sched: Document task_struct::personality field
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
029632fb
PZ
5#include <linux/mutex.h>
6#include <linux/spinlock.h>
7#include <linux/stop_machine.h>
8
391e43da 9#include "cpupri.h"
60fed789 10#include "cpuacct.h"
029632fb
PZ
11
12extern __read_mostly int scheduler_running;
13
14/*
15 * Convert user-nice values [ -20 ... 0 ... 19 ]
16 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
17 * and back.
18 */
19#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
20#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
21#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
22
23/*
24 * 'User priority' is the nice value converted to something we
25 * can work with better when scaling various scheduler parameters,
26 * it's a [ 0 ... 39 ] range.
27 */
28#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
29#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
30#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
31
32/*
33 * Helpers for converting nanosecond timing to jiffy resolution
34 */
35#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
36
cc1f4b1f
LZ
37/*
38 * Increase resolution of nice-level calculations for 64-bit architectures.
39 * The extra resolution improves shares distribution and load balancing of
40 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
41 * hierarchies, especially on larger systems. This is not a user-visible change
42 * and does not change the user-interface for setting shares/weights.
43 *
44 * We increase resolution only if we have enough bits to allow this increased
45 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
46 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
47 * increased costs.
48 */
49#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
50# define SCHED_LOAD_RESOLUTION 10
51# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
52# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
53#else
54# define SCHED_LOAD_RESOLUTION 0
55# define scale_load(w) (w)
56# define scale_load_down(w) (w)
57#endif
58
59#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
60#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
61
029632fb
PZ
62#define NICE_0_LOAD SCHED_LOAD_SCALE
63#define NICE_0_SHIFT SCHED_LOAD_SHIFT
64
65/*
66 * These are the 'tuning knobs' of the scheduler:
029632fb 67 */
029632fb
PZ
68
69/*
70 * single value that denotes runtime == period, ie unlimited time.
71 */
72#define RUNTIME_INF ((u64)~0ULL)
73
74static inline int rt_policy(int policy)
75{
76 if (policy == SCHED_FIFO || policy == SCHED_RR)
77 return 1;
78 return 0;
79}
80
81static inline int task_has_rt_policy(struct task_struct *p)
82{
83 return rt_policy(p->policy);
84}
85
86/*
87 * This is the priority-queue data structure of the RT scheduling class:
88 */
89struct rt_prio_array {
90 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
91 struct list_head queue[MAX_RT_PRIO];
92};
93
94struct rt_bandwidth {
95 /* nests inside the rq lock: */
96 raw_spinlock_t rt_runtime_lock;
97 ktime_t rt_period;
98 u64 rt_runtime;
99 struct hrtimer rt_period_timer;
100};
101
102extern struct mutex sched_domains_mutex;
103
104#ifdef CONFIG_CGROUP_SCHED
105
106#include <linux/cgroup.h>
107
108struct cfs_rq;
109struct rt_rq;
110
35cf4e50 111extern struct list_head task_groups;
029632fb
PZ
112
113struct cfs_bandwidth {
114#ifdef CONFIG_CFS_BANDWIDTH
115 raw_spinlock_t lock;
116 ktime_t period;
117 u64 quota, runtime;
118 s64 hierarchal_quota;
119 u64 runtime_expires;
120
121 int idle, timer_active;
122 struct hrtimer period_timer, slack_timer;
123 struct list_head throttled_cfs_rq;
124
125 /* statistics */
126 int nr_periods, nr_throttled;
127 u64 throttled_time;
128#endif
129};
130
131/* task group related information */
132struct task_group {
133 struct cgroup_subsys_state css;
134
135#ifdef CONFIG_FAIR_GROUP_SCHED
136 /* schedulable entities of this group on each cpu */
137 struct sched_entity **se;
138 /* runqueue "owned" by this group on each cpu */
139 struct cfs_rq **cfs_rq;
140 unsigned long shares;
141
142 atomic_t load_weight;
c566e8e9 143 atomic64_t load_avg;
bb17f655 144 atomic_t runnable_avg;
029632fb
PZ
145#endif
146
147#ifdef CONFIG_RT_GROUP_SCHED
148 struct sched_rt_entity **rt_se;
149 struct rt_rq **rt_rq;
150
151 struct rt_bandwidth rt_bandwidth;
152#endif
153
154 struct rcu_head rcu;
155 struct list_head list;
156
157 struct task_group *parent;
158 struct list_head siblings;
159 struct list_head children;
160
161#ifdef CONFIG_SCHED_AUTOGROUP
162 struct autogroup *autogroup;
163#endif
164
165 struct cfs_bandwidth cfs_bandwidth;
166};
167
168#ifdef CONFIG_FAIR_GROUP_SCHED
169#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
170
171/*
172 * A weight of 0 or 1 can cause arithmetics problems.
173 * A weight of a cfs_rq is the sum of weights of which entities
174 * are queued on this cfs_rq, so a weight of a entity should not be
175 * too large, so as the shares value of a task group.
