sched: Test the CPU's capacity in wake_affine()
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
029632fb
PZ
6#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
9f3660c2 9#include <linux/tick.h>
f809ca9a 10#include <linux/slab.h>
029632fb 11
391e43da 12#include "cpupri.h"
6bfd6d72 13#include "cpudeadline.h"
60fed789 14#include "cpuacct.h"
029632fb 15
45ceebf7
PG
16struct rq;
17
da0c1e65
KT
18/* task_struct::on_rq states: */
19#define TASK_ON_RQ_QUEUED 1
cca26e80 20#define TASK_ON_RQ_MIGRATING 2
da0c1e65 21
029632fb
PZ
22extern __read_mostly int scheduler_running;
23
45ceebf7
PG
24extern unsigned long calc_load_update;
25extern atomic_long_t calc_load_tasks;
26
27extern long calc_load_fold_active(struct rq *this_rq);
28extern void update_cpu_load_active(struct rq *this_rq);
29
029632fb
PZ
30/*
31 * Helpers for converting nanosecond timing to jiffy resolution
32 */
33#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
34
cc1f4b1f
LZ
35/*
36 * Increase resolution of nice-level calculations for 64-bit architectures.
37 * The extra resolution improves shares distribution and load balancing of
38 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
39 * hierarchies, especially on larger systems. This is not a user-visible change
40 * and does not change the user-interface for setting shares/weights.
41 *
42 * We increase resolution only if we have enough bits to allow this increased
43 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
44 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
45 * increased costs.
46 */
47#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
48# define SCHED_LOAD_RESOLUTION 10
49# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
50# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
51#else
52# define SCHED_LOAD_RESOLUTION 0
53# define scale_load(w) (w)
54# define scale_load_down(w) (w)
55#endif
56
57#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
58#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
59
029632fb
PZ
60#define NICE_0_LOAD SCHED_LOAD_SCALE
61#define NICE_0_SHIFT SCHED_LOAD_SHIFT
62
332ac17e
DF
63/*
64 * Single value that decides SCHED_DEADLINE internal math precision.
65 * 10 -> just above 1us
66 * 9 -> just above 0.5us
67 */
68#define DL_SCALE (10)
69
029632fb
PZ
70/*
71 * These are the 'tuning knobs' of the scheduler:
029632fb 72 */
029632fb
PZ
73
74/*
75 * single value that denotes runtime == period, ie unlimited time.
76 */
77#define RUNTIME_INF ((u64)~0ULL)
78
d50dde5a
DF
79static inline int fair_policy(int policy)
80{
81 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
82}
83
029632fb
PZ
84static inline int rt_policy(int policy)
85{
d50dde5a 86 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
87}
88
aab03e05
DF
89static inline int dl_policy(int policy)
90{
91 return policy == SCHED_DEADLINE;
92}
93
029632fb
PZ
94static inline int task_has_rt_policy(struct task_struct *p)
95{
96 return rt_policy(p->policy);
97}
98
aab03e05
DF
99static inline int task_has_dl_policy(struct task_struct *p)
100{
101 return dl_policy(p->policy);
102}
103
332ac17e 104static inline bool dl_time_before(u64 a, u64 b)
2d3d891d
DF
105{
106 return (s64)(a - b) < 0;
107}
108
109/*
110 * Tells if entity @a should preempt entity @b.
111 */
332ac17e
DF
112static inline bool
113dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
114{
115 return dl_time_before(a->deadline, b->deadline);
116}
117
029632fb
PZ
118/*
119 * This is the priority-queue data structure of the RT scheduling class:
120 */
121struct rt_prio_array {
122 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
123 struct list_head queue[MAX_RT_PRIO];
124};
125
126struct rt_bandwidth {
127 /* nests inside the rq lock: */
128 raw_spinlock_t rt_runtime_lock;
129 ktime_t rt_period;
130 u64 rt_runtime;
131 struct hrtimer rt_period_timer;
132};
332ac17e
DF
133/*
134 * To keep the bandwidth of -deadline tasks and groups under control
135 * we need some place where:
136 * - store the maximum -deadline bandwidth of the system (the group);
137 * - cache the fraction of that bandwidth that is currently allocated.
138 *
139 * This is all done in the data structure below. It is similar to the
140 * one used for RT-throttling (rt_bandwidth), with the main difference
141 * that, since here we are only interested in admission control, we
142 * do not decrease any runtime while the group "executes", neither we
143 * need a timer to replenish it.
144 *
145 * With respect to SMP, the bandwidth is given on a per-CPU basis,
146 * meaning that:
147 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
148 * - dl_total_bw array contains, in the i-eth element, the currently
149 * allocated bandwidth on the i-eth CPU.
150 * Moreover, groups consume bandwidth on each CPU, while tasks only
151 * consume bandwidth on the CPU they're running on.
152 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
153 * that will be shown the next time the proc or cgroup controls will
154 * be red. It on its turn can be changed by writing on its own
155 * control.
