Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
bb44e5d1 IM |
2 | /* |
3 | * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR | |
4 | * policies) | |
5 | */ | |
371bf427 | 6 | |
3d7e1018 PZ |
7 | #include "sched.h" |
8 | #include "pelt.h" | |
9 | ||
ce0dbbbb | 10 | int sched_rr_timeslice = RR_TIMESLICE; |
d505b8af HC |
11 | /* More than 4 hours if BW_SHIFT equals 20. */ |
12 | static const u64 max_rt_runtime = MAX_BW; | |
ce0dbbbb | 13 | |
d9ab0e63 ZN |
14 | /* |
15 | * period over which we measure -rt task CPU usage in us. | |
16 | * default: 1s | |
17 | */ | |
089768df | 18 | int sysctl_sched_rt_period = 1000000; |
d9ab0e63 ZN |
19 | |
20 | /* | |
21 | * part of the period that we allow rt tasks to run in us. | |
22 | * default: 0.95s | |
23 | */ | |
24 | int sysctl_sched_rt_runtime = 950000; | |
25 | ||
28f152cd | 26 | #ifdef CONFIG_SYSCTL |
c7fcb998 | 27 | static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ; |
78eb4ea2 | 28 | static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer, |
d9ab0e63 | 29 | size_t *lenp, loff_t *ppos); |
78eb4ea2 | 30 | static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer, |
dafd7a9d | 31 | size_t *lenp, loff_t *ppos); |
1751f872 | 32 | static const struct ctl_table sched_rt_sysctls[] = { |
d9ab0e63 ZN |
33 | { |
34 | .procname = "sched_rt_period_us", | |
35 | .data = &sysctl_sched_rt_period, | |
089768df | 36 | .maxlen = sizeof(int), |
d9ab0e63 ZN |
37 | .mode = 0644, |
38 | .proc_handler = sched_rt_handler, | |
079be8fc CH |
39 | .extra1 = SYSCTL_ONE, |
40 | .extra2 = SYSCTL_INT_MAX, | |
d9ab0e63 ZN |
41 | }, |
42 | { | |
43 | .procname = "sched_rt_runtime_us", | |
44 | .data = &sysctl_sched_rt_runtime, | |
45 | .maxlen = sizeof(int), | |
46 | .mode = 0644, | |
47 | .proc_handler = sched_rt_handler, | |
079be8fc | 48 | .extra1 = SYSCTL_NEG_ONE, |
089768df | 49 | .extra2 = (void *)&sysctl_sched_rt_period, |
d9ab0e63 | 50 | }, |
dafd7a9d ZN |
51 | { |
52 | .procname = "sched_rr_timeslice_ms", | |
53 | .data = &sysctl_sched_rr_timeslice, | |
54 | .maxlen = sizeof(int), | |
55 | .mode = 0644, | |
56 | .proc_handler = sched_rr_handler, | |
57 | }, | |
d9ab0e63 ZN |
58 | }; |
59 | ||
60 | static int __init sched_rt_sysctl_init(void) | |
61 | { | |
62 | register_sysctl_init("kernel", sched_rt_sysctls); | |
63 | return 0; | |
64 | } | |
65 | late_initcall(sched_rt_sysctl_init); | |
3eca109a | 66 | #endif /* CONFIG_SYSCTL */ |
d9ab0e63 | 67 | |
5f6bd380 PZ |
68 | void init_rt_rq(struct rt_rq *rt_rq) |
69 | { | |
70 | struct rt_prio_array *array; | |
71 | int i; | |
72 | ||
73 | array = &rt_rq->active; | |
74 | for (i = 0; i < MAX_RT_PRIO; i++) { | |
75 | INIT_LIST_HEAD(array->queue + i); | |
76 | __clear_bit(i, array->bitmap); | |
77 | } | |
78 | /* delimiter for bitsearch: */ | |
79 | __set_bit(MAX_RT_PRIO, array->bitmap); | |
80 | ||
5f6bd380 PZ |
81 | rt_rq->highest_prio.curr = MAX_RT_PRIO-1; |
82 | rt_rq->highest_prio.next = MAX_RT_PRIO-1; | |
83 | rt_rq->overloaded = 0; | |
84 | plist_head_init(&rt_rq->pushable_tasks); | |
5f6bd380 PZ |
85 | /* We start is dequeued state, because no RT tasks are queued */ |
86 | rt_rq->rt_queued = 0; | |
87 | ||
88 | #ifdef CONFIG_RT_GROUP_SCHED | |
89 | rt_rq->rt_time = 0; | |
90 | rt_rq->rt_throttled = 0; | |
91 | rt_rq->rt_runtime = 0; | |
92 | raw_spin_lock_init(&rt_rq->rt_runtime_lock); | |
a5a25b32 | 93 | rt_rq->tg = &root_task_group; |
5f6bd380 PZ |
94 | #endif |
95 | } | |
96 | ||
97 | #ifdef CONFIG_RT_GROUP_SCHED | |
98 | ||
99 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | |
100 | ||
029632fb PZ |
101 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) |
102 | { | |
103 | struct rt_bandwidth *rt_b = | |
104 | container_of(timer, struct rt_bandwidth, rt_period_timer); | |
029632fb | 105 | int idle = 0; |
77a4d1a1 | 106 | int overrun; |
029632fb | 107 | |
77a4d1a1 | 108 | raw_spin_lock(&rt_b->rt_runtime_lock); |
029632fb | 109 | for (;;) { |
77a4d1a1 | 110 | overrun = hrtimer_forward_now(timer, rt_b->rt_period); |
029632fb PZ |
111 | if (!overrun) |
112 | break; | |
113 | ||
77a4d1a1 | 114 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
029632fb | 115 | idle = do_sched_rt_period_timer(rt_b, overrun); |
77a4d1a1 | 116 | raw_spin_lock(&rt_b->rt_runtime_lock); |
029632fb | 117 | } |
4cfafd30 PZ |
118 | if (idle) |
119 | rt_b->rt_period_active = 0; | |
77a4d1a1 | 120 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
029632fb PZ |
121 | |
122 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | |
123 | } | |
124 | ||
125 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | |
126 | { | |
127 | rt_b->rt_period = ns_to_ktime(period); | |
128 | rt_b->rt_runtime = runtime; | |
129 | ||
130 | raw_spin_lock_init(&rt_b->rt_runtime_lock); | |
131 | ||
ee13da87 NC |
132 | hrtimer_setup(&rt_b->rt_period_timer, sched_rt_period_timer, CLOCK_MONOTONIC, |
133 | HRTIMER_MODE_REL_HARD); | |
029632fb PZ |
134 | } |
135 | ||
9b58e976 | 136 | static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b) |
029632fb | 137 | { |
029632fb | 138 | raw_spin_lock(&rt_b->rt_runtime_lock); |
4cfafd30 PZ |
139 | if (!rt_b->rt_period_active) { |
140 | rt_b->rt_period_active = 1; | |
c3a990dc SR |
141 | /* |
142 | * SCHED_DEADLINE updates the bandwidth, as a run away | |
143 | * RT task with a DL task could hog a CPU. But DL does | |
144 | * not reset the period. If a deadline task was running | |
145 | * without an RT task running, it can cause RT tasks to | |
146 | * throttle when they start up. Kick the timer right away | |
147 | * to update the period. | |
148 | */ | |
149 | hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); | |
d5096aa6 SAS |
150 | hrtimer_start_expires(&rt_b->rt_period_timer, |
151 | HRTIMER_MODE_ABS_PINNED_HARD); | |
4cfafd30 | 152 | } |
029632fb PZ |
153 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
154 | } | |
155 | ||
9b58e976 LH |
156 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) |
157 | { | |
158 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) | |
159 | return; | |
160 | ||
161 | do_start_rt_bandwidth(rt_b); | |
162 | } | |
163 | ||
029632fb PZ |
164 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) |
165 | { | |
166 | hrtimer_cancel(&rt_b->rt_period_timer); | |
167 | } | |
8f48894f PZ |
168 | |
169 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) | |
170 | ||
398a153b GH |
171 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
