sched/deadline: Fix inter- exclusive cpusets migrations
[linux-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
029632fb
PZ
6#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
9f3660c2 9#include <linux/tick.h>
f809ca9a 10#include <linux/slab.h>
029632fb 11
391e43da 12#include "cpupri.h"
6bfd6d72 13#include "cpudeadline.h"
60fed789 14#include "cpuacct.h"
029632fb 15
45ceebf7
PG
16struct rq;
17
da0c1e65
KT
18/* task_struct::on_rq states: */
19#define TASK_ON_RQ_QUEUED 1
cca26e80 20#define TASK_ON_RQ_MIGRATING 2
da0c1e65 21
029632fb
PZ
22extern __read_mostly int scheduler_running;
23
45ceebf7
PG
24extern unsigned long calc_load_update;
25extern atomic_long_t calc_load_tasks;
26
27extern long calc_load_fold_active(struct rq *this_rq);
28extern void update_cpu_load_active(struct rq *this_rq);
29
029632fb
PZ
30/*
31 * Helpers for converting nanosecond timing to jiffy resolution
32 */
33#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
34
cc1f4b1f
LZ
35/*
36 * Increase resolution of nice-level calculations for 64-bit architectures.
37 * The extra resolution improves shares distribution and load balancing of
38 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
39 * hierarchies, especially on larger systems. This is not a user-visible change
40 * and does not change the user-interface for setting shares/weights.
41 *
42 * We increase resolution only if we have enough bits to allow this increased
43 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
44 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
45 * increased costs.
46 */
47#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
48# define SCHED_LOAD_RESOLUTION 10
49# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
50# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
51#else
52# define SCHED_LOAD_RESOLUTION 0
53# define scale_load(w) (w)
54# define scale_load_down(w) (w)
55#endif
56
57#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
58#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
59
029632fb
PZ
60#define NICE_0_LOAD SCHED_LOAD_SCALE
61#define NICE_0_SHIFT SCHED_LOAD_SHIFT
62
332ac17e
DF
63/*
64 * Single value that decides SCHED_DEADLINE internal math precision.
65 * 10 -> just above 1us
66 * 9 -> just above 0.5us
67 */
68#define DL_SCALE (10)
69
029632fb
PZ
70/*
71 * These are the 'tuning knobs' of the scheduler:
029632fb 72 */
029632fb
PZ
73
74/*
75 * single value that denotes runtime == period, ie unlimited time.
76 */
77#define RUNTIME_INF ((u64)~0ULL)
78
d50dde5a
DF
79static inline int fair_policy(int policy)
80{
81 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
82}
83
029632fb
PZ
84static inline int rt_policy(int policy)
85{
d50dde5a 86 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
87}
88
aab03e05
DF
89static inline int dl_policy(int policy)
90{
91 return policy == SCHED_DEADLINE;
92}
93
029632fb
PZ
94static inline int task_has_rt_policy(struct task_struct *p)
95{
96 return rt_policy(p->policy);
97}
98
aab03e05
DF
99static inline int task_has_dl_policy(struct task_struct *p)
100{
101 return dl_policy(p->policy);
102}
103
332ac17e 104static inline bool dl_time_before(u64 a, u64 b)
2d3d891d
DF
105{
106 return (s64)(a - b) < 0;
107}
108
109/*
110 * Tells if entity @a should preempt entity @b.
111 */
332ac17e
DF
112static inline bool
113dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
114{
115 return dl_time_before(a->deadline, b->deadline);
116}
117
029632fb
PZ
118/*
119 * This is the priority-queue data structure of the RT scheduling class:
120 */
121struct rt_prio_array {
122 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
123 struct list_head queue[MAX_RT_PRIO];
124};
125
126struct rt_bandwidth {
127 /* nests inside the rq lock: */
128 raw_spinlock_t rt_runtime_lock;
129 ktime_t rt_period;
130 u64 rt_runtime;
131 struct hrtimer rt_period_timer;
132};
a5e7be3b
JL
133
134void __dl_clear_params(struct task_struct *p);
135
332ac17e
DF
136/*
137 * To keep the bandwidth of -deadline tasks and groups under control
138 * we need some place where:
139 * - store the maximum -deadline bandwidth of the system (the group);
140 * - cache the fraction of that bandwidth that is currently allocated.
141 *
142 * This is all done in the data structure below. It is similar to the
143 * one used for RT-throttling (rt_bandwidth), with the main difference
144 * that, since here we are only interested in admission control, we
145 * do not decrease any runtime while the group "executes", neither we
146 * need a timer to replenish it.
147 *
148 * With respect to SMP, the bandwidth is given on a per-CPU basis,
149 * meaning that:
150 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
151 * - dl_total_bw array contains, in the i-eth element, the currently
152 * allocated bandwidth on the i-eth CPU.
153 * Moreover, groups consume bandwidth on each CPU, while tasks only
154 * consume bandwidth on the CPU they're running on.
155 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
156 * that will be shown the next time the proc or cgroup controls will
157 * be red. It on its turn can be changed by writing on its own
158 * control.
