sched/core: Introduce 'struct sched_domain_shared'
[linux-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
3866e845 6#include <linux/binfmts.h>
029632fb
PZ
7#include <linux/mutex.h>
8#include <linux/spinlock.h>
9#include <linux/stop_machine.h>
b6366f04 10#include <linux/irq_work.h>
9f3660c2 11#include <linux/tick.h>
f809ca9a 12#include <linux/slab.h>
029632fb 13
391e43da 14#include "cpupri.h"
6bfd6d72 15#include "cpudeadline.h"
60fed789 16#include "cpuacct.h"
029632fb 17
45ceebf7 18struct rq;
442bf3aa 19struct cpuidle_state;
45ceebf7 20
da0c1e65
KT
21/* task_struct::on_rq states: */
22#define TASK_ON_RQ_QUEUED 1
cca26e80 23#define TASK_ON_RQ_MIGRATING 2
da0c1e65 24
029632fb
PZ
25extern __read_mostly int scheduler_running;
26
45ceebf7
PG
27extern unsigned long calc_load_update;
28extern atomic_long_t calc_load_tasks;
29
3289bdb4 30extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 31extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4
PZ
32
33#ifdef CONFIG_SMP
cee1afce 34extern void cpu_load_update_active(struct rq *this_rq);
3289bdb4 35#else
cee1afce 36static inline void cpu_load_update_active(struct rq *this_rq) { }
3289bdb4 37#endif
45ceebf7 38
029632fb
PZ
39/*
40 * Helpers for converting nanosecond timing to jiffy resolution
41 */
42#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
43
cc1f4b1f
LZ
44/*
45 * Increase resolution of nice-level calculations for 64-bit architectures.
46 * The extra resolution improves shares distribution and load balancing of
47 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
48 * hierarchies, especially on larger systems. This is not a user-visible change
49 * and does not change the user-interface for setting shares/weights.
50 *
51 * We increase resolution only if we have enough bits to allow this increased
2159197d
PZ
52 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
53 * pretty high and the returns do not justify the increased costs.
54 *
55 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
56 * increase coverage and consistency always enable it on 64bit platforms.
cc1f4b1f 57 */
2159197d 58#ifdef CONFIG_64BIT
172895e6 59# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749
YD
60# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
61# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f 62#else
172895e6 63# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
64# define scale_load(w) (w)
65# define scale_load_down(w) (w)
66#endif
67
6ecdd749 68/*
172895e6
YD
69 * Task weight (visible to users) and its load (invisible to users) have
70 * independent resolution, but they should be well calibrated. We use
71 * scale_load() and scale_load_down(w) to convert between them. The
72 * following must be true:
73 *
74 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
75 *
6ecdd749 76 */
172895e6 77#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 78
332ac17e
DF
79/*
80 * Single value that decides SCHED_DEADLINE internal math precision.
81 * 10 -> just above 1us
82 * 9 -> just above 0.5us
83 */
84#define DL_SCALE (10)
85
029632fb
PZ
86/*
87 * These are the 'tuning knobs' of the scheduler:
029632fb 88 */
029632fb
PZ
89
90/*
91 * single value that denotes runtime == period, ie unlimited time.
92 */
93#define RUNTIME_INF ((u64)~0ULL)
94
20f9cd2a
HA
95static inline int idle_policy(int policy)
96{
97 return policy == SCHED_IDLE;
98}
d50dde5a
DF
99static inline int fair_policy(int policy)
100{
101 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
102}
103
029632fb
PZ
104static inline int rt_policy(int policy)
105{
d50dde5a 106 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
107}
108
aab03e05
DF
109static inline int dl_policy(int policy)
110{
111 return policy == SCHED_DEADLINE;
112}
20f9cd2a
HA
113static inline bool valid_policy(int policy)
114{
115 return idle_policy(policy) || fair_policy(policy) ||
116 rt_policy(policy) || dl_policy(policy);
117}
aab03e05 118
029632fb
PZ
119static inline int task_has_rt_policy(struct task_struct *p)
120{
121 return rt_policy(p->policy);
122}
123
aab03e05
DF
124static inline int task_has_dl_policy(struct task_struct *p)
125{
126 return dl_policy(p->policy);
127}
128
2d3d891d
DF
129/*
130 * Tells if entity @a should preempt entity @b.
131 */
332ac17e
DF
132static inline bool
133dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
134{
135 return dl_time_before(a->deadline, b->deadline);
136}
137
029632fb
PZ
138/*
139 * This is the priority-queue data structure of the RT scheduling class:
140 */
141struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144};
145
146struct rt_bandwidth {
147 /* nests inside the rq lock: */
148 raw_spinlock_t rt_runtime_lock;
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
4cfafd30 152 unsigned int rt_period_active;
029632fb 153};
a5e7be3b
JL
154
155void __dl_clear_params(struct task_struct *p);
156
332ac17e
DF
157/*
158 * To keep the bandwidth of -deadline tasks and groups under control
159 * we need some place where:
160 * - store the maximum -deadline bandwidth of the system (the group);
161 * - cache the fraction of that bandwidth that is currently allocated.
162 *
163 * This is all done in the data structure below. It is similar to the
164 * one used for RT-throttling (rt_bandwidth), with the main difference
165 * that, since here we are only interested in admission control, we
166 * do not decrease any runtime while the group "executes", neither we
167 * need a timer to replenish it.
168 *
169 * With respect to SMP, the bandwidth is given on a per-CPU basis,
170 * meaning that:
171 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
172 * - dl_total_bw array contains, in the i-eth element, the currently
173 * allocated bandwidth on the i-eth CPU.
174 * Moreover, groups consume bandwidth on each CPU, while tasks only
175 * consume bandwidth on the CPU they're running on.
176 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
177 * that will be shown the next time the proc or cgroup controls will
178 * be red. It on its turn can be changed by writing on its own
179 * control.
180 */
181struct dl_bandwidth {
182 raw_spinlock_t dl_runtime_lock;
183 u64 dl_runtime;
184 u64 dl_period;
185};
186
187static inline int dl_bandwidth_enabled(void)
188{
1724813d 189 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
190}
191
192extern struct dl_bw *dl_bw_of(int i);
193
194struct dl_bw {
195 raw_spinlock_t lock;
196 u64 bw, total_bw;
197};
198
7f51412a
JL
199static inline
200void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
201{
202 dl_b->total_bw -= tsk_bw;
203}
204
205static inline
206void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
207{
208 dl_b->total_bw += tsk_bw;
209}
210
211static inline
212bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
213{
214 return dl_b->bw != -1 &&
215 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
216}
217
029632fb
PZ
218extern struct mutex sched_domains_mutex;
219
220#ifdef CONFIG_CGROUP_SCHED
221
222#include <linux/cgroup.h>
223
224struct cfs_rq;
225struct rt_rq;
226
35cf4e50 227extern struct list_head task_groups;
029632fb
PZ
228
229struct cfs_bandwidth {
230#ifdef CONFIG_CFS_BANDWIDTH
231 raw_spinlock_t lock;
232 ktime_t period;
233 u64 quota, runtime;
9c58c79a 234 s64 hierarchical_quota;
029632fb
PZ
235 u64 runtime_expires;
236
4cfafd30 237 int idle, period_active;
029632fb
PZ
238 struct hrtimer period_timer, slack_timer;
239 struct list_head throttled_cfs_rq;
240
241 /* statistics */
242 int nr_periods, nr_throttled;
243 u64 throttled_time;
244#endif
245};
246
247/* task group related information */
248struct task_group {
249 struct cgroup_subsys_state css;
250
251#ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
257
fa6bddeb 258#ifdef CONFIG_SMP
b0367629
WL
259 /*
260 * load_avg can be heavily contended at clock tick time, so put
261 * it in its own cacheline separated from the fields above which
262 * will also be accessed at each tick.
