kasan, sched/headers: Uninline kasan_enable/disable_current()
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
19d23dbf 5#include <linux/u64_stats_sync.h>
aab03e05 6#include <linux/sched/deadline.h>
a499a5a1 7#include <linux/kernel_stat.h>
3866e845 8#include <linux/binfmts.h>
029632fb
PZ
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/stop_machine.h>
b6366f04 12#include <linux/irq_work.h>
9f3660c2 13#include <linux/tick.h>
f809ca9a 14#include <linux/slab.h>
029632fb 15
391e43da 16#include "cpupri.h"
6bfd6d72 17#include "cpudeadline.h"
60fed789 18#include "cpuacct.h"
029632fb 19
9148a3a1
PZ
20#ifdef CONFIG_SCHED_DEBUG
21#define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
22#else
23#define SCHED_WARN_ON(x) ((void)(x))
24#endif
25
45ceebf7 26struct rq;
442bf3aa 27struct cpuidle_state;
45ceebf7 28
da0c1e65
KT
29/* task_struct::on_rq states: */
30#define TASK_ON_RQ_QUEUED 1
cca26e80 31#define TASK_ON_RQ_MIGRATING 2
da0c1e65 32
029632fb
PZ
33extern __read_mostly int scheduler_running;
34
45ceebf7
PG
35extern unsigned long calc_load_update;
36extern atomic_long_t calc_load_tasks;
37
3289bdb4 38extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 39extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4
PZ
40
41#ifdef CONFIG_SMP
cee1afce 42extern void cpu_load_update_active(struct rq *this_rq);
3289bdb4 43#else
cee1afce 44static inline void cpu_load_update_active(struct rq *this_rq) { }
3289bdb4 45#endif
45ceebf7 46
029632fb
PZ
47/*
48 * Helpers for converting nanosecond timing to jiffy resolution
49 */
50#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
51
cc1f4b1f
LZ
52/*
53 * Increase resolution of nice-level calculations for 64-bit architectures.
54 * The extra resolution improves shares distribution and load balancing of
55 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
56 * hierarchies, especially on larger systems. This is not a user-visible change
57 * and does not change the user-interface for setting shares/weights.
58 *
59 * We increase resolution only if we have enough bits to allow this increased
2159197d
PZ
60 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
61 * pretty high and the returns do not justify the increased costs.
62 *
63 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
64 * increase coverage and consistency always enable it on 64bit platforms.
cc1f4b1f 65 */
2159197d 66#ifdef CONFIG_64BIT
172895e6 67# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749
YD
68# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
69# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f 70#else
172895e6 71# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
72# define scale_load(w) (w)
73# define scale_load_down(w) (w)
74#endif
75
6ecdd749 76/*
172895e6
YD
77 * Task weight (visible to users) and its load (invisible to users) have
78 * independent resolution, but they should be well calibrated. We use
79 * scale_load() and scale_load_down(w) to convert between them. The
80 * following must be true:
81 *
82 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
83 *
6ecdd749 84 */
172895e6 85#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 86
332ac17e
DF
87/*
88 * Single value that decides SCHED_DEADLINE internal math precision.
89 * 10 -> just above 1us
90 * 9 -> just above 0.5us
91 */
92#define DL_SCALE (10)
93
029632fb
PZ
94/*
95 * These are the 'tuning knobs' of the scheduler:
029632fb 96 */
029632fb
PZ
97
98/*
99 * single value that denotes runtime == period, ie unlimited time.
100 */
101#define RUNTIME_INF ((u64)~0ULL)
102
20f9cd2a
HA
103static inline int idle_policy(int policy)
104{
105 return policy == SCHED_IDLE;
106}
d50dde5a
DF
107static inline int fair_policy(int policy)
108{
109 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
110}
111
029632fb
PZ
112static inline int rt_policy(int policy)
113{
d50dde5a 114 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
115}
116
aab03e05
DF
117static inline int dl_policy(int policy)
118{
119 return policy == SCHED_DEADLINE;
120}
20f9cd2a
HA
121static inline bool valid_policy(int policy)
122{
123 return idle_policy(policy) || fair_policy(policy) ||
124 rt_policy(policy) || dl_policy(policy);
125}
aab03e05 126
029632fb
PZ
127static inline int task_has_rt_policy(struct task_struct *p)
128{
129 return rt_policy(p->policy);
130}
131
aab03e05
DF
132static inline int task_has_dl_policy(struct task_struct *p)
133{
134 return dl_policy(p->policy);
135}
136
2d3d891d
DF
137/*
138 * Tells if entity @a should preempt entity @b.
139 */
332ac17e
DF
140static inline bool
141dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
142{
143 return dl_time_before(a->deadline, b->deadline);
144}
145
029632fb
PZ
146/*
147 * This is the priority-queue data structure of the RT scheduling class:
148 */
149struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
152};
153
154struct rt_bandwidth {
155 /* nests inside the rq lock: */
156 raw_spinlock_t rt_runtime_lock;
157 ktime_t rt_period;
158 u64 rt_runtime;
159 struct hrtimer rt_period_timer;
4cfafd30 160 unsigned int rt_period_active;
029632fb 161};
a5e7be3b
JL
162
163void __dl_clear_params(struct task_struct *p);
164
332ac17e
DF
165/*
166 * To keep the bandwidth of -deadline tasks and groups under control
167 * we need some place where:
168 * - store the maximum -deadline bandwidth of the system (the group);
169 * - cache the fraction of that bandwidth that is currently allocated.
170 *
171 * This is all done in the data structure below. It is similar to the
172 * one used for RT-throttling (rt_bandwidth), with the main difference
173 * that, since here we are only interested in admission control, we
174 * do not decrease any runtime while the group "executes", neither we
175 * need a timer to replenish it.
176 *
177 * With respect to SMP, the bandwidth is given on a per-CPU basis,
178 * meaning that:
179 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
180 * - dl_total_bw array contains, in the i-eth element, the currently
181 * allocated bandwidth on the i-eth CPU.
182 * Moreover, groups consume bandwidth on each CPU, while tasks only
183 * consume bandwidth on the CPU they're running on.
184 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
185 * that will be shown the next time the proc or cgroup controls will
186 * be red. It on its turn can be changed by writing on its own
187 * control.
188 */
189struct dl_bandwidth {
190 raw_spinlock_t dl_runtime_lock;
191 u64 dl_runtime;
192 u64 dl_period;
193};
194
195static inline int dl_bandwidth_enabled(void)
196{
1724813d 197 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
198}
199
200extern struct dl_bw *dl_bw_of(int i);
201
202struct dl_bw {
203 raw_spinlock_t lock;
204 u64 bw, total_bw;
205};
206
7f51412a
JL
207static inline
208void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
209{
210 dl_b->total_bw -= tsk_bw;
211}
212
213static inline
214void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
215{
216 dl_b->total_bw += tsk_bw;
217}
218
219static inline
220bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
221{
222 return dl_b->bw != -1 &&
223 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
224}
225
f2cb1360 226extern void init_dl_bw(struct dl_bw *dl_b);
029632fb
PZ
227
228#ifdef CONFIG_CGROUP_SCHED
229
230#include <linux/cgroup.h>
231
232struct cfs_rq;
233struct rt_rq;
234
35cf4e50 235extern struct list_head task_groups;
029632fb
PZ
236
237struct cfs_bandwidth {
238#ifdef CONFIG_CFS_BANDWIDTH
239 raw_spinlock_t lock;
240 ktime_t period;
241 u64 quota, runtime;
9c58c79a 242 s64 hierarchical_quota;
029632fb
PZ
243 u64 runtime_expires;
244
4cfafd30 245 int idle, period_active;
029632fb
PZ
246 struct hrtimer period_timer, slack_timer;
247 struct list_head throttled_cfs_rq;
248
249 /* statistics */
250 int nr_periods, nr_throttled;
251 u64 throttled_time;
252#endif
253};
254
255/* task group related information */
256struct task_group {
257 struct cgroup_subsys_state css;
258
259#ifdef CONFIG_FAIR_GROUP_SCHED
260 /* schedulable entities of this group on each cpu */
261 struct sched_entity **se;
262 /* runqueue "owned" by this group on each cpu */
263 struct cfs_rq **cfs_rq;
264 unsigned long shares;
265
fa6bddeb 266#ifdef CONFIG_SMP
b0367629
WL
267 /*
268 * load_avg can be heavily contended at clock tick time, so put
269 * it in its own cacheline separated from the fields above which
270 * will also be accessed at each tick.