172 | { | |
8f48894f | 173 | WARN_ON_ONCE(!rt_entity_is_task(rt_se)); |
dd5bdaf2 | 174 | |
398a153b GH |
175 | return container_of(rt_se, struct task_struct, rt); |
176 | } | |
177 | ||
398a153b GH |
178 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
179 | { | |
87f1fb77 MK |
180 | /* Cannot fold with non-CONFIG_RT_GROUP_SCHED version, layout */ |
181 | WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group); | |
398a153b GH |
182 | return rt_rq->rq; |
183 | } | |
184 | ||
185 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | |
186 | { | |
87f1fb77 | 187 | WARN_ON(!rt_group_sched_enabled() && rt_se->rt_rq->tg != &root_task_group); |
398a153b GH |
188 | return rt_se->rt_rq; |
189 | } | |
190 | ||
653d07a6 KT |
191 | static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) |
192 | { | |
193 | struct rt_rq *rt_rq = rt_se->rt_rq; | |
194 | ||
87f1fb77 | 195 | WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group); |
653d07a6 KT |
196 | return rt_rq->rq; |
197 | } | |
198 | ||
b027789e | 199 | void unregister_rt_sched_group(struct task_group *tg) |
029632fb | 200 | { |
d6809c2f MK |
201 | if (!rt_group_sched_enabled()) |
202 | return; | |
203 | ||
029632fb PZ |
204 | if (tg->rt_se) |
205 | destroy_rt_bandwidth(&tg->rt_bandwidth); | |
b027789e MK |
206 | } |
207 | ||
208 | void free_rt_sched_group(struct task_group *tg) | |
209 | { | |
210 | int i; | |
211 | ||
d6809c2f MK |
212 | if (!rt_group_sched_enabled()) |
213 | return; | |
214 | ||
029632fb PZ |
215 | for_each_possible_cpu(i) { |
216 | if (tg->rt_rq) | |
217 | kfree(tg->rt_rq[i]); | |
218 | if (tg->rt_se) | |
219 | kfree(tg->rt_se[i]); | |
220 | } | |
221 | ||
222 | kfree(tg->rt_rq); | |
223 | kfree(tg->rt_se); | |
224 | } | |
225 | ||
226 | void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | |
227 | struct sched_rt_entity *rt_se, int cpu, | |
228 | struct sched_rt_entity *parent) | |
229 | { | |
230 | struct rq *rq = cpu_rq(cpu); | |
231 | ||
934fc331 | 232 | rt_rq->highest_prio.curr = MAX_RT_PRIO-1; |
029632fb PZ |
233 | rt_rq->rt_nr_boosted = 0; |
234 | rt_rq->rq = rq; | |
235 | rt_rq->tg = tg; | |
236 | ||
237 | tg->rt_rq[cpu] = rt_rq; | |
238 | tg->rt_se[cpu] = rt_se; | |
239 | ||
240 | if (!rt_se) | |
241 | return; | |
242 | ||
243 | if (!parent) | |
244 | rt_se->rt_rq = &rq->rt; | |
245 | else | |
246 | rt_se->rt_rq = parent->my_q; | |
247 | ||
248 | rt_se->my_q = rt_rq; | |
249 | rt_se->parent = parent; | |
250 | INIT_LIST_HEAD(&rt_se->run_list); | |
251 | } | |
252 | ||
253 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
254 | { | |
255 | struct rt_rq *rt_rq; | |
256 | struct sched_rt_entity *rt_se; | |
257 | int i; | |
258 | ||
d6809c2f MK |
259 | if (!rt_group_sched_enabled()) |
260 | return 1; | |
261 | ||
6396bb22 | 262 | tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); |
029632fb PZ |
263 | if (!tg->rt_rq) |
264 | goto err; | |
6396bb22 | 265 | tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); |
029632fb PZ |
266 | if (!tg->rt_se) |
267 | goto err; | |
268 | ||
5f6bd380 | 269 | init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(global_rt_period()), 0); |
029632fb PZ |
270 | |
271 | for_each_possible_cpu(i) { | |
272 | rt_rq = kzalloc_node(sizeof(struct rt_rq), | |
273 | GFP_KERNEL, cpu_to_node(i)); | |
274 | if (!rt_rq) | |
275 | goto err; | |
276 | ||
277 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), | |
278 | GFP_KERNEL, cpu_to_node(i)); | |
279 | if (!rt_se) | |
280 | goto err_free_rq; | |
281 | ||
07c54f7a | 282 | init_rt_rq(rt_rq); |
029632fb PZ |
283 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; |
284 | init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); | |
285 | } | |
286 | ||
287 | return 1; | |
288 | ||
289 | err_free_rq: | |
290 | kfree(rt_rq); | |
291 | err: | |
292 | return 0; | |
293 | } | |
294 | ||
3eca109a | 295 | #else /* !CONFIG_RT_GROUP_SCHED: */ |
398a153b | 296 | |
a1ba4d8b PZ |
297 | #define rt_entity_is_task(rt_se) (1) |
298 | ||
8f48894f PZ |
299 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
300 | { | |
301 | return container_of(rt_se, struct task_struct, rt); | |
302 | } | |
303 | ||
398a153b GH |
304 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
305 | { | |
306 | return container_of(rt_rq, struct rq, rt); | |
307 | } | |
308 | ||
653d07a6 | 309 | static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) |
398a153b GH |
310 | { |
311 | struct task_struct *p = rt_task_of(rt_se); | |
653d07a6 KT |
312 | |
313 | return task_rq(p); | |
314 | } | |
315 | ||
316 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | |
317 | { | |
318 | struct rq *rq = rq_of_rt_se(rt_se); | |
398a153b GH |
319 | |
320 | return &rq->rt; | |
321 | } | |
322 | ||
b027789e MK |
323 | void unregister_rt_sched_group(struct task_group *tg) { } |
324 | ||
029632fb PZ |
325 | void free_rt_sched_group(struct task_group *tg) { } |
326 | ||
327 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
328 | { | |
329 | return 1; | |
330 | } | |
3eca109a | 331 | #endif /* !CONFIG_RT_GROUP_SCHED */ |
398a153b | 332 | |
dc877341 PZ |
333 | static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) |
334 | { | |
335 | /* Try to pull RT tasks here if we lower this rq's prio */ | |
120455c5 | 336 | return rq->online && rq->rt.highest_prio.curr > prev->prio; |
dc877341 PZ |
337 | } |
338 | ||
637f5085 | 339 | static inline int rt_overloaded(struct rq *rq) |
4fd29176 | 340 | { |
637f5085 | 341 | return atomic_read(&rq->rd->rto_count); |
4fd29176 | 342 | } |
84de4274 | 343 | |
4fd29176 SR |
344 | static inline void rt_set_overload(struct rq *rq) |
345 | { | |
1f11eb6a GH |
346 | if (!rq->online) |
347 | return; | |
348 | ||
c6c4927b | 349 | cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); |
4fd29176 SR |
350 | /* |
351 | * Make sure the mask is visible before we set | |
352 | * the overload count. That is checked to determine | |
353 | * if we should look at the mask. It would be a shame | |
354 | * if we looked at the mask, but the mask was not | |
355 | * updated yet. | |
7c3f2ab7 PZ |
356 | * |
357 | * Matched by the barrier in pull_rt_task(). | |
4fd29176 | 358 | */ |
7c3f2ab7 | 359 | smp_wmb(); |
637f5085 | 360 | atomic_inc(&rq->rd->rto_count); |
4fd29176 | 361 | } |
84de4274 | 362 | |
4fd29176 SR |
363 | static inline void rt_clear_overload(struct rq *rq) |
364 | { | |
1f11eb6a GH |
