Merge tag 'amdtee-fix-for-v6.6' of https://git.linaro.org/people/jens.wiklander/linux...
[linux-block.git] / kernel / sched / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97fb7a0a
IM
2/*
3 * Scheduler internal types and methods:
4 */
95458477
IM
5#ifndef _KERNEL_SCHED_SCHED_H
6#define _KERNEL_SCHED_SCHED_H
325ea10c 7
801c1419 8#include <linux/sched/affinity.h>
dfc3401a 9#include <linux/sched/autogroup.h>
55687da1 10#include <linux/sched/cpufreq.h>
325ea10c 11#include <linux/sched/deadline.h>
4ff8f2ca 12#include <linux/sched.h>
325ea10c
IM
13#include <linux/sched/loadavg.h>
14#include <linux/sched/mm.h>
801c1419 15#include <linux/sched/rseq_api.h>
325ea10c 16#include <linux/sched/signal.h>
321a874a 17#include <linux/sched/smt.h>
325ea10c
IM
18#include <linux/sched/stat.h>
19#include <linux/sched/sysctl.h>
4ff8f2ca 20#include <linux/sched/task_flags.h>
29930025 21#include <linux/sched/task.h>
325ea10c 22#include <linux/sched/topology.h>
ef8bd77f 23
4ff8f2ca 24#include <linux/atomic.h>
801c1419 25#include <linux/bitmap.h>
4ff8f2ca 26#include <linux/bug.h>
801c1419 27#include <linux/capability.h>
4ff8f2ca 28#include <linux/cgroup_api.h>
801c1419 29#include <linux/cgroup.h>
e67198cc 30#include <linux/context_tracking.h>
325ea10c 31#include <linux/cpufreq.h>
801c1419 32#include <linux/cpumask_api.h>
325ea10c 33#include <linux/ctype.h>
801c1419 34#include <linux/file.h>
4ff8f2ca 35#include <linux/fs_api.h>
f96eca43
IM
36#include <linux/hrtimer_api.h>
37#include <linux/interrupt.h>
4ff8f2ca 38#include <linux/irq_work.h>
801c1419
IM
39#include <linux/jiffies.h>
40#include <linux/kref_api.h>
325ea10c 41#include <linux/kthread.h>
f96eca43 42#include <linux/ktime_api.h>
801c1419 43#include <linux/lockdep_api.h>
4ff8f2ca
IM
44#include <linux/lockdep.h>
45#include <linux/minmax.h>
46#include <linux/mm.h>
801c1419
IM
47#include <linux/module.h>
48#include <linux/mutex_api.h>
4ff8f2ca 49#include <linux/plist.h>
801c1419 50#include <linux/poll.h>
325ea10c 51#include <linux/proc_fs.h>
325ea10c 52#include <linux/profile.h>
eb414681 53#include <linux/psi.h>
4ff8f2ca 54#include <linux/rcupdate.h>
801c1419
IM
55#include <linux/seq_file.h>
56#include <linux/seqlock.h>
f96eca43
IM
57#include <linux/softirq.h>
58#include <linux/spinlock_api.h>
4ff8f2ca 59#include <linux/static_key.h>
029632fb 60#include <linux/stop_machine.h>
801c1419 61#include <linux/syscalls_api.h>
325ea10c 62#include <linux/syscalls.h>
4ff8f2ca 63#include <linux/tick.h>
801c1419
IM
64#include <linux/topology.h>
65#include <linux/types.h>
f96eca43 66#include <linux/u64_stats_sync_api.h>
801c1419
IM
67#include <linux/uaccess.h>
68#include <linux/wait_api.h>
4ff8f2ca 69#include <linux/wait_bit.h>
801c1419
IM
70#include <linux/workqueue_api.h>
71
72#include <trace/events/power.h>
4ff8f2ca 73#include <trace/events/sched.h>
801c1419
IM
74
75#include "../workqueue_internal.h"
76
4ff8f2ca
IM
77#ifdef CONFIG_CGROUP_SCHED
78#include <linux/cgroup.h>
79#include <linux/psi.h>
80#endif
325ea10c 81
4ff8f2ca
IM
82#ifdef CONFIG_SCHED_DEBUG
83# include <linux/static_key.h>
84#endif
029632fb 85
7fce777c 86#ifdef CONFIG_PARAVIRT
325ea10c 87# include <asm/paravirt.h>
4ff8f2ca 88# include <asm/paravirt_api_clock.h>
7fce777c
IM
89#endif
90
391e43da 91#include "cpupri.h"
6bfd6d72 92#include "cpudeadline.h"
029632fb 93
9148a3a1 94#ifdef CONFIG_SCHED_DEBUG
4ff8f2ca 95# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
9148a3a1 96#else
4ff8f2ca 97# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
9148a3a1
PZ
98#endif
99
45ceebf7 100struct rq;
442bf3aa 101struct cpuidle_state;
45ceebf7 102
da0c1e65
KT
103/* task_struct::on_rq states: */
104#define TASK_ON_RQ_QUEUED 1
cca26e80 105#define TASK_ON_RQ_MIGRATING 2
da0c1e65 106
029632fb
PZ
107extern __read_mostly int scheduler_running;
108
45ceebf7
PG
109extern unsigned long calc_load_update;
110extern atomic_long_t calc_load_tasks;
111
a60707d7
ZN
112extern unsigned int sysctl_sched_child_runs_first;
113
3289bdb4 114extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 115extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4 116
9d246053 117extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
d9ab0e63
ZN
118
119extern unsigned int sysctl_sched_rt_period;
120extern int sysctl_sched_rt_runtime;
dafd7a9d 121extern int sched_rr_timeslice;
d9ab0e63 122
029632fb
PZ
123/*
124 * Helpers for converting nanosecond timing to jiffy resolution
125 */
126#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
127
cc1f4b1f
LZ
128/*
129 * Increase resolution of nice-level calculations for 64-bit architectures.
130 * The extra resolution improves shares distribution and load balancing of
131 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
132 * hierarchies, especially on larger systems. This is not a user-visible change
133 * and does not change the user-interface for setting shares/weights.
134 *
135 * We increase resolution only if we have enough bits to allow this increased
97fb7a0a
IM
136 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
137 * are pretty high and the returns do not justify the increased costs.
2159197d 138 *
97fb7a0a
IM
139 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
140 * increase coverage and consistency always enable it on 64-bit platforms.
cc1f4b1f 141 */
2159197d 142#ifdef CONFIG_64BIT
172895e6 143# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749 144# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
26cf5222
MW
145# define scale_load_down(w) \
146({ \
147 unsigned long __w = (w); \
148 if (__w) \
149 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
150 __w; \
151})
cc1f4b1f 152#else
172895e6 153# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
154# define scale_load(w) (w)
155# define scale_load_down(w) (w)
156#endif
157
6ecdd749 158/*
172895e6
YD
159 * Task weight (visible to users) and its load (invisible to users) have
160 * independent resolution, but they should be well calibrated. We use
161 * scale_load() and scale_load_down(w) to convert between them. The
162 * following must be true:
163 *
9d061ba6 164 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
172895e6 165 *
6ecdd749 166 */
172895e6 167#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 168
332ac17e
DF
169/*
170 * Single value that decides SCHED_DEADLINE internal math precision.
171 * 10 -> just above 1us
172 * 9 -> just above 0.5us
173 */
97fb7a0a 174#define DL_SCALE 10
029632fb
PZ
175
176/*
97fb7a0a 177 * Single value that denotes runtime == period, ie unlimited time.
029632fb 178 */
97fb7a0a 179#define RUNTIME_INF ((u64)~0ULL)
029632fb 180
20f9cd2a
HA
181static inline int idle_policy(int policy)
182{
183 return policy == SCHED_IDLE;
184}
d50dde5a
DF
185static inline int fair_policy(int policy)
186{
187 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
188}
189
029632fb
PZ
190static inline int rt_policy(int policy)
191{
d50dde5a 192 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
193}
194
aab03e05
DF
195static inline int dl_policy(int policy)
196{
197 return policy == SCHED_DEADLINE;
198}
20f9cd2a
HA
199static inline bool valid_policy(int policy)
200{
201 return idle_policy(policy) || fair_policy(policy) ||
202 rt_policy(policy) || dl_policy(policy);
203}
aab03e05 204
1da1843f
VK
205static inline int task_has_idle_policy(struct task_struct *p)
206{
207 return idle_policy(p->policy);
208}
209
029632fb
PZ
210static inline int task_has_rt_policy(struct task_struct *p)
211{
212 return rt_policy(p->policy);
213}
214
aab03e05
DF
215static inline int task_has_dl_policy(struct task_struct *p)
216{
217 return dl_policy(p->policy);
218}
219
07881166
JL
220#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
221
d76343c6
VS
222static inline void update_avg(u64 *avg, u64 sample)
223{
224 s64 diff = sample - *avg;
225 *avg += diff / 8;
226}
227
39a2a6eb
VS
228/*
229 * Shifting a value by an exponent greater *or equal* to the size of said value
230 * is UB; cap at size-1.
231 */
232#define shr_bound(val, shift) \
233 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
234
794a56eb
JL
235/*
236 * !! For sched_setattr_nocheck() (kernel) only !!
237 *
238 * This is actually gross. :(
239 *
240 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
241 * tasks, but still be able to sleep. We need this on platforms that cannot
242 * atomically change clock frequency. Remove once fast switching will be
243 * available on such platforms.
244 *
245 * SUGOV stands for SchedUtil GOVernor.
246 */
247#define SCHED_FLAG_SUGOV 0x10000000
248
f9509153
QP
249#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
250
904cbab7 251static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
794a56eb
JL
252{
253#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
254 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
255#else
256 return false;
257#endif
258}
259
2d3d891d
DF
260/*
261 * Tells if entity @a should preempt entity @b.
262 */
904cbab7
MWO
263static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
264 const struct sched_dl_entity *b)
2d3d891d 265{
794a56eb
JL
266 return dl_entity_is_special(a) ||
267 dl_time_before(a->deadline, b->deadline);
2d3d891d
DF
268}
269
029632fb
PZ
270/*
271 * This is the priority-queue data structure of the RT scheduling class:
272 */
273struct rt_prio_array {
274 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
275 struct list_head queue[MAX_RT_PRIO];
276};
277
278struct rt_bandwidth {
279 /* nests inside the rq lock: */
280 raw_spinlock_t rt_runtime_lock;
281 ktime_t rt_period;
282 u64 rt_runtime;
283 struct hrtimer rt_period_timer;
4cfafd30 284 unsigned int rt_period_active;
029632fb 285};
a5e7be3b
JL
286
287void __dl_clear_params(struct task_struct *p);
288
332ac17e
DF
289static inline int dl_bandwidth_enabled(void)
290{
1724813d 291 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
292}
293
a57415f5
PL
294/*
295 * To keep the bandwidth of -deadline tasks under control
296 * we need some place where:
297 * - store the maximum -deadline bandwidth of each cpu;
298 * - cache the fraction of bandwidth that is currently allocated in
299 * each root domain;
300 *
301 * This is all done in the data structure below. It is similar to the
302 * one used for RT-throttling (rt_bandwidth), with the main difference
303 * that, since here we are only interested in admission control, we
304 * do not decrease any runtime while the group "executes", neither we
305 * need a timer to replenish it.
306 *
307 * With respect to SMP, bandwidth is given on a per root domain basis,
308 * meaning that:
309 * - bw (< 100%) is the deadline bandwidth of each CPU;
310 * - total_bw is the currently allocated bandwidth in each root domain;
311 */
332ac17e 312struct dl_bw {
97fb7a0a
IM
313 raw_spinlock_t lock;
314 u64 bw;
315 u64 total_bw;
332ac17e
DF
316};
317
f2cb1360 318extern void init_dl_bw(struct dl_bw *dl_b);
97fb7a0a 319extern int sched_dl_global_validate(void);
06a76fe0 320extern void sched_dl_do_global(void);
97fb7a0a 321extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
06a76fe0
NP
322extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
323extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
324extern bool __checkparam_dl(const struct sched_attr *attr);
06a76fe0 325extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
97fb7a0a 326extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
85989106 327extern int dl_bw_check_overflow(int cpu);
029632fb
PZ
328
329#ifdef CONFIG_CGROUP_SCHED
330
029632fb
PZ
331struct cfs_rq;
332struct rt_rq;
333
35cf4e50 334extern struct list_head task_groups;
029632fb
PZ
335
336struct cfs_bandwidth {
337#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a
IM
338 raw_spinlock_t lock;
339 ktime_t period;
340 u64 quota;
341 u64 runtime;
f4183717 342 u64 burst;
bcb1704a 343 u64 runtime_snap;
97fb7a0a 344 s64 hierarchical_quota;
97fb7a0a 345
66567fcb 346 u8 idle;
347 u8 period_active;
66567fcb 348 u8 slack_started;
97fb7a0a
IM
349 struct hrtimer period_timer;
350 struct hrtimer slack_timer;
351 struct list_head throttled_cfs_rq;
352
353 /* Statistics: */
354 int nr_periods;
355 int nr_throttled;
bcb1704a 356 int nr_burst;
97fb7a0a 357 u64 throttled_time;
bcb1704a 358 u64 burst_time;
029632fb
PZ
359#endif
360};
361
97fb7a0a 362/* Task group related information */
029632fb
PZ
363struct task_group {
364 struct cgroup_subsys_state css;
365
366#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
367 /* schedulable entities of this group on each CPU */
368 struct sched_entity **se;
369 /* runqueue "owned" by this group on each CPU */
370 struct cfs_rq **cfs_rq;
371 unsigned long shares;
029632fb 372
30400039
JD
373 /* A positive value indicates that this is a SCHED_IDLE group. */
374 int idle;
375
fa6bddeb 376#ifdef CONFIG_SMP
b0367629
WL
377 /*
378 * load_avg can be heavily contended at clock tick time, so put
379 * it in its own cacheline separated from the fields above which
380 * will also be accessed at each tick.
381 */
97fb7a0a 382 atomic_long_t load_avg ____cacheline_aligned;
029632fb 383#endif
fa6bddeb 384#endif
029632fb
PZ
385
386#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a
IM
387 struct sched_rt_entity **rt_se;
388 struct rt_rq **rt_rq;
029632fb 389
97fb7a0a 390 struct rt_bandwidth rt_bandwidth;
029632fb
PZ
391#endif
392
97fb7a0a
IM
393 struct rcu_head rcu;
394 struct list_head list;
029632fb 395
97fb7a0a
IM
396 struct task_group *parent;
397 struct list_head siblings;
398 struct list_head children;
029632fb
PZ
399
400#ifdef CONFIG_SCHED_AUTOGROUP
97fb7a0a 401 struct autogroup *autogroup;
029632fb
PZ
402#endif
403
97fb7a0a 404 struct cfs_bandwidth cfs_bandwidth;
2480c093
PB
405
406#ifdef CONFIG_UCLAMP_TASK_GROUP
407 /* The two decimal precision [%] value requested from user-space */
408 unsigned int uclamp_pct[UCLAMP_CNT];
409 /* Clamp values requested for a task group */
410 struct uclamp_se uclamp_req[UCLAMP_CNT];
0b60ba2d
PB
411 /* Effective clamp values used for a task group */
412 struct uclamp_se uclamp[UCLAMP_CNT];
2480c093
PB
413#endif
414
029632fb
PZ
415};
416
417#ifdef CONFIG_FAIR_GROUP_SCHED
418#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
419
420/*
421 * A weight of 0 or 1 can cause arithmetics problems.