159 */
160struct dl_bandwidth {
161 raw_spinlock_t dl_runtime_lock;
162 u64 dl_runtime;
163 u64 dl_period;
164};
165
166static inline int dl_bandwidth_enabled(void)
167{
1724813d 168 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
169}
170
171extern struct dl_bw *dl_bw_of(int i);
172
173struct dl_bw {
174 raw_spinlock_t lock;
175 u64 bw, total_bw;
176};
177
029632fb
PZ
178extern struct mutex sched_domains_mutex;
179
180#ifdef CONFIG_CGROUP_SCHED
181
182#include <linux/cgroup.h>
183
184struct cfs_rq;
185struct rt_rq;
186
35cf4e50 187extern struct list_head task_groups;
029632fb
PZ
188
189struct cfs_bandwidth {
190#ifdef CONFIG_CFS_BANDWIDTH
191 raw_spinlock_t lock;
192 ktime_t period;
193 u64 quota, runtime;
9c58c79a 194 s64 hierarchical_quota;
029632fb
PZ
195 u64 runtime_expires;
196
197 int idle, timer_active;
198 struct hrtimer period_timer, slack_timer;
199 struct list_head throttled_cfs_rq;
200
201 /* statistics */
202 int nr_periods, nr_throttled;
203 u64 throttled_time;
204#endif
205};
206
207/* task group related information */
208struct task_group {
209 struct cgroup_subsys_state css;
210
211#ifdef CONFIG_FAIR_GROUP_SCHED
212 /* schedulable entities of this group on each cpu */
213 struct sched_entity **se;
214 /* runqueue "owned" by this group on each cpu */
215 struct cfs_rq **cfs_rq;
216 unsigned long shares;
217
fa6bddeb 218#ifdef CONFIG_SMP
bf5b986e 219 atomic_long_t load_avg;
bb17f655 220 atomic_t runnable_avg;
029632fb 221#endif
fa6bddeb 222#endif
029632fb
PZ
223
224#ifdef CONFIG_RT_GROUP_SCHED
225 struct sched_rt_entity **rt_se;
226 struct rt_rq **rt_rq;
227
228 struct rt_bandwidth rt_bandwidth;
229#endif
230
231 struct rcu_head rcu;
232 struct list_head list;
233
234 struct task_group *parent;
235 struct list_head siblings;
236 struct list_head children;
237
238#ifdef CONFIG_SCHED_AUTOGROUP
239 struct autogroup *autogroup;
240#endif
241
242 struct cfs_bandwidth cfs_bandwidth;
243};
244
245#ifdef CONFIG_FAIR_GROUP_SCHED
246#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
247
248/*
249 * A weight of 0 or 1 can cause arithmetics problems.
250 * A weight of a cfs_rq is the sum of weights of which entities
251 * are queued on this cfs_rq, so a weight of a entity should not be
252 * too large, so as the shares value of a task group.
253 * (The default weight is 1024 - so there's no practical
254 * limitation from this.)
255 */
256#define MIN_SHARES (1UL << 1)
257#define MAX_SHARES (1UL << 18)
258#endif
259
029632fb
PZ
260typedef int (*tg_visitor)(struct task_group *, void *);
261
262extern int walk_tg_tree_from(struct task_group *from,
263 tg_visitor down, tg_visitor up, void *data);
264
265/*
266 * Iterate the full tree, calling @down when first entering a node and @up when
267 * leaving it for the final time.
268 *
269 * Caller must hold rcu_lock or sufficient equivalent.
270 */
271static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
272{
273 return walk_tg_tree_from(&root_task_group, down, up, data);
274}
275
276extern int tg_nop(struct task_group *tg, void *data);
277
278extern void free_fair_sched_group(struct task_group *tg);
279extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
280extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
281extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
282 struct sched_entity *se, int cpu,
283 struct sched_entity *parent);
284extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
285extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
286
287extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
09dc4ab0 288extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
029632fb
PZ
289extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
290
291extern void free_rt_sched_group(struct task_group *tg);
292extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
293extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
294 struct sched_rt_entity *rt_se, int cpu,
295 struct sched_rt_entity *parent);
296
25cc7da7
LZ
297extern struct task_group *sched_create_group(struct task_group *parent);
298extern void sched_online_group(struct task_group *tg,
299 struct task_group *parent);
300extern void sched_destroy_group(struct task_group *tg);
301extern void sched_offline_group(struct task_group *tg);
302
303extern void sched_move_task(struct task_struct *tsk);
304
305#ifdef CONFIG_FAIR_GROUP_SCHED
306extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
307#endif
308
029632fb
PZ
309#else /* CONFIG_CGROUP_SCHED */
310
311struct cfs_bandwidth { };
312
313#endif /* CONFIG_CGROUP_SCHED */
314
315/* CFS-related fields in a runqueue */
316struct cfs_rq {
317 struct load_weight load;
c82513e5 318 unsigned int nr_running, h_nr_running;
029632fb
PZ
319
320 u64 exec_clock;
321 u64 min_vruntime;
322#ifndef CONFIG_64BIT
323 u64 min_vruntime_copy;
324#endif
325
326 struct rb_root tasks_timeline;
327 struct rb_node *rb_leftmost;
328
029632fb
PZ
329 /*
330 * 'curr' points to currently running entity on this cfs_rq.
331 * It is set to NULL otherwise (i.e when none are currently running).
332 */
333 struct sched_entity *curr, *next, *last, *skip;
334
335#ifdef CONFIG_SCHED_DEBUG
336 unsigned int nr_spread_over;
337#endif
338
2dac754e
PT
339#ifdef CONFIG_SMP
340 /*
341 * CFS Load tracking
342 * Under CFS, load is tracked on a per-entity basis and aggregated up.
343 * This allows for the description of both thread and group usage (in
344 * the FAIR_GROUP_SCHED case).
345 */
72a4cf20 346 unsigned long runnable_load_avg, blocked_load_avg;
2509940f 347 atomic64_t decay_counter;
9ee474f5 348 u64 last_decay;
2509940f 349 atomic_long_t removed_load;
141965c7 350
c566e8e9 351#ifdef CONFIG_FAIR_GROUP_SCHED
141965c7 352 /* Required to track per-cpu representation of a task_group */
bb17f655 353 u32 tg_runnable_contrib;
bf5b986e 354 unsigned long tg_load_contrib;
82958366
PT
355
356 /*
357 * h_load = weight * f(tg)
358 *
359 * Where f(tg) is the recursive weight fraction assigned to
360 * this group.