176 * (The default weight is 1024 - so there's no practical
177 * limitation from this.)
178 */
179#define MIN_SHARES (1UL << 1)
180#define MAX_SHARES (1UL << 18)
181#endif
182
029632fb
PZ
183typedef int (*tg_visitor)(struct task_group *, void *);
184
185extern int walk_tg_tree_from(struct task_group *from,
186 tg_visitor down, tg_visitor up, void *data);
187
188/*
189 * Iterate the full tree, calling @down when first entering a node and @up when
190 * leaving it for the final time.
191 *
192 * Caller must hold rcu_lock or sufficient equivalent.
193 */
194static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
195{
196 return walk_tg_tree_from(&root_task_group, down, up, data);
197}
198
199extern int tg_nop(struct task_group *tg, void *data);
200
201extern void free_fair_sched_group(struct task_group *tg);
202extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
203extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
204extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
205 struct sched_entity *se, int cpu,
206 struct sched_entity *parent);
207extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
208extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
209
210extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
211extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
212extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
213
214extern void free_rt_sched_group(struct task_group *tg);
215extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
216extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
217 struct sched_rt_entity *rt_se, int cpu,
218 struct sched_rt_entity *parent);
219
25cc7da7
LZ
220extern struct task_group *sched_create_group(struct task_group *parent);
221extern void sched_online_group(struct task_group *tg,
222 struct task_group *parent);
223extern void sched_destroy_group(struct task_group *tg);
224extern void sched_offline_group(struct task_group *tg);
225
226extern void sched_move_task(struct task_struct *tsk);
227
228#ifdef CONFIG_FAIR_GROUP_SCHED
229extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
230#endif
231
029632fb
PZ
232#else /* CONFIG_CGROUP_SCHED */
233
234struct cfs_bandwidth { };
235
236#endif /* CONFIG_CGROUP_SCHED */
237
238/* CFS-related fields in a runqueue */
239struct cfs_rq {
240 struct load_weight load;
c82513e5 241 unsigned int nr_running, h_nr_running;
029632fb
PZ
242
243 u64 exec_clock;
244 u64 min_vruntime;
245#ifndef CONFIG_64BIT
246 u64 min_vruntime_copy;
247#endif
248
249 struct rb_root tasks_timeline;
250 struct rb_node *rb_leftmost;
251
029632fb
PZ
252 /*
253 * 'curr' points to currently running entity on this cfs_rq.
254 * It is set to NULL otherwise (i.e when none are currently running).
255 */
256 struct sched_entity *curr, *next, *last, *skip;
257
258#ifdef CONFIG_SCHED_DEBUG
259 unsigned int nr_spread_over;
260#endif
261
2dac754e 262#ifdef CONFIG_SMP
f4e26b12
PT
263/*
264 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
265 * removed when useful for applications beyond shares distribution (e.g.
266 * load-balance).
267 */
268#ifdef CONFIG_FAIR_GROUP_SCHED
2dac754e
PT
269 /*
270 * CFS Load tracking
271 * Under CFS, load is tracked on a per-entity basis and aggregated up.
272 * This allows for the description of both thread and group usage (in
273 * the FAIR_GROUP_SCHED case).
274 */
9ee474f5 275 u64 runnable_load_avg, blocked_load_avg;
aff3e498 276 atomic64_t decay_counter, removed_load;
9ee474f5 277 u64 last_decay;
f4e26b12
PT
278#endif /* CONFIG_FAIR_GROUP_SCHED */
279/* These always depend on CONFIG_FAIR_GROUP_SCHED */
c566e8e9 280#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 281 u32 tg_runnable_contrib;
c566e8e9 282 u64 tg_load_contrib;
82958366
PT
283#endif /* CONFIG_FAIR_GROUP_SCHED */
284
285 /*
286 * h_load = weight * f(tg)
287 *
288 * Where f(tg) is the recursive weight fraction assigned to
289 * this group.
290 */
291 unsigned long h_load;
292#endif /* CONFIG_SMP */
293
029632fb
PZ
294#ifdef CONFIG_FAIR_GROUP_SCHED
295 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
296
297 /*
298 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
299 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
300 * (like users, containers etc.)
301 *
302 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
303 * list is used during load balance.