422 * A weight of a cfs_rq is the sum of weights of which entities
423 * are queued on this cfs_rq, so a weight of a entity should not be
424 * too large, so as the shares value of a task group.
425 * (The default weight is 1024 - so there's no practical
426 * limitation from this.)
427 */
97fb7a0a
IM
428#define MIN_SHARES (1UL << 1)
429#define MAX_SHARES (1UL << 18)
029632fb
PZ
430#endif
431
029632fb
PZ
432typedef int (*tg_visitor)(struct task_group *, void *);
433
434extern int walk_tg_tree_from(struct task_group *from,
435 tg_visitor down, tg_visitor up, void *data);
436
437/*
438 * Iterate the full tree, calling @down when first entering a node and @up when
439 * leaving it for the final time.
440 *
441 * Caller must hold rcu_lock or sufficient equivalent.
442 */
443static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
444{
445 return walk_tg_tree_from(&root_task_group, down, up, data);
446}
447
448extern int tg_nop(struct task_group *tg, void *data);
449
450extern void free_fair_sched_group(struct task_group *tg);
451extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 452extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 453extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
454extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
455 struct sched_entity *se, int cpu,
456 struct sched_entity *parent);
c98c1827 457extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
029632fb
PZ
458
459extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 460extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb 461extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
88c56cfe 462extern bool cfs_task_bw_constrained(struct task_struct *p);
029632fb 463
029632fb
PZ
464extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
465 struct sched_rt_entity *rt_se, int cpu,
466 struct sched_rt_entity *parent);
8887cd99
NP
467extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
468extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
469extern long sched_group_rt_runtime(struct task_group *tg);
470extern long sched_group_rt_period(struct task_group *tg);
471extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
029632fb 472
25cc7da7
LZ
473extern struct task_group *sched_create_group(struct task_group *parent);
474extern void sched_online_group(struct task_group *tg,
475 struct task_group *parent);
476extern void sched_destroy_group(struct task_group *tg);
b027789e 477extern void sched_release_group(struct task_group *tg);
25cc7da7
LZ
478
479extern void sched_move_task(struct task_struct *tsk);
480
481#ifdef CONFIG_FAIR_GROUP_SCHED
482extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86 483
30400039
JD
484extern int sched_group_set_idle(struct task_group *tg, long idle);
485
ad936d86
BP
486#ifdef CONFIG_SMP
487extern void set_task_rq_fair(struct sched_entity *se,
488 struct cfs_rq *prev, struct cfs_rq *next);
489#else /* !CONFIG_SMP */
490static inline void set_task_rq_fair(struct sched_entity *se,
491 struct cfs_rq *prev, struct cfs_rq *next) { }
492#endif /* CONFIG_SMP */
493#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 494
029632fb
PZ
495#else /* CONFIG_CGROUP_SCHED */
496
497struct cfs_bandwidth { };
88c56cfe 498static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
029632fb
PZ
499
500#endif /* CONFIG_CGROUP_SCHED */
501
87514b2c
BD
502extern void unregister_rt_sched_group(struct task_group *tg);
503extern void free_rt_sched_group(struct task_group *tg);
504extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
505
d05b4305
VD
506/*
507 * u64_u32_load/u64_u32_store
508 *
509 * Use a copy of a u64 value to protect against data race. This is only
510 * applicable for 32-bits architectures.
511 */
512#ifdef CONFIG_64BIT
513# define u64_u32_load_copy(var, copy) var
514# define u64_u32_store_copy(var, copy, val) (var = val)
515#else
516# define u64_u32_load_copy(var, copy) \
517({ \
518 u64 __val, __val_copy; \
519 do { \
520 __val_copy = copy; \
521 /* \
522 * paired with u64_u32_store_copy(), ordering access \
523 * to var and copy. \
524 */ \
525 smp_rmb(); \
526 __val = var; \
527 } while (__val != __val_copy); \
528 __val; \
529})
530# define u64_u32_store_copy(var, copy, val) \
531do { \
532 typeof(val) __val = (val); \
533 var = __val; \
534 /* \
535 * paired with u64_u32_load_copy(), ordering access to var and \
536 * copy. \
537 */ \
538 smp_wmb(); \
539 copy = __val; \
540} while (0)
541#endif
542# define u64_u32_load(var) u64_u32_load_copy(var, var##_copy)
543# define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
544
029632fb
PZ
545/* CFS-related fields in a runqueue */
546struct cfs_rq {
97fb7a0a 547 struct load_weight load;
97fb7a0a 548 unsigned int nr_running;
43e9f7f2 549 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
a480adde 550 unsigned int idle_nr_running; /* SCHED_IDLE */
43e9f7f2 551 unsigned int idle_h_nr_running; /* SCHED_IDLE */
029632fb 552
af4cf404
PZ
553 s64 avg_vruntime;
554 u64 avg_load;
555
97fb7a0a
IM
556 u64 exec_clock;
557 u64 min_vruntime;
c6047c2e
JFG
558#ifdef CONFIG_SCHED_CORE
559 unsigned int forceidle_seq;
560 u64 min_vruntime_fi;
561#endif
562
029632fb 563#ifndef CONFIG_64BIT
97fb7a0a 564 u64 min_vruntime_copy;
029632fb
PZ
565#endif
566
97fb7a0a 567 struct rb_root_cached tasks_timeline;
029632fb 568
029632fb
PZ
569 /*
570 * 'curr' points to currently running entity on this cfs_rq.
571 * It is set to NULL otherwise (i.e when none are currently running).
572 */
97fb7a0a
IM
573 struct sched_entity *curr;
574 struct sched_entity *next;
029632fb
PZ
575
576#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 577 unsigned int nr_spread_over;
029632fb
PZ
578#endif
579
2dac754e
PT
580#ifdef CONFIG_SMP
581 /*
9d89c257 582 * CFS load tracking
2dac754e 583 */
97fb7a0a 584 struct sched_avg avg;
2a2f5d4e 585#ifndef CONFIG_64BIT
d05b4305 586 u64 last_update_time_copy;
9d89c257 587#endif
2a2f5d4e
PZ
588 struct {
589 raw_spinlock_t lock ____cacheline_aligned;
590 int nr;
591 unsigned long load_avg;
592 unsigned long util_avg;
9f683953 593 unsigned long runnable_avg;
2a2f5d4e 594 } removed;
82958366 595
9d89c257 596#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
597 unsigned long tg_load_avg_contrib;
598 long propagate;
599 long prop_runnable_sum;
0e2d2aaa 600
82958366
PT
601 /*
602 * h_load = weight * f(tg)
603 *
604 * Where f(tg) is the recursive weight fraction assigned to
605 * this group.
606 */
97fb7a0a
IM
607 unsigned long h_load;
608 u64 last_h_load_update;
609 struct sched_entity *h_load_next;
68520796 610#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
611#endif /* CONFIG_SMP */
612
029632fb 613#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 614 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
029632fb
PZ
615
616 /*
617 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
618 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
619 * (like users, containers etc.)
620 *
97fb7a0a
IM
621 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
622 * This list is used during load balance.
029632fb 623 */
97fb7a0a
IM
624 int on_list;
625 struct list_head leaf_cfs_rq_list;
626 struct task_group *tg; /* group that "owns" this runqueue */
029632fb 627
30400039
JD
628 /* Locally cached copy of our task_group's idle value */
629 int idle;
630
029632fb 631#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a 632 int runtime_enabled;
97fb7a0a
IM
633 s64 runtime_remaining;
634
e2f3e35f
VD
635 u64 throttled_pelt_idle;
636#ifndef CONFIG_64BIT
637 u64 throttled_pelt_idle_copy;
638#endif
97fb7a0a 639 u64 throttled_clock;
64eaf507
CZ
640 u64 throttled_clock_pelt;
641 u64 throttled_clock_pelt_time;
677ea015
JD
642 u64 throttled_clock_self;
643 u64 throttled_clock_self_time;
97fb7a0a
IM
644 int throttled;
645 int throttle_count;
646 struct list_head throttled_list;
8ad075c2
JD
647#ifdef CONFIG_SMP
648 struct list_head throttled_csd_list;
649#endif
029632fb
PZ
650#endif /* CONFIG_CFS_BANDWIDTH */
651#endif /* CONFIG_FAIR_GROUP_SCHED */
652};
653
654static inline int rt_bandwidth_enabled(void)
655{
656 return sysctl_sched_rt_runtime >= 0;
657}
658
b6366f04 659/* RT IPI pull logic requires IRQ_WORK */
4bdced5c 660#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
b6366f04
SR
661# define HAVE_RT_PUSH_IPI
662#endif
663
029632fb
PZ
664/* Real-Time classes' related field in a runqueue: */
665struct rt_rq {
97fb7a0a
IM
666 struct rt_prio_array active;
667 unsigned int rt_nr_running;
668 unsigned int rr_nr_running;
029632fb
PZ
669#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
670 struct {
97fb7a0a 671 int curr; /* highest queued rt task prio */
029632fb 672#ifdef CONFIG_SMP
97fb7a0a 673 int next; /* next highest */
029632fb
PZ
674#endif
675 } highest_prio;
676#endif
677#ifdef CONFIG_SMP
e6fe3f42
AD
678 unsigned int rt_nr_migratory;
679 unsigned int rt_nr_total;
97fb7a0a
IM
680 int overloaded;
681 struct plist_head pushable_tasks;
371bf427 682
b6366f04 683#endif /* CONFIG_SMP */
97fb7a0a 684 int rt_queued;
f4ebcbc0 685
97fb7a0a
IM
686 int rt_throttled;
687 u64 rt_time;
688 u64 rt_runtime;
029632fb 689 /* Nests inside the rq lock: */
97fb7a0a 690 raw_spinlock_t rt_runtime_lock;
029632fb
PZ
691
692#ifdef CONFIG_RT_GROUP_SCHED
e6fe3f42 693 unsigned int rt_nr_boosted;
029632fb 694
97fb7a0a
IM
695 struct rq *rq;
696 struct task_group *tg;
029632fb
PZ
697#endif
698};
699
296b2ffe
VG
700static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
701{
702 return rt_rq->rt_queued && rt_rq->rt_nr_running;
703}
704
aab03e05
DF
705/* Deadline class' related fields in a runqueue */
706struct dl_rq {
707 /* runqueue is an rbtree, ordered by deadline */
97fb7a0a 708 struct rb_root_cached root;
aab03e05 709
e6fe3f42 710 unsigned int dl_nr_running;
1baca4ce
JL
711
712#ifdef CONFIG_SMP
713 /*
714 * Deadline values of the currently executing and the
715 * earliest ready task on this rq. Caching these facilitates
dfcb245e 716 * the decision whether or not a ready but not running task
1baca4ce
JL
717 * should migrate somewhere else.
718 */
719 struct {
97fb7a0a
IM
720 u64 curr;
721 u64 next;
1baca4ce
JL
722 } earliest_dl;
723
e6fe3f42 724 unsigned int dl_nr_migratory;
97fb7a0a 725 int overloaded;
1baca4ce
JL
726
727 /*
728 * Tasks on this rq that can be pushed away. They are kept in
729 * an rb-tree, ordered by tasks' deadlines, with caching
730 * of the leftmost (earliest deadline) element.
731 */
97fb7a0a 732 struct rb_root_cached pushable_dl_tasks_root;
332ac17e 733#else
97fb7a0a 734 struct dl_bw dl_bw;
1baca4ce 735#endif
e36d8677
LA
736 /*
737 * "Active utilization" for this runqueue: increased when a
738 * task wakes up (becomes TASK_RUNNING) and decreased when a
739 * task blocks
740 */
97fb7a0a 741 u64 running_bw;
4da3abce 742
8fd27231
LA
743 /*
744 * Utilization of the tasks "assigned" to this runqueue (including
745 * the tasks that are in runqueue and the tasks that executed on this
746 * CPU and blocked). Increased when a task moves to this runqueue, and
747 * decreased when the task moves away (migrates, changes scheduling
748 * policy, or terminates).
749 * This is needed to compute the "inactive utilization" for the
750 * runqueue (inactive utilization = this_bw - running_bw).
751 */
97fb7a0a
IM
752 u64 this_bw;
753 u64 extra_bw;
8fd27231 754
6a9d623a
VP
755 /*
756 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
757 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
758 */
759 u64 max_bw;
760
4da3abce
LA
761 /*
762 * Inverse of the fraction of CPU utilization that can be reclaimed
763 * by the GRUB algorithm.
764 */
97fb7a0a 765 u64 bw_ratio;
aab03e05
DF
766};
767
c0796298
VG
768#ifdef CONFIG_FAIR_GROUP_SCHED
769/* An entity is a task if it doesn't "own" a runqueue */
770#define entity_is_task(se) (!se->my_q)
0dacee1b 771
9f683953
VG
772static inline void se_update_runnable(struct sched_entity *se)
773{
774 if (!entity_is_task(se))
775 se->runnable_weight = se->my_q->h_nr_running;
776}
777
778static inline long se_runnable(struct sched_entity *se)
779{
780 if (entity_is_task(se))
781 return !!se->on_rq;
782 else
783 return se->runnable_weight;
784}
785
c0796298
VG
786#else
787#define entity_is_task(se) 1
0dacee1b 788
9f683953
VG
789static inline void se_update_runnable(struct sched_entity *se) {}
790
791static inline long se_runnable(struct sched_entity *se)
792{
793 return !!se->on_rq;
794}
c0796298
VG
795#endif
796
029632fb 797#ifdef CONFIG_SMP
c0796298
VG
798/*
799 * XXX we want to get rid of these helpers and use the full load resolution.
800 */
801static inline long se_weight(struct sched_entity *se)
802{
803 return scale_load_down(se->load.weight);
804}
805
029632fb 806
afe06efd
TC
807static inline bool sched_asym_prefer(int a, int b)
808{
809 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
810}
811
6aa140fa
QP
812struct perf_domain {
813 struct em_perf_domain *em_pd;
814 struct perf_domain *next;
815 struct rcu_head rcu;
816};
817
630246a0
QP
818/* Scheduling group status flags */
819#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
2802bf3c 820#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
630246a0 821
029632fb
PZ
822/*
823 * We add the notion of a root-domain which will be used to define per-domain
824 * variables. Each exclusive cpuset essentially defines an island domain by
97fb7a0a 825 * fully partitioning the member CPUs from any other cpuset. Whenever a new
029632fb
PZ
826 * exclusive cpuset is created, we also create and attach a new root-domain
827 * object.
828 *
829 */
830struct root_domain {
97fb7a0a
IM
831 atomic_t refcount;
832 atomic_t rto_count;
833 struct rcu_head rcu;
834 cpumask_var_t span;
835 cpumask_var_t online;
029632fb 836
757ffdd7
VS
837 /*
838 * Indicate pullable load on at least one CPU, e.g:
839 * - More than one runnable task
840 * - Running task is misfit
841 */
575638d1 842 int overload;
4486edd1 843
2802bf3c
MR
844 /* Indicate one or more cpus over-utilized (tipping point) */
845 int overutilized;
846
1baca4ce
JL
847 /*
848 * The bit corresponding to a CPU gets set here if such CPU has more
849 * than one runnable -deadline task (as it is below for RT tasks).
