sched/idle: Drop !! while calculating 'broadcast'
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
029632fb
PZ
6#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
9f3660c2 9#include <linux/tick.h>
f809ca9a 10#include <linux/slab.h>
029632fb 11
391e43da 12#include "cpupri.h"
6bfd6d72 13#include "cpudeadline.h"
60fed789 14#include "cpuacct.h"
029632fb 15
45ceebf7
PG
16struct rq;
17
029632fb
PZ
18extern __read_mostly int scheduler_running;
19
45ceebf7
PG
20extern unsigned long calc_load_update;
21extern atomic_long_t calc_load_tasks;
22
23extern long calc_load_fold_active(struct rq *this_rq);
24extern void update_cpu_load_active(struct rq *this_rq);
25
029632fb
PZ
26/*
27 * Helpers for converting nanosecond timing to jiffy resolution
28 */
29#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
30
cc1f4b1f
LZ
31/*
32 * Increase resolution of nice-level calculations for 64-bit architectures.
33 * The extra resolution improves shares distribution and load balancing of
34 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
35 * hierarchies, especially on larger systems. This is not a user-visible change
36 * and does not change the user-interface for setting shares/weights.
37 *
38 * We increase resolution only if we have enough bits to allow this increased
39 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
40 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
41 * increased costs.
42 */
43#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
44# define SCHED_LOAD_RESOLUTION 10
45# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
46# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
47#else
48# define SCHED_LOAD_RESOLUTION 0
49# define scale_load(w) (w)
50# define scale_load_down(w) (w)
51#endif
52
53#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
54#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
55
029632fb
PZ
56#define NICE_0_LOAD SCHED_LOAD_SCALE
57#define NICE_0_SHIFT SCHED_LOAD_SHIFT
58
332ac17e
DF
59/*
60 * Single value that decides SCHED_DEADLINE internal math precision.
61 * 10 -> just above 1us
62 * 9 -> just above 0.5us
63 */
64#define DL_SCALE (10)
65
029632fb
PZ
66/*
67 * These are the 'tuning knobs' of the scheduler:
029632fb 68 */
029632fb
PZ
69
70/*
71 * single value that denotes runtime == period, ie unlimited time.
72 */
73#define RUNTIME_INF ((u64)~0ULL)
74
d50dde5a
DF
75static inline int fair_policy(int policy)
76{
77 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
78}
79
029632fb
PZ
80static inline int rt_policy(int policy)
81{
d50dde5a 82 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
83}
84
aab03e05
DF
85static inline int dl_policy(int policy)
86{
87 return policy == SCHED_DEADLINE;
88}
89
029632fb
PZ
90static inline int task_has_rt_policy(struct task_struct *p)
91{
92 return rt_policy(p->policy);
93}
94
aab03e05
DF
95static inline int task_has_dl_policy(struct task_struct *p)
96{
97 return dl_policy(p->policy);
98}
99
332ac17e 100static inline bool dl_time_before(u64 a, u64 b)
2d3d891d
DF
101{
102 return (s64)(a - b) < 0;
103}
104
105/*
106 * Tells if entity @a should preempt entity @b.
107 */
332ac17e
DF
108static inline bool
109dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
110{
111 return dl_time_before(a->deadline, b->deadline);
112}
113
029632fb
PZ
114/*
115 * This is the priority-queue data structure of the RT scheduling class:
116 */
117struct rt_prio_array {
118 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
119 struct list_head queue[MAX_RT_PRIO];
120};
121
122struct rt_bandwidth {
123 /* nests inside the rq lock: */
124 raw_spinlock_t rt_runtime_lock;
125 ktime_t rt_period;
126 u64 rt_runtime;
127 struct hrtimer rt_period_timer;
128};
332ac17e
DF
129/*
130 * To keep the bandwidth of -deadline tasks and groups under control
131 * we need some place where:
132 * - store the maximum -deadline bandwidth of the system (the group);
133 * - cache the fraction of that bandwidth that is currently allocated.
134 *
135 * This is all done in the data structure below. It is similar to the
136 * one used for RT-throttling (rt_bandwidth), with the main difference
137 * that, since here we are only interested in admission control, we
138 * do not decrease any runtime while the group "executes", neither we
139 * need a timer to replenish it.
140 *
141 * With respect to SMP, the bandwidth is given on a per-CPU basis,
142 * meaning that:
143 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
144 * - dl_total_bw array contains, in the i-eth element, the currently
145 * allocated bandwidth on the i-eth CPU.
146 * Moreover, groups consume bandwidth on each CPU, while tasks only
147 * consume bandwidth on the CPU they're running on.
148 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
149 * that will be shown the next time the proc or cgroup controls will
150 * be red. It on its turn can be changed by writing on its own
151 * control.