304 */
305 int on_list;
306 struct list_head leaf_cfs_rq_list;
307 struct task_group *tg; /* group that "owns" this runqueue */
308
029632fb
PZ
309#ifdef CONFIG_CFS_BANDWIDTH
310 int runtime_enabled;
311 u64 runtime_expires;
312 s64 runtime_remaining;
313
f1b17280
PT
314 u64 throttled_clock, throttled_clock_task;
315 u64 throttled_clock_task_time;
029632fb
PZ
316 int throttled, throttle_count;
317 struct list_head throttled_list;
318#endif /* CONFIG_CFS_BANDWIDTH */
319#endif /* CONFIG_FAIR_GROUP_SCHED */
320};
321
322static inline int rt_bandwidth_enabled(void)
323{
324 return sysctl_sched_rt_runtime >= 0;
325}
326
327/* Real-Time classes' related field in a runqueue: */
328struct rt_rq {
329 struct rt_prio_array active;
c82513e5 330 unsigned int rt_nr_running;
029632fb
PZ
331#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
332 struct {
333 int curr; /* highest queued rt task prio */
334#ifdef CONFIG_SMP
335 int next; /* next highest */
336#endif
337 } highest_prio;
338#endif
339#ifdef CONFIG_SMP
340 unsigned long rt_nr_migratory;
341 unsigned long rt_nr_total;
342 int overloaded;
343 struct plist_head pushable_tasks;
344#endif
345 int rt_throttled;
346 u64 rt_time;
347 u64 rt_runtime;
348 /* Nests inside the rq lock: */
349 raw_spinlock_t rt_runtime_lock;
350
351#ifdef CONFIG_RT_GROUP_SCHED
352 unsigned long rt_nr_boosted;
353
354 struct rq *rq;
355 struct list_head leaf_rt_rq_list;
356 struct task_group *tg;
357#endif
358};
359
360#ifdef CONFIG_SMP
361
362/*
363 * We add the notion of a root-domain which will be used to define per-domain
364 * variables. Each exclusive cpuset essentially defines an island domain by
365 * fully partitioning the member cpus from any other cpuset. Whenever a new
366 * exclusive cpuset is created, we also create and attach a new root-domain
367 * object.
368 *
369 */
370struct root_domain {
371 atomic_t refcount;
372 atomic_t rto_count;
373 struct rcu_head rcu;
374 cpumask_var_t span;
375 cpumask_var_t online;
376
377 /*
378 * The "RT overload" flag: it gets set if a CPU has more than
379 * one runnable RT task.
380 */
381 cpumask_var_t rto_mask;
382 struct cpupri cpupri;
383};
384
385extern struct root_domain def_root_domain;
386
387#endif /* CONFIG_SMP */
388
389/*
390 * This is the main, per-CPU runqueue data structure.
391 *
392 * Locking rule: those places that want to lock multiple runqueues
393 * (such as the load balancing or the thread migration code), lock
394 * acquire operations must be ordered by ascending &runqueue.
395 */
396struct rq {
397 /* runqueue lock: */
398 raw_spinlock_t lock;
399
400 /*
401 * nr_running and cpu_load should be in the same cacheline because
402 * remote CPUs use both these fields when doing load calculation.
403 */
c82513e5 404 unsigned int nr_running;
029632fb
PZ
405 #define CPU_LOAD_IDX_MAX 5
406 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
407 unsigned long last_load_update_tick;
408#ifdef CONFIG_NO_HZ
409 u64 nohz_stamp;
1c792db7 410 unsigned long nohz_flags;
029632fb
PZ
411#endif
412 int skip_clock_update;
413
414 /* capture load from *all* tasks on this cpu: */
415 struct load_weight load;
416 unsigned long nr_load_updates;
417 u64 nr_switches;
418
419 struct cfs_rq cfs;
420 struct rt_rq rt;
421
422#ifdef CONFIG_FAIR_GROUP_SCHED
423 /* list of leaf cfs_rq on this cpu: */
424 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
425#ifdef CONFIG_SMP
426 unsigned long h_load_throttle;
427#endif /* CONFIG_SMP */
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
029632fb
PZ
430#ifdef CONFIG_RT_GROUP_SCHED
431 struct list_head leaf_rt_rq_list;
432#endif
433
434 /*
435 * This is part of a global counter where only the total sum
436 * over all CPUs matters. A task can increase this counter on
437 * one CPU and if it got migrated afterwards it may decrease
438 * it on another CPU. Always updated under the runqueue lock:
439 */
440 unsigned long nr_uninterruptible;
441
442 struct task_struct *curr, *idle, *stop;
443 unsigned long next_balance;
444 struct mm_struct *prev_mm;
445
446 u64 clock;
447 u64 clock_task;
448
449 atomic_t nr_iowait;
450
451#ifdef CONFIG_SMP
452 struct root_domain *rd;
453 struct sched_domain *sd;
454
455 unsigned long cpu_power;
456
457 unsigned char idle_balance;
458 /* For active balancing */
459 int post_schedule;
460 int active_balance;
461 int push_cpu;
462 struct cpu_stop_work active_balance_work;
463 /* cpu of this runqueue: */
464 int cpu;
465 int online;
466
367456c7
PZ
467 struct list_head cfs_tasks;
468
029632fb
PZ
469 u64 rt_avg;
470 u64 age_stamp;
471 u64 idle_stamp;
472 u64 avg_idle;
473#endif
474
475#ifdef CONFIG_IRQ_TIME_ACCOUNTING
476 u64 prev_irq_time;
477#endif
478#ifdef CONFIG_PARAVIRT
479 u64 prev_steal_time;