361 */
362 unsigned long h_load;
68520796
VD
363 u64 last_h_load_update;
364 struct sched_entity *h_load_next;
365#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
366#endif /* CONFIG_SMP */
367
029632fb
PZ
368#ifdef CONFIG_FAIR_GROUP_SCHED
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
370
371 /*
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
375 *
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
378 */
379 int on_list;
380 struct list_head leaf_cfs_rq_list;
381 struct task_group *tg; /* group that "owns" this runqueue */
382
029632fb
PZ
383#ifdef CONFIG_CFS_BANDWIDTH
384 int runtime_enabled;
385 u64 runtime_expires;
386 s64 runtime_remaining;
387
f1b17280
PT
388 u64 throttled_clock, throttled_clock_task;
389 u64 throttled_clock_task_time;
029632fb
PZ
390 int throttled, throttle_count;
391 struct list_head throttled_list;
392#endif /* CONFIG_CFS_BANDWIDTH */
393#endif /* CONFIG_FAIR_GROUP_SCHED */
394};
395
396static inline int rt_bandwidth_enabled(void)
397{
398 return sysctl_sched_rt_runtime >= 0;
399}
400
401/* Real-Time classes' related field in a runqueue: */
402struct rt_rq {
403 struct rt_prio_array active;
c82513e5 404 unsigned int rt_nr_running;
029632fb
PZ
405#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
406 struct {
407 int curr; /* highest queued rt task prio */
408#ifdef CONFIG_SMP
409 int next; /* next highest */
410#endif
411 } highest_prio;
412#endif
413#ifdef CONFIG_SMP
414 unsigned long rt_nr_migratory;
415 unsigned long rt_nr_total;
416 int overloaded;
417 struct plist_head pushable_tasks;
418#endif
f4ebcbc0
KT
419 int rt_queued;
420
029632fb
PZ
421 int rt_throttled;
422 u64 rt_time;
423 u64 rt_runtime;
424 /* Nests inside the rq lock: */
425 raw_spinlock_t rt_runtime_lock;
426
427#ifdef CONFIG_RT_GROUP_SCHED
428 unsigned long rt_nr_boosted;
429
430 struct rq *rq;
029632fb
PZ
431 struct task_group *tg;
432#endif
433};
434
aab03e05
DF
435/* Deadline class' related fields in a runqueue */
436struct dl_rq {
437 /* runqueue is an rbtree, ordered by deadline */
438 struct rb_root rb_root;
439 struct rb_node *rb_leftmost;
440
441 unsigned long dl_nr_running;
1baca4ce
JL
442
443#ifdef CONFIG_SMP
444 /*
445 * Deadline values of the currently executing and the
446 * earliest ready task on this rq. Caching these facilitates
447 * the decision wether or not a ready but not running task
448 * should migrate somewhere else.
449 */
450 struct {
451 u64 curr;
452 u64 next;
453 } earliest_dl;
454
455 unsigned long dl_nr_migratory;
1baca4ce
JL
456 int overloaded;
457
458 /*
459 * Tasks on this rq that can be pushed away. They are kept in
460 * an rb-tree, ordered by tasks' deadlines, with caching
461 * of the leftmost (earliest deadline) element.
462 */
463 struct rb_root pushable_dl_tasks_root;
464 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
465#else
466 struct dl_bw dl_bw;
1baca4ce 467#endif
aab03e05
DF
468};
469
029632fb
PZ
470#ifdef CONFIG_SMP
471
472/*
473 * We add the notion of a root-domain which will be used to define per-domain
474 * variables. Each exclusive cpuset essentially defines an island domain by
475 * fully partitioning the member cpus from any other cpuset. Whenever a new
476 * exclusive cpuset is created, we also create and attach a new root-domain
477 * object.
478 *
479 */
480struct root_domain {
481 atomic_t refcount;
482 atomic_t rto_count;
483 struct rcu_head rcu;
484 cpumask_var_t span;
485 cpumask_var_t online;
486
4486edd1
TC
487 /* Indicate more than one runnable task for any CPU */
488 bool overload;
489
1baca4ce
JL
490 /*
491 * The bit corresponding to a CPU gets set here if such CPU has more
492 * than one runnable -deadline task (as it is below for RT tasks).
493 */
494 cpumask_var_t dlo_mask;
495 atomic_t dlo_count;
332ac17e 496 struct dl_bw dl_bw;
6bfd6d72 497 struct cpudl cpudl;
1baca4ce 498
029632fb
PZ
499 /*
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
502 */
503 cpumask_var_t rto_mask;
504 struct cpupri cpupri;
505};
506
507extern struct root_domain def_root_domain;
508
509#endif /* CONFIG_SMP */
510
511/*
512 * This is the main, per-CPU runqueue data structure.
513 *
514 * Locking rule: those places that want to lock multiple runqueues
515 * (such as the load balancing or the thread migration code), lock
516 * acquire operations must be ordered by ascending &runqueue.
517 */
518struct rq {
519 /* runqueue lock: */
520 raw_spinlock_t lock;
521
522 /*
523 * nr_running and cpu_load should be in the same cacheline because
524 * remote CPUs use both these fields when doing load calculation.
