ALSA: pcm: Fix missing check of the new non-cached buffer type
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97fb7a0a
IM
2/*
3 * Scheduler internal types and methods:
4 */
029632fb 5#include <linux/sched.h>
325ea10c 6
dfc3401a 7#include <linux/sched/autogroup.h>
e6017571 8#include <linux/sched/clock.h>
325ea10c 9#include <linux/sched/coredump.h>
55687da1 10#include <linux/sched/cpufreq.h>
325ea10c
IM
11#include <linux/sched/cputime.h>
12#include <linux/sched/deadline.h>
b17b0153 13#include <linux/sched/debug.h>
ef8bd77f 14#include <linux/sched/hotplug.h>
325ea10c
IM
15#include <linux/sched/idle.h>
16#include <linux/sched/init.h>
17#include <linux/sched/isolation.h>
18#include <linux/sched/jobctl.h>
19#include <linux/sched/loadavg.h>
20#include <linux/sched/mm.h>
21#include <linux/sched/nohz.h>
22#include <linux/sched/numa_balancing.h>
23#include <linux/sched/prio.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/signal.h>
321a874a 26#include <linux/sched/smt.h>
325ea10c
IM
27#include <linux/sched/stat.h>
28#include <linux/sched/sysctl.h>
29930025 29#include <linux/sched/task.h>
68db0cf1 30#include <linux/sched/task_stack.h>
325ea10c
IM
31#include <linux/sched/topology.h>
32#include <linux/sched/user.h>
33#include <linux/sched/wake_q.h>
34#include <linux/sched/xacct.h>
35
36#include <uapi/linux/sched/types.h>
ef8bd77f 37
3866e845 38#include <linux/binfmts.h>
325ea10c
IM
39#include <linux/blkdev.h>
40#include <linux/compat.h>
41#include <linux/context_tracking.h>
42#include <linux/cpufreq.h>
43#include <linux/cpuidle.h>
44#include <linux/cpuset.h>
45#include <linux/ctype.h>
46#include <linux/debugfs.h>
47#include <linux/delayacct.h>
6aa140fa 48#include <linux/energy_model.h>
325ea10c
IM
49#include <linux/init_task.h>
50#include <linux/kprobes.h>
51#include <linux/kthread.h>
52#include <linux/membarrier.h>
53#include <linux/migrate.h>
54#include <linux/mmu_context.h>
55#include <linux/nmi.h>
56#include <linux/proc_fs.h>
57#include <linux/prefetch.h>
58#include <linux/profile.h>
eb414681 59#include <linux/psi.h>
325ea10c
IM
60#include <linux/rcupdate_wait.h>
61#include <linux/security.h>
029632fb 62#include <linux/stop_machine.h>
325ea10c
IM
63#include <linux/suspend.h>
64#include <linux/swait.h>
65#include <linux/syscalls.h>
66#include <linux/task_work.h>
67#include <linux/tsacct_kern.h>
68
69#include <asm/tlb.h>
029632fb 70
7fce777c 71#ifdef CONFIG_PARAVIRT
325ea10c 72# include <asm/paravirt.h>
7fce777c
IM
73#endif
74
391e43da 75#include "cpupri.h"
6bfd6d72 76#include "cpudeadline.h"
029632fb 77
9148a3a1 78#ifdef CONFIG_SCHED_DEBUG
6d3aed3d 79# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
9148a3a1 80#else
6d3aed3d 81# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
9148a3a1
PZ
82#endif
83
45ceebf7 84struct rq;
442bf3aa 85struct cpuidle_state;
45ceebf7 86
da0c1e65
KT
87/* task_struct::on_rq states: */
88#define TASK_ON_RQ_QUEUED 1
cca26e80 89#define TASK_ON_RQ_MIGRATING 2
da0c1e65 90
029632fb
PZ
91extern __read_mostly int scheduler_running;
92
45ceebf7
PG
93extern unsigned long calc_load_update;
94extern atomic_long_t calc_load_tasks;
95
3289bdb4 96extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 97extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4 98
029632fb
PZ
99/*
100 * Helpers for converting nanosecond timing to jiffy resolution
101 */
102#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
103
cc1f4b1f
LZ
104/*
105 * Increase resolution of nice-level calculations for 64-bit architectures.
106 * The extra resolution improves shares distribution and load balancing of
107 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
108 * hierarchies, especially on larger systems. This is not a user-visible change
109 * and does not change the user-interface for setting shares/weights.
110 *
111 * We increase resolution only if we have enough bits to allow this increased
97fb7a0a
IM
112 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
113 * are pretty high and the returns do not justify the increased costs.
2159197d 114 *
97fb7a0a
IM
115 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
116 * increase coverage and consistency always enable it on 64-bit platforms.
cc1f4b1f 117 */
2159197d 118#ifdef CONFIG_64BIT
172895e6 119# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749
YD
120# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
121# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f 122#else
172895e6 123# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
124# define scale_load(w) (w)
125# define scale_load_down(w) (w)
126#endif
127
6ecdd749 128/*
172895e6
YD
129 * Task weight (visible to users) and its load (invisible to users) have
130 * independent resolution, but they should be well calibrated. We use
131 * scale_load() and scale_load_down(w) to convert between them. The
132 * following must be true:
133 *
134 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
135 *
6ecdd749 136 */
172895e6 137#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 138
332ac17e
DF
139/*
140 * Single value that decides SCHED_DEADLINE internal math precision.
141 * 10 -> just above 1us
142 * 9 -> just above 0.5us
143 */
97fb7a0a 144#define DL_SCALE 10
029632fb
PZ
145
146/*
97fb7a0a 147 * Single value that denotes runtime == period, ie unlimited time.
029632fb 148 */
97fb7a0a 149#define RUNTIME_INF ((u64)~0ULL)
029632fb 150
20f9cd2a
HA
151static inline int idle_policy(int policy)
152{
153 return policy == SCHED_IDLE;
154}
d50dde5a
DF
155static inline int fair_policy(int policy)
156{
157 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
158}
159
029632fb
PZ
160static inline int rt_policy(int policy)
161{
d50dde5a 162 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
163}
164
aab03e05
DF
165static inline int dl_policy(int policy)
166{
167 return policy == SCHED_DEADLINE;
168}
20f9cd2a
HA
169static inline bool valid_policy(int policy)
170{
171 return idle_policy(policy) || fair_policy(policy) ||
172 rt_policy(policy) || dl_policy(policy);
173}
aab03e05 174
1da1843f
VK
175static inline int task_has_idle_policy(struct task_struct *p)
176{
177 return idle_policy(p->policy);
178}
179
029632fb
PZ
180static inline int task_has_rt_policy(struct task_struct *p)
181{
182 return rt_policy(p->policy);
183}
184
aab03e05
DF
185static inline int task_has_dl_policy(struct task_struct *p)
186{
187 return dl_policy(p->policy);
188}
189
07881166
JL
190#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
191
794a56eb
JL
192/*
193 * !! For sched_setattr_nocheck() (kernel) only !!
194 *
195 * This is actually gross. :(
196 *
197 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
198 * tasks, but still be able to sleep. We need this on platforms that cannot
199 * atomically change clock frequency. Remove once fast switching will be
200 * available on such platforms.
201 *
202 * SUGOV stands for SchedUtil GOVernor.
203 */
204#define SCHED_FLAG_SUGOV 0x10000000
205
206static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
207{
208#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
209 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
210#else
211 return false;
212#endif
213}
214
2d3d891d
DF
215/*
216 * Tells if entity @a should preempt entity @b.
217 */
332ac17e
DF
218static inline bool
219dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d 220{
794a56eb
JL
221 return dl_entity_is_special(a) ||
222 dl_time_before(a->deadline, b->deadline);
2d3d891d
DF
223}
224
029632fb
PZ
225/*
226 * This is the priority-queue data structure of the RT scheduling class:
227 */
228struct rt_prio_array {
229 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
230 struct list_head queue[MAX_RT_PRIO];
231};
232
233struct rt_bandwidth {
234 /* nests inside the rq lock: */
235 raw_spinlock_t rt_runtime_lock;
236 ktime_t rt_period;
237 u64 rt_runtime;
238 struct hrtimer rt_period_timer;
4cfafd30 239 unsigned int rt_period_active;
029632fb 240};
a5e7be3b
JL
241
242void __dl_clear_params(struct task_struct *p);
243
332ac17e
DF
244/*
245 * To keep the bandwidth of -deadline tasks and groups under control
246 * we need some place where:
247 * - store the maximum -deadline bandwidth of the system (the group);
248 * - cache the fraction of that bandwidth that is currently allocated.
249 *
250 * This is all done in the data structure below. It is similar to the
251 * one used for RT-throttling (rt_bandwidth), with the main difference
252 * that, since here we are only interested in admission control, we
253 * do not decrease any runtime while the group "executes", neither we
254 * need a timer to replenish it.
255 *
256 * With respect to SMP, the bandwidth is given on a per-CPU basis,
257 * meaning that:
258 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
259 * - dl_total_bw array contains, in the i-eth element, the currently
260 * allocated bandwidth on the i-eth CPU.
261 * Moreover, groups consume bandwidth on each CPU, while tasks only
262 * consume bandwidth on the CPU they're running on.
263 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
264 * that will be shown the next time the proc or cgroup controls will
265 * be red. It on its turn can be changed by writing on its own
266 * control.
