sched: Update rq clock earlier in unthrottle_cfs_rq
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
029632fb
PZ
5#include <linux/mutex.h>
6#include <linux/spinlock.h>
7#include <linux/stop_machine.h>
9f3660c2 8#include <linux/tick.h>
029632fb 9
391e43da 10#include "cpupri.h"
60fed789 11#include "cpuacct.h"
029632fb 12
45ceebf7
PG
13struct rq;
14
029632fb
PZ
15extern __read_mostly int scheduler_running;
16
45ceebf7
PG
17extern unsigned long calc_load_update;
18extern atomic_long_t calc_load_tasks;
19
20extern long calc_load_fold_active(struct rq *this_rq);
21extern void update_cpu_load_active(struct rq *this_rq);
22
029632fb
PZ
23/*
24 * Convert user-nice values [ -20 ... 0 ... 19 ]
25 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
26 * and back.
27 */
28#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
29#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
30#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
31
32/*
33 * 'User priority' is the nice value converted to something we
34 * can work with better when scaling various scheduler parameters,
35 * it's a [ 0 ... 39 ] range.
36 */
37#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
38#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
39#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
40
41/*
42 * Helpers for converting nanosecond timing to jiffy resolution
43 */
44#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
45
cc1f4b1f
LZ
46/*
47 * Increase resolution of nice-level calculations for 64-bit architectures.
48 * The extra resolution improves shares distribution and load balancing of
49 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
50 * hierarchies, especially on larger systems. This is not a user-visible change
51 * and does not change the user-interface for setting shares/weights.
52 *
53 * We increase resolution only if we have enough bits to allow this increased
54 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
55 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
56 * increased costs.
57 */
58#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
59# define SCHED_LOAD_RESOLUTION 10
60# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
61# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
62#else
63# define SCHED_LOAD_RESOLUTION 0
64# define scale_load(w) (w)
65# define scale_load_down(w) (w)
66#endif
67
68#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
69#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
70
029632fb
PZ
71#define NICE_0_LOAD SCHED_LOAD_SCALE
72#define NICE_0_SHIFT SCHED_LOAD_SHIFT
73
74/*
75 * These are the 'tuning knobs' of the scheduler:
029632fb 76 */
029632fb
PZ
77
78/*
79 * single value that denotes runtime == period, ie unlimited time.
80 */
81#define RUNTIME_INF ((u64)~0ULL)
82
83static inline int rt_policy(int policy)
84{
85 if (policy == SCHED_FIFO || policy == SCHED_RR)
86 return 1;
87 return 0;
88}
89
90static inline int task_has_rt_policy(struct task_struct *p)
91{
92 return rt_policy(p->policy);
93}
94
95/*
96 * This is the priority-queue data structure of the RT scheduling class:
97 */
98struct rt_prio_array {
99 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
100 struct list_head queue[MAX_RT_PRIO];
101};
102
103struct rt_bandwidth {
104 /* nests inside the rq lock: */
105 raw_spinlock_t rt_runtime_lock;
106 ktime_t rt_period;
107 u64 rt_runtime;
108 struct hrtimer rt_period_timer;
109};
110
111extern struct mutex sched_domains_mutex;
112
113#ifdef CONFIG_CGROUP_SCHED
114
115#include <linux/cgroup.h>
116
117struct cfs_rq;
118struct rt_rq;
119
35cf4e50 120extern struct list_head task_groups;
029632fb
PZ
121
122struct cfs_bandwidth {
123#ifdef CONFIG_CFS_BANDWIDTH
124 raw_spinlock_t lock;
125 ktime_t period;
126 u64 quota, runtime;
127 s64 hierarchal_quota;
128 u64 runtime_expires;
129
130 int idle, timer_active;
131 struct hrtimer period_timer, slack_timer;
132 struct list_head throttled_cfs_rq;
133
134 /* statistics */
135 int nr_periods, nr_throttled;
136 u64 throttled_time;
137#endif
138};
139
140/* task group related information */
141struct task_group {
142 struct cgroup_subsys_state css;
143
144#ifdef CONFIG_FAIR_GROUP_SCHED
145 /* schedulable entities of this group on each cpu */
146 struct sched_entity **se;
147 /* runqueue "owned" by this group on each cpu */
148 struct cfs_rq **cfs_rq;
149 unsigned long shares;
150
151 atomic_t load_weight;
c566e8e9 152 atomic64_t load_avg;
bb17f655 153 atomic_t runnable_avg;
029632fb
PZ
154#endif
155
156#ifdef CONFIG_RT_GROUP_SCHED
157 struct sched_rt_entity **rt_se;
158 struct rt_rq **rt_rq;
159
160 struct rt_bandwidth rt_bandwidth;
161#endif
162
163 struct rcu_head rcu;
164 struct list_head list;
165
166 struct task_group *parent;
167 struct list_head siblings;
168 struct list_head children;
169
170#ifdef CONFIG_SCHED_AUTOGROUP
171 struct autogroup *autogroup;
172#endif
173
174 struct cfs_bandwidth cfs_bandwidth;
175};
176
177#ifdef CONFIG_FAIR_GROUP_SCHED
178#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
179
180/*
181 * A weight of 0 or 1 can cause arithmetics problems.