525 */
c82513e5 526 unsigned int nr_running;
0ec8aa00
PZ
527#ifdef CONFIG_NUMA_BALANCING
528 unsigned int nr_numa_running;
529 unsigned int nr_preferred_running;
530#endif
029632fb
PZ
531 #define CPU_LOAD_IDX_MAX 5
532 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
533 unsigned long last_load_update_tick;
3451d024 534#ifdef CONFIG_NO_HZ_COMMON
029632fb 535 u64 nohz_stamp;
1c792db7 536 unsigned long nohz_flags;
265f22a9
FW
537#endif
538#ifdef CONFIG_NO_HZ_FULL
539 unsigned long last_sched_tick;
029632fb
PZ
540#endif
541 int skip_clock_update;
542
543 /* capture load from *all* tasks on this cpu: */
544 struct load_weight load;
545 unsigned long nr_load_updates;
546 u64 nr_switches;
547
548 struct cfs_rq cfs;
549 struct rt_rq rt;
aab03e05 550 struct dl_rq dl;
029632fb
PZ
551
552#ifdef CONFIG_FAIR_GROUP_SCHED
553 /* list of leaf cfs_rq on this cpu: */
554 struct list_head leaf_cfs_rq_list;
f5f9739d
DE
555
556 struct sched_avg avg;
a35b6466
PZ
557#endif /* CONFIG_FAIR_GROUP_SCHED */
558
029632fb
PZ
559 /*
560 * This is part of a global counter where only the total sum
561 * over all CPUs matters. A task can increase this counter on
562 * one CPU and if it got migrated afterwards it may decrease
563 * it on another CPU. Always updated under the runqueue lock:
564 */
565 unsigned long nr_uninterruptible;
566
567 struct task_struct *curr, *idle, *stop;
568 unsigned long next_balance;
569 struct mm_struct *prev_mm;
570
571 u64 clock;
572 u64 clock_task;
573
574 atomic_t nr_iowait;
575
576#ifdef CONFIG_SMP
577 struct root_domain *rd;
578 struct sched_domain *sd;
579
ced549fa 580 unsigned long cpu_capacity;
029632fb
PZ
581
582 unsigned char idle_balance;
583 /* For active balancing */
584 int post_schedule;
585 int active_balance;
586 int push_cpu;
587 struct cpu_stop_work active_balance_work;
588 /* cpu of this runqueue: */
589 int cpu;
590 int online;
591
367456c7
PZ
592 struct list_head cfs_tasks;
593
029632fb
PZ
594 u64 rt_avg;
595 u64 age_stamp;
596 u64 idle_stamp;
597 u64 avg_idle;
9bd721c5
JL
598
599 /* This is used to determine avg_idle's max value */
600 u64 max_idle_balance_cost;
029632fb
PZ
601#endif
602
603#ifdef CONFIG_IRQ_TIME_ACCOUNTING
604 u64 prev_irq_time;
605#endif
606#ifdef CONFIG_PARAVIRT
607 u64 prev_steal_time;
608#endif
609#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
610 u64 prev_steal_time_rq;
611#endif
612
613 /* calc_load related fields */
614 unsigned long calc_load_update;
615 long calc_load_active;
616
617#ifdef CONFIG_SCHED_HRTICK
618#ifdef CONFIG_SMP
619 int hrtick_csd_pending;
620 struct call_single_data hrtick_csd;
621#endif
622 struct hrtimer hrtick_timer;
623#endif
624
625#ifdef CONFIG_SCHEDSTATS
626 /* latency stats */
627 struct sched_info rq_sched_info;
628 unsigned long long rq_cpu_time;
629 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
630
631 /* sys_sched_yield() stats */
632 unsigned int yld_count;
633
634 /* schedule() stats */
029632fb
PZ
635 unsigned int sched_count;
636 unsigned int sched_goidle;
637
638 /* try_to_wake_up() stats */
639 unsigned int ttwu_count;
640 unsigned int ttwu_local;
641#endif
642
643#ifdef CONFIG_SMP
644 struct llist_head wake_list;
645#endif
646};
647
648static inline int cpu_of(struct rq *rq)
649{
650#ifdef CONFIG_SMP
651 return rq->cpu;
652#else
653 return 0;
654#endif
655}
656
8b06c55b 657DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 658
518cd623
PZ
659#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
660#define this_rq() (&__get_cpu_var(runqueues))
661#define task_rq(p) cpu_rq(task_cpu(p))
662#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
663#define raw_rq() (&__raw_get_cpu_var(runqueues))
664
78becc27
FW
665static inline u64 rq_clock(struct rq *rq)
666{
667 return rq->clock;
668}
669
670static inline u64 rq_clock_task(struct rq *rq)
671{
672 return rq->clock_task;
673}
674
f809ca9a 675#ifdef CONFIG_NUMA_BALANCING
0ec8aa00 676extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 677extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 678extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
679#endif /* CONFIG_NUMA_BALANCING */
680
518cd623
PZ
681#ifdef CONFIG_SMP
682
e3baac47
PZ
683extern void sched_ttwu_pending(void);
684
029632fb
PZ
685#define rcu_dereference_check_sched_domain(p) \
686 rcu_dereference_check((p), \
687 lockdep_is_held(&sched_domains_mutex))
688
689/*
690 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
691 * See detach_destroy_domains: synchronize_sched for details.
692 *
693 * The domain tree of any CPU may only be accessed from within
694 * preempt-disabled sections.
695 */
696#define for_each_domain(cpu, __sd) \
518cd623
PZ
697 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
698 __sd; __sd = __sd->parent)
029632fb 699
77e81365
SS
700#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
701
518cd623
PZ
702/**
703 * highest_flag_domain - Return highest sched_domain containing flag.
704 * @cpu: The cpu whose highest level of sched domain is to
705 * be returned.
706 * @flag: The flag to check for the highest sched_domain
707 * for the given cpu.
708 *
709 * Returns the highest sched_domain of a cpu which contains the given flag.
710 */
711static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
712{
713 struct sched_domain *sd, *hsd = NULL;
714
715 for_each_domain(cpu, sd) {
716 if (!(sd->flags & flag))
717 break;
718 hsd = sd;
719 }
720
721 return hsd;
722}
723
fb13c7ee
MG
724static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
725{
726 struct sched_domain *sd;
727
728 for_each_domain(cpu, sd) {
729 if (sd->flags & flag)
730 break;
731 }
732
733 return sd;
734}
735
518cd623 736DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 737DECLARE_PER_CPU(int, sd_llc_size);
518cd623 738DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 739DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
740DECLARE_PER_CPU(struct sched_domain *, sd_busy);
741DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 742
63b2ca30 743struct sched_group_capacity {
5e6521ea
LZ
744 atomic_t ref;
745 /*
63b2ca30
NP
746 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
747 * for a single CPU.
5e6521ea 748 */
63b2ca30 749 unsigned int capacity, capacity_orig;
5e6521ea 750 unsigned long next_update;
63b2ca30 751 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
752 /*
753 * Number of busy cpus in this group.
754 */
755 atomic_t nr_busy_cpus;
756
757 unsigned long cpumask[0]; /* iteration mask */
758};
759
760struct sched_group {
761 struct sched_group *next; /* Must be a circular list */
762 atomic_t ref;
763
764 unsigned int group_weight;
63b2ca30 765 struct sched_group_capacity *sgc;
5e6521ea
LZ
766
767 /*
768 * The CPUs this group covers.
