int ttwu_local;
650#endif
651
652#ifdef CONFIG_SMP
653 struct llist_head wake_list;
654#endif
18bf2805
BS
655
656 struct sched_avg avg;
029632fb
PZ
657};
658
659static inline int cpu_of(struct rq *rq)
660{
661#ifdef CONFIG_SMP
662 return rq->cpu;
663#else
664 return 0;
665#endif
666}
667
668DECLARE_PER_CPU(struct rq, runqueues);
669
518cd623
PZ
670#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
671#define this_rq() (&__get_cpu_var(runqueues))
672#define task_rq(p) cpu_rq(task_cpu(p))
673#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
674#define raw_rq() (&__raw_get_cpu_var(runqueues))
675
78becc27
FW
676static inline u64 rq_clock(struct rq *rq)
677{
678 return rq->clock;
679}
680
681static inline u64 rq_clock_task(struct rq *rq)
682{
683 return rq->clock_task;
684}
685
f809ca9a 686#ifdef CONFIG_NUMA_BALANCING
0ec8aa00 687extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 688extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 689extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
690#endif /* CONFIG_NUMA_BALANCING */
691
518cd623
PZ
692#ifdef CONFIG_SMP
693
029632fb
PZ
694#define rcu_dereference_check_sched_domain(p) \
695 rcu_dereference_check((p), \
696 lockdep_is_held(&sched_domains_mutex))
697
698/*
699 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
700 * See detach_destroy_domains: synchronize_sched for details.
701 *
702 * The domain tree of any CPU may only be accessed from within
703 * preempt-disabled sections.
704 */
705#define for_each_domain(cpu, __sd) \
518cd623
PZ
706 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
707 __sd; __sd = __sd->parent)
029632fb 708
77e81365
SS
709#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
710
518cd623
PZ
711/**
712 * highest_flag_domain - Return highest sched_domain containing flag.
713 * @cpu: The cpu whose highest level of sched domain is to
714 * be returned.
715 * @flag: The flag to check for the highest sched_domain
716 * for the given cpu.
717 *
718 * Returns the highest sched_domain of a cpu which contains the given flag.
719 */
720static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
721{
722 struct sched_domain *sd, *hsd = NULL;
723
724 for_each_domain(cpu, sd) {
725 if (!(sd->flags & flag))
726 break;
727 hsd = sd;
728 }
729
730 return hsd;
731}
732
fb13c7ee
MG
733static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
734{
735 struct sched_domain *sd;
736
737 for_each_domain(cpu, sd) {
738 if (sd->flags & flag)
739 break;
740 }
741
742 return sd;
743}
744
518cd623 745DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 746DECLARE_PER_CPU(int, sd_llc_size);
518cd623 747DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 748DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
749DECLARE_PER_CPU(struct sched_domain *, sd_busy);
750DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 751
5e6521ea
LZ
752struct sched_group_power {
753 atomic_t ref;
754 /*
755 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
756 * single CPU.
757 */
758 unsigned int power, power_orig;
759 unsigned long next_update;
6263322c 760 int imbalance; /* XXX unrelated to power but shared group state */
5e6521ea
LZ
761 /*
762 * Number of busy cpus in this group.
763 */
764 atomic_t nr_busy_cpus;
765
766 unsigned long cpumask[0]; /* iteration mask */
767};
768
769struct sched_group {
770 struct sched_group *next; /* Must be a circular list */
771 atomic_t ref;
772
773 unsigned int group_weight;
774 struct sched_group_power *sgp;
775
776 /*
777 * The CPUs this group covers.
778 *
779 * NOTE: this field is variable length. (Allocated dynamically
780 * by attaching extra space to the end of the structure,
781 * depending on how many CPUs the kernel has booted up with)
782 */
783 unsigned long cpumask[0];
784};
785
786static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
787{
788 return to_cpumask(sg->cpumask);
789}
790
791/*
792 * cpumask masking which cpus in the group are allowed to iterate up the domain
793 * tree.
794 */
795static inline struct cpumask *sched_group_mask(struct sched_group *sg)
796{
797 return to_cpumask(sg->sgp->cpumask);
798}
799
800/**
801 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
802 * @group: The group whose first cpu is to be returned.