271 */
272 atomic_long_t load_avg ____cacheline_aligned;
029632fb 273#endif
fa6bddeb 274#endif
029632fb
PZ
275
276#ifdef CONFIG_RT_GROUP_SCHED
277 struct sched_rt_entity **rt_se;
278 struct rt_rq **rt_rq;
279
280 struct rt_bandwidth rt_bandwidth;
281#endif
282
283 struct rcu_head rcu;
284 struct list_head list;
285
286 struct task_group *parent;
287 struct list_head siblings;
288 struct list_head children;
289
290#ifdef CONFIG_SCHED_AUTOGROUP
291 struct autogroup *autogroup;
292#endif
293
294 struct cfs_bandwidth cfs_bandwidth;
295};
296
297#ifdef CONFIG_FAIR_GROUP_SCHED
298#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
299
300/*
301 * A weight of 0 or 1 can cause arithmetics problems.
302 * A weight of a cfs_rq is the sum of weights of which entities
303 * are queued on this cfs_rq, so a weight of a entity should not be
304 * too large, so as the shares value of a task group.
305 * (The default weight is 1024 - so there's no practical
306 * limitation from this.)
307 */
308#define MIN_SHARES (1UL << 1)
309#define MAX_SHARES (1UL << 18)
310#endif
311
029632fb
PZ
312typedef int (*tg_visitor)(struct task_group *, void *);
313
314extern int walk_tg_tree_from(struct task_group *from,
315 tg_visitor down, tg_visitor up, void *data);
316
317/*
318 * Iterate the full tree, calling @down when first entering a node and @up when
319 * leaving it for the final time.
320 *
321 * Caller must hold rcu_lock or sufficient equivalent.
322 */
323static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
324{
325 return walk_tg_tree_from(&root_task_group, down, up, data);
326}
327
328extern int tg_nop(struct task_group *tg, void *data);
329
330extern void free_fair_sched_group(struct task_group *tg);
331extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 332extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 333extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
334extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
335 struct sched_entity *se, int cpu,
336 struct sched_entity *parent);
337extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
338
339extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 340extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
341extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
342
343extern void free_rt_sched_group(struct task_group *tg);
344extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
345extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
346 struct sched_rt_entity *rt_se, int cpu,
347 struct sched_rt_entity *parent);
348
25cc7da7
LZ
349extern struct task_group *sched_create_group(struct task_group *parent);
350extern void sched_online_group(struct task_group *tg,
351 struct task_group *parent);
352extern void sched_destroy_group(struct task_group *tg);
353extern void sched_offline_group(struct task_group *tg);
354
355extern void sched_move_task(struct task_struct *tsk);
356
357#ifdef CONFIG_FAIR_GROUP_SCHED
358extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
359
360#ifdef CONFIG_SMP
361extern void set_task_rq_fair(struct sched_entity *se,
362 struct cfs_rq *prev, struct cfs_rq *next);
363#else /* !CONFIG_SMP */
364static inline void set_task_rq_fair(struct sched_entity *se,
365 struct cfs_rq *prev, struct cfs_rq *next) { }
366#endif /* CONFIG_SMP */
367#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 368
029632fb
PZ
369#else /* CONFIG_CGROUP_SCHED */
370
371struct cfs_bandwidth { };
372
373#endif /* CONFIG_CGROUP_SCHED */
374
375/* CFS-related fields in a runqueue */
376struct cfs_rq {
377 struct load_weight load;
c82513e5 378 unsigned int nr_running, h_nr_running;
029632fb
PZ
379
380 u64 exec_clock;
381 u64 min_vruntime;
382#ifndef CONFIG_64BIT
383 u64 min_vruntime_copy;
384#endif
385
386 struct rb_root tasks_timeline;
387 struct rb_node *rb_leftmost;
388
029632fb
PZ
389 /*
390 * 'curr' points to currently running entity on this cfs_rq.
391 * It is set to NULL otherwise (i.e when none are currently running).
392 */
393 struct sched_entity *curr, *next, *last, *skip;
394
395#ifdef CONFIG_SCHED_DEBUG
396 unsigned int nr_spread_over;
397#endif
398
2dac754e
PT
399#ifdef CONFIG_SMP
400 /*
9d89c257 401 * CFS load tracking
2dac754e 402 */
9d89c257 403 struct sched_avg avg;
13962234
YD
404 u64 runnable_load_sum;
405 unsigned long runnable_load_avg;
c566e8e9 406#ifdef CONFIG_FAIR_GROUP_SCHED
9d89c257 407 unsigned long tg_load_avg_contrib;
09a43ace 408 unsigned long propagate_avg;
9d89c257
YD
409#endif
410 atomic_long_t removed_load_avg, removed_util_avg;
411#ifndef CONFIG_64BIT
412 u64 load_last_update_time_copy;
413#endif
82958366 414
9d89c257 415#ifdef CONFIG_FAIR_GROUP_SCHED
82958366
PT
416 /*
417 * h_load = weight * f(tg)
418 *
419 * Where f(tg) is the recursive weight fraction assigned to
420 * this group.
421 */
422 unsigned long h_load;
68520796
VD
423 u64 last_h_load_update;
424 struct sched_entity *h_load_next;
425#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
426#endif /* CONFIG_SMP */
427
029632fb
PZ
428#ifdef CONFIG_FAIR_GROUP_SCHED
429 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
430
431 /*
432 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
433 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
434 * (like users, containers etc.)
435 *
436 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
437 * list is used during load balance.