263 */
264 atomic_long_t load_avg ____cacheline_aligned;
029632fb 265#endif
fa6bddeb 266#endif
029632fb
PZ
267
268#ifdef CONFIG_RT_GROUP_SCHED
269 struct sched_rt_entity **rt_se;
270 struct rt_rq **rt_rq;
271
272 struct rt_bandwidth rt_bandwidth;
273#endif
274
275 struct rcu_head rcu;
276 struct list_head list;
277
278 struct task_group *parent;
279 struct list_head siblings;
280 struct list_head children;
281
282#ifdef CONFIG_SCHED_AUTOGROUP
283 struct autogroup *autogroup;
284#endif
285
286 struct cfs_bandwidth cfs_bandwidth;
287};
288
289#ifdef CONFIG_FAIR_GROUP_SCHED
290#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
291
292/*
293 * A weight of 0 or 1 can cause arithmetics problems.
294 * A weight of a cfs_rq is the sum of weights of which entities
295 * are queued on this cfs_rq, so a weight of a entity should not be
296 * too large, so as the shares value of a task group.
297 * (The default weight is 1024 - so there's no practical
298 * limitation from this.)
299 */
300#define MIN_SHARES (1UL << 1)
301#define MAX_SHARES (1UL << 18)
302#endif
303
029632fb
PZ
304typedef int (*tg_visitor)(struct task_group *, void *);
305
306extern int walk_tg_tree_from(struct task_group *from,
307 tg_visitor down, tg_visitor up, void *data);
308
309/*
310 * Iterate the full tree, calling @down when first entering a node and @up when
311 * leaving it for the final time.
312 *
313 * Caller must hold rcu_lock or sufficient equivalent.
314 */
315static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
316{
317 return walk_tg_tree_from(&root_task_group, down, up, data);
318}
319
320extern int tg_nop(struct task_group *tg, void *data);
321
322extern void free_fair_sched_group(struct task_group *tg);
323extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 324extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 325extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
326extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
327 struct sched_entity *se, int cpu,
328 struct sched_entity *parent);
329extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
330
331extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 332extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
333extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
334
335extern void free_rt_sched_group(struct task_group *tg);
336extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
337extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
338 struct sched_rt_entity *rt_se, int cpu,
339 struct sched_rt_entity *parent);
340
25cc7da7
LZ
341extern struct task_group *sched_create_group(struct task_group *parent);
342extern void sched_online_group(struct task_group *tg,
343 struct task_group *parent);
344extern void sched_destroy_group(struct task_group *tg);
345extern void sched_offline_group(struct task_group *tg);
346
347extern void sched_move_task(struct task_struct *tsk);
348
349#ifdef CONFIG_FAIR_GROUP_SCHED
350extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
351
352#ifdef CONFIG_SMP
353extern void set_task_rq_fair(struct sched_entity *se,
354 struct cfs_rq *prev, struct cfs_rq *next);
355#else /* !CONFIG_SMP */
356static inline void set_task_rq_fair(struct sched_entity *se,
357 struct cfs_rq *prev, struct cfs_rq *next) { }
358#endif /* CONFIG_SMP */
359#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 360
029632fb
PZ
361#else /* CONFIG_CGROUP_SCHED */
362
363struct cfs_bandwidth { };
364
365#endif /* CONFIG_CGROUP_SCHED */
366
367/* CFS-related fields in a runqueue */
368struct cfs_rq {
369 struct load_weight load;
c82513e5 370 unsigned int nr_running, h_nr_running;
029632fb
PZ
371
372 u64 exec_clock;
373 u64 min_vruntime;
374#ifndef CONFIG_64BIT
375 u64 min_vruntime_copy;
376#endif
377
378 struct rb_root tasks_timeline;
379 struct rb_node *rb_leftmost;
380
029632fb
PZ
381 /*
382 * 'curr' points to currently running entity on this cfs_rq.
383 * It is set to NULL otherwise (i.e when none are currently running).
384 */
385 struct sched_entity *curr, *next, *last, *skip;
386
387#ifdef CONFIG_SCHED_DEBUG
388 unsigned int nr_spread_over;
389#endif
390
2dac754e
PT
391#ifdef CONFIG_SMP
392 /*
9d89c257 393 * CFS load tracking
2dac754e 394 */
9d89c257 395 struct sched_avg avg;
13962234
YD
396 u64 runnable_load_sum;
397 unsigned long runnable_load_avg;
c566e8e9 398#ifdef CONFIG_FAIR_GROUP_SCHED
9d89c257
YD
399 unsigned long tg_load_avg_contrib;
400#endif
401 atomic_long_t removed_load_avg, removed_util_avg;
402#ifndef CONFIG_64BIT
403 u64 load_last_update_time_copy;
404#endif
82958366 405
9d89c257 406#ifdef CONFIG_FAIR_GROUP_SCHED
82958366
PT
407 /*
408 * h_load = weight * f(tg)
409 *
410 * Where f(tg) is the recursive weight fraction assigned to
411 * this group.
412 */
413 unsigned long h_load;
68520796
VD
414 u64 last_h_load_update;
415 struct sched_entity *h_load_next;
416#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
417#endif /* CONFIG_SMP */
418
029632fb
PZ
419#ifdef CONFIG_FAIR_GROUP_SCHED
420 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
421
422 /*
423 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
424 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
425 * (like users, containers etc.)
426 *
427 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
428 * list is used during load balance.
