sched/idle: Remove stale old file
[linux-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
029632fb
PZ
6#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
9f3660c2 9#include <linux/tick.h>
f809ca9a 10#include <linux/slab.h>
029632fb 11
391e43da 12#include "cpupri.h"
6bfd6d72 13#include "cpudeadline.h"
60fed789 14#include "cpuacct.h"
029632fb 15
45ceebf7
PG
16struct rq;
17
029632fb
PZ
18extern __read_mostly int scheduler_running;
19
45ceebf7
PG
20extern unsigned long calc_load_update;
21extern atomic_long_t calc_load_tasks;
22
23extern long calc_load_fold_active(struct rq *this_rq);
24extern void update_cpu_load_active(struct rq *this_rq);
25
029632fb
PZ
26/*
27 * Helpers for converting nanosecond timing to jiffy resolution
28 */
29#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
30
cc1f4b1f
LZ
31/*
32 * Increase resolution of nice-level calculations for 64-bit architectures.
33 * The extra resolution improves shares distribution and load balancing of
34 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
35 * hierarchies, especially on larger systems. This is not a user-visible change
36 * and does not change the user-interface for setting shares/weights.
37 *
38 * We increase resolution only if we have enough bits to allow this increased
39 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
40 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
41 * increased costs.
42 */
43#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
44# define SCHED_LOAD_RESOLUTION 10
45# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
46# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
47#else
48# define SCHED_LOAD_RESOLUTION 0
49# define scale_load(w) (w)
50# define scale_load_down(w) (w)
51#endif
52
53#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
54#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
55
029632fb
PZ
56#define NICE_0_LOAD SCHED_LOAD_SCALE
57#define NICE_0_SHIFT SCHED_LOAD_SHIFT
58
332ac17e
DF
59/*
60 * Single value that decides SCHED_DEADLINE internal math precision.
61 * 10 -> just above 1us
62 * 9 -> just above 0.5us
63 */
64#define DL_SCALE (10)
65
029632fb
PZ
66/*
67 * These are the 'tuning knobs' of the scheduler:
029632fb 68 */
029632fb
PZ
69
70/*
71 * single value that denotes runtime == period, ie unlimited time.
72 */
73#define RUNTIME_INF ((u64)~0ULL)
74
d50dde5a
DF
75static inline int fair_policy(int policy)
76{
77 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
78}
79
029632fb
PZ
80static inline int rt_policy(int policy)
81{
d50dde5a 82 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
83}
84
aab03e05
DF
85static inline int dl_policy(int policy)
86{
87 return policy == SCHED_DEADLINE;
88}
89
029632fb
PZ
90static inline int task_has_rt_policy(struct task_struct *p)
91{
92 return rt_policy(p->policy);
93}
94
aab03e05
DF
95static inline int task_has_dl_policy(struct task_struct *p)
96{
97 return dl_policy(p->policy);
98}
99
332ac17e 100static inline bool dl_time_before(u64 a, u64 b)
2d3d891d
DF
101{
102 return (s64)(a - b) < 0;
103}
104
105/*
106 * Tells if entity @a should preempt entity @b.
107 */
332ac17e
DF
108static inline bool
109dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
110{
111 return dl_time_before(a->deadline, b->deadline);
112}
113
029632fb
PZ
114/*
115 * This is the priority-queue data structure of the RT scheduling class:
116 */
117struct rt_prio_array {
118 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
119 struct list_head queue[MAX_RT_PRIO];
120};
121
122struct rt_bandwidth {
123 /* nests inside the rq lock: */
124 raw_spinlock_t rt_runtime_lock;
125 ktime_t rt_period;
126 u64 rt_runtime;
127 struct hrtimer rt_period_timer;
128};
332ac17e
DF
129/*
130 * To keep the bandwidth of -deadline tasks and groups under control
131 * we need some place where:
132 * - store the maximum -deadline bandwidth of the system (the group);
133 * - cache the fraction of that bandwidth that is currently allocated.
134 *
135 * This is all done in the data structure below. It is similar to the
136 * one used for RT-throttling (rt_bandwidth), with the main difference
137 * that, since here we are only interested in admission control, we
138 * do not decrease any runtime while the group "executes", neither we
139 * need a timer to replenish it.
140 *
141 * With respect to SMP, the bandwidth is given on a per-CPU basis,
142 * meaning that:
143 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
144 * - dl_total_bw array contains, in the i-eth element, the currently
145 * allocated bandwidth on the i-eth CPU.
146 * Moreover, groups consume bandwidth on each CPU, while tasks only
147 * consume bandwidth on the CPU they're running on.
148 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
149 * that will be shown the next time the proc or cgroup controls will
150 * be red. It on its turn can be changed by writing on its own
151 * control.