156 */
157struct dl_bandwidth {
158 raw_spinlock_t dl_runtime_lock;
159 u64 dl_runtime;
160 u64 dl_period;
161};
162
163static inline int dl_bandwidth_enabled(void)
164{
1724813d 165 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
166}
167
168extern struct dl_bw *dl_bw_of(int i);
169
170struct dl_bw {
171 raw_spinlock_t lock;
172 u64 bw, total_bw;
173};
174
029632fb
PZ
175extern struct mutex sched_domains_mutex;
176
177#ifdef CONFIG_CGROUP_SCHED
178
179#include <linux/cgroup.h>
180
181struct cfs_rq;
182struct rt_rq;
183
35cf4e50 184extern struct list_head task_groups;
029632fb
PZ
185
186struct cfs_bandwidth {
187#ifdef CONFIG_CFS_BANDWIDTH
188 raw_spinlock_t lock;
189 ktime_t period;
190 u64 quota, runtime;
191 s64 hierarchal_quota;
192 u64 runtime_expires;
193
194 int idle, timer_active;
195 struct hrtimer period_timer, slack_timer;
196 struct list_head throttled_cfs_rq;
197
198 /* statistics */
199 int nr_periods, nr_throttled;
200 u64 throttled_time;
201#endif
202};
203
204/* task group related information */
205struct task_group {
206 struct cgroup_subsys_state css;
207
208#ifdef CONFIG_FAIR_GROUP_SCHED
209 /* schedulable entities of this group on each cpu */
210 struct sched_entity **se;
211 /* runqueue "owned" by this group on each cpu */
212 struct cfs_rq **cfs_rq;
213 unsigned long shares;
214
fa6bddeb 215#ifdef CONFIG_SMP
bf5b986e 216 atomic_long_t load_avg;
bb17f655 217 atomic_t runnable_avg;
029632fb 218#endif
fa6bddeb 219#endif
029632fb
PZ
220
221#ifdef CONFIG_RT_GROUP_SCHED
222 struct sched_rt_entity **rt_se;
223 struct rt_rq **rt_rq;
224
225 struct rt_bandwidth rt_bandwidth;
226#endif
227
228 struct rcu_head rcu;
229 struct list_head list;
230
231 struct task_group *parent;
232 struct list_head siblings;
233 struct list_head children;
234
235#ifdef CONFIG_SCHED_AUTOGROUP
236 struct autogroup *autogroup;
237#endif
238
239 struct cfs_bandwidth cfs_bandwidth;
240};
241
242#ifdef CONFIG_FAIR_GROUP_SCHED
243#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
244
245/*
246 * A weight of 0 or 1 can cause arithmetics problems.
247 * A weight of a cfs_rq is the sum of weights of which entities
248 * are queued on this cfs_rq, so a weight of a entity should not be
249 * too large, so as the shares value of a task group.
250 * (The default weight is 1024 - so there's no practical
251 * limitation from this.)
252 */
253#define MIN_SHARES (1UL << 1)
254#define MAX_SHARES (1UL << 18)
255#endif
256
029632fb
PZ
257typedef int (*tg_visitor)(struct task_group *, void *);
258
259extern int walk_tg_tree_from(struct task_group *from,
260 tg_visitor down, tg_visitor up, void *data);
261
262/*
263 * Iterate the full tree, calling @down when first entering a node and @up when
264 * leaving it for the final time.
265 *
266 * Caller must hold rcu_lock or sufficient equivalent.
267 */
268static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
269{
270 return walk_tg_tree_from(&root_task_group, down, up, data);
271}
272
273extern int tg_nop(struct task_group *tg, void *data);
274
275extern void free_fair_sched_group(struct task_group *tg);
276extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
277extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
278extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
279 struct sched_entity *se, int cpu,
280 struct sched_entity *parent);
281extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
282extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
283
284extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
09dc4ab0 285extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
029632fb
PZ
286extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
287
288extern void free_rt_sched_group(struct task_group *tg);
289extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
290extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
291 struct sched_rt_entity *rt_se, int cpu,
292 struct sched_rt_entity *parent);
293
25cc7da7
LZ
294extern struct task_group *sched_create_group(struct task_group *parent);
295extern void sched_online_group(struct task_group *tg,
296 struct task_group *parent);
297extern void sched_destroy_group(struct task_group *tg);
298extern void sched_offline_group(struct task_group *tg);
299
300extern void sched_move_task(struct task_struct *tsk);
301
302#ifdef CONFIG_FAIR_GROUP_SCHED
303extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
304#endif
305
029632fb
PZ
306#else /* CONFIG_CGROUP_SCHED */
307
308struct cfs_bandwidth { };
309
310#endif /* CONFIG_CGROUP_SCHED */
311
312/* CFS-related fields in a runqueue */
313struct cfs_rq {
314 struct load_weight load;
c82513e5 315 unsigned int nr_running, h_nr_running;
029632fb
PZ
316
317 u64 exec_clock;
318 u64 min_vruntime;
319#ifndef CONFIG_64BIT
320 u64 min_vruntime_copy;
321#endif
322
323 struct rb_root tasks_timeline;
324 struct rb_node *rb_leftmost;
325
029632fb
PZ
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
330 struct sched_entity *curr, *next, *last, *skip;
331
332#ifdef CONFIG_SCHED_DEBUG
333 unsigned int nr_spread_over;
334#endif
335
2dac754e
PT
336#ifdef CONFIG_SMP
337 /*
338 * CFS Load tracking
339 * Under CFS, load is tracked on a per-entity basis and aggregated up.
340 * This allows for the description of both thread and group usage (in
341 * the FAIR_GROUP_SCHED case).
342 */
72a4cf20 343 unsigned long runnable_load_avg, blocked_load_avg;
2509940f 344 atomic64_t decay_counter;
9ee474f5 345 u64 last_decay;
2509940f 346 atomic_long_t removed_load;
141965c7 347
c566e8e9 348#ifdef CONFIG_FAIR_GROUP_SCHED
141965c7 349 /* Required to track per-cpu representation of a task_group */
bb17f655 350 u32 tg_runnable_contrib;
bf5b986e 351 unsigned long tg_load_contrib;
82958366
PT
352
353 /*
354 * h_load = weight * f(tg)
355 *
356 * Where f(tg) is the recursive weight fraction assigned to
357 * this group.
358 */
359 unsigned long h_load;
68520796
VD
360 u64 last_h_load_update;
361 struct sched_entity *h_load_next;
362#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
363#endif /* CONFIG_SMP */
364
029632fb
PZ
365#ifdef CONFIG_FAIR_GROUP_SCHED
366 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
367
368 /*
369 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
370 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
371 * (like users, containers etc.)
372 *
373 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
374 * list is used during load balance.