152 */
153struct dl_bandwidth {
154 raw_spinlock_t dl_runtime_lock;
155 u64 dl_runtime;
156 u64 dl_period;
157};
158
159static inline int dl_bandwidth_enabled(void)
160{
1724813d 161 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
162}
163
164extern struct dl_bw *dl_bw_of(int i);
165
166struct dl_bw {
167 raw_spinlock_t lock;
168 u64 bw, total_bw;
169};
170
029632fb
PZ
171extern struct mutex sched_domains_mutex;
172
173#ifdef CONFIG_CGROUP_SCHED
174
175#include <linux/cgroup.h>
176
177struct cfs_rq;
178struct rt_rq;
179
35cf4e50 180extern struct list_head task_groups;
029632fb
PZ
181
182struct cfs_bandwidth {
183#ifdef CONFIG_CFS_BANDWIDTH
184 raw_spinlock_t lock;
185 ktime_t period;
186 u64 quota, runtime;
187 s64 hierarchal_quota;
188 u64 runtime_expires;
189
190 int idle, timer_active;
191 struct hrtimer period_timer, slack_timer;
192 struct list_head throttled_cfs_rq;
193
194 /* statistics */
195 int nr_periods, nr_throttled;
196 u64 throttled_time;
197#endif
198};
199
200/* task group related information */
201struct task_group {
202 struct cgroup_subsys_state css;
203
204#ifdef CONFIG_FAIR_GROUP_SCHED
205 /* schedulable entities of this group on each cpu */
206 struct sched_entity **se;
207 /* runqueue "owned" by this group on each cpu */
208 struct cfs_rq **cfs_rq;
209 unsigned long shares;
210
fa6bddeb 211#ifdef CONFIG_SMP
bf5b986e 212 atomic_long_t load_avg;
bb17f655 213 atomic_t runnable_avg;
029632fb 214#endif
fa6bddeb 215#endif
029632fb
PZ
216
217#ifdef CONFIG_RT_GROUP_SCHED
218 struct sched_rt_entity **rt_se;
219 struct rt_rq **rt_rq;
220
221 struct rt_bandwidth rt_bandwidth;
222#endif
223
224 struct rcu_head rcu;
225 struct list_head list;
226
227 struct task_group *parent;
228 struct list_head siblings;
229 struct list_head children;
230
231#ifdef CONFIG_SCHED_AUTOGROUP
232 struct autogroup *autogroup;
233#endif
234
235 struct cfs_bandwidth cfs_bandwidth;
236};
237
238#ifdef CONFIG_FAIR_GROUP_SCHED
239#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
240
241/*
242 * A weight of 0 or 1 can cause arithmetics problems.
243 * A weight of a cfs_rq is the sum of weights of which entities
244 * are queued on this cfs_rq, so a weight of a entity should not be
245 * too large, so as the shares value of a task group.
246 * (The default weight is 1024 - so there's no practical
247 * limitation from this.)
248 */
249#define MIN_SHARES (1UL << 1)
250#define MAX_SHARES (1UL << 18)
251#endif
252
029632fb
PZ
253typedef int (*tg_visitor)(struct task_group *, void *);
254
255extern int walk_tg_tree_from(struct task_group *from,
256 tg_visitor down, tg_visitor up, void *data);
257
258/*
259 * Iterate the full tree, calling @down when first entering a node and @up when
260 * leaving it for the final time.
261 *
262 * Caller must hold rcu_lock or sufficient equivalent.
263 */
264static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
265{
266 return walk_tg_tree_from(&root_task_group, down, up, data);
267}
268
269extern int tg_nop(struct task_group *tg, void *data);
270
271extern void free_fair_sched_group(struct task_group *tg);
272extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
273extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
274extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
275 struct sched_entity *se, int cpu,
276 struct sched_entity *parent);
277extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
278extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
279
280extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
09dc4ab0 281extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
029632fb
PZ
282extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
283
284extern void free_rt_sched_group(struct task_group *tg);
285extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
286extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
287 struct sched_rt_entity *rt_se, int cpu,
288 struct sched_rt_entity *parent);
289
25cc7da7
LZ
290extern struct task_group *sched_create_group(struct task_group *parent);
291extern void sched_online_group(struct task_group *tg,
292 struct task_group *parent);
293extern void sched_destroy_group(struct task_group *tg);
294extern void sched_offline_group(struct task_group *tg);
295
296extern void sched_move_task(struct task_struct *tsk);
297
298#ifdef CONFIG_FAIR_GROUP_SCHED
299extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
300#endif
301
029632fb
PZ
302#else /* CONFIG_CGROUP_SCHED */
303
304struct cfs_bandwidth { };
305
306#endif /* CONFIG_CGROUP_SCHED */
307
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
c82513e5 311 unsigned int nr_running, h_nr_running;
029632fb
PZ
312
313 u64 exec_clock;
314 u64 min_vruntime;
315#ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317#endif
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
321
029632fb
PZ
322 /*
323 * 'curr' points to currently running entity on this cfs_rq.
324 * It is set to NULL otherwise (i.e when none are currently running).
325 */
326 struct sched_entity *curr, *next, *last, *skip;
327
328#ifdef CONFIG_SCHED_DEBUG
329 unsigned int nr_spread_over;
330#endif
331
2dac754e
PT
332#ifdef CONFIG_SMP
333 /*
334 * CFS Load tracking
335 * Under CFS, load is tracked on a per-entity basis and aggregated up.
336 * This allows for the description of both thread and group usage (in
337 * the FAIR_GROUP_SCHED case).
338 */
72a4cf20 339 unsigned long runnable_load_avg, blocked_load_avg;
2509940f 340 atomic64_t decay_counter;
9ee474f5 341 u64 last_decay;
2509940f 342 atomic_long_t removed_load;
141965c7 343
c566e8e9 344#ifdef CONFIG_FAIR_GROUP_SCHED
141965c7 345 /* Required to track per-cpu representation of a task_group */
bb17f655 346 u32 tg_runnable_contrib;
bf5b986e 347 unsigned long tg_load_contrib;
82958366
PT
348
349 /*
350 * h_load = weight * f(tg)
351 *
352 * Where f(tg) is the recursive weight fraction assigned to
353 * this group.
354 */
355 unsigned long h_load;
68520796
VD
356 u64 last_h_load_update;
357 struct sched_entity *h_load_next;
358#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
359#endif /* CONFIG_SMP */
360
029632fb
PZ
361#ifdef CONFIG_FAIR_GROUP_SCHED
362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
363
364 /*
365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 * (like users, containers etc.)
368 *
369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 * list is used during load balance.