365 | if (!rq->online) |
366 | return; | |
367 | ||
4fd29176 | 368 | /* the order here really doesn't matter */ |
637f5085 | 369 | atomic_dec(&rq->rd->rto_count); |
c6c4927b | 370 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); |
4fd29176 | 371 | } |
73fe6aae | 372 | |
5181f4a4 SR |
373 | static inline int has_pushable_tasks(struct rq *rq) |
374 | { | |
375 | return !plist_head_empty(&rq->rt.pushable_tasks); | |
376 | } | |
377 | ||
8e5bad7d KC |
378 | static DEFINE_PER_CPU(struct balance_callback, rt_push_head); |
379 | static DEFINE_PER_CPU(struct balance_callback, rt_pull_head); | |
e3fca9e7 PZ |
380 | |
381 | static void push_rt_tasks(struct rq *); | |
fd7a4bed | 382 | static void pull_rt_task(struct rq *); |
e3fca9e7 | 383 | |
02d8ec94 | 384 | static inline void rt_queue_push_tasks(struct rq *rq) |
dc877341 | 385 | { |
e3fca9e7 PZ |
386 | if (!has_pushable_tasks(rq)) |
387 | return; | |
388 | ||
fd7a4bed PZ |
389 | queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); |
390 | } | |
391 | ||
02d8ec94 | 392 | static inline void rt_queue_pull_task(struct rq *rq) |
fd7a4bed PZ |
393 | { |
394 | queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); | |
dc877341 PZ |
395 | } |
396 | ||
917b627d GH |
397 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) |
398 | { | |
399 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
400 | plist_node_init(&p->pushable_tasks, p->prio); | |
401 | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
5181f4a4 SR |
402 | |
403 | /* Update the highest prio pushable task */ | |
404 | if (p->prio < rq->rt.highest_prio.next) | |
405 | rq->rt.highest_prio.next = p->prio; | |
612f769e VS |
406 | |
407 | if (!rq->rt.overloaded) { | |
408 | rt_set_overload(rq); | |
409 | rq->rt.overloaded = 1; | |
410 | } | |
917b627d GH |
411 | } |
412 | ||
413 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | |
414 | { | |
415 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
917b627d | 416 | |
5181f4a4 SR |
417 | /* Update the new highest prio pushable task */ |
418 | if (has_pushable_tasks(rq)) { | |
419 | p = plist_first_entry(&rq->rt.pushable_tasks, | |
420 | struct task_struct, pushable_tasks); | |
421 | rq->rt.highest_prio.next = p->prio; | |
934fc331 PZ |
422 | } else { |
423 | rq->rt.highest_prio.next = MAX_RT_PRIO-1; | |
612f769e VS |
424 | |
425 | if (rq->rt.overloaded) { | |
426 | rt_clear_overload(rq); | |
427 | rq->rt.overloaded = 0; | |
428 | } | |
934fc331 | 429 | } |
bcf08df3 IM |
430 | } |
431 | ||
f4ebcbc0 | 432 | static void enqueue_top_rt_rq(struct rt_rq *rt_rq); |
5c66d1b9 | 433 | static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count); |
f4ebcbc0 | 434 | |
6f505b16 PZ |
435 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) |
436 | { | |
ff77e468 | 437 | return rt_se->on_rq; |
6f505b16 PZ |
438 | } |
439 | ||
804d402f QY |
440 | #ifdef CONFIG_UCLAMP_TASK |
441 | /* | |
442 | * Verify the fitness of task @p to run on @cpu taking into account the uclamp | |
443 | * settings. | |
444 | * | |
445 | * This check is only important for heterogeneous systems where uclamp_min value | |
446 | * is higher than the capacity of a @cpu. For non-heterogeneous system this | |
447 | * function will always return true. | |
448 | * | |
449 | * The function will return true if the capacity of the @cpu is >= the | |
450 | * uclamp_min and false otherwise. | |
451 | * | |
452 | * Note that uclamp_min will be clamped to uclamp_max if uclamp_min | |
453 | * > uclamp_max. | |
454 | */ | |
455 | static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) | |
456 | { | |
457 | unsigned int min_cap; | |
458 | unsigned int max_cap; | |
459 | unsigned int cpu_cap; | |
460 | ||
461 | /* Only heterogeneous systems can benefit from this check */ | |
740cf8a7 | 462 | if (!sched_asym_cpucap_active()) |
804d402f QY |
463 | return true; |
464 | ||
465 | min_cap = uclamp_eff_value(p, UCLAMP_MIN); | |
466 | max_cap = uclamp_eff_value(p, UCLAMP_MAX); | |
467 | ||
7bc26384 | 468 | cpu_cap = arch_scale_cpu_capacity(cpu); |
804d402f QY |
469 | |
470 | return cpu_cap >= min(min_cap, max_cap); | |
471 | } | |
3eca109a | 472 | #else /* !CONFIG_UCLAMP_TASK: */ |
804d402f QY |
473 | static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) |
474 | { | |
475 | return true; | |
476 | } | |
3eca109a | 477 | #endif /* !CONFIG_UCLAMP_TASK */ |
804d402f | 478 | |
052f1dc7 | 479 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 | 480 | |
9f0c1e56 | 481 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) |
6f505b16 | 482 | { |
ac086bc2 PZ |
483 | return rt_rq->rt_runtime; |
484 | } | |
485 | ||
486 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |
487 | { | |
488 | return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); | |
6f505b16 PZ |
489 | } |
490 | ||
ec514c48 CX |
491 | typedef struct task_group *rt_rq_iter_t; |
492 | ||
1c09ab0d YZ |
493 | static inline struct task_group *next_task_group(struct task_group *tg) |
494 | { | |
87f1fb77 MK |
495 | if (!rt_group_sched_enabled()) { |
496 | WARN_ON(tg != &root_task_group); | |
61d3164f | 497 | return NULL; |
87f1fb77 | 498 | } |
61d3164f | 499 | |
1c09ab0d YZ |
500 | do { |
501 | tg = list_entry_rcu(tg->list.next, | |
502 | typeof(struct task_group), list); | |
503 | } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); | |
504 | ||
505 | if (&tg->list == &task_groups) | |
506 | tg = NULL; | |
507 | ||
508 | return tg; | |
509 | } | |
510 | ||
511 | #define for_each_rt_rq(rt_rq, iter, rq) \ | |
61d3164f MK |
512 | for (iter = &root_task_group; \ |
513 | iter && (rt_rq = iter->rt_rq[cpu_of(rq)]); \ | |
514 | iter = next_task_group(iter)) | |
ec514c48 | 515 | |
6f505b16 PZ |
516 | #define for_each_sched_rt_entity(rt_se) \ |
517 | for (; rt_se; rt_se = rt_se->parent) | |
518 | ||
519 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | |
520 | { | |
521 | return rt_se->my_q; | |
522 | } | |
523 | ||
ff77e468 PZ |
524 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); |
525 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); | |
6f505b16 | 526 | |
9f0c1e56 | 527 | static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) |
6f505b16 | 528 | { |
af0c8b2b | 529 | struct task_struct *donor = rq_of_rt_rq(rt_rq)->donor; |
8875125e | 530 | struct rq *rq = rq_of_rt_rq(rt_rq); |
74b7eb58 YZ |
531 | struct sched_rt_entity *rt_se; |
532 | ||
8875125e | 533 | int cpu = cpu_of(rq); |
0c3b9168 BS |
