sched: Change cfs_rq load avg to unsigned long
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
029632fb
PZ
5#include <linux/mutex.h>
6#include <linux/spinlock.h>
7#include <linux/stop_machine.h>
9f3660c2 8#include <linux/tick.h>
029632fb 9
391e43da 10#include "cpupri.h"
60fed789 11#include "cpuacct.h"
029632fb 12
45ceebf7
PG
13struct rq;
14
029632fb
PZ
15extern __read_mostly int scheduler_running;
16
45ceebf7
PG
17extern unsigned long calc_load_update;
18extern atomic_long_t calc_load_tasks;
19
20extern long calc_load_fold_active(struct rq *this_rq);
21extern void update_cpu_load_active(struct rq *this_rq);
22
029632fb
PZ
23/*
24 * Convert user-nice values [ -20 ... 0 ... 19 ]
25 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
26 * and back.
27 */
28#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
29#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
30#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
31
32/*
33 * 'User priority' is the nice value converted to something we
34 * can work with better when scaling various scheduler parameters,
35 * it's a [ 0 ... 39 ] range.
36 */
37#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
38#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
39#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
40
41/*
42 * Helpers for converting nanosecond timing to jiffy resolution
43 */
44#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
45
cc1f4b1f
LZ
46/*
47 * Increase resolution of nice-level calculations for 64-bit architectures.
48 * The extra resolution improves shares distribution and load balancing of
49 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
50 * hierarchies, especially on larger systems. This is not a user-visible change
51 * and does not change the user-interface for setting shares/weights.
52 *
53 * We increase resolution only if we have enough bits to allow this increased
54 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
55 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
56 * increased costs.
57 */
58#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
59# define SCHED_LOAD_RESOLUTION 10
60# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
61# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
62#else
63# define SCHED_LOAD_RESOLUTION 0
64# define scale_load(w) (w)
65# define scale_load_down(w) (w)
66#endif
67
68#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
69#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
70
029632fb
PZ
71#define NICE_0_LOAD SCHED_LOAD_SCALE
72#define NICE_0_SHIFT SCHED_LOAD_SHIFT
73
74/*
75 * These are the 'tuning knobs' of the scheduler:
029632fb 76 */
029632fb
PZ
77
78/*
79 * single value that denotes runtime == period, ie unlimited time.
80 */
81#define RUNTIME_INF ((u64)~0ULL)
82
83static inline int rt_policy(int policy)
84{
85 if (policy == SCHED_FIFO || policy == SCHED_RR)
86 return 1;
87 return 0;
88}
89
90static inline int task_has_rt_policy(struct task_struct *p)
91{
92 return rt_policy(p->policy);
93}
94
95/*
96 * This is the priority-queue data structure of the RT scheduling class:
97 */
98struct rt_prio_array {
99 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
100 struct list_head queue[MAX_RT_PRIO];
101};
102
103struct rt_bandwidth {
104 /* nests inside the rq lock: */
105 raw_spinlock_t rt_runtime_lock;
106 ktime_t rt_period;
107 u64 rt_runtime;
108 struct hrtimer rt_period_timer;
109};
110
111extern struct mutex sched_domains_mutex;
112
113#ifdef CONFIG_CGROUP_SCHED
114
115#include <linux/cgroup.h>
116
117struct cfs_rq;
118struct rt_rq;
119
35cf4e50 120extern struct list_head task_groups;
029632fb
PZ
121
122struct cfs_bandwidth {
123#ifdef CONFIG_CFS_BANDWIDTH
124 raw_spinlock_t lock;
125 ktime_t period;
126 u64 quota, runtime;
127 s64 hierarchal_quota;
128 u64 runtime_expires;
129
130 int idle, timer_active;
131 struct hrtimer period_timer, slack_timer;
132 struct list_head throttled_cfs_rq;
133
134 /* statistics */
135 int nr_periods, nr_throttled;
136 u64 throttled_time;
137#endif
138};
139
140/* task group related information */
141struct task_group {
142 struct cgroup_subsys_state css;
143
144#ifdef CONFIG_FAIR_GROUP_SCHED
145 /* schedulable entities of this group on each cpu */
146 struct sched_entity **se;
147 /* runqueue "owned" by this group on each cpu */
148 struct cfs_rq **cfs_rq;
149 unsigned long shares;
150
151 atomic_t load_weight;
fa6bddeb 152#ifdef CONFIG_SMP
c566e8e9 153 atomic64_t load_avg;
bb17f655 154 atomic_t runnable_avg;
029632fb 155#endif
fa6bddeb 156#endif
029632fb
PZ
157
158#ifdef CONFIG_RT_GROUP_SCHED
159 struct sched_rt_entity **rt_se;
160 struct rt_rq **rt_rq;
161
162 struct rt_bandwidth rt_bandwidth;
163#endif
164
165 struct rcu_head rcu;
166 struct list_head list;
167
168 struct task_group *parent;
169 struct list_head siblings;
170 struct list_head children;
171
172#ifdef CONFIG_SCHED_AUTOGROUP
173 struct autogroup *autogroup;
174#endif
175
176 struct cfs_bandwidth cfs_bandwidth;
177};
178
179#ifdef CONFIG_FAIR_GROUP_SCHED
180#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
181
182/*
183 * A weight of 0 or 1 can cause arithmetics problems.