152 */
153struct dl_bandwidth {
154 raw_spinlock_t dl_runtime_lock;
155 u64 dl_runtime;
156 u64 dl_period;
157};
158
159static inline int dl_bandwidth_enabled(void)
160{
1724813d 161 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
162}
163
164extern struct dl_bw *dl_bw_of(int i);
165
166struct dl_bw {
167 raw_spinlock_t lock;
168 u64 bw, total_bw;
169};
170
029632fb
PZ
171extern struct mutex sched_domains_mutex;
172
173#ifdef CONFIG_CGROUP_SCHED
174
175#include <linux/cgroup.h>
176
177struct cfs_rq;
178struct rt_rq;
179
35cf4e50 180extern struct list_head task_groups;
029632fb
PZ
181
182struct cfs_bandwidth {
183#ifdef CONFIG_CFS_BANDWIDTH
184 raw_spinlock_t lock;
185 ktime_t period;
186 u64 quota, runtime;
187 s64 hierarchal_quota;
188 u64 runtime_expires;
189
190 int idle, timer_active;
191 struct hrtimer period_timer, slack_timer;
192 struct list_head throttled_cfs_rq;
193
194 /* statistics */
195 int nr_periods, nr_throttled;
196 u64 throttled_time;
197#endif
198};
199
200/* task group related information */
201struct task_group {
202 struct cgroup_subsys_state css;
203
204#ifdef CONFIG_FAIR_GROUP_SCHED
205 /* schedulable entities of this group on each cpu */
206 struct sched_entity **se;
207 /* runqueue "owned" by this group on each cpu */
208 struct cfs_rq **cfs_rq;
209 unsigned long shares;
210
fa6bddeb 211#ifdef CONFIG_SMP
bf5b986e 212 atomic_long_t load_avg;
bb17f655 213 atomic_t runnable_avg;
029632fb 214#endif
fa6bddeb 215#endif
029632fb
PZ
216
217#ifdef CONFIG_RT_GROUP_SCHED
218 struct sched_rt_entity **rt_se;
219 struct rt_rq **rt_rq;
220
221 struct rt_bandwidth rt_bandwidth;
222#endif
223
224 struct rcu_head rcu;
225 struct list_head list;
226
227 struct task_group *parent;
228 struct list_head siblings;
229 struct list_head children;
230
231#ifdef CONFIG_SCHED_AUTOGROUP
232 struct autogroup *autogroup;
233#endif
234
235 struct cfs_bandwidth cfs_bandwidth;
236};
237
238#ifdef CONFIG_FAIR_GROUP_SCHED
239#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
240
241/*
242 * A weight of 0 or 1 can cause arithmetics problems.
243 * A weight of a cfs_rq is the sum of weights of which entities
244 * are queued on this cfs_rq, so a weight of a entity should not be
245 * too large, so as the shares value of a task group.
246 * (The default weight is 1024 - so there's no practical
247 * limitation from this.)
248 */
249#define MIN_SHARES (1UL << 1)
250#define MAX_SHARES (1UL << 18)
251#endif
252
029632fb
PZ
253typedef int (*tg_visitor)(struct task_group *, void *);
254
255extern int walk_tg_tree_from(struct task_group *from,
256 tg_visitor down, tg_visitor up, void *data);
257
258/*
259 * Iterate the full tree, calling @down when first entering a node and @up when
260 * leaving it for the final time.
261 *
262 * Caller must hold rcu_lock or sufficient equivalent.
263 */
264static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
265{
266 return walk_tg_tree_from(&root_task_group, down, up, data);
267}
268
269extern int tg_nop(struct task_group *tg, void *data);
270
271extern void free_fair_sched_group(struct task_group *tg);
272extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
273extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
274extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
275 struct sched_entity *se, int cpu,
276 struct sched_entity *parent);
277extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
278extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
279
280extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
281extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
282extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
283
284extern void free_rt_sched_group(struct task_group *tg);
285extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
286extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
287 struct sched_rt_entity *rt_se, int cpu,
288 struct sched_rt_entity *parent);
289
25cc7da7
LZ
290extern struct task_group *sched_create_group(struct task_group *parent);
291extern void sched_online_group(struct task_group *tg,
292 struct task_group *parent);
293extern void sched_destroy_group(struct task_group *tg);
294extern void sched_offline_group(struct task_group *tg);
295
296extern void sched_move_task(struct task_struct *tsk);
297
298#ifdef CONFIG_FAIR_GROUP_SCHED
299extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
300#endif
301
029632fb
PZ
302#else /* CONFIG_CGROUP_SCHED */
303
304struct cfs_bandwidth { };
305
306#endif /* CONFIG_CGROUP_SCHED */
307
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
c82513e5 311 unsigned int nr_running, h_nr_running;
029632fb
PZ
312
313 u64 exec_clock;
314 u64 min_vruntime;
315#ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317#endif
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
321
029632fb
PZ
322 /*
323 * 'curr' points to currently running entity on this cfs_rq.
324 * It is set to NULL otherwise (i.e when none are currently running).
325 */
326 struct sched_entity *curr, *next, *last, *skip;
327
328#ifdef CONFIG_SCHED_DEBUG
329 unsigned int nr_spread_over;
330#endif
331
2dac754e
PT
332#ifdef CONFIG_SMP
333 /*
334 * CFS Load tracking
335 * Under CFS, load is tracked on a per-entity basis and aggregated up.
336 * This allows for the description of both thread and group usage (in
337 * the FAIR_GROUP_SCHED case).
338 */
72a4cf20 339 unsigned long runnable_load_avg, blocked_load_avg;
2509940f 340 atomic64_t decay_counter;
9ee474f5 341 u64 last_decay;
2509940f 342 atomic_long_t removed_load;
141965c7 343
c566e8e9 344#ifdef CONFIG_FAIR_GROUP_SCHED
141965c7 345 /* Required to track per-cpu representation of a task_group */
bb17f655 346 u32 tg_runnable_contrib;
bf5b986e 347 unsigned long tg_load_contrib;
82958366
PT
348
349 /*
350 * h_load = weight * f(tg)
351 *
352 * Where f(tg) is the recursive weight fraction assigned to
353 * this group.
354 */
355 unsigned long h_load;
68520796
VD
356 u64 last_h_load_update;
357 struct sched_entity *h_load_next;
358#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
359#endif /* CONFIG_SMP */
360
029632fb
PZ
361#ifdef CONFIG_FAIR_GROUP_SCHED
362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
363
364 /*
365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 * (like users, containers etc.)
368 *
369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 * list is used during load balance.