371 */
372 int on_list;
373 struct list_head leaf_cfs_rq_list;
374 struct task_group *tg; /* group that "owns" this runqueue */
375
029632fb
PZ
376#ifdef CONFIG_CFS_BANDWIDTH
377 int runtime_enabled;
378 u64 runtime_expires;
379 s64 runtime_remaining;
380
f1b17280
PT
381 u64 throttled_clock, throttled_clock_task;
382 u64 throttled_clock_task_time;
029632fb
PZ
383 int throttled, throttle_count;
384 struct list_head throttled_list;
385#endif /* CONFIG_CFS_BANDWIDTH */
386#endif /* CONFIG_FAIR_GROUP_SCHED */
387};
388
389static inline int rt_bandwidth_enabled(void)
390{
391 return sysctl_sched_rt_runtime >= 0;
392}
393
394/* Real-Time classes' related field in a runqueue: */
395struct rt_rq {
396 struct rt_prio_array active;
c82513e5 397 unsigned int rt_nr_running;
029632fb
PZ
398#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
399 struct {
400 int curr; /* highest queued rt task prio */
401#ifdef CONFIG_SMP
402 int next; /* next highest */
403#endif
404 } highest_prio;
405#endif
406#ifdef CONFIG_SMP
407 unsigned long rt_nr_migratory;
408 unsigned long rt_nr_total;
409 int overloaded;
410 struct plist_head pushable_tasks;
411#endif
f4ebcbc0
KT
412 int rt_queued;
413
029632fb
PZ
414 int rt_throttled;
415 u64 rt_time;
416 u64 rt_runtime;
417 /* Nests inside the rq lock: */
418 raw_spinlock_t rt_runtime_lock;
419
420#ifdef CONFIG_RT_GROUP_SCHED
421 unsigned long rt_nr_boosted;
422
423 struct rq *rq;
029632fb
PZ
424 struct task_group *tg;
425#endif
426};
427
aab03e05
DF
428/* Deadline class' related fields in a runqueue */
429struct dl_rq {
430 /* runqueue is an rbtree, ordered by deadline */
431 struct rb_root rb_root;
432 struct rb_node *rb_leftmost;
433
434 unsigned long dl_nr_running;
1baca4ce
JL
435
436#ifdef CONFIG_SMP
437 /*
438 * Deadline values of the currently executing and the
439 * earliest ready task on this rq. Caching these facilitates
440 * the decision wether or not a ready but not running task
441 * should migrate somewhere else.
442 */
443 struct {
444 u64 curr;
445 u64 next;
446 } earliest_dl;
447
448 unsigned long dl_nr_migratory;
1baca4ce
JL
449 int overloaded;
450
451 /*
452 * Tasks on this rq that can be pushed away. They are kept in
453 * an rb-tree, ordered by tasks' deadlines, with caching
454 * of the leftmost (earliest deadline) element.
455 */
456 struct rb_root pushable_dl_tasks_root;
457 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
458#else
459 struct dl_bw dl_bw;
1baca4ce 460#endif
aab03e05
DF
461};
462
029632fb
PZ
463#ifdef CONFIG_SMP
464
465/*
466 * We add the notion of a root-domain which will be used to define per-domain
467 * variables. Each exclusive cpuset essentially defines an island domain by
468 * fully partitioning the member cpus from any other cpuset. Whenever a new
469 * exclusive cpuset is created, we also create and attach a new root-domain
470 * object.
471 *
472 */
473struct root_domain {
474 atomic_t refcount;
475 atomic_t rto_count;
476 struct rcu_head rcu;
477 cpumask_var_t span;
478 cpumask_var_t online;
479
1baca4ce
JL
480 /*
481 * The bit corresponding to a CPU gets set here if such CPU has more
482 * than one runnable -deadline task (as it is below for RT tasks).
483 */
484 cpumask_var_t dlo_mask;
485 atomic_t dlo_count;
332ac17e 486 struct dl_bw dl_bw;
6bfd6d72 487 struct cpudl cpudl;
1baca4ce 488
029632fb
PZ
489 /*
490 * The "RT overload" flag: it gets set if a CPU has more than
491 * one runnable RT task.
492 */
493 cpumask_var_t rto_mask;
494 struct cpupri cpupri;
495};
496
497extern struct root_domain def_root_domain;
498
499#endif /* CONFIG_SMP */
500
501/*
502 * This is the main, per-CPU runqueue data structure.
503 *
504 * Locking rule: those places that want to lock multiple runqueues
505 * (such as the load balancing or the thread migration code), lock
506 * acquire operations must be ordered by ascending &runqueue.
507 */
508struct rq {
509 /* runqueue lock: */
510 raw_spinlock_t lock;
511
512 /*
513 * nr_running and cpu_load should be in the same cacheline because
514 * remote CPUs use both these fields when doing load calculation.