429 */
430 int on_list;
431 struct list_head leaf_cfs_rq_list;
432 struct task_group *tg; /* group that "owns" this runqueue */
433
029632fb
PZ
434#ifdef CONFIG_CFS_BANDWIDTH
435 int runtime_enabled;
436 u64 runtime_expires;
437 s64 runtime_remaining;
438
f1b17280
PT
439 u64 throttled_clock, throttled_clock_task;
440 u64 throttled_clock_task_time;
55e16d30 441 int throttled, throttle_count;
029632fb
PZ
442 struct list_head throttled_list;
443#endif /* CONFIG_CFS_BANDWIDTH */
444#endif /* CONFIG_FAIR_GROUP_SCHED */
445};
446
447static inline int rt_bandwidth_enabled(void)
448{
449 return sysctl_sched_rt_runtime >= 0;
450}
451
b6366f04
SR
452/* RT IPI pull logic requires IRQ_WORK */
453#ifdef CONFIG_IRQ_WORK
454# define HAVE_RT_PUSH_IPI
455#endif
456
029632fb
PZ
457/* Real-Time classes' related field in a runqueue: */
458struct rt_rq {
459 struct rt_prio_array active;
c82513e5 460 unsigned int rt_nr_running;
01d36d0a 461 unsigned int rr_nr_running;
029632fb
PZ
462#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
463 struct {
464 int curr; /* highest queued rt task prio */
465#ifdef CONFIG_SMP
466 int next; /* next highest */
467#endif
468 } highest_prio;
469#endif
470#ifdef CONFIG_SMP
471 unsigned long rt_nr_migratory;
472 unsigned long rt_nr_total;
473 int overloaded;
474 struct plist_head pushable_tasks;
b6366f04
SR
475#ifdef HAVE_RT_PUSH_IPI
476 int push_flags;
477 int push_cpu;
478 struct irq_work push_work;
479 raw_spinlock_t push_lock;
029632fb 480#endif
b6366f04 481#endif /* CONFIG_SMP */
f4ebcbc0
KT
482 int rt_queued;
483
029632fb
PZ
484 int rt_throttled;
485 u64 rt_time;
486 u64 rt_runtime;
487 /* Nests inside the rq lock: */
488 raw_spinlock_t rt_runtime_lock;
489
490#ifdef CONFIG_RT_GROUP_SCHED
491 unsigned long rt_nr_boosted;
492
493 struct rq *rq;
029632fb
PZ
494 struct task_group *tg;
495#endif
496};
497
aab03e05
DF
498/* Deadline class' related fields in a runqueue */
499struct dl_rq {
500 /* runqueue is an rbtree, ordered by deadline */
501 struct rb_root rb_root;
502 struct rb_node *rb_leftmost;
503
504 unsigned long dl_nr_running;
1baca4ce
JL
505
506#ifdef CONFIG_SMP
507 /*
508 * Deadline values of the currently executing and the
509 * earliest ready task on this rq. Caching these facilitates
510 * the decision wether or not a ready but not running task
511 * should migrate somewhere else.
512 */
513 struct {
514 u64 curr;
515 u64 next;
516 } earliest_dl;
517
518 unsigned long dl_nr_migratory;
1baca4ce
JL
519 int overloaded;
520
521 /*
522 * Tasks on this rq that can be pushed away. They are kept in
523 * an rb-tree, ordered by tasks' deadlines, with caching
524 * of the leftmost (earliest deadline) element.
525 */
526 struct rb_root pushable_dl_tasks_root;
527 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
528#else
529 struct dl_bw dl_bw;
1baca4ce 530#endif
aab03e05
DF
531};
532
029632fb
PZ
533#ifdef CONFIG_SMP
534
535/*
536 * We add the notion of a root-domain which will be used to define per-domain
537 * variables. Each exclusive cpuset essentially defines an island domain by
538 * fully partitioning the member cpus from any other cpuset. Whenever a new
539 * exclusive cpuset is created, we also create and attach a new root-domain
540 * object.
541 *
542 */
543struct root_domain {
544 atomic_t refcount;
545 atomic_t rto_count;
546 struct rcu_head rcu;
547 cpumask_var_t span;
548 cpumask_var_t online;
549
4486edd1
TC
550 /* Indicate more than one runnable task for any CPU */
551 bool overload;
552
1baca4ce
JL
553 /*
554 * The bit corresponding to a CPU gets set here if such CPU has more
555 * than one runnable -deadline task (as it is below for RT tasks).
556 */
557 cpumask_var_t dlo_mask;
558 atomic_t dlo_count;
332ac17e 559 struct dl_bw dl_bw;
6bfd6d72 560 struct cpudl cpudl;
1baca4ce 561
029632fb
PZ
562 /*
563 * The "RT overload" flag: it gets set if a CPU has more than
564 * one runnable RT task.
565 */
566 cpumask_var_t rto_mask;
567 struct cpupri cpupri;
cd92bfd3
DE
568
569 unsigned long max_cpu_capacity;
029632fb
PZ
570};
571
572extern struct root_domain def_root_domain;
573
574#endif /* CONFIG_SMP */
575
576/*
577 * This is the main, per-CPU runqueue data structure.
578 *
579 * Locking rule: those places that want to lock multiple runqueues
580 * (such as the load balancing or the thread migration code), lock
581 * acquire operations must be ordered by ascending &runqueue.
582 */
583struct rq {
584 /* runqueue lock: */
585 raw_spinlock_t lock;
586
587 /*
588 * nr_running and cpu_load should be in the same cacheline because
589 * remote CPUs use both these fields when doing load calculation.
590 */
c82513e5 591 unsigned int nr_running;
0ec8aa00
PZ
592#ifdef CONFIG_NUMA_BALANCING
593 unsigned int nr_numa_running;
594 unsigned int nr_preferred_running;
595#endif
029632fb
PZ
596 #define CPU_LOAD_IDX_MAX 5
597 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
3451d024 598#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5
FW
599#ifdef CONFIG_SMP
600 unsigned long last_load_update_tick;
601#endif /* CONFIG_SMP */
1c792db7 602 unsigned long nohz_flags;
9fd81dd5 603#endif /* CONFIG_NO_HZ_COMMON */
265f22a9
FW
604#ifdef CONFIG_NO_HZ_FULL
605 unsigned long last_sched_tick;
029632fb 606#endif
029632fb
PZ
607 /* capture load from *all* tasks on this cpu: */
608 struct load_weight load;
609 unsigned long nr_load_updates;
610 u64 nr_switches;
611
612 struct cfs_rq cfs;
613 struct rt_rq rt;
aab03e05 614 struct dl_rq dl;
029632fb
PZ
615
616#ifdef CONFIG_FAIR_GROUP_SCHED
617 /* list of leaf cfs_rq on this cpu: */
618 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
619#endif /* CONFIG_FAIR_GROUP_SCHED */
620
029632fb
PZ
621 /*
622 * This is part of a global counter where only the total sum
623 * over all CPUs matters. A task can increase this counter on
624 * one CPU and if it got migrated afterwards it may decrease
625 * it on another CPU. Always updated under the runqueue lock:
626 */
627 unsigned long nr_uninterruptible;
628
629 struct task_struct *curr, *idle, *stop;
630 unsigned long next_balance;
631 struct mm_struct *prev_mm;
632
9edfbfed 633 unsigned int clock_skip_update;
029632fb
PZ
634 u64 clock;
635 u64 clock_task;
636
637 atomic_t nr_iowait;
638
639#ifdef CONFIG_SMP
640 struct root_domain *rd;
641 struct sched_domain *sd;
642
ced549fa 643 unsigned long cpu_capacity;
ca6d75e6 644 unsigned long cpu_capacity_orig;
029632fb 645
e3fca9e7
PZ
646 struct callback_head *balance_callback;
647
029632fb
PZ
648 unsigned char idle_balance;
649 /* For active balancing */
029632fb
PZ