371 */
372 int on_list;
373 struct list_head leaf_cfs_rq_list;
374 struct task_group *tg; /* group that "owns" this runqueue */
375
029632fb
PZ
376#ifdef CONFIG_CFS_BANDWIDTH
377 int runtime_enabled;
378 u64 runtime_expires;
379 s64 runtime_remaining;
380
f1b17280
PT
381 u64 throttled_clock, throttled_clock_task;
382 u64 throttled_clock_task_time;
029632fb
PZ
383 int throttled, throttle_count;
384 struct list_head throttled_list;
385#endif /* CONFIG_CFS_BANDWIDTH */
386#endif /* CONFIG_FAIR_GROUP_SCHED */
387};
388
389static inline int rt_bandwidth_enabled(void)
390{
391 return sysctl_sched_rt_runtime >= 0;
392}
393
394/* Real-Time classes' related field in a runqueue: */
395struct rt_rq {
396 struct rt_prio_array active;
c82513e5 397 unsigned int rt_nr_running;
029632fb
PZ
398#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
399 struct {
400 int curr; /* highest queued rt task prio */
401#ifdef CONFIG_SMP
402 int next; /* next highest */
403#endif
404 } highest_prio;
405#endif
406#ifdef CONFIG_SMP
407 unsigned long rt_nr_migratory;
408 unsigned long rt_nr_total;
409 int overloaded;
410 struct plist_head pushable_tasks;
411#endif
412 int rt_throttled;
413 u64 rt_time;
414 u64 rt_runtime;
415 /* Nests inside the rq lock: */
416 raw_spinlock_t rt_runtime_lock;
417
418#ifdef CONFIG_RT_GROUP_SCHED
419 unsigned long rt_nr_boosted;
420
421 struct rq *rq;
029632fb
PZ
422 struct task_group *tg;
423#endif
424};
425
aab03e05
DF
426/* Deadline class' related fields in a runqueue */
427struct dl_rq {
428 /* runqueue is an rbtree, ordered by deadline */
429 struct rb_root rb_root;
430 struct rb_node *rb_leftmost;
431
432 unsigned long dl_nr_running;
1baca4ce
JL
433
434#ifdef CONFIG_SMP
435 /*
436 * Deadline values of the currently executing and the
437 * earliest ready task on this rq. Caching these facilitates
438 * the decision wether or not a ready but not running task
439 * should migrate somewhere else.
440 */
441 struct {
442 u64 curr;
443 u64 next;
444 } earliest_dl;
445
446 unsigned long dl_nr_migratory;
447 unsigned long dl_nr_total;
448 int overloaded;
449
450 /*
451 * Tasks on this rq that can be pushed away. They are kept in
452 * an rb-tree, ordered by tasks' deadlines, with caching
453 * of the leftmost (earliest deadline) element.
454 */
455 struct rb_root pushable_dl_tasks_root;
456 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
457#else
458 struct dl_bw dl_bw;
1baca4ce 459#endif
aab03e05
DF
460};
461
029632fb
PZ
462#ifdef CONFIG_SMP
463
464/*
465 * We add the notion of a root-domain which will be used to define per-domain
466 * variables. Each exclusive cpuset essentially defines an island domain by
467 * fully partitioning the member cpus from any other cpuset. Whenever a new
468 * exclusive cpuset is created, we also create and attach a new root-domain
469 * object.
470 *
471 */
472struct root_domain {
473 atomic_t refcount;
474 atomic_t rto_count;
475 struct rcu_head rcu;
476 cpumask_var_t span;
477 cpumask_var_t online;
478
1baca4ce
JL
479 /*
480 * The bit corresponding to a CPU gets set here if such CPU has more
481 * than one runnable -deadline task (as it is below for RT tasks).
482 */
483 cpumask_var_t dlo_mask;
484 atomic_t dlo_count;
332ac17e 485 struct dl_bw dl_bw;
6bfd6d72 486 struct cpudl cpudl;
1baca4ce 487
029632fb
PZ
488 /*
489 * The "RT overload" flag: it gets set if a CPU has more than
490 * one runnable RT task.
491 */
492 cpumask_var_t rto_mask;
493 struct cpupri cpupri;
494};
495
496extern struct root_domain def_root_domain;
497
498#endif /* CONFIG_SMP */
499
500/*
501 * This is the main, per-CPU runqueue data structure.
502 *
503 * Locking rule: those places that want to lock multiple runqueues
504 * (such as the load balancing or the thread migration code), lock
505 * acquire operations must be ordered by ascending &runqueue.
506 */
507struct rq {
508 /* runqueue lock: */
509 raw_spinlock_t lock;
510
511 /*
512 * nr_running and cpu_load should be in the same cacheline because
513 * remote CPUs use both these fields when doing load calculation.