182 * A weight of a cfs_rq is the sum of weights of which entities
183 * are queued on this cfs_rq, so a weight of a entity should not be
184 * too large, so as the shares value of a task group.
185 * (The default weight is 1024 - so there's no practical
186 * limitation from this.)
187 */
188#define MIN_SHARES (1UL << 1)
189#define MAX_SHARES (1UL << 18)
190#endif
191
029632fb
PZ
192typedef int (*tg_visitor)(struct task_group *, void *);
193
194extern int walk_tg_tree_from(struct task_group *from,
195 tg_visitor down, tg_visitor up, void *data);
196
197/*
198 * Iterate the full tree, calling @down when first entering a node and @up when
199 * leaving it for the final time.
200 *
201 * Caller must hold rcu_lock or sufficient equivalent.
202 */
203static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
204{
205 return walk_tg_tree_from(&root_task_group, down, up, data);
206}
207
208extern int tg_nop(struct task_group *tg, void *data);
209
210extern void free_fair_sched_group(struct task_group *tg);
211extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
212extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
213extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
214 struct sched_entity *se, int cpu,
215 struct sched_entity *parent);
216extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
217extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
218
219extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
220extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
221extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
222
223extern void free_rt_sched_group(struct task_group *tg);
224extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
225extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
226 struct sched_rt_entity *rt_se, int cpu,
227 struct sched_rt_entity *parent);
228
25cc7da7
LZ
229extern struct task_group *sched_create_group(struct task_group *parent);
230extern void sched_online_group(struct task_group *tg,
231 struct task_group *parent);
232extern void sched_destroy_group(struct task_group *tg);
233extern void sched_offline_group(struct task_group *tg);
234
235extern void sched_move_task(struct task_struct *tsk);
236
237#ifdef CONFIG_FAIR_GROUP_SCHED
238extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
239#endif
240
029632fb
PZ
241#else /* CONFIG_CGROUP_SCHED */
242
243struct cfs_bandwidth { };
244
245#endif /* CONFIG_CGROUP_SCHED */
246
247/* CFS-related fields in a runqueue */
248struct cfs_rq {
249 struct load_weight load;
c82513e5 250 unsigned int nr_running, h_nr_running;
029632fb
PZ
251
252 u64 exec_clock;
253 u64 min_vruntime;
254#ifndef CONFIG_64BIT
255 u64 min_vruntime_copy;
256#endif
257
258 struct rb_root tasks_timeline;
259 struct rb_node *rb_leftmost;
260
029632fb
PZ
261 /*
262 * 'curr' points to currently running entity on this cfs_rq.
263 * It is set to NULL otherwise (i.e when none are currently running).
264 */
265 struct sched_entity *curr, *next, *last, *skip;
266
267#ifdef CONFIG_SCHED_DEBUG
268 unsigned int nr_spread_over;
269#endif
270
2dac754e 271#ifdef CONFIG_SMP
f4e26b12
PT
272/*
273 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
274 * removed when useful for applications beyond shares distribution (e.g.
275 * load-balance).
276 */
277#ifdef CONFIG_FAIR_GROUP_SCHED
2dac754e
PT
278 /*
279 * CFS Load tracking
280 * Under CFS, load is tracked on a per-entity basis and aggregated up.
281 * This allows for the description of both thread and group usage (in
282 * the FAIR_GROUP_SCHED case).
283 */
9ee474f5 284 u64 runnable_load_avg, blocked_load_avg;
aff3e498 285 atomic64_t decay_counter, removed_load;
9ee474f5 286 u64 last_decay;
f4e26b12
PT
287#endif /* CONFIG_FAIR_GROUP_SCHED */
288/* These always depend on CONFIG_FAIR_GROUP_SCHED */
c566e8e9 289#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 290 u32 tg_runnable_contrib;
c566e8e9 291 u64 tg_load_contrib;
82958366
PT
292#endif /* CONFIG_FAIR_GROUP_SCHED */
293
294 /*
295 * h_load = weight * f(tg)
296 *
297 * Where f(tg) is the recursive weight fraction assigned to
298 * this group.
299 */
300 unsigned long h_load;
301#endif /* CONFIG_SMP */
302
029632fb
PZ
303#ifdef CONFIG_FAIR_GROUP_SCHED
304 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
305
306 /*
307 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
308 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
309 * (like users, containers etc.)
310 *
311 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
312 * list is used during load balance.