267 */
268struct dl_bandwidth {
97fb7a0a
IM
269 raw_spinlock_t dl_runtime_lock;
270 u64 dl_runtime;
271 u64 dl_period;
332ac17e
DF
272};
273
274static inline int dl_bandwidth_enabled(void)
275{
1724813d 276 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
277}
278
332ac17e 279struct dl_bw {
97fb7a0a
IM
280 raw_spinlock_t lock;
281 u64 bw;
282 u64 total_bw;
332ac17e
DF
283};
284
daec5798
LA
285static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
286
7f51412a 287static inline
8c0944ce 288void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
289{
290 dl_b->total_bw -= tsk_bw;
daec5798 291 __dl_update(dl_b, (s32)tsk_bw / cpus);
7f51412a
JL
292}
293
294static inline
daec5798 295void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
296{
297 dl_b->total_bw += tsk_bw;
daec5798 298 __dl_update(dl_b, -((s32)tsk_bw / cpus));
7f51412a
JL
299}
300
301static inline
302bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
303{
304 return dl_b->bw != -1 &&
305 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
306}
307
97fb7a0a 308extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
f2cb1360 309extern void init_dl_bw(struct dl_bw *dl_b);
97fb7a0a 310extern int sched_dl_global_validate(void);
06a76fe0 311extern void sched_dl_do_global(void);
97fb7a0a 312extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
06a76fe0
NP
313extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
314extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
315extern bool __checkparam_dl(const struct sched_attr *attr);
06a76fe0 316extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
97fb7a0a
IM
317extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
318extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
06a76fe0 319extern bool dl_cpu_busy(unsigned int cpu);
029632fb
PZ
320
321#ifdef CONFIG_CGROUP_SCHED
322
323#include <linux/cgroup.h>
eb414681 324#include <linux/psi.h>
029632fb
PZ
325
326struct cfs_rq;
327struct rt_rq;
328
35cf4e50 329extern struct list_head task_groups;
029632fb
PZ
330
331struct cfs_bandwidth {
332#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a
IM
333 raw_spinlock_t lock;
334 ktime_t period;
335 u64 quota;
336 u64 runtime;
337 s64 hierarchical_quota;
97fb7a0a 338
66567fcb 339 u8 idle;
340 u8 period_active;
341 u8 distribute_running;
342 u8 slack_started;
97fb7a0a
IM
343 struct hrtimer period_timer;
344 struct hrtimer slack_timer;
345 struct list_head throttled_cfs_rq;
346
347 /* Statistics: */
348 int nr_periods;
349 int nr_throttled;
350 u64 throttled_time;
029632fb
PZ
351#endif
352};
353
97fb7a0a 354/* Task group related information */
029632fb
PZ
355struct task_group {
356 struct cgroup_subsys_state css;
357
358#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
359 /* schedulable entities of this group on each CPU */
360 struct sched_entity **se;
361 /* runqueue "owned" by this group on each CPU */
362 struct cfs_rq **cfs_rq;
363 unsigned long shares;
029632fb 364
fa6bddeb 365#ifdef CONFIG_SMP
b0367629
WL
366 /*
367 * load_avg can be heavily contended at clock tick time, so put
368 * it in its own cacheline separated from the fields above which
369 * will also be accessed at each tick.
370 */
97fb7a0a 371 atomic_long_t load_avg ____cacheline_aligned;
029632fb 372#endif
fa6bddeb 373#endif
029632fb
PZ
374
375#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a
IM
376 struct sched_rt_entity **rt_se;
377 struct rt_rq **rt_rq;
029632fb 378
97fb7a0a 379 struct rt_bandwidth rt_bandwidth;
029632fb
PZ
380#endif
381
97fb7a0a
IM
382 struct rcu_head rcu;
383 struct list_head list;
029632fb 384
97fb7a0a
IM
385 struct task_group *parent;
386 struct list_head siblings;
387 struct list_head children;
029632fb
PZ
388
389#ifdef CONFIG_SCHED_AUTOGROUP
97fb7a0a 390 struct autogroup *autogroup;
029632fb
PZ
391#endif
392
97fb7a0a 393 struct cfs_bandwidth cfs_bandwidth;
2480c093
PB
394
395#ifdef CONFIG_UCLAMP_TASK_GROUP
396 /* The two decimal precision [%] value requested from user-space */
397 unsigned int uclamp_pct[UCLAMP_CNT];
398 /* Clamp values requested for a task group */
399 struct uclamp_se uclamp_req[UCLAMP_CNT];
0b60ba2d
PB
400 /* Effective clamp values used for a task group */
401 struct uclamp_se uclamp[UCLAMP_CNT];
2480c093
PB
402#endif
403
029632fb
PZ
404};
405
406#ifdef CONFIG_FAIR_GROUP_SCHED
407#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
408
409/*
410 * A weight of 0 or 1 can cause arithmetics problems.
411 * A weight of a cfs_rq is the sum of weights of which entities
412 * are queued on this cfs_rq, so a weight of a entity should not be
413 * too large, so as the shares value of a task group.
414 * (The default weight is 1024 - so there's no practical
415 * limitation from this.)
416 */
97fb7a0a
IM
417#define MIN_SHARES (1UL << 1)
418#define MAX_SHARES (1UL << 18)
029632fb
PZ
419#endif
420
029632fb
PZ
421typedef int (*tg_visitor)(struct task_group *, void *);
422
423extern int walk_tg_tree_from(struct task_group *from,
424 tg_visitor down, tg_visitor up, void *data);
425
426/*
427 * Iterate the full tree, calling @down when first entering a node and @up when
428 * leaving it for the final time.
429 *
430 * Caller must hold rcu_lock or sufficient equivalent.
431 */
432static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
433{
434 return walk_tg_tree_from(&root_task_group, down, up, data);
435}
436
437extern int tg_nop(struct task_group *tg, void *data);
438
439extern void free_fair_sched_group(struct task_group *tg);
440extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 441extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 442extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
443extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
444 struct sched_entity *se, int cpu,
445 struct sched_entity *parent);
446extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
447
448extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 449extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
450extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
451
452extern void free_rt_sched_group(struct task_group *tg);
453extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
454extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
455 struct sched_rt_entity *rt_se, int cpu,
456 struct sched_rt_entity *parent);
8887cd99
NP
457extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
458extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
459extern long sched_group_rt_runtime(struct task_group *tg);
460extern long sched_group_rt_period(struct task_group *tg);
461extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
029632fb 462
25cc7da7
LZ
463extern struct task_group *sched_create_group(struct task_group *parent);
464extern void sched_online_group(struct task_group *tg,
465 struct task_group *parent);
466extern void sched_destroy_group(struct task_group *tg);
467extern void sched_offline_group(struct task_group *tg);
468
469extern void sched_move_task(struct task_struct *tsk);
470
471#ifdef CONFIG_FAIR_GROUP_SCHED
472extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
473
474#ifdef CONFIG_SMP
475extern void set_task_rq_fair(struct sched_entity *se,
476 struct cfs_rq *prev, struct cfs_rq *next);
477#else /* !CONFIG_SMP */
478static inline void set_task_rq_fair(struct sched_entity *se,
479 struct cfs_rq *prev, struct cfs_rq *next) { }
480#endif /* CONFIG_SMP */
481#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 482
029632fb
PZ
483#else /* CONFIG_CGROUP_SCHED */
484
485struct cfs_bandwidth { };
486
487#endif /* CONFIG_CGROUP_SCHED */
488
489/* CFS-related fields in a runqueue */
490struct cfs_rq {
97fb7a0a
IM
491 struct load_weight load;
492 unsigned long runnable_weight;
493 unsigned int nr_running;
43e9f7f2
VK
494 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
495 unsigned int idle_h_nr_running; /* SCHED_IDLE */
029632fb 496
97fb7a0a
IM
497 u64 exec_clock;
498 u64 min_vruntime;
029632fb 499#ifndef CONFIG_64BIT
97fb7a0a 500 u64 min_vruntime_copy;
029632fb
PZ
501#endif
502
97fb7a0a 503 struct rb_root_cached tasks_timeline;
029632fb 504
029632fb
PZ
505 /*
506 * 'curr' points to currently running entity on this cfs_rq.
507 * It is set to NULL otherwise (i.e when none are currently running).
508 */
97fb7a0a
IM
509 struct sched_entity *curr;
510 struct sched_entity *next;
511 struct sched_entity *last;
512 struct sched_entity *skip;
029632fb
PZ
513
514#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 515 unsigned int nr_spread_over;
029632fb
PZ
516#endif
517
2dac754e
PT
518#ifdef CONFIG_SMP
519 /*
9d89c257 520 * CFS load tracking
2dac754e 521 */
97fb7a0a 522 struct sched_avg avg;
2a2f5d4e 523#ifndef CONFIG_64BIT
97fb7a0a 524 u64 load_last_update_time_copy;
9d89c257 525#endif
2a2f5d4e
PZ
526 struct {
527 raw_spinlock_t lock ____cacheline_aligned;
528 int nr;
529 unsigned long load_avg;
530 unsigned long util_avg;
0e2d2aaa 531 unsigned long runnable_sum;
2a2f5d4e 532 } removed;
82958366 533
9d89c257 534#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
535 unsigned long tg_load_avg_contrib;
536 long propagate;
537 long prop_runnable_sum;
0e2d2aaa 538
82958366
PT
539 /*
540 * h_load = weight * f(tg)
541 *
542 * Where f(tg) is the recursive weight fraction assigned to
543 * this group.
544 */
97fb7a0a
IM
545 unsigned long h_load;
546 u64 last_h_load_update;
547 struct sched_entity *h_load_next;
68520796 548#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
549#endif /* CONFIG_SMP */
550
029632fb 551#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 552 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
029632fb
PZ
553
554 /*
555 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
556 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
557 * (like users, containers etc.)
558 *
97fb7a0a
IM
559 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
560 * This list is used during load balance.
029632fb 561 */
97fb7a0a
IM
562 int on_list;
563 struct list_head leaf_cfs_rq_list;
564 struct task_group *tg; /* group that "owns" this runqueue */
029632fb 565
029632fb 566#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a 567 int runtime_enabled;
97fb7a0a
IM
568 s64 runtime_remaining;
569
570 u64 throttled_clock;
571 u64 throttled_clock_task;
572 u64 throttled_clock_task_time;
573 int throttled;
574 int throttle_count;
575 struct list_head throttled_list;
029632fb
PZ
576#endif /* CONFIG_CFS_BANDWIDTH */
577#endif /* CONFIG_FAIR_GROUP_SCHED */
578};
579
580static inline int rt_bandwidth_enabled(void)
581{
582 return sysctl_sched_rt_runtime >= 0;
583}
584
b6366f04 585/* RT IPI pull logic requires IRQ_WORK */
4bdced5c 586#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
b6366f04
SR
587# define HAVE_RT_PUSH_IPI
588#endif
589
029632fb
PZ
590/* Real-Time classes' related field in a runqueue: */
591struct rt_rq {
97fb7a0a
IM
592 struct rt_prio_array active;
593 unsigned int rt_nr_running;
594 unsigned int rr_nr_running;
029632fb
PZ
595#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
596 struct {
97fb7a0a 597 int curr; /* highest queued rt task prio */
029632fb 598#ifdef CONFIG_SMP
97fb7a0a 599 int next; /* next highest */
029632fb
PZ
600#endif
601 } highest_prio;
602#endif
603#ifdef CONFIG_SMP
97fb7a0a
IM
604 unsigned long rt_nr_migratory;
605 unsigned long rt_nr_total;
606 int overloaded;
607 struct plist_head pushable_tasks;
371bf427 608
b6366f04 609#endif /* CONFIG_SMP */
97fb7a0a 610 int rt_queued;
f4ebcbc0 611
97fb7a0a
IM
612 int rt_throttled;
613 u64 rt_time;
614 u64 rt_runtime;
029632fb 615 /* Nests inside the rq lock: */
97fb7a0a 616 raw_spinlock_t rt_runtime_lock;
029632fb
PZ
617
618#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a 619 unsigned long rt_nr_boosted;
029632fb 620
97fb7a0a
IM
621 struct rq *rq;
622 struct task_group *tg;
029632fb
PZ
623#endif
624};
625
296b2ffe
VG
626static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
627{
628 return rt_rq->rt_queued && rt_rq->rt_nr_running;
629}
630
aab03e05
DF
631/* Deadline class' related fields in a runqueue */
632struct dl_rq {
633 /* runqueue is an rbtree, ordered by deadline */
97fb7a0a 634 struct rb_root_cached root;
aab03e05 635
97fb7a0a 636 unsigned long dl_nr_running;
1baca4ce
JL
637
638#ifdef CONFIG_SMP
639 /*
640 * Deadline values of the currently executing and the
641 * earliest ready task on this rq. Caching these facilitates
dfcb245e 642 * the decision whether or not a ready but not running task
1baca4ce
JL
643 * should migrate somewhere else.