650 int active_balance;
651 int push_cpu;
652 struct cpu_stop_work active_balance_work;
653 /* cpu of this runqueue: */
654 int cpu;
655 int online;
656
367456c7
PZ
657 struct list_head cfs_tasks;
658
029632fb
PZ
659 u64 rt_avg;
660 u64 age_stamp;
661 u64 idle_stamp;
662 u64 avg_idle;
9bd721c5
JL
663
664 /* This is used to determine avg_idle's max value */
665 u64 max_idle_balance_cost;
029632fb
PZ
666#endif
667
668#ifdef CONFIG_IRQ_TIME_ACCOUNTING
669 u64 prev_irq_time;
670#endif
671#ifdef CONFIG_PARAVIRT
672 u64 prev_steal_time;
673#endif
674#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
675 u64 prev_steal_time_rq;
676#endif
677
678 /* calc_load related fields */
679 unsigned long calc_load_update;
680 long calc_load_active;
681
682#ifdef CONFIG_SCHED_HRTICK
683#ifdef CONFIG_SMP
684 int hrtick_csd_pending;
685 struct call_single_data hrtick_csd;
686#endif
687 struct hrtimer hrtick_timer;
688#endif
689
690#ifdef CONFIG_SCHEDSTATS
691 /* latency stats */
692 struct sched_info rq_sched_info;
693 unsigned long long rq_cpu_time;
694 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
695
696 /* sys_sched_yield() stats */
697 unsigned int yld_count;
698
699 /* schedule() stats */
029632fb
PZ
700 unsigned int sched_count;
701 unsigned int sched_goidle;
702
703 /* try_to_wake_up() stats */
704 unsigned int ttwu_count;
705 unsigned int ttwu_local;
706#endif
707
708#ifdef CONFIG_SMP
709 struct llist_head wake_list;
710#endif
442bf3aa
DL
711
712#ifdef CONFIG_CPU_IDLE
713 /* Must be inspected within a rcu lock section */
714 struct cpuidle_state *idle_state;
715#endif
029632fb
PZ
716};
717
718static inline int cpu_of(struct rq *rq)
719{
720#ifdef CONFIG_SMP
721 return rq->cpu;
722#else
723 return 0;
724#endif
725}
726
8b06c55b 727DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 728
518cd623 729#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 730#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
731#define task_rq(p) cpu_rq(task_cpu(p))
732#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 733#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 734
cebde6d6
PZ
735static inline u64 __rq_clock_broken(struct rq *rq)
736{
316c1608 737 return READ_ONCE(rq->clock);
cebde6d6
PZ
738}
739
78becc27
FW
740static inline u64 rq_clock(struct rq *rq)
741{
cebde6d6 742 lockdep_assert_held(&rq->lock);
78becc27
FW
743 return rq->clock;
744}
745
746static inline u64 rq_clock_task(struct rq *rq)
747{
cebde6d6 748 lockdep_assert_held(&rq->lock);
78becc27
FW
749 return rq->clock_task;
750}
751
9edfbfed
PZ
752#define RQCF_REQ_SKIP 0x01
753#define RQCF_ACT_SKIP 0x02
754
755static inline void rq_clock_skip_update(struct rq *rq, bool skip)
756{
757 lockdep_assert_held(&rq->lock);
758 if (skip)
759 rq->clock_skip_update |= RQCF_REQ_SKIP;
760 else
761 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
762}
763
9942f79b 764#ifdef CONFIG_NUMA
e3fe70b1
RR
765enum numa_topology_type {
766 NUMA_DIRECT,
767 NUMA_GLUELESS_MESH,
768 NUMA_BACKPLANE,
769};
770extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
771extern int sched_max_numa_distance;
772extern bool find_numa_distance(int distance);
773#endif
774
f809ca9a 775#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
776/* The regions in numa_faults array from task_struct */
777enum numa_faults_stats {
778 NUMA_MEM = 0,
779 NUMA_CPU,
780 NUMA_MEMBUF,
781 NUMA_CPUBUF
782};
0ec8aa00 783extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 784extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 785extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
786#endif /* CONFIG_NUMA_BALANCING */
787
518cd623
PZ
788#ifdef CONFIG_SMP
789
e3fca9e7
PZ
790static inline void
791queue_balance_callback(struct rq *rq,
792 struct callback_head *head,
793 void (*func)(struct rq *rq))
794{
795 lockdep_assert_held(&rq->lock);
796
797 if (unlikely(head->next))
798 return;
799
800 head->func = (void (*)(struct callback_head *))func;
801 head->next = rq->balance_callback;
802 rq->balance_callback = head;
803}
804
e3baac47
PZ
805extern void sched_ttwu_pending(void);
806
029632fb
PZ
807#define rcu_dereference_check_sched_domain(p) \
808 rcu_dereference_check((p), \
809 lockdep_is_held(&sched_domains_mutex))
810
811/*
812 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
813 * See detach_destroy_domains: synchronize_sched for details.
814 *
815 * The domain tree of any CPU may only be accessed from within
816 * preempt-disabled sections.
817 */
818#define for_each_domain(cpu, __sd) \
518cd623
PZ
819 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
820 __sd; __sd = __sd->parent)
029632fb 821
77e81365
SS
822#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
823
518cd623
PZ
824/**
825 * highest_flag_domain - Return highest sched_domain containing flag.
826 * @cpu: The cpu whose highest level of sched domain is to
827 * be returned.
828 * @flag: The flag to check for the highest sched_domain
829 * for the given cpu.
830 *
831 * Returns the highest sched_domain of a cpu which contains the given flag.
832 */
833static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
834{
835 struct sched_domain *sd, *hsd = NULL;
836
837 for_each_domain(cpu, sd) {
838 if (!(sd->flags & flag))
839 break;
840 hsd = sd;
841 }
842
843 return hsd;
844}
845
fb13c7ee
MG
846static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
847{
848 struct sched_domain *sd;
849
850 for_each_domain(cpu, sd) {
851 if (sd->flags & flag)
852 break;
853 }
854
855 return sd;
856}
857
518cd623 858DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 859DECLARE_PER_CPU(int, sd_llc_size);
518cd623 860DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 861DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
862DECLARE_PER_CPU(struct sched_domain *, sd_busy);
863DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 864
63b2ca30 865struct sched_group_capacity {
5e6521ea
LZ
866 atomic_t ref;
867 /*
172895e6 868 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 869 * for a single CPU.
5e6521ea 870 */
dc7ff76e 871 unsigned int capacity;
5e6521ea 872 unsigned long next_update;
63b2ca30 873 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
874 /*
875 * Number of busy cpus in this group.
876 */
877 atomic_t nr_busy_cpus;
878
879 unsigned long cpumask[0]; /* iteration mask */
880};
881
882struct sched_group {
883 struct sched_group *next; /* Must be a circular list */
884 atomic_t ref;
885
886 unsigned int group_weight;
63b2ca30 887 struct sched_group_capacity *sgc;
5e6521ea
LZ
888
889 /*
890 * The CPUs this group covers.