850 */
97fb7a0a
IM
851 cpumask_var_t dlo_mask;
852 atomic_t dlo_count;
853 struct dl_bw dl_bw;
854 struct cpudl cpudl;
1baca4ce 855
26762423
PL
856 /*
857 * Indicate whether a root_domain's dl_bw has been checked or
858 * updated. It's monotonously increasing value.
859 *
860 * Also, some corner cases, like 'wrap around' is dangerous, but given
861 * that u64 is 'big enough'. So that shouldn't be a concern.
862 */
863 u64 visit_gen;
864
4bdced5c
SRRH
865#ifdef HAVE_RT_PUSH_IPI
866 /*
867 * For IPI pull requests, loop across the rto_mask.
868 */
97fb7a0a
IM
869 struct irq_work rto_push_work;
870 raw_spinlock_t rto_lock;
4bdced5c 871 /* These are only updated and read within rto_lock */
97fb7a0a
IM
872 int rto_loop;
873 int rto_cpu;
4bdced5c 874 /* These atomics are updated outside of a lock */
97fb7a0a
IM
875 atomic_t rto_loop_next;
876 atomic_t rto_loop_start;
4bdced5c 877#endif
029632fb
PZ
878 /*
879 * The "RT overload" flag: it gets set if a CPU has more than
880 * one runnable RT task.
881 */
97fb7a0a
IM
882 cpumask_var_t rto_mask;
883 struct cpupri cpupri;
cd92bfd3 884
97fb7a0a 885 unsigned long max_cpu_capacity;
6aa140fa
QP
886
887 /*
888 * NULL-terminated list of performance domains intersecting with the
889 * CPUs of the rd. Protected by RCU.
890 */
7ba7319f 891 struct perf_domain __rcu *pd;
029632fb
PZ
892};
893
f2cb1360 894extern void init_defrootdomain(void);
8d5dc512 895extern int sched_init_domains(const struct cpumask *cpu_map);
f2cb1360 896extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
364f5665
SRV
897extern void sched_get_rd(struct root_domain *rd);
898extern void sched_put_rd(struct root_domain *rd);
029632fb 899
4bdced5c
SRRH
900#ifdef HAVE_RT_PUSH_IPI
901extern void rto_push_irq_work_func(struct irq_work *work);
902#endif
029632fb
PZ
903#endif /* CONFIG_SMP */
904
69842cba
PB
905#ifdef CONFIG_UCLAMP_TASK
906/*
907 * struct uclamp_bucket - Utilization clamp bucket
908 * @value: utilization clamp value for tasks on this clamp bucket
909 * @tasks: number of RUNNABLE tasks on this clamp bucket
910 *
911 * Keep track of how many tasks are RUNNABLE for a given utilization
912 * clamp value.
913 */
914struct uclamp_bucket {
915 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
916 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
917};
918
919/*
920 * struct uclamp_rq - rq's utilization clamp
921 * @value: currently active clamp values for a rq
922 * @bucket: utilization clamp buckets affecting a rq
923 *
924 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
925 * A clamp value is affecting a rq when there is at least one task RUNNABLE
926 * (or actually running) with that value.
927 *
928 * There are up to UCLAMP_CNT possible different clamp values, currently there
929 * are only two: minimum utilization and maximum utilization.
930 *
931 * All utilization clamping values are MAX aggregated, since:
932 * - for util_min: we want to run the CPU at least at the max of the minimum
933 * utilization required by its currently RUNNABLE tasks.
934 * - for util_max: we want to allow the CPU to run up to the max of the
935 * maximum utilization allowed by its currently RUNNABLE tasks.
936 *
937 * Since on each system we expect only a limited number of different
938 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
939 * the metrics required to compute all the per-rq utilization clamp values.
940 */
941struct uclamp_rq {
942 unsigned int value;
943 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
944};
46609ce2
QY
945
946DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
69842cba
PB
947#endif /* CONFIG_UCLAMP_TASK */
948
8e5bad7d
KC
949struct rq;
950struct balance_callback {
951 struct balance_callback *next;
952 void (*func)(struct rq *rq);
953};
954
029632fb
PZ
955/*
956 * This is the main, per-CPU runqueue data structure.
957 *
958 * Locking rule: those places that want to lock multiple runqueues
959 * (such as the load balancing or the thread migration code), lock
960 * acquire operations must be ordered by ascending &runqueue.
961 */
962struct rq {
963 /* runqueue lock: */
5cb9eaa3 964 raw_spinlock_t __lock;
029632fb
PZ
965
966 /*
967 * nr_running and cpu_load should be in the same cacheline because
968 * remote CPUs use both these fields when doing load calculation.
969 */
97fb7a0a 970 unsigned int nr_running;
0ec8aa00 971#ifdef CONFIG_NUMA_BALANCING
97fb7a0a
IM
972 unsigned int nr_numa_running;
973 unsigned int nr_preferred_running;
a4739eca 974 unsigned int numa_migrate_on;
0ec8aa00 975#endif
3451d024 976#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 977#ifdef CONFIG_SMP
e022e0d3 978 unsigned long last_blocked_load_update_tick;
f643ea22 979 unsigned int has_blocked_load;
90b5363a 980 call_single_data_t nohz_csd;
9fd81dd5 981#endif /* CONFIG_SMP */
00357f5e 982 unsigned int nohz_tick_stopped;
90b5363a 983 atomic_t nohz_flags;
9fd81dd5 984#endif /* CONFIG_NO_HZ_COMMON */
dcdedb24 985
126c2092
PZ
986#ifdef CONFIG_SMP
987 unsigned int ttwu_pending;
988#endif
97fb7a0a 989 u64 nr_switches;
029632fb 990
69842cba
PB
991#ifdef CONFIG_UCLAMP_TASK
992 /* Utilization clamp values based on CPU's RUNNABLE tasks */
993 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
e496187d
PB
994 unsigned int uclamp_flags;
995#define UCLAMP_FLAG_IDLE 0x01
69842cba
PB
996#endif
997
97fb7a0a
IM
998 struct cfs_rq cfs;
999 struct rt_rq rt;
1000 struct dl_rq dl;
029632fb
PZ
1001
1002#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
1003 /* list of leaf cfs_rq on this CPU: */
1004 struct list_head leaf_cfs_rq_list;
1005 struct list_head *tmp_alone_branch;
a35b6466
PZ
1006#endif /* CONFIG_FAIR_GROUP_SCHED */
1007
029632fb
PZ
1008 /*
1009 * This is part of a global counter where only the total sum
1010 * over all CPUs matters. A task can increase this counter on
1011 * one CPU and if it got migrated afterwards it may decrease
1012 * it on another CPU. Always updated under the runqueue lock:
1013 */
e6fe3f42 1014 unsigned int nr_uninterruptible;
029632fb 1015
4104a562 1016 struct task_struct __rcu *curr;
97fb7a0a
IM
1017 struct task_struct *idle;
1018 struct task_struct *stop;
1019 unsigned long next_balance;
1020 struct mm_struct *prev_mm;
029632fb 1021
97fb7a0a
IM
1022 unsigned int clock_update_flags;
1023 u64 clock;
23127296
VG
1024 /* Ensure that all clocks are in the same cache line */
1025 u64 clock_task ____cacheline_aligned;
1026 u64 clock_pelt;
1027 unsigned long lost_idle_time;
e2f3e35f
VD
1028 u64 clock_pelt_idle;
1029 u64 clock_idle;
1030#ifndef CONFIG_64BIT
1031 u64 clock_pelt_idle_copy;
1032 u64 clock_idle_copy;
1033#endif
029632fb 1034
97fb7a0a 1035 atomic_t nr_iowait;
029632fb 1036
c006fac5
PT
1037#ifdef CONFIG_SCHED_DEBUG
1038 u64 last_seen_need_resched_ns;
1039 int ticks_without_resched;
1040#endif
1041
227a4aad
MD
1042#ifdef CONFIG_MEMBARRIER
1043 int membarrier_state;
1044#endif
1045
029632fb 1046#ifdef CONFIG_SMP
994aeb7a
JFG
1047 struct root_domain *rd;
1048 struct sched_domain __rcu *sd;
97fb7a0a
IM
1049
1050 unsigned long cpu_capacity;
1051 unsigned long cpu_capacity_orig;
029632fb 1052
8e5bad7d 1053 struct balance_callback *balance_callback;
029632fb 1054
19a1f5ec 1055 unsigned char nohz_idle_balance;
97fb7a0a 1056 unsigned char idle_balance;
e3fca9e7 1057
3b1baa64
MR
1058 unsigned long misfit_task_load;
1059
029632fb 1060 /* For active balancing */
97fb7a0a
IM
1061 int active_balance;
1062 int push_cpu;
1063 struct cpu_stop_work active_balance_work;
1064
1065 /* CPU of this runqueue: */
1066 int cpu;
1067 int online;
029632fb 1068
367456c7
PZ
1069 struct list_head cfs_tasks;
1070
371bf427 1071 struct sched_avg avg_rt;
3727e0e1 1072 struct sched_avg avg_dl;
11d4afd4 1073#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493 1074 struct sched_avg avg_irq;
76504793
TG
1075#endif
1076#ifdef CONFIG_SCHED_THERMAL_PRESSURE
1077 struct sched_avg avg_thermal;
91c27493 1078#endif
97fb7a0a
IM
1079 u64 idle_stamp;
1080 u64 avg_idle;
9bd721c5 1081
94aafc3e
PZ
1082 unsigned long wake_stamp;
1083 u64 wake_avg_idle;
1084
9bd721c5 1085 /* This is used to determine avg_idle's max value */
97fb7a0a 1086 u64 max_idle_balance_cost;
f2469a1f
TG
1087
1088#ifdef CONFIG_HOTPLUG_CPU
1089 struct rcuwait hotplug_wait;
1090#endif
90b5363a 1091#endif /* CONFIG_SMP */
029632fb
PZ
1092
1093#ifdef CONFIG_IRQ_TIME_ACCOUNTING
97fb7a0a 1094 u64 prev_irq_time;
029632fb
PZ
1095#endif
1096#ifdef CONFIG_PARAVIRT
97fb7a0a 1097 u64 prev_steal_time;
029632fb
PZ
1098#endif
1099#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
97fb7a0a 1100 u64 prev_steal_time_rq;
029632fb
PZ
1101#endif
1102
1103 /* calc_load related fields */
97fb7a0a
IM
1104 unsigned long calc_load_update;
1105 long calc_load_active;
029632fb
PZ
1106
1107#ifdef CONFIG_SCHED_HRTICK
1108#ifdef CONFIG_SMP
97fb7a0a 1109 call_single_data_t hrtick_csd;
029632fb 1110#endif
97fb7a0a 1111 struct hrtimer hrtick_timer;
156ec6f4 1112 ktime_t hrtick_time;
029632fb
PZ
1113#endif
1114
1115#ifdef CONFIG_SCHEDSTATS
1116 /* latency stats */
97fb7a0a
IM
1117 struct sched_info rq_sched_info;
1118 unsigned long long rq_cpu_time;
029632fb
PZ
1119 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1120
1121 /* sys_sched_yield() stats */
97fb7a0a 1122 unsigned int yld_count;
029632fb
PZ
1123
1124 /* schedule() stats */
97fb7a0a
IM
1125 unsigned int sched_count;
1126 unsigned int sched_goidle;
029632fb
PZ
1127
1128 /* try_to_wake_up() stats */
97fb7a0a
IM
1129 unsigned int ttwu_count;
1130 unsigned int ttwu_local;
029632fb
PZ
1131#endif
1132
442bf3aa
DL
1133#ifdef CONFIG_CPU_IDLE
1134 /* Must be inspected within a rcu lock section */
97fb7a0a 1135 struct cpuidle_state *idle_state;
442bf3aa 1136#endif
3015ef4b 1137
74d862b6 1138#ifdef CONFIG_SMP
3015ef4b
TG
1139 unsigned int nr_pinned;
1140#endif
a7c81556
PZ
1141 unsigned int push_busy;
1142 struct cpu_stop_work push_work;
9edeaea1
PZ
1143
1144#ifdef CONFIG_SCHED_CORE
1145 /* per rq */
1146 struct rq *core;
539f6512 1147 struct task_struct *core_pick;
9edeaea1 1148 unsigned int core_enabled;
539f6512 1149 unsigned int core_sched_seq;
8a311c74
PZ
1150 struct rb_root core_tree;
1151
3c474b32 1152 /* shared state -- careful with sched_core_cpu_deactivate() */
8a311c74 1153 unsigned int core_task_seq;
539f6512
PZ
1154 unsigned int core_pick_seq;
1155 unsigned long core_cookie;
4feee7d1 1156 unsigned int core_forceidle_count;
c6047c2e 1157 unsigned int core_forceidle_seq;
4feee7d1
JD
1158 unsigned int core_forceidle_occupation;
1159 u64 core_forceidle_start;
9edeaea1 1160#endif
da019032
WL
1161
1162 /* Scratch cpumask to be temporarily used under rq_lock */
1163 cpumask_var_t scratch_mask;
8ad075c2
JD
1164
1165#if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1166 call_single_data_t cfsb_csd;
1167 struct list_head cfsb_csd_list;
1168#endif
029632fb
PZ
1169};
1170
62478d99
VG
1171#ifdef CONFIG_FAIR_GROUP_SCHED
1172
1173/* CPU runqueue to which this cfs_rq is attached */
1174static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1175{
1176 return cfs_rq->rq;
1177}
1178
1179#else
1180
1181static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1182{
1183 return container_of(cfs_rq, struct rq, cfs);
1184}
1185#endif
1186
029632fb
PZ
1187static inline int cpu_of(struct rq *rq)
1188{
1189#ifdef CONFIG_SMP
1190 return rq->cpu;
1191#else
1192 return 0;
1193#endif
1194}
1195
a7c81556
PZ
1196#define MDF_PUSH 0x01
1197
1198static inline bool is_migration_disabled(struct task_struct *p)
1199{
74d862b6 1200#ifdef CONFIG_SMP
a7c81556
PZ
1201 return p->migration_disabled;
1202#else
1203 return false;
1204#endif
1205}
1b568f0a 1206
e705968d
LS
1207DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1208
1209#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1210#define this_rq() this_cpu_ptr(&runqueues)
1211#define task_rq(p) cpu_rq(task_cpu(p))
1212#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1213#define raw_rq() raw_cpu_ptr(&runqueues)
1214
97886d9d 1215struct sched_group;
9edeaea1 1216#ifdef CONFIG_SCHED_CORE
97886d9d 1217static inline struct cpumask *sched_group_span(struct sched_group *sg);
9edeaea1
PZ
1218
1219DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1220
1221static inline bool sched_core_enabled(struct rq *rq)
1222{
1223 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1224}
1225
1226static inline bool sched_core_disabled(void)
1227{
1228 return !static_branch_unlikely(&__sched_core_enabled);
1229}
1230
9ef7e7e3
PZ
1231/*
1232 * Be careful with this function; not for general use. The return value isn't
1233 * stable unless you actually hold a relevant rq->__lock.