480#endif
481#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
482 u64 prev_steal_time_rq;
483#endif
484
485 /* calc_load related fields */
486 unsigned long calc_load_update;
487 long calc_load_active;
488
489#ifdef CONFIG_SCHED_HRTICK
490#ifdef CONFIG_SMP
491 int hrtick_csd_pending;
492 struct call_single_data hrtick_csd;
493#endif
494 struct hrtimer hrtick_timer;
495#endif
496
497#ifdef CONFIG_SCHEDSTATS
498 /* latency stats */
499 struct sched_info rq_sched_info;
500 unsigned long long rq_cpu_time;
501 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
502
503 /* sys_sched_yield() stats */
504 unsigned int yld_count;
505
506 /* schedule() stats */
029632fb
PZ
507 unsigned int sched_count;
508 unsigned int sched_goidle;
509
510 /* try_to_wake_up() stats */
511 unsigned int ttwu_count;
512 unsigned int ttwu_local;
513#endif
514
515#ifdef CONFIG_SMP
516 struct llist_head wake_list;
517#endif
18bf2805
BS
518
519 struct sched_avg avg;
029632fb
PZ
520};
521
522static inline int cpu_of(struct rq *rq)
523{
524#ifdef CONFIG_SMP
525 return rq->cpu;
526#else
527 return 0;
528#endif
529}
530
531DECLARE_PER_CPU(struct rq, runqueues);
532
518cd623
PZ
533#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
534#define this_rq() (&__get_cpu_var(runqueues))
535#define task_rq(p) cpu_rq(task_cpu(p))
536#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
537#define raw_rq() (&__raw_get_cpu_var(runqueues))
538
539#ifdef CONFIG_SMP
540
029632fb
PZ
541#define rcu_dereference_check_sched_domain(p) \
542 rcu_dereference_check((p), \
543 lockdep_is_held(&sched_domains_mutex))
544
545/*
546 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
547 * See detach_destroy_domains: synchronize_sched for details.
548 *
549 * The domain tree of any CPU may only be accessed from within
550 * preempt-disabled sections.
551 */
552#define for_each_domain(cpu, __sd) \
518cd623
PZ
553 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
554 __sd; __sd = __sd->parent)
029632fb 555
77e81365
SS
556#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
557
518cd623
PZ
558/**
559 * highest_flag_domain - Return highest sched_domain containing flag.
560 * @cpu: The cpu whose highest level of sched domain is to
561 * be returned.
562 * @flag: The flag to check for the highest sched_domain
563 * for the given cpu.
564 *
565 * Returns the highest sched_domain of a cpu which contains the given flag.
566 */
567static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
568{
569 struct sched_domain *sd, *hsd = NULL;
570
571 for_each_domain(cpu, sd) {
572 if (!(sd->flags & flag))
573 break;
574 hsd = sd;
575 }
576
577 return hsd;
578}
579
580DECLARE_PER_CPU(struct sched_domain *, sd_llc);
581DECLARE_PER_CPU(int, sd_llc_id);
582
5e6521ea
LZ
583struct sched_group_power {
584 atomic_t ref;
585 /*
586 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
587 * single CPU.
588 */
589 unsigned int power, power_orig;
590 unsigned long next_update;
591 /*
592 * Number of busy cpus in this group.
593 */
594 atomic_t nr_busy_cpus;
595
596 unsigned long cpumask[0]; /* iteration mask */
597};
598
599struct sched_group {
600 struct sched_group *next; /* Must be a circular list */
601 atomic_t ref;
602
603 unsigned int group_weight;
604 struct sched_group_power *sgp;
605
606 /*
607 * The CPUs this group covers.
608 *
609 * NOTE: this field is variable length. (Allocated dynamically
610 * by attaching extra space to the end of the structure,
611 * depending on how many CPUs the kernel has booted up with)
612 */
613 unsigned long cpumask[0];
614};
615
616static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
617{
618 return to_cpumask(sg->cpumask);
619}
620
621/*
622 * cpumask masking which cpus in the group are allowed to iterate up the domain
623 * tree.
624 */
625static inline struct cpumask *sched_group_mask(struct sched_group *sg)
626{
627 return to_cpumask(sg->sgp->cpumask);
628}
629
630/**
631 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
632 * @group: The group whose first cpu is to be returned.
633 */
634static inline unsigned int group_first_cpu(struct sched_group *group)
635{
636 return cpumask_first(sched_group_cpus(group));
637}
638
c1174876
PZ
639extern int group_balance_cpu(struct sched_group *sg);
640
518cd623 641#endif /* CONFIG_SMP */
029632fb 642
391e43da
PZ
643#include "stats.h"
644#include "auto_group.h"
029632fb
PZ
645
646#ifdef CONFIG_CGROUP_SCHED
647
648/*
649 * Return the group to which this tasks belongs.
650 *
8323f26c
PZ
651 * We cannot use task_subsys_state() and friends because the cgroup
652 * subsystem changes that value before the cgroup_subsys::attach() method
653 * is called, therefore we cannot pin it and might observe the wrong value.