184 * A weight of a cfs_rq is the sum of weights of which entities
185 * are queued on this cfs_rq, so a weight of a entity should not be
186 * too large, so as the shares value of a task group.
187 * (The default weight is 1024 - so there's no practical
188 * limitation from this.)
189 */
190#define MIN_SHARES (1UL << 1)
191#define MAX_SHARES (1UL << 18)
192#endif
193
029632fb
PZ
194typedef int (*tg_visitor)(struct task_group *, void *);
195
196extern int walk_tg_tree_from(struct task_group *from,
197 tg_visitor down, tg_visitor up, void *data);
198
199/*
200 * Iterate the full tree, calling @down when first entering a node and @up when
201 * leaving it for the final time.
202 *
203 * Caller must hold rcu_lock or sufficient equivalent.
204 */
205static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
206{
207 return walk_tg_tree_from(&root_task_group, down, up, data);
208}
209
210extern int tg_nop(struct task_group *tg, void *data);
211
212extern void free_fair_sched_group(struct task_group *tg);
213extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
214extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
215extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
216 struct sched_entity *se, int cpu,
217 struct sched_entity *parent);
218extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
219extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
220
221extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
222extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
223extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
224
225extern void free_rt_sched_group(struct task_group *tg);
226extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
227extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
228 struct sched_rt_entity *rt_se, int cpu,
229 struct sched_rt_entity *parent);
230
25cc7da7
LZ
231extern struct task_group *sched_create_group(struct task_group *parent);
232extern void sched_online_group(struct task_group *tg,
233 struct task_group *parent);
234extern void sched_destroy_group(struct task_group *tg);
235extern void sched_offline_group(struct task_group *tg);
236
237extern void sched_move_task(struct task_struct *tsk);
238
239#ifdef CONFIG_FAIR_GROUP_SCHED
240extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
241#endif
242
029632fb
PZ
243#else /* CONFIG_CGROUP_SCHED */
244
245struct cfs_bandwidth { };
246
247#endif /* CONFIG_CGROUP_SCHED */
248
249/* CFS-related fields in a runqueue */
250struct cfs_rq {
251 struct load_weight load;
c82513e5 252 unsigned int nr_running, h_nr_running;
029632fb
PZ
253
254 u64 exec_clock;
255 u64 min_vruntime;
256#ifndef CONFIG_64BIT
257 u64 min_vruntime_copy;
258#endif
259
260 struct rb_root tasks_timeline;
261 struct rb_node *rb_leftmost;
262
029632fb
PZ
263 /*
264 * 'curr' points to currently running entity on this cfs_rq.
265 * It is set to NULL otherwise (i.e when none are currently running).
266 */
267 struct sched_entity *curr, *next, *last, *skip;
268
269#ifdef CONFIG_SCHED_DEBUG
270 unsigned int nr_spread_over;
271#endif
272
2dac754e
PT
273#ifdef CONFIG_SMP
274 /*
275 * CFS Load tracking
276 * Under CFS, load is tracked on a per-entity basis and aggregated up.
277 * This allows for the description of both thread and group usage (in
278 * the FAIR_GROUP_SCHED case).
279 */
72a4cf20 280 unsigned long runnable_load_avg, blocked_load_avg;
aff3e498 281 atomic64_t decay_counter, removed_load;
9ee474f5 282 u64 last_decay;
141965c7 283
c566e8e9 284#ifdef CONFIG_FAIR_GROUP_SCHED
141965c7 285 /* Required to track per-cpu representation of a task_group */
bb17f655 286 u32 tg_runnable_contrib;
c566e8e9 287 u64 tg_load_contrib;
82958366
PT
288#endif /* CONFIG_FAIR_GROUP_SCHED */
289
290 /*
291 * h_load = weight * f(tg)
292 *
293 * Where f(tg) is the recursive weight fraction assigned to
294 * this group.
295 */
296 unsigned long h_load;
297#endif /* CONFIG_SMP */
298
029632fb
PZ
299#ifdef CONFIG_FAIR_GROUP_SCHED
300 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
301
302 /*
303 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
304 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
305 * (like users, containers etc.)
306 *
307 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
308 * list is used during load balance.