803 */
804static inline unsigned int group_first_cpu(struct sched_group *group)
805{
806 return cpumask_first(sched_group_cpus(group));
807}
808
c1174876
PZ
809extern int group_balance_cpu(struct sched_group *sg);
810
518cd623 811#endif /* CONFIG_SMP */
029632fb 812
391e43da
PZ
813#include "stats.h"
814#include "auto_group.h"
029632fb
PZ
815
816#ifdef CONFIG_CGROUP_SCHED
817
818/*
819 * Return the group to which this tasks belongs.
820 *
8af01f56
TH
821 * We cannot use task_css() and friends because the cgroup subsystem
822 * changes that value before the cgroup_subsys::attach() method is called,
823 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
824 *
825 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
826 * core changes this before calling sched_move_task().
827 *
828 * Instead we use a 'copy' which is updated from sched_move_task() while
829 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
830 */
831static inline struct task_group *task_group(struct task_struct *p)
832{
8323f26c 833 return p->sched_task_group;
029632fb
PZ
834}
835
836/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
837static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
838{
839#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
840 struct task_group *tg = task_group(p);
841#endif
842
843#ifdef CONFIG_FAIR_GROUP_SCHED
844 p->se.cfs_rq = tg->cfs_rq[cpu];
845 p->se.parent = tg->se[cpu];
846#endif
847
848#ifdef CONFIG_RT_GROUP_SCHED
849 p->rt.rt_rq = tg->rt_rq[cpu];
850 p->rt.parent = tg->rt_se[cpu];
851#endif
852}
853
854#else /* CONFIG_CGROUP_SCHED */
855
856static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
857static inline struct task_group *task_group(struct task_struct *p)
858{
859 return NULL;
860}
861
862#endif /* CONFIG_CGROUP_SCHED */
863
864static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
865{
866 set_task_rq(p, cpu);
867#ifdef CONFIG_SMP
868 /*
869 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
870 * successfuly executed on another CPU. We must ensure that updates of
871 * per-task data have been completed by this moment.
872 */
873 smp_wmb();
874 task_thread_info(p)->cpu = cpu;
ac66f547 875 p->wake_cpu = cpu;
029632fb
PZ
876#endif
877}
878
879/*
880 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
881 */
882#ifdef CONFIG_SCHED_DEBUG
c5905afb 883# include <linux/static_key.h>
029632fb
PZ
884# define const_debug __read_mostly
885#else
886# define const_debug const
887#endif
888
889extern const_debug unsigned int sysctl_sched_features;
890
891#define SCHED_FEAT(name, enabled) \
892 __SCHED_FEAT_##name ,
893
894enum {
391e43da 895#include "features.h"
f8b6d1cc 896 __SCHED_FEAT_NR,
029632fb
PZ
897};
898
899#undef SCHED_FEAT
900
f8b6d1cc 901#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 902static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 903{
c5905afb 904 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
905}
906
c5905afb 907static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 908{
c5905afb 909 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
910}
911
912#define SCHED_FEAT(name, enabled) \
c5905afb 913static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
914{ \
915 return static_branch__##enabled(key); \
916}
917
918#include "features.h"
919
920#undef SCHED_FEAT
921
c5905afb 922extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
923#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
924#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 925#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 926#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 927
cbee9f88
PZ
928#ifdef CONFIG_NUMA_BALANCING
929#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
930#ifdef CONFIG_SCHED_DEBUG
931#define numabalancing_enabled sched_feat_numa(NUMA)
932#else
933extern bool numabalancing_enabled;
934#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
935#else
936#define sched_feat_numa(x) (0)
3105b86a
MG
937#define numabalancing_enabled (0)
938#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 939
029632fb
PZ
940static inline u64 global_rt_period(void)
941{
942 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
943}
944
945static inline u64 global_rt_runtime(void)
946{
947 if (sysctl_sched_rt_runtime < 0)
948 return RUNTIME_INF;
949
950 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
951}
952
029632fb
PZ
953static inline int task_current(struct rq *rq, struct task_struct *p)
954{
955 return rq->curr == p;
956}
957
958static inline int task_running(struct rq *rq, struct task_struct *p)
959{
960#ifdef CONFIG_SMP
961 return p->on_cpu;
962#else
963 return task_current(rq, p);
964#endif
965}
966
967
968#ifndef prepare_arch_switch
969# define prepare_arch_switch(next) do { } while (0)
970#endif
971#ifndef finish_arch_switch
972# define finish_arch_switch(prev) do { } while (0)
973#endif
01f23e16
CM
974#ifndef finish_arch_post_lock_switch
975# define finish_arch_post_lock_switch() do { } while (0)
976#endif
029632fb
PZ
977
978#ifndef __ARCH_WANT_UNLOCKED_CTXSW
979static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
980{
981#ifdef CONFIG_SMP
982 /*
983 * We can optimise this out completely for !SMP, because the
984 * SMP rebalancing from interrupt is the only thing that cares
985 * here.