438 */
439 int on_list;
440 struct list_head leaf_cfs_rq_list;
441 struct task_group *tg; /* group that "owns" this runqueue */
442
029632fb
PZ
443#ifdef CONFIG_CFS_BANDWIDTH
444 int runtime_enabled;
445 u64 runtime_expires;
446 s64 runtime_remaining;
447
f1b17280
PT
448 u64 throttled_clock, throttled_clock_task;
449 u64 throttled_clock_task_time;
55e16d30 450 int throttled, throttle_count;
029632fb
PZ
451 struct list_head throttled_list;
452#endif /* CONFIG_CFS_BANDWIDTH */
453#endif /* CONFIG_FAIR_GROUP_SCHED */
454};
455
456static inline int rt_bandwidth_enabled(void)
457{
458 return sysctl_sched_rt_runtime >= 0;
459}
460
b6366f04
SR
461/* RT IPI pull logic requires IRQ_WORK */
462#ifdef CONFIG_IRQ_WORK
463# define HAVE_RT_PUSH_IPI
464#endif
465
029632fb
PZ
466/* Real-Time classes' related field in a runqueue: */
467struct rt_rq {
468 struct rt_prio_array active;
c82513e5 469 unsigned int rt_nr_running;
01d36d0a 470 unsigned int rr_nr_running;
029632fb
PZ
471#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
472 struct {
473 int curr; /* highest queued rt task prio */
474#ifdef CONFIG_SMP
475 int next; /* next highest */
476#endif
477 } highest_prio;
478#endif
479#ifdef CONFIG_SMP
480 unsigned long rt_nr_migratory;
481 unsigned long rt_nr_total;
482 int overloaded;
483 struct plist_head pushable_tasks;
b6366f04
SR
484#ifdef HAVE_RT_PUSH_IPI
485 int push_flags;
486 int push_cpu;
487 struct irq_work push_work;
488 raw_spinlock_t push_lock;
029632fb 489#endif
b6366f04 490#endif /* CONFIG_SMP */
f4ebcbc0
KT
491 int rt_queued;
492
029632fb
PZ
493 int rt_throttled;
494 u64 rt_time;
495 u64 rt_runtime;
496 /* Nests inside the rq lock: */
497 raw_spinlock_t rt_runtime_lock;
498
499#ifdef CONFIG_RT_GROUP_SCHED
500 unsigned long rt_nr_boosted;
501
502 struct rq *rq;
029632fb
PZ
503 struct task_group *tg;
504#endif
505};
506
aab03e05
DF
507/* Deadline class' related fields in a runqueue */
508struct dl_rq {
509 /* runqueue is an rbtree, ordered by deadline */
510 struct rb_root rb_root;
511 struct rb_node *rb_leftmost;
512
513 unsigned long dl_nr_running;
1baca4ce
JL
514
515#ifdef CONFIG_SMP
516 /*
517 * Deadline values of the currently executing and the
518 * earliest ready task on this rq. Caching these facilitates
519 * the decision wether or not a ready but not running task
520 * should migrate somewhere else.
521 */
522 struct {
523 u64 curr;
524 u64 next;
525 } earliest_dl;
526
527 unsigned long dl_nr_migratory;
1baca4ce
JL
528 int overloaded;
529
530 /*
531 * Tasks on this rq that can be pushed away. They are kept in
532 * an rb-tree, ordered by tasks' deadlines, with caching
533 * of the leftmost (earliest deadline) element.
534 */
535 struct rb_root pushable_dl_tasks_root;
536 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
537#else
538 struct dl_bw dl_bw;
1baca4ce 539#endif
aab03e05
DF
540};
541
029632fb
PZ
542#ifdef CONFIG_SMP
543
afe06efd
TC
544static inline bool sched_asym_prefer(int a, int b)
545{
546 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
547}
548
029632fb
PZ
549/*
550 * We add the notion of a root-domain which will be used to define per-domain
551 * variables. Each exclusive cpuset essentially defines an island domain by
552 * fully partitioning the member cpus from any other cpuset. Whenever a new
553 * exclusive cpuset is created, we also create and attach a new root-domain
554 * object.
555 *
556 */
557struct root_domain {
558 atomic_t refcount;
559 atomic_t rto_count;
560 struct rcu_head rcu;
561 cpumask_var_t span;
562 cpumask_var_t online;
563
4486edd1
TC
564 /* Indicate more than one runnable task for any CPU */
565 bool overload;
566
1baca4ce
JL
567 /*
568 * The bit corresponding to a CPU gets set here if such CPU has more
569 * than one runnable -deadline task (as it is below for RT tasks).
570 */
571 cpumask_var_t dlo_mask;
572 atomic_t dlo_count;
332ac17e 573 struct dl_bw dl_bw;
6bfd6d72 574 struct cpudl cpudl;
1baca4ce 575
029632fb
PZ
576 /*
577 * The "RT overload" flag: it gets set if a CPU has more than
578 * one runnable RT task.
579 */
580 cpumask_var_t rto_mask;
581 struct cpupri cpupri;
cd92bfd3
DE
582
583 unsigned long max_cpu_capacity;
029632fb
PZ
584};
585
586extern struct root_domain def_root_domain;
f2cb1360
IM
587extern struct mutex sched_domains_mutex;
588extern cpumask_var_t fallback_doms;
589extern cpumask_var_t sched_domains_tmpmask;
590
591extern void init_defrootdomain(void);
592extern int init_sched_domains(const struct cpumask *cpu_map);
593extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
029632fb
PZ
594
595#endif /* CONFIG_SMP */
596
597/*
598 * This is the main, per-CPU runqueue data structure.
599 *
600 * Locking rule: those places that want to lock multiple runqueues
601 * (such as the load balancing or the thread migration code), lock
602 * acquire operations must be ordered by ascending &runqueue.
603 */
604struct rq {
605 /* runqueue lock: */
606 raw_spinlock_t lock;
607
608 /*
609 * nr_running and cpu_load should be in the same cacheline because
610 * remote CPUs use both these fields when doing load calculation.
611 */
c82513e5 612 unsigned int nr_running;
0ec8aa00
PZ
613#ifdef CONFIG_NUMA_BALANCING
614 unsigned int nr_numa_running;
615 unsigned int nr_preferred_running;
616#endif
029632fb
PZ
617 #define CPU_LOAD_IDX_MAX 5
618 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
3451d024 619#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5
FW
620#ifdef CONFIG_SMP
621 unsigned long last_load_update_tick;
622#endif /* CONFIG_SMP */
1c792db7 623 unsigned long nohz_flags;
9fd81dd5 624#endif /* CONFIG_NO_HZ_COMMON */
265f22a9
FW
625#ifdef CONFIG_NO_HZ_FULL
626 unsigned long last_sched_tick;
029632fb 627#endif
029632fb
PZ
628 /* capture load from *all* tasks on this cpu: */
629 struct load_weight load;
630 unsigned long nr_load_updates;
631 u64 nr_switches;
632
633 struct cfs_rq cfs;
634 struct rt_rq rt;
aab03e05 635 struct dl_rq dl;
029632fb
PZ
636
637#ifdef CONFIG_FAIR_GROUP_SCHED
638 /* list of leaf cfs_rq on this cpu: */
639 struct list_head leaf_cfs_rq_list;
9c2791f9 640 struct list_head *tmp_alone_branch;
a35b6466
PZ
641#endif /* CONFIG_FAIR_GROUP_SCHED */
642
029632fb
PZ
643 /*
644 * This is part of a global counter where only the total sum
645 * over all CPUs matters. A task can increase this counter on
646 * one CPU and if it got migrated afterwards it may decrease
647 * it on another CPU. Always updated under the runqueue lock:
648 */
649 unsigned long nr_uninterruptible;
650
651 struct task_struct *curr, *idle, *stop;
652 unsigned long next_balance;
653 struct mm_struct *prev_mm;
654
cb42c9a3 655 unsigned int clock_update_flags;
029632fb
PZ
656 u64 clock;
657 u64 clock_task;
658
659 atomic_t nr_iowait;
660
661#ifdef CONFIG_SMP
662 struct root_domain *rd;
663 struct sched_domain *sd;
664
ced549fa 665 unsigned long cpu_capacity;
ca6d75e6 666 unsigned long cpu_capacity_orig;
029632fb 667
e3fca9e7
PZ
668 struct callback_head *balance_callback;
669
029632fb
PZ
670 unsigned char idle_balance;
671 /* For active balancing */
029632fb
PZ
672 int active_balance;
673 int push_cpu;
674 struct cpu_stop_work active_balance_work;
675 /* cpu of this runqueue: */
676 int cpu;
677 int online;
678
367456c7
PZ
679 struct list_head cfs_tasks;
680
029632fb
PZ
681 u64 rt_avg;
682 u64 age_stamp;
683 u64 idle_stamp;
684 u64 avg_idle;
9bd721c5
JL
685
686 /* This is used to determine avg_idle's max value */
687 u64 max_idle_balance_cost;