313 */
314 int on_list;
315 struct list_head leaf_cfs_rq_list;
316 struct task_group *tg; /* group that "owns" this runqueue */
317
029632fb
PZ
318#ifdef CONFIG_CFS_BANDWIDTH
319 int runtime_enabled;
320 u64 runtime_expires;
321 s64 runtime_remaining;
322
f1b17280
PT
323 u64 throttled_clock, throttled_clock_task;
324 u64 throttled_clock_task_time;
029632fb
PZ
325 int throttled, throttle_count;
326 struct list_head throttled_list;
327#endif /* CONFIG_CFS_BANDWIDTH */
328#endif /* CONFIG_FAIR_GROUP_SCHED */
329};
330
331static inline int rt_bandwidth_enabled(void)
332{
333 return sysctl_sched_rt_runtime >= 0;
334}
335
336/* Real-Time classes' related field in a runqueue: */
337struct rt_rq {
338 struct rt_prio_array active;
c82513e5 339 unsigned int rt_nr_running;
029632fb
PZ
340#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
341 struct {
342 int curr; /* highest queued rt task prio */
343#ifdef CONFIG_SMP
344 int next; /* next highest */
345#endif
346 } highest_prio;
347#endif
348#ifdef CONFIG_SMP
349 unsigned long rt_nr_migratory;
350 unsigned long rt_nr_total;
351 int overloaded;
352 struct plist_head pushable_tasks;
353#endif
354 int rt_throttled;
355 u64 rt_time;
356 u64 rt_runtime;
357 /* Nests inside the rq lock: */
358 raw_spinlock_t rt_runtime_lock;
359
360#ifdef CONFIG_RT_GROUP_SCHED
361 unsigned long rt_nr_boosted;
362
363 struct rq *rq;
364 struct list_head leaf_rt_rq_list;
365 struct task_group *tg;
366#endif
367};
368
369#ifdef CONFIG_SMP
370
371/*
372 * We add the notion of a root-domain which will be used to define per-domain
373 * variables. Each exclusive cpuset essentially defines an island domain by
374 * fully partitioning the member cpus from any other cpuset. Whenever a new
375 * exclusive cpuset is created, we also create and attach a new root-domain
376 * object.
377 *
378 */
379struct root_domain {
380 atomic_t refcount;
381 atomic_t rto_count;
382 struct rcu_head rcu;
383 cpumask_var_t span;
384 cpumask_var_t online;
385
386 /*
387 * The "RT overload" flag: it gets set if a CPU has more than
388 * one runnable RT task.
389 */
390 cpumask_var_t rto_mask;
391 struct cpupri cpupri;
392};
393
394extern struct root_domain def_root_domain;
395
396#endif /* CONFIG_SMP */
397
398/*
399 * This is the main, per-CPU runqueue data structure.
400 *
401 * Locking rule: those places that want to lock multiple runqueues
402 * (such as the load balancing or the thread migration code), lock
403 * acquire operations must be ordered by ascending &runqueue.
404 */
405struct rq {
406 /* runqueue lock: */
407 raw_spinlock_t lock;
408
409 /*
410 * nr_running and cpu_load should be in the same cacheline because
411 * remote CPUs use both these fields when doing load calculation.
412 */
c82513e5 413 unsigned int nr_running;
029632fb
PZ
414 #define CPU_LOAD_IDX_MAX 5
415 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
416 unsigned long last_load_update_tick;
3451d024 417#ifdef CONFIG_NO_HZ_COMMON
029632fb 418 u64 nohz_stamp;
1c792db7 419 unsigned long nohz_flags;
265f22a9
FW
420#endif
421#ifdef CONFIG_NO_HZ_FULL
422 unsigned long last_sched_tick;
029632fb
PZ
423#endif
424 int skip_clock_update;
425
426 /* capture load from *all* tasks on this cpu: */
427 struct load_weight load;
428 unsigned long nr_load_updates;
429 u64 nr_switches;
430
431 struct cfs_rq cfs;
432 struct rt_rq rt;
433
434#ifdef CONFIG_FAIR_GROUP_SCHED
435 /* list of leaf cfs_rq on this cpu: */
436 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
437#ifdef CONFIG_SMP
438 unsigned long h_load_throttle;
439#endif /* CONFIG_SMP */
440#endif /* CONFIG_FAIR_GROUP_SCHED */
441
029632fb
PZ
442#ifdef CONFIG_RT_GROUP_SCHED
443 struct list_head leaf_rt_rq_list;
444#endif
445
446 /*
447 * This is part of a global counter where only the total sum
448 * over all CPUs matters. A task can increase this counter on
449 * one CPU and if it got migrated afterwards it may decrease
450 * it on another CPU. Always updated under the runqueue lock:
451 */
452 unsigned long nr_uninterruptible;
453
454 struct task_struct *curr, *idle, *stop;
455 unsigned long next_balance;
456 struct mm_struct *prev_mm;
457
458 u64 clock;
459 u64 clock_task;
460
461 atomic_t nr_iowait;
462
463#ifdef CONFIG_SMP
464 struct root_domain *rd;
465 struct sched_domain *sd;
466
467 unsigned long cpu_power;
468
469 unsigned char idle_balance;
470 /* For active balancing */
471 int post_schedule;
472 int active_balance;
473 int push_cpu;
474 struct cpu_stop_work active_balance_work;
475 /* cpu of this runqueue: */
476 int cpu;
477 int online;
478
367456c7
PZ
479 struct list_head cfs_tasks;
480
029632fb
PZ
481 u64 rt_avg;
482 u64 age_stamp;
483 u64 idle_stamp;
484 u64 avg_idle;
485#endif
486
487#ifdef CONFIG_IRQ_TIME_ACCOUNTING
488 u64 prev_irq_time;
489#endif