769 *
770 * NOTE: this field is variable length. (Allocated dynamically
771 * by attaching extra space to the end of the structure,
772 * depending on how many CPUs the kernel has booted up with)
773 */
774 unsigned long cpumask[0];
775};
776
777static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
778{
779 return to_cpumask(sg->cpumask);
780}
781
782/*
783 * cpumask masking which cpus in the group are allowed to iterate up the domain
784 * tree.
785 */
786static inline struct cpumask *sched_group_mask(struct sched_group *sg)
787{
63b2ca30 788 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
789}
790
791/**
792 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
793 * @group: The group whose first cpu is to be returned.
794 */
795static inline unsigned int group_first_cpu(struct sched_group *group)
796{
797 return cpumask_first(sched_group_cpus(group));
798}
799
c1174876
PZ
800extern int group_balance_cpu(struct sched_group *sg);
801
e3baac47
PZ
802#else
803
804static inline void sched_ttwu_pending(void) { }
805
518cd623 806#endif /* CONFIG_SMP */
029632fb 807
391e43da
PZ
808#include "stats.h"
809#include "auto_group.h"
029632fb
PZ
810
811#ifdef CONFIG_CGROUP_SCHED
812
813/*
814 * Return the group to which this tasks belongs.
815 *
8af01f56
TH
816 * We cannot use task_css() and friends because the cgroup subsystem
817 * changes that value before the cgroup_subsys::attach() method is called,
818 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
819 *
820 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
821 * core changes this before calling sched_move_task().
822 *
823 * Instead we use a 'copy' which is updated from sched_move_task() while
824 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
825 */
826static inline struct task_group *task_group(struct task_struct *p)
827{
8323f26c 828 return p->sched_task_group;
029632fb
PZ
829}
830
831/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
832static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
833{
834#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
835 struct task_group *tg = task_group(p);
836#endif
837
838#ifdef CONFIG_FAIR_GROUP_SCHED
839 p->se.cfs_rq = tg->cfs_rq[cpu];
840 p->se.parent = tg->se[cpu];
841#endif
842
843#ifdef CONFIG_RT_GROUP_SCHED
844 p->rt.rt_rq = tg->rt_rq[cpu];
845 p->rt.parent = tg->rt_se[cpu];
846#endif
847}
848
849#else /* CONFIG_CGROUP_SCHED */
850
851static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
852static inline struct task_group *task_group(struct task_struct *p)
853{
854 return NULL;
855}
856
857#endif /* CONFIG_CGROUP_SCHED */
858
859static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
860{
861 set_task_rq(p, cpu);
862#ifdef CONFIG_SMP
863 /*
864 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
865 * successfuly executed on another CPU. We must ensure that updates of
866 * per-task data have been completed by this moment.
867 */
868 smp_wmb();
869 task_thread_info(p)->cpu = cpu;
ac66f547 870 p->wake_cpu = cpu;
029632fb
PZ
871#endif
872}
873
874/*
875 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
876 */
877#ifdef CONFIG_SCHED_DEBUG
c5905afb 878# include <linux/static_key.h>
029632fb
PZ
879# define const_debug __read_mostly
880#else
881# define const_debug const
882#endif
883
884extern const_debug unsigned int sysctl_sched_features;
885
886#define SCHED_FEAT(name, enabled) \
887 __SCHED_FEAT_##name ,
888
889enum {
391e43da 890#include "features.h"
f8b6d1cc 891 __SCHED_FEAT_NR,
029632fb
PZ
892};
893
894#undef SCHED_FEAT
895
f8b6d1cc 896#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 897#define SCHED_FEAT(name, enabled) \
c5905afb 898static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 899{ \
6e76ea8a 900 return static_key_##enabled(key); \
f8b6d1cc
PZ
901}
902
903#include "features.h"
904
905#undef SCHED_FEAT
906
c5905afb 907extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
908#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
909#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 910#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 911#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 912
cbee9f88
PZ
913#ifdef CONFIG_NUMA_BALANCING
914#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
915#ifdef CONFIG_SCHED_DEBUG
916#define numabalancing_enabled sched_feat_numa(NUMA)
917#else
918extern bool numabalancing_enabled;
919#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
920#else
921#define sched_feat_numa(x) (0)
3105b86a
MG
922#define numabalancing_enabled (0)
923#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 924
029632fb
PZ
925static inline u64 global_rt_period(void)
926{
927 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
928}
929
930static inline u64 global_rt_runtime(void)
931{
932 if (sysctl_sched_rt_runtime < 0)
933 return RUNTIME_INF;
934
935 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
936}
937
029632fb
PZ
938static inline int task_current(struct rq *rq, struct task_struct *p)
939{
940 return rq->curr == p;
941}
942
943static inline int task_running(struct rq *rq, struct task_struct *p)
944{
945#ifdef CONFIG_SMP
946 return p->on_cpu;
947#else
948 return task_current(rq, p);
949#endif
950}
951
da0c1e65
KT
952static inline int task_on_rq_queued(struct task_struct *p)
953{
954 return p->on_rq == TASK_ON_RQ_QUEUED;
955}
029632fb 956
cca26e80
KT
957static inline int task_on_rq_migrating(struct task_struct *p)
958{
959 return p->on_rq == TASK_ON_RQ_MIGRATING;
960}
961
029632fb
PZ
962#ifndef prepare_arch_switch
963# define prepare_arch_switch(next) do { } while (0)
964#endif
965#ifndef finish_arch_switch
966# define finish_arch_switch(prev) do { } while (0)
967#endif
01f23e16
CM
968#ifndef finish_arch_post_lock_switch
969# define finish_arch_post_lock_switch() do { } while (0)
970#endif
029632fb
PZ
971
972#ifndef __ARCH_WANT_UNLOCKED_CTXSW
973static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
974{
975#ifdef CONFIG_SMP
976 /*
977 * We can optimise this out completely for !SMP, because the
978 * SMP rebalancing from interrupt is the only thing that cares
979 * here.