891 *
892 * NOTE: this field is variable length. (Allocated dynamically
893 * by attaching extra space to the end of the structure,
894 * depending on how many CPUs the kernel has booted up with)
895 */
896 unsigned long cpumask[0];
897};
898
899static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
900{
901 return to_cpumask(sg->cpumask);
902}
903
904/*
905 * cpumask masking which cpus in the group are allowed to iterate up the domain
906 * tree.
907 */
908static inline struct cpumask *sched_group_mask(struct sched_group *sg)
909{
63b2ca30 910 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
911}
912
913/**
914 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
915 * @group: The group whose first cpu is to be returned.
916 */
917static inline unsigned int group_first_cpu(struct sched_group *group)
918{
919 return cpumask_first(sched_group_cpus(group));
920}
921
c1174876
PZ
922extern int group_balance_cpu(struct sched_group *sg);
923
3866e845
SRRH
924#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
925void register_sched_domain_sysctl(void);
926void unregister_sched_domain_sysctl(void);
927#else
928static inline void register_sched_domain_sysctl(void)
929{
930}
931static inline void unregister_sched_domain_sysctl(void)
932{
933}
934#endif
935
e3baac47
PZ
936#else
937
938static inline void sched_ttwu_pending(void) { }
939
518cd623 940#endif /* CONFIG_SMP */
029632fb 941
391e43da
PZ
942#include "stats.h"
943#include "auto_group.h"
029632fb
PZ
944
945#ifdef CONFIG_CGROUP_SCHED
946
947/*
948 * Return the group to which this tasks belongs.
949 *
8af01f56
TH
950 * We cannot use task_css() and friends because the cgroup subsystem
951 * changes that value before the cgroup_subsys::attach() method is called,
952 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
953 *
954 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
955 * core changes this before calling sched_move_task().
956 *
957 * Instead we use a 'copy' which is updated from sched_move_task() while
958 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
959 */
960static inline struct task_group *task_group(struct task_struct *p)
961{
8323f26c 962 return p->sched_task_group;
029632fb
PZ
963}
964
965/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
966static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
967{
968#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
969 struct task_group *tg = task_group(p);
970#endif
971
972#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 973 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
974 p->se.cfs_rq = tg->cfs_rq[cpu];
975 p->se.parent = tg->se[cpu];
976#endif
977
978#ifdef CONFIG_RT_GROUP_SCHED
979 p->rt.rt_rq = tg->rt_rq[cpu];
980 p->rt.parent = tg->rt_se[cpu];
981#endif
982}
983
984#else /* CONFIG_CGROUP_SCHED */
985
986static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
987static inline struct task_group *task_group(struct task_struct *p)
988{
989 return NULL;
990}
991
992#endif /* CONFIG_CGROUP_SCHED */
993
994static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
995{
996 set_task_rq(p, cpu);
997#ifdef CONFIG_SMP
998 /*
999 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1000 * successfuly executed on another CPU. We must ensure that updates of
1001 * per-task data have been completed by this moment.
1002 */
1003 smp_wmb();
1004 task_thread_info(p)->cpu = cpu;
ac66f547 1005 p->wake_cpu = cpu;
029632fb
PZ
1006#endif
1007}
1008
1009/*
1010 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1011 */
1012#ifdef CONFIG_SCHED_DEBUG
c5905afb 1013# include <linux/static_key.h>
029632fb
PZ
1014# define const_debug __read_mostly
1015#else
1016# define const_debug const
1017#endif
1018
1019extern const_debug unsigned int sysctl_sched_features;
1020
1021#define SCHED_FEAT(name, enabled) \
1022 __SCHED_FEAT_##name ,
1023
1024enum {
391e43da 1025#include "features.h"
f8b6d1cc 1026 __SCHED_FEAT_NR,
029632fb
PZ
1027};
1028
1029#undef SCHED_FEAT
1030
f8b6d1cc 1031#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 1032#define SCHED_FEAT(name, enabled) \
c5905afb 1033static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1034{ \
6e76ea8a 1035 return static_key_##enabled(key); \
f8b6d1cc
PZ
1036}
1037
1038#include "features.h"
1039
1040#undef SCHED_FEAT
1041
c5905afb 1042extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
1043#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1044#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 1045#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 1046#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1047
2a595721 1048extern struct static_key_false sched_numa_balancing;
cb251765 1049extern struct static_key_false sched_schedstats;
cbee9f88 1050
029632fb
PZ
1051static inline u64 global_rt_period(void)
1052{
1053 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1054}
1055
1056static inline u64 global_rt_runtime(void)
1057{
1058 if (sysctl_sched_rt_runtime < 0)
1059 return RUNTIME_INF;
1060
1061 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1062}
1063
029632fb
PZ
1064static inline int task_current(struct rq *rq, struct task_struct *p)
1065{
1066 return rq->curr == p;
1067}
1068
1069static inline int task_running(struct rq *rq, struct task_struct *p)
1070{
1071#ifdef CONFIG_SMP
1072 return p->on_cpu;
1073#else
1074 return task_current(rq, p);
1075#endif
1076}
1077
da0c1e65
KT
1078static inline int task_on_rq_queued(struct task_struct *p)
1079{
1080 return p->on_rq == TASK_ON_RQ_QUEUED;
1081}
029632fb 1082
cca26e80
KT
1083static inline int task_on_rq_migrating(struct task_struct *p)
1084{
1085 return p->on_rq == TASK_ON_RQ_MIGRATING;
1086}
1087
029632fb
PZ
1088#ifndef prepare_arch_switch
1089# define prepare_arch_switch(next) do { } while (0)
1090#endif
01f23e16
CM
1091#ifndef finish_arch_post_lock_switch
1092# define finish_arch_post_lock_switch() do { } while (0)
1093#endif
029632fb 1094
029632fb
PZ
1095static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1096{
1097#ifdef CONFIG_SMP
1098 /*
1099 * We can optimise this out completely for !SMP, because the
1100 * SMP rebalancing from interrupt is the only thing that cares
1101 * here.
1102 */
1103 next->on_cpu = 1;
1104#endif
1105}
1106
1107static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1108{
1109#ifdef CONFIG_SMP
1110 /*
1111 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1112 * We must ensure this doesn't happen until the switch is completely
1113 * finished.
95913d97 1114 *
b75a2253
PZ
1115 * In particular, the load of prev->state in finish_task_switch() must
1116 * happen before this.
1117 *
1f03e8d2 1118 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
029632fb 1119 */
95913d97 1120 smp_store_release(&prev->on_cpu, 0);
029632fb
PZ
1121#endif
1122#ifdef CONFIG_DEBUG_SPINLOCK
1123 /* this is a valid case when another task releases the spinlock */
1124 rq->lock.owner = current;
1125#endif
1126 /*
1127 * If we are tracking spinlock dependencies then we have to
1128 * fix up the runqueue lock - which gets 'carried over' from
1129 * prev into current:
1130 */
1131 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1132
1133 raw_spin_unlock_irq(&rq->lock);
1134}
1135
b13095f0
LZ
1136/*
1137 * wake flags
1138 */
1139#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1140#define WF_FORK 0x02 /* child wakeup after fork */
1141#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1142
029632fb
PZ
1143/*
1144 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1145 * of tasks with abnormal "nice" values across CPUs the contribution that
1146 * each task makes to its run queue's load is weighted according to its
1147 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1148 * scaled version of the new time slice allocation that they receive on time
1149 * slice expiry etc.