490#ifdef CONFIG_PARAVIRT
491 u64 prev_steal_time;
492#endif
493#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
494 u64 prev_steal_time_rq;
495#endif
496
497 /* calc_load related fields */
498 unsigned long calc_load_update;
499 long calc_load_active;
500
501#ifdef CONFIG_SCHED_HRTICK
502#ifdef CONFIG_SMP
503 int hrtick_csd_pending;
504 struct call_single_data hrtick_csd;
505#endif
506 struct hrtimer hrtick_timer;
507#endif
508
509#ifdef CONFIG_SCHEDSTATS
510 /* latency stats */
511 struct sched_info rq_sched_info;
512 unsigned long long rq_cpu_time;
513 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
514
515 /* sys_sched_yield() stats */
516 unsigned int yld_count;
517
518 /* schedule() stats */
029632fb
PZ
519 unsigned int sched_count;
520 unsigned int sched_goidle;
521
522 /* try_to_wake_up() stats */
523 unsigned int ttwu_count;
524 unsigned int ttwu_local;
525#endif
526
527#ifdef CONFIG_SMP
528 struct llist_head wake_list;
529#endif
18bf2805
BS
530
531 struct sched_avg avg;
029632fb
PZ
532};
533
534static inline int cpu_of(struct rq *rq)
535{
536#ifdef CONFIG_SMP
537 return rq->cpu;
538#else
539 return 0;
540#endif
541}
542
543DECLARE_PER_CPU(struct rq, runqueues);
544
518cd623
PZ
545#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
546#define this_rq() (&__get_cpu_var(runqueues))
547#define task_rq(p) cpu_rq(task_cpu(p))
548#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
549#define raw_rq() (&__raw_get_cpu_var(runqueues))
550
551#ifdef CONFIG_SMP
552
029632fb
PZ
553#define rcu_dereference_check_sched_domain(p) \
554 rcu_dereference_check((p), \
555 lockdep_is_held(&sched_domains_mutex))
556
557/*
558 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
559 * See detach_destroy_domains: synchronize_sched for details.
560 *
561 * The domain tree of any CPU may only be accessed from within
562 * preempt-disabled sections.
563 */
564#define for_each_domain(cpu, __sd) \
518cd623
PZ
565 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
566 __sd; __sd = __sd->parent)
029632fb 567
77e81365
SS
568#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
569
518cd623
PZ
570/**
571 * highest_flag_domain - Return highest sched_domain containing flag.
572 * @cpu: The cpu whose highest level of sched domain is to
573 * be returned.
574 * @flag: The flag to check for the highest sched_domain
575 * for the given cpu.
576 *
577 * Returns the highest sched_domain of a cpu which contains the given flag.
578 */
579static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
580{
581 struct sched_domain *sd, *hsd = NULL;
582
583 for_each_domain(cpu, sd) {
584 if (!(sd->flags & flag))
585 break;
586 hsd = sd;
587 }
588
589 return hsd;
590}
591
592DECLARE_PER_CPU(struct sched_domain *, sd_llc);
593DECLARE_PER_CPU(int, sd_llc_id);
594
5e6521ea
LZ
595struct sched_group_power {
596 atomic_t ref;
597 /*
598 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
599 * single CPU.
600 */
601 unsigned int power, power_orig;
602 unsigned long next_update;
603 /*
604 * Number of busy cpus in this group.
605 */
606 atomic_t nr_busy_cpus;
607
608 unsigned long cpumask[0]; /* iteration mask */
609};
610
611struct sched_group {
612 struct sched_group *next; /* Must be a circular list */
613 atomic_t ref;
614
615 unsigned int group_weight;
616 struct sched_group_power *sgp;
617
618 /*
619 * The CPUs this group covers.
620 *
621 * NOTE: this field is variable length. (Allocated dynamically
622 * by attaching extra space to the end of the structure,
623 * depending on how many CPUs the kernel has booted up with)
624 */
625 unsigned long cpumask[0];
626};
627
628static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
629{
630 return to_cpumask(sg->cpumask);
631}
632
633/*
634 * cpumask masking which cpus in the group are allowed to iterate up the domain
635 * tree.
636 */
637static inline struct cpumask *sched_group_mask(struct sched_group *sg)
638{
639 return to_cpumask(sg->sgp->cpumask);
640}
641
642/**
643 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
644 * @group: The group whose first cpu is to be returned.
645 */
646static inline unsigned int group_first_cpu(struct sched_group *group)
647{
648 return cpumask_first(sched_group_cpus(group));
649}
650
c1174876
PZ
651extern int group_balance_cpu(struct sched_group *sg);
652
518cd623 653#endif /* CONFIG_SMP */
029632fb 654
391e43da
PZ
655#include "stats.h"
656#include "auto_group.h"
029632fb
PZ
657
658#ifdef CONFIG_CGROUP_SCHED
659
660/*
661 * Return the group to which this tasks belongs.
662 *
8323f26c
PZ
663 * We cannot use task_subsys_state() and friends because the cgroup
664 * subsystem changes that value before the cgroup_subsys::attach() method
665 * is called, therefore we cannot pin it and might observe the wrong value.