654 *
655 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
656 * core changes this before calling sched_move_task().
657 *
658 * Instead we use a 'copy' which is updated from sched_move_task() while
659 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
660 */
661static inline struct task_group *task_group(struct task_struct *p)
662{
8323f26c 663 return p->sched_task_group;
029632fb
PZ
664}
665
666/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
667static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
668{
669#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
670 struct task_group *tg = task_group(p);
671#endif
672
673#ifdef CONFIG_FAIR_GROUP_SCHED
674 p->se.cfs_rq = tg->cfs_rq[cpu];
675 p->se.parent = tg->se[cpu];
676#endif
677
678#ifdef CONFIG_RT_GROUP_SCHED
679 p->rt.rt_rq = tg->rt_rq[cpu];
680 p->rt.parent = tg->rt_se[cpu];
681#endif
682}
683
684#else /* CONFIG_CGROUP_SCHED */
685
686static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
687static inline struct task_group *task_group(struct task_struct *p)
688{
689 return NULL;
690}
691
692#endif /* CONFIG_CGROUP_SCHED */
693
694static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
695{
696 set_task_rq(p, cpu);
697#ifdef CONFIG_SMP
698 /*
699 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
700 * successfuly executed on another CPU. We must ensure that updates of
701 * per-task data have been completed by this moment.
702 */
703 smp_wmb();
704 task_thread_info(p)->cpu = cpu;
705#endif
706}
707
708/*
709 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
710 */
711#ifdef CONFIG_SCHED_DEBUG
c5905afb 712# include <linux/static_key.h>
029632fb
PZ
713# define const_debug __read_mostly
714#else
715# define const_debug const
716#endif
717
718extern const_debug unsigned int sysctl_sched_features;
719
720#define SCHED_FEAT(name, enabled) \
721 __SCHED_FEAT_##name ,
722
723enum {
391e43da 724#include "features.h"
f8b6d1cc 725 __SCHED_FEAT_NR,
029632fb
PZ
726};
727
728#undef SCHED_FEAT
729
f8b6d1cc 730#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 731static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 732{
c5905afb 733 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
734}
735
c5905afb 736static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 737{
c5905afb 738 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
739}
740
741#define SCHED_FEAT(name, enabled) \
c5905afb 742static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
743{ \
744 return static_branch__##enabled(key); \
745}
746
747#include "features.h"
748
749#undef SCHED_FEAT
750
c5905afb 751extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
752#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
753#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 754#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 755#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 756
cbee9f88
PZ
757#ifdef CONFIG_NUMA_BALANCING
758#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
759#ifdef CONFIG_SCHED_DEBUG
760#define numabalancing_enabled sched_feat_numa(NUMA)
761#else
762extern bool numabalancing_enabled;
763#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
764#else
765#define sched_feat_numa(x) (0)
3105b86a
MG
766#define numabalancing_enabled (0)
767#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 768
029632fb
PZ
769static inline u64 global_rt_period(void)
770{
771 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
772}
773
774static inline u64 global_rt_runtime(void)
775{
776 if (sysctl_sched_rt_runtime < 0)
777 return RUNTIME_INF;
778
779 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
780}
781
782
783
784static inline int task_current(struct rq *rq, struct task_struct *p)
785{
786 return rq->curr == p;
787}
788
789static inline int task_running(struct rq *rq, struct task_struct *p)
790{
791#ifdef CONFIG_SMP
792 return p->on_cpu;
793#else
794 return task_current(rq, p);
795#endif
796}
797
798
799#ifndef prepare_arch_switch
800# define prepare_arch_switch(next) do { } while (0)
801#endif
802#ifndef finish_arch_switch
803# define finish_arch_switch(prev) do { } while (0)
804#endif
01f23e16
CM
805#ifndef finish_arch_post_lock_switch
806# define finish_arch_post_lock_switch() do { } while (0)
807#endif
029632fb
PZ
808
809#ifndef __ARCH_WANT_UNLOCKED_CTXSW
810static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
811{
812#ifdef CONFIG_SMP
813 /*
814 * We can optimise this out completely for !SMP, because the
815 * SMP rebalancing from interrupt is the only thing that cares
816 * here.
817 */
818 next->on_cpu = 1;
819#endif
820}
821
822static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
823{
824#ifdef CONFIG_SMP
825 /*
826 * After ->on_cpu is cleared, the task can be moved to a different CPU.
827 * We must ensure this doesn't happen until the switch is completely
828 * finished.
829 */
830 smp_wmb();
831 prev->on_cpu = 0;
832#endif
833#ifdef CONFIG_DEBUG_SPINLOCK
834 /* this is a valid case when another task releases the spinlock */
835 rq->lock.owner = current;
836#endif
837 /*
838 * If we are tracking spinlock dependencies then we have to
839 * fix up the runqueue lock - which gets 'carried over' from
840 * prev into current:
841 */
842 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
843
844 raw_spin_unlock_irq(&rq->lock);
845}
846
847#else /* __ARCH_WANT_UNLOCKED_CTXSW */
848static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
849{
850#ifdef CONFIG_SMP
851 /*
852 * We can optimise this out completely for !SMP, because the
853 * SMP rebalancing from interrupt is the only thing that cares
854 * here.