534 | |
535 | rt_se = rt_rq->tg->rt_se[cpu]; | |
6f505b16 | 536 | |
f6121f4f | 537 | if (rt_rq->rt_nr_running) { |
f4ebcbc0 KT |
538 | if (!rt_se) |
539 | enqueue_top_rt_rq(rt_rq); | |
540 | else if (!on_rt_rq(rt_se)) | |
ff77e468 | 541 | enqueue_rt_entity(rt_se, 0); |
f4ebcbc0 | 542 | |
af0c8b2b | 543 | if (rt_rq->highest_prio.curr < donor->prio) |
8875125e | 544 | resched_curr(rq); |
6f505b16 PZ |
545 | } |
546 | } | |
547 | ||
9f0c1e56 | 548 | static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) |
6f505b16 | 549 | { |
74b7eb58 | 550 | struct sched_rt_entity *rt_se; |
0c3b9168 | 551 | int cpu = cpu_of(rq_of_rt_rq(rt_rq)); |
74b7eb58 | 552 | |
0c3b9168 | 553 | rt_se = rt_rq->tg->rt_se[cpu]; |
6f505b16 | 554 | |
296b2ffe | 555 | if (!rt_se) { |
5c66d1b9 | 556 | dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); |
296b2ffe VG |
557 | /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ |
558 | cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); | |
559 | } | |
f4ebcbc0 | 560 | else if (on_rt_rq(rt_se)) |
ff77e468 | 561 | dequeue_rt_entity(rt_se, 0); |
6f505b16 PZ |
562 | } |
563 | ||
46383648 KT |
564 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) |
565 | { | |
566 | return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; | |
567 | } | |
568 | ||
23b0fdfc PZ |
569 | static int rt_se_boosted(struct sched_rt_entity *rt_se) |
570 | { | |
571 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | |
572 | struct task_struct *p; | |
573 | ||
574 | if (rt_rq) | |
575 | return !!rt_rq->rt_nr_boosted; | |
576 | ||
577 | p = rt_task_of(rt_se); | |
578 | return p->prio != p->normal_prio; | |
579 | } | |
580 | ||
c6c4927b | 581 | static inline const struct cpumask *sched_rt_period_mask(void) |
d0b27fa7 | 582 | { |
424c93fe | 583 | return this_rq()->rd->span; |
d0b27fa7 | 584 | } |
6f505b16 | 585 | |
d0b27fa7 PZ |
586 | static inline |
587 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | |
6f505b16 | 588 | { |
d0b27fa7 PZ |
589 | return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; |
590 | } | |
9f0c1e56 | 591 | |
ac086bc2 PZ |
592 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) |
593 | { | |
594 | return &rt_rq->tg->rt_bandwidth; | |
595 | } | |
596 | ||
faa59937 JL |
597 | bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) |
598 | { | |
599 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | |
600 | ||
601 | return (hrtimer_active(&rt_b->rt_period_timer) || | |
602 | rt_rq->rt_time < rt_b->rt_runtime); | |
603 | } | |
604 | ||
78333cdd PZ |
605 | /* |
606 | * We ran out of runtime, see if we can borrow some from our neighbours. | |
607 | */ | |
269b26a5 | 608 | static void do_balance_runtime(struct rt_rq *rt_rq) |
ac086bc2 PZ |
609 | { |
610 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | |
aa7f6730 | 611 | struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; |
269b26a5 | 612 | int i, weight; |
ac086bc2 PZ |
613 | u64 rt_period; |
614 | ||
c6c4927b | 615 | weight = cpumask_weight(rd->span); |
ac086bc2 | 616 | |
0986b11b | 617 | raw_spin_lock(&rt_b->rt_runtime_lock); |
ac086bc2 | 618 | rt_period = ktime_to_ns(rt_b->rt_period); |
c6c4927b | 619 | for_each_cpu(i, rd->span) { |
ac086bc2 PZ |
620 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); |
621 | s64 diff; | |
622 | ||
623 | if (iter == rt_rq) | |
624 | continue; | |
625 | ||
0986b11b | 626 | raw_spin_lock(&iter->rt_runtime_lock); |
78333cdd PZ |
627 | /* |
628 | * Either all rqs have inf runtime and there's nothing to steal | |
629 | * or __disable_runtime() below sets a specific rq to inf to | |
3b03706f | 630 | * indicate its been disabled and disallow stealing. |
78333cdd | 631 | */ |
7def2be1 PZ |
632 | if (iter->rt_runtime == RUNTIME_INF) |
633 | goto next; | |
634 | ||
78333cdd PZ |
635 | /* |
636 | * From runqueues with spare time, take 1/n part of their | |
637 | * spare time, but no more than our period. | |
638 | */ | |
ac086bc2 PZ |
639 | diff = iter->rt_runtime - iter->rt_time; |
640 | if (diff > 0) { | |
58838cf3 | 641 | diff = div_u64((u64)diff, weight); |
ac086bc2 PZ |
642 | if (rt_rq->rt_runtime + diff > rt_period) |
643 | diff = rt_period - rt_rq->rt_runtime; | |
644 | iter->rt_runtime -= diff; | |
645 | rt_rq->rt_runtime += diff; | |
ac086bc2 | 646 | if (rt_rq->rt_runtime == rt_period) { |
0986b11b | 647 | raw_spin_unlock(&iter->rt_runtime_lock); |
ac086bc2 PZ |
648 | break; |
649 | } | |
650 | } | |
7def2be1 | 651 | next: |
0986b11b | 652 | raw_spin_unlock(&iter->rt_runtime_lock); |
ac086bc2 | 653 | } |
0986b11b | 654 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
ac086bc2 | 655 | } |
7def2be1 | 656 | |
78333cdd PZ |
657 | /* |
658 | * Ensure this RQ takes back all the runtime it lend to its neighbours. | |
659 | */ | |
7def2be1 PZ |
660 | static void __disable_runtime(struct rq *rq) |
661 | { | |
662 | struct root_domain *rd = rq->rd; | |
ec514c48 | 663 | rt_rq_iter_t iter; |
7def2be1 PZ |
664 | struct rt_rq *rt_rq; |
665 | ||
666 | if (unlikely(!scheduler_running)) | |
667 | return; | |
668 | ||
ec514c48 | 669 | for_each_rt_rq(rt_rq, iter, rq) { |
7def2be1 PZ |
670 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); |
671 | s64 want; | |
672 | int i; | |
673 | ||
0986b11b TG |
674 | raw_spin_lock(&rt_b->rt_runtime_lock); |
675 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
78333cdd PZ |
676 | /* |
677 | * Either we're all inf and nobody needs to borrow, or we're | |
678 | * already disabled and thus have nothing to do, or we have | |
679 | * exactly the right amount of runtime to take out. | |
680 | */ | |
7def2be1 PZ |
681 | if (rt_rq->rt_runtime == RUNTIME_INF || |
682 | rt_rq->rt_runtime == rt_b->rt_runtime) | |
683 | goto balanced; | |
0986b11b | 684 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
7def2be1 | 685 | |
78333cdd PZ |
686 | /* |
687 | * Calculate the difference between what we started out with | |
688 | * and what we current have, that's the amount of runtime | |
689 | * we lend and now have to reclaim. | |
690 | */ | |
7def2be1 PZ |
691 | want = rt_b->rt_runtime - rt_rq->rt_runtime; |
692 | ||
78333cdd PZ |
693 | /* |
694 | * Greedy reclaim, take back as much as we can. | |
695 | */ | |
c6c4927b | 696 | for_each_cpu(i, rd->span) { |
7def2be1 PZ |
697 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); |
698 | s64 diff; | |
699 | ||
78333cdd PZ |
700 | /* |