644 */
645 struct {
97fb7a0a
IM
646 u64 curr;
647 u64 next;
1baca4ce
JL
648 } earliest_dl;
649
97fb7a0a
IM
650 unsigned long dl_nr_migratory;
651 int overloaded;
1baca4ce
JL
652
653 /*
654 * Tasks on this rq that can be pushed away. They are kept in
655 * an rb-tree, ordered by tasks' deadlines, with caching
656 * of the leftmost (earliest deadline) element.
657 */
97fb7a0a 658 struct rb_root_cached pushable_dl_tasks_root;
332ac17e 659#else
97fb7a0a 660 struct dl_bw dl_bw;
1baca4ce 661#endif
e36d8677
LA
662 /*
663 * "Active utilization" for this runqueue: increased when a
664 * task wakes up (becomes TASK_RUNNING) and decreased when a
665 * task blocks
666 */
97fb7a0a 667 u64 running_bw;
4da3abce 668
8fd27231
LA
669 /*
670 * Utilization of the tasks "assigned" to this runqueue (including
671 * the tasks that are in runqueue and the tasks that executed on this
672 * CPU and blocked). Increased when a task moves to this runqueue, and
673 * decreased when the task moves away (migrates, changes scheduling
674 * policy, or terminates).
675 * This is needed to compute the "inactive utilization" for the
676 * runqueue (inactive utilization = this_bw - running_bw).
677 */
97fb7a0a
IM
678 u64 this_bw;
679 u64 extra_bw;
8fd27231 680
4da3abce
LA
681 /*
682 * Inverse of the fraction of CPU utilization that can be reclaimed
683 * by the GRUB algorithm.
684 */
97fb7a0a 685 u64 bw_ratio;
aab03e05
DF
686};
687
c0796298
VG
688#ifdef CONFIG_FAIR_GROUP_SCHED
689/* An entity is a task if it doesn't "own" a runqueue */
690#define entity_is_task(se) (!se->my_q)
691#else
692#define entity_is_task(se) 1
693#endif
694
029632fb 695#ifdef CONFIG_SMP
c0796298
VG
696/*
697 * XXX we want to get rid of these helpers and use the full load resolution.
698 */
699static inline long se_weight(struct sched_entity *se)
700{
701 return scale_load_down(se->load.weight);
702}
703
704static inline long se_runnable(struct sched_entity *se)
705{
706 return scale_load_down(se->runnable_weight);
707}
029632fb 708
afe06efd
TC
709static inline bool sched_asym_prefer(int a, int b)
710{
711 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
712}
713
6aa140fa
QP
714struct perf_domain {
715 struct em_perf_domain *em_pd;
716 struct perf_domain *next;
717 struct rcu_head rcu;
718};
719
630246a0
QP
720/* Scheduling group status flags */
721#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
2802bf3c 722#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
630246a0 723
029632fb
PZ
724/*
725 * We add the notion of a root-domain which will be used to define per-domain
726 * variables. Each exclusive cpuset essentially defines an island domain by
97fb7a0a 727 * fully partitioning the member CPUs from any other cpuset. Whenever a new
029632fb
PZ
728 * exclusive cpuset is created, we also create and attach a new root-domain
729 * object.
730 *
731 */
732struct root_domain {
97fb7a0a
IM
733 atomic_t refcount;
734 atomic_t rto_count;
735 struct rcu_head rcu;
736 cpumask_var_t span;
737 cpumask_var_t online;
029632fb 738
757ffdd7
VS
739 /*
740 * Indicate pullable load on at least one CPU, e.g:
741 * - More than one runnable task
742 * - Running task is misfit
743 */
575638d1 744 int overload;
4486edd1 745
2802bf3c
MR
746 /* Indicate one or more cpus over-utilized (tipping point) */
747 int overutilized;
748
1baca4ce
JL
749 /*
750 * The bit corresponding to a CPU gets set here if such CPU has more
751 * than one runnable -deadline task (as it is below for RT tasks).
752 */
97fb7a0a
IM
753 cpumask_var_t dlo_mask;
754 atomic_t dlo_count;
755 struct dl_bw dl_bw;
756 struct cpudl cpudl;
1baca4ce 757
4bdced5c
SRRH
758#ifdef HAVE_RT_PUSH_IPI
759 /*
760 * For IPI pull requests, loop across the rto_mask.
761 */
97fb7a0a
IM
762 struct irq_work rto_push_work;
763 raw_spinlock_t rto_lock;
4bdced5c 764 /* These are only updated and read within rto_lock */
97fb7a0a
IM
765 int rto_loop;
766 int rto_cpu;
4bdced5c 767 /* These atomics are updated outside of a lock */
97fb7a0a
IM
768 atomic_t rto_loop_next;
769 atomic_t rto_loop_start;
4bdced5c 770#endif
029632fb
PZ
771 /*
772 * The "RT overload" flag: it gets set if a CPU has more than
773 * one runnable RT task.
774 */
97fb7a0a
IM
775 cpumask_var_t rto_mask;
776 struct cpupri cpupri;
cd92bfd3 777
97fb7a0a 778 unsigned long max_cpu_capacity;
6aa140fa
QP
779
780 /*
781 * NULL-terminated list of performance domains intersecting with the
782 * CPUs of the rd. Protected by RCU.
783 */
7ba7319f 784 struct perf_domain __rcu *pd;
029632fb
PZ
785};
786
f2cb1360 787extern void init_defrootdomain(void);
8d5dc512 788extern int sched_init_domains(const struct cpumask *cpu_map);
f2cb1360 789extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
364f5665
SRV
790extern void sched_get_rd(struct root_domain *rd);
791extern void sched_put_rd(struct root_domain *rd);
029632fb 792
4bdced5c
SRRH
793#ifdef HAVE_RT_PUSH_IPI
794extern void rto_push_irq_work_func(struct irq_work *work);
795#endif
029632fb
PZ
796#endif /* CONFIG_SMP */
797
69842cba
PB
798#ifdef CONFIG_UCLAMP_TASK
799/*
800 * struct uclamp_bucket - Utilization clamp bucket
801 * @value: utilization clamp value for tasks on this clamp bucket
802 * @tasks: number of RUNNABLE tasks on this clamp bucket
803 *
804 * Keep track of how many tasks are RUNNABLE for a given utilization
805 * clamp value.
806 */
807struct uclamp_bucket {
808 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
809 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
810};
811
812/*
813 * struct uclamp_rq - rq's utilization clamp
814 * @value: currently active clamp values for a rq
815 * @bucket: utilization clamp buckets affecting a rq
816 *
817 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
818 * A clamp value is affecting a rq when there is at least one task RUNNABLE
819 * (or actually running) with that value.
820 *
821 * There are up to UCLAMP_CNT possible different clamp values, currently there
822 * are only two: minimum utilization and maximum utilization.
823 *
824 * All utilization clamping values are MAX aggregated, since:
825 * - for util_min: we want to run the CPU at least at the max of the minimum
826 * utilization required by its currently RUNNABLE tasks.
827 * - for util_max: we want to allow the CPU to run up to the max of the
828 * maximum utilization allowed by its currently RUNNABLE tasks.
829 *
830 * Since on each system we expect only a limited number of different
831 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
832 * the metrics required to compute all the per-rq utilization clamp values.
833 */
834struct uclamp_rq {
835 unsigned int value;
836 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
837};
838#endif /* CONFIG_UCLAMP_TASK */
839
029632fb
PZ
840/*
841 * This is the main, per-CPU runqueue data structure.
842 *
843 * Locking rule: those places that want to lock multiple runqueues
844 * (such as the load balancing or the thread migration code), lock
845 * acquire operations must be ordered by ascending &runqueue.
846 */
847struct rq {
848 /* runqueue lock: */
97fb7a0a 849 raw_spinlock_t lock;
029632fb
PZ
850
851 /*
852 * nr_running and cpu_load should be in the same cacheline because
853 * remote CPUs use both these fields when doing load calculation.