515 */
c82513e5 516 unsigned int nr_running;
0ec8aa00
PZ
517#ifdef CONFIG_NUMA_BALANCING
518 unsigned int nr_numa_running;
519 unsigned int nr_preferred_running;
520#endif
029632fb
PZ
521 #define CPU_LOAD_IDX_MAX 5
522 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
523 unsigned long last_load_update_tick;
3451d024 524#ifdef CONFIG_NO_HZ_COMMON
029632fb 525 u64 nohz_stamp;
1c792db7 526 unsigned long nohz_flags;
265f22a9
FW
527#endif
528#ifdef CONFIG_NO_HZ_FULL
529 unsigned long last_sched_tick;
029632fb
PZ
530#endif
531 int skip_clock_update;
532
533 /* capture load from *all* tasks on this cpu: */
534 struct load_weight load;
535 unsigned long nr_load_updates;
536 u64 nr_switches;
537
538 struct cfs_rq cfs;
539 struct rt_rq rt;
aab03e05 540 struct dl_rq dl;
029632fb
PZ
541
542#ifdef CONFIG_FAIR_GROUP_SCHED
543 /* list of leaf cfs_rq on this cpu: */
544 struct list_head leaf_cfs_rq_list;
f5f9739d
DE
545
546 struct sched_avg avg;
a35b6466
PZ
547#endif /* CONFIG_FAIR_GROUP_SCHED */
548
029632fb
PZ
549 /*
550 * This is part of a global counter where only the total sum
551 * over all CPUs matters. A task can increase this counter on
552 * one CPU and if it got migrated afterwards it may decrease
553 * it on another CPU. Always updated under the runqueue lock:
554 */
555 unsigned long nr_uninterruptible;
556
557 struct task_struct *curr, *idle, *stop;
558 unsigned long next_balance;
559 struct mm_struct *prev_mm;
560
561 u64 clock;
562 u64 clock_task;
563
564 atomic_t nr_iowait;
565
566#ifdef CONFIG_SMP
567 struct root_domain *rd;
568 struct sched_domain *sd;
569
ced549fa 570 unsigned long cpu_capacity;
029632fb
PZ
571
572 unsigned char idle_balance;
573 /* For active balancing */
574 int post_schedule;
575 int active_balance;
576 int push_cpu;
577 struct cpu_stop_work active_balance_work;
578 /* cpu of this runqueue: */
579 int cpu;
580 int online;
581
367456c7
PZ
582 struct list_head cfs_tasks;
583
029632fb
PZ
584 u64 rt_avg;
585 u64 age_stamp;
586 u64 idle_stamp;
587 u64 avg_idle;
9bd721c5
JL
588
589 /* This is used to determine avg_idle's max value */
590 u64 max_idle_balance_cost;
029632fb
PZ
591#endif
592
593#ifdef CONFIG_IRQ_TIME_ACCOUNTING
594 u64 prev_irq_time;
595#endif
596#ifdef CONFIG_PARAVIRT
597 u64 prev_steal_time;
598#endif
599#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
600 u64 prev_steal_time_rq;
601#endif
602
603 /* calc_load related fields */
604 unsigned long calc_load_update;
605 long calc_load_active;
606
607#ifdef CONFIG_SCHED_HRTICK
608#ifdef CONFIG_SMP
609 int hrtick_csd_pending;
610 struct call_single_data hrtick_csd;
611#endif
612 struct hrtimer hrtick_timer;
613#endif
614
615#ifdef CONFIG_SCHEDSTATS
616 /* latency stats */
617 struct sched_info rq_sched_info;
618 unsigned long long rq_cpu_time;
619 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
620
621 /* sys_sched_yield() stats */
622 unsigned int yld_count;
623
624 /* schedule() stats */
029632fb
PZ
625 unsigned int sched_count;
626 unsigned int sched_goidle;
627
628 /* try_to_wake_up() stats */
629 unsigned int ttwu_count;
630 unsigned int ttwu_local;
631#endif
632
633#ifdef CONFIG_SMP
634 struct llist_head wake_list;
635#endif
636};
637
638static inline int cpu_of(struct rq *rq)
639{
640#ifdef CONFIG_SMP
641 return rq->cpu;
642#else
643 return 0;
644#endif
645}
646
647DECLARE_PER_CPU(struct rq, runqueues);
648
518cd623
PZ
649#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
650#define this_rq() (&__get_cpu_var(runqueues))
651#define task_rq(p) cpu_rq(task_cpu(p))
652#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
653#define raw_rq() (&__raw_get_cpu_var(runqueues))
654
78becc27
FW
655static inline u64 rq_clock(struct rq *rq)
656{
657 return rq->clock;
658}
659
660static inline u64 rq_clock_task(struct rq *rq)
661{
662 return rq->clock_task;
663}
664
f809ca9a 665#ifdef CONFIG_NUMA_BALANCING
0ec8aa00 666extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 667extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 668extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
669#endif /* CONFIG_NUMA_BALANCING */
670
518cd623
PZ
671#ifdef CONFIG_SMP
672
e3baac47
PZ
673extern void sched_ttwu_pending(void);
674
029632fb
PZ
675#define rcu_dereference_check_sched_domain(p) \
676 rcu_dereference_check((p), \
677 lockdep_is_held(&sched_domains_mutex))
678
679/*
680 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
681 * See detach_destroy_domains: synchronize_sched for details.
682 *
683 * The domain tree of any CPU may only be accessed from within
684 * preempt-disabled sections.
685 */
686#define for_each_domain(cpu, __sd) \
518cd623
PZ
687 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
688 __sd; __sd = __sd->parent)
029632fb 689
77e81365
SS
690#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
691
518cd623
PZ
692/**
693 * highest_flag_domain - Return highest sched_domain containing flag.
694 * @cpu: The cpu whose highest level of sched domain is to
695 * be returned.
696 * @flag: The flag to check for the highest sched_domain
697 * for the given cpu.
698 *
699 * Returns the highest sched_domain of a cpu which contains the given flag.
700 */
701static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
702{
703 struct sched_domain *sd, *hsd = NULL;
704
705 for_each_domain(cpu, sd) {
706 if (!(sd->flags & flag))
707 break;
708 hsd = sd;
709 }
710
711 return hsd;
712}
713
fb13c7ee
MG
714static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
715{
716 struct sched_domain *sd;
717
718 for_each_domain(cpu, sd) {
719 if (sd->flags & flag)
720 break;
721 }
722
723 return sd;
724}
725
518cd623 726DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 727DECLARE_PER_CPU(int, sd_llc_size);
518cd623 728DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 729DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
730DECLARE_PER_CPU(struct sched_domain *, sd_busy);
731DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 732
63b2ca30 733struct sched_group_capacity {
5e6521ea
LZ
734 atomic_t ref;
735 /*
63b2ca30
NP
736 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
737 * for a single CPU.
5e6521ea 738 */
63b2ca30 739 unsigned int capacity, capacity_orig;
5e6521ea 740 unsigned long next_update;
63b2ca30 741 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
742 /*
743 * Number of busy cpus in this group.
744 */
745 atomic_t nr_busy_cpus;
746
747 unsigned long cpumask[0]; /* iteration mask */
748};
749
750struct sched_group {
751 struct sched_group *next; /* Must be a circular list */
752 atomic_t ref;
753
754 unsigned int group_weight;
63b2ca30 755 struct sched_group_capacity *sgc;
5e6521ea
LZ
756
757 /*
758 * The CPUs this group covers.