514 */
c82513e5 515 unsigned int nr_running;
0ec8aa00
PZ
516#ifdef CONFIG_NUMA_BALANCING
517 unsigned int nr_numa_running;
518 unsigned int nr_preferred_running;
519#endif
029632fb
PZ
520 #define CPU_LOAD_IDX_MAX 5
521 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
522 unsigned long last_load_update_tick;
3451d024 523#ifdef CONFIG_NO_HZ_COMMON
029632fb 524 u64 nohz_stamp;
1c792db7 525 unsigned long nohz_flags;
265f22a9
FW
526#endif
527#ifdef CONFIG_NO_HZ_FULL
528 unsigned long last_sched_tick;
029632fb
PZ
529#endif
530 int skip_clock_update;
531
532 /* capture load from *all* tasks on this cpu: */
533 struct load_weight load;
534 unsigned long nr_load_updates;
535 u64 nr_switches;
536
537 struct cfs_rq cfs;
538 struct rt_rq rt;
aab03e05 539 struct dl_rq dl;
029632fb
PZ
540
541#ifdef CONFIG_FAIR_GROUP_SCHED
542 /* list of leaf cfs_rq on this cpu: */
543 struct list_head leaf_cfs_rq_list;
f5f9739d
DE
544
545 struct sched_avg avg;
a35b6466
PZ
546#endif /* CONFIG_FAIR_GROUP_SCHED */
547
029632fb
PZ
548 /*
549 * This is part of a global counter where only the total sum
550 * over all CPUs matters. A task can increase this counter on
551 * one CPU and if it got migrated afterwards it may decrease
552 * it on another CPU. Always updated under the runqueue lock:
553 */
554 unsigned long nr_uninterruptible;
555
556 struct task_struct *curr, *idle, *stop;
557 unsigned long next_balance;
558 struct mm_struct *prev_mm;
559
560 u64 clock;
561 u64 clock_task;
562
563 atomic_t nr_iowait;
564
565#ifdef CONFIG_SMP
566 struct root_domain *rd;
567 struct sched_domain *sd;
568
569 unsigned long cpu_power;
570
571 unsigned char idle_balance;
572 /* For active balancing */
573 int post_schedule;
574 int active_balance;
575 int push_cpu;
576 struct cpu_stop_work active_balance_work;
577 /* cpu of this runqueue: */
578 int cpu;
579 int online;
580
367456c7
PZ
581 struct list_head cfs_tasks;
582
029632fb
PZ
583 u64 rt_avg;
584 u64 age_stamp;
585 u64 idle_stamp;
586 u64 avg_idle;
9bd721c5
JL
587
588 /* This is used to determine avg_idle's max value */
589 u64 max_idle_balance_cost;
029632fb
PZ
590#endif
591
592#ifdef CONFIG_IRQ_TIME_ACCOUNTING
593 u64 prev_irq_time;
594#endif
595#ifdef CONFIG_PARAVIRT
596 u64 prev_steal_time;
597#endif
598#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
599 u64 prev_steal_time_rq;
600#endif
601
602 /* calc_load related fields */
603 unsigned long calc_load_update;
604 long calc_load_active;
605
606#ifdef CONFIG_SCHED_HRTICK
607#ifdef CONFIG_SMP
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
610#endif
611 struct hrtimer hrtick_timer;
612#endif
613
614#ifdef CONFIG_SCHEDSTATS
615 /* latency stats */
616 struct sched_info rq_sched_info;
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
619
620 /* sys_sched_yield() stats */
621 unsigned int yld_count;
622
623 /* schedule() stats */
029632fb
PZ
624 unsigned int sched_count;
625 unsigned int sched_goidle;
626
627 /* try_to_wake_up() stats */
628 unsigned int ttwu_count;
629 unsigned int ttwu_local;
630#endif
631
632#ifdef CONFIG_SMP
633 struct llist_head wake_list;
634#endif
635};
636
637static inline int cpu_of(struct rq *rq)
638{
639#ifdef CONFIG_SMP
640 return rq->cpu;
641#else
642 return 0;
643#endif
644}
645
646DECLARE_PER_CPU(struct rq, runqueues);
647
518cd623
PZ
648#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
649#define this_rq() (&__get_cpu_var(runqueues))
650#define task_rq(p) cpu_rq(task_cpu(p))
651#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
652#define raw_rq() (&__raw_get_cpu_var(runqueues))
653
78becc27
FW
654static inline u64 rq_clock(struct rq *rq)
655{
656 return rq->clock;
657}
658
659static inline u64 rq_clock_task(struct rq *rq)
660{
661 return rq->clock_task;
662}
663
f809ca9a 664#ifdef CONFIG_NUMA_BALANCING
0ec8aa00 665extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 666extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 667extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
668#endif /* CONFIG_NUMA_BALANCING */
669
518cd623
PZ
670#ifdef CONFIG_SMP
671
029632fb
PZ
672#define rcu_dereference_check_sched_domain(p) \
673 rcu_dereference_check((p), \
674 lockdep_is_held(&sched_domains_mutex))
675
676/*
677 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
678 * See detach_destroy_domains: synchronize_sched for details.
679 *
680 * The domain tree of any CPU may only be accessed from within
681 * preempt-disabled sections.
682 */
683#define for_each_domain(cpu, __sd) \
518cd623
PZ
684 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
685 __sd; __sd = __sd->parent)
029632fb 686
77e81365
SS
687#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
688
518cd623
PZ
689/**
690 * highest_flag_domain - Return highest sched_domain containing flag.
691 * @cpu: The cpu whose highest level of sched domain is to
692 * be returned.
693 * @flag: The flag to check for the highest sched_domain
694 * for the given cpu.
695 *
696 * Returns the highest sched_domain of a cpu which contains the given flag.
697 */
698static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
699{
700 struct sched_domain *sd, *hsd = NULL;
701
702 for_each_domain(cpu, sd) {
703 if (!(sd->flags & flag))
704 break;
705 hsd = sd;
706 }
707
708 return hsd;
709}
710
fb13c7ee
MG
711static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
712{
713 struct sched_domain *sd;
714
715 for_each_domain(cpu, sd) {
716 if (sd->flags & flag)
717 break;
718 }
719
720 return sd;
721}
722
518cd623 723DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 724DECLARE_PER_CPU(int, sd_llc_size);
518cd623 725DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 726DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
727DECLARE_PER_CPU(struct sched_domain *, sd_busy);
728DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 729
5e6521ea
LZ
730struct sched_group_power {
731 atomic_t ref;
732 /*
733 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
734 * single CPU.
735 */
736 unsigned int power, power_orig;
737 unsigned long next_update;
6263322c 738 int imbalance; /* XXX unrelated to power but shared group state */
5e6521ea
LZ
739 /*
740 * Number of busy cpus in this group.