029632fb
PZ
688#endif
689
690#ifdef CONFIG_IRQ_TIME_ACCOUNTING
691 u64 prev_irq_time;
692#endif
693#ifdef CONFIG_PARAVIRT
694 u64 prev_steal_time;
695#endif
696#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
697 u64 prev_steal_time_rq;
698#endif
699
700 /* calc_load related fields */
701 unsigned long calc_load_update;
702 long calc_load_active;
703
704#ifdef CONFIG_SCHED_HRTICK
705#ifdef CONFIG_SMP
706 int hrtick_csd_pending;
707 struct call_single_data hrtick_csd;
708#endif
709 struct hrtimer hrtick_timer;
710#endif
711
712#ifdef CONFIG_SCHEDSTATS
713 /* latency stats */
714 struct sched_info rq_sched_info;
715 unsigned long long rq_cpu_time;
716 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
717
718 /* sys_sched_yield() stats */
719 unsigned int yld_count;
720
721 /* schedule() stats */
029632fb
PZ
722 unsigned int sched_count;
723 unsigned int sched_goidle;
724
725 /* try_to_wake_up() stats */
726 unsigned int ttwu_count;
727 unsigned int ttwu_local;
728#endif
729
730#ifdef CONFIG_SMP
731 struct llist_head wake_list;
732#endif
442bf3aa
DL
733
734#ifdef CONFIG_CPU_IDLE
735 /* Must be inspected within a rcu lock section */
736 struct cpuidle_state *idle_state;
737#endif
029632fb
PZ
738};
739
740static inline int cpu_of(struct rq *rq)
741{
742#ifdef CONFIG_SMP
743 return rq->cpu;
744#else
745 return 0;
746#endif
747}
748
1b568f0a
PZ
749
750#ifdef CONFIG_SCHED_SMT
751
752extern struct static_key_false sched_smt_present;
753
754extern void __update_idle_core(struct rq *rq);
755
756static inline void update_idle_core(struct rq *rq)
757{
758 if (static_branch_unlikely(&sched_smt_present))
759 __update_idle_core(rq);
760}
761
762#else
763static inline void update_idle_core(struct rq *rq) { }
764#endif
765
8b06c55b 766DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 767
518cd623 768#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 769#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
770#define task_rq(p) cpu_rq(task_cpu(p))
771#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 772#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 773
cebde6d6
PZ
774static inline u64 __rq_clock_broken(struct rq *rq)
775{
316c1608 776 return READ_ONCE(rq->clock);
cebde6d6
PZ
777}
778
cb42c9a3
MF
779/*
780 * rq::clock_update_flags bits
781 *
782 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
783 * call to __schedule(). This is an optimisation to avoid
784 * neighbouring rq clock updates.
785 *
786 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
787 * in effect and calls to update_rq_clock() are being ignored.
788 *
789 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
790 * made to update_rq_clock() since the last time rq::lock was pinned.
791 *
792 * If inside of __schedule(), clock_update_flags will have been
793 * shifted left (a left shift is a cheap operation for the fast path
794 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
795 *
796 * if (rq-clock_update_flags >= RQCF_UPDATED)
797 *
798 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
799 * one position though, because the next rq_unpin_lock() will shift it
800 * back.
801 */
802#define RQCF_REQ_SKIP 0x01
803#define RQCF_ACT_SKIP 0x02
804#define RQCF_UPDATED 0x04
805
806static inline void assert_clock_updated(struct rq *rq)
807{
808 /*
809 * The only reason for not seeing a clock update since the
810 * last rq_pin_lock() is if we're currently skipping updates.
811 */
812 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
813}
814
78becc27
FW
815static inline u64 rq_clock(struct rq *rq)
816{
cebde6d6 817 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
818 assert_clock_updated(rq);
819
78becc27
FW
820 return rq->clock;
821}
822
823static inline u64 rq_clock_task(struct rq *rq)
824{
cebde6d6 825 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
826 assert_clock_updated(rq);
827
78becc27
FW
828 return rq->clock_task;
829}
830
9edfbfed
PZ
831static inline void rq_clock_skip_update(struct rq *rq, bool skip)
832{
833 lockdep_assert_held(&rq->lock);
834 if (skip)
cb42c9a3 835 rq->clock_update_flags |= RQCF_REQ_SKIP;
9edfbfed 836 else
cb42c9a3 837 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
838}
839
d8ac8971
MF
840struct rq_flags {
841 unsigned long flags;
842 struct pin_cookie cookie;
cb42c9a3
MF
843#ifdef CONFIG_SCHED_DEBUG
844 /*
845 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
846 * current pin context is stashed here in case it needs to be
847 * restored in rq_repin_lock().
848 */
849 unsigned int clock_update_flags;
850#endif
d8ac8971
MF
851};
852
853static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
854{
855 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
856
857#ifdef CONFIG_SCHED_DEBUG
858 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
859 rf->clock_update_flags = 0;
860#endif
d8ac8971
MF
861}
862
863static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
864{
cb42c9a3
MF
865#ifdef CONFIG_SCHED_DEBUG
866 if (rq->clock_update_flags > RQCF_ACT_SKIP)
867 rf->clock_update_flags = RQCF_UPDATED;
868#endif
869
d8ac8971
MF
870 lockdep_unpin_lock(&rq->lock, rf->cookie);
871}
872
873static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
874{
875 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
876
877#ifdef CONFIG_SCHED_DEBUG
878 /*
879 * Restore the value we stashed in @rf for this pin context.
880 */
881 rq->clock_update_flags |= rf->clock_update_flags;
882#endif
d8ac8971
MF
883}
884
9942f79b 885#ifdef CONFIG_NUMA
e3fe70b1
RR
886enum numa_topology_type {
887 NUMA_DIRECT,
888 NUMA_GLUELESS_MESH,
889 NUMA_BACKPLANE,
890};
891extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
892extern int sched_max_numa_distance;
893extern bool find_numa_distance(int distance);
894#endif
895
f2cb1360
IM
896#ifdef CONFIG_NUMA
897extern void sched_init_numa(void);
898extern void sched_domains_numa_masks_set(unsigned int cpu);
899extern void sched_domains_numa_masks_clear(unsigned int cpu);
900#else
901static inline void sched_init_numa(void) { }
902static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
903static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
904#endif
905
f809ca9a 906#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
907/* The regions in numa_faults array from task_struct */
908enum numa_faults_stats {
909 NUMA_MEM = 0,
910 NUMA_CPU,
911 NUMA_MEMBUF,
912 NUMA_CPUBUF
913};
0ec8aa00 914extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 915extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 916extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
917#endif /* CONFIG_NUMA_BALANCING */
918
518cd623
PZ
919#ifdef CONFIG_SMP
920
e3fca9e7
PZ
921static inline void
922queue_balance_callback(struct rq *rq,
923 struct callback_head *head,
924 void (*func)(struct rq *rq))
925{
926 lockdep_assert_held(&rq->lock);
927
928 if (unlikely(head->next))
929 return;
930
931 head->func = (void (*)(struct callback_head *))func;
932 head->next = rq->balance_callback;
933 rq->balance_callback = head;
934}
935
e3baac47
PZ
936extern void sched_ttwu_pending(void);
937
029632fb
PZ
938#define rcu_dereference_check_sched_domain(p) \
939 rcu_dereference_check((p), \
940 lockdep_is_held(&sched_domains_mutex))
941
942/*
943 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
944 * See detach_destroy_domains: synchronize_sched for details.
945 *
946 * The domain tree of any CPU may only be accessed from within
947 * preempt-disabled sections.