666 *
667 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
668 * core changes this before calling sched_move_task().
669 *
670 * Instead we use a 'copy' which is updated from sched_move_task() while
671 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
672 */
673static inline struct task_group *task_group(struct task_struct *p)
674{
8323f26c 675 return p->sched_task_group;
029632fb
PZ
676}
677
678/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
679static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
680{
681#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
682 struct task_group *tg = task_group(p);
683#endif
684
685#ifdef CONFIG_FAIR_GROUP_SCHED
686 p->se.cfs_rq = tg->cfs_rq[cpu];
687 p->se.parent = tg->se[cpu];
688#endif
689
690#ifdef CONFIG_RT_GROUP_SCHED
691 p->rt.rt_rq = tg->rt_rq[cpu];
692 p->rt.parent = tg->rt_se[cpu];
693#endif
694}
695
696#else /* CONFIG_CGROUP_SCHED */
697
698static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
699static inline struct task_group *task_group(struct task_struct *p)
700{
701 return NULL;
702}
703
704#endif /* CONFIG_CGROUP_SCHED */
705
706static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
707{
708 set_task_rq(p, cpu);
709#ifdef CONFIG_SMP
710 /*
711 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
712 * successfuly executed on another CPU. We must ensure that updates of
713 * per-task data have been completed by this moment.
714 */
715 smp_wmb();
716 task_thread_info(p)->cpu = cpu;
717#endif
718}
719
720/*
721 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
722 */
723#ifdef CONFIG_SCHED_DEBUG
c5905afb 724# include <linux/static_key.h>
029632fb
PZ
725# define const_debug __read_mostly
726#else
727# define const_debug const
728#endif
729
730extern const_debug unsigned int sysctl_sched_features;
731
732#define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name ,
734
735enum {
391e43da 736#include "features.h"
f8b6d1cc 737 __SCHED_FEAT_NR,
029632fb
PZ
738};
739
740#undef SCHED_FEAT
741
f8b6d1cc 742#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 743static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 744{
c5905afb 745 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
746}
747
c5905afb 748static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 749{
c5905afb 750 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
751}
752
753#define SCHED_FEAT(name, enabled) \
c5905afb 754static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
755{ \
756 return static_branch__##enabled(key); \
757}
758
759#include "features.h"
760
761#undef SCHED_FEAT
762
c5905afb 763extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
764#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 766#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 767#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 768
cbee9f88
PZ
769#ifdef CONFIG_NUMA_BALANCING
770#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
771#ifdef CONFIG_SCHED_DEBUG
772#define numabalancing_enabled sched_feat_numa(NUMA)
773#else
774extern bool numabalancing_enabled;
775#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
776#else
777#define sched_feat_numa(x) (0)
3105b86a
MG
778#define numabalancing_enabled (0)
779#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 780
029632fb
PZ
781static inline u64 global_rt_period(void)
782{
783 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
784}
785
786static inline u64 global_rt_runtime(void)
787{
788 if (sysctl_sched_rt_runtime < 0)
789 return RUNTIME_INF;
790
791 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
792}
793
794
795
796static inline int task_current(struct rq *rq, struct task_struct *p)
797{
798 return rq->curr == p;
799}
800
801static inline int task_running(struct rq *rq, struct task_struct *p)
802{
803#ifdef CONFIG_SMP
804 return p->on_cpu;
805#else
806 return task_current(rq, p);
807#endif
808}
809
810
811#ifndef prepare_arch_switch
812# define prepare_arch_switch(next) do { } while (0)
813#endif
814#ifndef finish_arch_switch
815# define finish_arch_switch(prev) do { } while (0)
816#endif
01f23e16
CM
817#ifndef finish_arch_post_lock_switch
818# define finish_arch_post_lock_switch() do { } while (0)
819#endif
029632fb
PZ
820
821#ifndef __ARCH_WANT_UNLOCKED_CTXSW
822static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
823{
824#ifdef CONFIG_SMP
825 /*
826 * We can optimise this out completely for !SMP, because the
827 * SMP rebalancing from interrupt is the only thing that cares
828 * here.
829 */
830 next->on_cpu = 1;
831#endif
832}
833
834static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
835{
836#ifdef CONFIG_SMP
837 /*
838 * After ->on_cpu is cleared, the task can be moved to a different CPU.
839 * We must ensure this doesn't happen until the switch is completely
840 * finished.
841 */
842 smp_wmb();
843 prev->on_cpu = 0;
844#endif
845#ifdef CONFIG_DEBUG_SPINLOCK
846 /* this is a valid case when another task releases the spinlock */
847 rq->lock.owner = current;
848#endif
849 /*
850 * If we are tracking spinlock dependencies then we have to
851 * fix up the runqueue lock - which gets 'carried over' from
852 * prev into current:
853 */
854 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
855
856 raw_spin_unlock_irq(&rq->lock);
857}
858
859#else /* __ARCH_WANT_UNLOCKED_CTXSW */
860static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
861{
862#ifdef CONFIG_SMP
863 /*
864 * We can optimise this out completely for !SMP, because the
865 * SMP rebalancing from interrupt is the only thing that cares
866 * here.