741 */
742 atomic_t nr_busy_cpus;
743
744 unsigned long cpumask[0]; /* iteration mask */
745};
746
747struct sched_group {
748 struct sched_group *next; /* Must be a circular list */
749 atomic_t ref;
750
751 unsigned int group_weight;
752 struct sched_group_power *sgp;
753
754 /*
755 * The CPUs this group covers.
756 *
757 * NOTE: this field is variable length. (Allocated dynamically
758 * by attaching extra space to the end of the structure,
759 * depending on how many CPUs the kernel has booted up with)
760 */
761 unsigned long cpumask[0];
762};
763
764static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
765{
766 return to_cpumask(sg->cpumask);
767}
768
769/*
770 * cpumask masking which cpus in the group are allowed to iterate up the domain
771 * tree.
772 */
773static inline struct cpumask *sched_group_mask(struct sched_group *sg)
774{
775 return to_cpumask(sg->sgp->cpumask);
776}
777
778/**
779 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
780 * @group: The group whose first cpu is to be returned.
781 */
782static inline unsigned int group_first_cpu(struct sched_group *group)
783{
784 return cpumask_first(sched_group_cpus(group));
785}
786
c1174876
PZ
787extern int group_balance_cpu(struct sched_group *sg);
788
518cd623 789#endif /* CONFIG_SMP */
029632fb 790
391e43da
PZ
791#include "stats.h"
792#include "auto_group.h"
029632fb
PZ
793
794#ifdef CONFIG_CGROUP_SCHED
795
796/*
797 * Return the group to which this tasks belongs.
798 *
8af01f56
TH
799 * We cannot use task_css() and friends because the cgroup subsystem
800 * changes that value before the cgroup_subsys::attach() method is called,
801 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
802 *
803 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
804 * core changes this before calling sched_move_task().
805 *
806 * Instead we use a 'copy' which is updated from sched_move_task() while
807 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
808 */
809static inline struct task_group *task_group(struct task_struct *p)
810{
8323f26c 811 return p->sched_task_group;
029632fb
PZ
812}
813
814/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
815static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
816{
817#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
818 struct task_group *tg = task_group(p);
819#endif
820
821#ifdef CONFIG_FAIR_GROUP_SCHED
822 p->se.cfs_rq = tg->cfs_rq[cpu];
823 p->se.parent = tg->se[cpu];
824#endif
825
826#ifdef CONFIG_RT_GROUP_SCHED
827 p->rt.rt_rq = tg->rt_rq[cpu];
828 p->rt.parent = tg->rt_se[cpu];
829#endif
830}
831
832#else /* CONFIG_CGROUP_SCHED */
833
834static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
835static inline struct task_group *task_group(struct task_struct *p)
836{
837 return NULL;
838}
839
840#endif /* CONFIG_CGROUP_SCHED */
841
842static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
843{
844 set_task_rq(p, cpu);
845#ifdef CONFIG_SMP
846 /*
847 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
848 * successfuly executed on another CPU. We must ensure that updates of
849 * per-task data have been completed by this moment.
850 */
851 smp_wmb();
852 task_thread_info(p)->cpu = cpu;
ac66f547 853 p->wake_cpu = cpu;
029632fb
PZ
854#endif
855}
856
857/*
858 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
859 */
860#ifdef CONFIG_SCHED_DEBUG
c5905afb 861# include <linux/static_key.h>
029632fb
PZ
862# define const_debug __read_mostly
863#else
864# define const_debug const
865#endif
866
867extern const_debug unsigned int sysctl_sched_features;
868
869#define SCHED_FEAT(name, enabled) \
870 __SCHED_FEAT_##name ,
871
872enum {
391e43da 873#include "features.h"
f8b6d1cc 874 __SCHED_FEAT_NR,
029632fb
PZ
875};
876
877#undef SCHED_FEAT
878
f8b6d1cc 879#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 880static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 881{
c5905afb 882 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
883}
884
c5905afb 885static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 886{
c5905afb 887 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
888}
889
890#define SCHED_FEAT(name, enabled) \
c5905afb 891static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
892{ \
893 return static_branch__##enabled(key); \
894}
895
896#include "features.h"
897
898#undef SCHED_FEAT
899
c5905afb 900extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
901#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
902#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 903#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 904#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 905
cbee9f88
PZ
906#ifdef CONFIG_NUMA_BALANCING
907#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
908#ifdef CONFIG_SCHED_DEBUG
909#define numabalancing_enabled sched_feat_numa(NUMA)
910#else
911extern bool numabalancing_enabled;
912#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
913#else
914#define sched_feat_numa(x) (0)
3105b86a
MG
915#define numabalancing_enabled (0)
916#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 917
029632fb
PZ
918static inline u64 global_rt_period(void)
919{
920 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
921}
922
923static inline u64 global_rt_runtime(void)
924{
925 if (sysctl_sched_rt_runtime < 0)
926 return RUNTIME_INF;
927
928 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
929}
930
029632fb
PZ
931static inline int task_current(struct rq *rq, struct task_struct *p)
932{
933 return rq->curr == p;
934}
935
936static inline int task_running(struct rq *rq, struct task_struct *p)
937{
938#ifdef CONFIG_SMP
939 return p->on_cpu;
940#else
941 return task_current(rq, p);
942#endif
943}
944
945
946#ifndef prepare_arch_switch
947# define prepare_arch_switch(next) do { } while (0)
948#endif
949#ifndef finish_arch_switch
950# define finish_arch_switch(prev) do { } while (0)
951#endif
01f23e16
CM
952#ifndef finish_arch_post_lock_switch
953# define finish_arch_post_lock_switch() do { } while (0)
954#endif
029632fb
PZ
955
956#ifndef __ARCH_WANT_UNLOCKED_CTXSW
957static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
958{
959#ifdef CONFIG_SMP
960 /*
961 * We can optimise this out completely for !SMP, because the
962 * SMP rebalancing from interrupt is the only thing that cares
963 * here.