375 */
376 int on_list;
377 struct list_head leaf_cfs_rq_list;
378 struct task_group *tg; /* group that "owns" this runqueue */
379
029632fb
PZ
380#ifdef CONFIG_CFS_BANDWIDTH
381 int runtime_enabled;
382 u64 runtime_expires;
383 s64 runtime_remaining;
384
f1b17280
PT
385 u64 throttled_clock, throttled_clock_task;
386 u64 throttled_clock_task_time;
029632fb
PZ
387 int throttled, throttle_count;
388 struct list_head throttled_list;
389#endif /* CONFIG_CFS_BANDWIDTH */
390#endif /* CONFIG_FAIR_GROUP_SCHED */
391};
392
393static inline int rt_bandwidth_enabled(void)
394{
395 return sysctl_sched_rt_runtime >= 0;
396}
397
398/* Real-Time classes' related field in a runqueue: */
399struct rt_rq {
400 struct rt_prio_array active;
c82513e5 401 unsigned int rt_nr_running;
029632fb
PZ
402#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
403 struct {
404 int curr; /* highest queued rt task prio */
405#ifdef CONFIG_SMP
406 int next; /* next highest */
407#endif
408 } highest_prio;
409#endif
410#ifdef CONFIG_SMP
411 unsigned long rt_nr_migratory;
412 unsigned long rt_nr_total;
413 int overloaded;
414 struct plist_head pushable_tasks;
415#endif
f4ebcbc0
KT
416 int rt_queued;
417
029632fb
PZ
418 int rt_throttled;
419 u64 rt_time;
420 u64 rt_runtime;
421 /* Nests inside the rq lock: */
422 raw_spinlock_t rt_runtime_lock;
423
424#ifdef CONFIG_RT_GROUP_SCHED
425 unsigned long rt_nr_boosted;
426
427 struct rq *rq;
029632fb
PZ
428 struct task_group *tg;
429#endif
430};
431
aab03e05
DF
432/* Deadline class' related fields in a runqueue */
433struct dl_rq {
434 /* runqueue is an rbtree, ordered by deadline */
435 struct rb_root rb_root;
436 struct rb_node *rb_leftmost;
437
438 unsigned long dl_nr_running;
1baca4ce
JL
439
440#ifdef CONFIG_SMP
441 /*
442 * Deadline values of the currently executing and the
443 * earliest ready task on this rq. Caching these facilitates
444 * the decision wether or not a ready but not running task
445 * should migrate somewhere else.
446 */
447 struct {
448 u64 curr;
449 u64 next;
450 } earliest_dl;
451
452 unsigned long dl_nr_migratory;
1baca4ce
JL
453 int overloaded;
454
455 /*
456 * Tasks on this rq that can be pushed away. They are kept in
457 * an rb-tree, ordered by tasks' deadlines, with caching
458 * of the leftmost (earliest deadline) element.
459 */
460 struct rb_root pushable_dl_tasks_root;
461 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
462#else
463 struct dl_bw dl_bw;
1baca4ce 464#endif
aab03e05
DF
465};
466
029632fb
PZ
467#ifdef CONFIG_SMP
468
469/*
470 * We add the notion of a root-domain which will be used to define per-domain
471 * variables. Each exclusive cpuset essentially defines an island domain by
472 * fully partitioning the member cpus from any other cpuset. Whenever a new
473 * exclusive cpuset is created, we also create and attach a new root-domain
474 * object.
475 *
476 */
477struct root_domain {
478 atomic_t refcount;
479 atomic_t rto_count;
480 struct rcu_head rcu;
481 cpumask_var_t span;
482 cpumask_var_t online;
483
4486edd1
TC
484 /* Indicate more than one runnable task for any CPU */
485 bool overload;
486
1baca4ce
JL
487 /*
488 * The bit corresponding to a CPU gets set here if such CPU has more
489 * than one runnable -deadline task (as it is below for RT tasks).
490 */
491 cpumask_var_t dlo_mask;
492 atomic_t dlo_count;
332ac17e 493 struct dl_bw dl_bw;
6bfd6d72 494 struct cpudl cpudl;
1baca4ce 495
029632fb
PZ
496 /*
497 * The "RT overload" flag: it gets set if a CPU has more than
498 * one runnable RT task.
499 */
500 cpumask_var_t rto_mask;
501 struct cpupri cpupri;
502};
503
504extern struct root_domain def_root_domain;
505
506#endif /* CONFIG_SMP */
507
508/*
509 * This is the main, per-CPU runqueue data structure.
510 *
511 * Locking rule: those places that want to lock multiple runqueues
512 * (such as the load balancing or the thread migration code), lock
513 * acquire operations must be ordered by ascending &runqueue.
514 */
515struct rq {
516 /* runqueue lock: */
517 raw_spinlock_t lock;
518
519 /*
520 * nr_running and cpu_load should be in the same cacheline because
521 * remote CPUs use both these fields when doing load calculation.