867 */
868 next->on_cpu = 1;
869#endif
029632fb 870 raw_spin_unlock(&rq->lock);
029632fb
PZ
871}
872
873static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
874{
875#ifdef CONFIG_SMP
876 /*
877 * After ->on_cpu is cleared, the task can be moved to a different CPU.
878 * We must ensure this doesn't happen until the switch is completely
879 * finished.
880 */
881 smp_wmb();
882 prev->on_cpu = 0;
883#endif
029632fb 884 local_irq_enable();
029632fb
PZ
885}
886#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
887
b13095f0
LZ
888/*
889 * wake flags
890 */
891#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
892#define WF_FORK 0x02 /* child wakeup after fork */
893#define WF_MIGRATED 0x4 /* internal use, task got migrated */
894
029632fb
PZ
895/*
896 * To aid in avoiding the subversion of "niceness" due to uneven distribution
897 * of tasks with abnormal "nice" values across CPUs the contribution that
898 * each task makes to its run queue's load is weighted according to its
899 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
900 * scaled version of the new time slice allocation that they receive on time
901 * slice expiry etc.
902 */
903
904#define WEIGHT_IDLEPRIO 3
905#define WMULT_IDLEPRIO 1431655765
906
907/*
908 * Nice levels are multiplicative, with a gentle 10% change for every
909 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
910 * nice 1, it will get ~10% less CPU time than another CPU-bound task
911 * that remained on nice 0.
912 *
913 * The "10% effect" is relative and cumulative: from _any_ nice level,
914 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
915 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
916 * If a task goes up by ~10% and another task goes down by ~10% then
917 * the relative distance between them is ~25%.)
918 */
919static const int prio_to_weight[40] = {
920 /* -20 */ 88761, 71755, 56483, 46273, 36291,
921 /* -15 */ 29154, 23254, 18705, 14949, 11916,
922 /* -10 */ 9548, 7620, 6100, 4904, 3906,
923 /* -5 */ 3121, 2501, 1991, 1586, 1277,
924 /* 0 */ 1024, 820, 655, 526, 423,
925 /* 5 */ 335, 272, 215, 172, 137,
926 /* 10 */ 110, 87, 70, 56, 45,
927 /* 15 */ 36, 29, 23, 18, 15,
928};
929
930/*
931 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
932 *
933 * In cases where the weight does not change often, we can use the
934 * precalculated inverse to speed up arithmetics by turning divisions
935 * into multiplications:
936 */
937static const u32 prio_to_wmult[40] = {
938 /* -20 */ 48388, 59856, 76040, 92818, 118348,
939 /* -15 */ 147320, 184698, 229616, 287308, 360437,
940 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
941 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
942 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
943 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
944 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
945 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
946};
947
c82ba9fa
LZ
948#define ENQUEUE_WAKEUP 1
949#define ENQUEUE_HEAD 2
950#ifdef CONFIG_SMP
951#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
952#else
953#define ENQUEUE_WAKING 0
954#endif
955
956#define DEQUEUE_SLEEP 1
957
958struct sched_class {
959 const struct sched_class *next;
960
961 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
962 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
963 void (*yield_task) (struct rq *rq);
964 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
965
966 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
967
968 struct task_struct * (*pick_next_task) (struct rq *rq);
969 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
970
971#ifdef CONFIG_SMP
972 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
973 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
974
975 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
976 void (*post_schedule) (struct rq *this_rq);
977 void (*task_waking) (struct task_struct *task);
978 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
979
980 void (*set_cpus_allowed)(struct task_struct *p,
981 const struct cpumask *newmask);
982
983 void (*rq_online)(struct rq *rq);
984 void (*rq_offline)(struct rq *rq);
985#endif
986
987 void (*set_curr_task) (struct rq *rq);
988 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
989 void (*task_fork) (struct task_struct *p);
990
991 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
992 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
993 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
994 int oldprio);
995
996 unsigned int (*get_rr_interval) (struct rq *rq,
997 struct task_struct *task);
998
999#ifdef CONFIG_FAIR_GROUP_SCHED
1000 void (*task_move_group) (struct task_struct *p, int on_rq);
1001#endif
1002};
029632fb
PZ
1003
1004#define sched_class_highest (&stop_sched_class)
1005#define for_each_class(class) \
1006 for (class = sched_class_highest; class; class = class->next)
1007
1008extern const struct sched_class stop_sched_class;
1009extern const struct sched_class rt_sched_class;
1010extern const struct sched_class fair_sched_class;