948 */
949#define for_each_domain(cpu, __sd) \
518cd623
PZ
950 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
951 __sd; __sd = __sd->parent)
029632fb 952
77e81365
SS
953#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
954
518cd623
PZ
955/**
956 * highest_flag_domain - Return highest sched_domain containing flag.
957 * @cpu: The cpu whose highest level of sched domain is to
958 * be returned.
959 * @flag: The flag to check for the highest sched_domain
960 * for the given cpu.
961 *
962 * Returns the highest sched_domain of a cpu which contains the given flag.
963 */
964static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
965{
966 struct sched_domain *sd, *hsd = NULL;
967
968 for_each_domain(cpu, sd) {
969 if (!(sd->flags & flag))
970 break;
971 hsd = sd;
972 }
973
974 return hsd;
975}
976
fb13c7ee
MG
977static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
978{
979 struct sched_domain *sd;
980
981 for_each_domain(cpu, sd) {
982 if (sd->flags & flag)
983 break;
984 }
985
986 return sd;
987}
988
518cd623 989DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 990DECLARE_PER_CPU(int, sd_llc_size);
518cd623 991DECLARE_PER_CPU(int, sd_llc_id);
0e369d75 992DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 993DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 994DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 995
63b2ca30 996struct sched_group_capacity {
5e6521ea
LZ
997 atomic_t ref;
998 /*
172895e6 999 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1000 * for a single CPU.
5e6521ea 1001 */
bf475ce0
MR
1002 unsigned long capacity;
1003 unsigned long min_capacity; /* Min per-CPU capacity in group */
5e6521ea 1004 unsigned long next_update;
63b2ca30 1005 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
1006
1007 unsigned long cpumask[0]; /* iteration mask */
1008};
1009
1010struct sched_group {
1011 struct sched_group *next; /* Must be a circular list */
1012 atomic_t ref;
1013
1014 unsigned int group_weight;
63b2ca30 1015 struct sched_group_capacity *sgc;
afe06efd 1016 int asym_prefer_cpu; /* cpu of highest priority in group */
5e6521ea
LZ
1017
1018 /*
1019 * The CPUs this group covers.
1020 *
1021 * NOTE: this field is variable length. (Allocated dynamically
1022 * by attaching extra space to the end of the structure,
1023 * depending on how many CPUs the kernel has booted up with)
1024 */
1025 unsigned long cpumask[0];
1026};
1027
1028static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
1029{
1030 return to_cpumask(sg->cpumask);
1031}
1032
1033/*
1034 * cpumask masking which cpus in the group are allowed to iterate up the domain
1035 * tree.
1036 */
1037static inline struct cpumask *sched_group_mask(struct sched_group *sg)
1038{
63b2ca30 1039 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1040}
1041
1042/**
1043 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
1044 * @group: The group whose first cpu is to be returned.
1045 */
1046static inline unsigned int group_first_cpu(struct sched_group *group)
1047{
1048 return cpumask_first(sched_group_cpus(group));
1049}
1050
c1174876
PZ
1051extern int group_balance_cpu(struct sched_group *sg);
1052
3866e845
SRRH
1053#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1054void register_sched_domain_sysctl(void);
1055void unregister_sched_domain_sysctl(void);
1056#else
1057static inline void register_sched_domain_sysctl(void)
1058{
1059}
1060static inline void unregister_sched_domain_sysctl(void)
1061{
1062}
1063#endif
1064
e3baac47
PZ
1065#else
1066
1067static inline void sched_ttwu_pending(void) { }
1068
518cd623 1069#endif /* CONFIG_SMP */
029632fb 1070
391e43da 1071#include "stats.h"
1051408f 1072#include "autogroup.h"
029632fb
PZ
1073
1074#ifdef CONFIG_CGROUP_SCHED
1075
1076/*
1077 * Return the group to which this tasks belongs.
1078 *
8af01f56
TH
1079 * We cannot use task_css() and friends because the cgroup subsystem
1080 * changes that value before the cgroup_subsys::attach() method is called,
1081 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1082 *
1083 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1084 * core changes this before calling sched_move_task().
1085 *
1086 * Instead we use a 'copy' which is updated from sched_move_task() while
1087 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1088 */
1089static inline struct task_group *task_group(struct task_struct *p)
1090{
8323f26c 1091 return p->sched_task_group;
029632fb
PZ
1092}
1093
1094/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1095static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1096{
1097#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1098 struct task_group *tg = task_group(p);
1099#endif
1100
1101#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1102 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1103 p->se.cfs_rq = tg->cfs_rq[cpu];
1104 p->se.parent = tg->se[cpu];
1105#endif
1106
1107#ifdef CONFIG_RT_GROUP_SCHED
1108 p->rt.rt_rq = tg->rt_rq[cpu];
1109 p->rt.parent = tg->rt_se[cpu];
1110#endif
1111}
1112
1113#else /* CONFIG_CGROUP_SCHED */
1114
1115static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1116static inline struct task_group *task_group(struct task_struct *p)
1117{
1118 return NULL;
1119}
1120
1121#endif /* CONFIG_CGROUP_SCHED */
1122
1123static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1124{
1125 set_task_rq(p, cpu);
1126#ifdef CONFIG_SMP
1127 /*
1128 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1129 * successfuly executed on another CPU. We must ensure that updates of
1130 * per-task data have been completed by this moment.
1131 */
1132 smp_wmb();
c65eacbe
AL
1133#ifdef CONFIG_THREAD_INFO_IN_TASK
1134 p->cpu = cpu;
1135#else
029632fb 1136 task_thread_info(p)->cpu = cpu;
c65eacbe 1137#endif
ac66f547 1138 p->wake_cpu = cpu;
029632fb
PZ
1139#endif
1140}
1141
1142/*
1143 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1144 */
1145#ifdef CONFIG_SCHED_DEBUG
c5905afb 1146# include <linux/static_key.h>
029632fb
PZ
1147# define const_debug __read_mostly
1148#else
1149# define const_debug const
1150#endif
1151
1152extern const_debug unsigned int sysctl_sched_features;
1153
1154#define SCHED_FEAT(name, enabled) \
1155 __SCHED_FEAT_##name ,
1156
1157enum {
391e43da 1158#include "features.h"
f8b6d1cc 1159 __SCHED_FEAT_NR,
029632fb
PZ
1160};
1161
1162#undef SCHED_FEAT
1163
f8b6d1cc 1164#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 1165#define SCHED_FEAT(name, enabled) \
c5905afb 1166static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1167{ \
6e76ea8a 1168 return static_key_##enabled(key); \
f8b6d1cc
PZ
1169}
1170
1171#include "features.h"
1172
1173#undef SCHED_FEAT
1174
c5905afb 1175extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
1176#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1177#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 1178#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 1179#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1180
2a595721 1181extern struct static_key_false sched_numa_balancing;
cb251765 1182extern struct static_key_false sched_schedstats;
cbee9f88 1183
029632fb
PZ
1184static inline u64 global_rt_period(void)
1185{
1186 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1187}
1188
1189static inline u64 global_rt_runtime(void)
1190{
1191 if (sysctl_sched_rt_runtime < 0)
1192 return RUNTIME_INF;
1193
1194 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1195}
1196
029632fb
PZ
1197static inline int task_current(struct rq *rq, struct task_struct *p)
1198{
1199 return rq->curr == p;
1200}
1201
1202static inline int task_running(struct rq *rq, struct task_struct *p)
1203{
1204#ifdef CONFIG_SMP
1205 return p->on_cpu;
1206#else
1207 return task_current(rq, p);
1208#endif
1209}
1210
da0c1e65
KT
1211static inline int task_on_rq_queued(struct task_struct *p)
1212{
1213 return p->on_rq == TASK_ON_RQ_QUEUED;
1214}
029632fb 1215
cca26e80
KT
1216static inline int task_on_rq_migrating(struct task_struct *p)
1217{
1218 return p->on_rq == TASK_ON_RQ_MIGRATING;
1219}
1220
029632fb
PZ
1221#ifndef prepare_arch_switch
1222# define prepare_arch_switch(next) do { } while (0)
1223#endif
01f23e16
CM
1224#ifndef finish_arch_post_lock_switch
1225# define finish_arch_post_lock_switch() do { } while (0)
1226#endif
029632fb 1227
029632fb
PZ
1228static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1229{
1230#ifdef CONFIG_SMP
1231 /*
1232 * We can optimise this out completely for !SMP, because the
1233 * SMP rebalancing from interrupt is the only thing that cares
1234 * here.