855 */
856 next->on_cpu = 1;
857#endif
029632fb 858 raw_spin_unlock(&rq->lock);
029632fb
PZ
859}
860
861static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
862{
863#ifdef CONFIG_SMP
864 /*
865 * After ->on_cpu is cleared, the task can be moved to a different CPU.
866 * We must ensure this doesn't happen until the switch is completely
867 * finished.
868 */
869 smp_wmb();
870 prev->on_cpu = 0;
871#endif
029632fb 872 local_irq_enable();
029632fb
PZ
873}
874#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
875
b13095f0
LZ
876/*
877 * wake flags
878 */
879#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
880#define WF_FORK 0x02 /* child wakeup after fork */
881#define WF_MIGRATED 0x4 /* internal use, task got migrated */
882
029632fb
PZ
883static inline void update_load_add(struct load_weight *lw, unsigned long inc)
884{
885 lw->weight += inc;
886 lw->inv_weight = 0;
887}
888
889static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
890{
891 lw->weight -= dec;
892 lw->inv_weight = 0;
893}
894
895static inline void update_load_set(struct load_weight *lw, unsigned long w)
896{
897 lw->weight = w;
898 lw->inv_weight = 0;
899}
900
901/*
902 * To aid in avoiding the subversion of "niceness" due to uneven distribution
903 * of tasks with abnormal "nice" values across CPUs the contribution that
904 * each task makes to its run queue's load is weighted according to its
905 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
906 * scaled version of the new time slice allocation that they receive on time
907 * slice expiry etc.
908 */
909
910#define WEIGHT_IDLEPRIO 3
911#define WMULT_IDLEPRIO 1431655765
912
913/*
914 * Nice levels are multiplicative, with a gentle 10% change for every
915 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
916 * nice 1, it will get ~10% less CPU time than another CPU-bound task
917 * that remained on nice 0.
918 *
919 * The "10% effect" is relative and cumulative: from _any_ nice level,
920 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
921 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
922 * If a task goes up by ~10% and another task goes down by ~10% then
923 * the relative distance between them is ~25%.)
924 */
925static const int prio_to_weight[40] = {
926 /* -20 */ 88761, 71755, 56483, 46273, 36291,
927 /* -15 */ 29154, 23254, 18705, 14949, 11916,
928 /* -10 */ 9548, 7620, 6100, 4904, 3906,
929 /* -5 */ 3121, 2501, 1991, 1586, 1277,
930 /* 0 */ 1024, 820, 655, 526, 423,
931 /* 5 */ 335, 272, 215, 172, 137,
932 /* 10 */ 110, 87, 70, 56, 45,
933 /* 15 */ 36, 29, 23, 18, 15,
934};
935
936/*
937 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
938 *
939 * In cases where the weight does not change often, we can use the
940 * precalculated inverse to speed up arithmetics by turning divisions
941 * into multiplications:
942 */
943static const u32 prio_to_wmult[40] = {
944 /* -20 */ 48388, 59856, 76040, 92818, 118348,
945 /* -15 */ 147320, 184698, 229616, 287308, 360437,
946 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
947 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
948 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
949 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
950 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
951 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
952};
953
c82ba9fa
LZ
954#define ENQUEUE_WAKEUP 1
955#define ENQUEUE_HEAD 2
956#ifdef CONFIG_SMP
957#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
958#else
959#define ENQUEUE_WAKING 0
960#endif
961
962#define DEQUEUE_SLEEP 1
963
964struct sched_class {
965 const struct sched_class *next;
966
967 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
968 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
969 void (*yield_task) (struct rq *rq);
970 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
971
972 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
973
974 struct task_struct * (*pick_next_task) (struct rq *rq);
975 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
976
977#ifdef CONFIG_SMP
978 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
979 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
980
981 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
982 void (*post_schedule) (struct rq *this_rq);
983 void (*task_waking) (struct task_struct *task);
984 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
985
986 void (*set_cpus_allowed)(struct task_struct *p,
987 const struct cpumask *newmask);
988
989 void (*rq_online)(struct rq *rq);
990 void (*rq_offline)(struct rq *rq);
991#endif
992
993 void (*set_curr_task) (struct rq *rq);
994 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
995 void (*task_fork) (struct task_struct *p);
996
997 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
998 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