1150 */
1151
1152#define WEIGHT_IDLEPRIO 3
1153#define WMULT_IDLEPRIO 1431655765
1154
ed82b8a1
AK
1155extern const int sched_prio_to_weight[40];
1156extern const u32 sched_prio_to_wmult[40];
029632fb 1157
ff77e468
PZ
1158/*
1159 * {de,en}queue flags:
1160 *
1161 * DEQUEUE_SLEEP - task is no longer runnable
1162 * ENQUEUE_WAKEUP - task just became runnable
1163 *
1164 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1165 * are in a known state which allows modification. Such pairs
1166 * should preserve as much state as possible.
1167 *
1168 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1169 * in the runqueue.
1170 *
1171 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1172 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1173 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1174 *
1175 */
1176
1177#define DEQUEUE_SLEEP 0x01
1178#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1179#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1180
1de64443 1181#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1182#define ENQUEUE_RESTORE 0x02
1183#define ENQUEUE_MOVE 0x04
1184
1185#define ENQUEUE_HEAD 0x08
1186#define ENQUEUE_REPLENISH 0x10
c82ba9fa 1187#ifdef CONFIG_SMP
59efa0ba 1188#define ENQUEUE_MIGRATED 0x20
c82ba9fa 1189#else
59efa0ba 1190#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1191#endif
c82ba9fa 1192
37e117c0
PZ
1193#define RETRY_TASK ((void *)-1UL)
1194
c82ba9fa
LZ
1195struct sched_class {
1196 const struct sched_class *next;
1197
1198 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1199 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1200 void (*yield_task) (struct rq *rq);
1201 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1202
1203 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1204
606dba2e
PZ
1205 /*
1206 * It is the responsibility of the pick_next_task() method that will
1207 * return the next task to call put_prev_task() on the @prev task or
1208 * something equivalent.
37e117c0
PZ
1209 *
1210 * May return RETRY_TASK when it finds a higher prio class has runnable
1211 * tasks.
606dba2e
PZ
1212 */
1213 struct task_struct * (*pick_next_task) (struct rq *rq,
e7904a28
PZ
1214 struct task_struct *prev,
1215 struct pin_cookie cookie);
c82ba9fa
LZ
1216 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1217
1218#ifdef CONFIG_SMP
ac66f547 1219 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
5a4fd036 1220 void (*migrate_task_rq)(struct task_struct *p);
c82ba9fa 1221
c82ba9fa
LZ
1222 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1223
1224 void (*set_cpus_allowed)(struct task_struct *p,
1225 const struct cpumask *newmask);
1226
1227 void (*rq_online)(struct rq *rq);
1228 void (*rq_offline)(struct rq *rq);
1229#endif
1230
1231 void (*set_curr_task) (struct rq *rq);
1232 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1233 void (*task_fork) (struct task_struct *p);
e6c390f2 1234 void (*task_dead) (struct task_struct *p);
c82ba9fa 1235
67dfa1b7
KT
1236 /*
1237 * The switched_from() call is allowed to drop rq->lock, therefore we
1238 * cannot assume the switched_from/switched_to pair is serliazed by
1239 * rq->lock. They are however serialized by p->pi_lock.
1240 */
c82ba9fa
LZ
1241 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1242 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1243 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1244 int oldprio);
1245
1246 unsigned int (*get_rr_interval) (struct rq *rq,
1247 struct task_struct *task);
1248
6e998916
SG
1249 void (*update_curr) (struct rq *rq);
1250
ea86cb4b
VG
1251#define TASK_SET_GROUP 0
1252#define TASK_MOVE_GROUP 1
1253
c82ba9fa 1254#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 1255 void (*task_change_group) (struct task_struct *p, int type);
c82ba9fa
LZ
1256#endif
1257};
029632fb 1258
3f1d2a31
PZ
1259static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1260{
1261 prev->sched_class->put_prev_task(rq, prev);
1262}
1263
029632fb
PZ
1264#define sched_class_highest (&stop_sched_class)
1265#define for_each_class(class) \
1266 for (class = sched_class_highest; class; class = class->next)
1267
1268extern const struct sched_class stop_sched_class;
aab03e05 1269extern const struct sched_class dl_sched_class;
029632fb
PZ
1270extern const struct sched_class rt_sched_class;
1271extern const struct sched_class fair_sched_class;
1272extern const struct sched_class idle_sched_class;
1273
1274
1275#ifdef CONFIG_SMP
1276
63b2ca30 1277extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1278
7caff66f 1279extern void trigger_load_balance(struct rq *rq);
029632fb 1280
c5b28038
PZ
1281extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1282
029632fb
PZ
1283#endif
1284
442bf3aa
DL
1285#ifdef CONFIG_CPU_IDLE
1286static inline void idle_set_state(struct rq *rq,
1287 struct cpuidle_state *idle_state)
1288{
1289 rq->idle_state = idle_state;
1290}
1291
1292static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1293{
1294 WARN_ON(!rcu_read_lock_held());
1295 return rq->idle_state;
1296}
1297#else
1298static inline void idle_set_state(struct rq *rq,
1299 struct cpuidle_state *idle_state)
1300{
1301}
1302
1303static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1304{
1305 return NULL;
1306}
1307#endif
1308
029632fb
PZ
1309extern void sysrq_sched_debug_show(void);
1310extern void sched_init_granularity(void);
1311extern void update_max_interval(void);
1baca4ce
JL
1312
1313extern void init_sched_dl_class(void);
029632fb
PZ
1314extern void init_sched_rt_class(void);
1315extern void init_sched_fair_class(void);
1316
8875125e 1317extern void resched_curr(struct rq *rq);
029632fb
PZ
1318extern void resched_cpu(int cpu);
1319
1320extern struct rt_bandwidth def_rt_bandwidth;
1321extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1322
332ac17e
DF
1323extern struct dl_bandwidth def_dl_bandwidth;
1324extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1325extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1326
332ac17e
DF
1327unsigned long to_ratio(u64 period, u64 runtime);
1328
540247fb 1329extern void init_entity_runnable_average(struct sched_entity *se);
2b8c41da 1330extern void post_init_entity_util_avg(struct sched_entity *se);
a75cdaa9 1331
76d92ac3
FW
1332#ifdef CONFIG_NO_HZ_FULL
1333extern bool sched_can_stop_tick(struct rq *rq);
1334
1335/*
1336 * Tick may be needed by tasks in the runqueue depending on their policy and
1337 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1338 * nohz mode if necessary.