309 */
310 int on_list;
311 struct list_head leaf_cfs_rq_list;
312 struct task_group *tg; /* group that "owns" this runqueue */
313
029632fb
PZ
314#ifdef CONFIG_CFS_BANDWIDTH
315 int runtime_enabled;
316 u64 runtime_expires;
317 s64 runtime_remaining;
318
f1b17280
PT
319 u64 throttled_clock, throttled_clock_task;
320 u64 throttled_clock_task_time;
029632fb
PZ
321 int throttled, throttle_count;
322 struct list_head throttled_list;
323#endif /* CONFIG_CFS_BANDWIDTH */
324#endif /* CONFIG_FAIR_GROUP_SCHED */
325};
326
327static inline int rt_bandwidth_enabled(void)
328{
329 return sysctl_sched_rt_runtime >= 0;
330}
331
332/* Real-Time classes' related field in a runqueue: */
333struct rt_rq {
334 struct rt_prio_array active;
c82513e5 335 unsigned int rt_nr_running;
029632fb
PZ
336#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
337 struct {
338 int curr; /* highest queued rt task prio */
339#ifdef CONFIG_SMP
340 int next; /* next highest */
341#endif
342 } highest_prio;
343#endif
344#ifdef CONFIG_SMP
345 unsigned long rt_nr_migratory;
346 unsigned long rt_nr_total;
347 int overloaded;
348 struct plist_head pushable_tasks;
349#endif
350 int rt_throttled;
351 u64 rt_time;
352 u64 rt_runtime;
353 /* Nests inside the rq lock: */
354 raw_spinlock_t rt_runtime_lock;
355
356#ifdef CONFIG_RT_GROUP_SCHED
357 unsigned long rt_nr_boosted;
358
359 struct rq *rq;
029632fb
PZ
360 struct task_group *tg;
361#endif
362};
363
364#ifdef CONFIG_SMP
365
366/*
367 * We add the notion of a root-domain which will be used to define per-domain
368 * variables. Each exclusive cpuset essentially defines an island domain by
369 * fully partitioning the member cpus from any other cpuset. Whenever a new
370 * exclusive cpuset is created, we also create and attach a new root-domain
371 * object.
372 *
373 */
374struct root_domain {
375 atomic_t refcount;
376 atomic_t rto_count;
377 struct rcu_head rcu;
378 cpumask_var_t span;
379 cpumask_var_t online;
380
381 /*
382 * The "RT overload" flag: it gets set if a CPU has more than
383 * one runnable RT task.
384 */
385 cpumask_var_t rto_mask;
386 struct cpupri cpupri;
387};
388
389extern struct root_domain def_root_domain;
390
391#endif /* CONFIG_SMP */
392
393/*
394 * This is the main, per-CPU runqueue data structure.
395 *
396 * Locking rule: those places that want to lock multiple runqueues
397 * (such as the load balancing or the thread migration code), lock
398 * acquire operations must be ordered by ascending &runqueue.
399 */
400struct rq {
401 /* runqueue lock: */
402 raw_spinlock_t lock;
403
404 /*
405 * nr_running and cpu_load should be in the same cacheline because
406 * remote CPUs use both these fields when doing load calculation.
407 */
c82513e5 408 unsigned int nr_running;
029632fb
PZ
409 #define CPU_LOAD_IDX_MAX 5
410 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
411 unsigned long last_load_update_tick;
3451d024 412#ifdef CONFIG_NO_HZ_COMMON
029632fb 413 u64 nohz_stamp;
1c792db7 414 unsigned long nohz_flags;
265f22a9
FW
415#endif
416#ifdef CONFIG_NO_HZ_FULL
417 unsigned long last_sched_tick;
029632fb
PZ
418#endif
419 int skip_clock_update;
420
421 /* capture load from *all* tasks on this cpu: */
422 struct load_weight load;
423 unsigned long nr_load_updates;
424 u64 nr_switches;
425
426 struct cfs_rq cfs;
427 struct rt_rq rt;
428
429#ifdef CONFIG_FAIR_GROUP_SCHED
430 /* list of leaf cfs_rq on this cpu: */
431 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
432#ifdef CONFIG_SMP
433 unsigned long h_load_throttle;
434#endif /* CONFIG_SMP */
435#endif /* CONFIG_FAIR_GROUP_SCHED */
436
029632fb
PZ
437#ifdef CONFIG_RT_GROUP_SCHED
438 struct list_head leaf_rt_rq_list;
439#endif
440
441 /*
442 * This is part of a global counter where only the total sum
443 * over all CPUs matters. A task can increase this counter on
444 * one CPU and if it got migrated afterwards it may decrease
445 * it on another CPU. Always updated under the runqueue lock:
446 */
447 unsigned long nr_uninterruptible;
448
449 struct task_struct *curr, *idle, *stop;
450 unsigned long next_balance;
451 struct mm_struct *prev_mm;
452
453 u64 clock;
454 u64 clock_task;
455
456 atomic_t nr_iowait;
457
458#ifdef CONFIG_SMP
459 struct root_domain *rd;
460 struct sched_domain *sd;
461
462 unsigned long cpu_power;
463
464 unsigned char idle_balance;
465 /* For active balancing */
466 int post_schedule;
467 int active_balance;
468 int push_cpu;
469 struct cpu_stop_work active_balance_work;
470 /* cpu of this runqueue: */
471 int cpu;
472 int online;
473
367456c7
PZ
474 struct list_head cfs_tasks;
475
029632fb
PZ
476 u64 rt_avg;
477 u64 age_stamp;
478 u64 idle_stamp;
479 u64 avg_idle;
480#endif
481
482#ifdef CONFIG_IRQ_TIME_ACCOUNTING
483 u64 prev_irq_time;