964 */
965 next->on_cpu = 1;
966#endif
967}
968
969static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
970{
971#ifdef CONFIG_SMP
972 /*
973 * After ->on_cpu is cleared, the task can be moved to a different CPU.
974 * We must ensure this doesn't happen until the switch is completely
975 * finished.
976 */
977 smp_wmb();
978 prev->on_cpu = 0;
979#endif
980#ifdef CONFIG_DEBUG_SPINLOCK
981 /* this is a valid case when another task releases the spinlock */
982 rq->lock.owner = current;
983#endif
984 /*
985 * If we are tracking spinlock dependencies then we have to
986 * fix up the runqueue lock - which gets 'carried over' from
987 * prev into current:
988 */
989 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
990
991 raw_spin_unlock_irq(&rq->lock);
992}
993
994#else /* __ARCH_WANT_UNLOCKED_CTXSW */
995static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
996{
997#ifdef CONFIG_SMP
998 /*
999 * We can optimise this out completely for !SMP, because the
1000 * SMP rebalancing from interrupt is the only thing that cares
1001 * here.
1002 */
1003 next->on_cpu = 1;
1004#endif
029632fb 1005 raw_spin_unlock(&rq->lock);
029632fb
PZ
1006}
1007
1008static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1009{
1010#ifdef CONFIG_SMP
1011 /*
1012 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1013 * We must ensure this doesn't happen until the switch is completely
1014 * finished.
1015 */
1016 smp_wmb();
1017 prev->on_cpu = 0;
1018#endif
029632fb 1019 local_irq_enable();
029632fb
PZ
1020}
1021#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1022
b13095f0
LZ
1023/*
1024 * wake flags
1025 */
1026#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1027#define WF_FORK 0x02 /* child wakeup after fork */
1028#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1029
029632fb
PZ
1030/*
1031 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1032 * of tasks with abnormal "nice" values across CPUs the contribution that
1033 * each task makes to its run queue's load is weighted according to its
1034 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1035 * scaled version of the new time slice allocation that they receive on time
1036 * slice expiry etc.
1037 */
1038
1039#define WEIGHT_IDLEPRIO 3
1040#define WMULT_IDLEPRIO 1431655765
1041
1042/*
1043 * Nice levels are multiplicative, with a gentle 10% change for every
1044 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1045 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1046 * that remained on nice 0.
1047 *
1048 * The "10% effect" is relative and cumulative: from _any_ nice level,
1049 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1050 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1051 * If a task goes up by ~10% and another task goes down by ~10% then
1052 * the relative distance between them is ~25%.)
1053 */
1054static const int prio_to_weight[40] = {
1055 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1056 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1057 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1058 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1059 /* 0 */ 1024, 820, 655, 526, 423,
1060 /* 5 */ 335, 272, 215, 172, 137,
1061 /* 10 */ 110, 87, 70, 56, 45,
1062 /* 15 */ 36, 29, 23, 18, 15,
1063};
1064
1065/*
1066 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1067 *
1068 * In cases where the weight does not change often, we can use the
1069 * precalculated inverse to speed up arithmetics by turning divisions
1070 * into multiplications:
1071 */
1072static const u32 prio_to_wmult[40] = {
1073 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1074 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1075 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1076 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1077 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1078 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1079 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1080 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1081};
1082
c82ba9fa
LZ
1083#define ENQUEUE_WAKEUP 1
1084#define ENQUEUE_HEAD 2
1085#ifdef CONFIG_SMP
1086#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1087#else
1088#define ENQUEUE_WAKING 0
1089#endif
aab03e05 1090#define ENQUEUE_REPLENISH 8
c82ba9fa
LZ
1091
1092#define DEQUEUE_SLEEP 1
1093
1094struct sched_class {
1095 const struct sched_class *next;
1096
1097 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1098 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1099 void (*yield_task) (struct rq *rq);
1100 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1101
1102 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1103
606dba2e
PZ
1104 /*
1105 * It is the responsibility of the pick_next_task() method that will
1106 * return the next task to call put_prev_task() on the @prev task or
1107 * something equivalent.