759 *
760 * NOTE: this field is variable length. (Allocated dynamically
761 * by attaching extra space to the end of the structure,
762 * depending on how many CPUs the kernel has booted up with)
763 */
764 unsigned long cpumask[0];
765};
766
767static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
768{
769 return to_cpumask(sg->cpumask);
770}
771
772/*
773 * cpumask masking which cpus in the group are allowed to iterate up the domain
774 * tree.
775 */
776static inline struct cpumask *sched_group_mask(struct sched_group *sg)
777{
63b2ca30 778 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
779}
780
781/**
782 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
783 * @group: The group whose first cpu is to be returned.
784 */
785static inline unsigned int group_first_cpu(struct sched_group *group)
786{
787 return cpumask_first(sched_group_cpus(group));
788}
789
c1174876
PZ
790extern int group_balance_cpu(struct sched_group *sg);
791
e3baac47
PZ
792#else
793
794static inline void sched_ttwu_pending(void) { }
795
518cd623 796#endif /* CONFIG_SMP */
029632fb 797
391e43da
PZ
798#include "stats.h"
799#include "auto_group.h"
029632fb
PZ
800
801#ifdef CONFIG_CGROUP_SCHED
802
803/*
804 * Return the group to which this tasks belongs.
805 *
8af01f56
TH
806 * We cannot use task_css() and friends because the cgroup subsystem
807 * changes that value before the cgroup_subsys::attach() method is called,
808 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
809 *
810 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
811 * core changes this before calling sched_move_task().
812 *
813 * Instead we use a 'copy' which is updated from sched_move_task() while
814 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
815 */
816static inline struct task_group *task_group(struct task_struct *p)
817{
8323f26c 818 return p->sched_task_group;
029632fb
PZ
819}
820
821/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
822static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
823{
824#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
825 struct task_group *tg = task_group(p);
826#endif
827
828#ifdef CONFIG_FAIR_GROUP_SCHED
829 p->se.cfs_rq = tg->cfs_rq[cpu];
830 p->se.parent = tg->se[cpu];
831#endif
832
833#ifdef CONFIG_RT_GROUP_SCHED
834 p->rt.rt_rq = tg->rt_rq[cpu];
835 p->rt.parent = tg->rt_se[cpu];
836#endif
837}
838
839#else /* CONFIG_CGROUP_SCHED */
840
841static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
842static inline struct task_group *task_group(struct task_struct *p)
843{
844 return NULL;
845}
846
847#endif /* CONFIG_CGROUP_SCHED */
848
849static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
850{
851 set_task_rq(p, cpu);
852#ifdef CONFIG_SMP
853 /*
854 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
855 * successfuly executed on another CPU. We must ensure that updates of
856 * per-task data have been completed by this moment.
857 */
858 smp_wmb();
859 task_thread_info(p)->cpu = cpu;
ac66f547 860 p->wake_cpu = cpu;
029632fb
PZ
861#endif
862}
863
864/*
865 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
866 */
867#ifdef CONFIG_SCHED_DEBUG
c5905afb 868# include <linux/static_key.h>
029632fb
PZ
869# define const_debug __read_mostly
870#else
871# define const_debug const
872#endif
873
874extern const_debug unsigned int sysctl_sched_features;
875
876#define SCHED_FEAT(name, enabled) \
877 __SCHED_FEAT_##name ,
878
879enum {
391e43da 880#include "features.h"
f8b6d1cc 881 __SCHED_FEAT_NR,
029632fb
PZ
882};
883
884#undef SCHED_FEAT
885
f8b6d1cc 886#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 887static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 888{
c5905afb 889 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
890}
891
c5905afb 892static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 893{
c5905afb 894 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
895}
896
897#define SCHED_FEAT(name, enabled) \
c5905afb 898static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
899{ \
900 return static_branch__##enabled(key); \
901}
902
903#include "features.h"
904
905#undef SCHED_FEAT
906
c5905afb 907extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
908#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
909#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 910#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 911#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 912
cbee9f88
PZ
913#ifdef CONFIG_NUMA_BALANCING
914#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
915#ifdef CONFIG_SCHED_DEBUG
916#define numabalancing_enabled sched_feat_numa(NUMA)
917#else
918extern bool numabalancing_enabled;
919#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
920#else
921#define sched_feat_numa(x) (0)
3105b86a
MG
922#define numabalancing_enabled (0)
923#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 924
029632fb
PZ
925static inline u64 global_rt_period(void)
926{
927 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
928}
929
930static inline u64 global_rt_runtime(void)
931{
932 if (sysctl_sched_rt_runtime < 0)
933 return RUNTIME_INF;
934
935 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
936}
937
029632fb
PZ
938static inline int task_current(struct rq *rq, struct task_struct *p)
939{
940 return rq->curr == p;
941}
942
943static inline int task_running(struct rq *rq, struct task_struct *p)
944{
945#ifdef CONFIG_SMP
946 return p->on_cpu;
947#else
948 return task_current(rq, p);
949#endif
950}
951
952
953#ifndef prepare_arch_switch
954# define prepare_arch_switch(next) do { } while (0)
955#endif
956#ifndef finish_arch_switch
957# define finish_arch_switch(prev) do { } while (0)
958#endif
01f23e16
CM
959#ifndef finish_arch_post_lock_switch
960# define finish_arch_post_lock_switch() do { } while (0)
961#endif
029632fb
PZ
962
963#ifndef __ARCH_WANT_UNLOCKED_CTXSW
964static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
965{
966#ifdef CONFIG_SMP
967 /*
968 * We can optimise this out completely for !SMP, because the
969 * SMP rebalancing from interrupt is the only thing that cares
970 * here.