854 */
97fb7a0a 855 unsigned int nr_running;
0ec8aa00 856#ifdef CONFIG_NUMA_BALANCING
97fb7a0a
IM
857 unsigned int nr_numa_running;
858 unsigned int nr_preferred_running;
a4739eca 859 unsigned int numa_migrate_on;
0ec8aa00 860#endif
3451d024 861#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 862#ifdef CONFIG_SMP
97fb7a0a 863 unsigned long last_load_update_tick;
e022e0d3 864 unsigned long last_blocked_load_update_tick;
f643ea22 865 unsigned int has_blocked_load;
9fd81dd5 866#endif /* CONFIG_SMP */
00357f5e 867 unsigned int nohz_tick_stopped;
a22e47a4 868 atomic_t nohz_flags;
9fd81dd5 869#endif /* CONFIG_NO_HZ_COMMON */
dcdedb24 870
97fb7a0a
IM
871 unsigned long nr_load_updates;
872 u64 nr_switches;
029632fb 873
69842cba
PB
874#ifdef CONFIG_UCLAMP_TASK
875 /* Utilization clamp values based on CPU's RUNNABLE tasks */
876 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
e496187d
PB
877 unsigned int uclamp_flags;
878#define UCLAMP_FLAG_IDLE 0x01
69842cba
PB
879#endif
880
97fb7a0a
IM
881 struct cfs_rq cfs;
882 struct rt_rq rt;
883 struct dl_rq dl;
029632fb
PZ
884
885#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
886 /* list of leaf cfs_rq on this CPU: */
887 struct list_head leaf_cfs_rq_list;
888 struct list_head *tmp_alone_branch;
a35b6466
PZ
889#endif /* CONFIG_FAIR_GROUP_SCHED */
890
029632fb
PZ
891 /*
892 * This is part of a global counter where only the total sum
893 * over all CPUs matters. A task can increase this counter on
894 * one CPU and if it got migrated afterwards it may decrease
895 * it on another CPU. Always updated under the runqueue lock:
896 */
97fb7a0a 897 unsigned long nr_uninterruptible;
029632fb 898
97fb7a0a
IM
899 struct task_struct *curr;
900 struct task_struct *idle;
901 struct task_struct *stop;
902 unsigned long next_balance;
903 struct mm_struct *prev_mm;
029632fb 904
97fb7a0a
IM
905 unsigned int clock_update_flags;
906 u64 clock;
23127296
VG
907 /* Ensure that all clocks are in the same cache line */
908 u64 clock_task ____cacheline_aligned;
909 u64 clock_pelt;
910 unsigned long lost_idle_time;
029632fb 911
97fb7a0a 912 atomic_t nr_iowait;
029632fb 913
227a4aad
MD
914#ifdef CONFIG_MEMBARRIER
915 int membarrier_state;
916#endif
917
029632fb 918#ifdef CONFIG_SMP
994aeb7a
JFG
919 struct root_domain *rd;
920 struct sched_domain __rcu *sd;
97fb7a0a
IM
921
922 unsigned long cpu_capacity;
923 unsigned long cpu_capacity_orig;
029632fb 924
97fb7a0a 925 struct callback_head *balance_callback;
029632fb 926
97fb7a0a 927 unsigned char idle_balance;
e3fca9e7 928
3b1baa64
MR
929 unsigned long misfit_task_load;
930
029632fb 931 /* For active balancing */
97fb7a0a
IM
932 int active_balance;
933 int push_cpu;
934 struct cpu_stop_work active_balance_work;
935
936 /* CPU of this runqueue: */
937 int cpu;
938 int online;
029632fb 939
367456c7
PZ
940 struct list_head cfs_tasks;
941
371bf427 942 struct sched_avg avg_rt;
3727e0e1 943 struct sched_avg avg_dl;
11d4afd4 944#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
945 struct sched_avg avg_irq;
946#endif
97fb7a0a
IM
947 u64 idle_stamp;
948 u64 avg_idle;
9bd721c5
JL
949
950 /* This is used to determine avg_idle's max value */
97fb7a0a 951 u64 max_idle_balance_cost;
029632fb
PZ
952#endif
953
954#ifdef CONFIG_IRQ_TIME_ACCOUNTING
97fb7a0a 955 u64 prev_irq_time;
029632fb
PZ
956#endif
957#ifdef CONFIG_PARAVIRT
97fb7a0a 958 u64 prev_steal_time;
029632fb
PZ
959#endif
960#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
97fb7a0a 961 u64 prev_steal_time_rq;
029632fb
PZ
962#endif
963
964 /* calc_load related fields */
97fb7a0a
IM
965 unsigned long calc_load_update;
966 long calc_load_active;
029632fb
PZ
967
968#ifdef CONFIG_SCHED_HRTICK
969#ifdef CONFIG_SMP
97fb7a0a
IM
970 int hrtick_csd_pending;
971 call_single_data_t hrtick_csd;
029632fb 972#endif
97fb7a0a 973 struct hrtimer hrtick_timer;
029632fb
PZ
974#endif
975
976#ifdef CONFIG_SCHEDSTATS
977 /* latency stats */
97fb7a0a
IM
978 struct sched_info rq_sched_info;
979 unsigned long long rq_cpu_time;
029632fb
PZ
980 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
981
982 /* sys_sched_yield() stats */
97fb7a0a 983 unsigned int yld_count;
029632fb
PZ
984
985 /* schedule() stats */
97fb7a0a
IM
986 unsigned int sched_count;
987 unsigned int sched_goidle;
029632fb
PZ
988
989 /* try_to_wake_up() stats */
97fb7a0a
IM
990 unsigned int ttwu_count;
991 unsigned int ttwu_local;
029632fb
PZ
992#endif
993
994#ifdef CONFIG_SMP
97fb7a0a 995 struct llist_head wake_list;
029632fb 996#endif
442bf3aa
DL
997
998#ifdef CONFIG_CPU_IDLE
999 /* Must be inspected within a rcu lock section */
97fb7a0a 1000 struct cpuidle_state *idle_state;
442bf3aa 1001#endif
029632fb
PZ
1002};
1003
62478d99
VG
1004#ifdef CONFIG_FAIR_GROUP_SCHED
1005
1006/* CPU runqueue to which this cfs_rq is attached */
1007static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1008{
1009 return cfs_rq->rq;
1010}
1011
1012#else
1013
1014static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1015{
1016 return container_of(cfs_rq, struct rq, cfs);
1017}
1018#endif
1019
029632fb
PZ
1020static inline int cpu_of(struct rq *rq)
1021{
1022#ifdef CONFIG_SMP
1023 return rq->cpu;
1024#else
1025 return 0;
1026#endif
1027}
1028
1b568f0a
PZ
1029
1030#ifdef CONFIG_SCHED_SMT
1b568f0a
PZ
1031extern void __update_idle_core(struct rq *rq);
1032
1033static inline void update_idle_core(struct rq *rq)
1034{
1035 if (static_branch_unlikely(&sched_smt_present))
1036 __update_idle_core(rq);
1037}
1038
1039#else
1040static inline void update_idle_core(struct rq *rq) { }
1041#endif
1042
8b06c55b 1043DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 1044
518cd623 1045#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 1046#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
1047#define task_rq(p) cpu_rq(task_cpu(p))
1048#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 1049#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 1050
1f351d7f
JW
1051extern void update_rq_clock(struct rq *rq);
1052
cebde6d6
PZ
1053static inline u64 __rq_clock_broken(struct rq *rq)
1054{
316c1608 1055 return READ_ONCE(rq->clock);
cebde6d6
PZ
1056}
1057
cb42c9a3
MF
1058/*
1059 * rq::clock_update_flags bits
1060 *
1061 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1062 * call to __schedule(). This is an optimisation to avoid
1063 * neighbouring rq clock updates.
1064 *
1065 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1066 * in effect and calls to update_rq_clock() are being ignored.
1067 *
1068 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1069 * made to update_rq_clock() since the last time rq::lock was pinned.
1070 *
1071 * If inside of __schedule(), clock_update_flags will have been
1072 * shifted left (a left shift is a cheap operation for the fast path
1073 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1074 *
1075 * if (rq-clock_update_flags >= RQCF_UPDATED)
1076 *
1077 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1078 * one position though, because the next rq_unpin_lock() will shift it
1079 * back.
1080 */
97fb7a0a
IM
1081#define RQCF_REQ_SKIP 0x01
1082#define RQCF_ACT_SKIP 0x02
1083#define RQCF_UPDATED 0x04
cb42c9a3
MF
1084
1085static inline void assert_clock_updated(struct rq *rq)
1086{
1087 /*
1088 * The only reason for not seeing a clock update since the
1089 * last rq_pin_lock() is if we're currently skipping updates.
1090 */
1091 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1092}
1093
78becc27
FW
1094static inline u64 rq_clock(struct rq *rq)
1095{
cebde6d6 1096 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1097 assert_clock_updated(rq);
1098
78becc27
FW
1099 return rq->clock;
1100}
1101
1102static inline u64 rq_clock_task(struct rq *rq)
1103{
cebde6d6 1104 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1105 assert_clock_updated(rq);
1106
78becc27
FW
1107 return rq->clock_task;
1108}
1109
adcc8da8 1110static inline void rq_clock_skip_update(struct rq *rq)
9edfbfed
PZ
1111{
1112 lockdep_assert_held(&rq->lock);
adcc8da8
DB
1113 rq->clock_update_flags |= RQCF_REQ_SKIP;
1114}
1115
1116/*
595058b6 1117 * See rt task throttling, which is the only time a skip
adcc8da8
DB
1118 * request is cancelled.
1119 */
1120static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1121{
1122 lockdep_assert_held(&rq->lock);
1123 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
1124}
1125
d8ac8971
MF
1126struct rq_flags {
1127 unsigned long flags;
1128 struct pin_cookie cookie;
cb42c9a3
MF
1129#ifdef CONFIG_SCHED_DEBUG
1130 /*
1131 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1132 * current pin context is stashed here in case it needs to be
1133 * restored in rq_repin_lock().
1134 */
1135 unsigned int clock_update_flags;
1136#endif
d8ac8971
MF
1137};
1138
1139static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1140{
1141 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
1142
1143#ifdef CONFIG_SCHED_DEBUG
1144 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1145 rf->clock_update_flags = 0;
1146#endif
d8ac8971
MF
1147}
1148
1149static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1150{
cb42c9a3
MF
1151#ifdef CONFIG_SCHED_DEBUG
1152 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1153 rf->clock_update_flags = RQCF_UPDATED;
1154#endif
1155
d8ac8971
MF
1156 lockdep_unpin_lock(&rq->lock, rf->cookie);
1157}
1158
1159static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1160{
1161 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
1162
1163#ifdef CONFIG_SCHED_DEBUG
1164 /*
1165 * Restore the value we stashed in @rf for this pin context.