701 | * Can't reclaim from ourselves or disabled runqueues. | |
702 | */ | |
f1679d08 | 703 | if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) |
7def2be1 PZ |
704 | continue; |
705 | ||
0986b11b | 706 | raw_spin_lock(&iter->rt_runtime_lock); |
7def2be1 PZ |
707 | if (want > 0) { |
708 | diff = min_t(s64, iter->rt_runtime, want); | |
709 | iter->rt_runtime -= diff; | |
710 | want -= diff; | |
711 | } else { | |
712 | iter->rt_runtime -= want; | |
713 | want -= want; | |
714 | } | |
0986b11b | 715 | raw_spin_unlock(&iter->rt_runtime_lock); |
7def2be1 PZ |
716 | |
717 | if (!want) | |
718 | break; | |
719 | } | |
720 | ||
0986b11b | 721 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
78333cdd PZ |
722 | /* |
723 | * We cannot be left wanting - that would mean some runtime | |
724 | * leaked out of the system. | |
725 | */ | |
09348d75 | 726 | WARN_ON_ONCE(want); |
7def2be1 | 727 | balanced: |
78333cdd PZ |
728 | /* |
729 | * Disable all the borrow logic by pretending we have inf | |
730 | * runtime - in which case borrowing doesn't make sense. | |
731 | */ | |
7def2be1 | 732 | rt_rq->rt_runtime = RUNTIME_INF; |
a4c96ae3 | 733 | rt_rq->rt_throttled = 0; |
0986b11b TG |
734 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
735 | raw_spin_unlock(&rt_b->rt_runtime_lock); | |
99b62567 KT |
736 | |
737 | /* Make rt_rq available for pick_next_task() */ | |
738 | sched_rt_rq_enqueue(rt_rq); | |
7def2be1 PZ |
739 | } |
740 | } | |
741 | ||
7def2be1 PZ |
742 | static void __enable_runtime(struct rq *rq) |
743 | { | |
ec514c48 | 744 | rt_rq_iter_t iter; |
7def2be1 PZ |
745 | struct rt_rq *rt_rq; |
746 | ||
747 | if (unlikely(!scheduler_running)) | |
748 | return; | |
749 | ||
78333cdd PZ |
750 | /* |
751 | * Reset each runqueue's bandwidth settings | |
752 | */ | |
ec514c48 | 753 | for_each_rt_rq(rt_rq, iter, rq) { |
7def2be1 PZ |
754 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); |
755 | ||
0986b11b TG |
756 | raw_spin_lock(&rt_b->rt_runtime_lock); |
757 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
7def2be1 PZ |
758 | rt_rq->rt_runtime = rt_b->rt_runtime; |
759 | rt_rq->rt_time = 0; | |
baf25731 | 760 | rt_rq->rt_throttled = 0; |
0986b11b TG |
761 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
762 | raw_spin_unlock(&rt_b->rt_runtime_lock); | |
7def2be1 PZ |
763 | } |
764 | } | |
765 | ||
269b26a5 | 766 | static void balance_runtime(struct rt_rq *rt_rq) |
eff6549b | 767 | { |
4a6184ce | 768 | if (!sched_feat(RT_RUNTIME_SHARE)) |
269b26a5 | 769 | return; |
4a6184ce | 770 | |
eff6549b | 771 | if (rt_rq->rt_time > rt_rq->rt_runtime) { |
0986b11b | 772 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
269b26a5 | 773 | do_balance_runtime(rt_rq); |
0986b11b | 774 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
eff6549b | 775 | } |
eff6549b | 776 | } |
ac086bc2 | 777 | |
eff6549b PZ |
778 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) |
779 | { | |
42c62a58 | 780 | int i, idle = 1, throttled = 0; |
c6c4927b | 781 | const struct cpumask *span; |
eff6549b | 782 | |
eff6549b | 783 | span = sched_rt_period_mask(); |
5f6bd380 | 784 | |
e221d028 MG |
785 | /* |
786 | * FIXME: isolated CPUs should really leave the root task group, | |
787 | * whether they are isolcpus or were isolated via cpusets, lest | |
788 | * the timer run on a CPU which does not service all runqueues, | |
789 | * potentially leaving other CPUs indefinitely throttled. If | |
790 | * isolation is really required, the user will turn the throttle | |
791 | * off to kill the perturbations it causes anyway. Meanwhile, | |
792 | * this maintains functionality for boot and/or troubleshooting. | |
793 | */ | |
794 | if (rt_b == &root_task_group.rt_bandwidth) | |
795 | span = cpu_online_mask; | |
5f6bd380 | 796 | |
c6c4927b | 797 | for_each_cpu(i, span) { |
eff6549b PZ |
798 | int enqueue = 0; |
799 | struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); | |
800 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
2679a837 | 801 | struct rq_flags rf; |
c249f255 DK |
802 | int skip; |
803 | ||
804 | /* | |
805 | * When span == cpu_online_mask, taking each rq->lock | |
806 | * can be time-consuming. Try to avoid it when possible. | |
807 | */ | |
808 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
f3d133ee HL |
809 | if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) |
810 | rt_rq->rt_runtime = rt_b->rt_runtime; | |
c249f255 DK |
811 | skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; |
812 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | |
813 | if (skip) | |
814 | continue; | |
eff6549b | 815 | |
2679a837 | 816 | rq_lock(rq, &rf); |
d29a2064 DB |
817 | update_rq_clock(rq); |
818 | ||
eff6549b PZ |
819 | if (rt_rq->rt_time) { |
820 | u64 runtime; | |
821 | ||
0986b11b | 822 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
eff6549b PZ |
823 | if (rt_rq->rt_throttled) |
824 | balance_runtime(rt_rq); | |
825 | runtime = rt_rq->rt_runtime; | |
826 | rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); | |
827 | if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { | |
828 | rt_rq->rt_throttled = 0; | |
829 | enqueue = 1; | |
61eadef6 MG |
830 | |
831 | /* | |
9edfbfed | 832 | * When we're idle and a woken (rt) task is |
e23edc86 | 833 | * throttled wakeup_preempt() will set |
9edfbfed PZ |
834 | * skip_update and the time between the wakeup |
835 | * and this unthrottle will get accounted as | |
836 | * 'runtime'. | |
61eadef6 MG |
837 | */ |
838 | if (rt_rq->rt_nr_running && rq->curr == rq->idle) | |
adcc8da8 | 839 | rq_clock_cancel_skipupdate(rq); |
eff6549b PZ |
840 | } |
841 | if (rt_rq->rt_time || rt_rq->rt_nr_running) | |
842 | idle = 0; | |
0986b11b | 843 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
0c3b9168 | 844 | } else if (rt_rq->rt_nr_running) { |
6c3df255 | 845 | idle = 0; |
0c3b9168 BS |
846 | if (!rt_rq_throttled(rt_rq)) |
847 | enqueue = 1; | |
848 | } | |
42c62a58 PZ |
849 | if (rt_rq->rt_throttled) |
850 | throttled = 1; | |
eff6549b PZ |
851 | |
852 | if (enqueue) | |
853 | sched_rt_rq_enqueue(rt_rq); | |
2679a837 | 854 | rq_unlock(rq, &rf); |
eff6549b PZ |
855 | } |
856 | ||
42c62a58 PZ |
857 | if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) |
858 | return 1; | |
859 | ||
eff6549b PZ |
860 | return idle; |
861 | } | |
ac086bc2 | 862 | |
9f0c1e56 | 863 | static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) |
6f505b16 | 864 | { |