980 */
981 next->on_cpu = 1;
982#endif
983}
984
985static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
986{
987#ifdef CONFIG_SMP
988 /*
989 * After ->on_cpu is cleared, the task can be moved to a different CPU.
990 * We must ensure this doesn't happen until the switch is completely
991 * finished.
992 */
993 smp_wmb();
994 prev->on_cpu = 0;
995#endif
996#ifdef CONFIG_DEBUG_SPINLOCK
997 /* this is a valid case when another task releases the spinlock */
998 rq->lock.owner = current;
999#endif
1000 /*
1001 * If we are tracking spinlock dependencies then we have to
1002 * fix up the runqueue lock - which gets 'carried over' from
1003 * prev into current:
1004 */
1005 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1006
1007 raw_spin_unlock_irq(&rq->lock);
1008}
1009
1010#else /* __ARCH_WANT_UNLOCKED_CTXSW */
1011static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1012{
1013#ifdef CONFIG_SMP
1014 /*
1015 * We can optimise this out completely for !SMP, because the
1016 * SMP rebalancing from interrupt is the only thing that cares
1017 * here.
1018 */
1019 next->on_cpu = 1;
1020#endif
029632fb 1021 raw_spin_unlock(&rq->lock);
029632fb
PZ
1022}
1023
1024static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1025{
1026#ifdef CONFIG_SMP
1027 /*
1028 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1029 * We must ensure this doesn't happen until the switch is completely
1030 * finished.
1031 */
1032 smp_wmb();
1033 prev->on_cpu = 0;
1034#endif
029632fb 1035 local_irq_enable();
029632fb
PZ
1036}
1037#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1038
b13095f0
LZ
1039/*
1040 * wake flags
1041 */
1042#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1043#define WF_FORK 0x02 /* child wakeup after fork */
1044#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1045
029632fb
PZ
1046/*
1047 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1048 * of tasks with abnormal "nice" values across CPUs the contribution that
1049 * each task makes to its run queue's load is weighted according to its
1050 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1051 * scaled version of the new time slice allocation that they receive on time
1052 * slice expiry etc.
1053 */
1054
1055#define WEIGHT_IDLEPRIO 3
1056#define WMULT_IDLEPRIO 1431655765
1057
1058/*
1059 * Nice levels are multiplicative, with a gentle 10% change for every
1060 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1061 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1062 * that remained on nice 0.
1063 *
1064 * The "10% effect" is relative and cumulative: from _any_ nice level,
1065 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1066 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1067 * If a task goes up by ~10% and another task goes down by ~10% then
1068 * the relative distance between them is ~25%.)
1069 */
1070static const int prio_to_weight[40] = {
1071 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1072 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1073 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1074 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1075 /* 0 */ 1024, 820, 655, 526, 423,
1076 /* 5 */ 335, 272, 215, 172, 137,
1077 /* 10 */ 110, 87, 70, 56, 45,
1078 /* 15 */ 36, 29, 23, 18, 15,
1079};
1080
1081/*
1082 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1083 *
1084 * In cases where the weight does not change often, we can use the
1085 * precalculated inverse to speed up arithmetics by turning divisions
1086 * into multiplications:
1087 */
1088static const u32 prio_to_wmult[40] = {
1089 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1090 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1091 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1092 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1093 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1094 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1095 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1096 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1097};
1098
c82ba9fa
LZ
1099#define ENQUEUE_WAKEUP 1
1100#define ENQUEUE_HEAD 2
1101#ifdef CONFIG_SMP
1102#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1103#else
1104#define ENQUEUE_WAKING 0
1105#endif
aab03e05 1106#define ENQUEUE_REPLENISH 8
c82ba9fa
LZ
1107
1108#define DEQUEUE_SLEEP 1
1109
37e117c0
PZ
1110#define RETRY_TASK ((void *)-1UL)
1111
c82ba9fa
LZ
1112struct sched_class {
1113 const struct sched_class *next;
1114
1115 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1116 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1117 void (*yield_task) (struct rq *rq);
1118 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1119
1120 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1121
606dba2e
PZ
1122 /*
1123 * It is the responsibility of the pick_next_task() method that will
1124 * return the next task to call put_prev_task() on the @prev task or
1125 * something equivalent.
37e117c0
PZ
1126 *
1127 * May return RETRY_TASK when it finds a higher prio class has runnable
1128 * tasks.