1011extern const struct sched_class idle_sched_class;
1012
1013
1014#ifdef CONFIG_SMP
1015
b719203b
LZ
1016extern void update_group_power(struct sched_domain *sd, int cpu);
1017
029632fb
PZ
1018extern void trigger_load_balance(struct rq *rq, int cpu);
1019extern void idle_balance(int this_cpu, struct rq *this_rq);
1020
642dbc39
VG
1021/*
1022 * Only depends on SMP, FAIR_GROUP_SCHED may be removed when runnable_avg
1023 * becomes useful in lb
1024 */
1025#if defined(CONFIG_FAIR_GROUP_SCHED)
1026extern void idle_enter_fair(struct rq *this_rq);
1027extern void idle_exit_fair(struct rq *this_rq);
1028#else
1029static inline void idle_enter_fair(struct rq *this_rq) {}
1030static inline void idle_exit_fair(struct rq *this_rq) {}
1031#endif
1032
029632fb
PZ
1033#else /* CONFIG_SMP */
1034
1035static inline void idle_balance(int cpu, struct rq *rq)
1036{
1037}
1038
1039#endif
1040
1041extern void sysrq_sched_debug_show(void);
1042extern void sched_init_granularity(void);
1043extern void update_max_interval(void);
029632fb
PZ
1044extern void init_sched_rt_class(void);
1045extern void init_sched_fair_class(void);
1046
1047extern void resched_task(struct task_struct *p);
1048extern void resched_cpu(int cpu);
1049
1050extern struct rt_bandwidth def_rt_bandwidth;
1051extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1052
556061b0 1053extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1054
73fbec60
FW
1055#ifdef CONFIG_PARAVIRT
1056static inline u64 steal_ticks(u64 steal)
1057{
1058 if (unlikely(steal > NSEC_PER_SEC))
1059 return div_u64(steal, TICK_NSEC);
1060
1061 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1062}
1063#endif
1064
029632fb
PZ
1065static inline void inc_nr_running(struct rq *rq)
1066{
1067 rq->nr_running++;
9f3660c2
FW
1068
1069#ifdef CONFIG_NO_HZ_FULL
1070 if (rq->nr_running == 2) {
1071 if (tick_nohz_full_cpu(rq->cpu)) {
1072 /* Order rq->nr_running write against the IPI */
1073 smp_wmb();
1074 smp_send_reschedule(rq->cpu);
1075 }
1076 }
1077#endif
029632fb
PZ
1078}
1079
1080static inline void dec_nr_running(struct rq *rq)
1081{
1082 rq->nr_running--;
1083}
1084
265f22a9
FW
1085static inline void rq_last_tick_reset(struct rq *rq)
1086{
1087#ifdef CONFIG_NO_HZ_FULL
1088 rq->last_sched_tick = jiffies;
1089#endif
1090}
1091
029632fb
PZ
1092extern void update_rq_clock(struct rq *rq);
1093
1094extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1095extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1096
1097extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1098
1099extern const_debug unsigned int sysctl_sched_time_avg;
1100extern const_debug unsigned int sysctl_sched_nr_migrate;
1101extern const_debug unsigned int sysctl_sched_migration_cost;
1102
1103static inline u64 sched_avg_period(void)
1104{
1105 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1106}
1107
029632fb
PZ
1108#ifdef CONFIG_SCHED_HRTICK
1109
1110/*
1111 * Use hrtick when:
1112 * - enabled by features
1113 * - hrtimer is actually high res
1114 */
1115static inline int hrtick_enabled(struct rq *rq)
1116{
1117 if (!sched_feat(HRTICK))
1118 return 0;
1119 if (!cpu_active(cpu_of(rq)))
1120 return 0;
1121 return hrtimer_is_hres_active(&rq->hrtick_timer);
1122}
1123
1124void hrtick_start(struct rq *rq, u64 delay);
1125
b39e66ea
MG
1126#else
1127
1128static inline int hrtick_enabled(struct rq *rq)
1129{
1130 return 0;
1131}
1132
029632fb
PZ
1133#endif /* CONFIG_SCHED_HRTICK */
1134
1135#ifdef CONFIG_SMP
1136extern void sched_avg_update(struct rq *rq);
1137static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1138{
1139 rq->rt_avg += rt_delta;
1140 sched_avg_update(rq);
1141}
1142#else
1143static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1144static inline void sched_avg_update(struct rq *rq) { }
1145#endif
1146
1147extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1148
1149#ifdef CONFIG_SMP
1150#ifdef CONFIG_PREEMPT
1151
1152static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1153
1154/*
1155 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1156 * way at the expense of forcing extra atomic operations in all
1157 * invocations. This assures that the double_lock is acquired using the
1158 * same underlying policy as the spinlock_t on this architecture, which
1159 * reduces latency compared to the unfair variant below. However, it
1160 * also adds more overhead and therefore may reduce throughput.
1161 */
1162static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1163 __releases(this_rq->lock)
1164 __acquires(busiest->lock)
1165 __acquires(this_rq->lock)
1166{
1167 raw_spin_unlock(&this_rq->lock);
1168 double_rq_lock(this_rq, busiest);
1169
1170 return 1;
1171}
1172
1173#else
1174/*
1175 * Unfair double_lock_balance: Optimizes throughput at the expense of
1176 * latency by eliminating extra atomic operations when the locks are
1177 * already in proper order on entry. This favors lower cpu-ids and will
1178 * grant the double lock to lower cpus over higher ids under contention,
1179 * regardless of entry order into the function.