1234 */
9edeaea1
PZ
1235static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1236{
1237 if (sched_core_enabled(rq))
1238 return &rq->core->__lock;
1239
1240 return &rq->__lock;
1241}
1242
9ef7e7e3
PZ
1243static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1244{
1245 if (rq->core_enabled)
1246 return &rq->core->__lock;
1247
1248 return &rq->__lock;
1249}
1250
904cbab7
MWO
1251bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1252 bool fi);
22dc02f8 1253void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
c6047c2e 1254
97886d9d
AL
1255/*
1256 * Helpers to check if the CPU's core cookie matches with the task's cookie
1257 * when core scheduling is enabled.
1258 * A special case is that the task's cookie always matches with CPU's core
1259 * cookie if the CPU is in an idle core.
1260 */
1261static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1262{
1263 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1264 if (!sched_core_enabled(rq))
1265 return true;
1266
1267 return rq->core->core_cookie == p->core_cookie;
1268}
1269
1270static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1271{
1272 bool idle_core = true;
1273 int cpu;
1274
1275 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1276 if (!sched_core_enabled(rq))
1277 return true;
1278
1279 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1280 if (!available_idle_cpu(cpu)) {
1281 idle_core = false;
1282 break;
1283 }
1284 }
1285
1286 /*
1287 * A CPU in an idle core is always the best choice for tasks with
1288 * cookies.
1289 */
1290 return idle_core || rq->core->core_cookie == p->core_cookie;
1291}
1292
1293static inline bool sched_group_cookie_match(struct rq *rq,
1294 struct task_struct *p,
1295 struct sched_group *group)
1296{
1297 int cpu;
1298
1299 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1300 if (!sched_core_enabled(rq))
1301 return true;
1302
1303 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
e705968d 1304 if (sched_core_cookie_match(cpu_rq(cpu), p))
97886d9d
AL
1305 return true;
1306 }
1307 return false;
1308}
1309
6e33cad0
PZ
1310static inline bool sched_core_enqueued(struct task_struct *p)
1311{
1312 return !RB_EMPTY_NODE(&p->core_node);
1313}
1314
1315extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
4feee7d1 1316extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
6e33cad0
PZ
1317
1318extern void sched_core_get(void);
1319extern void sched_core_put(void);
1320
9edeaea1
PZ
1321#else /* !CONFIG_SCHED_CORE */
1322
1323static inline bool sched_core_enabled(struct rq *rq)
1324{
1325 return false;
1326}
1327
d66f1b06
PZ
1328static inline bool sched_core_disabled(void)
1329{
1330 return true;
1331}
1332
39d371b7
PZ
1333static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1334{
5cb9eaa3 1335 return &rq->__lock;
39d371b7
PZ
1336}
1337
9ef7e7e3
PZ
1338static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1339{
1340 return &rq->__lock;
1341}
1342
97886d9d
AL
1343static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1344{
1345 return true;
1346}
1347
1348static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1349{
1350 return true;
1351}
1352
1353static inline bool sched_group_cookie_match(struct rq *rq,
1354 struct task_struct *p,
1355 struct sched_group *group)
1356{
1357 return true;
1358}
9edeaea1
PZ
1359#endif /* CONFIG_SCHED_CORE */
1360
39d371b7
PZ
1361static inline void lockdep_assert_rq_held(struct rq *rq)
1362{
9ef7e7e3 1363 lockdep_assert_held(__rq_lockp(rq));
39d371b7
PZ
1364}
1365
1366extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1367extern bool raw_spin_rq_trylock(struct rq *rq);
1368extern void raw_spin_rq_unlock(struct rq *rq);
1369
1370static inline void raw_spin_rq_lock(struct rq *rq)
1371{
1372 raw_spin_rq_lock_nested(rq, 0);
1373}
1374
1375static inline void raw_spin_rq_lock_irq(struct rq *rq)
1376{
1377 local_irq_disable();
1378 raw_spin_rq_lock(rq);
1379}
1380
1381static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1382{
1383 raw_spin_rq_unlock(rq);
1384 local_irq_enable();
1385}
1386
1387static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1388{
1389 unsigned long flags;
1390 local_irq_save(flags);
1391 raw_spin_rq_lock(rq);
1392 return flags;
1393}
1394
1395static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1396{
1397 raw_spin_rq_unlock(rq);
1398 local_irq_restore(flags);
1399}
1400
1401#define raw_spin_rq_lock_irqsave(rq, flags) \
1402do { \
1403 flags = _raw_spin_rq_lock_irqsave(rq); \
1404} while (0)
1405
1b568f0a 1406#ifdef CONFIG_SCHED_SMT
1b568f0a
PZ
1407extern void __update_idle_core(struct rq *rq);
1408
1409static inline void update_idle_core(struct rq *rq)
1410{
1411 if (static_branch_unlikely(&sched_smt_present))
1412 __update_idle_core(rq);
1413}
1414
1415#else
1416static inline void update_idle_core(struct rq *rq) { }
1417#endif
1418
8a311c74
PZ
1419#ifdef CONFIG_FAIR_GROUP_SCHED
1420static inline struct task_struct *task_of(struct sched_entity *se)
1421{
1422 SCHED_WARN_ON(!entity_is_task(se));
1423 return container_of(se, struct task_struct, se);
1424}
1425
1426static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1427{
1428 return p->se.cfs_rq;
1429}
1430
1431/* runqueue on which this entity is (to be) queued */
904cbab7 1432static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
8a311c74
PZ
1433{
1434 return se->cfs_rq;
1435}
1436
1437/* runqueue "owned" by this group */
1438static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1439{
1440 return grp->my_q;
1441}
1442
1443#else
1444
904cbab7 1445#define task_of(_se) container_of(_se, struct task_struct, se)
8a311c74 1446
904cbab7 1447static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
8a311c74
PZ
1448{
1449 return &task_rq(p)->cfs;
1450}
1451
904cbab7 1452static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
8a311c74 1453{
904cbab7 1454 const struct task_struct *p = task_of(se);
8a311c74
PZ
1455 struct rq *rq = task_rq(p);
1456
1457 return &rq->cfs;
1458}
1459
1460/* runqueue "owned" by this group */
1461static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1462{
1463 return NULL;
1464}
1465#endif
1466
1f351d7f
JW
1467extern void update_rq_clock(struct rq *rq);
1468
cb42c9a3
MF
1469/*
1470 * rq::clock_update_flags bits
1471 *
1472 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1473 * call to __schedule(). This is an optimisation to avoid
1474 * neighbouring rq clock updates.
1475 *
1476 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1477 * in effect and calls to update_rq_clock() are being ignored.
1478 *
1479 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1480 * made to update_rq_clock() since the last time rq::lock was pinned.
1481 *
1482 * If inside of __schedule(), clock_update_flags will have been
1483 * shifted left (a left shift is a cheap operation for the fast path
1484 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1485 *
1486 * if (rq-clock_update_flags >= RQCF_UPDATED)
1487 *
3b03706f 1488 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
cb42c9a3
MF
1489 * one position though, because the next rq_unpin_lock() will shift it
1490 * back.
1491 */
97fb7a0a
IM
1492#define RQCF_REQ_SKIP 0x01
1493#define RQCF_ACT_SKIP 0x02
1494#define RQCF_UPDATED 0x04
cb42c9a3
MF
1495
1496static inline void assert_clock_updated(struct rq *rq)
1497{
1498 /*
1499 * The only reason for not seeing a clock update since the
1500 * last rq_pin_lock() is if we're currently skipping updates.
1501 */
1502 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1503}
1504
78becc27
FW
1505static inline u64 rq_clock(struct rq *rq)
1506{
5cb9eaa3 1507 lockdep_assert_rq_held(rq);
cb42c9a3
MF
1508 assert_clock_updated(rq);
1509
78becc27
FW
1510 return rq->clock;
1511}
1512
1513static inline u64 rq_clock_task(struct rq *rq)
1514{
5cb9eaa3 1515 lockdep_assert_rq_held(rq);
cb42c9a3
MF
1516 assert_clock_updated(rq);
1517
78becc27
FW
1518 return rq->clock_task;
1519}
1520
05289b90
TG
1521/**
1522 * By default the decay is the default pelt decay period.
1523 * The decay shift can change the decay period in
1524 * multiples of 32.
1525 * Decay shift Decay period(ms)
1526 * 0 32
1527 * 1 64
1528 * 2 128
1529 * 3 256
1530 * 4 512
1531 */
1532extern int sched_thermal_decay_shift;
1533
1534static inline u64 rq_clock_thermal(struct rq *rq)
1535{
1536 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1537}
1538
adcc8da8 1539static inline void rq_clock_skip_update(struct rq *rq)
9edfbfed 1540{
5cb9eaa3 1541 lockdep_assert_rq_held(rq);
adcc8da8
DB
1542 rq->clock_update_flags |= RQCF_REQ_SKIP;
1543}
1544
1545/*
595058b6 1546 * See rt task throttling, which is the only time a skip
3b03706f 1547 * request is canceled.
adcc8da8
DB
1548 */
1549static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1550{
5cb9eaa3 1551 lockdep_assert_rq_held(rq);
adcc8da8 1552 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
1553}
1554
ebb83d84
HJ
1555/*
1556 * During cpu offlining and rq wide unthrottling, we can trigger
1557 * an update_rq_clock() for several cfs and rt runqueues (Typically
1558 * when using list_for_each_entry_*)
1559 * rq_clock_start_loop_update() can be called after updating the clock
1560 * once and before iterating over the list to prevent multiple update.
1561 * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1562 * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1563 */
1564static inline void rq_clock_start_loop_update(struct rq *rq)
1565{
1566 lockdep_assert_rq_held(rq);
1567 SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1568 rq->clock_update_flags |= RQCF_ACT_SKIP;
1569}
1570
1571static inline void rq_clock_stop_loop_update(struct rq *rq)
1572{
1573 lockdep_assert_rq_held(rq);
1574 rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1575}
1576
d8ac8971
MF
1577struct rq_flags {
1578 unsigned long flags;
1579 struct pin_cookie cookie;
cb42c9a3
MF
1580#ifdef CONFIG_SCHED_DEBUG
1581 /*
1582 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1583 * current pin context is stashed here in case it needs to be
1584 * restored in rq_repin_lock().
1585 */
1586 unsigned int clock_update_flags;
1587#endif
d8ac8971
MF
1588};
1589
8e5bad7d 1590extern struct balance_callback balance_push_callback;
ae792702 1591
58877d34
PZ
1592/*
1593 * Lockdep annotation that avoids accidental unlocks; it's like a
1594 * sticky/continuous lockdep_assert_held().
1595 *
1596 * This avoids code that has access to 'struct rq *rq' (basically everything in
1597 * the scheduler) from accidentally unlocking the rq if they do not also have a
1598 * copy of the (on-stack) 'struct rq_flags rf'.
1599 *
1600 * Also see Documentation/locking/lockdep-design.rst.
1601 */
d8ac8971
MF
1602static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1603{
9ef7e7e3 1604 rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
cb42c9a3
MF
1605
1606#ifdef CONFIG_SCHED_DEBUG
1607 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1608 rf->clock_update_flags = 0;
565790d2 1609#ifdef CONFIG_SMP
ae792702
PZ
1610 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1611#endif
565790d2 1612#endif
d8ac8971
MF
1613}
1614
1615static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1616{
cb42c9a3
MF
1617#ifdef CONFIG_SCHED_DEBUG
1618 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1619 rf->clock_update_flags = RQCF_UPDATED;
1620#endif
1621
9ef7e7e3 1622 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
d8ac8971
MF
1623}
1624
1625static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1626{
9ef7e7e3 1627 lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
cb42c9a3
MF
1628
1629#ifdef CONFIG_SCHED_DEBUG
1630 /*
1631 * Restore the value we stashed in @rf for this pin context.
1632 */
1633 rq->clock_update_flags |= rf->clock_update_flags;
1634#endif
d8ac8971
MF
1635}
1636
1f351d7f
JW
1637struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1638 __acquires(rq->lock);
1639
1640struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1641 __acquires(p->pi_lock)
1642 __acquires(rq->lock);
1643
1644static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1645 __releases(rq->lock)
1646{
1647 rq_unpin_lock(rq, rf);
5cb9eaa3 1648 raw_spin_rq_unlock(rq);
1f351d7f
JW
1649}
1650
1651static inline void
1652task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1653 __releases(rq->lock)
1654 __releases(p->pi_lock)
1655{
1656 rq_unpin_lock(rq, rf);
5cb9eaa3 1657 raw_spin_rq_unlock(rq);
1f351d7f
JW
1658 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1659}
1660
1661static inline void
1662rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1663 __acquires(rq->lock)
1664{
5cb9eaa3 1665 raw_spin_rq_lock_irqsave(rq, rf->flags);
1f351d7f
JW
1666 rq_pin_lock(rq, rf);
1667}
1668
1669static inline void
1670rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1671 __acquires(rq->lock)
1672{
5cb9eaa3 1673 raw_spin_rq_lock_irq(rq);
1f351d7f
JW
1674 rq_pin_lock(rq, rf);
1675}
1676
1677static inline void
1678rq_lock(struct rq *rq, struct rq_flags *rf)
1679 __acquires(rq->lock)
1680{
5cb9eaa3 1681 raw_spin_rq_lock(rq);
1f351d7f
JW
1682 rq_pin_lock(rq, rf);
1683}
1684
1f351d7f
JW
1685static inline void
1686rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1687 __releases(rq->lock)
1688{
1689 rq_unpin_lock(rq, rf);
5cb9eaa3 1690 raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1f351d7f
JW
1691}
1692
1693static inline void
1694rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1695 __releases(rq->lock)
1696{
1697 rq_unpin_lock(rq, rf);
5cb9eaa3 1698 raw_spin_rq_unlock_irq(rq);
1f351d7f
JW
1699}
1700
1701static inline void
1702rq_unlock(struct rq *rq, struct rq_flags *rf)
1703 __releases(rq->lock)
1704{
1705 rq_unpin_lock(rq, rf);
5cb9eaa3 1706 raw_spin_rq_unlock(rq);
1f351d7f
JW
1707}
1708
4eb054f9
PZ
1709DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1710 rq_lock(_T->lock, &_T->rf),
1711 rq_unlock(_T->lock, &_T->rf),
1712 struct rq_flags rf)
1713
1714DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1715 rq_lock_irq(_T->lock, &_T->rf),
1716 rq_unlock_irq(_T->lock, &_T->rf),
1717 struct rq_flags rf)
1718
1719DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1720 rq_lock_irqsave(_T->lock, &_T->rf),
1721 rq_unlock_irqrestore(_T->lock, &_T->rf),
1722 struct rq_flags rf)
1723
246b3b33
JW
1724static inline struct rq *
1725this_rq_lock_irq(struct rq_flags *rf)
1726 __acquires(rq->lock)
1727{
1728 struct rq *rq;
1729
1730 local_irq_disable();
1731 rq = this_rq();
1732 rq_lock(rq, rf);
1733 return rq;
1734}
1735
9942f79b 1736#ifdef CONFIG_NUMA
e3fe70b1
RR
1737enum numa_topology_type {
1738 NUMA_DIRECT,
1739 NUMA_GLUELESS_MESH,
1740 NUMA_BACKPLANE,
1741};
1742extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
1743extern int sched_max_numa_distance;
1744extern bool find_numa_distance(int distance);
0fb3978b
HY
1745extern void sched_init_numa(int offline_node);
1746extern void sched_update_numa(int cpu, bool online);
f2cb1360
IM
1747extern void sched_domains_numa_masks_set(unsigned int cpu);
1748extern void sched_domains_numa_masks_clear(unsigned int cpu);
e0e8d491 1749extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
f2cb1360 1750#else
0fb3978b
HY
1751static inline void sched_init_numa(int offline_node) { }
1752static inline void sched_update_numa(int cpu, bool online) { }
f2cb1360
IM
1753static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1754static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
e0e8d491
WL
1755static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1756{
1757 return nr_cpu_ids;
1758}
f2cb1360
IM
1759#endif
1760
f809ca9a 1761#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
1762/* The regions in numa_faults array from task_struct */
1763enum numa_faults_stats {
1764 NUMA_MEM = 0,
1765 NUMA_CPU,
1766 NUMA_MEMBUF,
1767 NUMA_CPUBUF
1768};
0ec8aa00 1769extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 1770extern int migrate_task_to(struct task_struct *p, int cpu);
0ad4e3df
SD
1771extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1772 int cpu, int scpu);
13784475
MG
1773extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1774#else
1775static inline void
1776init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1777{
1778}
f809ca9a
MG
1779#endif /* CONFIG_NUMA_BALANCING */
1780
518cd623
PZ
1781#ifdef CONFIG_SMP
1782
e3fca9e7
PZ
1783static inline void
1784queue_balance_callback(struct rq *rq,
8e5bad7d 1785 struct balance_callback *head,
e3fca9e7
PZ
1786 void (*func)(struct rq *rq))
1787{
5cb9eaa3 1788 lockdep_assert_rq_held(rq);
e3fca9e7 1789
04193d59
PZ
1790 /*
1791 * Don't (re)queue an already queued item; nor queue anything when
1792 * balance_push() is active, see the comment with
1793 * balance_push_callback.