484#endif
485#ifdef CONFIG_PARAVIRT
486 u64 prev_steal_time;
487#endif
488#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
489 u64 prev_steal_time_rq;
490#endif
491
492 /* calc_load related fields */
493 unsigned long calc_load_update;
494 long calc_load_active;
495
496#ifdef CONFIG_SCHED_HRTICK
497#ifdef CONFIG_SMP
498 int hrtick_csd_pending;
499 struct call_single_data hrtick_csd;
500#endif
501 struct hrtimer hrtick_timer;
502#endif
503
504#ifdef CONFIG_SCHEDSTATS
505 /* latency stats */
506 struct sched_info rq_sched_info;
507 unsigned long long rq_cpu_time;
508 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
509
510 /* sys_sched_yield() stats */
511 unsigned int yld_count;
512
513 /* schedule() stats */
029632fb
PZ
514 unsigned int sched_count;
515 unsigned int sched_goidle;
516
517 /* try_to_wake_up() stats */
518 unsigned int ttwu_count;
519 unsigned int ttwu_local;
520#endif
521
522#ifdef CONFIG_SMP
523 struct llist_head wake_list;
524#endif
18bf2805
BS
525
526 struct sched_avg avg;
029632fb
PZ
527};
528
529static inline int cpu_of(struct rq *rq)
530{
531#ifdef CONFIG_SMP
532 return rq->cpu;
533#else
534 return 0;
535#endif
536}
537
538DECLARE_PER_CPU(struct rq, runqueues);
539
518cd623
PZ
540#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
541#define this_rq() (&__get_cpu_var(runqueues))
542#define task_rq(p) cpu_rq(task_cpu(p))
543#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
544#define raw_rq() (&__raw_get_cpu_var(runqueues))
545
78becc27
FW
546static inline u64 rq_clock(struct rq *rq)
547{
548 return rq->clock;
549}
550
551static inline u64 rq_clock_task(struct rq *rq)
552{
553 return rq->clock_task;
554}
555
518cd623
PZ
556#ifdef CONFIG_SMP
557
029632fb
PZ
558#define rcu_dereference_check_sched_domain(p) \
559 rcu_dereference_check((p), \
560 lockdep_is_held(&sched_domains_mutex))
561
562/*
563 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
564 * See detach_destroy_domains: synchronize_sched for details.
565 *
566 * The domain tree of any CPU may only be accessed from within
567 * preempt-disabled sections.
568 */
569#define for_each_domain(cpu, __sd) \
518cd623
PZ
570 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
571 __sd; __sd = __sd->parent)
029632fb 572
77e81365
SS
573#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
574
518cd623
PZ
575/**
576 * highest_flag_domain - Return highest sched_domain containing flag.
577 * @cpu: The cpu whose highest level of sched domain is to
578 * be returned.
579 * @flag: The flag to check for the highest sched_domain
580 * for the given cpu.
581 *
582 * Returns the highest sched_domain of a cpu which contains the given flag.
583 */
584static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
585{
586 struct sched_domain *sd, *hsd = NULL;
587
588 for_each_domain(cpu, sd) {
589 if (!(sd->flags & flag))
590 break;
591 hsd = sd;
592 }
593
594 return hsd;
595}
596
597DECLARE_PER_CPU(struct sched_domain *, sd_llc);
598DECLARE_PER_CPU(int, sd_llc_id);
599
5e6521ea
LZ
600struct sched_group_power {
601 atomic_t ref;
602 /*
603 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
604 * single CPU.
605 */
606 unsigned int power, power_orig;
607 unsigned long next_update;
608 /*
609 * Number of busy cpus in this group.
610 */
611 atomic_t nr_busy_cpus;
612
613 unsigned long cpumask[0]; /* iteration mask */
614};
615
616struct sched_group {
617 struct sched_group *next; /* Must be a circular list */
618 atomic_t ref;
619
620 unsigned int group_weight;
621 struct sched_group_power *sgp;
622
623 /*
624 * The CPUs this group covers.
625 *
626 * NOTE: this field is variable length. (Allocated dynamically
627 * by attaching extra space to the end of the structure,
628 * depending on how many CPUs the kernel has booted up with)
629 */
630 unsigned long cpumask[0];
631};
632
633static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
634{
635 return to_cpumask(sg->cpumask);
636}
637
638/*
639 * cpumask masking which cpus in the group are allowed to iterate up the domain
640 * tree.
641 */
642static inline struct cpumask *sched_group_mask(struct sched_group *sg)
643{
644 return to_cpumask(sg->sgp->cpumask);
645}
646
647/**
648 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
649 * @group: The group whose first cpu is to be returned.
650 */
651static inline unsigned int group_first_cpu(struct sched_group *group)
652{
653 return cpumask_first(sched_group_cpus(group));
654}
655
c1174876
PZ
656extern int group_balance_cpu(struct sched_group *sg);
657
518cd623 658#endif /* CONFIG_SMP */
029632fb 659
391e43da
PZ
660#include "stats.h"
661#include "auto_group.h"
029632fb
PZ
662
663#ifdef CONFIG_CGROUP_SCHED
664
665/*
666 * Return the group to which this tasks belongs.