999 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1000 int oldprio);
1001
1002 unsigned int (*get_rr_interval) (struct rq *rq,
1003 struct task_struct *task);
1004
1005#ifdef CONFIG_FAIR_GROUP_SCHED
1006 void (*task_move_group) (struct task_struct *p, int on_rq);
1007#endif
1008};
029632fb
PZ
1009
1010#define sched_class_highest (&stop_sched_class)
1011#define for_each_class(class) \
1012 for (class = sched_class_highest; class; class = class->next)
1013
1014extern const struct sched_class stop_sched_class;
1015extern const struct sched_class rt_sched_class;
1016extern const struct sched_class fair_sched_class;
1017extern const struct sched_class idle_sched_class;
1018
1019
1020#ifdef CONFIG_SMP
1021
b719203b
LZ
1022extern void update_group_power(struct sched_domain *sd, int cpu);
1023
029632fb
PZ
1024extern void trigger_load_balance(struct rq *rq, int cpu);
1025extern void idle_balance(int this_cpu, struct rq *this_rq);
1026
1027#else /* CONFIG_SMP */
1028
1029static inline void idle_balance(int cpu, struct rq *rq)
1030{
1031}
1032
1033#endif
1034
1035extern void sysrq_sched_debug_show(void);
1036extern void sched_init_granularity(void);
1037extern void update_max_interval(void);
029632fb
PZ
1038extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
1039extern void init_sched_rt_class(void);
1040extern void init_sched_fair_class(void);
1041
1042extern void resched_task(struct task_struct *p);
1043extern void resched_cpu(int cpu);
1044
1045extern struct rt_bandwidth def_rt_bandwidth;
1046extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1047
556061b0 1048extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1049
73fbec60
FW
1050#ifdef CONFIG_PARAVIRT
1051static inline u64 steal_ticks(u64 steal)
1052{
1053 if (unlikely(steal > NSEC_PER_SEC))
1054 return div_u64(steal, TICK_NSEC);
1055
1056 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1057}
1058#endif
1059
029632fb
PZ
1060static inline void inc_nr_running(struct rq *rq)
1061{
1062 rq->nr_running++;
1063}
1064
1065static inline void dec_nr_running(struct rq *rq)
1066{
1067 rq->nr_running--;
1068}
1069
1070extern void update_rq_clock(struct rq *rq);
1071
1072extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1073extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1074
1075extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1076
1077extern const_debug unsigned int sysctl_sched_time_avg;
1078extern const_debug unsigned int sysctl_sched_nr_migrate;
1079extern const_debug unsigned int sysctl_sched_migration_cost;
1080
1081static inline u64 sched_avg_period(void)
1082{
1083 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1084}
1085
029632fb
PZ
1086#ifdef CONFIG_SCHED_HRTICK
1087
1088/*
1089 * Use hrtick when:
1090 * - enabled by features
1091 * - hrtimer is actually high res
1092 */
1093static inline int hrtick_enabled(struct rq *rq)
1094{
1095 if (!sched_feat(HRTICK))
1096 return 0;
1097 if (!cpu_active(cpu_of(rq)))
1098 return 0;
1099 return hrtimer_is_hres_active(&rq->hrtick_timer);
1100}
1101
1102void hrtick_start(struct rq *rq, u64 delay);
1103
b39e66ea
MG
1104#else
1105
1106static inline int hrtick_enabled(struct rq *rq)
1107{
1108 return 0;
1109}
1110
029632fb
PZ
1111#endif /* CONFIG_SCHED_HRTICK */
1112
1113#ifdef CONFIG_SMP
1114extern void sched_avg_update(struct rq *rq);
1115static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1116{
1117 rq->rt_avg += rt_delta;
1118 sched_avg_update(rq);
1119}
1120#else
1121static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1122static inline void sched_avg_update(struct rq *rq) { }
1123#endif
1124
1125extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1126
1127#ifdef CONFIG_SMP
1128#ifdef CONFIG_PREEMPT
1129
1130static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1131
1132/*
1133 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1134 * way at the expense of forcing extra atomic operations in all
1135 * invocations. This assures that the double_lock is acquired using the
1136 * same underlying policy as the spinlock_t on this architecture, which
1137 * reduces latency compared to the unfair variant below. However, it
1138 * also adds more overhead and therefore may reduce throughput.
1139 */
1140static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1141 __releases(this_rq->lock)
1142 __acquires(busiest->lock)
1143 __acquires(this_rq->lock)
1144{
1145 raw_spin_unlock(&this_rq->lock);
1146 double_rq_lock(this_rq, busiest);
1147
1148 return 1;
1149}
1150
1151#else
1152/*
1153 * Unfair double_lock_balance: Optimizes throughput at the expense of
1154 * latency by eliminating extra atomic operations when the locks are
1155 * already in proper order on entry. This favors lower cpu-ids and will
1156 * grant the double lock to lower cpus over higher ids under contention,
1157 * regardless of entry order into the function.