1108 */
1109 struct task_struct * (*pick_next_task) (struct rq *rq,
1110 struct task_struct *prev);
c82ba9fa
LZ
1111 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1112
1113#ifdef CONFIG_SMP
ac66f547 1114 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
c82ba9fa
LZ
1115 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1116
c82ba9fa
LZ
1117 void (*post_schedule) (struct rq *this_rq);
1118 void (*task_waking) (struct task_struct *task);
1119 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1120
1121 void (*set_cpus_allowed)(struct task_struct *p,
1122 const struct cpumask *newmask);
1123
1124 void (*rq_online)(struct rq *rq);
1125 void (*rq_offline)(struct rq *rq);
1126#endif
1127
1128 void (*set_curr_task) (struct rq *rq);
1129 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1130 void (*task_fork) (struct task_struct *p);
e6c390f2 1131 void (*task_dead) (struct task_struct *p);
c82ba9fa
LZ
1132
1133 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1134 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1135 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1136 int oldprio);
1137
1138 unsigned int (*get_rr_interval) (struct rq *rq,
1139 struct task_struct *task);
1140
1141#ifdef CONFIG_FAIR_GROUP_SCHED
1142 void (*task_move_group) (struct task_struct *p, int on_rq);
1143#endif
1144};
029632fb 1145
3f1d2a31
PZ
1146static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1147{
1148 prev->sched_class->put_prev_task(rq, prev);
1149}
1150
029632fb
PZ
1151#define sched_class_highest (&stop_sched_class)
1152#define for_each_class(class) \
1153 for (class = sched_class_highest; class; class = class->next)
1154
1155extern const struct sched_class stop_sched_class;
aab03e05 1156extern const struct sched_class dl_sched_class;
029632fb
PZ
1157extern const struct sched_class rt_sched_class;
1158extern const struct sched_class fair_sched_class;
1159extern const struct sched_class idle_sched_class;
1160
1161
1162#ifdef CONFIG_SMP
1163
b719203b
LZ
1164extern void update_group_power(struct sched_domain *sd, int cpu);
1165
7caff66f 1166extern void trigger_load_balance(struct rq *rq);
029632fb 1167
642dbc39
VG
1168extern void idle_enter_fair(struct rq *this_rq);
1169extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1170
dc877341
PZ
1171#else
1172
1173static inline void idle_enter_fair(struct rq *rq) { }
1174static inline void idle_exit_fair(struct rq *rq) { }
1175
029632fb
PZ
1176#endif
1177
1178extern void sysrq_sched_debug_show(void);
1179extern void sched_init_granularity(void);
1180extern void update_max_interval(void);
1baca4ce
JL
1181
1182extern void init_sched_dl_class(void);
029632fb
PZ
1183extern void init_sched_rt_class(void);
1184extern void init_sched_fair_class(void);
332ac17e 1185extern void init_sched_dl_class(void);
029632fb
PZ
1186
1187extern void resched_task(struct task_struct *p);
1188extern void resched_cpu(int cpu);
1189
1190extern struct rt_bandwidth def_rt_bandwidth;
1191extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1192
332ac17e
DF
1193extern struct dl_bandwidth def_dl_bandwidth;
1194extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1195extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1196
332ac17e
DF
1197unsigned long to_ratio(u64 period, u64 runtime);
1198
556061b0 1199extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1200
a75cdaa9
AS
1201extern void init_task_runnable_average(struct task_struct *p);
1202
73fbec60
FW
1203#ifdef CONFIG_PARAVIRT
1204static inline u64 steal_ticks(u64 steal)
1205{
1206 if (unlikely(steal > NSEC_PER_SEC))
1207 return div_u64(steal, TICK_NSEC);
1208
1209 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1210}
1211#endif
1212
029632fb
PZ
1213static inline void inc_nr_running(struct rq *rq)
1214{
1215 rq->nr_running++;
9f3660c2
FW
1216
1217#ifdef CONFIG_NO_HZ_FULL
1218 if (rq->nr_running == 2) {
1219 if (tick_nohz_full_cpu(rq->cpu)) {
1220 /* Order rq->nr_running write against the IPI */
1221 smp_wmb();
1222 smp_send_reschedule(rq->cpu);
1223 }
1224 }
1225#endif
029632fb
PZ
1226}
1227
1228static inline void dec_nr_running(struct rq *rq)
1229{
1230 rq->nr_running--;
1231}
1232
265f22a9
FW
1233static inline void rq_last_tick_reset(struct rq *rq)
1234{
1235#ifdef CONFIG_NO_HZ_FULL
1236 rq->last_sched_tick = jiffies;
1237#endif
1238}
1239
029632fb
PZ
1240extern void update_rq_clock(struct rq *rq);
1241
1242extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1243extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1244
1245extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1246
1247extern const_debug unsigned int sysctl_sched_time_avg;
1248extern const_debug unsigned int sysctl_sched_nr_migrate;
1249extern const_debug unsigned int sysctl_sched_migration_cost;
1250
1251static inline u64 sched_avg_period(void)
1252{
1253 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1254}
1255
029632fb
PZ
1256#ifdef CONFIG_SCHED_HRTICK
1257
1258/*
1259 * Use hrtick when:
1260 * - enabled by features
1261 * - hrtimer is actually high res
1262 */
1263static inline int hrtick_enabled(struct rq *rq)
1264{
1265 if (!sched_feat(HRTICK))
1266 return 0;
1267 if (!cpu_active(cpu_of(rq)))
1268 return 0;
1269 return hrtimer_is_hres_active(&rq->hrtick_timer);
1270}
1271
1272void hrtick_start(struct rq *rq, u64 delay);
1273
b39e66ea
MG
1274#else
1275
1276static inline int hrtick_enabled(struct rq *rq)
1277{
1278 return 0;
1279}
1280
029632fb
PZ
1281#endif /* CONFIG_SCHED_HRTICK */
1282
1283#ifdef CONFIG_SMP
1284extern void sched_avg_update(struct rq *rq);
1285static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1286{
1287 rq->rt_avg += rt_delta;
1288 sched_avg_update(rq);
1289}
1290#else
1291static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1292static inline void sched_avg_update(struct rq *rq) { }
1293#endif
1294
1295extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1296
1297#ifdef CONFIG_SMP
1298#ifdef CONFIG_PREEMPT
1299
1300static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1301
1302/*
1303 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1304 * way at the expense of forcing extra atomic operations in all
1305 * invocations. This assures that the double_lock is acquired using the
1306 * same underlying policy as the spinlock_t on this architecture, which
1307 * reduces latency compared to the unfair variant below. However, it
1308 * also adds more overhead and therefore may reduce throughput.
1309 */
1310static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1311 __releases(this_rq->lock)
1312 __acquires(busiest->lock)
1313 __acquires(this_rq->lock)
1314{
1315 raw_spin_unlock(&this_rq->lock);
1316 double_rq_lock(this_rq, busiest);
1317
1318 return 1;
1319}
1320
1321#else
1322/*
1323 * Unfair double_lock_balance: Optimizes throughput at the expense of
1324 * latency by eliminating extra atomic operations when the locks are
1325 * already in proper order on entry. This favors lower cpu-ids and will
1326 * grant the double lock to lower cpus over higher ids under contention,
1327 * regardless of entry order into the function.