9f0c1e56 | 865 | u64 runtime = sched_rt_runtime(rt_rq); |
fa85ae24 | 866 | |
fa85ae24 | 867 | if (rt_rq->rt_throttled) |
23b0fdfc | 868 | return rt_rq_throttled(rt_rq); |
fa85ae24 | 869 | |
5b680fd6 | 870 | if (runtime >= sched_rt_period(rt_rq)) |
ac086bc2 PZ |
871 | return 0; |
872 | ||
b79f3833 PZ |
873 | balance_runtime(rt_rq); |
874 | runtime = sched_rt_runtime(rt_rq); | |
875 | if (runtime == RUNTIME_INF) | |
876 | return 0; | |
ac086bc2 | 877 | |
9f0c1e56 | 878 | if (rt_rq->rt_time > runtime) { |
7abc63b1 PZ |
879 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); |
880 | ||
881 | /* | |
882 | * Don't actually throttle groups that have no runtime assigned | |
883 | * but accrue some time due to boosting. | |
884 | */ | |
885 | if (likely(rt_b->rt_runtime)) { | |
886 | rt_rq->rt_throttled = 1; | |
c224815d | 887 | printk_deferred_once("sched: RT throttling activated\n"); |
7abc63b1 PZ |
888 | } else { |
889 | /* | |
890 | * In case we did anyway, make it go away, | |
891 | * replenishment is a joke, since it will replenish us | |
892 | * with exactly 0 ns. | |
893 | */ | |
894 | rt_rq->rt_time = 0; | |
895 | } | |
896 | ||
23b0fdfc | 897 | if (rt_rq_throttled(rt_rq)) { |
9f0c1e56 | 898 | sched_rt_rq_dequeue(rt_rq); |
23b0fdfc PZ |
899 | return 1; |
900 | } | |
fa85ae24 PZ |
901 | } |
902 | ||
903 | return 0; | |
904 | } | |
905 | ||
3eca109a | 906 | #else /* !CONFIG_RT_GROUP_SCHED: */ |
5f6bd380 PZ |
907 | |
908 | typedef struct rt_rq *rt_rq_iter_t; | |
909 | ||
910 | #define for_each_rt_rq(rt_rq, iter, rq) \ | |
911 | for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | |
912 | ||
913 | #define for_each_sched_rt_entity(rt_se) \ | |
914 | for (; rt_se; rt_se = NULL) | |
915 | ||
916 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | |
917 | { | |
918 | return NULL; | |
919 | } | |
920 | ||
921 | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) | |
922 | { | |
923 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
924 | ||
925 | if (!rt_rq->rt_nr_running) | |
926 | return; | |
927 | ||
928 | enqueue_top_rt_rq(rt_rq); | |
929 | resched_curr(rq); | |
930 | } | |
931 | ||
932 | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) | |
933 | { | |
934 | dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); | |
935 | } | |
936 | ||
937 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) | |
938 | { | |
939 | return false; | |
940 | } | |
941 | ||
942 | static inline const struct cpumask *sched_rt_period_mask(void) | |
943 | { | |
944 | return cpu_online_mask; | |
945 | } | |
946 | ||
947 | static inline | |
948 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | |
949 | { | |
950 | return &cpu_rq(cpu)->rt; | |
951 | } | |
952 | ||
5f6bd380 PZ |
953 | static void __enable_runtime(struct rq *rq) { } |
954 | static void __disable_runtime(struct rq *rq) { } | |
5f6bd380 | 955 | |
3eca109a | 956 | #endif /* !CONFIG_RT_GROUP_SCHED */ |
5f6bd380 PZ |
957 | |
958 | static inline int rt_se_prio(struct sched_rt_entity *rt_se) | |
959 | { | |
960 | #ifdef CONFIG_RT_GROUP_SCHED | |
961 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | |
962 | ||
963 | if (rt_rq) | |
964 | return rt_rq->highest_prio.curr; | |
965 | #endif | |
966 | ||
967 | return rt_task_of(rt_se)->prio; | |
968 | } | |
969 | ||
bb44e5d1 IM |
970 | /* |
971 | * Update the current task's runtime statistics. Skip current tasks that | |
972 | * are not in our scheduling class. | |
973 | */ | |
a9957449 | 974 | static void update_curr_rt(struct rq *rq) |
bb44e5d1 | 975 | { |
af0c8b2b | 976 | struct task_struct *donor = rq->donor; |
5d69eca5 | 977 | s64 delta_exec; |
bb44e5d1 | 978 | |
af0c8b2b | 979 | if (donor->sched_class != &rt_sched_class) |
bb44e5d1 IM |
980 | return; |
981 | ||
5d69eca5 PZ |
982 | delta_exec = update_curr_common(rq); |
983 | if (unlikely(delta_exec <= 0)) | |
fc79e240 | 984 | return; |
6cfb0d5d | 985 | |
5f6bd380 | 986 | #ifdef CONFIG_RT_GROUP_SCHED |
af0c8b2b | 987 | struct sched_rt_entity *rt_se = &donor->rt; |
5f6bd380 | 988 | |
0b148fa0 PZ |
989 | if (!rt_bandwidth_enabled()) |
990 | return; | |
991 | ||
354d60c2 | 992 | for_each_sched_rt_entity(rt_se) { |
0b07939c | 993 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); |
9b58e976 | 994 | int exceeded; |
354d60c2 | 995 | |
cc2991cf | 996 | if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { |
0986b11b | 997 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
cc2991cf | 998 | rt_rq->rt_time += delta_exec; |
9b58e976 LH |
999 | exceeded = sched_rt_runtime_exceeded(rt_rq); |
1000 | if (exceeded) | |
8875125e | 1001 | resched_curr(rq); |
0986b11b | 1002 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
9b58e976 LH |
1003 | if (exceeded) |
1004 | do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq)); | |
cc2991cf | 1005 | } |
354d60c2 | 1006 | } |
3eca109a | 1007 | #endif /* CONFIG_RT_GROUP_SCHED */ |
bb44e5d1 IM |
1008 | } |
1009 | ||
f4ebcbc0 | 1010 | static void |
5c66d1b9 | 1011 | dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count) |
f4ebcbc0 KT |
1012 | { |
1013 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
1014 | ||
1015 | BUG_ON(&rq->rt != rt_rq); | |
1016 | ||
1017 | if (!rt_rq->rt_queued) | |
1018 | return; | |
1019 | ||
1020 | BUG_ON(!rq->nr_running); | |
1021 | ||
5c66d1b9 | 1022 | sub_nr_running(rq, count); |
f4ebcbc0 | 1023 | rt_rq->rt_queued = 0; |
8f111bc3 | 1024 | |
f4ebcbc0 KT |
1025 | } |
1026 | ||
1027 | static void | |
1028 | enqueue_top_rt_rq(struct rt_rq *rt_rq) | |
1029 | { | |
1030 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
1031 | ||
1032 | BUG_ON(&rq->rt != rt_rq); | |
1033 | ||
1034 | if (rt_rq->rt_queued) | |
1035 | return; | |
296b2ffe VG |
1036 | |
1037 | if (rt_rq_throttled(rt_rq)) | |
f4ebcbc0 KT |
1038 | return; |
1039 | ||
296b2ffe VG |
1040 | if (rt_rq->rt_nr_running) { |
1041 | add_nr_running(rq, rt_rq->rt_nr_running); | |
1042 | rt_rq->rt_queued = 1; | |
1043 | } | |
8f111bc3 PZ |
1044 | |
1045 | /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ | |
1046 | cpufreq_update_util(rq, 0); | |
f4ebcbc0 KT |
1047 | } |
1048 | ||
398a153b GH |
1049 | static void |
1050 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | |
63489e45 | 1051 | { |
4d984277 | 1052 | struct rq *rq = rq_of_rt_rq(rt_rq); |
1f11eb6a | 1053 | |
757dfcaa KT |
1054 | /* |
1055 | * Change rq's cpupri only if rt_rq is the top queue. | |
1056 | */ | |