522 */
c82513e5 523 unsigned int nr_running;
0ec8aa00
PZ
524#ifdef CONFIG_NUMA_BALANCING
525 unsigned int nr_numa_running;
526 unsigned int nr_preferred_running;
527#endif
029632fb
PZ
528 #define CPU_LOAD_IDX_MAX 5
529 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
530 unsigned long last_load_update_tick;
3451d024 531#ifdef CONFIG_NO_HZ_COMMON
029632fb 532 u64 nohz_stamp;
1c792db7 533 unsigned long nohz_flags;
265f22a9
FW
534#endif
535#ifdef CONFIG_NO_HZ_FULL
536 unsigned long last_sched_tick;
029632fb
PZ
537#endif
538 int skip_clock_update;
539
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
546 struct rt_rq rt;
aab03e05 547 struct dl_rq dl;
029632fb
PZ
548
549#ifdef CONFIG_FAIR_GROUP_SCHED
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list;
f5f9739d
DE
552
553 struct sched_avg avg;
a35b6466
PZ
554#endif /* CONFIG_FAIR_GROUP_SCHED */
555
029632fb
PZ
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
564 struct task_struct *curr, *idle, *stop;
565 unsigned long next_balance;
566 struct mm_struct *prev_mm;
567
568 u64 clock;
569 u64 clock_task;
570
571 atomic_t nr_iowait;
572
573#ifdef CONFIG_SMP
574 struct root_domain *rd;
575 struct sched_domain *sd;
576
ced549fa 577 unsigned long cpu_capacity;
029632fb
PZ
578
579 unsigned char idle_balance;
580 /* For active balancing */
581 int post_schedule;
582 int active_balance;
583 int push_cpu;
584 struct cpu_stop_work active_balance_work;
585 /* cpu of this runqueue: */
586 int cpu;
587 int online;
588
367456c7
PZ
589 struct list_head cfs_tasks;
590
029632fb
PZ
591 u64 rt_avg;
592 u64 age_stamp;
593 u64 idle_stamp;
594 u64 avg_idle;
9bd721c5
JL
595
596 /* This is used to determine avg_idle's max value */
597 u64 max_idle_balance_cost;
029632fb
PZ
598#endif
599
600#ifdef CONFIG_IRQ_TIME_ACCOUNTING
601 u64 prev_irq_time;
602#endif
603#ifdef CONFIG_PARAVIRT
604 u64 prev_steal_time;
605#endif
606#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
607 u64 prev_steal_time_rq;
608#endif
609
610 /* calc_load related fields */
611 unsigned long calc_load_update;
612 long calc_load_active;
613
614#ifdef CONFIG_SCHED_HRTICK
615#ifdef CONFIG_SMP
616 int hrtick_csd_pending;
617 struct call_single_data hrtick_csd;
618#endif
619 struct hrtimer hrtick_timer;
620#endif
621
622#ifdef CONFIG_SCHEDSTATS
623 /* latency stats */
624 struct sched_info rq_sched_info;
625 unsigned long long rq_cpu_time;
626 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
627
628 /* sys_sched_yield() stats */
629 unsigned int yld_count;
630
631 /* schedule() stats */
029632fb
PZ
632 unsigned int sched_count;
633 unsigned int sched_goidle;
634
635 /* try_to_wake_up() stats */
636 unsigned int ttwu_count;
637 unsigned int ttwu_local;
638#endif
639
640#ifdef CONFIG_SMP
641 struct llist_head wake_list;
642#endif
643};
644
645static inline int cpu_of(struct rq *rq)
646{
647#ifdef CONFIG_SMP
648 return rq->cpu;
649#else
650 return 0;
651#endif
652}
653
8b06c55b 654DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 655
518cd623
PZ
656#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
657#define this_rq() (&__get_cpu_var(runqueues))
658#define task_rq(p) cpu_rq(task_cpu(p))
659#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
660#define raw_rq() (&__raw_get_cpu_var(runqueues))
661
78becc27
FW
662static inline u64 rq_clock(struct rq *rq)
663{
664 return rq->clock;
665}
666
667static inline u64 rq_clock_task(struct rq *rq)
668{
669 return rq->clock_task;
670}
671
f809ca9a 672#ifdef CONFIG_NUMA_BALANCING
0ec8aa00 673extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 674extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 675extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
676#endif /* CONFIG_NUMA_BALANCING */
677
518cd623
PZ
678#ifdef CONFIG_SMP
679
e3baac47
PZ
680extern void sched_ttwu_pending(void);
681
029632fb
PZ
682#define rcu_dereference_check_sched_domain(p) \
683 rcu_dereference_check((p), \
684 lockdep_is_held(&sched_domains_mutex))
685
686/*
687 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
688 * See detach_destroy_domains: synchronize_sched for details.
689 *
690 * The domain tree of any CPU may only be accessed from within
691 * preempt-disabled sections.
692 */
693#define for_each_domain(cpu, __sd) \
518cd623
PZ
694 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
695 __sd; __sd = __sd->parent)
029632fb 696
77e81365
SS
697#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
698
518cd623
PZ
699/**
700 * highest_flag_domain - Return highest sched_domain containing flag.
701 * @cpu: The cpu whose highest level of sched domain is to
702 * be returned.
703 * @flag: The flag to check for the highest sched_domain
704 * for the given cpu.
705 *
706 * Returns the highest sched_domain of a cpu which contains the given flag.
707 */
708static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
709{
710 struct sched_domain *sd, *hsd = NULL;
711
712 for_each_domain(cpu, sd) {
713 if (!(sd->flags & flag))
714 break;
715 hsd = sd;
716 }
717
718 return hsd;
719}
720
fb13c7ee
MG
721static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
722{
723 struct sched_domain *sd;
724
725 for_each_domain(cpu, sd) {
726 if (sd->flags & flag)
727 break;
728 }
729
730 return sd;
731}
732
518cd623 733DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 734DECLARE_PER_CPU(int, sd_llc_size);
518cd623 735DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 736DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
737DECLARE_PER_CPU(struct sched_domain *, sd_busy);
738DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 739
63b2ca30 740struct sched_group_capacity {
5e6521ea
LZ
741 atomic_t ref;
742 /*
63b2ca30
NP
743 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
744 * for a single CPU.
5e6521ea 745 */
63b2ca30 746 unsigned int capacity, capacity_orig;
5e6521ea 747 unsigned long next_update;
63b2ca30 748 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
749 /*
750 * Number of busy cpus in this group.
751 */
752 atomic_t nr_busy_cpus;
753
754 unsigned long cpumask[0]; /* iteration mask */
755};
756
757struct sched_group {
758 struct sched_group *next; /* Must be a circular list */
759 atomic_t ref;
760
761 unsigned int group_weight;
63b2ca30 762 struct sched_group_capacity *sgc;
5e6521ea
LZ
763
764 /*
765 * The CPUs this group covers.