1328 */
1329static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1330 __releases(this_rq->lock)
1331 __acquires(busiest->lock)
1332 __acquires(this_rq->lock)
1333{
1334 int ret = 0;
1335
1336 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1337 if (busiest < this_rq) {
1338 raw_spin_unlock(&this_rq->lock);
1339 raw_spin_lock(&busiest->lock);
1340 raw_spin_lock_nested(&this_rq->lock,
1341 SINGLE_DEPTH_NESTING);
1342 ret = 1;
1343 } else
1344 raw_spin_lock_nested(&busiest->lock,
1345 SINGLE_DEPTH_NESTING);
1346 }
1347 return ret;
1348}
1349
1350#endif /* CONFIG_PREEMPT */
1351
1352/*
1353 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1354 */
1355static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1356{
1357 if (unlikely(!irqs_disabled())) {
1358 /* printk() doesn't work good under rq->lock */
1359 raw_spin_unlock(&this_rq->lock);
1360 BUG_ON(1);
1361 }
1362
1363 return _double_lock_balance(this_rq, busiest);
1364}
1365
1366static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1367 __releases(busiest->lock)
1368{
1369 raw_spin_unlock(&busiest->lock);
1370 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1371}
1372
74602315
PZ
1373static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1374{
1375 if (l1 > l2)
1376 swap(l1, l2);
1377
1378 spin_lock(l1);
1379 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1380}
1381
1382static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1383{
1384 if (l1 > l2)
1385 swap(l1, l2);
1386
1387 raw_spin_lock(l1);
1388 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1389}
1390
029632fb
PZ
1391/*
1392 * double_rq_lock - safely lock two runqueues
1393 *
1394 * Note this does not disable interrupts like task_rq_lock,
1395 * you need to do so manually before calling.
1396 */
1397static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1398 __acquires(rq1->lock)
1399 __acquires(rq2->lock)
1400{
1401 BUG_ON(!irqs_disabled());
1402 if (rq1 == rq2) {
1403 raw_spin_lock(&rq1->lock);
1404 __acquire(rq2->lock); /* Fake it out ;) */
1405 } else {
1406 if (rq1 < rq2) {
1407 raw_spin_lock(&rq1->lock);
1408 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1409 } else {
1410 raw_spin_lock(&rq2->lock);
1411 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1412 }
1413 }
1414}
1415
1416/*
1417 * double_rq_unlock - safely unlock two runqueues
1418 *
1419 * Note this does not restore interrupts like task_rq_unlock,
1420 * you need to do so manually after calling.
1421 */
1422static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1423 __releases(rq1->lock)
1424 __releases(rq2->lock)
1425{
1426 raw_spin_unlock(&rq1->lock);
1427 if (rq1 != rq2)
1428 raw_spin_unlock(&rq2->lock);
1429 else
1430 __release(rq2->lock);
1431}
1432
1433#else /* CONFIG_SMP */
1434
1435/*
1436 * double_rq_lock - safely lock two runqueues
1437 *
1438 * Note this does not disable interrupts like task_rq_lock,
1439 * you need to do so manually before calling.
1440 */
1441static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1442 __acquires(rq1->lock)
1443 __acquires(rq2->lock)
1444{
1445 BUG_ON(!irqs_disabled());
1446 BUG_ON(rq1 != rq2);
1447 raw_spin_lock(&rq1->lock);
1448 __acquire(rq2->lock); /* Fake it out ;) */
1449}
1450
1451/*
1452 * double_rq_unlock - safely unlock two runqueues
1453 *
1454 * Note this does not restore interrupts like task_rq_unlock,
1455 * you need to do so manually after calling.
1456 */
1457static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1458 __releases(rq1->lock)
1459 __releases(rq2->lock)
1460{
1461 BUG_ON(rq1 != rq2);
1462 raw_spin_unlock(&rq1->lock);
1463 __release(rq2->lock);
1464}
1465
1466#endif
1467
1468extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1469extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1470extern void print_cfs_stats(struct seq_file *m, int cpu);
1471extern void print_rt_stats(struct seq_file *m, int cpu);
1472
1473extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1474extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
aab03e05 1475extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
029632fb 1476
1ee14e6c
BS
1477extern void cfs_bandwidth_usage_inc(void);
1478extern void cfs_bandwidth_usage_dec(void);
1c792db7 1479
3451d024 1480#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1481enum rq_nohz_flag_bits {
1482 NOHZ_TICK_STOPPED,
1483 NOHZ_BALANCE_KICK,
1484};
1485
1486#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1487#endif
73fbec60
FW
1488
1489#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1490
1491DECLARE_PER_CPU(u64, cpu_hardirq_time);
1492DECLARE_PER_CPU(u64, cpu_softirq_time);
1493
1494#ifndef CONFIG_64BIT
1495DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1496
1497static inline void irq_time_write_begin(void)
1498{
1499 __this_cpu_inc(irq_time_seq.sequence);
1500 smp_wmb();
1501}
1502
1503static inline void irq_time_write_end(void)
1504{
1505 smp_wmb();
1506 __this_cpu_inc(irq_time_seq.sequence);
1507}
1508
1509static inline u64 irq_time_read(int cpu)
1510{
1511 u64 irq_time;
1512 unsigned seq;
1513
1514 do {
1515 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1516 irq_time = per_cpu(cpu_softirq_time, cpu) +
1517 per_cpu(cpu_hardirq_time, cpu);
1518 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1519
1520 return irq_time;
1521}
1522#else /* CONFIG_64BIT */
1523static inline void irq_time_write_begin(void)
1524{
1525}
1526
1527static inline void irq_time_write_end(void)
1528{
1529}
1530
1531static inline u64 irq_time_read(int cpu)
1532{
1533 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1534}
1535#endif /* CONFIG_64BIT */
1536#endif /* CONFIG_IRQ_TIME_ACCOUNTING */