433bce5d | 1057 | if (IS_ENABLED(CONFIG_RT_GROUP_SCHED) && &rq->rt != rt_rq) |
757dfcaa | 1058 | return; |
433bce5d | 1059 | |
5181f4a4 SR |
1060 | if (rq->online && prio < prev_prio) |
1061 | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); | |
398a153b | 1062 | } |
73fe6aae | 1063 | |
398a153b GH |
1064 | static void |
1065 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | |
1066 | { | |
1067 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
d0b27fa7 | 1068 | |
757dfcaa KT |
1069 | /* |
1070 | * Change rq's cpupri only if rt_rq is the top queue. | |
1071 | */ | |
433bce5d | 1072 | if (IS_ENABLED(CONFIG_RT_GROUP_SCHED) && &rq->rt != rt_rq) |
757dfcaa | 1073 | return; |
433bce5d | 1074 | |
398a153b GH |
1075 | if (rq->online && rt_rq->highest_prio.curr != prev_prio) |
1076 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); | |
63489e45 SR |
1077 | } |
1078 | ||
398a153b GH |
1079 | static void |
1080 | inc_rt_prio(struct rt_rq *rt_rq, int prio) | |
1081 | { | |
1082 | int prev_prio = rt_rq->highest_prio.curr; | |
1083 | ||
1084 | if (prio < prev_prio) | |
1085 | rt_rq->highest_prio.curr = prio; | |
1086 | ||
1087 | inc_rt_prio_smp(rt_rq, prio, prev_prio); | |
1088 | } | |
1089 | ||
1090 | static void | |
1091 | dec_rt_prio(struct rt_rq *rt_rq, int prio) | |
1092 | { | |
1093 | int prev_prio = rt_rq->highest_prio.curr; | |
1094 | ||
6f505b16 | 1095 | if (rt_rq->rt_nr_running) { |
764a9d6f | 1096 | |
398a153b | 1097 | WARN_ON(prio < prev_prio); |
764a9d6f | 1098 | |
e864c499 | 1099 | /* |
398a153b | 1100 | * This may have been our highest task, and therefore |
402de7fc | 1101 | * we may have some re-computation to do |
e864c499 | 1102 | */ |
398a153b | 1103 | if (prio == prev_prio) { |
e864c499 GH |
1104 | struct rt_prio_array *array = &rt_rq->active; |
1105 | ||
1106 | rt_rq->highest_prio.curr = | |
764a9d6f | 1107 | sched_find_first_bit(array->bitmap); |
e864c499 GH |
1108 | } |
1109 | ||
934fc331 PZ |
1110 | } else { |
1111 | rt_rq->highest_prio.curr = MAX_RT_PRIO-1; | |
1112 | } | |
73fe6aae | 1113 | |
398a153b GH |
1114 | dec_rt_prio_smp(rt_rq, prio, prev_prio); |
1115 | } | |
1f11eb6a | 1116 | |
052f1dc7 | 1117 | #ifdef CONFIG_RT_GROUP_SCHED |
398a153b GH |
1118 | |
1119 | static void | |
1120 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
1121 | { | |
1122 | if (rt_se_boosted(rt_se)) | |
1123 | rt_rq->rt_nr_boosted++; | |
1124 | ||
a5a25b32 | 1125 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); |
398a153b GH |
1126 | } |
1127 | ||
1128 | static void | |
1129 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
1130 | { | |
23b0fdfc PZ |
1131 | if (rt_se_boosted(rt_se)) |
1132 | rt_rq->rt_nr_boosted--; | |
1133 | ||
1134 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | |
398a153b GH |
1135 | } |
1136 | ||
3eca109a | 1137 | #else /* !CONFIG_RT_GROUP_SCHED: */ |
398a153b GH |
1138 | |
1139 | static void | |
1140 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
1141 | { | |
398a153b GH |
1142 | } |
1143 | ||
1144 | static inline | |
1145 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | |
1146 | ||
3eca109a | 1147 | #endif /* !CONFIG_RT_GROUP_SCHED */ |
398a153b | 1148 | |
22abdef3 KT |
1149 | static inline |
1150 | unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) | |
1151 | { | |
1152 | struct rt_rq *group_rq = group_rt_rq(rt_se); | |
1153 | ||
1154 | if (group_rq) | |
1155 | return group_rq->rt_nr_running; | |
1156 | else | |
1157 | return 1; | |
1158 | } | |
1159 | ||
01d36d0a FW |
1160 | static inline |
1161 | unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) | |
1162 | { | |
1163 | struct rt_rq *group_rq = group_rt_rq(rt_se); | |
1164 | struct task_struct *tsk; | |
1165 | ||
1166 | if (group_rq) | |
1167 | return group_rq->rr_nr_running; | |
1168 | ||
1169 | tsk = rt_task_of(rt_se); | |
1170 | ||
1171 | return (tsk->policy == SCHED_RR) ? 1 : 0; | |
1172 | } | |
1173 | ||
398a153b GH |
1174 | static inline |
1175 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
1176 | { | |
1177 | int prio = rt_se_prio(rt_se); | |
1178 | ||
1179 | WARN_ON(!rt_prio(prio)); | |
22abdef3 | 1180 | rt_rq->rt_nr_running += rt_se_nr_running(rt_se); |
01d36d0a | 1181 | rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); |
398a153b GH |
1182 | |
1183 | inc_rt_prio(rt_rq, prio); | |
398a153b GH |
1184 | inc_rt_group(rt_se, rt_rq); |
1185 | } | |
1186 | ||
1187 | static inline | |
1188 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
1189 | { | |
1190 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | |
1191 | WARN_ON(!rt_rq->rt_nr_running); | |
22abdef3 | 1192 | rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); |
01d36d0a | 1193 | rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); |
398a153b GH |
1194 | |
1195 | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); | |
398a153b | 1196 | dec_rt_group(rt_se, rt_rq); |
63489e45 SR |
1197 | } |
1198 | ||
ff77e468 PZ |
1199 | /* |
1200 | * Change rt_se->run_list location unless SAVE && !MOVE | |
1201 | * | |
1202 | * assumes ENQUEUE/DEQUEUE flags match | |
1203 | */ | |
1204 | static inline bool move_entity(unsigned int flags) | |
1205 | { | |
1206 | if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) | |
1207 | return false; | |
1208 | ||
1209 | return true; | |
1210 | } | |
1211 | ||
1212 | static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) | |
1213 | { | |
1214 | list_del_init(&rt_se->run_list); | |
1215 | ||
1216 | if (list_empty(array->queue + rt_se_prio(rt_se))) | |
1217 | __clear_bit(rt_se_prio(rt_se), array->bitmap); | |
1218 | ||
1219 | rt_se->on_list = 0; | |
1220 | } | |
1221 | ||
57a5c2da YS |
1222 | static inline struct sched_statistics * |
1223 | __schedstats_from_rt_se(struct sched_rt_entity *rt_se) | |
1224 | { | |
57a5c2da YS |
1225 | /* schedstats is not supported for rt group. */ |
1226 | if (!rt_entity_is_task(rt_se)) | |
1227 | return NULL; | |
57a5c2da YS |
1228 | |
1229 | return &rt_task_of(rt_se)->stats; | |
1230 | } | |
1231 | ||
1232 | static inline void | |
1233 | update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) | |
1234 | { | |
1235 | struct sched_statistics *stats; | |
1236 | struct task_struct *p = NULL; | |
1237 | ||
1238 | if (!schedstat_enabled()) | |
1239 | return; | |
1240 | ||
1241 | if (rt_entity_is_task(rt_se)) | |
1242 | p = rt_task_of(rt_se); | |
1243 | ||
1244 | stats = __schedstats_from_rt_se(rt_se); | |