1235 */
1236 next->on_cpu = 1;
1237#endif
1238}
1239
1240static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1241{
1242#ifdef CONFIG_SMP
1243 /*
1244 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1245 * We must ensure this doesn't happen until the switch is completely
1246 * finished.
95913d97 1247 *
b75a2253
PZ
1248 * In particular, the load of prev->state in finish_task_switch() must
1249 * happen before this.
1250 *
1f03e8d2 1251 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
029632fb 1252 */
95913d97 1253 smp_store_release(&prev->on_cpu, 0);
029632fb
PZ
1254#endif
1255#ifdef CONFIG_DEBUG_SPINLOCK
1256 /* this is a valid case when another task releases the spinlock */
1257 rq->lock.owner = current;
1258#endif
1259 /*
1260 * If we are tracking spinlock dependencies then we have to
1261 * fix up the runqueue lock - which gets 'carried over' from
1262 * prev into current:
1263 */
1264 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1265
1266 raw_spin_unlock_irq(&rq->lock);
1267}
1268
b13095f0
LZ
1269/*
1270 * wake flags
1271 */
1272#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1273#define WF_FORK 0x02 /* child wakeup after fork */
1274#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1275
029632fb
PZ
1276/*
1277 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1278 * of tasks with abnormal "nice" values across CPUs the contribution that
1279 * each task makes to its run queue's load is weighted according to its
1280 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1281 * scaled version of the new time slice allocation that they receive on time
1282 * slice expiry etc.
1283 */
1284
1285#define WEIGHT_IDLEPRIO 3
1286#define WMULT_IDLEPRIO 1431655765
1287
ed82b8a1
AK
1288extern const int sched_prio_to_weight[40];
1289extern const u32 sched_prio_to_wmult[40];
029632fb 1290
ff77e468
PZ
1291/*
1292 * {de,en}queue flags:
1293 *
1294 * DEQUEUE_SLEEP - task is no longer runnable
1295 * ENQUEUE_WAKEUP - task just became runnable
1296 *
1297 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1298 * are in a known state which allows modification. Such pairs
1299 * should preserve as much state as possible.
1300 *
1301 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1302 * in the runqueue.
1303 *
1304 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1305 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1306 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1307 *
1308 */
1309
1310#define DEQUEUE_SLEEP 0x01
1311#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1312#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1313
1de64443 1314#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1315#define ENQUEUE_RESTORE 0x02
1316#define ENQUEUE_MOVE 0x04
1317
1318#define ENQUEUE_HEAD 0x08
1319#define ENQUEUE_REPLENISH 0x10
c82ba9fa 1320#ifdef CONFIG_SMP
59efa0ba 1321#define ENQUEUE_MIGRATED 0x20
c82ba9fa 1322#else
59efa0ba 1323#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1324#endif
c82ba9fa 1325
37e117c0
PZ
1326#define RETRY_TASK ((void *)-1UL)
1327
c82ba9fa
LZ
1328struct sched_class {
1329 const struct sched_class *next;
1330
1331 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1332 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1333 void (*yield_task) (struct rq *rq);
1334 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1335
1336 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1337
606dba2e
PZ
1338 /*
1339 * It is the responsibility of the pick_next_task() method that will
1340 * return the next task to call put_prev_task() on the @prev task or
1341 * something equivalent.
37e117c0
PZ
1342 *
1343 * May return RETRY_TASK when it finds a higher prio class has runnable
1344 * tasks.
606dba2e
PZ
1345 */
1346 struct task_struct * (*pick_next_task) (struct rq *rq,
e7904a28 1347 struct task_struct *prev,
d8ac8971 1348 struct rq_flags *rf);
c82ba9fa
LZ
1349 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1350
1351#ifdef CONFIG_SMP
ac66f547 1352 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
5a4fd036 1353 void (*migrate_task_rq)(struct task_struct *p);
c82ba9fa 1354
c82ba9fa
LZ
1355 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1356
1357 void (*set_cpus_allowed)(struct task_struct *p,
1358 const struct cpumask *newmask);
1359
1360 void (*rq_online)(struct rq *rq);
1361 void (*rq_offline)(struct rq *rq);
1362#endif
1363
1364 void (*set_curr_task) (struct rq *rq);
1365 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1366 void (*task_fork) (struct task_struct *p);
e6c390f2 1367 void (*task_dead) (struct task_struct *p);
c82ba9fa 1368
67dfa1b7
KT
1369 /*
1370 * The switched_from() call is allowed to drop rq->lock, therefore we
1371 * cannot assume the switched_from/switched_to pair is serliazed by
1372 * rq->lock. They are however serialized by p->pi_lock.
1373 */
c82ba9fa
LZ
1374 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1375 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1376 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1377 int oldprio);
1378
1379 unsigned int (*get_rr_interval) (struct rq *rq,
1380 struct task_struct *task);
1381
6e998916
SG
1382 void (*update_curr) (struct rq *rq);
1383
ea86cb4b
VG
1384#define TASK_SET_GROUP 0
1385#define TASK_MOVE_GROUP 1
1386
c82ba9fa 1387#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 1388 void (*task_change_group) (struct task_struct *p, int type);
c82ba9fa
LZ
1389#endif
1390};
029632fb 1391
3f1d2a31
PZ
1392static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1393{
1394 prev->sched_class->put_prev_task(rq, prev);
1395}
1396
b2bf6c31
PZ
1397static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1398{
1399 curr->sched_class->set_curr_task(rq);
1400}
1401
029632fb
PZ
1402#define sched_class_highest (&stop_sched_class)
1403#define for_each_class(class) \
1404 for (class = sched_class_highest; class; class = class->next)
1405
1406extern const struct sched_class stop_sched_class;
aab03e05 1407extern const struct sched_class dl_sched_class;
029632fb
PZ
1408extern const struct sched_class rt_sched_class;
1409extern const struct sched_class fair_sched_class;
1410extern const struct sched_class idle_sched_class;
1411
1412
1413#ifdef CONFIG_SMP
1414
63b2ca30 1415extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1416
7caff66f 1417extern void trigger_load_balance(struct rq *rq);
029632fb 1418
c5b28038
PZ
1419extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1420
029632fb
PZ
1421#endif
1422
442bf3aa
DL
1423#ifdef CONFIG_CPU_IDLE
1424static inline void idle_set_state(struct rq *rq,
1425 struct cpuidle_state *idle_state)
1426{
1427 rq->idle_state = idle_state;
1428}
1429
1430static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1431{
9148a3a1 1432 SCHED_WARN_ON(!rcu_read_lock_held());
442bf3aa
DL
1433 return rq->idle_state;
1434}
1435#else
1436static inline void idle_set_state(struct rq *rq,
1437 struct cpuidle_state *idle_state)
1438{
1439}
1440
1441static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1442{
1443 return NULL;
1444}
1445#endif
1446
029632fb
PZ
1447extern void sysrq_sched_debug_show(void);
1448extern void sched_init_granularity(void);
1449extern void update_max_interval(void);
1baca4ce
JL
1450
1451extern void init_sched_dl_class(void);
029632fb
PZ
1452extern void init_sched_rt_class(void);
1453extern void init_sched_fair_class(void);
1454
8875125e 1455extern void resched_curr(struct rq *rq);
029632fb
PZ
1456extern void resched_cpu(int cpu);
1457
1458extern struct rt_bandwidth def_rt_bandwidth;
1459extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1460
332ac17e
DF
1461extern struct dl_bandwidth def_dl_bandwidth;
1462extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1463extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1464
332ac17e
DF
1465unsigned long to_ratio(u64 period, u64 runtime);
1466
540247fb 1467extern void init_entity_runnable_average(struct sched_entity *se);
2b8c41da 1468extern void post_init_entity_util_avg(struct sched_entity *se);
a75cdaa9 1469
76d92ac3
FW
1470#ifdef CONFIG_NO_HZ_FULL
1471extern bool sched_can_stop_tick(struct rq *rq);
1472
1473/*
1474 * Tick may be needed by tasks in the runqueue depending on their policy and
1475 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1476 * nohz mode if necessary.