986 */
987 next->on_cpu = 1;
988#endif
989}
990
991static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
992{
993#ifdef CONFIG_SMP
994 /*
995 * After ->on_cpu is cleared, the task can be moved to a different CPU.
996 * We must ensure this doesn't happen until the switch is completely
997 * finished.
998 */
999 smp_wmb();
1000 prev->on_cpu = 0;
1001#endif
1002#ifdef CONFIG_DEBUG_SPINLOCK
1003 /* this is a valid case when another task releases the spinlock */
1004 rq->lock.owner = current;
1005#endif
1006 /*
1007 * If we are tracking spinlock dependencies then we have to
1008 * fix up the runqueue lock - which gets 'carried over' from
1009 * prev into current:
1010 */
1011 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1012
1013 raw_spin_unlock_irq(&rq->lock);
1014}
1015
1016#else /* __ARCH_WANT_UNLOCKED_CTXSW */
1017static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1018{
1019#ifdef CONFIG_SMP
1020 /*
1021 * We can optimise this out completely for !SMP, because the
1022 * SMP rebalancing from interrupt is the only thing that cares
1023 * here.
1024 */
1025 next->on_cpu = 1;
1026#endif
029632fb 1027 raw_spin_unlock(&rq->lock);
029632fb
PZ
1028}
1029
1030static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1031{
1032#ifdef CONFIG_SMP
1033 /*
1034 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1035 * We must ensure this doesn't happen until the switch is completely
1036 * finished.
1037 */
1038 smp_wmb();
1039 prev->on_cpu = 0;
1040#endif
029632fb 1041 local_irq_enable();
029632fb
PZ
1042}
1043#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1044
b13095f0
LZ
1045/*
1046 * wake flags
1047 */
1048#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1049#define WF_FORK 0x02 /* child wakeup after fork */
1050#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1051
029632fb
PZ
1052/*
1053 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1054 * of tasks with abnormal "nice" values across CPUs the contribution that
1055 * each task makes to its run queue's load is weighted according to its
1056 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1057 * scaled version of the new time slice allocation that they receive on time
1058 * slice expiry etc.
1059 */
1060
1061#define WEIGHT_IDLEPRIO 3
1062#define WMULT_IDLEPRIO 1431655765
1063
1064/*
1065 * Nice levels are multiplicative, with a gentle 10% change for every
1066 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1067 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1068 * that remained on nice 0.
1069 *
1070 * The "10% effect" is relative and cumulative: from _any_ nice level,
1071 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1072 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1073 * If a task goes up by ~10% and another task goes down by ~10% then
1074 * the relative distance between them is ~25%.)
1075 */
1076static const int prio_to_weight[40] = {
1077 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1078 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1079 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1080 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1081 /* 0 */ 1024, 820, 655, 526, 423,
1082 /* 5 */ 335, 272, 215, 172, 137,
1083 /* 10 */ 110, 87, 70, 56, 45,
1084 /* 15 */ 36, 29, 23, 18, 15,
1085};
1086
1087/*
1088 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1089 *
1090 * In cases where the weight does not change often, we can use the
1091 * precalculated inverse to speed up arithmetics by turning divisions
1092 * into multiplications:
1093 */
1094static const u32 prio_to_wmult[40] = {
1095 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1096 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1097 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1098 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1099 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1100 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1101 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1102 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1103};
1104
c82ba9fa
LZ
1105#define ENQUEUE_WAKEUP 1
1106#define ENQUEUE_HEAD 2
1107#ifdef CONFIG_SMP
1108#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1109#else
1110#define ENQUEUE_WAKING 0
1111#endif
aab03e05 1112#define ENQUEUE_REPLENISH 8
c82ba9fa
LZ
1113
1114#define DEQUEUE_SLEEP 1
1115
1116struct sched_class {
1117 const struct sched_class *next;
1118