667 *
8323f26c
PZ
668 * We cannot use task_subsys_state() and friends because the cgroup
669 * subsystem changes that value before the cgroup_subsys::attach() method
670 * is called, therefore we cannot pin it and might observe the wrong value.
671 *
672 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
673 * core changes this before calling sched_move_task().
674 *
675 * Instead we use a 'copy' which is updated from sched_move_task() while
676 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
677 */
678static inline struct task_group *task_group(struct task_struct *p)
679{
8323f26c 680 return p->sched_task_group;
029632fb
PZ
681}
682
683/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
684static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
685{
686#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
687 struct task_group *tg = task_group(p);
688#endif
689
690#ifdef CONFIG_FAIR_GROUP_SCHED
691 p->se.cfs_rq = tg->cfs_rq[cpu];
692 p->se.parent = tg->se[cpu];
693#endif
694
695#ifdef CONFIG_RT_GROUP_SCHED
696 p->rt.rt_rq = tg->rt_rq[cpu];
697 p->rt.parent = tg->rt_se[cpu];
698#endif
699}
700
701#else /* CONFIG_CGROUP_SCHED */
702
703static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
704static inline struct task_group *task_group(struct task_struct *p)
705{
706 return NULL;
707}
708
709#endif /* CONFIG_CGROUP_SCHED */
710
711static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
712{
713 set_task_rq(p, cpu);
714#ifdef CONFIG_SMP
715 /*
716 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
717 * successfuly executed on another CPU. We must ensure that updates of
718 * per-task data have been completed by this moment.
719 */
720 smp_wmb();
721 task_thread_info(p)->cpu = cpu;
722#endif
723}
724
725/*
726 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
727 */
728#ifdef CONFIG_SCHED_DEBUG
c5905afb 729# include <linux/static_key.h>
029632fb
PZ
730# define const_debug __read_mostly
731#else
732# define const_debug const
733#endif
734
735extern const_debug unsigned int sysctl_sched_features;
736
737#define SCHED_FEAT(name, enabled) \
738 __SCHED_FEAT_##name ,
739
740enum {
391e43da 741#include "features.h"
f8b6d1cc 742 __SCHED_FEAT_NR,
029632fb
PZ
743};
744
745#undef SCHED_FEAT
746
f8b6d1cc 747#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 748static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 749{
c5905afb 750 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
751}
752
c5905afb 753static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 754{
c5905afb 755 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
756}
757
758#define SCHED_FEAT(name, enabled) \
c5905afb 759static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
760{ \
761 return static_branch__##enabled(key); \
762}
763
764#include "features.h"
765
766#undef SCHED_FEAT
767
c5905afb 768extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
769#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
770#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 771#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 772#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 773
cbee9f88
PZ
774#ifdef CONFIG_NUMA_BALANCING
775#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
776#ifdef CONFIG_SCHED_DEBUG
777#define numabalancing_enabled sched_feat_numa(NUMA)
778#else
779extern bool numabalancing_enabled;
780#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
781#else
782#define sched_feat_numa(x) (0)
3105b86a
MG
783#define numabalancing_enabled (0)
784#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 785
029632fb
PZ
786static inline u64 global_rt_period(void)
787{
788 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
789}
790
791static inline u64 global_rt_runtime(void)
792{
793 if (sysctl_sched_rt_runtime < 0)
794 return RUNTIME_INF;
795
796 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
797}
798
799
800
801static inline int task_current(struct rq *rq, struct task_struct *p)
802{
803 return rq->curr == p;
804}
805
806static inline int task_running(struct rq *rq, struct task_struct *p)
807{
808#ifdef CONFIG_SMP
809 return p->on_cpu;
810#else
811 return task_current(rq, p);
812#endif
813}
814
815
816#ifndef prepare_arch_switch
817# define prepare_arch_switch(next) do { } while (0)
818#endif
819#ifndef finish_arch_switch
820# define finish_arch_switch(prev) do { } while (0)
821#endif
01f23e16
CM
822#ifndef finish_arch_post_lock_switch
823# define finish_arch_post_lock_switch() do { } while (0)
824#endif
029632fb
PZ
825
826#ifndef __ARCH_WANT_UNLOCKED_CTXSW
827static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
828{
829#ifdef CONFIG_SMP
830 /*
831 * We can optimise this out completely for !SMP, because the
832 * SMP rebalancing from interrupt is the only thing that cares
833 * here.
834 */
835 next->on_cpu = 1;
836#endif
837}
838
839static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
840{
841#ifdef CONFIG_SMP
842 /*
843 * After ->on_cpu is cleared, the task can be moved to a different CPU.
844 * We must ensure this doesn't happen until the switch is completely
845 * finished.
846 */
847 smp_wmb();
848 prev->on_cpu = 0;
849#endif
850#ifdef CONFIG_DEBUG_SPINLOCK
851 /* this is a valid case when another task releases the spinlock */
852 rq->lock.owner = current;
853#endif
854 /*
855 * If we are tracking spinlock dependencies then we have to
856 * fix up the runqueue lock - which gets 'carried over' from
857 * prev into current:
858 */
859 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
860
861 raw_spin_unlock_irq(&rq->lock);
862}
863
864#else /* __ARCH_WANT_UNLOCKED_CTXSW */
865static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
866{
867#ifdef CONFIG_SMP
868 /*
869 * We can optimise this out completely for !SMP, because the
870 * SMP rebalancing from interrupt is the only thing that cares
871 * here.