1166 */
1167 rq->clock_update_flags |= rf->clock_update_flags;
1168#endif
d8ac8971
MF
1169}
1170
1f351d7f
JW
1171struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1172 __acquires(rq->lock);
1173
1174struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1175 __acquires(p->pi_lock)
1176 __acquires(rq->lock);
1177
1178static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1179 __releases(rq->lock)
1180{
1181 rq_unpin_lock(rq, rf);
1182 raw_spin_unlock(&rq->lock);
1183}
1184
1185static inline void
1186task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1187 __releases(rq->lock)
1188 __releases(p->pi_lock)
1189{
1190 rq_unpin_lock(rq, rf);
1191 raw_spin_unlock(&rq->lock);
1192 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1193}
1194
1195static inline void
1196rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1197 __acquires(rq->lock)
1198{
1199 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1200 rq_pin_lock(rq, rf);
1201}
1202
1203static inline void
1204rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1205 __acquires(rq->lock)
1206{
1207 raw_spin_lock_irq(&rq->lock);
1208 rq_pin_lock(rq, rf);
1209}
1210
1211static inline void
1212rq_lock(struct rq *rq, struct rq_flags *rf)
1213 __acquires(rq->lock)
1214{
1215 raw_spin_lock(&rq->lock);
1216 rq_pin_lock(rq, rf);
1217}
1218
1219static inline void
1220rq_relock(struct rq *rq, struct rq_flags *rf)
1221 __acquires(rq->lock)
1222{
1223 raw_spin_lock(&rq->lock);
1224 rq_repin_lock(rq, rf);
1225}
1226
1227static inline void
1228rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1229 __releases(rq->lock)
1230{
1231 rq_unpin_lock(rq, rf);
1232 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1233}
1234
1235static inline void
1236rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1237 __releases(rq->lock)
1238{
1239 rq_unpin_lock(rq, rf);
1240 raw_spin_unlock_irq(&rq->lock);
1241}
1242
1243static inline void
1244rq_unlock(struct rq *rq, struct rq_flags *rf)
1245 __releases(rq->lock)
1246{
1247 rq_unpin_lock(rq, rf);
1248 raw_spin_unlock(&rq->lock);
1249}
1250
246b3b33
JW
1251static inline struct rq *
1252this_rq_lock_irq(struct rq_flags *rf)
1253 __acquires(rq->lock)
1254{
1255 struct rq *rq;
1256
1257 local_irq_disable();
1258 rq = this_rq();
1259 rq_lock(rq, rf);
1260 return rq;
1261}
1262
9942f79b 1263#ifdef CONFIG_NUMA
e3fe70b1
RR
1264enum numa_topology_type {
1265 NUMA_DIRECT,
1266 NUMA_GLUELESS_MESH,
1267 NUMA_BACKPLANE,
1268};
1269extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
1270extern int sched_max_numa_distance;
1271extern bool find_numa_distance(int distance);
f2cb1360
IM
1272extern void sched_init_numa(void);
1273extern void sched_domains_numa_masks_set(unsigned int cpu);
1274extern void sched_domains_numa_masks_clear(unsigned int cpu);
e0e8d491 1275extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
f2cb1360
IM
1276#else
1277static inline void sched_init_numa(void) { }
1278static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1279static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
e0e8d491
WL
1280static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1281{
1282 return nr_cpu_ids;
1283}
f2cb1360
IM
1284#endif
1285
f809ca9a 1286#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
1287/* The regions in numa_faults array from task_struct */
1288enum numa_faults_stats {
1289 NUMA_MEM = 0,
1290 NUMA_CPU,
1291 NUMA_MEMBUF,
1292 NUMA_CPUBUF
1293};
0ec8aa00 1294extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 1295extern int migrate_task_to(struct task_struct *p, int cpu);
0ad4e3df
SD
1296extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1297 int cpu, int scpu);
13784475
MG
1298extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1299#else
1300static inline void
1301init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1302{
1303}
f809ca9a
MG
1304#endif /* CONFIG_NUMA_BALANCING */
1305
518cd623
PZ
1306#ifdef CONFIG_SMP
1307
e3fca9e7
PZ
1308static inline void
1309queue_balance_callback(struct rq *rq,
1310 struct callback_head *head,
1311 void (*func)(struct rq *rq))
1312{
1313 lockdep_assert_held(&rq->lock);
1314
1315 if (unlikely(head->next))
1316 return;
1317
1318 head->func = (void (*)(struct callback_head *))func;
1319 head->next = rq->balance_callback;
1320 rq->balance_callback = head;
1321}
1322
e3baac47
PZ
1323extern void sched_ttwu_pending(void);
1324
029632fb
PZ
1325#define rcu_dereference_check_sched_domain(p) \
1326 rcu_dereference_check((p), \
1327 lockdep_is_held(&sched_domains_mutex))
1328
1329/*
1330 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
337e9b07 1331 * See destroy_sched_domains: call_rcu for details.
029632fb
PZ
1332 *
1333 * The domain tree of any CPU may only be accessed from within
1334 * preempt-disabled sections.
1335 */
1336#define for_each_domain(cpu, __sd) \
518cd623
PZ
1337 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1338 __sd; __sd = __sd->parent)
029632fb 1339
77e81365
SS
1340#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1341
518cd623
PZ
1342/**
1343 * highest_flag_domain - Return highest sched_domain containing flag.
97fb7a0a 1344 * @cpu: The CPU whose highest level of sched domain is to
518cd623
PZ
1345 * be returned.
1346 * @flag: The flag to check for the highest sched_domain
97fb7a0a 1347 * for the given CPU.
518cd623 1348 *
97fb7a0a 1349 * Returns the highest sched_domain of a CPU which contains the given flag.
518cd623
PZ
1350 */
1351static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1352{
1353 struct sched_domain *sd, *hsd = NULL;
1354
1355 for_each_domain(cpu, sd) {
1356 if (!(sd->flags & flag))
1357 break;
1358 hsd = sd;
1359 }
1360
1361 return hsd;
1362}
1363
fb13c7ee
MG
1364static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1365{
1366 struct sched_domain *sd;
1367
1368 for_each_domain(cpu, sd) {
1369 if (sd->flags & flag)
1370 break;
1371 }
1372
1373 return sd;
1374}
1375
994aeb7a 1376DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
7d9ffa89 1377DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1378DECLARE_PER_CPU(int, sd_llc_id);
994aeb7a
JFG
1379DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1380DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1381DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1382DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
df054e84 1383extern struct static_key_false sched_asym_cpucapacity;
518cd623 1384
63b2ca30 1385struct sched_group_capacity {
97fb7a0a 1386 atomic_t ref;
5e6521ea 1387 /*
172895e6 1388 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1389 * for a single CPU.
5e6521ea 1390 */
97fb7a0a
IM
1391 unsigned long capacity;
1392 unsigned long min_capacity; /* Min per-CPU capacity in group */
e3d6d0cb 1393 unsigned long max_capacity; /* Max per-CPU capacity in group */
97fb7a0a
IM
1394 unsigned long next_update;
1395 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea 1396
005f874d 1397#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 1398 int id;
005f874d
PZ
1399#endif
1400
97fb7a0a 1401 unsigned long cpumask[0]; /* Balance mask */
5e6521ea
LZ
1402};
1403
1404struct sched_group {
97fb7a0a
IM
1405 struct sched_group *next; /* Must be a circular list */
1406 atomic_t ref;
5e6521ea 1407
97fb7a0a 1408 unsigned int group_weight;
63b2ca30 1409 struct sched_group_capacity *sgc;
97fb7a0a 1410 int asym_prefer_cpu; /* CPU of highest priority in group */
5e6521ea
LZ
1411
1412 /*
1413 * The CPUs this group covers.
1414 *
1415 * NOTE: this field is variable length. (Allocated dynamically
1416 * by attaching extra space to the end of the structure,
1417 * depending on how many CPUs the kernel has booted up with)
1418 */
97fb7a0a 1419 unsigned long cpumask[0];
5e6521ea
LZ
1420};
1421
ae4df9d6 1422static inline struct cpumask *sched_group_span(struct sched_group *sg)
5e6521ea
LZ
1423{
1424 return to_cpumask(sg->cpumask);
1425}
1426
1427/*
e5c14b1f 1428 * See build_balance_mask().
5e6521ea 1429 */
e5c14b1f 1430static inline struct cpumask *group_balance_mask(struct sched_group *sg)
5e6521ea 1431{
63b2ca30 1432 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1433}
1434
1435/**
97fb7a0a
IM
1436 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1437 * @group: The group whose first CPU is to be returned.
5e6521ea
LZ
1438 */
1439static inline unsigned int group_first_cpu(struct sched_group *group)
1440{
ae4df9d6 1441 return cpumask_first(sched_group_span(group));
5e6521ea
LZ
1442}
1443
c1174876
PZ
1444extern int group_balance_cpu(struct sched_group *sg);
1445
3866e845
SRRH
1446#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1447void register_sched_domain_sysctl(void);
bbdacdfe 1448void dirty_sched_domain_sysctl(int cpu);
3866e845
SRRH
1449void unregister_sched_domain_sysctl(void);
1450#else
1451static inline void register_sched_domain_sysctl(void)
1452{
1453}
bbdacdfe
PZ
1454static inline void dirty_sched_domain_sysctl(int cpu)
1455{
1456}
3866e845
SRRH
1457static inline void unregister_sched_domain_sysctl(void)
1458{
1459}
1460#endif
1461
5ba553ef
PZ
1462extern int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
1463
e3baac47
PZ
1464#else
1465
1466static inline void sched_ttwu_pending(void) { }
1467
5ba553ef
PZ
1468static inline int newidle_balance(struct rq *this_rq, struct rq_flags *rf) { return 0; }
1469
518cd623 1470#endif /* CONFIG_SMP */
029632fb 1471
391e43da 1472#include "stats.h"
1051408f 1473#include "autogroup.h"
029632fb
PZ
1474
1475#ifdef CONFIG_CGROUP_SCHED
1476
1477/*
1478 * Return the group to which this tasks belongs.
1479 *
8af01f56
TH
1480 * We cannot use task_css() and friends because the cgroup subsystem
1481 * changes that value before the cgroup_subsys::attach() method is called,
1482 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1483 *
1484 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1485 * core changes this before calling sched_move_task().
1486 *
1487 * Instead we use a 'copy' which is updated from sched_move_task() while
1488 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1489 */
1490static inline struct task_group *task_group(struct task_struct *p)
1491{
8323f26c 1492 return p->sched_task_group;
029632fb
PZ
1493}
1494
1495/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1496static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1497{
1498#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1499 struct task_group *tg = task_group(p);
1500#endif
1501
1502#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1503 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1504 p->se.cfs_rq = tg->cfs_rq[cpu];
1505 p->se.parent = tg->se[cpu];
1506#endif
1507
1508#ifdef CONFIG_RT_GROUP_SCHED
1509 p->rt.rt_rq = tg->rt_rq[cpu];
1510 p->rt.parent = tg->rt_se[cpu];
1511#endif
1512}
1513
1514#else /* CONFIG_CGROUP_SCHED */
1515
1516static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1517static inline struct task_group *task_group(struct task_struct *p)
1518{
1519 return NULL;
1520}
1521
1522#endif /* CONFIG_CGROUP_SCHED */
1523
1524static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1525{
1526 set_task_rq(p, cpu);
1527#ifdef CONFIG_SMP
1528 /*
1529 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
dfcb245e 1530 * successfully executed on another CPU. We must ensure that updates of
029632fb
PZ
1531 * per-task data have been completed by this moment.