1119 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1120 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1121 void (*yield_task) (struct rq *rq);
1122 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1123
1124 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1125
1126 struct task_struct * (*pick_next_task) (struct rq *rq);
1127 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1128
1129#ifdef CONFIG_SMP
ac66f547 1130 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
c82ba9fa
LZ
1131 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1132
1133 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1134 void (*post_schedule) (struct rq *this_rq);
1135 void (*task_waking) (struct task_struct *task);
1136 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1137
1138 void (*set_cpus_allowed)(struct task_struct *p,
1139 const struct cpumask *newmask);
1140
1141 void (*rq_online)(struct rq *rq);
1142 void (*rq_offline)(struct rq *rq);
1143#endif
1144
1145 void (*set_curr_task) (struct rq *rq);
1146 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1147 void (*task_fork) (struct task_struct *p);
e6c390f2 1148 void (*task_dead) (struct task_struct *p);
c82ba9fa
LZ
1149
1150 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1151 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1152 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1153 int oldprio);
1154
1155 unsigned int (*get_rr_interval) (struct rq *rq,
1156 struct task_struct *task);
1157
1158#ifdef CONFIG_FAIR_GROUP_SCHED
1159 void (*task_move_group) (struct task_struct *p, int on_rq);
1160#endif
1161};
029632fb
PZ
1162
1163#define sched_class_highest (&stop_sched_class)
1164#define for_each_class(class) \
1165 for (class = sched_class_highest; class; class = class->next)
1166
1167extern const struct sched_class stop_sched_class;
aab03e05 1168extern const struct sched_class dl_sched_class;
029632fb
PZ
1169extern const struct sched_class rt_sched_class;
1170extern const struct sched_class fair_sched_class;
1171extern const struct sched_class idle_sched_class;
1172
1173
1174#ifdef CONFIG_SMP
1175
b719203b
LZ
1176extern void update_group_power(struct sched_domain *sd, int cpu);
1177
029632fb
PZ
1178extern void trigger_load_balance(struct rq *rq, int cpu);
1179extern void idle_balance(int this_cpu, struct rq *this_rq);
1180
642dbc39
VG
1181extern void idle_enter_fair(struct rq *this_rq);
1182extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1183
029632fb
PZ
1184#else /* CONFIG_SMP */
1185
1186static inline void idle_balance(int cpu, struct rq *rq)
1187{
1188}
1189
1190#endif
1191
1192extern void sysrq_sched_debug_show(void);
1193extern void sched_init_granularity(void);
1194extern void update_max_interval(void);
1baca4ce
JL
1195
1196extern void init_sched_dl_class(void);
029632fb
PZ
1197extern void init_sched_rt_class(void);
1198extern void init_sched_fair_class(void);
332ac17e 1199extern void init_sched_dl_class(void);
029632fb
PZ
1200
1201extern void resched_task(struct task_struct *p);
1202extern void resched_cpu(int cpu);
1203
1204extern struct rt_bandwidth def_rt_bandwidth;
1205extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1206
332ac17e
DF
1207extern struct dl_bandwidth def_dl_bandwidth;
1208extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1209extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1210
332ac17e
DF
1211unsigned long to_ratio(u64 period, u64 runtime);
1212
556061b0 1213extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1214
a75cdaa9
AS
1215extern void init_task_runnable_average(struct task_struct *p);
1216
73fbec60
FW
1217#ifdef CONFIG_PARAVIRT
1218static inline u64 steal_ticks(u64 steal)
1219{
1220 if (unlikely(steal > NSEC_PER_SEC))
1221 return div_u64(steal, TICK_NSEC);
1222
1223 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1224}
1225#endif
1226
029632fb
PZ
1227static inline void inc_nr_running(struct rq *rq)
1228{
1229 rq->nr_running++;
9f3660c2
FW
1230
1231#ifdef CONFIG_NO_HZ_FULL
1232 if (rq->nr_running == 2) {
1233 if (tick_nohz_full_cpu(rq->cpu)) {
1234 /* Order rq->nr_running write against the IPI */
1235 smp_wmb();
1236 smp_send_reschedule(rq->cpu);
1237 }
1238 }
1239#endif
029632fb
PZ
1240}
1241
1242static inline void dec_nr_running(struct rq *rq)
1243{
1244 rq->nr_running--;
1245}
1246
265f22a9
FW
1247static inline void rq_last_tick_reset(struct rq *rq)
1248{
1249#ifdef CONFIG_NO_HZ_FULL
1250 rq->last_sched_tick = jiffies;
1251#endif
1252}
1253
029632fb
PZ
1254extern void update_rq_clock(struct rq *rq);