1339 */
1340static inline void sched_update_tick_dependency(struct rq *rq)
1341{
1342 int cpu;
1343
1344 if (!tick_nohz_full_enabled())
1345 return;
1346
1347 cpu = cpu_of(rq);
1348
1349 if (!tick_nohz_full_cpu(cpu))
1350 return;
1351
1352 if (sched_can_stop_tick(rq))
1353 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1354 else
1355 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1356}
1357#else
1358static inline void sched_update_tick_dependency(struct rq *rq) { }
1359#endif
1360
72465447 1361static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1362{
72465447
KT
1363 unsigned prev_nr = rq->nr_running;
1364
1365 rq->nr_running = prev_nr + count;
9f3660c2 1366
72465447 1367 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1368#ifdef CONFIG_SMP
1369 if (!rq->rd->overload)
1370 rq->rd->overload = true;
1371#endif
4486edd1 1372 }
76d92ac3
FW
1373
1374 sched_update_tick_dependency(rq);
029632fb
PZ
1375}
1376
72465447 1377static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1378{
72465447 1379 rq->nr_running -= count;
76d92ac3
FW
1380 /* Check if we still need preemption */
1381 sched_update_tick_dependency(rq);
029632fb
PZ
1382}
1383
265f22a9
FW
1384static inline void rq_last_tick_reset(struct rq *rq)
1385{
1386#ifdef CONFIG_NO_HZ_FULL
1387 rq->last_sched_tick = jiffies;
1388#endif
1389}
1390
029632fb
PZ
1391extern void update_rq_clock(struct rq *rq);
1392
1393extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1394extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1395
1396extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1397
1398extern const_debug unsigned int sysctl_sched_time_avg;
1399extern const_debug unsigned int sysctl_sched_nr_migrate;
1400extern const_debug unsigned int sysctl_sched_migration_cost;
1401
1402static inline u64 sched_avg_period(void)
1403{
1404 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1405}
1406
029632fb
PZ
1407#ifdef CONFIG_SCHED_HRTICK
1408
1409/*
1410 * Use hrtick when:
1411 * - enabled by features
1412 * - hrtimer is actually high res
1413 */
1414static inline int hrtick_enabled(struct rq *rq)
1415{
1416 if (!sched_feat(HRTICK))
1417 return 0;
1418 if (!cpu_active(cpu_of(rq)))
1419 return 0;
1420 return hrtimer_is_hres_active(&rq->hrtick_timer);
1421}
1422
1423void hrtick_start(struct rq *rq, u64 delay);
1424
b39e66ea
MG
1425#else
1426
1427static inline int hrtick_enabled(struct rq *rq)
1428{
1429 return 0;
1430}
1431
029632fb
PZ
1432#endif /* CONFIG_SCHED_HRTICK */
1433
1434#ifdef CONFIG_SMP
1435extern void sched_avg_update(struct rq *rq);
dfbca41f
PZ
1436
1437#ifndef arch_scale_freq_capacity
1438static __always_inline
1439unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1440{
1441 return SCHED_CAPACITY_SCALE;
1442}
1443#endif
b5b4860d 1444
8cd5601c
MR
1445#ifndef arch_scale_cpu_capacity
1446static __always_inline
1447unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1448{
e3279a2e 1449 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
8cd5601c
MR
1450 return sd->smt_gain / sd->span_weight;
1451
1452 return SCHED_CAPACITY_SCALE;
1453}
1454#endif
1455
029632fb
PZ
1456static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1457{
b5b4860d 1458 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
029632fb
PZ
1459 sched_avg_update(rq);
1460}
1461#else
1462static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1463static inline void sched_avg_update(struct rq *rq) { }
1464#endif
1465
eb580751
PZ
1466struct rq_flags {
1467 unsigned long flags;
e7904a28 1468 struct pin_cookie cookie;
eb580751
PZ
1469};
1470
1471struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462 1472 __acquires(rq->lock);
eb580751 1473struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3960c8c0 1474 __acquires(p->pi_lock)
3e71a462 1475 __acquires(rq->lock);
3960c8c0 1476
eb580751 1477static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
3960c8c0
PZ
1478 __releases(rq->lock)
1479{
e7904a28 1480 lockdep_unpin_lock(&rq->lock, rf->cookie);
3960c8c0
PZ
1481 raw_spin_unlock(&rq->lock);
1482}
1483
1484static inline void
eb580751 1485task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
3960c8c0
PZ
1486 __releases(rq->lock)
1487 __releases(p->pi_lock)
1488{
e7904a28 1489 lockdep_unpin_lock(&rq->lock, rf->cookie);
3960c8c0 1490 raw_spin_unlock(&rq->lock);
eb580751 1491 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3960c8c0
PZ
1492}
1493
029632fb
PZ
1494#ifdef CONFIG_SMP
1495#ifdef CONFIG_PREEMPT
1496
1497static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1498
1499/*
1500 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1501 * way at the expense of forcing extra atomic operations in all
1502 * invocations. This assures that the double_lock is acquired using the
1503 * same underlying policy as the spinlock_t on this architecture, which
1504 * reduces latency compared to the unfair variant below. However, it
1505 * also adds more overhead and therefore may reduce throughput.
1506 */
1507static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1508 __releases(this_rq->lock)
1509 __acquires(busiest->lock)
1510 __acquires(this_rq->lock)
1511{
1512 raw_spin_unlock(&this_rq->lock);
1513 double_rq_lock(this_rq, busiest);
1514
1515 return 1;
1516}
1517
1518#else
1519/*
1520 * Unfair double_lock_balance: Optimizes throughput at the expense of
1521 * latency by eliminating extra atomic operations when the locks are
1522 * already in proper order on entry. This favors lower cpu-ids and will
1523 * grant the double lock to lower cpus over higher ids under contention,
1524 * regardless of entry order into the function.
1525 */
1526static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1527 __releases(this_rq->lock)
1528 __acquires(busiest->lock)
1529 __acquires(this_rq->lock)
1530{
1531 int ret = 0;
1532
1533 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1534 if (busiest < this_rq) {
1535 raw_spin_unlock(&this_rq->lock);
1536 raw_spin_lock(&busiest->lock);
1537 raw_spin_lock_nested(&this_rq->lock,
1538 SINGLE_DEPTH_NESTING);
1539 ret = 1;
1540 } else
1541 raw_spin_lock_nested(&busiest->lock,
1542 SINGLE_DEPTH_NESTING);
1543 }
1544 return ret;
1545}
1546
1547#endif /* CONFIG_PREEMPT */
1548
1549/*
1550 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1551 */
1552static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1553{
1554 if (unlikely(!irqs_disabled())) {
1555 /* printk() doesn't work good under rq->lock */
1556 raw_spin_unlock(&this_rq->lock);
1557 BUG_ON(1);
1558 }
1559
1560 return _double_lock_balance(this_rq, busiest);
1561}
1562
1563static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1564 __releases(busiest->lock)
1565{
1566 raw_spin_unlock(&busiest->lock);
1567 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1568}
1569
74602315
PZ
1570static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1571{
1572 if (l1 > l2)
1573 swap(l1, l2);
1574
1575 spin_lock(l1);
1576 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1577}
1578
60e69eed
MG
1579static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1580{
1581 if (l1 > l2)
1582 swap(l1, l2);
1583
1584 spin_lock_irq(l1);
1585 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1586}
1587
74602315
PZ
1588static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1589{
1590 if (l1 > l2)
1591 swap(l1, l2);
1592
1593 raw_spin_lock(l1);
1594 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1595}
1596
029632fb
PZ
1597/*
1598 * double_rq_lock - safely lock two runqueues
1599 *
1600 * Note this does not disable interrupts like task_rq_lock,
1601 * you need to do so manually before calling.