606dba2e
PZ
1129 */
1130 struct task_struct * (*pick_next_task) (struct rq *rq,
1131 struct task_struct *prev);
c82ba9fa
LZ
1132 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1133
1134#ifdef CONFIG_SMP
ac66f547 1135 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
c82ba9fa
LZ
1136 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1137
c82ba9fa
LZ
1138 void (*post_schedule) (struct rq *this_rq);
1139 void (*task_waking) (struct task_struct *task);
1140 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1141
1142 void (*set_cpus_allowed)(struct task_struct *p,
1143 const struct cpumask *newmask);
1144
1145 void (*rq_online)(struct rq *rq);
1146 void (*rq_offline)(struct rq *rq);
1147#endif
1148
1149 void (*set_curr_task) (struct rq *rq);
1150 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1151 void (*task_fork) (struct task_struct *p);
e6c390f2 1152 void (*task_dead) (struct task_struct *p);
c82ba9fa
LZ
1153
1154 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1155 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1156 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1157 int oldprio);
1158
1159 unsigned int (*get_rr_interval) (struct rq *rq,
1160 struct task_struct *task);
1161
1162#ifdef CONFIG_FAIR_GROUP_SCHED
1163 void (*task_move_group) (struct task_struct *p, int on_rq);
1164#endif
1165};
029632fb 1166
3f1d2a31
PZ
1167static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1168{
1169 prev->sched_class->put_prev_task(rq, prev);
1170}
1171
029632fb
PZ
1172#define sched_class_highest (&stop_sched_class)
1173#define for_each_class(class) \
1174 for (class = sched_class_highest; class; class = class->next)
1175
1176extern const struct sched_class stop_sched_class;
aab03e05 1177extern const struct sched_class dl_sched_class;
029632fb
PZ
1178extern const struct sched_class rt_sched_class;
1179extern const struct sched_class fair_sched_class;
1180extern const struct sched_class idle_sched_class;
1181
1182
1183#ifdef CONFIG_SMP
1184
63b2ca30 1185extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1186
7caff66f 1187extern void trigger_load_balance(struct rq *rq);
029632fb 1188
642dbc39
VG
1189extern void idle_enter_fair(struct rq *this_rq);
1190extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1191
dc877341
PZ
1192#else
1193
1194static inline void idle_enter_fair(struct rq *rq) { }
1195static inline void idle_exit_fair(struct rq *rq) { }
1196
029632fb
PZ
1197#endif
1198
1199extern void sysrq_sched_debug_show(void);
1200extern void sched_init_granularity(void);
1201extern void update_max_interval(void);
1baca4ce
JL
1202
1203extern void init_sched_dl_class(void);
029632fb
PZ
1204extern void init_sched_rt_class(void);
1205extern void init_sched_fair_class(void);
332ac17e 1206extern void init_sched_dl_class(void);
029632fb 1207
8875125e 1208extern void resched_curr(struct rq *rq);
029632fb
PZ
1209extern void resched_cpu(int cpu);
1210
1211extern struct rt_bandwidth def_rt_bandwidth;
1212extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1213
332ac17e
DF
1214extern struct dl_bandwidth def_dl_bandwidth;
1215extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1216extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1217
332ac17e
DF
1218unsigned long to_ratio(u64 period, u64 runtime);
1219
556061b0 1220extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1221
a75cdaa9
AS
1222extern void init_task_runnable_average(struct task_struct *p);
1223
72465447 1224static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1225{
72465447
KT
1226 unsigned prev_nr = rq->nr_running;
1227
1228 rq->nr_running = prev_nr + count;
9f3660c2 1229
72465447 1230 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1231#ifdef CONFIG_SMP
1232 if (!rq->rd->overload)
1233 rq->rd->overload = true;
1234#endif
1235
1236#ifdef CONFIG_NO_HZ_FULL
9f3660c2 1237 if (tick_nohz_full_cpu(rq->cpu)) {
3882ec64
FW
1238 /*
1239 * Tick is needed if more than one task runs on a CPU.
1240 * Send the target an IPI to kick it out of nohz mode.
1241 *
1242 * We assume that IPI implies full memory barrier and the
1243 * new value of rq->nr_running is visible on reception
1244 * from the target.
1245 */
fd2ac4f4 1246 tick_nohz_full_kick_cpu(rq->cpu);
9f3660c2 1247 }
9f3660c2 1248#endif
4486edd1 1249 }
029632fb
PZ
1250}
1251
72465447 1252static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1253{
72465447 1254 rq->nr_running -= count;
029632fb
PZ
1255}
1256
265f22a9
FW
1257static inline void rq_last_tick_reset(struct rq *rq)
1258{
1259#ifdef CONFIG_NO_HZ_FULL
1260 rq->last_sched_tick = jiffies;
1261#endif
1262}
1263
029632fb
PZ
1264extern void update_rq_clock(struct rq *rq);
1265
1266extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1267extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1268
1269extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1270
1271extern const_debug unsigned int sysctl_sched_time_avg;
1272extern const_debug unsigned int sysctl_sched_nr_migrate;
1273extern const_debug unsigned int sysctl_sched_migration_cost;
1274
1275static inline u64 sched_avg_period(void)
1276{
1277 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1278}
1279
029632fb
PZ
1280#ifdef CONFIG_SCHED_HRTICK
1281
1282/*
1283 * Use hrtick when:
1284 * - enabled by features
1285 * - hrtimer is actually high res
1286 */
1287static inline int hrtick_enabled(struct rq *rq)
1288{
1289 if (!sched_feat(HRTICK))
1290 return 0;
1291 if (!cpu_active(cpu_of(rq)))
1292 return 0;
1293 return hrtimer_is_hres_active(&rq->hrtick_timer);
1294}
1295
1296void hrtick_start(struct rq *rq, u64 delay);
1297
b39e66ea
MG
1298#else
1299
1300static inline int hrtick_enabled(struct rq *rq)
1301{
1302 return 0;
1303}
1304
029632fb
PZ
1305#endif /* CONFIG_SCHED_HRTICK */
1306
1307#ifdef CONFIG_SMP
1308extern void sched_avg_update(struct rq *rq);
1309static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1310{
1311 rq->rt_avg += rt_delta;
1312 sched_avg_update(rq);
1313}
1314#else
1315static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1316static inline void sched_avg_update(struct rq *rq) { }
1317#endif
1318
1319extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1320
1321#ifdef CONFIG_SMP
1322#ifdef CONFIG_PREEMPT
1323
1324static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1325
1326/*
1327 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1328 * way at the expense of forcing extra atomic operations in all
1329 * invocations. This assures that the double_lock is acquired using the
1330 * same underlying policy as the spinlock_t on this architecture, which
1331 * reduces latency compared to the unfair variant below. However, it
1332 * also adds more overhead and therefore may reduce throughput.
1333 */
1334static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1335 __releases(this_rq->lock)
1336 __acquires(busiest->lock)
1337 __acquires(this_rq->lock)
1338{
1339 raw_spin_unlock(&this_rq->lock);
1340 double_rq_lock(this_rq, busiest);
1341
1342 return 1;
1343}
1344
1345#else
1346/*
1347 * Unfair double_lock_balance: Optimizes throughput at the expense of
1348 * latency by eliminating extra atomic operations when the locks are
1349 * already in proper order on entry. This favors lower cpu-ids and will
1350 * grant the double lock to lower cpus over higher ids under contention,
1351 * regardless of entry order into the function.