872 */
873 next->on_cpu = 1;
874#endif
029632fb 875 raw_spin_unlock(&rq->lock);
029632fb
PZ
876}
877
878static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
879{
880#ifdef CONFIG_SMP
881 /*
882 * After ->on_cpu is cleared, the task can be moved to a different CPU.
883 * We must ensure this doesn't happen until the switch is completely
884 * finished.
885 */
886 smp_wmb();
887 prev->on_cpu = 0;
888#endif
029632fb 889 local_irq_enable();
029632fb
PZ
890}
891#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
892
b13095f0
LZ
893/*
894 * wake flags
895 */
896#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
897#define WF_FORK 0x02 /* child wakeup after fork */
898#define WF_MIGRATED 0x4 /* internal use, task got migrated */
899
029632fb
PZ
900/*
901 * To aid in avoiding the subversion of "niceness" due to uneven distribution
902 * of tasks with abnormal "nice" values across CPUs the contribution that
903 * each task makes to its run queue's load is weighted according to its
904 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
905 * scaled version of the new time slice allocation that they receive on time
906 * slice expiry etc.
907 */
908
909#define WEIGHT_IDLEPRIO 3
910#define WMULT_IDLEPRIO 1431655765
911
912/*
913 * Nice levels are multiplicative, with a gentle 10% change for every
914 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
915 * nice 1, it will get ~10% less CPU time than another CPU-bound task
916 * that remained on nice 0.
917 *
918 * The "10% effect" is relative and cumulative: from _any_ nice level,
919 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
920 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
921 * If a task goes up by ~10% and another task goes down by ~10% then
922 * the relative distance between them is ~25%.)
923 */
924static const int prio_to_weight[40] = {
925 /* -20 */ 88761, 71755, 56483, 46273, 36291,
926 /* -15 */ 29154, 23254, 18705, 14949, 11916,
927 /* -10 */ 9548, 7620, 6100, 4904, 3906,
928 /* -5 */ 3121, 2501, 1991, 1586, 1277,
929 /* 0 */ 1024, 820, 655, 526, 423,
930 /* 5 */ 335, 272, 215, 172, 137,
931 /* 10 */ 110, 87, 70, 56, 45,
932 /* 15 */ 36, 29, 23, 18, 15,
933};
934
935/*
936 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
937 *
938 * In cases where the weight does not change often, we can use the
939 * precalculated inverse to speed up arithmetics by turning divisions
940 * into multiplications:
941 */
942static const u32 prio_to_wmult[40] = {
943 /* -20 */ 48388, 59856, 76040, 92818, 118348,
944 /* -15 */ 147320, 184698, 229616, 287308, 360437,
945 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
946 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
947 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
948 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
949 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
950 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
951};
952
c82ba9fa
LZ
953#define ENQUEUE_WAKEUP 1
954#define ENQUEUE_HEAD 2
955#ifdef CONFIG_SMP
956#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
957#else
958#define ENQUEUE_WAKING 0
959#endif
960
961#define DEQUEUE_SLEEP 1
962
963struct sched_class {
964 const struct sched_class *next;
965
966 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
967 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
968 void (*yield_task) (struct rq *rq);
969 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
970
971 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
972
973 struct task_struct * (*pick_next_task) (struct rq *rq);
974 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
975
976#ifdef CONFIG_SMP
977 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
978 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
979
980 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
981 void (*post_schedule) (struct rq *this_rq);
982 void (*task_waking) (struct task_struct *task);
983 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
984
985 void (*set_cpus_allowed)(struct task_struct *p,
986 const struct cpumask *newmask);
987
988 void (*rq_online)(struct rq *rq);
989 void (*rq_offline)(struct rq *rq);
990#endif
991
992 void (*set_curr_task) (struct rq *rq);
993 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
994 void (*task_fork) (struct task_struct *p);
995
996 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
997 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
998 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
999 int oldprio);
1000
1001 unsigned int (*get_rr_interval) (struct rq *rq,
1002 struct task_struct *task);
1003
1004#ifdef CONFIG_FAIR_GROUP_SCHED
1005 void (*task_move_group) (struct task_struct *p, int on_rq);
1006#endif
1007};
029632fb
PZ
1008
1009#define sched_class_highest (&stop_sched_class)
1010#define for_each_class(class) \
1011 for (class = sched_class_highest; class; class = class->next)
1012
1013extern const struct sched_class stop_sched_class;