971 */
972 next->on_cpu = 1;
973#endif
974}
975
976static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
977{
978#ifdef CONFIG_SMP
979 /*
980 * After ->on_cpu is cleared, the task can be moved to a different CPU.
981 * We must ensure this doesn't happen until the switch is completely
982 * finished.
983 */
984 smp_wmb();
985 prev->on_cpu = 0;
986#endif
987#ifdef CONFIG_DEBUG_SPINLOCK
988 /* this is a valid case when another task releases the spinlock */
989 rq->lock.owner = current;
990#endif
991 /*
992 * If we are tracking spinlock dependencies then we have to
993 * fix up the runqueue lock - which gets 'carried over' from
994 * prev into current:
995 */
996 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
997
998 raw_spin_unlock_irq(&rq->lock);
999}
1000
1001#else /* __ARCH_WANT_UNLOCKED_CTXSW */
1002static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1003{
1004#ifdef CONFIG_SMP
1005 /*
1006 * We can optimise this out completely for !SMP, because the
1007 * SMP rebalancing from interrupt is the only thing that cares
1008 * here.
1009 */
1010 next->on_cpu = 1;
1011#endif
029632fb 1012 raw_spin_unlock(&rq->lock);
029632fb
PZ
1013}
1014
1015static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1016{
1017#ifdef CONFIG_SMP
1018 /*
1019 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1020 * We must ensure this doesn't happen until the switch is completely
1021 * finished.
1022 */
1023 smp_wmb();
1024 prev->on_cpu = 0;
1025#endif
029632fb 1026 local_irq_enable();
029632fb
PZ
1027}
1028#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1029
b13095f0
LZ
1030/*
1031 * wake flags
1032 */
1033#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1034#define WF_FORK 0x02 /* child wakeup after fork */
1035#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1036
029632fb
PZ
1037/*
1038 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1039 * of tasks with abnormal "nice" values across CPUs the contribution that
1040 * each task makes to its run queue's load is weighted according to its
1041 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1042 * scaled version of the new time slice allocation that they receive on time
1043 * slice expiry etc.
1044 */
1045
1046#define WEIGHT_IDLEPRIO 3
1047#define WMULT_IDLEPRIO 1431655765
1048
1049/*
1050 * Nice levels are multiplicative, with a gentle 10% change for every
1051 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1052 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1053 * that remained on nice 0.
1054 *
1055 * The "10% effect" is relative and cumulative: from _any_ nice level,
1056 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1057 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1058 * If a task goes up by ~10% and another task goes down by ~10% then
1059 * the relative distance between them is ~25%.)
1060 */
1061static const int prio_to_weight[40] = {
1062 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1063 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1064 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1065 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1066 /* 0 */ 1024, 820, 655, 526, 423,
1067 /* 5 */ 335, 272, 215, 172, 137,
1068 /* 10 */ 110, 87, 70, 56, 45,
1069 /* 15 */ 36, 29, 23, 18, 15,
1070};
1071
1072/*
1073 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1074 *
1075 * In cases where the weight does not change often, we can use the
1076 * precalculated inverse to speed up arithmetics by turning divisions
1077 * into multiplications:
1078 */
1079static const u32 prio_to_wmult[40] = {
1080 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1081 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1082 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1083 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1084 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1085 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1086 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1087 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1088};
1089
c82ba9fa
LZ
1090#define ENQUEUE_WAKEUP 1
1091#define ENQUEUE_HEAD 2
1092#ifdef CONFIG_SMP
1093#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1094#else
1095#define ENQUEUE_WAKING 0
1096#endif
aab03e05 1097#define ENQUEUE_REPLENISH 8
c82ba9fa
LZ
1098
1099#define DEQUEUE_SLEEP 1
1100
37e117c0
PZ
1101#define RETRY_TASK ((void *)-1UL)
1102
c82ba9fa
LZ
1103struct sched_class {
1104 const struct sched_class *next;
1105
1106 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1107 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1108 void (*yield_task) (struct rq *rq);
1109 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1110
1111 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1112
606dba2e
PZ
1113 /*
1114 * It is the responsibility of the pick_next_task() method that will
1115 * return the next task to call put_prev_task() on the @prev task or
1116 * something equivalent.
37e117c0
PZ
1117 *
1118 * May return RETRY_TASK when it finds a higher prio class has runnable
1119 * tasks.