766 *
767 * NOTE: this field is variable length. (Allocated dynamically
768 * by attaching extra space to the end of the structure,
769 * depending on how many CPUs the kernel has booted up with)
770 */
771 unsigned long cpumask[0];
772};
773
774static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
775{
776 return to_cpumask(sg->cpumask);
777}
778
779/*
780 * cpumask masking which cpus in the group are allowed to iterate up the domain
781 * tree.
782 */
783static inline struct cpumask *sched_group_mask(struct sched_group *sg)
784{
63b2ca30 785 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
786}
787
788/**
789 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
790 * @group: The group whose first cpu is to be returned.
791 */
792static inline unsigned int group_first_cpu(struct sched_group *group)
793{
794 return cpumask_first(sched_group_cpus(group));
795}
796
c1174876
PZ
797extern int group_balance_cpu(struct sched_group *sg);
798
e3baac47
PZ
799#else
800
801static inline void sched_ttwu_pending(void) { }
802
518cd623 803#endif /* CONFIG_SMP */
029632fb 804
391e43da
PZ
805#include "stats.h"
806#include "auto_group.h"
029632fb
PZ
807
808#ifdef CONFIG_CGROUP_SCHED
809
810/*
811 * Return the group to which this tasks belongs.
812 *
8af01f56
TH
813 * We cannot use task_css() and friends because the cgroup subsystem
814 * changes that value before the cgroup_subsys::attach() method is called,
815 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
816 *
817 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
818 * core changes this before calling sched_move_task().
819 *
820 * Instead we use a 'copy' which is updated from sched_move_task() while
821 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
822 */
823static inline struct task_group *task_group(struct task_struct *p)
824{
8323f26c 825 return p->sched_task_group;
029632fb
PZ
826}
827
828/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
829static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
830{
831#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
832 struct task_group *tg = task_group(p);
833#endif
834
835#ifdef CONFIG_FAIR_GROUP_SCHED
836 p->se.cfs_rq = tg->cfs_rq[cpu];
837 p->se.parent = tg->se[cpu];
838#endif
839
840#ifdef CONFIG_RT_GROUP_SCHED
841 p->rt.rt_rq = tg->rt_rq[cpu];
842 p->rt.parent = tg->rt_se[cpu];
843#endif
844}
845
846#else /* CONFIG_CGROUP_SCHED */
847
848static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
849static inline struct task_group *task_group(struct task_struct *p)
850{
851 return NULL;
852}
853
854#endif /* CONFIG_CGROUP_SCHED */
855
856static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
857{
858 set_task_rq(p, cpu);
859#ifdef CONFIG_SMP
860 /*
861 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
862 * successfuly executed on another CPU. We must ensure that updates of
863 * per-task data have been completed by this moment.
864 */
865 smp_wmb();
866 task_thread_info(p)->cpu = cpu;
ac66f547 867 p->wake_cpu = cpu;
029632fb
PZ
868#endif
869}
870
871/*
872 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
873 */
874#ifdef CONFIG_SCHED_DEBUG
c5905afb 875# include <linux/static_key.h>
029632fb
PZ
876# define const_debug __read_mostly
877#else
878# define const_debug const
879#endif
880
881extern const_debug unsigned int sysctl_sched_features;
882
883#define SCHED_FEAT(name, enabled) \
884 __SCHED_FEAT_##name ,
885
886enum {
391e43da 887#include "features.h"
f8b6d1cc 888 __SCHED_FEAT_NR,
029632fb
PZ
889};
890
891#undef SCHED_FEAT
892
f8b6d1cc 893#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 894#define SCHED_FEAT(name, enabled) \
c5905afb 895static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 896{ \
6e76ea8a 897 return static_key_##enabled(key); \
f8b6d1cc
PZ
898}
899
900#include "features.h"
901
902#undef SCHED_FEAT
903
c5905afb 904extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
905#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
906#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 907#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 908#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 909
cbee9f88
PZ
910#ifdef CONFIG_NUMA_BALANCING
911#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
912#ifdef CONFIG_SCHED_DEBUG
913#define numabalancing_enabled sched_feat_numa(NUMA)
914#else
915extern bool numabalancing_enabled;
916#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
917#else
918#define sched_feat_numa(x) (0)
3105b86a
MG
919#define numabalancing_enabled (0)
920#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 921
029632fb
PZ
922static inline u64 global_rt_period(void)
923{
924 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
925}
926
927static inline u64 global_rt_runtime(void)
928{
929 if (sysctl_sched_rt_runtime < 0)
930 return RUNTIME_INF;
931
932 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
933}
934
029632fb
PZ
935static inline int task_current(struct rq *rq, struct task_struct *p)
936{
937 return rq->curr == p;
938}
939
940static inline int task_running(struct rq *rq, struct task_struct *p)
941{
942#ifdef CONFIG_SMP
943 return p->on_cpu;
944#else
945 return task_current(rq, p);
946#endif
947}
948
da0c1e65
KT
949static inline int task_on_rq_queued(struct task_struct *p)
950{
951 return p->on_rq == TASK_ON_RQ_QUEUED;
952}
029632fb 953
cca26e80
KT
954static inline int task_on_rq_migrating(struct task_struct *p)
955{
956 return p->on_rq == TASK_ON_RQ_MIGRATING;
957}
958
029632fb
PZ
959#ifndef prepare_arch_switch
960# define prepare_arch_switch(next) do { } while (0)
961#endif
962#ifndef finish_arch_switch
963# define finish_arch_switch(prev) do { } while (0)
964#endif
01f23e16
CM
965#ifndef finish_arch_post_lock_switch
966# define finish_arch_post_lock_switch() do { } while (0)
967#endif
029632fb
PZ
968
969#ifndef __ARCH_WANT_UNLOCKED_CTXSW
970static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
971{
972#ifdef CONFIG_SMP
973 /*
974 * We can optimise this out completely for !SMP, because the
975 * SMP rebalancing from interrupt is the only thing that cares
976 * here.
977 */
978 next->on_cpu = 1;
979#endif
980}
981
982static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
983{
984#ifdef CONFIG_SMP
985 /*
986 * After ->on_cpu is cleared, the task can be moved to a different CPU.