1014extern const struct sched_class rt_sched_class;
1015extern const struct sched_class fair_sched_class;
1016extern const struct sched_class idle_sched_class;
1017
1018
1019#ifdef CONFIG_SMP
1020
b719203b
LZ
1021extern void update_group_power(struct sched_domain *sd, int cpu);
1022
029632fb
PZ
1023extern void trigger_load_balance(struct rq *rq, int cpu);
1024extern void idle_balance(int this_cpu, struct rq *this_rq);
1025
642dbc39
VG
1026extern void idle_enter_fair(struct rq *this_rq);
1027extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1028
029632fb
PZ
1029#else /* CONFIG_SMP */
1030
1031static inline void idle_balance(int cpu, struct rq *rq)
1032{
1033}
1034
1035#endif
1036
1037extern void sysrq_sched_debug_show(void);
1038extern void sched_init_granularity(void);
1039extern void update_max_interval(void);
029632fb
PZ
1040extern void init_sched_rt_class(void);
1041extern void init_sched_fair_class(void);
1042
1043extern void resched_task(struct task_struct *p);
1044extern void resched_cpu(int cpu);
1045
1046extern struct rt_bandwidth def_rt_bandwidth;
1047extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1048
556061b0 1049extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1050
a75cdaa9
AS
1051extern void init_task_runnable_average(struct task_struct *p);
1052
73fbec60
FW
1053#ifdef CONFIG_PARAVIRT
1054static inline u64 steal_ticks(u64 steal)
1055{
1056 if (unlikely(steal > NSEC_PER_SEC))
1057 return div_u64(steal, TICK_NSEC);
1058
1059 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1060}
1061#endif
1062
029632fb
PZ
1063static inline void inc_nr_running(struct rq *rq)
1064{
1065 rq->nr_running++;
9f3660c2
FW
1066
1067#ifdef CONFIG_NO_HZ_FULL
1068 if (rq->nr_running == 2) {
1069 if (tick_nohz_full_cpu(rq->cpu)) {
1070 /* Order rq->nr_running write against the IPI */
1071 smp_wmb();
1072 smp_send_reschedule(rq->cpu);
1073 }
1074 }
1075#endif
029632fb
PZ
1076}
1077
1078static inline void dec_nr_running(struct rq *rq)
1079{
1080 rq->nr_running--;
1081}
1082
265f22a9
FW
1083static inline void rq_last_tick_reset(struct rq *rq)
1084{
1085#ifdef CONFIG_NO_HZ_FULL
1086 rq->last_sched_tick = jiffies;
1087#endif
1088}
1089
029632fb
PZ
1090extern void update_rq_clock(struct rq *rq);
1091
1092extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1093extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1094
1095extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1096
1097extern const_debug unsigned int sysctl_sched_time_avg;
1098extern const_debug unsigned int sysctl_sched_nr_migrate;
1099extern const_debug unsigned int sysctl_sched_migration_cost;
1100
1101static inline u64 sched_avg_period(void)
1102{
1103 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1104}
1105
029632fb
PZ
1106#ifdef CONFIG_SCHED_HRTICK
1107
1108/*
1109 * Use hrtick when:
1110 * - enabled by features
1111 * - hrtimer is actually high res
1112 */
1113static inline int hrtick_enabled(struct rq *rq)
1114{
1115 if (!sched_feat(HRTICK))
1116 return 0;
1117 if (!cpu_active(cpu_of(rq)))
1118 return 0;
1119 return hrtimer_is_hres_active(&rq->hrtick_timer);
1120}
1121
1122void hrtick_start(struct rq *rq, u64 delay);
1123
b39e66ea
MG
1124#else
1125
1126static inline int hrtick_enabled(struct rq *rq)
1127{
1128 return 0;
1129}
1130
029632fb
PZ
1131#endif /* CONFIG_SCHED_HRTICK */
1132
1133#ifdef CONFIG_SMP
1134extern void sched_avg_update(struct rq *rq);
1135static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1136{
1137 rq->rt_avg += rt_delta;
1138 sched_avg_update(rq);
1139}
1140#else
1141static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1142static inline void sched_avg_update(struct rq *rq) { }
1143#endif
1144
1145extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1146
1147#ifdef CONFIG_SMP
1148#ifdef CONFIG_PREEMPT
1149
1150static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1151
1152/*
1153 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1154 * way at the expense of forcing extra atomic operations in all
1155 * invocations. This assures that the double_lock is acquired using the
1156 * same underlying policy as the spinlock_t on this architecture, which
1157 * reduces latency compared to the unfair variant below. However, it
1158 * also adds more overhead and therefore may reduce throughput.
1159 */
1160static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1161 __releases(this_rq->lock)
1162 __acquires(busiest->lock)
1163 __acquires(this_rq->lock)
1164{
1165 raw_spin_unlock(&this_rq->lock);
1166 double_rq_lock(this_rq, busiest);
1167
1168 return 1;
1169}
1170
1171#else
1172/*
1173 * Unfair double_lock_balance: Optimizes throughput at the expense of
1174 * latency by eliminating extra atomic operations when the locks are
1175 * already in proper order on entry. This favors lower cpu-ids and will
1176 * grant the double lock to lower cpus over higher ids under contention,
1177 * regardless of entry order into the function.