1794 */
ae792702 1795 if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
e3fca9e7
PZ
1796 return;
1797
8e5bad7d 1798 head->func = func;
e3fca9e7
PZ
1799 head->next = rq->balance_callback;
1800 rq->balance_callback = head;
1801}
1802
029632fb
PZ
1803#define rcu_dereference_check_sched_domain(p) \
1804 rcu_dereference_check((p), \
1805 lockdep_is_held(&sched_domains_mutex))
1806
1807/*
1808 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
337e9b07 1809 * See destroy_sched_domains: call_rcu for details.
029632fb
PZ
1810 *
1811 * The domain tree of any CPU may only be accessed from within
1812 * preempt-disabled sections.
1813 */
1814#define for_each_domain(cpu, __sd) \
518cd623
PZ
1815 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1816 __sd; __sd = __sd->parent)
029632fb 1817
40b4d3dc
RN
1818/* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1819#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1820static const unsigned int SD_SHARED_CHILD_MASK =
1821#include <linux/sched/sd_flags.h>
18220;
1823#undef SD_FLAG
1824
518cd623
PZ
1825/**
1826 * highest_flag_domain - Return highest sched_domain containing flag.
97fb7a0a 1827 * @cpu: The CPU whose highest level of sched domain is to
518cd623
PZ
1828 * be returned.
1829 * @flag: The flag to check for the highest sched_domain
97fb7a0a 1830 * for the given CPU.
518cd623 1831 *
40b4d3dc
RN
1832 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1833 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
518cd623
PZ
1834 */
1835static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1836{
1837 struct sched_domain *sd, *hsd = NULL;
1838
1839 for_each_domain(cpu, sd) {
40b4d3dc
RN
1840 if (sd->flags & flag) {
1841 hsd = sd;
1842 continue;
1843 }
1844
1845 /*
1846 * Stop the search if @flag is known to be shared at lower
1847 * levels. It will not be found further up.
1848 */
1849 if (flag & SD_SHARED_CHILD_MASK)
518cd623 1850 break;
518cd623
PZ
1851 }
1852
1853 return hsd;
1854}
1855
fb13c7ee
MG
1856static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1857{
1858 struct sched_domain *sd;
1859
1860 for_each_domain(cpu, sd) {
1861 if (sd->flags & flag)
1862 break;
1863 }
1864
1865 return sd;
1866}
1867
994aeb7a 1868DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
7d9ffa89 1869DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1870DECLARE_PER_CPU(int, sd_llc_id);
994aeb7a
JFG
1871DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1872DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1873DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1874DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
df054e84 1875extern struct static_key_false sched_asym_cpucapacity;
518cd623 1876
740cf8a7
DE
1877static __always_inline bool sched_asym_cpucap_active(void)
1878{
1879 return static_branch_unlikely(&sched_asym_cpucapacity);
1880}
1881
63b2ca30 1882struct sched_group_capacity {
97fb7a0a 1883 atomic_t ref;
5e6521ea 1884 /*
172895e6 1885 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1886 * for a single CPU.
5e6521ea 1887 */
97fb7a0a
IM
1888 unsigned long capacity;
1889 unsigned long min_capacity; /* Min per-CPU capacity in group */
e3d6d0cb 1890 unsigned long max_capacity; /* Max per-CPU capacity in group */
97fb7a0a
IM
1891 unsigned long next_update;
1892 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea 1893
005f874d 1894#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 1895 int id;
005f874d
PZ
1896#endif
1897
eba9f082 1898 unsigned long cpumask[]; /* Balance mask */
5e6521ea
LZ
1899};
1900
1901struct sched_group {
97fb7a0a
IM
1902 struct sched_group *next; /* Must be a circular list */
1903 atomic_t ref;
5e6521ea 1904
97fb7a0a 1905 unsigned int group_weight;
d24cb0d9 1906 unsigned int cores;
63b2ca30 1907 struct sched_group_capacity *sgc;
97fb7a0a 1908 int asym_prefer_cpu; /* CPU of highest priority in group */
16d364ba 1909 int flags;
5e6521ea
LZ
1910
1911 /*
1912 * The CPUs this group covers.
1913 *
1914 * NOTE: this field is variable length. (Allocated dynamically
1915 * by attaching extra space to the end of the structure,
1916 * depending on how many CPUs the kernel has booted up with)
1917 */
04f5c362 1918 unsigned long cpumask[];
5e6521ea
LZ
1919};
1920
ae4df9d6 1921static inline struct cpumask *sched_group_span(struct sched_group *sg)
5e6521ea
LZ
1922{
1923 return to_cpumask(sg->cpumask);
1924}
1925
1926/*
e5c14b1f 1927 * See build_balance_mask().
5e6521ea 1928 */
e5c14b1f 1929static inline struct cpumask *group_balance_mask(struct sched_group *sg)
5e6521ea 1930{
63b2ca30 1931 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1932}
1933
c1174876
PZ
1934extern int group_balance_cpu(struct sched_group *sg);
1935
3b87f136
PZ
1936#ifdef CONFIG_SCHED_DEBUG
1937void update_sched_domain_debugfs(void);
bbdacdfe 1938void dirty_sched_domain_sysctl(int cpu);
3866e845 1939#else
3b87f136 1940static inline void update_sched_domain_debugfs(void)
3866e845
SRRH
1941{
1942}
bbdacdfe
PZ
1943static inline void dirty_sched_domain_sysctl(int cpu)
1944{
1945}
3866e845
SRRH
1946#endif
1947
8a99b683 1948extern int sched_update_scaling(void);
8f9ea86f
WL
1949
1950static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1951{
1952 if (!p->user_cpus_ptr)
1953 return cpu_possible_mask; /* &init_task.cpus_mask */
1954 return p->user_cpus_ptr;
1955}
d664e399 1956#endif /* CONFIG_SMP */
029632fb 1957
391e43da 1958#include "stats.h"
029632fb 1959
4feee7d1
JD
1960#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1961
1962extern void __sched_core_account_forceidle(struct rq *rq);
1963
1964static inline void sched_core_account_forceidle(struct rq *rq)
1965{
1966 if (schedstat_enabled())
1967 __sched_core_account_forceidle(rq);
1968}
1969
1970extern void __sched_core_tick(struct rq *rq);
1971
1972static inline void sched_core_tick(struct rq *rq)
1973{
1974 if (sched_core_enabled(rq) && schedstat_enabled())
1975 __sched_core_tick(rq);
1976}
1977
1978#else
1979
1980static inline void sched_core_account_forceidle(struct rq *rq) {}
1981
1982static inline void sched_core_tick(struct rq *rq) {}
1983
1984#endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1985
029632fb
PZ
1986#ifdef CONFIG_CGROUP_SCHED
1987
1988/*
1989 * Return the group to which this tasks belongs.
1990 *
8af01f56
TH
1991 * We cannot use task_css() and friends because the cgroup subsystem
1992 * changes that value before the cgroup_subsys::attach() method is called,
1993 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1994 *
1995 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1996 * core changes this before calling sched_move_task().
1997 *
1998 * Instead we use a 'copy' which is updated from sched_move_task() while
1999 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
2000 */
2001static inline struct task_group *task_group(struct task_struct *p)
2002{
8323f26c 2003 return p->sched_task_group;
029632fb
PZ
2004}
2005
2006/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
2007static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2008{
2009#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2010 struct task_group *tg = task_group(p);
2011#endif
2012
2013#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 2014 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
2015 p->se.cfs_rq = tg->cfs_rq[cpu];
2016 p->se.parent = tg->se[cpu];
78b6b157 2017 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
029632fb
PZ
2018#endif
2019
2020#ifdef CONFIG_RT_GROUP_SCHED
2021 p->rt.rt_rq = tg->rt_rq[cpu];
2022 p->rt.parent = tg->rt_se[cpu];
2023#endif
2024}
2025
2026#else /* CONFIG_CGROUP_SCHED */
2027
2028static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2029static inline struct task_group *task_group(struct task_struct *p)
2030{
2031 return NULL;
2032}
2033
2034#endif /* CONFIG_CGROUP_SCHED */
2035
2036static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2037{
2038 set_task_rq(p, cpu);
2039#ifdef CONFIG_SMP
2040 /*
2041 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
dfcb245e 2042 * successfully executed on another CPU. We must ensure that updates of
029632fb
PZ
2043 * per-task data have been completed by this moment.
2044 */
2045 smp_wmb();
c546951d 2046 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
ac66f547 2047 p->wake_cpu = cpu;
029632fb
PZ
2048#endif
2049}
2050
2051/*
2052 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2053 */
2054#ifdef CONFIG_SCHED_DEBUG
2055# define const_debug __read_mostly
2056#else
2057# define const_debug const
2058#endif
2059
029632fb
PZ
2060#define SCHED_FEAT(name, enabled) \
2061 __SCHED_FEAT_##name ,
2062
2063enum {
391e43da 2064#include "features.h"
f8b6d1cc 2065 __SCHED_FEAT_NR,
029632fb
PZ
2066};
2067
2068#undef SCHED_FEAT
2069
a73f863a 2070#ifdef CONFIG_SCHED_DEBUG
765cc3a4
PB
2071
2072/*
2073 * To support run-time toggling of sched features, all the translation units
2074 * (but core.c) reference the sysctl_sched_features defined in core.c.
2075 */
2076extern const_debug unsigned int sysctl_sched_features;
2077
a73f863a 2078#ifdef CONFIG_JUMP_LABEL
f8b6d1cc 2079#define SCHED_FEAT(name, enabled) \
c5905afb 2080static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 2081{ \
6e76ea8a 2082 return static_key_##enabled(key); \
f8b6d1cc
PZ
2083}
2084
2085#include "features.h"
f8b6d1cc
PZ
2086#undef SCHED_FEAT
2087
c5905afb 2088extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc 2089#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765cc3a4 2090
a73f863a
JL
2091#else /* !CONFIG_JUMP_LABEL */
2092
2093#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2094
2095#endif /* CONFIG_JUMP_LABEL */
2096
2097#else /* !SCHED_DEBUG */
765cc3a4
PB
2098
2099/*
2100 * Each translation unit has its own copy of sysctl_sched_features to allow
2101 * constants propagation at compile time and compiler optimization based on
2102 * features default.
2103 */
2104#define SCHED_FEAT(name, enabled) \
2105 (1UL << __SCHED_FEAT_##name) * enabled |
2106static const_debug __maybe_unused unsigned int sysctl_sched_features =
2107#include "features.h"
2108 0;
2109#undef SCHED_FEAT
2110
7e6f4c5d 2111#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
765cc3a4 2112
a73f863a 2113#endif /* SCHED_DEBUG */
029632fb 2114
2a595721 2115extern struct static_key_false sched_numa_balancing;
cb251765 2116extern struct static_key_false sched_schedstats;
cbee9f88 2117
029632fb
PZ
2118static inline u64 global_rt_period(void)
2119{
2120 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2121}
2122
2123static inline u64 global_rt_runtime(void)
2124{
2125 if (sysctl_sched_rt_runtime < 0)
2126 return RUNTIME_INF;
2127
2128 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2129}
2130
029632fb
PZ
2131static inline int task_current(struct rq *rq, struct task_struct *p)
2132{
2133 return rq->curr == p;
2134}
2135
0b9d46fc 2136static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
029632fb
PZ
2137{
2138#ifdef CONFIG_SMP
2139 return p->on_cpu;
2140#else
2141 return task_current(rq, p);
2142#endif
2143}
2144
da0c1e65
KT
2145static inline int task_on_rq_queued(struct task_struct *p)
2146{
2147 return p->on_rq == TASK_ON_RQ_QUEUED;
2148}
029632fb 2149
cca26e80
KT
2150static inline int task_on_rq_migrating(struct task_struct *p)
2151{
c546951d 2152 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
cca26e80
KT
2153}
2154
17770579 2155/* Wake flags. The first three directly map to some SD flag value */
ab83f455
PO
2156#define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2157#define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2158#define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
17770579 2159
ab83f455
PO
2160#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
2161#define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2162#define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */
17770579
VS
2163
2164#ifdef CONFIG_SMP
2165static_assert(WF_EXEC == SD_BALANCE_EXEC);
2166static_assert(WF_FORK == SD_BALANCE_FORK);
2167static_assert(WF_TTWU == SD_BALANCE_WAKE);
2168#endif
b13095f0 2169
029632fb
PZ
2170/*
2171 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2172 * of tasks with abnormal "nice" values across CPUs the contribution that
2173 * each task makes to its run queue's load is weighted according to its
2174 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2175 * scaled version of the new time slice allocation that they receive on time
2176 * slice expiry etc.
2177 */
2178
97fb7a0a
IM
2179#define WEIGHT_IDLEPRIO 3
2180#define WMULT_IDLEPRIO 1431655765
029632fb 2181
97fb7a0a
IM
2182extern const int sched_prio_to_weight[40];
2183extern const u32 sched_prio_to_wmult[40];
029632fb 2184
ff77e468
PZ
2185/*
2186 * {de,en}queue flags:
2187 *
2188 * DEQUEUE_SLEEP - task is no longer runnable
2189 * ENQUEUE_WAKEUP - task just became runnable
2190 *
2191 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2192 * are in a known state which allows modification. Such pairs
2193 * should preserve as much state as possible.