1532 */
1533 smp_wmb();
c65eacbe 1534#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1535 WRITE_ONCE(p->cpu, cpu);
c65eacbe 1536#else
c546951d 1537 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
c65eacbe 1538#endif
ac66f547 1539 p->wake_cpu = cpu;
029632fb
PZ
1540#endif
1541}
1542
1543/*
1544 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1545 */
1546#ifdef CONFIG_SCHED_DEBUG
c5905afb 1547# include <linux/static_key.h>
029632fb
PZ
1548# define const_debug __read_mostly
1549#else
1550# define const_debug const
1551#endif
1552
029632fb
PZ
1553#define SCHED_FEAT(name, enabled) \
1554 __SCHED_FEAT_##name ,
1555
1556enum {
391e43da 1557#include "features.h"
f8b6d1cc 1558 __SCHED_FEAT_NR,
029632fb
PZ
1559};
1560
1561#undef SCHED_FEAT
1562
e9666d10 1563#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
765cc3a4
PB
1564
1565/*
1566 * To support run-time toggling of sched features, all the translation units
1567 * (but core.c) reference the sysctl_sched_features defined in core.c.
1568 */
1569extern const_debug unsigned int sysctl_sched_features;
1570
f8b6d1cc 1571#define SCHED_FEAT(name, enabled) \
c5905afb 1572static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1573{ \
6e76ea8a 1574 return static_key_##enabled(key); \
f8b6d1cc
PZ
1575}
1576
1577#include "features.h"
f8b6d1cc
PZ
1578#undef SCHED_FEAT
1579
c5905afb 1580extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc 1581#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765cc3a4 1582
e9666d10 1583#else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
765cc3a4
PB
1584
1585/*
1586 * Each translation unit has its own copy of sysctl_sched_features to allow
1587 * constants propagation at compile time and compiler optimization based on
1588 * features default.
1589 */
1590#define SCHED_FEAT(name, enabled) \
1591 (1UL << __SCHED_FEAT_##name) * enabled |
1592static const_debug __maybe_unused unsigned int sysctl_sched_features =
1593#include "features.h"
1594 0;
1595#undef SCHED_FEAT
1596
7e6f4c5d 1597#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
765cc3a4 1598
e9666d10 1599#endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
029632fb 1600
2a595721 1601extern struct static_key_false sched_numa_balancing;
cb251765 1602extern struct static_key_false sched_schedstats;
cbee9f88 1603
029632fb
PZ
1604static inline u64 global_rt_period(void)
1605{
1606 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1607}
1608
1609static inline u64 global_rt_runtime(void)
1610{
1611 if (sysctl_sched_rt_runtime < 0)
1612 return RUNTIME_INF;
1613
1614 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1615}
1616
029632fb
PZ
1617static inline int task_current(struct rq *rq, struct task_struct *p)
1618{
1619 return rq->curr == p;
1620}
1621
1622static inline int task_running(struct rq *rq, struct task_struct *p)
1623{
1624#ifdef CONFIG_SMP
1625 return p->on_cpu;
1626#else
1627 return task_current(rq, p);
1628#endif
1629}
1630
da0c1e65
KT
1631static inline int task_on_rq_queued(struct task_struct *p)
1632{
1633 return p->on_rq == TASK_ON_RQ_QUEUED;
1634}
029632fb 1635
cca26e80
KT
1636static inline int task_on_rq_migrating(struct task_struct *p)
1637{
c546951d 1638 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
cca26e80
KT
1639}
1640
b13095f0
LZ
1641/*
1642 * wake flags
1643 */
97fb7a0a
IM
1644#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1645#define WF_FORK 0x02 /* Child wakeup after fork */
1646#define WF_MIGRATED 0x4 /* Internal use, task got migrated */
b13095f0 1647
029632fb
PZ
1648/*
1649 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1650 * of tasks with abnormal "nice" values across CPUs the contribution that
1651 * each task makes to its run queue's load is weighted according to its
1652 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1653 * scaled version of the new time slice allocation that they receive on time
1654 * slice expiry etc.
1655 */
1656
97fb7a0a
IM
1657#define WEIGHT_IDLEPRIO 3
1658#define WMULT_IDLEPRIO 1431655765
029632fb 1659
97fb7a0a
IM
1660extern const int sched_prio_to_weight[40];
1661extern const u32 sched_prio_to_wmult[40];
029632fb 1662
ff77e468
PZ
1663/*
1664 * {de,en}queue flags:
1665 *
1666 * DEQUEUE_SLEEP - task is no longer runnable
1667 * ENQUEUE_WAKEUP - task just became runnable
1668 *
1669 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1670 * are in a known state which allows modification. Such pairs
1671 * should preserve as much state as possible.
1672 *
1673 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1674 * in the runqueue.
1675 *
1676 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1677 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1678 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1679 *
1680 */
1681
1682#define DEQUEUE_SLEEP 0x01
97fb7a0a
IM
1683#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1684#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1685#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
ff77e468 1686
1de64443 1687#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1688#define ENQUEUE_RESTORE 0x02
1689#define ENQUEUE_MOVE 0x04
0a67d1ee 1690#define ENQUEUE_NOCLOCK 0x08
ff77e468 1691
0a67d1ee
PZ
1692#define ENQUEUE_HEAD 0x10
1693#define ENQUEUE_REPLENISH 0x20
c82ba9fa 1694#ifdef CONFIG_SMP
0a67d1ee 1695#define ENQUEUE_MIGRATED 0x40
c82ba9fa 1696#else
59efa0ba 1697#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1698#endif
c82ba9fa 1699
37e117c0
PZ
1700#define RETRY_TASK ((void *)-1UL)
1701
c82ba9fa
LZ
1702struct sched_class {
1703 const struct sched_class *next;
1704
69842cba
PB
1705#ifdef CONFIG_UCLAMP_TASK
1706 int uclamp_enabled;
1707#endif
1708
c82ba9fa
LZ
1709 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1710 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
97fb7a0a
IM
1711 void (*yield_task) (struct rq *rq);
1712 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
c82ba9fa 1713
97fb7a0a 1714 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
c82ba9fa 1715
606dba2e 1716 /*
67692435
PZ
1717 * Both @prev and @rf are optional and may be NULL, in which case the
1718 * caller must already have invoked put_prev_task(rq, prev, rf).
37e117c0 1719 *
67692435
PZ
1720 * Otherwise it is the responsibility of the pick_next_task() to call
1721 * put_prev_task() on the @prev task or something equivalent, IFF it
1722 * returns a next task.
1723 *
1724 * In that case (@rf != NULL) it may return RETRY_TASK when it finds a
1725 * higher prio class has runnable tasks.
606dba2e 1726 */
97fb7a0a
IM
1727 struct task_struct * (*pick_next_task)(struct rq *rq,
1728 struct task_struct *prev,
1729 struct rq_flags *rf);
5f2a45fc 1730 void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct rq_flags *rf);
03b7fad1 1731 void (*set_next_task)(struct rq *rq, struct task_struct *p);
c82ba9fa
LZ
1732
1733#ifdef CONFIG_SMP
ac66f547 1734 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1327237a 1735 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
c82ba9fa 1736
97fb7a0a 1737 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
c82ba9fa
LZ
1738
1739 void (*set_cpus_allowed)(struct task_struct *p,
1740 const struct cpumask *newmask);
1741
1742 void (*rq_online)(struct rq *rq);
1743 void (*rq_offline)(struct rq *rq);
1744#endif
1745
97fb7a0a
IM
1746 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1747 void (*task_fork)(struct task_struct *p);
1748 void (*task_dead)(struct task_struct *p);
c82ba9fa 1749
67dfa1b7
KT
1750 /*
1751 * The switched_from() call is allowed to drop rq->lock, therefore we
1752 * cannot assume the switched_from/switched_to pair is serliazed by
1753 * rq->lock. They are however serialized by p->pi_lock.
1754 */
97fb7a0a
IM
1755 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1756 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
c82ba9fa 1757 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
97fb7a0a 1758 int oldprio);
c82ba9fa 1759
97fb7a0a
IM
1760 unsigned int (*get_rr_interval)(struct rq *rq,
1761 struct task_struct *task);
c82ba9fa 1762
97fb7a0a 1763 void (*update_curr)(struct rq *rq);
6e998916 1764
97fb7a0a
IM
1765#define TASK_SET_GROUP 0
1766#define TASK_MOVE_GROUP 1
ea86cb4b 1767
c82ba9fa 1768#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 1769 void (*task_change_group)(struct task_struct *p, int type);
c82ba9fa
LZ
1770#endif
1771};
029632fb 1772
3f1d2a31
PZ
1773static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1774{
10e7071b 1775 WARN_ON_ONCE(rq->curr != prev);
5f2a45fc 1776 prev->sched_class->put_prev_task(rq, prev, NULL);
3f1d2a31
PZ
1777}
1778
03b7fad1 1779static inline void set_next_task(struct rq *rq, struct task_struct *next)
b2bf6c31 1780{
03b7fad1
PZ
1781 WARN_ON_ONCE(rq->curr != next);
1782 next->sched_class->set_next_task(rq, next);
b2bf6c31
PZ
1783}
1784
f5832c19 1785#ifdef CONFIG_SMP
029632fb 1786#define sched_class_highest (&stop_sched_class)
f5832c19
NP
1787#else
1788#define sched_class_highest (&dl_sched_class)
1789#endif
029632fb
PZ
1790#define for_each_class(class) \
1791 for (class = sched_class_highest; class; class = class->next)
1792
1793extern const struct sched_class stop_sched_class;
aab03e05 1794extern const struct sched_class dl_sched_class;
029632fb
PZ
1795extern const struct sched_class rt_sched_class;
1796extern const struct sched_class fair_sched_class;
1797extern const struct sched_class idle_sched_class;
1798
1799
1800#ifdef CONFIG_SMP
1801
63b2ca30 1802extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1803
7caff66f 1804extern void trigger_load_balance(struct rq *rq);
029632fb 1805
c5b28038
PZ
1806extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1807
029632fb
PZ
1808#endif
1809
442bf3aa
DL
1810#ifdef CONFIG_CPU_IDLE
1811static inline void idle_set_state(struct rq *rq,
1812 struct cpuidle_state *idle_state)
1813{
1814 rq->idle_state = idle_state;
1815}
1816
1817static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1818{
9148a3a1 1819 SCHED_WARN_ON(!rcu_read_lock_held());
97fb7a0a 1820
442bf3aa
DL
1821 return rq->idle_state;
1822}
1823#else
1824static inline void idle_set_state(struct rq *rq,
1825 struct cpuidle_state *idle_state)
1826{
1827}
1828
1829static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1830{
1831 return NULL;
1832}
1833#endif
1834
8663effb
SRV
1835extern void schedule_idle(void);
1836
029632fb
PZ
1837extern void sysrq_sched_debug_show(void);
1838extern void sched_init_granularity(void);
1839extern void update_max_interval(void);
1baca4ce
JL
1840
1841extern void init_sched_dl_class(void);
029632fb
PZ
1842extern void init_sched_rt_class(void);
1843extern void init_sched_fair_class(void);
1844
9059393e
VG
1845extern void reweight_task(struct task_struct *p, int prio);
1846
8875125e 1847extern void resched_curr(struct rq *rq);
029632fb
PZ
1848extern void resched_cpu(int cpu);
1849
1850extern struct rt_bandwidth def_rt_bandwidth;
1851extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1852
332ac17e
DF
1853extern struct dl_bandwidth def_dl_bandwidth;
1854extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05 1855extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
209a0cbd 1856extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
4da3abce 1857extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
aab03e05 1858
97fb7a0a
IM
1859#define BW_SHIFT 20
1860#define BW_UNIT (1 << BW_SHIFT)
1861#define RATIO_SHIFT 8
332ac17e
DF
1862unsigned long to_ratio(u64 period, u64 runtime);
1863
540247fb 1864extern void init_entity_runnable_average(struct sched_entity *se);
d0fe0b9c 1865extern void post_init_entity_util_avg(struct task_struct *p);
a75cdaa9 1866
76d92ac3
FW
1867#ifdef CONFIG_NO_HZ_FULL
1868extern bool sched_can_stop_tick(struct rq *rq);
d84b3131 1869extern int __init sched_tick_offload_init(void);
76d92ac3
FW
1870
1871/*
1872 * Tick may be needed by tasks in the runqueue depending on their policy and
1873 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1874 * nohz mode if necessary.