1255
1256extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1257extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1258
1259extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1260
1261extern const_debug unsigned int sysctl_sched_time_avg;
1262extern const_debug unsigned int sysctl_sched_nr_migrate;
1263extern const_debug unsigned int sysctl_sched_migration_cost;
1264
1265static inline u64 sched_avg_period(void)
1266{
1267 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1268}
1269
029632fb
PZ
1270#ifdef CONFIG_SCHED_HRTICK
1271
1272/*
1273 * Use hrtick when:
1274 * - enabled by features
1275 * - hrtimer is actually high res
1276 */
1277static inline int hrtick_enabled(struct rq *rq)
1278{
1279 if (!sched_feat(HRTICK))
1280 return 0;
1281 if (!cpu_active(cpu_of(rq)))
1282 return 0;
1283 return hrtimer_is_hres_active(&rq->hrtick_timer);
1284}
1285
1286void hrtick_start(struct rq *rq, u64 delay);
1287
b39e66ea
MG
1288#else
1289
1290static inline int hrtick_enabled(struct rq *rq)
1291{
1292 return 0;
1293}
1294
029632fb
PZ
1295#endif /* CONFIG_SCHED_HRTICK */
1296
1297#ifdef CONFIG_SMP
1298extern void sched_avg_update(struct rq *rq);
1299static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1300{
1301 rq->rt_avg += rt_delta;
1302 sched_avg_update(rq);
1303}
1304#else
1305static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1306static inline void sched_avg_update(struct rq *rq) { }
1307#endif
1308
1309extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1310
1311#ifdef CONFIG_SMP
1312#ifdef CONFIG_PREEMPT
1313
1314static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1315
1316/*
1317 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1318 * way at the expense of forcing extra atomic operations in all
1319 * invocations. This assures that the double_lock is acquired using the
1320 * same underlying policy as the spinlock_t on this architecture, which
1321 * reduces latency compared to the unfair variant below. However, it
1322 * also adds more overhead and therefore may reduce throughput.
1323 */
1324static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1325 __releases(this_rq->lock)
1326 __acquires(busiest->lock)
1327 __acquires(this_rq->lock)
1328{
1329 raw_spin_unlock(&this_rq->lock);
1330 double_rq_lock(this_rq, busiest);
1331
1332 return 1;
1333}
1334
1335#else
1336/*
1337 * Unfair double_lock_balance: Optimizes throughput at the expense of
1338 * latency by eliminating extra atomic operations when the locks are
1339 * already in proper order on entry. This favors lower cpu-ids and will
1340 * grant the double lock to lower cpus over higher ids under contention,
1341 * regardless of entry order into the function.
1342 */
1343static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1344 __releases(this_rq->lock)
1345 __acquires(busiest->lock)
1346 __acquires(this_rq->lock)
1347{
1348 int ret = 0;
1349
1350 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1351 if (busiest < this_rq) {
1352 raw_spin_unlock(&this_rq->lock);
1353 raw_spin_lock(&busiest->lock);
1354 raw_spin_lock_nested(&this_rq->lock,
1355 SINGLE_DEPTH_NESTING);
1356 ret = 1;
1357 } else
1358 raw_spin_lock_nested(&busiest->lock,
1359 SINGLE_DEPTH_NESTING);
1360 }
1361 return ret;
1362}
1363
1364#endif /* CONFIG_PREEMPT */
1365
1366/*
1367 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1368 */
1369static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1370{
1371 if (unlikely(!irqs_disabled())) {
1372 /* printk() doesn't work good under rq->lock */
1373 raw_spin_unlock(&this_rq->lock);
1374 BUG_ON(1);
1375 }
1376
1377 return _double_lock_balance(this_rq, busiest);
1378}
1379
1380static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1381 __releases(busiest->lock)
1382{
1383 raw_spin_unlock(&busiest->lock);
1384 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1385}
1386
74602315
PZ
1387static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1388{
1389 if (l1 > l2)
1390 swap(l1, l2);
1391
1392 spin_lock(l1);
1393 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1394}
1395
1396static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1397{
1398 if (l1 > l2)
1399 swap(l1, l2);
1400
1401 raw_spin_lock(l1);
1402 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1403}
1404
029632fb
PZ
1405/*
1406 * double_rq_lock - safely lock two runqueues
1407 *
1408 * Note this does not disable interrupts like task_rq_lock,
1409 * you need to do so manually before calling.