2194 *
2195 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2196 * in the runqueue.
2197 *
2198 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
2199 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 2200 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
2201 *
2202 */
2203
2204#define DEQUEUE_SLEEP 0x01
97fb7a0a
IM
2205#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
2206#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
2207#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
ff77e468 2208
1de64443 2209#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
2210#define ENQUEUE_RESTORE 0x02
2211#define ENQUEUE_MOVE 0x04
0a67d1ee 2212#define ENQUEUE_NOCLOCK 0x08
ff77e468 2213
0a67d1ee
PZ
2214#define ENQUEUE_HEAD 0x10
2215#define ENQUEUE_REPLENISH 0x20
c82ba9fa 2216#ifdef CONFIG_SMP
0a67d1ee 2217#define ENQUEUE_MIGRATED 0x40
c82ba9fa 2218#else
59efa0ba 2219#define ENQUEUE_MIGRATED 0x00
c82ba9fa 2220#endif
d07f09a1 2221#define ENQUEUE_INITIAL 0x80
c82ba9fa 2222
37e117c0
PZ
2223#define RETRY_TASK ((void *)-1UL)
2224
713a2e21
WL
2225struct affinity_context {
2226 const struct cpumask *new_mask;
8f9ea86f 2227 struct cpumask *user_mask;
713a2e21
WL
2228 unsigned int flags;
2229};
2230
c82ba9fa 2231struct sched_class {
c82ba9fa 2232
69842cba
PB
2233#ifdef CONFIG_UCLAMP_TASK
2234 int uclamp_enabled;
2235#endif
2236
c82ba9fa
LZ
2237 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2238 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
97fb7a0a 2239 void (*yield_task) (struct rq *rq);
0900acf2 2240 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
c82ba9fa 2241
97fb7a0a 2242 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
c82ba9fa 2243
98c2f700
PZ
2244 struct task_struct *(*pick_next_task)(struct rq *rq);
2245
6e2df058 2246 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
a0e813f2 2247 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
c82ba9fa
LZ
2248
2249#ifdef CONFIG_SMP
6e2df058 2250 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
3aef1551 2251 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
21f56ffe
PZ
2252
2253 struct task_struct * (*pick_task)(struct rq *rq);
2254
1327237a 2255 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
c82ba9fa 2256
97fb7a0a 2257 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
c82ba9fa 2258
713a2e21 2259 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
c82ba9fa
LZ
2260
2261 void (*rq_online)(struct rq *rq);
2262 void (*rq_offline)(struct rq *rq);
a7c81556
PZ
2263
2264 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
c82ba9fa
LZ
2265#endif
2266
97fb7a0a
IM
2267 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2268 void (*task_fork)(struct task_struct *p);
2269 void (*task_dead)(struct task_struct *p);
c82ba9fa 2270
67dfa1b7
KT
2271 /*
2272 * The switched_from() call is allowed to drop rq->lock, therefore we
3b03706f 2273 * cannot assume the switched_from/switched_to pair is serialized by
67dfa1b7
KT
2274 * rq->lock. They are however serialized by p->pi_lock.
2275 */
97fb7a0a
IM
2276 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2277 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
c82ba9fa 2278 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
97fb7a0a 2279 int oldprio);
c82ba9fa 2280
97fb7a0a
IM
2281 unsigned int (*get_rr_interval)(struct rq *rq,
2282 struct task_struct *task);
c82ba9fa 2283
97fb7a0a 2284 void (*update_curr)(struct rq *rq);
6e998916 2285
c82ba9fa 2286#ifdef CONFIG_FAIR_GROUP_SCHED
39c42611 2287 void (*task_change_group)(struct task_struct *p);
c82ba9fa 2288#endif
530bfad1
HJ
2289
2290#ifdef CONFIG_SCHED_CORE
2291 int (*task_is_throttled)(struct task_struct *p, int cpu);
2292#endif
43c31ac0 2293};
029632fb 2294
3f1d2a31
PZ
2295static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2296{
10e7071b 2297 WARN_ON_ONCE(rq->curr != prev);
6e2df058 2298 prev->sched_class->put_prev_task(rq, prev);
3f1d2a31
PZ
2299}
2300
03b7fad1 2301static inline void set_next_task(struct rq *rq, struct task_struct *next)
b2bf6c31 2302{
a0e813f2 2303 next->sched_class->set_next_task(rq, next, false);
b2bf6c31
PZ
2304}
2305
43c31ac0
PZ
2306
2307/*
2308 * Helper to define a sched_class instance; each one is placed in a separate
2309 * section which is ordered by the linker script:
2310 *
2311 * include/asm-generic/vmlinux.lds.h
2312 *
546a3fee
PZ
2313 * *CAREFUL* they are laid out in *REVERSE* order!!!
2314 *
43c31ac0
PZ
2315 * Also enforce alignment on the instance, not the type, to guarantee layout.
2316 */
2317#define DEFINE_SCHED_CLASS(name) \
2318const struct sched_class name##_sched_class \
2319 __aligned(__alignof__(struct sched_class)) \
2320 __section("__" #name "_sched_class")
2321
c3a340f7 2322/* Defined in include/asm-generic/vmlinux.lds.h */
546a3fee
PZ
2323extern struct sched_class __sched_class_highest[];
2324extern struct sched_class __sched_class_lowest[];
6e2df058
PZ
2325
2326#define for_class_range(class, _from, _to) \
546a3fee 2327 for (class = (_from); class < (_to); class++)
6e2df058 2328
029632fb 2329#define for_each_class(class) \
546a3fee
PZ
2330 for_class_range(class, __sched_class_highest, __sched_class_lowest)
2331
2332#define sched_class_above(_a, _b) ((_a) < (_b))
029632fb
PZ
2333
2334extern const struct sched_class stop_sched_class;
aab03e05 2335extern const struct sched_class dl_sched_class;
029632fb
PZ
2336extern const struct sched_class rt_sched_class;
2337extern const struct sched_class fair_sched_class;
2338extern const struct sched_class idle_sched_class;
2339
6e2df058
PZ
2340static inline bool sched_stop_runnable(struct rq *rq)
2341{
2342 return rq->stop && task_on_rq_queued(rq->stop);
2343}
2344
2345static inline bool sched_dl_runnable(struct rq *rq)
2346{
2347 return rq->dl.dl_nr_running > 0;
2348}
2349
2350static inline bool sched_rt_runnable(struct rq *rq)
2351{
2352 return rq->rt.rt_queued > 0;
2353}
2354
2355static inline bool sched_fair_runnable(struct rq *rq)
2356{
2357 return rq->cfs.nr_running > 0;
2358}
029632fb 2359
5d7d6056 2360extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
98c2f700 2361extern struct task_struct *pick_next_task_idle(struct rq *rq);
5d7d6056 2362
af449901
PZ
2363#define SCA_CHECK 0x01
2364#define SCA_MIGRATE_DISABLE 0x02
2365#define SCA_MIGRATE_ENABLE 0x04
07ec77a1 2366#define SCA_USER 0x08
af449901 2367
029632fb
PZ
2368#ifdef CONFIG_SMP
2369
63b2ca30 2370extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 2371
7caff66f 2372extern void trigger_load_balance(struct rq *rq);
029632fb 2373
713a2e21 2374extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
c5b28038 2375
a7c81556
PZ
2376static inline struct task_struct *get_push_task(struct rq *rq)
2377{
2378 struct task_struct *p = rq->curr;
2379
5cb9eaa3 2380 lockdep_assert_rq_held(rq);
a7c81556
PZ
2381
2382 if (rq->push_busy)
2383 return NULL;
2384
2385 if (p->nr_cpus_allowed == 1)
2386 return NULL;
2387
e681dcba
SAS
2388 if (p->migration_disabled)
2389 return NULL;
2390
a7c81556
PZ
2391 rq->push_busy = true;
2392 return get_task_struct(p);
2393}
2394
2395extern int push_cpu_stop(void *arg);
c5b28038 2396
029632fb
PZ
2397#endif
2398
442bf3aa
DL
2399#ifdef CONFIG_CPU_IDLE
2400static inline void idle_set_state(struct rq *rq,
2401 struct cpuidle_state *idle_state)
2402{
2403 rq->idle_state = idle_state;
2404}
2405
2406static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2407{
9148a3a1 2408 SCHED_WARN_ON(!rcu_read_lock_held());
97fb7a0a 2409
442bf3aa
DL
2410 return rq->idle_state;
2411}
2412#else
2413static inline void idle_set_state(struct rq *rq,
2414 struct cpuidle_state *idle_state)
2415{
2416}
2417
2418static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2419{
2420 return NULL;
2421}
2422#endif
2423
8663effb 2424extern void schedule_idle(void);
22dc02f8 2425asmlinkage void schedule_user(void);
8663effb 2426
029632fb
PZ
2427extern void sysrq_sched_debug_show(void);
2428extern void sched_init_granularity(void);
2429extern void update_max_interval(void);
1baca4ce
JL
2430
2431extern void init_sched_dl_class(void);
029632fb
PZ
2432extern void init_sched_rt_class(void);
2433extern void init_sched_fair_class(void);
2434
9059393e
VG
2435extern void reweight_task(struct task_struct *p, int prio);
2436
8875125e 2437extern void resched_curr(struct rq *rq);
029632fb
PZ
2438extern void resched_cpu(int cpu);
2439
2440extern struct rt_bandwidth def_rt_bandwidth;
2441extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
d664e399 2442extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
029632fb 2443
aab03e05 2444extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
209a0cbd 2445extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
aab03e05 2446
97fb7a0a
IM
2447#define BW_SHIFT 20
2448#define BW_UNIT (1 << BW_SHIFT)
2449#define RATIO_SHIFT 8
d505b8af
HC
2450#define MAX_BW_BITS (64 - BW_SHIFT)
2451#define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
332ac17e
DF
2452unsigned long to_ratio(u64 period, u64 runtime);
2453
540247fb 2454extern void init_entity_runnable_average(struct sched_entity *se);
d0fe0b9c 2455extern void post_init_entity_util_avg(struct task_struct *p);
a75cdaa9 2456
76d92ac3
FW
2457#ifdef CONFIG_NO_HZ_FULL
2458extern bool sched_can_stop_tick(struct rq *rq);
d84b3131 2459extern int __init sched_tick_offload_init(void);
76d92ac3
FW
2460
2461/*
2462 * Tick may be needed by tasks in the runqueue depending on their policy and
2463 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2464 * nohz mode if necessary.
2465 */
2466static inline void sched_update_tick_dependency(struct rq *rq)
2467{
21a6ee14 2468 int cpu = cpu_of(rq);
76d92ac3
FW
2469
2470 if (!tick_nohz_full_cpu(cpu))
2471 return;
2472
2473 if (sched_can_stop_tick(rq))
2474 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2475 else
2476 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2477}
2478#else
d84b3131 2479static inline int sched_tick_offload_init(void) { return 0; }
76d92ac3
FW
2480static inline void sched_update_tick_dependency(struct rq *rq) { }
2481#endif
2482
72465447 2483static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 2484{
72465447
KT
2485 unsigned prev_nr = rq->nr_running;
2486
2487 rq->nr_running = prev_nr + count;
9d246053
PA
2488 if (trace_sched_update_nr_running_tp_enabled()) {
2489 call_trace_sched_update_nr_running(rq, count);
2490 }
9f3660c2 2491
4486edd1 2492#ifdef CONFIG_SMP
3e184501 2493 if (prev_nr < 2 && rq->nr_running >= 2) {
e90c8fe1
VS
2494 if (!READ_ONCE(rq->rd->overload))
2495 WRITE_ONCE(rq->rd->overload, 1);
4486edd1 2496 }
3e184501 2497#endif
76d92ac3
FW
2498
2499 sched_update_tick_dependency(rq);
029632fb
PZ
2500}
2501
72465447 2502static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 2503{
72465447 2504 rq->nr_running -= count;
9d246053 2505 if (trace_sched_update_nr_running_tp_enabled()) {
a1bd0685 2506 call_trace_sched_update_nr_running(rq, -count);
9d246053
PA
2507 }
2508
76d92ac3
FW
2509 /* Check if we still need preemption */
2510 sched_update_tick_dependency(rq);
029632fb
PZ
2511}
2512
029632fb
PZ
2513extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2514extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2515
2516extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2517
c59862f8
VG
2518#ifdef CONFIG_PREEMPT_RT
2519#define SCHED_NR_MIGRATE_BREAK 8
2520#else
2521#define SCHED_NR_MIGRATE_BREAK 32
2522#endif
2523
029632fb
PZ
2524extern const_debug unsigned int sysctl_sched_nr_migrate;
2525extern const_debug unsigned int sysctl_sched_migration_cost;
2526
e4ec3318 2527extern unsigned int sysctl_sched_base_slice;
147f3efa 2528
18765447 2529#ifdef CONFIG_SCHED_DEBUG
18765447
HL
2530extern int sysctl_resched_latency_warn_ms;
2531extern int sysctl_resched_latency_warn_once;
2532
2533extern unsigned int sysctl_sched_tunable_scaling;
2534
2535extern unsigned int sysctl_numa_balancing_scan_delay;
2536extern unsigned int sysctl_numa_balancing_scan_period_min;
2537extern unsigned int sysctl_numa_balancing_scan_period_max;
2538extern unsigned int sysctl_numa_balancing_scan_size;
33024536 2539extern unsigned int sysctl_numa_balancing_hot_threshold;
18765447
HL
2540#endif
2541
029632fb
PZ
2542#ifdef CONFIG_SCHED_HRTICK
2543
2544/*
2545 * Use hrtick when:
2546 * - enabled by features
2547 * - hrtimer is actually high res
2548 */
2549static inline int hrtick_enabled(struct rq *rq)
2550{
029632fb
PZ
2551 if (!cpu_active(cpu_of(rq)))
2552 return 0;
2553 return hrtimer_is_hres_active(&rq->hrtick_timer);
2554}
2555
e0ee463c
JL
2556static inline int hrtick_enabled_fair(struct rq *rq)
2557{
2558 if (!sched_feat(HRTICK))
2559 return 0;
2560 return hrtick_enabled(rq);
2561}
2562
2563static inline int hrtick_enabled_dl(struct rq *rq)
2564{
2565 if (!sched_feat(HRTICK_DL))
2566 return 0;
2567 return hrtick_enabled(rq);
2568}
2569
029632fb
PZ
2570void hrtick_start(struct rq *rq, u64 delay);
2571
b39e66ea
MG
2572#else
2573
e0ee463c
JL
2574static inline int hrtick_enabled_fair(struct rq *rq)
2575{
2576 return 0;
2577}
2578
2579static inline int hrtick_enabled_dl(struct rq *rq)
2580{
2581 return 0;
2582}
2583
b39e66ea
MG
2584static inline int hrtick_enabled(struct rq *rq)
2585{
2586 return 0;
2587}
2588
029632fb
PZ
2589#endif /* CONFIG_SCHED_HRTICK */
2590
1567c3e3
GG
2591#ifndef arch_scale_freq_tick
2592static __always_inline
2593void arch_scale_freq_tick(void)
2594{
2595}
2596#endif
2597
dfbca41f 2598#ifndef arch_scale_freq_capacity
f4470cdf
VS
2599/**
2600 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2601 * @cpu: the CPU in question.