606dba2e
PZ
1120 */
1121 struct task_struct * (*pick_next_task) (struct rq *rq,
1122 struct task_struct *prev);
c82ba9fa
LZ
1123 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1124
1125#ifdef CONFIG_SMP
ac66f547 1126 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
c82ba9fa
LZ
1127 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1128
c82ba9fa
LZ
1129 void (*post_schedule) (struct rq *this_rq);
1130 void (*task_waking) (struct task_struct *task);
1131 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1132
1133 void (*set_cpus_allowed)(struct task_struct *p,
1134 const struct cpumask *newmask);
1135
1136 void (*rq_online)(struct rq *rq);
1137 void (*rq_offline)(struct rq *rq);
1138#endif
1139
1140 void (*set_curr_task) (struct rq *rq);
1141 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1142 void (*task_fork) (struct task_struct *p);
e6c390f2 1143 void (*task_dead) (struct task_struct *p);
c82ba9fa
LZ
1144
1145 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1146 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1147 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1148 int oldprio);
1149
1150 unsigned int (*get_rr_interval) (struct rq *rq,
1151 struct task_struct *task);
1152
1153#ifdef CONFIG_FAIR_GROUP_SCHED
1154 void (*task_move_group) (struct task_struct *p, int on_rq);
1155#endif
1156};
029632fb 1157
3f1d2a31
PZ
1158static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1159{
1160 prev->sched_class->put_prev_task(rq, prev);
1161}
1162
029632fb
PZ
1163#define sched_class_highest (&stop_sched_class)
1164#define for_each_class(class) \
1165 for (class = sched_class_highest; class; class = class->next)
1166
1167extern const struct sched_class stop_sched_class;
aab03e05 1168extern const struct sched_class dl_sched_class;
029632fb
PZ
1169extern const struct sched_class rt_sched_class;
1170extern const struct sched_class fair_sched_class;
1171extern const struct sched_class idle_sched_class;
1172
1173
1174#ifdef CONFIG_SMP
1175
63b2ca30 1176extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1177
7caff66f 1178extern void trigger_load_balance(struct rq *rq);
029632fb 1179
642dbc39
VG
1180extern void idle_enter_fair(struct rq *this_rq);
1181extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1182
dc877341
PZ
1183#else
1184
1185static inline void idle_enter_fair(struct rq *rq) { }
1186static inline void idle_exit_fair(struct rq *rq) { }
1187
029632fb
PZ
1188#endif
1189
1190extern void sysrq_sched_debug_show(void);
1191extern void sched_init_granularity(void);
1192extern void update_max_interval(void);
1baca4ce
JL
1193
1194extern void init_sched_dl_class(void);
029632fb
PZ
1195extern void init_sched_rt_class(void);
1196extern void init_sched_fair_class(void);
332ac17e 1197extern void init_sched_dl_class(void);
029632fb
PZ
1198
1199extern void resched_task(struct task_struct *p);
1200extern void resched_cpu(int cpu);
1201
1202extern struct rt_bandwidth def_rt_bandwidth;
1203extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1204
332ac17e
DF
1205extern struct dl_bandwidth def_dl_bandwidth;
1206extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1207extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1208
332ac17e
DF
1209unsigned long to_ratio(u64 period, u64 runtime);
1210
556061b0 1211extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1212
a75cdaa9
AS
1213extern void init_task_runnable_average(struct task_struct *p);
1214
72465447 1215static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1216{
72465447
KT
1217 unsigned prev_nr = rq->nr_running;
1218
1219 rq->nr_running = prev_nr + count;
9f3660c2
FW
1220
1221#ifdef CONFIG_NO_HZ_FULL
72465447 1222 if (prev_nr < 2 && rq->nr_running >= 2) {
9f3660c2 1223 if (tick_nohz_full_cpu(rq->cpu)) {
3882ec64
FW
1224 /*
1225 * Tick is needed if more than one task runs on a CPU.
1226 * Send the target an IPI to kick it out of nohz mode.
1227 *
1228 * We assume that IPI implies full memory barrier and the
1229 * new value of rq->nr_running is visible on reception
1230 * from the target.
1231 */
fd2ac4f4 1232 tick_nohz_full_kick_cpu(rq->cpu);
9f3660c2
FW
1233 }
1234 }
1235#endif
029632fb
PZ
1236}
1237
72465447 1238static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1239{
72465447 1240 rq->nr_running -= count;
029632fb
PZ
1241}
1242
265f22a9
FW
1243static inline void rq_last_tick_reset(struct rq *rq)
1244{
1245#ifdef CONFIG_NO_HZ_FULL
1246 rq->last_sched_tick = jiffies;
1247#endif
1248}
1249
029632fb
PZ
1250extern void update_rq_clock(struct rq *rq);
1251
1252extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1253extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1254
1255extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1256
1257extern const_debug unsigned int sysctl_sched_time_avg;
1258extern const_debug unsigned int sysctl_sched_nr_migrate;
1259extern const_debug unsigned int sysctl_sched_migration_cost;
1260
1261static inline u64 sched_avg_period(void)
1262{
1263 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1264}
1265
029632fb
PZ
1266#ifdef CONFIG_SCHED_HRTICK
1267
1268/*
1269 * Use hrtick when:
1270 * - enabled by features
1271 * - hrtimer is actually high res
1272 */
1273static inline int hrtick_enabled(struct rq *rq)
1274{
1275 if (!sched_feat(HRTICK))
1276 return 0;
1277 if (!cpu_active(cpu_of(rq)))
1278 return 0;
1279 return hrtimer_is_hres_active(&rq->hrtick_timer);
1280}
1281
1282void hrtick_start(struct rq *rq, u64 delay);
1283
b39e66ea
MG
1284#else
1285
1286static inline int hrtick_enabled(struct rq *rq)
1287{
1288 return 0;
1289}
1290
029632fb
PZ
1291#endif /* CONFIG_SCHED_HRTICK */
1292
1293#ifdef CONFIG_SMP
1294extern void sched_avg_update(struct rq *rq);
1295static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1296{
1297 rq->rt_avg += rt_delta;
1298 sched_avg_update(rq);
1299}
1300#else
1301static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1302static inline void sched_avg_update(struct rq *rq) { }
1303#endif
1304
1305extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1306
1307#ifdef CONFIG_SMP
1308#ifdef CONFIG_PREEMPT
1309
1310static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1311
1312/*
1313 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1314 * way at the expense of forcing extra atomic operations in all
1315 * invocations. This assures that the double_lock is acquired using the
1316 * same underlying policy as the spinlock_t on this architecture, which
1317 * reduces latency compared to the unfair variant below. However, it
1318 * also adds more overhead and therefore may reduce throughput.
1319 */
1320static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1321 __releases(this_rq->lock)
1322 __acquires(busiest->lock)
1323 __acquires(this_rq->lock)
1324{
1325 raw_spin_unlock(&this_rq->lock);
1326 double_rq_lock(this_rq, busiest);
1327
1328 return 1;
1329}
1330
1331#else
1332/*
1333 * Unfair double_lock_balance: Optimizes throughput at the expense of
1334 * latency by eliminating extra atomic operations when the locks are
1335 * already in proper order on entry. This favors lower cpu-ids and will
1336 * grant the double lock to lower cpus over higher ids under contention,
1337 * regardless of entry order into the function.