1410 */
1411static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1412 __acquires(rq1->lock)
1413 __acquires(rq2->lock)
1414{
1415 BUG_ON(!irqs_disabled());
1416 if (rq1 == rq2) {
1417 raw_spin_lock(&rq1->lock);
1418 __acquire(rq2->lock); /* Fake it out ;) */
1419 } else {
1420 if (rq1 < rq2) {
1421 raw_spin_lock(&rq1->lock);
1422 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1423 } else {
1424 raw_spin_lock(&rq2->lock);
1425 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1426 }
1427 }
1428}
1429
1430/*
1431 * double_rq_unlock - safely unlock two runqueues
1432 *
1433 * Note this does not restore interrupts like task_rq_unlock,
1434 * you need to do so manually after calling.
1435 */
1436static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1437 __releases(rq1->lock)
1438 __releases(rq2->lock)
1439{
1440 raw_spin_unlock(&rq1->lock);
1441 if (rq1 != rq2)
1442 raw_spin_unlock(&rq2->lock);
1443 else
1444 __release(rq2->lock);
1445}
1446
1447#else /* CONFIG_SMP */
1448
1449/*
1450 * double_rq_lock - safely lock two runqueues
1451 *
1452 * Note this does not disable interrupts like task_rq_lock,
1453 * you need to do so manually before calling.
1454 */
1455static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1456 __acquires(rq1->lock)
1457 __acquires(rq2->lock)
1458{
1459 BUG_ON(!irqs_disabled());
1460 BUG_ON(rq1 != rq2);
1461 raw_spin_lock(&rq1->lock);
1462 __acquire(rq2->lock); /* Fake it out ;) */
1463}
1464
1465/*
1466 * double_rq_unlock - safely unlock two runqueues
1467 *
1468 * Note this does not restore interrupts like task_rq_unlock,
1469 * you need to do so manually after calling.
1470 */
1471static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1472 __releases(rq1->lock)
1473 __releases(rq2->lock)
1474{
1475 BUG_ON(rq1 != rq2);
1476 raw_spin_unlock(&rq1->lock);
1477 __release(rq2->lock);
1478}
1479
1480#endif
1481
1482extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1483extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1484extern void print_cfs_stats(struct seq_file *m, int cpu);
1485extern void print_rt_stats(struct seq_file *m, int cpu);
1486
1487extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1488extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
aab03e05 1489extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
029632fb 1490
1ee14e6c
BS
1491extern void cfs_bandwidth_usage_inc(void);
1492extern void cfs_bandwidth_usage_dec(void);
1c792db7 1493
3451d024 1494#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1495enum rq_nohz_flag_bits {
1496 NOHZ_TICK_STOPPED,
1497 NOHZ_BALANCE_KICK,
1498};
1499
1500#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1501#endif
73fbec60
FW
1502
1503#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1504
1505DECLARE_PER_CPU(u64, cpu_hardirq_time);
1506DECLARE_PER_CPU(u64, cpu_softirq_time);
1507
1508#ifndef CONFIG_64BIT
1509DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1510
1511static inline void irq_time_write_begin(void)
1512{
1513 __this_cpu_inc(irq_time_seq.sequence);
1514 smp_wmb();
1515}
1516
1517static inline void irq_time_write_end(void)
1518{
1519 smp_wmb();
1520 __this_cpu_inc(irq_time_seq.sequence);
1521}
1522
1523static inline u64 irq_time_read(int cpu)
1524{
1525 u64 irq_time;
1526 unsigned seq;
1527
1528 do {
1529 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1530 irq_time = per_cpu(cpu_softirq_time, cpu) +
1531 per_cpu(cpu_hardirq_time, cpu);
1532 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1533
1534 return irq_time;
1535}
1536#else /* CONFIG_64BIT */
1537static inline void irq_time_write_begin(void)
1538{
1539}
1540
1541static inline void irq_time_write_end(void)
1542{
1543}
1544
1545static inline u64 irq_time_read(int cpu)
1546{
1547 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1548}
1549#endif /* CONFIG_64BIT */
1550#endif /* CONFIG_IRQ_TIME_ACCOUNTING */