1180 */
1181static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1182 __releases(this_rq->lock)
1183 __acquires(busiest->lock)
1184 __acquires(this_rq->lock)
1185{
1186 int ret = 0;
1187
1188 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1189 if (busiest < this_rq) {
1190 raw_spin_unlock(&this_rq->lock);
1191 raw_spin_lock(&busiest->lock);
1192 raw_spin_lock_nested(&this_rq->lock,
1193 SINGLE_DEPTH_NESTING);
1194 ret = 1;
1195 } else
1196 raw_spin_lock_nested(&busiest->lock,
1197 SINGLE_DEPTH_NESTING);
1198 }
1199 return ret;
1200}
1201
1202#endif /* CONFIG_PREEMPT */
1203
1204/*
1205 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1206 */
1207static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1208{
1209 if (unlikely(!irqs_disabled())) {
1210 /* printk() doesn't work good under rq->lock */
1211 raw_spin_unlock(&this_rq->lock);
1212 BUG_ON(1);
1213 }
1214
1215 return _double_lock_balance(this_rq, busiest);
1216}
1217
1218static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1219 __releases(busiest->lock)
1220{
1221 raw_spin_unlock(&busiest->lock);
1222 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1223}
1224
1225/*
1226 * double_rq_lock - safely lock two runqueues
1227 *
1228 * Note this does not disable interrupts like task_rq_lock,
1229 * you need to do so manually before calling.
1230 */
1231static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1232 __acquires(rq1->lock)
1233 __acquires(rq2->lock)
1234{
1235 BUG_ON(!irqs_disabled());
1236 if (rq1 == rq2) {
1237 raw_spin_lock(&rq1->lock);
1238 __acquire(rq2->lock); /* Fake it out ;) */
1239 } else {
1240 if (rq1 < rq2) {
1241 raw_spin_lock(&rq1->lock);
1242 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1243 } else {
1244 raw_spin_lock(&rq2->lock);
1245 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1246 }
1247 }
1248}
1249
1250/*
1251 * double_rq_unlock - safely unlock two runqueues
1252 *
1253 * Note this does not restore interrupts like task_rq_unlock,
1254 * you need to do so manually after calling.
1255 */
1256static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1257 __releases(rq1->lock)
1258 __releases(rq2->lock)
1259{
1260 raw_spin_unlock(&rq1->lock);
1261 if (rq1 != rq2)
1262 raw_spin_unlock(&rq2->lock);
1263 else
1264 __release(rq2->lock);
1265}
1266
1267#else /* CONFIG_SMP */
1268
1269/*
1270 * double_rq_lock - safely lock two runqueues
1271 *
1272 * Note this does not disable interrupts like task_rq_lock,
1273 * you need to do so manually before calling.
1274 */
1275static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1276 __acquires(rq1->lock)
1277 __acquires(rq2->lock)
1278{
1279 BUG_ON(!irqs_disabled());
1280 BUG_ON(rq1 != rq2);
1281 raw_spin_lock(&rq1->lock);
1282 __acquire(rq2->lock); /* Fake it out ;) */
1283}
1284
1285/*
1286 * double_rq_unlock - safely unlock two runqueues
1287 *
1288 * Note this does not restore interrupts like task_rq_unlock,
1289 * you need to do so manually after calling.
1290 */
1291static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1292 __releases(rq1->lock)
1293 __releases(rq2->lock)
1294{
1295 BUG_ON(rq1 != rq2);
1296 raw_spin_unlock(&rq1->lock);
1297 __release(rq2->lock);
1298}
1299
1300#endif
1301
1302extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1303extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1304extern void print_cfs_stats(struct seq_file *m, int cpu);
1305extern void print_rt_stats(struct seq_file *m, int cpu);
1306
1307extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1308extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
029632fb
PZ
1309
1310extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1c792db7 1311
3451d024 1312#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1313enum rq_nohz_flag_bits {
1314 NOHZ_TICK_STOPPED,
1315 NOHZ_BALANCE_KICK,
1316};
1317
1318#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1319#endif
73fbec60
FW
1320
1321#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1322
1323DECLARE_PER_CPU(u64, cpu_hardirq_time);
1324DECLARE_PER_CPU(u64, cpu_softirq_time);
1325
1326#ifndef CONFIG_64BIT
1327DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1328
1329static inline void irq_time_write_begin(void)
1330{
1331 __this_cpu_inc(irq_time_seq.sequence);
1332 smp_wmb();
1333}
1334
1335static inline void irq_time_write_end(void)
1336{
1337 smp_wmb();
1338 __this_cpu_inc(irq_time_seq.sequence);
1339}
1340
1341static inline u64 irq_time_read(int cpu)
1342{
1343 u64 irq_time;
1344 unsigned seq;
1345
1346 do {
1347 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1348 irq_time = per_cpu(cpu_softirq_time, cpu) +
1349 per_cpu(cpu_hardirq_time, cpu);
1350 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1351
1352 return irq_time;
1353}
1354#else /* CONFIG_64BIT */
1355static inline void irq_time_write_begin(void)
1356{
1357}
1358
1359static inline void irq_time_write_end(void)
1360{
1361}
1362
1363static inline u64 irq_time_read(int cpu)
1364{
1365 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1366}
1367#endif /* CONFIG_64BIT */
1368#endif /* CONFIG_IRQ_TIME_ACCOUNTING */