1875 */
1876static inline void sched_update_tick_dependency(struct rq *rq)
1877{
1878 int cpu;
1879
1880 if (!tick_nohz_full_enabled())
1881 return;
1882
1883 cpu = cpu_of(rq);
1884
1885 if (!tick_nohz_full_cpu(cpu))
1886 return;
1887
1888 if (sched_can_stop_tick(rq))
1889 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1890 else
1891 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1892}
1893#else
d84b3131 1894static inline int sched_tick_offload_init(void) { return 0; }
76d92ac3
FW
1895static inline void sched_update_tick_dependency(struct rq *rq) { }
1896#endif
1897
72465447 1898static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1899{
72465447
KT
1900 unsigned prev_nr = rq->nr_running;
1901
1902 rq->nr_running = prev_nr + count;
9f3660c2 1903
4486edd1 1904#ifdef CONFIG_SMP
3e184501 1905 if (prev_nr < 2 && rq->nr_running >= 2) {
e90c8fe1
VS
1906 if (!READ_ONCE(rq->rd->overload))
1907 WRITE_ONCE(rq->rd->overload, 1);
4486edd1 1908 }
3e184501 1909#endif
76d92ac3
FW
1910
1911 sched_update_tick_dependency(rq);
029632fb
PZ
1912}
1913
72465447 1914static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1915{
72465447 1916 rq->nr_running -= count;
76d92ac3
FW
1917 /* Check if we still need preemption */
1918 sched_update_tick_dependency(rq);
029632fb
PZ
1919}
1920
029632fb
PZ
1921extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1922extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1923
1924extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1925
029632fb
PZ
1926extern const_debug unsigned int sysctl_sched_nr_migrate;
1927extern const_debug unsigned int sysctl_sched_migration_cost;
1928
029632fb
PZ
1929#ifdef CONFIG_SCHED_HRTICK
1930
1931/*
1932 * Use hrtick when:
1933 * - enabled by features
1934 * - hrtimer is actually high res
1935 */
1936static inline int hrtick_enabled(struct rq *rq)
1937{
1938 if (!sched_feat(HRTICK))
1939 return 0;
1940 if (!cpu_active(cpu_of(rq)))
1941 return 0;
1942 return hrtimer_is_hres_active(&rq->hrtick_timer);
1943}
1944
1945void hrtick_start(struct rq *rq, u64 delay);
1946
b39e66ea
MG
1947#else
1948
1949static inline int hrtick_enabled(struct rq *rq)
1950{
1951 return 0;
1952}
1953
029632fb
PZ
1954#endif /* CONFIG_SCHED_HRTICK */
1955
dfbca41f
PZ
1956#ifndef arch_scale_freq_capacity
1957static __always_inline
7673c8a4 1958unsigned long arch_scale_freq_capacity(int cpu)
dfbca41f
PZ
1959{
1960 return SCHED_CAPACITY_SCALE;
1961}
1962#endif
b5b4860d 1963
029632fb 1964#ifdef CONFIG_SMP
c1a280b6 1965#ifdef CONFIG_PREEMPTION
029632fb
PZ
1966
1967static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1968
1969/*
1970 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1971 * way at the expense of forcing extra atomic operations in all
1972 * invocations. This assures that the double_lock is acquired using the
1973 * same underlying policy as the spinlock_t on this architecture, which
1974 * reduces latency compared to the unfair variant below. However, it
1975 * also adds more overhead and therefore may reduce throughput.
1976 */
1977static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1978 __releases(this_rq->lock)
1979 __acquires(busiest->lock)
1980 __acquires(this_rq->lock)
1981{
1982 raw_spin_unlock(&this_rq->lock);
1983 double_rq_lock(this_rq, busiest);
1984
1985 return 1;
1986}
1987
1988#else
1989/*
1990 * Unfair double_lock_balance: Optimizes throughput at the expense of
1991 * latency by eliminating extra atomic operations when the locks are
97fb7a0a
IM
1992 * already in proper order on entry. This favors lower CPU-ids and will
1993 * grant the double lock to lower CPUs over higher ids under contention,
029632fb
PZ
1994 * regardless of entry order into the function.
1995 */
1996static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1997 __releases(this_rq->lock)
1998 __acquires(busiest->lock)
1999 __acquires(this_rq->lock)
2000{
2001 int ret = 0;
2002
2003 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2004 if (busiest < this_rq) {
2005 raw_spin_unlock(&this_rq->lock);
2006 raw_spin_lock(&busiest->lock);
2007 raw_spin_lock_nested(&this_rq->lock,
2008 SINGLE_DEPTH_NESTING);
2009 ret = 1;
2010 } else
2011 raw_spin_lock_nested(&busiest->lock,
2012 SINGLE_DEPTH_NESTING);
2013 }
2014 return ret;
2015}
2016
c1a280b6 2017#endif /* CONFIG_PREEMPTION */
029632fb
PZ
2018
2019/*
2020 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2021 */
2022static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2023{
2024 if (unlikely(!irqs_disabled())) {
97fb7a0a 2025 /* printk() doesn't work well under rq->lock */
029632fb
PZ
2026 raw_spin_unlock(&this_rq->lock);
2027 BUG_ON(1);
2028 }
2029
2030 return _double_lock_balance(this_rq, busiest);
2031}
2032
2033static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2034 __releases(busiest->lock)
2035{
2036 raw_spin_unlock(&busiest->lock);
2037 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2038}
2039
74602315
PZ
2040static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2041{
2042 if (l1 > l2)
2043 swap(l1, l2);
2044
2045 spin_lock(l1);
2046 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2047}
2048
60e69eed
MG
2049static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2050{
2051 if (l1 > l2)
2052 swap(l1, l2);
2053
2054 spin_lock_irq(l1);
2055 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2056}
2057
74602315
PZ
2058static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2059{
2060 if (l1 > l2)
2061 swap(l1, l2);
2062
2063 raw_spin_lock(l1);
2064 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2065}
2066
029632fb
PZ
2067/*
2068 * double_rq_lock - safely lock two runqueues
2069 *
2070 * Note this does not disable interrupts like task_rq_lock,
2071 * you need to do so manually before calling.
2072 */
2073static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2074 __acquires(rq1->lock)
2075 __acquires(rq2->lock)
2076{
2077 BUG_ON(!irqs_disabled());
2078 if (rq1 == rq2) {
2079 raw_spin_lock(&rq1->lock);
2080 __acquire(rq2->lock); /* Fake it out ;) */
2081 } else {
2082 if (rq1 < rq2) {
2083 raw_spin_lock(&rq1->lock);
2084 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2085 } else {
2086 raw_spin_lock(&rq2->lock);
2087 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2088 }
2089 }
2090}
2091
2092/*
2093 * double_rq_unlock - safely unlock two runqueues
2094 *
2095 * Note this does not restore interrupts like task_rq_unlock,
2096 * you need to do so manually after calling.
2097 */
2098static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2099 __releases(rq1->lock)
2100 __releases(rq2->lock)
2101{
2102 raw_spin_unlock(&rq1->lock);
2103 if (rq1 != rq2)
2104 raw_spin_unlock(&rq2->lock);
2105 else
2106 __release(rq2->lock);
2107}
2108
f2cb1360
IM
2109extern void set_rq_online (struct rq *rq);
2110extern void set_rq_offline(struct rq *rq);
2111extern bool sched_smp_initialized;
2112
029632fb
PZ
2113#else /* CONFIG_SMP */
2114
2115/*
2116 * double_rq_lock - safely lock two runqueues
2117 *
2118 * Note this does not disable interrupts like task_rq_lock,
2119 * you need to do so manually before calling.
2120 */
2121static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2122 __acquires(rq1->lock)
2123 __acquires(rq2->lock)
2124{
2125 BUG_ON(!irqs_disabled());
2126 BUG_ON(rq1 != rq2);
2127 raw_spin_lock(&rq1->lock);
2128 __acquire(rq2->lock); /* Fake it out ;) */
2129}
2130
2131/*
2132 * double_rq_unlock - safely unlock two runqueues
2133 *
2134 * Note this does not restore interrupts like task_rq_unlock,
2135 * you need to do so manually after calling.