1477 */
1478static inline void sched_update_tick_dependency(struct rq *rq)
1479{
1480 int cpu;
1481
1482 if (!tick_nohz_full_enabled())
1483 return;
1484
1485 cpu = cpu_of(rq);
1486
1487 if (!tick_nohz_full_cpu(cpu))
1488 return;
1489
1490 if (sched_can_stop_tick(rq))
1491 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1492 else
1493 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1494}
1495#else
1496static inline void sched_update_tick_dependency(struct rq *rq) { }
1497#endif
1498
72465447 1499static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1500{
72465447
KT
1501 unsigned prev_nr = rq->nr_running;
1502
1503 rq->nr_running = prev_nr + count;
9f3660c2 1504
72465447 1505 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1506#ifdef CONFIG_SMP
1507 if (!rq->rd->overload)
1508 rq->rd->overload = true;
1509#endif
4486edd1 1510 }
76d92ac3
FW
1511
1512 sched_update_tick_dependency(rq);
029632fb
PZ
1513}
1514
72465447 1515static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1516{
72465447 1517 rq->nr_running -= count;
76d92ac3
FW
1518 /* Check if we still need preemption */
1519 sched_update_tick_dependency(rq);
029632fb
PZ
1520}
1521
265f22a9
FW
1522static inline void rq_last_tick_reset(struct rq *rq)
1523{
1524#ifdef CONFIG_NO_HZ_FULL
1525 rq->last_sched_tick = jiffies;
1526#endif
1527}
1528
029632fb
PZ
1529extern void update_rq_clock(struct rq *rq);
1530
1531extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1532extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1533
1534extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1535
1536extern const_debug unsigned int sysctl_sched_time_avg;
1537extern const_debug unsigned int sysctl_sched_nr_migrate;
1538extern const_debug unsigned int sysctl_sched_migration_cost;
1539
1540static inline u64 sched_avg_period(void)
1541{
1542 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1543}
1544
029632fb
PZ
1545#ifdef CONFIG_SCHED_HRTICK
1546
1547/*
1548 * Use hrtick when:
1549 * - enabled by features
1550 * - hrtimer is actually high res
1551 */
1552static inline int hrtick_enabled(struct rq *rq)
1553{
1554 if (!sched_feat(HRTICK))
1555 return 0;
1556 if (!cpu_active(cpu_of(rq)))
1557 return 0;
1558 return hrtimer_is_hres_active(&rq->hrtick_timer);
1559}
1560
1561void hrtick_start(struct rq *rq, u64 delay);
1562
b39e66ea
MG
1563#else
1564
1565static inline int hrtick_enabled(struct rq *rq)
1566{
1567 return 0;
1568}
1569
029632fb
PZ
1570#endif /* CONFIG_SCHED_HRTICK */
1571
1572#ifdef CONFIG_SMP
1573extern void sched_avg_update(struct rq *rq);
dfbca41f
PZ
1574
1575#ifndef arch_scale_freq_capacity
1576static __always_inline
1577unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1578{
1579 return SCHED_CAPACITY_SCALE;
1580}
1581#endif
b5b4860d 1582
8cd5601c
MR
1583#ifndef arch_scale_cpu_capacity
1584static __always_inline
1585unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1586{
e3279a2e 1587 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
8cd5601c
MR
1588 return sd->smt_gain / sd->span_weight;
1589
1590 return SCHED_CAPACITY_SCALE;
1591}
1592#endif
1593
029632fb
PZ
1594static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1595{
b5b4860d 1596 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
029632fb
PZ
1597 sched_avg_update(rq);
1598}
1599#else
1600static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1601static inline void sched_avg_update(struct rq *rq) { }
1602#endif
1603
eb580751 1604struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462 1605 __acquires(rq->lock);
eb580751 1606struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3960c8c0 1607 __acquires(p->pi_lock)
3e71a462 1608 __acquires(rq->lock);
3960c8c0 1609
eb580751 1610static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
3960c8c0
PZ
1611 __releases(rq->lock)
1612{
d8ac8971 1613 rq_unpin_lock(rq, rf);
3960c8c0
PZ
1614 raw_spin_unlock(&rq->lock);
1615}
1616
1617static inline void
eb580751 1618task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
3960c8c0
PZ
1619 __releases(rq->lock)
1620 __releases(p->pi_lock)
1621{
d8ac8971 1622 rq_unpin_lock(rq, rf);
3960c8c0 1623 raw_spin_unlock(&rq->lock);
eb580751 1624 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3960c8c0
PZ
1625}
1626
029632fb
PZ
1627#ifdef CONFIG_SMP
1628#ifdef CONFIG_PREEMPT
1629
1630static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1631
1632/*
1633 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1634 * way at the expense of forcing extra atomic operations in all
1635 * invocations. This assures that the double_lock is acquired using the
1636 * same underlying policy as the spinlock_t on this architecture, which
1637 * reduces latency compared to the unfair variant below. However, it
1638 * also adds more overhead and therefore may reduce throughput.
1639 */
1640static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(this_rq->lock)
1642 __acquires(busiest->lock)
1643 __acquires(this_rq->lock)
1644{
1645 raw_spin_unlock(&this_rq->lock);
1646 double_rq_lock(this_rq, busiest);
1647
1648 return 1;
1649}
1650
1651#else
1652/*
1653 * Unfair double_lock_balance: Optimizes throughput at the expense of
1654 * latency by eliminating extra atomic operations when the locks are
1655 * already in proper order on entry. This favors lower cpu-ids and will
1656 * grant the double lock to lower cpus over higher ids under contention,
1657 * regardless of entry order into the function.