1602 */
1603static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1604 __acquires(rq1->lock)
1605 __acquires(rq2->lock)
1606{
1607 BUG_ON(!irqs_disabled());
1608 if (rq1 == rq2) {
1609 raw_spin_lock(&rq1->lock);
1610 __acquire(rq2->lock); /* Fake it out ;) */
1611 } else {
1612 if (rq1 < rq2) {
1613 raw_spin_lock(&rq1->lock);
1614 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1615 } else {
1616 raw_spin_lock(&rq2->lock);
1617 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1618 }
1619 }
1620}
1621
1622/*
1623 * double_rq_unlock - safely unlock two runqueues
1624 *
1625 * Note this does not restore interrupts like task_rq_unlock,
1626 * you need to do so manually after calling.
1627 */
1628static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1629 __releases(rq1->lock)
1630 __releases(rq2->lock)
1631{
1632 raw_spin_unlock(&rq1->lock);
1633 if (rq1 != rq2)
1634 raw_spin_unlock(&rq2->lock);
1635 else
1636 __release(rq2->lock);
1637}
1638
1639#else /* CONFIG_SMP */
1640
1641/*
1642 * double_rq_lock - safely lock two runqueues
1643 *
1644 * Note this does not disable interrupts like task_rq_lock,
1645 * you need to do so manually before calling.
1646 */
1647static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1648 __acquires(rq1->lock)
1649 __acquires(rq2->lock)
1650{
1651 BUG_ON(!irqs_disabled());
1652 BUG_ON(rq1 != rq2);
1653 raw_spin_lock(&rq1->lock);
1654 __acquire(rq2->lock); /* Fake it out ;) */
1655}
1656
1657/*
1658 * double_rq_unlock - safely unlock two runqueues
1659 *
1660 * Note this does not restore interrupts like task_rq_unlock,
1661 * you need to do so manually after calling.
1662 */
1663static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1664 __releases(rq1->lock)
1665 __releases(rq2->lock)
1666{
1667 BUG_ON(rq1 != rq2);
1668 raw_spin_unlock(&rq1->lock);
1669 __release(rq2->lock);
1670}
1671
1672#endif
1673
1674extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1675extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
1676
1677#ifdef CONFIG_SCHED_DEBUG
029632fb
PZ
1678extern void print_cfs_stats(struct seq_file *m, int cpu);
1679extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1680extern void print_dl_stats(struct seq_file *m, int cpu);
6b55c965
SD
1681extern void
1682print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
397f2378
SD
1683
1684#ifdef CONFIG_NUMA_BALANCING
1685extern void
1686show_numa_stats(struct task_struct *p, struct seq_file *m);
1687extern void
1688print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1689 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1690#endif /* CONFIG_NUMA_BALANCING */
1691#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
1692
1693extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
1694extern void init_rt_rq(struct rt_rq *rt_rq);
1695extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 1696
1ee14e6c
BS
1697extern void cfs_bandwidth_usage_inc(void);
1698extern void cfs_bandwidth_usage_dec(void);
1c792db7 1699
3451d024 1700#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1701enum rq_nohz_flag_bits {
1702 NOHZ_TICK_STOPPED,
1703 NOHZ_BALANCE_KICK,
1704};
1705
1706#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc
TG
1707
1708extern void nohz_balance_exit_idle(unsigned int cpu);
1709#else
1710static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1c792db7 1711#endif
73fbec60
FW
1712
1713#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1714
1715DECLARE_PER_CPU(u64, cpu_hardirq_time);
1716DECLARE_PER_CPU(u64, cpu_softirq_time);
1717
1718#ifndef CONFIG_64BIT
1719DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1720
1721static inline void irq_time_write_begin(void)
1722{
1723 __this_cpu_inc(irq_time_seq.sequence);
1724 smp_wmb();
1725}
1726
1727static inline void irq_time_write_end(void)
1728{
1729 smp_wmb();
1730 __this_cpu_inc(irq_time_seq.sequence);
1731}
1732
1733static inline u64 irq_time_read(int cpu)
1734{
1735 u64 irq_time;
1736 unsigned seq;
1737
1738 do {
1739 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1740 irq_time = per_cpu(cpu_softirq_time, cpu) +
1741 per_cpu(cpu_hardirq_time, cpu);
1742 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1743
1744 return irq_time;
1745}
1746#else /* CONFIG_64BIT */
1747static inline void irq_time_write_begin(void)
1748{
1749}
1750
1751static inline void irq_time_write_end(void)
1752{
1753}
1754
1755static inline u64 irq_time_read(int cpu)
1756{
1757 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1758}
1759#endif /* CONFIG_64BIT */
1760#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
1761
1762#ifdef CONFIG_CPU_FREQ
1763DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1764
1765/**
1766 * cpufreq_update_util - Take a note about CPU utilization changes.
1767 * @time: Current time.
1768 * @util: Current utilization.
1769 * @max: Utilization ceiling.
1770 *
1771 * This function is called by the scheduler on every invocation of
1772 * update_load_avg() on the CPU whose utilization is being updated.
1773 *
1774 * It can only be called from RCU-sched read-side critical sections.
1775 */
1776static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max)
1777{
1778 struct update_util_data *data;
1779
1780 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1781 if (data)
1782 data->func(data, time, util, max);
1783}
1784
1785/**
1786 * cpufreq_trigger_update - Trigger CPU performance state evaluation if needed.
1787 * @time: Current time.
1788 *
1789 * The way cpufreq is currently arranged requires it to evaluate the CPU
1790 * performance state (frequency/voltage) on a regular basis to prevent it from
1791 * being stuck in a completely inadequate performance level for too long.
1792 * That is not guaranteed to happen if the updates are only triggered from CFS,
1793 * though, because they may not be coming in if RT or deadline tasks are active
1794 * all the time (or there are RT and DL tasks only).
1795 *
1796 * As a workaround for that issue, this function is called by the RT and DL
1797 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1798 * but that really is a band-aid. Going forward it should be replaced with
1799 * solutions targeted more specifically at RT and DL tasks.
1800 */
1801static inline void cpufreq_trigger_update(u64 time)
1802{
1803 cpufreq_update_util(time, ULONG_MAX, 0);
1804}
1805#else
1806static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max) {}
1807static inline void cpufreq_trigger_update(u64 time) {}
1808#endif /* CONFIG_CPU_FREQ */
be53f58f 1809
9bdcb44e
RW
1810#ifdef arch_scale_freq_capacity
1811#ifndef arch_scale_freq_invariant
1812#define arch_scale_freq_invariant() (true)
1813#endif
1814#else /* arch_scale_freq_capacity */
1815#define arch_scale_freq_invariant() (false)
1816#endif