2136 */
2137static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2138 __releases(rq1->lock)
2139 __releases(rq2->lock)
2140{
2141 BUG_ON(rq1 != rq2);
2142 raw_spin_unlock(&rq1->lock);
2143 __release(rq2->lock);
2144}
2145
2146#endif
2147
2148extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2149extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
2150
2151#ifdef CONFIG_SCHED_DEBUG
9469eb01
PZ
2152extern bool sched_debug_enabled;
2153
029632fb
PZ
2154extern void print_cfs_stats(struct seq_file *m, int cpu);
2155extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 2156extern void print_dl_stats(struct seq_file *m, int cpu);
f6a34630
MM
2157extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2158extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2159extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
397f2378
SD
2160#ifdef CONFIG_NUMA_BALANCING
2161extern void
2162show_numa_stats(struct task_struct *p, struct seq_file *m);
2163extern void
2164print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2165 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2166#endif /* CONFIG_NUMA_BALANCING */
2167#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
2168
2169extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
2170extern void init_rt_rq(struct rt_rq *rt_rq);
2171extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 2172
1ee14e6c
BS
2173extern void cfs_bandwidth_usage_inc(void);
2174extern void cfs_bandwidth_usage_dec(void);
1c792db7 2175
3451d024 2176#ifdef CONFIG_NO_HZ_COMMON
00357f5e
PZ
2177#define NOHZ_BALANCE_KICK_BIT 0
2178#define NOHZ_STATS_KICK_BIT 1
a22e47a4 2179
a22e47a4 2180#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
b7031a02
PZ
2181#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2182
2183#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
1c792db7
SS
2184
2185#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc 2186
00357f5e 2187extern void nohz_balance_exit_idle(struct rq *rq);
20a5c8cc 2188#else
00357f5e 2189static inline void nohz_balance_exit_idle(struct rq *rq) { }
1c792db7 2190#endif
73fbec60 2191
daec5798
LA
2192
2193#ifdef CONFIG_SMP
2194static inline
2195void __dl_update(struct dl_bw *dl_b, s64 bw)
2196{
2197 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2198 int i;
2199
2200 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2201 "sched RCU must be held");
2202 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2203 struct rq *rq = cpu_rq(i);
2204
2205 rq->dl.extra_bw += bw;
2206 }
2207}
2208#else
2209static inline
2210void __dl_update(struct dl_bw *dl_b, s64 bw)
2211{
2212 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2213
2214 dl->extra_bw += bw;
2215}
2216#endif
2217
2218
73fbec60 2219#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 2220struct irqtime {
25e2d8c1 2221 u64 total;
a499a5a1 2222 u64 tick_delta;
19d23dbf
FW
2223 u64 irq_start_time;
2224 struct u64_stats_sync sync;
2225};
73fbec60 2226
19d23dbf 2227DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 2228
25e2d8c1
FW
2229/*
2230 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2231 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2232 * and never move forward.
2233 */
73fbec60
FW
2234static inline u64 irq_time_read(int cpu)
2235{
19d23dbf
FW
2236 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2237 unsigned int seq;
2238 u64 total;
73fbec60
FW
2239
2240 do {
19d23dbf 2241 seq = __u64_stats_fetch_begin(&irqtime->sync);
25e2d8c1 2242 total = irqtime->total;
19d23dbf 2243 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 2244
19d23dbf 2245 return total;
73fbec60 2246}
73fbec60 2247#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
2248
2249#ifdef CONFIG_CPU_FREQ
b10abd0a 2250DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
adaf9fcd
RW
2251
2252/**
2253 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 2254 * @rq: Runqueue to carry out the update for.
58919e83 2255 * @flags: Update reason flags.
adaf9fcd 2256 *
58919e83
RW
2257 * This function is called by the scheduler on the CPU whose utilization is
2258 * being updated.
adaf9fcd
RW
2259 *
2260 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
2261 *
2262 * The way cpufreq is currently arranged requires it to evaluate the CPU
2263 * performance state (frequency/voltage) on a regular basis to prevent it from
2264 * being stuck in a completely inadequate performance level for too long.
e0367b12
JL
2265 * That is not guaranteed to happen if the updates are only triggered from CFS
2266 * and DL, though, because they may not be coming in if only RT tasks are
2267 * active all the time (or there are RT tasks only).
adaf9fcd 2268 *
e0367b12
JL
2269 * As a workaround for that issue, this function is called periodically by the
2270 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
adaf9fcd 2271 * but that really is a band-aid. Going forward it should be replaced with
e0367b12 2272 * solutions targeted more specifically at RT tasks.
adaf9fcd 2273 */
12bde33d 2274static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 2275{
58919e83
RW
2276 struct update_util_data *data;
2277
674e7541
VK
2278 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2279 cpu_of(rq)));
58919e83 2280 if (data)
12bde33d
RW
2281 data->func(data, rq_clock(rq), flags);
2282}
adaf9fcd 2283#else
12bde33d 2284static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
adaf9fcd 2285#endif /* CONFIG_CPU_FREQ */
be53f58f 2286
982d9cdc 2287#ifdef CONFIG_UCLAMP_TASK
0413d7f3 2288enum uclamp_id uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
9d20ad7d
PB
2289
2290static __always_inline
2291unsigned int uclamp_util_with(struct rq *rq, unsigned int util,
2292 struct task_struct *p)
982d9cdc
PB
2293{
2294 unsigned int min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2295 unsigned int max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
2296
9d20ad7d
PB
2297 if (p) {
2298 min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2299 max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2300 }
2301
982d9cdc
PB
2302 /*
2303 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2304 * RUNNABLE tasks with _different_ clamps, we can end up with an
2305 * inversion. Fix it now when the clamps are applied.
2306 */
2307 if (unlikely(min_util >= max_util))
2308 return min_util;
2309
2310 return clamp(util, min_util, max_util);
2311}
9d20ad7d
PB
2312
2313static inline unsigned int uclamp_util(struct rq *rq, unsigned int util)
2314{
2315 return uclamp_util_with(rq, util, NULL);
2316}
982d9cdc 2317#else /* CONFIG_UCLAMP_TASK */
9d20ad7d
PB
2318static inline unsigned int uclamp_util_with(struct rq *rq, unsigned int util,
2319 struct task_struct *p)
2320{
2321 return util;
2322}
982d9cdc
PB
2323static inline unsigned int uclamp_util(struct rq *rq, unsigned int util)
2324{
2325 return util;
2326}
2327#endif /* CONFIG_UCLAMP_TASK */
2328
9bdcb44e 2329#ifdef arch_scale_freq_capacity
97fb7a0a
IM
2330# ifndef arch_scale_freq_invariant
2331# define arch_scale_freq_invariant() true
2332# endif
2333#else
2334# define arch_scale_freq_invariant() false
9bdcb44e 2335#endif
d4edd662 2336
10a35e68
VG
2337#ifdef CONFIG_SMP
2338static inline unsigned long capacity_orig_of(int cpu)
2339{
2340 return cpu_rq(cpu)->cpu_capacity_orig;
2341}
2342#endif
2343
938e5e4b
QP
2344/**
2345 * enum schedutil_type - CPU utilization type
2346 * @FREQUENCY_UTIL: Utilization used to select frequency
2347 * @ENERGY_UTIL: Utilization used during energy calculation
2348 *
2349 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2350 * need to be aggregated differently depending on the usage made of them. This
2351 * enum is used within schedutil_freq_util() to differentiate the types of
2352 * utilization expected by the callers, and adjust the aggregation accordingly.
2353 */
2354enum schedutil_type {
2355 FREQUENCY_UTIL,
2356 ENERGY_UTIL,
2357};
2358
af24bde8 2359#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
938e5e4b 2360
af24bde8
PB
2361unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2362 unsigned long max, enum schedutil_type type,
2363 struct task_struct *p);
938e5e4b 2364
8cc90515 2365static inline unsigned long cpu_bw_dl(struct rq *rq)
d4edd662
JL
2366{
2367 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2368}
2369
8cc90515
VG
2370static inline unsigned long cpu_util_dl(struct rq *rq)
2371{
2372 return READ_ONCE(rq->avg_dl.util_avg);
2373}
2374
d4edd662
JL
2375static inline unsigned long cpu_util_cfs(struct rq *rq)
2376{
a07630b8
PB
2377 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2378
2379 if (sched_feat(UTIL_EST)) {
2380 util = max_t(unsigned long, util,
2381 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2382 }
2383
2384 return util;
d4edd662 2385}
371bf427
VG
2386
2387static inline unsigned long cpu_util_rt(struct rq *rq)
2388{
dfa444dc 2389 return READ_ONCE(rq->avg_rt.util_avg);
371bf427 2390}
938e5e4b 2391#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
af24bde8
PB
2392static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2393 unsigned long max, enum schedutil_type type,
2394 struct task_struct *p)
938e5e4b 2395{
af24bde8 2396 return 0;
938e5e4b 2397}
af24bde8 2398#endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
9033ea11 2399
11d4afd4 2400#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9033ea11
VG
2401static inline unsigned long cpu_util_irq(struct rq *rq)
2402{
2403 return rq->avg_irq.util_avg;
2404}
2e62c474
VG
2405
2406static inline
2407unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2408{
2409 util *= (max - irq);
2410 util /= max;
2411
2412 return util;
2413
2414}
9033ea11
VG
2415#else
2416static inline unsigned long cpu_util_irq(struct rq *rq)
2417{
2418 return 0;
2419}
2420
2e62c474
VG
2421static inline
2422unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2423{
2424 return util;
2425}
794a56eb 2426#endif
6aa140fa 2427
531b5c9f 2428#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
f8a696f2 2429
6aa140fa 2430#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
f8a696f2
PZ
2431
2432DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2433
2434static inline bool sched_energy_enabled(void)
2435{
2436 return static_branch_unlikely(&sched_energy_present);
2437}
2438
2439#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2440
6aa140fa 2441#define perf_domain_span(pd) NULL
f8a696f2 2442static inline bool sched_energy_enabled(void) { return false; }
1f74de87 2443
f8a696f2 2444#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
227a4aad
MD
2445
2446#ifdef CONFIG_MEMBARRIER
2447/*
2448 * The scheduler provides memory barriers required by membarrier between:
2449 * - prior user-space memory accesses and store to rq->membarrier_state,
2450 * - store to rq->membarrier_state and following user-space memory accesses.
2451 * In the same way it provides those guarantees around store to rq->curr.
2452 */
2453static inline void membarrier_switch_mm(struct rq *rq,
2454 struct mm_struct *prev_mm,
2455 struct mm_struct *next_mm)
2456{
2457 int membarrier_state;
2458
2459 if (prev_mm == next_mm)
2460 return;
2461
2462 membarrier_state = atomic_read(&next_mm->membarrier_state);
2463 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2464 return;
2465
2466 WRITE_ONCE(rq->membarrier_state, membarrier_state);
2467}
2468#else
2469static inline void membarrier_switch_mm(struct rq *rq,
2470 struct mm_struct *prev_mm,
2471 struct mm_struct *next_mm)
2472{
2473}
2474#endif