1338 */
1339static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1340 __releases(this_rq->lock)
1341 __acquires(busiest->lock)
1342 __acquires(this_rq->lock)
1343{
1344 int ret = 0;
1345
1346 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1347 if (busiest < this_rq) {
1348 raw_spin_unlock(&this_rq->lock);
1349 raw_spin_lock(&busiest->lock);
1350 raw_spin_lock_nested(&this_rq->lock,
1351 SINGLE_DEPTH_NESTING);
1352 ret = 1;
1353 } else
1354 raw_spin_lock_nested(&busiest->lock,
1355 SINGLE_DEPTH_NESTING);
1356 }
1357 return ret;
1358}
1359
1360#endif /* CONFIG_PREEMPT */
1361
1362/*
1363 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1364 */
1365static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1366{
1367 if (unlikely(!irqs_disabled())) {
1368 /* printk() doesn't work good under rq->lock */
1369 raw_spin_unlock(&this_rq->lock);
1370 BUG_ON(1);
1371 }
1372
1373 return _double_lock_balance(this_rq, busiest);
1374}
1375
1376static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1377 __releases(busiest->lock)
1378{
1379 raw_spin_unlock(&busiest->lock);
1380 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1381}
1382
74602315
PZ
1383static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1384{
1385 if (l1 > l2)
1386 swap(l1, l2);
1387
1388 spin_lock(l1);
1389 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1390}
1391
60e69eed
MG
1392static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1393{
1394 if (l1 > l2)
1395 swap(l1, l2);
1396
1397 spin_lock_irq(l1);
1398 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1399}
1400
74602315
PZ
1401static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1402{
1403 if (l1 > l2)
1404 swap(l1, l2);
1405
1406 raw_spin_lock(l1);
1407 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1408}
1409
029632fb
PZ
1410/*
1411 * double_rq_lock - safely lock two runqueues
1412 *
1413 * Note this does not disable interrupts like task_rq_lock,
1414 * you need to do so manually before calling.
1415 */
1416static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1417 __acquires(rq1->lock)
1418 __acquires(rq2->lock)
1419{
1420 BUG_ON(!irqs_disabled());
1421 if (rq1 == rq2) {
1422 raw_spin_lock(&rq1->lock);
1423 __acquire(rq2->lock); /* Fake it out ;) */
1424 } else {
1425 if (rq1 < rq2) {
1426 raw_spin_lock(&rq1->lock);
1427 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1428 } else {
1429 raw_spin_lock(&rq2->lock);
1430 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1431 }
1432 }
1433}
1434
1435/*
1436 * double_rq_unlock - safely unlock two runqueues
1437 *
1438 * Note this does not restore interrupts like task_rq_unlock,
1439 * you need to do so manually after calling.
1440 */
1441static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1442 __releases(rq1->lock)
1443 __releases(rq2->lock)
1444{
1445 raw_spin_unlock(&rq1->lock);
1446 if (rq1 != rq2)
1447 raw_spin_unlock(&rq2->lock);
1448 else
1449 __release(rq2->lock);
1450}
1451
1452#else /* CONFIG_SMP */
1453
1454/*
1455 * double_rq_lock - safely lock two runqueues
1456 *
1457 * Note this does not disable interrupts like task_rq_lock,
1458 * you need to do so manually before calling.
1459 */
1460static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1461 __acquires(rq1->lock)
1462 __acquires(rq2->lock)
1463{
1464 BUG_ON(!irqs_disabled());
1465 BUG_ON(rq1 != rq2);
1466 raw_spin_lock(&rq1->lock);
1467 __acquire(rq2->lock); /* Fake it out ;) */
1468}
1469
1470/*
1471 * double_rq_unlock - safely unlock two runqueues
1472 *
1473 * Note this does not restore interrupts like task_rq_unlock,
1474 * you need to do so manually after calling.
1475 */
1476static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1477 __releases(rq1->lock)
1478 __releases(rq2->lock)
1479{
1480 BUG_ON(rq1 != rq2);
1481 raw_spin_unlock(&rq1->lock);
1482 __release(rq2->lock);
1483}
1484
1485#endif
1486
1487extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1488extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1489extern void print_cfs_stats(struct seq_file *m, int cpu);
1490extern void print_rt_stats(struct seq_file *m, int cpu);
1491
1492extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1493extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
aab03e05 1494extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
029632fb 1495
1ee14e6c
BS
1496extern void cfs_bandwidth_usage_inc(void);
1497extern void cfs_bandwidth_usage_dec(void);
1c792db7 1498
3451d024 1499#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1500enum rq_nohz_flag_bits {
1501 NOHZ_TICK_STOPPED,
1502 NOHZ_BALANCE_KICK,
1503};
1504
1505#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1506#endif
73fbec60
FW
1507
1508#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1509
1510DECLARE_PER_CPU(u64, cpu_hardirq_time);
1511DECLARE_PER_CPU(u64, cpu_softirq_time);
1512
1513#ifndef CONFIG_64BIT
1514DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1515
1516static inline void irq_time_write_begin(void)
1517{
1518 __this_cpu_inc(irq_time_seq.sequence);
1519 smp_wmb();
1520}
1521
1522static inline void irq_time_write_end(void)
1523{
1524 smp_wmb();
1525 __this_cpu_inc(irq_time_seq.sequence);
1526}
1527
1528static inline u64 irq_time_read(int cpu)
1529{
1530 u64 irq_time;
1531 unsigned seq;
1532
1533 do {
1534 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1535 irq_time = per_cpu(cpu_softirq_time, cpu) +
1536 per_cpu(cpu_hardirq_time, cpu);
1537 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1538
1539 return irq_time;
1540}
1541#else /* CONFIG_64BIT */
1542static inline void irq_time_write_begin(void)
1543{
1544}
1545
1546static inline void irq_time_write_end(void)
1547{
1548}
1549
1550static inline u64 irq_time_read(int cpu)
1551{
1552 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1553}
1554#endif /* CONFIG_64BIT */
1555#endif /* CONFIG_IRQ_TIME_ACCOUNTING */