1658 */
1659static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1660 __releases(this_rq->lock)
1661 __acquires(busiest->lock)
1662 __acquires(this_rq->lock)
1663{
1664 int ret = 0;
1665
1666 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1667 if (busiest < this_rq) {
1668 raw_spin_unlock(&this_rq->lock);
1669 raw_spin_lock(&busiest->lock);
1670 raw_spin_lock_nested(&this_rq->lock,
1671 SINGLE_DEPTH_NESTING);
1672 ret = 1;
1673 } else
1674 raw_spin_lock_nested(&busiest->lock,
1675 SINGLE_DEPTH_NESTING);
1676 }
1677 return ret;
1678}
1679
1680#endif /* CONFIG_PREEMPT */
1681
1682/*
1683 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1684 */
1685static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1686{
1687 if (unlikely(!irqs_disabled())) {
1688 /* printk() doesn't work good under rq->lock */
1689 raw_spin_unlock(&this_rq->lock);
1690 BUG_ON(1);
1691 }
1692
1693 return _double_lock_balance(this_rq, busiest);
1694}
1695
1696static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1697 __releases(busiest->lock)
1698{
1699 raw_spin_unlock(&busiest->lock);
1700 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1701}
1702
74602315
PZ
1703static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1704{
1705 if (l1 > l2)
1706 swap(l1, l2);
1707
1708 spin_lock(l1);
1709 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1710}
1711
60e69eed
MG
1712static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1713{
1714 if (l1 > l2)
1715 swap(l1, l2);
1716
1717 spin_lock_irq(l1);
1718 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1719}
1720
74602315
PZ
1721static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1722{
1723 if (l1 > l2)
1724 swap(l1, l2);
1725
1726 raw_spin_lock(l1);
1727 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1728}
1729
029632fb
PZ
1730/*
1731 * double_rq_lock - safely lock two runqueues
1732 *
1733 * Note this does not disable interrupts like task_rq_lock,
1734 * you need to do so manually before calling.
1735 */
1736static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1737 __acquires(rq1->lock)
1738 __acquires(rq2->lock)
1739{
1740 BUG_ON(!irqs_disabled());
1741 if (rq1 == rq2) {
1742 raw_spin_lock(&rq1->lock);
1743 __acquire(rq2->lock); /* Fake it out ;) */
1744 } else {
1745 if (rq1 < rq2) {
1746 raw_spin_lock(&rq1->lock);
1747 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1748 } else {
1749 raw_spin_lock(&rq2->lock);
1750 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1751 }
1752 }
1753}
1754
1755/*
1756 * double_rq_unlock - safely unlock two runqueues
1757 *
1758 * Note this does not restore interrupts like task_rq_unlock,
1759 * you need to do so manually after calling.
1760 */
1761static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1762 __releases(rq1->lock)
1763 __releases(rq2->lock)
1764{
1765 raw_spin_unlock(&rq1->lock);
1766 if (rq1 != rq2)
1767 raw_spin_unlock(&rq2->lock);
1768 else
1769 __release(rq2->lock);
1770}
1771
f2cb1360
IM
1772extern void set_rq_online (struct rq *rq);
1773extern void set_rq_offline(struct rq *rq);
1774extern bool sched_smp_initialized;
1775
029632fb
PZ
1776#else /* CONFIG_SMP */
1777
1778/*
1779 * double_rq_lock - safely lock two runqueues
1780 *
1781 * Note this does not disable interrupts like task_rq_lock,
1782 * you need to do so manually before calling.
1783 */
1784static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1785 __acquires(rq1->lock)
1786 __acquires(rq2->lock)
1787{
1788 BUG_ON(!irqs_disabled());
1789 BUG_ON(rq1 != rq2);
1790 raw_spin_lock(&rq1->lock);
1791 __acquire(rq2->lock); /* Fake it out ;) */
1792}
1793
1794/*
1795 * double_rq_unlock - safely unlock two runqueues
1796 *
1797 * Note this does not restore interrupts like task_rq_unlock,
1798 * you need to do so manually after calling.
1799 */
1800static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1801 __releases(rq1->lock)
1802 __releases(rq2->lock)
1803{
1804 BUG_ON(rq1 != rq2);
1805 raw_spin_unlock(&rq1->lock);
1806 __release(rq2->lock);
1807}
1808
1809#endif
1810
1811extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1812extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
1813
1814#ifdef CONFIG_SCHED_DEBUG
029632fb
PZ
1815extern void print_cfs_stats(struct seq_file *m, int cpu);
1816extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1817extern void print_dl_stats(struct seq_file *m, int cpu);
6b55c965
SD
1818extern void
1819print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
397f2378
SD
1820
1821#ifdef CONFIG_NUMA_BALANCING
1822extern void
1823show_numa_stats(struct task_struct *p, struct seq_file *m);
1824extern void
1825print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1826 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1827#endif /* CONFIG_NUMA_BALANCING */
1828#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
1829
1830extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
1831extern void init_rt_rq(struct rt_rq *rt_rq);
1832extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 1833
1ee14e6c
BS
1834extern void cfs_bandwidth_usage_inc(void);
1835extern void cfs_bandwidth_usage_dec(void);
1c792db7 1836
3451d024 1837#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1838enum rq_nohz_flag_bits {
1839 NOHZ_TICK_STOPPED,
1840 NOHZ_BALANCE_KICK,
1841};
1842
1843#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc
TG
1844
1845extern void nohz_balance_exit_idle(unsigned int cpu);
1846#else
1847static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1c792db7 1848#endif
73fbec60
FW
1849
1850#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 1851struct irqtime {
a499a5a1 1852 u64 tick_delta;
19d23dbf
FW
1853 u64 irq_start_time;
1854 struct u64_stats_sync sync;
1855};
73fbec60 1856
19d23dbf 1857DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60
FW
1858
1859static inline u64 irq_time_read(int cpu)
1860{
19d23dbf 1861 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
a499a5a1 1862 u64 *cpustat = kcpustat_cpu(cpu).cpustat;
19d23dbf
FW
1863 unsigned int seq;
1864 u64 total;
73fbec60
FW
1865
1866 do {
19d23dbf 1867 seq = __u64_stats_fetch_begin(&irqtime->sync);
a499a5a1 1868 total = cpustat[CPUTIME_SOFTIRQ] + cpustat[CPUTIME_IRQ];
19d23dbf 1869 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 1870
19d23dbf 1871 return total;
73fbec60 1872}
73fbec60 1873#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
1874
1875#ifdef CONFIG_CPU_FREQ
1876DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1877
1878/**
1879 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 1880 * @rq: Runqueue to carry out the update for.
58919e83 1881 * @flags: Update reason flags.
adaf9fcd 1882 *
58919e83
RW
1883 * This function is called by the scheduler on the CPU whose utilization is
1884 * being updated.
adaf9fcd
RW
1885 *
1886 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
1887 *
1888 * The way cpufreq is currently arranged requires it to evaluate the CPU
1889 * performance state (frequency/voltage) on a regular basis to prevent it from
1890 * being stuck in a completely inadequate performance level for too long.
1891 * That is not guaranteed to happen if the updates are only triggered from CFS,
1892 * though, because they may not be coming in if RT or deadline tasks are active
1893 * all the time (or there are RT and DL tasks only).
1894 *
1895 * As a workaround for that issue, this function is called by the RT and DL
1896 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1897 * but that really is a band-aid. Going forward it should be replaced with
1898 * solutions targeted more specifically at RT and DL tasks.
1899 */
12bde33d 1900static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 1901{
58919e83
RW
1902 struct update_util_data *data;
1903
1904 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1905 if (data)
12bde33d
RW
1906 data->func(data, rq_clock(rq), flags);
1907}
1908
1909static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
1910{
1911 if (cpu_of(rq) == smp_processor_id())
1912 cpufreq_update_util(rq, flags);
adaf9fcd
RW
1913}
1914#else
12bde33d
RW
1915static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
1916static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
adaf9fcd 1917#endif /* CONFIG_CPU_FREQ */
be53f58f 1918
9bdcb44e
RW
1919#ifdef arch_scale_freq_capacity
1920#ifndef arch_scale_freq_invariant
1921#define arch_scale_freq_invariant() (true)
1922#endif
1923#else /* arch_scale_freq_capacity */
1924#define arch_scale_freq_invariant() (false)
1925#endif