1352 */
1353static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1354 __releases(this_rq->lock)
1355 __acquires(busiest->lock)
1356 __acquires(this_rq->lock)
1357{
1358 int ret = 0;
1359
1360 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1361 if (busiest < this_rq) {
1362 raw_spin_unlock(&this_rq->lock);
1363 raw_spin_lock(&busiest->lock);
1364 raw_spin_lock_nested(&this_rq->lock,
1365 SINGLE_DEPTH_NESTING);
1366 ret = 1;
1367 } else
1368 raw_spin_lock_nested(&busiest->lock,
1369 SINGLE_DEPTH_NESTING);
1370 }
1371 return ret;
1372}
1373
1374#endif /* CONFIG_PREEMPT */
1375
1376/*
1377 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1378 */
1379static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1380{
1381 if (unlikely(!irqs_disabled())) {
1382 /* printk() doesn't work good under rq->lock */
1383 raw_spin_unlock(&this_rq->lock);
1384 BUG_ON(1);
1385 }
1386
1387 return _double_lock_balance(this_rq, busiest);
1388}
1389
1390static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1391 __releases(busiest->lock)
1392{
1393 raw_spin_unlock(&busiest->lock);
1394 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1395}
1396
74602315
PZ
1397static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1398{
1399 if (l1 > l2)
1400 swap(l1, l2);
1401
1402 spin_lock(l1);
1403 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1404}
1405
60e69eed
MG
1406static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1407{
1408 if (l1 > l2)
1409 swap(l1, l2);
1410
1411 spin_lock_irq(l1);
1412 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1413}
1414
74602315
PZ
1415static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1416{
1417 if (l1 > l2)
1418 swap(l1, l2);
1419
1420 raw_spin_lock(l1);
1421 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1422}
1423
029632fb
PZ
1424/*
1425 * double_rq_lock - safely lock two runqueues
1426 *
1427 * Note this does not disable interrupts like task_rq_lock,
1428 * you need to do so manually before calling.
1429 */
1430static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1431 __acquires(rq1->lock)
1432 __acquires(rq2->lock)
1433{
1434 BUG_ON(!irqs_disabled());
1435 if (rq1 == rq2) {
1436 raw_spin_lock(&rq1->lock);
1437 __acquire(rq2->lock); /* Fake it out ;) */
1438 } else {
1439 if (rq1 < rq2) {
1440 raw_spin_lock(&rq1->lock);
1441 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1442 } else {
1443 raw_spin_lock(&rq2->lock);
1444 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1445 }
1446 }
1447}
1448
1449/*
1450 * double_rq_unlock - safely unlock two runqueues
1451 *
1452 * Note this does not restore interrupts like task_rq_unlock,
1453 * you need to do so manually after calling.
1454 */
1455static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1456 __releases(rq1->lock)
1457 __releases(rq2->lock)
1458{
1459 raw_spin_unlock(&rq1->lock);
1460 if (rq1 != rq2)
1461 raw_spin_unlock(&rq2->lock);
1462 else
1463 __release(rq2->lock);
1464}
1465
1466#else /* CONFIG_SMP */
1467
1468/*
1469 * double_rq_lock - safely lock two runqueues
1470 *
1471 * Note this does not disable interrupts like task_rq_lock,
1472 * you need to do so manually before calling.
1473 */
1474static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1475 __acquires(rq1->lock)
1476 __acquires(rq2->lock)
1477{
1478 BUG_ON(!irqs_disabled());
1479 BUG_ON(rq1 != rq2);
1480 raw_spin_lock(&rq1->lock);
1481 __acquire(rq2->lock); /* Fake it out ;) */
1482}
1483
1484/*
1485 * double_rq_unlock - safely unlock two runqueues
1486 *
1487 * Note this does not restore interrupts like task_rq_unlock,
1488 * you need to do so manually after calling.
1489 */
1490static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1491 __releases(rq1->lock)
1492 __releases(rq2->lock)
1493{
1494 BUG_ON(rq1 != rq2);
1495 raw_spin_unlock(&rq1->lock);
1496 __release(rq2->lock);
1497}
1498
1499#endif
1500
1501extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1502extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1503extern void print_cfs_stats(struct seq_file *m, int cpu);
1504extern void print_rt_stats(struct seq_file *m, int cpu);
1505
1506extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1507extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
aab03e05 1508extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
029632fb 1509
1ee14e6c
BS
1510extern void cfs_bandwidth_usage_inc(void);
1511extern void cfs_bandwidth_usage_dec(void);
1c792db7 1512
3451d024 1513#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1514enum rq_nohz_flag_bits {
1515 NOHZ_TICK_STOPPED,
1516 NOHZ_BALANCE_KICK,
1517};
1518
1519#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1520#endif
73fbec60
FW
1521
1522#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1523
1524DECLARE_PER_CPU(u64, cpu_hardirq_time);
1525DECLARE_PER_CPU(u64, cpu_softirq_time);
1526
1527#ifndef CONFIG_64BIT
1528DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1529
1530static inline void irq_time_write_begin(void)
1531{
1532 __this_cpu_inc(irq_time_seq.sequence);
1533 smp_wmb();
1534}
1535
1536static inline void irq_time_write_end(void)
1537{
1538 smp_wmb();
1539 __this_cpu_inc(irq_time_seq.sequence);
1540}
1541
1542static inline u64 irq_time_read(int cpu)
1543{
1544 u64 irq_time;
1545 unsigned seq;
1546
1547 do {
1548 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1549 irq_time = per_cpu(cpu_softirq_time, cpu) +
1550 per_cpu(cpu_hardirq_time, cpu);
1551 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1552
1553 return irq_time;
1554}
1555#else /* CONFIG_64BIT */
1556static inline void irq_time_write_begin(void)
1557{
1558}
1559
1560static inline void irq_time_write_end(void)
1561{
1562}
1563
1564static inline u64 irq_time_read(int cpu)
1565{
1566 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1567}
1568#endif /* CONFIG_64BIT */
1569#endif /* CONFIG_IRQ_TIME_ACCOUNTING */