1158 */
1159static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1160 __releases(this_rq->lock)
1161 __acquires(busiest->lock)
1162 __acquires(this_rq->lock)
1163{
1164 int ret = 0;
1165
1166 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1167 if (busiest < this_rq) {
1168 raw_spin_unlock(&this_rq->lock);
1169 raw_spin_lock(&busiest->lock);
1170 raw_spin_lock_nested(&this_rq->lock,
1171 SINGLE_DEPTH_NESTING);
1172 ret = 1;
1173 } else
1174 raw_spin_lock_nested(&busiest->lock,
1175 SINGLE_DEPTH_NESTING);
1176 }
1177 return ret;
1178}
1179
1180#endif /* CONFIG_PREEMPT */
1181
1182/*
1183 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1184 */
1185static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1186{
1187 if (unlikely(!irqs_disabled())) {
1188 /* printk() doesn't work good under rq->lock */
1189 raw_spin_unlock(&this_rq->lock);
1190 BUG_ON(1);
1191 }
1192
1193 return _double_lock_balance(this_rq, busiest);
1194}
1195
1196static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1197 __releases(busiest->lock)
1198{
1199 raw_spin_unlock(&busiest->lock);
1200 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1201}
1202
1203/*
1204 * double_rq_lock - safely lock two runqueues
1205 *
1206 * Note this does not disable interrupts like task_rq_lock,
1207 * you need to do so manually before calling.
1208 */
1209static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1210 __acquires(rq1->lock)
1211 __acquires(rq2->lock)
1212{
1213 BUG_ON(!irqs_disabled());
1214 if (rq1 == rq2) {
1215 raw_spin_lock(&rq1->lock);
1216 __acquire(rq2->lock); /* Fake it out ;) */
1217 } else {
1218 if (rq1 < rq2) {
1219 raw_spin_lock(&rq1->lock);
1220 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1221 } else {
1222 raw_spin_lock(&rq2->lock);
1223 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1224 }
1225 }
1226}
1227
1228/*
1229 * double_rq_unlock - safely unlock two runqueues
1230 *
1231 * Note this does not restore interrupts like task_rq_unlock,
1232 * you need to do so manually after calling.
1233 */
1234static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1235 __releases(rq1->lock)
1236 __releases(rq2->lock)
1237{
1238 raw_spin_unlock(&rq1->lock);
1239 if (rq1 != rq2)
1240 raw_spin_unlock(&rq2->lock);
1241 else
1242 __release(rq2->lock);
1243}
1244
1245#else /* CONFIG_SMP */
1246
1247/*
1248 * double_rq_lock - safely lock two runqueues
1249 *
1250 * Note this does not disable interrupts like task_rq_lock,
1251 * you need to do so manually before calling.
1252 */
1253static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1254 __acquires(rq1->lock)
1255 __acquires(rq2->lock)
1256{
1257 BUG_ON(!irqs_disabled());
1258 BUG_ON(rq1 != rq2);
1259 raw_spin_lock(&rq1->lock);
1260 __acquire(rq2->lock); /* Fake it out ;) */
1261}
1262
1263/*
1264 * double_rq_unlock - safely unlock two runqueues
1265 *
1266 * Note this does not restore interrupts like task_rq_unlock,
1267 * you need to do so manually after calling.
1268 */
1269static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1270 __releases(rq1->lock)
1271 __releases(rq2->lock)
1272{
1273 BUG_ON(rq1 != rq2);
1274 raw_spin_unlock(&rq1->lock);
1275 __release(rq2->lock);
1276}
1277
1278#endif
1279
1280extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1281extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1282extern void print_cfs_stats(struct seq_file *m, int cpu);
1283extern void print_rt_stats(struct seq_file *m, int cpu);
1284
1285extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1286extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
029632fb
PZ
1287
1288extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1c792db7
SS
1289
1290#ifdef CONFIG_NO_HZ
1291enum rq_nohz_flag_bits {
1292 NOHZ_TICK_STOPPED,
1293 NOHZ_BALANCE_KICK,
69e1e811 1294 NOHZ_IDLE,
1c792db7
SS
1295};
1296
1297#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1298#endif
73fbec60
FW
1299
1300#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1301
1302DECLARE_PER_CPU(u64, cpu_hardirq_time);
1303DECLARE_PER_CPU(u64, cpu_softirq_time);
1304
1305#ifndef CONFIG_64BIT
1306DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1307
1308static inline void irq_time_write_begin(void)
1309{
1310 __this_cpu_inc(irq_time_seq.sequence);
1311 smp_wmb();
1312}
1313
1314static inline void irq_time_write_end(void)
1315{
1316 smp_wmb();
1317 __this_cpu_inc(irq_time_seq.sequence);
1318}
1319
1320static inline u64 irq_time_read(int cpu)
1321{
1322 u64 irq_time;
1323 unsigned seq;
1324
1325 do {
1326 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1327 irq_time = per_cpu(cpu_softirq_time, cpu) +
1328 per_cpu(cpu_hardirq_time, cpu);
1329 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1330
1331 return irq_time;
1332}
1333#else /* CONFIG_64BIT */
1334static inline void irq_time_write_begin(void)
1335{
1336}
1337
1338static inline void irq_time_write_end(void)
1339{
1340}
1341
1342static inline u64 irq_time_read(int cpu)
1343{
1344 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1345}
1346#endif /* CONFIG_64BIT */
1347#endif /* CONFIG_IRQ_TIME_ACCOUNTING */