2602 *
2603 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2604 *
2605 * f_curr
2606 * ------ * SCHED_CAPACITY_SCALE
2607 * f_max
2608 */
dfbca41f 2609static __always_inline
7673c8a4 2610unsigned long arch_scale_freq_capacity(int cpu)
dfbca41f
PZ
2611{
2612 return SCHED_CAPACITY_SCALE;
2613}
2614#endif
b5b4860d 2615
2679a837
HJ
2616#ifdef CONFIG_SCHED_DEBUG
2617/*
2618 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2619 * acquire rq lock instead of rq_lock(). So at the end of these two functions
2620 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2621 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2622 */
2623static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2624{
2625 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2626 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2627#ifdef CONFIG_SMP
2628 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2629#endif
2630}
2631#else
2632static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2633#endif
d66f1b06 2634
5bb76f1d
PZ
2635#define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \
2636__DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
2637static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
2638{ class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \
2639 _lock; return _t; }
2640
029632fb 2641#ifdef CONFIG_SMP
029632fb 2642
d66f1b06
PZ
2643static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2644{
9edeaea1
PZ
2645#ifdef CONFIG_SCHED_CORE
2646 /*
2647 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2648 * order by core-id first and cpu-id second.
2649 *
2650 * Notably:
2651 *
2652 * double_rq_lock(0,3); will take core-0, core-1 lock
2653 * double_rq_lock(1,2); will take core-1, core-0 lock
2654 *
2655 * when only cpu-id is considered.
2656 */
2657 if (rq1->core->cpu < rq2->core->cpu)
2658 return true;
2659 if (rq1->core->cpu > rq2->core->cpu)
2660 return false;
2661
2662 /*
2663 * __sched_core_flip() relies on SMT having cpu-id lock order.
2664 */
2665#endif
d66f1b06
PZ
2666 return rq1->cpu < rq2->cpu;
2667}
2668
2669extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2670
2671#ifdef CONFIG_PREEMPTION
029632fb
PZ
2672
2673/*
2674 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2675 * way at the expense of forcing extra atomic operations in all
2676 * invocations. This assures that the double_lock is acquired using the
2677 * same underlying policy as the spinlock_t on this architecture, which
2678 * reduces latency compared to the unfair variant below. However, it
2679 * also adds more overhead and therefore may reduce throughput.
2680 */
2681static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2682 __releases(this_rq->lock)
2683 __acquires(busiest->lock)
2684 __acquires(this_rq->lock)
2685{
5cb9eaa3 2686 raw_spin_rq_unlock(this_rq);
029632fb
PZ
2687 double_rq_lock(this_rq, busiest);
2688
2689 return 1;
2690}
2691
2692#else
2693/*
2694 * Unfair double_lock_balance: Optimizes throughput at the expense of
2695 * latency by eliminating extra atomic operations when the locks are
97fb7a0a
IM
2696 * already in proper order on entry. This favors lower CPU-ids and will
2697 * grant the double lock to lower CPUs over higher ids under contention,
029632fb
PZ
2698 * regardless of entry order into the function.
2699 */
2700static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2701 __releases(this_rq->lock)
2702 __acquires(busiest->lock)
2703 __acquires(this_rq->lock)
2704{
2679a837
HJ
2705 if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2706 likely(raw_spin_rq_trylock(busiest))) {
2707 double_rq_clock_clear_update(this_rq, busiest);
5cb9eaa3 2708 return 0;
2679a837 2709 }
5cb9eaa3 2710
d66f1b06 2711 if (rq_order_less(this_rq, busiest)) {
5cb9eaa3 2712 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2679a837 2713 double_rq_clock_clear_update(this_rq, busiest);
5cb9eaa3 2714 return 0;
029632fb 2715 }
5cb9eaa3
PZ
2716
2717 raw_spin_rq_unlock(this_rq);
d66f1b06 2718 double_rq_lock(this_rq, busiest);
5cb9eaa3
PZ
2719
2720 return 1;
029632fb
PZ
2721}
2722
c1a280b6 2723#endif /* CONFIG_PREEMPTION */
029632fb
PZ
2724
2725/*
2726 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2727 */
2728static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2729{
5cb9eaa3 2730 lockdep_assert_irqs_disabled();
029632fb
PZ
2731
2732 return _double_lock_balance(this_rq, busiest);
2733}
2734
2735static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2736 __releases(busiest->lock)
2737{
9ef7e7e3 2738 if (__rq_lockp(this_rq) != __rq_lockp(busiest))
5cb9eaa3 2739 raw_spin_rq_unlock(busiest);
9ef7e7e3 2740 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
029632fb
PZ
2741}
2742
74602315
PZ
2743static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2744{
2745 if (l1 > l2)
2746 swap(l1, l2);
2747
2748 spin_lock(l1);
2749 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2750}
2751
60e69eed
MG
2752static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2753{
2754 if (l1 > l2)
2755 swap(l1, l2);
2756
2757 spin_lock_irq(l1);
2758 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2759}
2760
74602315
PZ
2761static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2762{
2763 if (l1 > l2)
2764 swap(l1, l2);
2765
2766 raw_spin_lock(l1);
2767 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2768}
2769
5bb76f1d
PZ
2770static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2771{
2772 raw_spin_unlock(l1);
2773 raw_spin_unlock(l2);
2774}
2775
2776DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2777 double_raw_lock(_T->lock, _T->lock2),
2778 double_raw_unlock(_T->lock, _T->lock2))
2779
029632fb
PZ
2780/*
2781 * double_rq_unlock - safely unlock two runqueues
2782 *
2783 * Note this does not restore interrupts like task_rq_unlock,
2784 * you need to do so manually after calling.
2785 */
2786static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2787 __releases(rq1->lock)
2788 __releases(rq2->lock)
2789{
9ef7e7e3 2790 if (__rq_lockp(rq1) != __rq_lockp(rq2))
5cb9eaa3 2791 raw_spin_rq_unlock(rq2);
029632fb
PZ
2792 else
2793 __release(rq2->lock);
d66f1b06 2794 raw_spin_rq_unlock(rq1);
029632fb
PZ
2795}
2796
f2cb1360
IM
2797extern void set_rq_online (struct rq *rq);
2798extern void set_rq_offline(struct rq *rq);
2799extern bool sched_smp_initialized;
2800
029632fb
PZ
2801#else /* CONFIG_SMP */
2802
2803/*
2804 * double_rq_lock - safely lock two runqueues
2805 *
2806 * Note this does not disable interrupts like task_rq_lock,
2807 * you need to do so manually before calling.
2808 */
2809static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2810 __acquires(rq1->lock)
2811 __acquires(rq2->lock)
2812{
09348d75
IM
2813 WARN_ON_ONCE(!irqs_disabled());
2814 WARN_ON_ONCE(rq1 != rq2);
5cb9eaa3 2815 raw_spin_rq_lock(rq1);
029632fb 2816 __acquire(rq2->lock); /* Fake it out ;) */
2679a837 2817 double_rq_clock_clear_update(rq1, rq2);
029632fb
PZ
2818}
2819
2820/*
2821 * double_rq_unlock - safely unlock two runqueues
2822 *
2823 * Note this does not restore interrupts like task_rq_unlock,
2824 * you need to do so manually after calling.
2825 */
2826static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2827 __releases(rq1->lock)
2828 __releases(rq2->lock)
2829{
09348d75 2830 WARN_ON_ONCE(rq1 != rq2);
5cb9eaa3 2831 raw_spin_rq_unlock(rq1);
029632fb
PZ
2832 __release(rq2->lock);
2833}
2834
2835#endif
2836
5bb76f1d
PZ
2837DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
2838 double_rq_lock(_T->lock, _T->lock2),
2839 double_rq_unlock(_T->lock, _T->lock2))
2840
029632fb
PZ
2841extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2842extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
2843
2844#ifdef CONFIG_SCHED_DEBUG
9406415f 2845extern bool sched_debug_verbose;
9469eb01 2846
029632fb
PZ
2847extern void print_cfs_stats(struct seq_file *m, int cpu);
2848extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 2849extern void print_dl_stats(struct seq_file *m, int cpu);
f6a34630
MM
2850extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2851extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2852extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
c006fac5
PT
2853
2854extern void resched_latency_warn(int cpu, u64 latency);
397f2378
SD
2855#ifdef CONFIG_NUMA_BALANCING
2856extern void
2857show_numa_stats(struct task_struct *p, struct seq_file *m);
2858extern void
2859print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2860 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2861#endif /* CONFIG_NUMA_BALANCING */
c006fac5
PT
2862#else
2863static inline void resched_latency_warn(int cpu, u64 latency) {}
397f2378 2864#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
2865
2866extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
2867extern void init_rt_rq(struct rt_rq *rt_rq);
2868extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 2869
1ee14e6c
BS
2870extern void cfs_bandwidth_usage_inc(void);
2871extern void cfs_bandwidth_usage_dec(void);
1c792db7 2872
3451d024 2873#ifdef CONFIG_NO_HZ_COMMON
00357f5e
PZ
2874#define NOHZ_BALANCE_KICK_BIT 0
2875#define NOHZ_STATS_KICK_BIT 1
c6f88654 2876#define NOHZ_NEWILB_KICK_BIT 2
efd984c4 2877#define NOHZ_NEXT_KICK_BIT 3
a22e47a4 2878
efd984c4 2879/* Run rebalance_domains() */
a22e47a4 2880#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
efd984c4 2881/* Update blocked load */
b7031a02 2882#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
efd984c4 2883/* Update blocked load when entering idle */
c6f88654 2884#define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT)
efd984c4
VS
2885/* Update nohz.next_balance */
2886#define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT)
b7031a02 2887
efd984c4 2888#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
1c792db7
SS
2889
2890#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc 2891
00357f5e 2892extern void nohz_balance_exit_idle(struct rq *rq);
20a5c8cc 2893#else
00357f5e 2894static inline void nohz_balance_exit_idle(struct rq *rq) { }
1c792db7 2895#endif
73fbec60 2896
c6f88654
VG
2897#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2898extern void nohz_run_idle_balance(int cpu);
2899#else
2900static inline void nohz_run_idle_balance(int cpu) { }
2901#endif
daec5798 2902
73fbec60 2903#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 2904struct irqtime {
25e2d8c1 2905 u64 total;
a499a5a1 2906 u64 tick_delta;
19d23dbf
FW
2907 u64 irq_start_time;
2908 struct u64_stats_sync sync;
2909};
73fbec60 2910
19d23dbf 2911DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 2912
25e2d8c1
FW
2913/*
2914 * Returns the irqtime minus the softirq time computed by ksoftirqd.
3b03706f 2915 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
25e2d8c1
FW
2916 * and never move forward.
2917 */
73fbec60
FW
2918static inline u64 irq_time_read(int cpu)
2919{
19d23dbf
FW
2920 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2921 unsigned int seq;
2922 u64 total;
73fbec60
FW
2923
2924 do {
19d23dbf 2925 seq = __u64_stats_fetch_begin(&irqtime->sync);
25e2d8c1 2926 total = irqtime->total;
19d23dbf 2927 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 2928
19d23dbf 2929 return total;
73fbec60 2930}
73fbec60 2931#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
2932
2933#ifdef CONFIG_CPU_FREQ
b10abd0a 2934DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
adaf9fcd
RW
2935
2936/**
2937 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 2938 * @rq: Runqueue to carry out the update for.
58919e83 2939 * @flags: Update reason flags.
adaf9fcd 2940 *
58919e83
RW
2941 * This function is called by the scheduler on the CPU whose utilization is
2942 * being updated.
adaf9fcd
RW
2943 *
2944 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
2945 *
2946 * The way cpufreq is currently arranged requires it to evaluate the CPU
2947 * performance state (frequency/voltage) on a regular basis to prevent it from
2948 * being stuck in a completely inadequate performance level for too long.
e0367b12
JL
2949 * That is not guaranteed to happen if the updates are only triggered from CFS
2950 * and DL, though, because they may not be coming in if only RT tasks are
2951 * active all the time (or there are RT tasks only).
adaf9fcd 2952 *
e0367b12
JL
2953 * As a workaround for that issue, this function is called periodically by the
2954 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
adaf9fcd 2955 * but that really is a band-aid. Going forward it should be replaced with
e0367b12 2956 * solutions targeted more specifically at RT tasks.
adaf9fcd 2957 */
12bde33d 2958static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 2959{
58919e83
RW
2960 struct update_util_data *data;
2961
674e7541
VK
2962 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2963 cpu_of(rq)));
58919e83 2964 if (data)
12bde33d
RW
2965 data->func(data, rq_clock(rq), flags);
2966}
adaf9fcd 2967#else
12bde33d 2968static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
adaf9fcd 2969#endif /* CONFIG_CPU_FREQ */
be53f58f 2970
9bdcb44e 2971#ifdef arch_scale_freq_capacity
97fb7a0a
IM
2972# ifndef arch_scale_freq_invariant
2973# define arch_scale_freq_invariant() true
2974# endif
2975#else
2976# define arch_scale_freq_invariant() false
9bdcb44e 2977#endif
d4edd662 2978
10a35e68
VG
2979#ifdef CONFIG_SMP
2980static inline unsigned long capacity_orig_of(int cpu)
2981{
2982 return cpu_rq(cpu)->cpu_capacity_orig;
2983}
10a35e68 2984
938e5e4b 2985/**
a5418be9 2986 * enum cpu_util_type - CPU utilization type
938e5e4b
QP
2987 * @FREQUENCY_UTIL: Utilization used to select frequency
2988 * @ENERGY_UTIL: Utilization used during energy calculation
2989 *
2990 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2991 * need to be aggregated differently depending on the usage made of them. This
a5418be9 2992 * enum is used within effective_cpu_util() to differentiate the types of
938e5e4b
QP
2993 * utilization expected by the callers, and adjust the aggregation accordingly.
2994 */
a5418be9 2995enum cpu_util_type {
938e5e4b
QP
2996 FREQUENCY_UTIL,
2997 ENERGY_UTIL,
2998};
2999
a5418be9 3000unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
bb447999 3001 enum cpu_util_type type,
af24bde8 3002 struct task_struct *p);
938e5e4b 3003
b3f53daa
DE
3004/*
3005 * Verify the fitness of task @p to run on @cpu taking into account the
3006 * CPU original capacity and the runtime/deadline ratio of the task.