987 * We must ensure this doesn't happen until the switch is completely
988 * finished.
989 */
990 smp_wmb();
991 prev->on_cpu = 0;
992#endif
993#ifdef CONFIG_DEBUG_SPINLOCK
994 /* this is a valid case when another task releases the spinlock */
995 rq->lock.owner = current;
996#endif
997 /*
998 * If we are tracking spinlock dependencies then we have to
999 * fix up the runqueue lock - which gets 'carried over' from
1000 * prev into current:
1001 */
1002 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1003
1004 raw_spin_unlock_irq(&rq->lock);
1005}
1006
1007#else /* __ARCH_WANT_UNLOCKED_CTXSW */
1008static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1009{
1010#ifdef CONFIG_SMP
1011 /*
1012 * We can optimise this out completely for !SMP, because the
1013 * SMP rebalancing from interrupt is the only thing that cares
1014 * here.
1015 */
1016 next->on_cpu = 1;
1017#endif
029632fb 1018 raw_spin_unlock(&rq->lock);
029632fb
PZ
1019}
1020
1021static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1022{
1023#ifdef CONFIG_SMP
1024 /*
1025 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1026 * We must ensure this doesn't happen until the switch is completely
1027 * finished.
1028 */
1029 smp_wmb();
1030 prev->on_cpu = 0;
1031#endif
029632fb 1032 local_irq_enable();
029632fb
PZ
1033}
1034#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1035
b13095f0
LZ
1036/*
1037 * wake flags
1038 */
1039#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1040#define WF_FORK 0x02 /* child wakeup after fork */
1041#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1042
029632fb
PZ
1043/*
1044 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1045 * of tasks with abnormal "nice" values across CPUs the contribution that
1046 * each task makes to its run queue's load is weighted according to its
1047 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1048 * scaled version of the new time slice allocation that they receive on time
1049 * slice expiry etc.
1050 */
1051
1052#define WEIGHT_IDLEPRIO 3
1053#define WMULT_IDLEPRIO 1431655765
1054
1055/*
1056 * Nice levels are multiplicative, with a gentle 10% change for every
1057 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1058 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1059 * that remained on nice 0.
1060 *
1061 * The "10% effect" is relative and cumulative: from _any_ nice level,
1062 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1063 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1064 * If a task goes up by ~10% and another task goes down by ~10% then
1065 * the relative distance between them is ~25%.)
1066 */
1067static const int prio_to_weight[40] = {
1068 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1069 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1070 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1071 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1072 /* 0 */ 1024, 820, 655, 526, 423,
1073 /* 5 */ 335, 272, 215, 172, 137,
1074 /* 10 */ 110, 87, 70, 56, 45,
1075 /* 15 */ 36, 29, 23, 18, 15,
1076};
1077
1078/*
1079 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1080 *
1081 * In cases where the weight does not change often, we can use the
1082 * precalculated inverse to speed up arithmetics by turning divisions
1083 * into multiplications:
1084 */
1085static const u32 prio_to_wmult[40] = {
1086 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1087 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1088 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1089 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1090 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1091 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1092 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1093 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1094};
1095
c82ba9fa
LZ
1096#define ENQUEUE_WAKEUP 1
1097#define ENQUEUE_HEAD 2
1098#ifdef CONFIG_SMP
1099#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1100#else
1101#define ENQUEUE_WAKING 0
1102#endif
aab03e05 1103#define ENQUEUE_REPLENISH 8
c82ba9fa
LZ
1104
1105#define DEQUEUE_SLEEP 1
1106
37e117c0
PZ
1107#define RETRY_TASK ((void *)-1UL)
1108
c82ba9fa
LZ
1109struct sched_class {
1110 const struct sched_class *next;
1111
1112 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1113 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1114 void (*yield_task) (struct rq *rq);
1115 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1116
1117 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1118
606dba2e
PZ
1119 /*
1120 * It is the responsibility of the pick_next_task() method that will
1121 * return the next task to call put_prev_task() on the @prev task or
1122 * something equivalent.
37e117c0
PZ
1123 *
1124 * May return RETRY_TASK when it finds a higher prio class has runnable
1125 * tasks.