1178 */
1179static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1180 __releases(this_rq->lock)
1181 __acquires(busiest->lock)
1182 __acquires(this_rq->lock)
1183{
1184 int ret = 0;
1185
1186 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1187 if (busiest < this_rq) {
1188 raw_spin_unlock(&this_rq->lock);
1189 raw_spin_lock(&busiest->lock);
1190 raw_spin_lock_nested(&this_rq->lock,
1191 SINGLE_DEPTH_NESTING);
1192 ret = 1;
1193 } else
1194 raw_spin_lock_nested(&busiest->lock,
1195 SINGLE_DEPTH_NESTING);
1196 }
1197 return ret;
1198}
1199
1200#endif /* CONFIG_PREEMPT */
1201
1202/*
1203 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1204 */
1205static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1206{
1207 if (unlikely(!irqs_disabled())) {
1208 /* printk() doesn't work good under rq->lock */
1209 raw_spin_unlock(&this_rq->lock);
1210 BUG_ON(1);
1211 }
1212
1213 return _double_lock_balance(this_rq, busiest);
1214}
1215
1216static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1217 __releases(busiest->lock)
1218{
1219 raw_spin_unlock(&busiest->lock);
1220 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1221}
1222
1223/*
1224 * double_rq_lock - safely lock two runqueues
1225 *
1226 * Note this does not disable interrupts like task_rq_lock,
1227 * you need to do so manually before calling.
1228 */
1229static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1230 __acquires(rq1->lock)
1231 __acquires(rq2->lock)
1232{
1233 BUG_ON(!irqs_disabled());
1234 if (rq1 == rq2) {
1235 raw_spin_lock(&rq1->lock);
1236 __acquire(rq2->lock); /* Fake it out ;) */
1237 } else {
1238 if (rq1 < rq2) {
1239 raw_spin_lock(&rq1->lock);
1240 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1241 } else {
1242 raw_spin_lock(&rq2->lock);
1243 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1244 }
1245 }
1246}
1247
1248/*
1249 * double_rq_unlock - safely unlock two runqueues
1250 *
1251 * Note this does not restore interrupts like task_rq_unlock,
1252 * you need to do so manually after calling.
1253 */
1254static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1255 __releases(rq1->lock)
1256 __releases(rq2->lock)
1257{
1258 raw_spin_unlock(&rq1->lock);
1259 if (rq1 != rq2)
1260 raw_spin_unlock(&rq2->lock);
1261 else
1262 __release(rq2->lock);
1263}
1264
1265#else /* CONFIG_SMP */
1266
1267/*
1268 * double_rq_lock - safely lock two runqueues
1269 *
1270 * Note this does not disable interrupts like task_rq_lock,
1271 * you need to do so manually before calling.
1272 */
1273static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1274 __acquires(rq1->lock)
1275 __acquires(rq2->lock)
1276{
1277 BUG_ON(!irqs_disabled());
1278 BUG_ON(rq1 != rq2);
1279 raw_spin_lock(&rq1->lock);
1280 __acquire(rq2->lock); /* Fake it out ;) */
1281}
1282
1283/*
1284 * double_rq_unlock - safely unlock two runqueues
1285 *
1286 * Note this does not restore interrupts like task_rq_unlock,
1287 * you need to do so manually after calling.
1288 */
1289static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1290 __releases(rq1->lock)
1291 __releases(rq2->lock)
1292{
1293 BUG_ON(rq1 != rq2);
1294 raw_spin_unlock(&rq1->lock);
1295 __release(rq2->lock);
1296}
1297
1298#endif
1299
1300extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1301extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1302extern void print_cfs_stats(struct seq_file *m, int cpu);
1303extern void print_rt_stats(struct seq_file *m, int cpu);
1304
1305extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1306extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
029632fb
PZ
1307
1308extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1c792db7 1309
3451d024 1310#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1311enum rq_nohz_flag_bits {
1312 NOHZ_TICK_STOPPED,
1313 NOHZ_BALANCE_KICK,
1314};
1315
1316#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1317#endif
73fbec60
FW
1318
1319#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1320
1321DECLARE_PER_CPU(u64, cpu_hardirq_time);
1322DECLARE_PER_CPU(u64, cpu_softirq_time);
1323
1324#ifndef CONFIG_64BIT
1325DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1326
1327static inline void irq_time_write_begin(void)
1328{
1329 __this_cpu_inc(irq_time_seq.sequence);
1330 smp_wmb();
1331}
1332
1333static inline void irq_time_write_end(void)
1334{
1335 smp_wmb();
1336 __this_cpu_inc(irq_time_seq.sequence);
1337}
1338
1339static inline u64 irq_time_read(int cpu)
1340{
1341 u64 irq_time;
1342 unsigned seq;
1343
1344 do {
1345 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1346 irq_time = per_cpu(cpu_softirq_time, cpu) +
1347 per_cpu(cpu_hardirq_time, cpu);
1348 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1349
1350 return irq_time;
1351}
1352#else /* CONFIG_64BIT */
1353static inline void irq_time_write_begin(void)
1354{
1355}
1356
1357static inline void irq_time_write_end(void)
1358{
1359}
1360
1361static inline u64 irq_time_read(int cpu)
1362{
1363 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1364}
1365#endif /* CONFIG_64BIT */
1366#endif /* CONFIG_IRQ_TIME_ACCOUNTING */