3007 *
3008 * The function will return true if the original capacity of @cpu is
3009 * greater than or equal to task's deadline density right shifted by
3010 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3011 */
3012static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3013{
3014 unsigned long cap = arch_scale_cpu_capacity(cpu);
3015
3016 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3017}
3018
8cc90515 3019static inline unsigned long cpu_bw_dl(struct rq *rq)
d4edd662
JL
3020{
3021 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3022}
3023
8cc90515
VG
3024static inline unsigned long cpu_util_dl(struct rq *rq)
3025{
3026 return READ_ONCE(rq->avg_dl.util_avg);
3027}
3028
a07630b8 3029
3eb6d6ec 3030extern unsigned long cpu_util_cfs(int cpu);
7d0583cf 3031extern unsigned long cpu_util_cfs_boost(int cpu);
371bf427
VG
3032
3033static inline unsigned long cpu_util_rt(struct rq *rq)
3034{
dfa444dc 3035 return READ_ONCE(rq->avg_rt.util_avg);
371bf427 3036}
7d6a905f 3037#endif
9033ea11 3038
7a17e1db
QY
3039#ifdef CONFIG_UCLAMP_TASK
3040unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3041
24422603
QY
3042static inline unsigned long uclamp_rq_get(struct rq *rq,
3043 enum uclamp_id clamp_id)
3044{
3045 return READ_ONCE(rq->uclamp[clamp_id].value);
3046}
3047
3048static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3049 unsigned int value)
3050{
3051 WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3052}
3053
3054static inline bool uclamp_rq_is_idle(struct rq *rq)
3055{
3056 return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3057}
3058
7a17e1db
QY
3059/**
3060 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3061 * @rq: The rq to clamp against. Must not be NULL.
3062 * @util: The util value to clamp.
3063 * @p: The task to clamp against. Can be NULL if you want to clamp
3064 * against @rq only.
3065 *
3066 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3067 *
3068 * If sched_uclamp_used static key is disabled, then just return the util
3069 * without any clamping since uclamp aggregation at the rq level in the fast
3070 * path is disabled, rendering this operation a NOP.
3071 *
3072 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3073 * will return the correct effective uclamp value of the task even if the
3074 * static key is disabled.
3075 */
3076static __always_inline
3077unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3078 struct task_struct *p)
3079{
3080 unsigned long min_util = 0;
3081 unsigned long max_util = 0;
3082
3083 if (!static_branch_likely(&sched_uclamp_used))
3084 return util;
3085
3086 if (p) {
3087 min_util = uclamp_eff_value(p, UCLAMP_MIN);
3088 max_util = uclamp_eff_value(p, UCLAMP_MAX);
3089
3090 /*
3091 * Ignore last runnable task's max clamp, as this task will
3092 * reset it. Similarly, no need to read the rq's min clamp.
3093 */
24422603 3094 if (uclamp_rq_is_idle(rq))
7a17e1db
QY
3095 goto out;
3096 }
3097
24422603
QY
3098 min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3099 max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
7a17e1db
QY
3100out:
3101 /*
3102 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3103 * RUNNABLE tasks with _different_ clamps, we can end up with an
3104 * inversion. Fix it now when the clamps are applied.
3105 */
3106 if (unlikely(min_util >= max_util))
3107 return min_util;
3108
3109 return clamp(util, min_util, max_util);
3110}
3111
3112/* Is the rq being capped/throttled by uclamp_max? */
3113static inline bool uclamp_rq_is_capped(struct rq *rq)
3114{
3115 unsigned long rq_util;
3116 unsigned long max_util;
3117
3118 if (!static_branch_likely(&sched_uclamp_used))
3119 return false;
3120
3121 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3122 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3123
3124 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3125}
3126
3127/*
3128 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3129 * by default in the fast path and only gets turned on once userspace performs
3130 * an operation that requires it.
3131 *
3132 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3133 * hence is active.
3134 */
3135static inline bool uclamp_is_used(void)
3136{
3137 return static_branch_likely(&sched_uclamp_used);
3138}
3139#else /* CONFIG_UCLAMP_TASK */
b48e16a6
QY
3140static inline unsigned long uclamp_eff_value(struct task_struct *p,
3141 enum uclamp_id clamp_id)
3142{
3143 if (clamp_id == UCLAMP_MIN)
3144 return 0;
3145
3146 return SCHED_CAPACITY_SCALE;
3147}
3148
7a17e1db
QY
3149static inline
3150unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3151 struct task_struct *p)
3152{
3153 return util;
3154}
3155
3156static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3157
3158static inline bool uclamp_is_used(void)
3159{
3160 return false;
3161}
24422603
QY
3162
3163static inline unsigned long uclamp_rq_get(struct rq *rq,
3164 enum uclamp_id clamp_id)
3165{
3166 if (clamp_id == UCLAMP_MIN)
3167 return 0;
3168
3169 return SCHED_CAPACITY_SCALE;
3170}
3171
3172static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3173 unsigned int value)
3174{
3175}
3176
3177static inline bool uclamp_rq_is_idle(struct rq *rq)
3178{
3179 return false;
3180}
7a17e1db
QY
3181#endif /* CONFIG_UCLAMP_TASK */
3182
11d4afd4 3183#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9033ea11
VG
3184static inline unsigned long cpu_util_irq(struct rq *rq)
3185{
3186 return rq->avg_irq.util_avg;
3187}
2e62c474
VG
3188
3189static inline
3190unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3191{
3192 util *= (max - irq);
3193 util /= max;
3194
3195 return util;
3196
3197}
9033ea11
VG
3198#else
3199static inline unsigned long cpu_util_irq(struct rq *rq)
3200{
3201 return 0;
3202}
3203
2e62c474
VG
3204static inline
3205unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3206{
3207 return util;
3208}
794a56eb 3209#endif
6aa140fa 3210
531b5c9f 3211#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
f8a696f2 3212
6aa140fa 3213#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
f8a696f2
PZ
3214
3215DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3216
3217static inline bool sched_energy_enabled(void)
3218{
3219 return static_branch_unlikely(&sched_energy_present);
3220}
3221
3222#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3223
6aa140fa 3224#define perf_domain_span(pd) NULL
f8a696f2 3225static inline bool sched_energy_enabled(void) { return false; }
1f74de87 3226
f8a696f2 3227#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
227a4aad
MD
3228
3229#ifdef CONFIG_MEMBARRIER
3230/*
3231 * The scheduler provides memory barriers required by membarrier between:
3232 * - prior user-space memory accesses and store to rq->membarrier_state,
3233 * - store to rq->membarrier_state and following user-space memory accesses.
3234 * In the same way it provides those guarantees around store to rq->curr.
3235 */
3236static inline void membarrier_switch_mm(struct rq *rq,
3237 struct mm_struct *prev_mm,
3238 struct mm_struct *next_mm)
3239{
3240 int membarrier_state;
3241
3242 if (prev_mm == next_mm)
3243 return;
3244
3245 membarrier_state = atomic_read(&next_mm->membarrier_state);
3246 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3247 return;
3248
3249 WRITE_ONCE(rq->membarrier_state, membarrier_state);
3250}
3251#else
3252static inline void membarrier_switch_mm(struct rq *rq,
3253 struct mm_struct *prev_mm,
3254 struct mm_struct *next_mm)
3255{
3256}
3257#endif
52262ee5
MG
3258
3259#ifdef CONFIG_SMP
3260static inline bool is_per_cpu_kthread(struct task_struct *p)
3261{
3262 if (!(p->flags & PF_KTHREAD))
3263 return false;
3264
3265 if (p->nr_cpus_allowed != 1)
3266 return false;
3267
3268 return true;
3269}
3270#endif
b3212fe2 3271
1011dcce
PZ
3272extern void swake_up_all_locked(struct swait_queue_head *q);
3273extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3274
ab83f455
PO
3275extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3276
1011dcce
PZ
3277#ifdef CONFIG_PREEMPT_DYNAMIC
3278extern int preempt_dynamic_mode;
3279extern int sched_dynamic_mode(const char *str);
3280extern void sched_dynamic_update(int mode);
3281#endif
3282
5531ecff
SX
3283static inline void update_current_exec_runtime(struct task_struct *curr,
3284 u64 now, u64 delta_exec)
3285{
3286 curr->se.sum_exec_runtime += delta_exec;
3287 account_group_exec_runtime(curr, delta_exec);
3288
3289 curr->se.exec_start = now;
3290 cgroup_account_cputime(curr, delta_exec);
3291}
3292
af7f588d 3293#ifdef CONFIG_SCHED_MM_CID
223baf9d
MD
3294
3295#define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */
3296#define MM_CID_SCAN_DELAY 100 /* 100ms */
3297
3298extern raw_spinlock_t cid_lock;
3299extern int use_cid_lock;
3300
3301extern void sched_mm_cid_migrate_from(struct task_struct *t);
3302extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3303extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3304extern void init_sched_mm_cid(struct task_struct *t);
3305
3306static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3307{
3308 if (cid < 0)
3309 return;
3310 cpumask_clear_cpu(cid, mm_cidmask(mm));
3311}
3312
3313/*
3314 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3315 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3316 * be held to transition to other states.
3317 *
3318 * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3319 * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3320 */
3321static inline void mm_cid_put_lazy(struct task_struct *t)
3322{
3323 struct mm_struct *mm = t->mm;
3324 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3325 int cid;
3326
3327 lockdep_assert_irqs_disabled();
3328 cid = __this_cpu_read(pcpu_cid->cid);
3329 if (!mm_cid_is_lazy_put(cid) ||
3330 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3331 return;
3332 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3333}
3334
3335static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3336{
3337 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3338 int cid, res;
3339
3340 lockdep_assert_irqs_disabled();
3341 cid = __this_cpu_read(pcpu_cid->cid);
3342 for (;;) {
3343 if (mm_cid_is_unset(cid))
3344 return MM_CID_UNSET;
3345 /*
3346 * Attempt transition from valid or lazy-put to unset.
3347 */
3348 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3349 if (res == cid)
3350 break;
3351 cid = res;
3352 }
3353 return cid;
3354}
3355
3356static inline void mm_cid_put(struct mm_struct *mm)
3357{
3358 int cid;
3359
3360 lockdep_assert_irqs_disabled();
3361 cid = mm_cid_pcpu_unset(mm);
3362 if (cid == MM_CID_UNSET)
3363 return;
3364 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3365}
3366
3367static inline int __mm_cid_try_get(struct mm_struct *mm)
af7f588d
MD
3368{
3369 struct cpumask *cpumask;
3370 int cid;
3371
3372 cpumask = mm_cidmask(mm);
223baf9d
MD
3373 /*
3374 * Retry finding first zero bit if the mask is temporarily
3375 * filled. This only happens during concurrent remote-clear
3376 * which owns a cid without holding a rq lock.
3377 */
3378 for (;;) {
3379 cid = cpumask_first_zero(cpumask);
3380 if (cid < nr_cpu_ids)
3381 break;
3382 cpu_relax();
3383 }
3384 if (cpumask_test_and_set_cpu(cid, cpumask))
af7f588d 3385 return -1;
af7f588d
MD
3386 return cid;
3387}
3388
223baf9d
MD
3389/*
3390 * Save a snapshot of the current runqueue time of this cpu
3391 * with the per-cpu cid value, allowing to estimate how recently it was used.
3392 */
3393static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
af7f588d 3394{
223baf9d
MD
3395 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3396
3397 lockdep_assert_rq_held(rq);
3398 WRITE_ONCE(pcpu_cid->time, rq->clock);
af7f588d
MD
3399}
3400
223baf9d 3401static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
af7f588d 3402{
223baf9d 3403 int cid;
af7f588d 3404
223baf9d
MD
3405 /*
3406 * All allocations (even those using the cid_lock) are lock-free. If
3407 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3408 * guarantee forward progress.
3409 */
3410 if (!READ_ONCE(use_cid_lock)) {
3411 cid = __mm_cid_try_get(mm);
3412 if (cid >= 0)
3413 goto end;
3414 raw_spin_lock(&cid_lock);
3415 } else {
3416 raw_spin_lock(&cid_lock);
3417 cid = __mm_cid_try_get(mm);
3418 if (cid >= 0)
3419 goto unlock;
3420 }
3421
3422 /*
3423 * cid concurrently allocated. Retry while forcing following
3424 * allocations to use the cid_lock to ensure forward progress.
3425 */
3426 WRITE_ONCE(use_cid_lock, 1);
3427 /*
3428 * Set use_cid_lock before allocation. Only care about program order
3429 * because this is only required for forward progress.
3430 */
3431 barrier();
3432 /*
3433 * Retry until it succeeds. It is guaranteed to eventually succeed once
3434 * all newcoming allocations observe the use_cid_lock flag set.
3435 */
3436 do {
3437 cid = __mm_cid_try_get(mm);
3438 cpu_relax();
3439 } while (cid < 0);
3440 /*
3441 * Allocate before clearing use_cid_lock. Only care about
3442 * program order because this is for forward progress.
3443 */
3444 barrier();
3445 WRITE_ONCE(use_cid_lock, 0);
3446unlock:
3447 raw_spin_unlock(&cid_lock);
3448end:
3449 mm_cid_snapshot_time(rq, mm);
3450 return cid;
af7f588d
MD
3451}
3452
223baf9d 3453static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
af7f588d 3454{
223baf9d
MD
3455 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3456 struct cpumask *cpumask;
3457 int cid;
3458
3459 lockdep_assert_rq_held(rq);
3460 cpumask = mm_cidmask(mm);
3461 cid = __this_cpu_read(pcpu_cid->cid);
3462 if (mm_cid_is_valid(cid)) {
3463 mm_cid_snapshot_time(rq, mm);
3464 return cid;
3465 }
3466 if (mm_cid_is_lazy_put(cid)) {
3467 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3468 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3469 }
3470 cid = __mm_cid_get(rq, mm);
3471 __this_cpu_write(pcpu_cid->cid, cid);
3472 return cid;
3473}
3474
3475static inline void switch_mm_cid(struct rq *rq,
3476 struct task_struct *prev,
3477 struct task_struct *next)
3478{
3479 /*
3480 * Provide a memory barrier between rq->curr store and load of
3481 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3482 *
3483 * Should be adapted if context_switch() is modified.
3484 */
3485 if (!next->mm) { // to kernel
3486 /*
3487 * user -> kernel transition does not guarantee a barrier, but
3488 * we can use the fact that it performs an atomic operation in
3489 * mmgrab().
3490 */
3491 if (prev->mm) // from user
3492 smp_mb__after_mmgrab();
3493 /*
3494 * kernel -> kernel transition does not change rq->curr->mm
3495 * state. It stays NULL.
3496 */
3497 } else { // to user
3498 /*
3499 * kernel -> user transition does not provide a barrier
3500 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3501 * Provide it here.
3502 */
3503 if (!prev->mm) // from kernel
3504 smp_mb();
3505 /*
3506 * user -> user transition guarantees a memory barrier through
3507 * switch_mm() when current->mm changes. If current->mm is
3508 * unchanged, no barrier is needed.
3509 */
3510 }
af7f588d 3511 if (prev->mm_cid_active) {
223baf9d
MD
3512 mm_cid_snapshot_time(rq, prev->mm);
3513 mm_cid_put_lazy(prev);
af7f588d
MD
3514 prev->mm_cid = -1;
3515 }
3516 if (next->mm_cid_active)
223baf9d 3517 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
af7f588d
MD
3518}
3519
3520#else
223baf9d
MD
3521static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3522static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3523static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3524static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3525static inline void init_sched_mm_cid(struct task_struct *t) { }
af7f588d
MD
3526#endif
3527
af4cf404 3528extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
147f3efa 3529extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
af4cf404 3530
95458477 3531#endif /* _KERNEL_SCHED_SCHED_H */