606dba2e
PZ
1126 */
1127 struct task_struct * (*pick_next_task) (struct rq *rq,
1128 struct task_struct *prev);
c82ba9fa
LZ
1129 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1130
1131#ifdef CONFIG_SMP
ac66f547 1132 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
c82ba9fa
LZ
1133 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1134
c82ba9fa
LZ
1135 void (*post_schedule) (struct rq *this_rq);
1136 void (*task_waking) (struct task_struct *task);
1137 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1138
1139 void (*set_cpus_allowed)(struct task_struct *p,
1140 const struct cpumask *newmask);
1141
1142 void (*rq_online)(struct rq *rq);
1143 void (*rq_offline)(struct rq *rq);
1144#endif
1145
1146 void (*set_curr_task) (struct rq *rq);
1147 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1148 void (*task_fork) (struct task_struct *p);
e6c390f2 1149 void (*task_dead) (struct task_struct *p);
c82ba9fa
LZ
1150
1151 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1152 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1153 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1154 int oldprio);
1155
1156 unsigned int (*get_rr_interval) (struct rq *rq,
1157 struct task_struct *task);
1158
1159#ifdef CONFIG_FAIR_GROUP_SCHED
1160 void (*task_move_group) (struct task_struct *p, int on_rq);
1161#endif
1162};
029632fb 1163
3f1d2a31
PZ
1164static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1165{
1166 prev->sched_class->put_prev_task(rq, prev);
1167}
1168
029632fb
PZ
1169#define sched_class_highest (&stop_sched_class)
1170#define for_each_class(class) \
1171 for (class = sched_class_highest; class; class = class->next)
1172
1173extern const struct sched_class stop_sched_class;
aab03e05 1174extern const struct sched_class dl_sched_class;
029632fb
PZ
1175extern const struct sched_class rt_sched_class;
1176extern const struct sched_class fair_sched_class;
1177extern const struct sched_class idle_sched_class;
1178
1179
1180#ifdef CONFIG_SMP
1181
63b2ca30 1182extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1183
7caff66f 1184extern void trigger_load_balance(struct rq *rq);
029632fb 1185
642dbc39
VG
1186extern void idle_enter_fair(struct rq *this_rq);
1187extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1188
dc877341
PZ
1189#else
1190
1191static inline void idle_enter_fair(struct rq *rq) { }
1192static inline void idle_exit_fair(struct rq *rq) { }
1193
029632fb
PZ
1194#endif
1195
1196extern void sysrq_sched_debug_show(void);
1197extern void sched_init_granularity(void);
1198extern void update_max_interval(void);
1baca4ce
JL
1199
1200extern void init_sched_dl_class(void);
029632fb
PZ
1201extern void init_sched_rt_class(void);
1202extern void init_sched_fair_class(void);
332ac17e 1203extern void init_sched_dl_class(void);
029632fb 1204
8875125e 1205extern void resched_curr(struct rq *rq);
029632fb
PZ
1206extern void resched_cpu(int cpu);
1207
1208extern struct rt_bandwidth def_rt_bandwidth;
1209extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1210
332ac17e
DF
1211extern struct dl_bandwidth def_dl_bandwidth;
1212extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1213extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1214
332ac17e
DF
1215unsigned long to_ratio(u64 period, u64 runtime);
1216
556061b0 1217extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1218
a75cdaa9
AS
1219extern void init_task_runnable_average(struct task_struct *p);
1220
72465447 1221static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1222{
72465447
KT
1223 unsigned prev_nr = rq->nr_running;
1224
1225 rq->nr_running = prev_nr + count;
9f3660c2 1226
72465447 1227 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1228#ifdef CONFIG_SMP
1229 if (!rq->rd->overload)
1230 rq->rd->overload = true;
1231#endif
1232
1233#ifdef CONFIG_NO_HZ_FULL
9f3660c2 1234 if (tick_nohz_full_cpu(rq->cpu)) {
3882ec64
FW
1235 /*
1236 * Tick is needed if more than one task runs on a CPU.
1237 * Send the target an IPI to kick it out of nohz mode.
1238 *
1239 * We assume that IPI implies full memory barrier and the
1240 * new value of rq->nr_running is visible on reception
1241 * from the target.
1242 */
fd2ac4f4 1243 tick_nohz_full_kick_cpu(rq->cpu);
9f3660c2 1244 }
9f3660c2 1245#endif
4486edd1 1246 }
029632fb
PZ
1247}
1248
72465447 1249static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1250{
72465447 1251 rq->nr_running -= count;
029632fb
PZ
1252}
1253
265f22a9
FW
1254static inline void rq_last_tick_reset(struct rq *rq)
1255{
1256#ifdef CONFIG_NO_HZ_FULL
1257 rq->last_sched_tick = jiffies;
1258#endif
1259}
1260
029632fb
PZ
1261extern void update_rq_clock(struct rq *rq);
1262
1263extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1264extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1265
1266extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1267
1268extern const_debug unsigned int sysctl_sched_time_avg;
1269extern const_debug unsigned int sysctl_sched_nr_migrate;
1270extern const_debug unsigned int sysctl_sched_migration_cost;
1271
1272static inline u64 sched_avg_period(void)
1273{
1274 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1275}
1276
029632fb
PZ
1277#ifdef CONFIG_SCHED_HRTICK
1278
1279/*
1280 * Use hrtick when:
1281 * - enabled by features
1282 * - hrtimer is actually high res
1283 */
1284static inline int hrtick_enabled(struct rq *rq)
1285{
1286 if (!sched_feat(HRTICK))
1287 return 0;
1288 if (!cpu_active(cpu_of(rq)))
1289 return 0;
1290 return hrtimer_is_hres_active(&rq->hrtick_timer);
1291}
1292
1293void hrtick_start(struct rq *rq, u64 delay);
1294
b39e66ea
MG
1295#else
1296
1297static inline int hrtick_enabled(struct rq *rq)
1298{
1299 return 0;
1300}
1301
029632fb
PZ
1302#endif /* CONFIG_SCHED_HRTICK */
1303
1304#ifdef CONFIG_SMP
1305extern void sched_avg_update(struct rq *rq);
1306static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1307{
1308 rq->rt_avg += rt_delta;
1309 sched_avg_update(rq);
1310}
1311#else
1312static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1313static inline void sched_avg_update(struct rq *rq) { }
1314#endif
1315
1316extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1317
1318#ifdef CONFIG_SMP
1319#ifdef CONFIG_PREEMPT
1320
1321static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1322
1323/*
1324 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1325 * way at the expense of forcing extra atomic operations in all
1326 * invocations. This assures that the double_lock is acquired using the
1327 * same underlying policy as the spinlock_t on this architecture, which
1328 * reduces latency compared to the unfair variant below. However, it
1329 * also adds more overhead and therefore may reduce throughput.
1330 */
1331static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1332 __releases(this_rq->lock)
1333 __acquires(busiest->lock)
1334 __acquires(this_rq->lock)
1335{
1336 raw_spin_unlock(&this_rq->lock);
1337 double_rq_lock(this_rq, busiest);
1338
1339 return 1;
1340}
1341
1342#else
1343/*
1344 * Unfair double_lock_balance: Optimizes throughput at the expense of
1345 * latency by eliminating extra atomic operations when the locks are
1346 * already in proper order on entry. This favors lower cpu-ids and will
1347 * grant the double lock to lower cpus over higher ids under contention,
1348 * regardless of entry order into the function.
1349 */
1350static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1351 __releases(this_rq->lock)
1352 __acquires(busiest->lock)
1353 __acquires(this_rq->lock)
1354{
1355 int ret = 0;
1356
1357 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1358 if (busiest < this_rq) {
1359 raw_spin_unlock(&this_rq->lock);
1360 raw_spin_lock(&busiest->lock);
1361 raw_spin_lock_nested(&this_rq->lock,
1362 SINGLE_DEPTH_NESTING);
1363 ret = 1;
1364 } else
1365 raw_spin_lock_nested(&busiest->lock,
1366 SINGLE_DEPTH_NESTING);
1367 }
1368 return ret;
1369}
1370
1371#endif /* CONFIG_PREEMPT */
1372
1373/*
1374 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1375 */
1376static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1377{
1378 if (unlikely(!irqs_disabled())) {
1379 /* printk() doesn't work good under rq->lock */
1380 raw_spin_unlock(&this_rq->lock);
1381 BUG_ON(1);
1382 }
1383
1384 return _double_lock_balance(this_rq, busiest);
1385}
1386
1387static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1388 __releases(busiest->lock)
1389{
1390 raw_spin_unlock(&busiest->lock);
1391 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1392}
1393
74602315
PZ
1394static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1395{
1396 if (l1 > l2)
1397 swap(l1, l2);
1398
1399 spin_lock(l1);
1400 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1401}
1402
60e69eed
MG
1403static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1404{
1405 if (l1 > l2)
1406 swap(l1, l2);
1407
1408 spin_lock_irq(l1);
1409 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1410}
1411
74602315
PZ
1412static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1413{
1414 if (l1 > l2)
1415 swap(l1, l2);
1416
1417 raw_spin_lock(l1);
1418 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1419}
1420
029632fb
PZ
1421/*
1422 * double_rq_lock - safely lock two runqueues
1423 *
1424 * Note this does not disable interrupts like task_rq_lock,
1425 * you need to do so manually before calling.
1426 */
1427static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1428 __acquires(rq1->lock)
1429 __acquires(rq2->lock)
1430{
1431 BUG_ON(!irqs_disabled());
1432 if (rq1 == rq2) {
1433 raw_spin_lock(&rq1->lock);
1434 __acquire(rq2->lock); /* Fake it out ;) */
1435 } else {
1436 if (rq1 < rq2) {
1437 raw_spin_lock(&rq1->lock);
1438 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1439 } else {
1440 raw_spin_lock(&rq2->lock);
1441 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1442 }
1443 }
1444}
1445
1446/*
1447 * double_rq_unlock - safely unlock two runqueues
1448 *
1449 * Note this does not restore interrupts like task_rq_unlock,
1450 * you need to do so manually after calling.
1451 */
1452static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1453 __releases(rq1->lock)
1454 __releases(rq2->lock)
1455{
1456 raw_spin_unlock(&rq1->lock);
1457 if (rq1 != rq2)
1458 raw_spin_unlock(&rq2->lock);
1459 else
1460 __release(rq2->lock);
1461}
1462
1463#else /* CONFIG_SMP */
1464
1465/*
1466 * double_rq_lock - safely lock two runqueues
1467 *
1468 * Note this does not disable interrupts like task_rq_lock,
1469 * you need to do so manually before calling.
1470 */
1471static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1472 __acquires(rq1->lock)
1473 __acquires(rq2->lock)
1474{
1475 BUG_ON(!irqs_disabled());
1476 BUG_ON(rq1 != rq2);
1477 raw_spin_lock(&rq1->lock);
1478 __acquire(rq2->lock); /* Fake it out ;) */
1479}
1480
1481/*
1482 * double_rq_unlock - safely unlock two runqueues
1483 *
1484 * Note this does not restore interrupts like task_rq_unlock,
1485 * you need to do so manually after calling.
1486 */
1487static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1488 __releases(rq1->lock)
1489 __releases(rq2->lock)
1490{
1491 BUG_ON(rq1 != rq2);
1492 raw_spin_unlock(&rq1->lock);
1493 __release(rq2->lock);
1494}
1495
1496#endif
1497
1498extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1499extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1500extern void print_cfs_stats(struct seq_file *m, int cpu);
1501extern void print_rt_stats(struct seq_file *m, int cpu);
1502
1503extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1504extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
aab03e05 1505extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
029632fb 1506
1ee14e6c
BS
1507extern void cfs_bandwidth_usage_inc(void);
1508extern void cfs_bandwidth_usage_dec(void);
1c792db7 1509
3451d024 1510#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1511enum rq_nohz_flag_bits {
1512 NOHZ_TICK_STOPPED,
1513 NOHZ_BALANCE_KICK,
1514};
1515
1516#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1517#endif
73fbec60
FW
1518
1519#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1520
1521DECLARE_PER_CPU(u64, cpu_hardirq_time);
1522DECLARE_PER_CPU(u64, cpu_softirq_time);
1523
1524#ifndef CONFIG_64BIT
1525DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1526
1527static inline void irq_time_write_begin(void)
1528{
1529 __this_cpu_inc(irq_time_seq.sequence);
1530 smp_wmb();
1531}
1532
1533static inline void irq_time_write_end(void)
1534{
1535 smp_wmb();
1536 __this_cpu_inc(irq_time_seq.sequence);
1537}
1538
1539static inline u64 irq_time_read(int cpu)
1540{
1541 u64 irq_time;
1542 unsigned seq;
1543
1544 do {
1545 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1546 irq_time = per_cpu(cpu_softirq_time, cpu) +
1547 per_cpu(cpu_hardirq_time, cpu);
1548 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1549
1550 return irq_time;
1551}
1552#else /* CONFIG_64BIT */
1553static inline void irq_time_write_begin(void)
1554{
1555}
1556
1557static inline void irq_time_write_end(void)
1558{
1559}
1560
1561static inline u64 irq_time_read(int cpu)
1562{
1563 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1564}
1565#endif /* CONFIG_64BIT */
1566#endif /* CONFIG_IRQ_TIME_ACCOUNTING */