1245 | if (!stats) | |
1246 | return; | |
1247 | ||
1248 | __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats); | |
1249 | } | |
1250 | ||
1251 | static inline void | |
1252 | update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) | |
1253 | { | |
1254 | struct sched_statistics *stats; | |
1255 | struct task_struct *p = NULL; | |
1256 | ||
1257 | if (!schedstat_enabled()) | |
1258 | return; | |
1259 | ||
1260 | if (rt_entity_is_task(rt_se)) | |
1261 | p = rt_task_of(rt_se); | |
1262 | ||
1263 | stats = __schedstats_from_rt_se(rt_se); | |
1264 | if (!stats) | |
1265 | return; | |
1266 | ||
1267 | __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats); | |
1268 | } | |
1269 | ||
1270 | static inline void | |
1271 | update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, | |
1272 | int flags) | |
1273 | { | |
1274 | if (!schedstat_enabled()) | |
1275 | return; | |
1276 | ||
1277 | if (flags & ENQUEUE_WAKEUP) | |
1278 | update_stats_enqueue_sleeper_rt(rt_rq, rt_se); | |
1279 | } | |
1280 | ||
1281 | static inline void | |
1282 | update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) | |
1283 | { | |
1284 | struct sched_statistics *stats; | |
1285 | struct task_struct *p = NULL; | |
1286 | ||
1287 | if (!schedstat_enabled()) | |
1288 | return; | |
1289 | ||
1290 | if (rt_entity_is_task(rt_se)) | |
1291 | p = rt_task_of(rt_se); | |
1292 | ||
1293 | stats = __schedstats_from_rt_se(rt_se); | |
1294 | if (!stats) | |
1295 | return; | |
1296 | ||
1297 | __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats); | |
1298 | } | |
1299 | ||
1300 | static inline void | |
1301 | update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, | |
1302 | int flags) | |
1303 | { | |
1304 | struct task_struct *p = NULL; | |
1305 | ||
1306 | if (!schedstat_enabled()) | |
1307 | return; | |
1308 | ||
1309 | if (rt_entity_is_task(rt_se)) | |
1310 | p = rt_task_of(rt_se); | |
1311 | ||
1312 | if ((flags & DEQUEUE_SLEEP) && p) { | |
1313 | unsigned int state; | |
1314 | ||
1315 | state = READ_ONCE(p->__state); | |
1316 | if (state & TASK_INTERRUPTIBLE) | |
1317 | __schedstat_set(p->stats.sleep_start, | |
1318 | rq_clock(rq_of_rt_rq(rt_rq))); | |
1319 | ||
1320 | if (state & TASK_UNINTERRUPTIBLE) | |
1321 | __schedstat_set(p->stats.block_start, | |
1322 | rq_clock(rq_of_rt_rq(rt_rq))); | |
1323 | } | |
1324 | } | |
1325 | ||
ff77e468 | 1326 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) |
bb44e5d1 | 1327 | { |
6f505b16 PZ |
1328 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); |
1329 | struct rt_prio_array *array = &rt_rq->active; | |
1330 | struct rt_rq *group_rq = group_rt_rq(rt_se); | |
20b6331b | 1331 | struct list_head *queue = array->queue + rt_se_prio(rt_se); |
bb44e5d1 | 1332 | |
ad2a3f13 PZ |
1333 | /* |
1334 | * Don't enqueue the group if its throttled, or when empty. | |
1335 | * The latter is a consequence of the former when a child group | |
1336 | * get throttled and the current group doesn't have any other | |
1337 | * active members. | |
1338 | */ | |
ff77e468 PZ |
1339 | if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { |
1340 | if (rt_se->on_list) | |
1341 | __delist_rt_entity(rt_se, array); | |
6f505b16 | 1342 | return; |
ff77e468 | 1343 | } |
63489e45 | 1344 | |
ff77e468 PZ |
1345 | if (move_entity(flags)) { |
1346 | WARN_ON_ONCE(rt_se->on_list); | |
1347 | if (flags & ENQUEUE_HEAD) | |
1348 | list_add(&rt_se->run_list, queue); | |
1349 | else | |
1350 | list_add_tail(&rt_se->run_list, queue); | |
1351 | ||
1352 | __set_bit(rt_se_prio(rt_se), array->bitmap); | |
1353 | rt_se->on_list = 1; | |
1354 | } | |
1355 | rt_se->on_rq = 1; | |
78f2c7db | 1356 | |
6f505b16 PZ |
1357 | inc_rt_tasks(rt_se, rt_rq); |
1358 | } | |
1359 | ||
ff77e468 | 1360 | static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) |
6f505b16 PZ |
1361 | { |
1362 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | |
1363 | struct rt_prio_array *array = &rt_rq->active; | |
1364 | ||
ff77e468 PZ |
1365 | if (move_entity(flags)) { |
1366 | WARN_ON_ONCE(!rt_se->on_list); | |
1367 | __delist_rt_entity(rt_se, array); | |
1368 | } | |
1369 | rt_se->on_rq = 0; | |
6f505b16 PZ |
1370 | |
1371 | dec_rt_tasks(rt_se, rt_rq); | |
1372 | } | |
1373 | ||
1374 | /* | |
1375 | * Because the prio of an upper entry depends on the lower | |
1376 | * entries, we must remove entries top - down. | |
6f505b16 | 1377 | */ |
ff77e468 | 1378 | static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) |
6f505b16 | 1379 | { |
ad2a3f13 | 1380 | struct sched_rt_entity *back = NULL; |
5c66d1b9 | 1381 | unsigned int rt_nr_running; |
6f505b16 | 1382 | |
58d6c2d7 PZ |
1383 | for_each_sched_rt_entity(rt_se) { |
1384 | rt_se->back = back; | |
1385 | back = rt_se; | |
1386 | } | |
1387 | ||
5c66d1b9 | 1388 | rt_nr_running = rt_rq_of_se(back)->rt_nr_running; |
f4ebcbc0 | 1389 | |
58d6c2d7 PZ |
1390 | for (rt_se = back; rt_se; rt_se = rt_se->back) { |
1391 | if (on_rt_rq(rt_se)) | |
ff77e468 | 1392 | __dequeue_rt_entity(rt_se, flags); |
ad2a3f13 | 1393 | } |
5c66d1b9 NSJ |
1394 | |
1395 | dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running); | |
ad2a3f13 PZ |
1396 | } |
1397 | ||
ff77e468 | 1398 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) |
ad2a3f13 | 1399 | { |
f4ebcbc0 KT |
1400 | struct rq *rq = rq_of_rt_se(rt_se); |
1401 | ||
57a5c2da YS |
1402 | update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags); |
1403 | ||
ff77e468 | 1404 | dequeue_rt_stack(rt_se, flags); |
ad2a3f13 | 1405 | for_each_sched_rt_entity(rt_se) |
ff77e468 | 1406 | __enqueue_rt_entity(rt_se, flags); |
f4ebcbc0 | 1407 | enqueue_top_rt_rq(&rq->rt); |
ad2a3f13 PZ |
1408 | } |
1409 | ||
ff77e468 | 1410 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) |
ad2a3f13 | 1411 | { |
f4ebcbc0 KT |
1412 | struct rq *rq = rq_of_rt_se(rt_se); |
1413 | ||
57a5c2da YS |
1414 | update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags); |
1415 | ||
ff77e468 | 1416 | dequeue_rt_stack(rt_se, flags); |
ad2a3f13 PZ |
1417 | |
1418 | for_each_sched_rt_entity(rt_se) { | |
1419 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | |
1420 | ||
1421 | if (rt_rq && rt_rq->rt_nr_running) | |
ff77e468 | 1422 | __enqueue_rt_entity(rt_se, flags); |
58d6c2d7 | 1423 | } |
f4ebcbc0 | 1424 | enqueue_top_rt_rq(&rq->rt); |
bb44e5d1 IM |
1425 | } |
1426 | ||
1427 | /* | |
1428 | * Adding/removing a task to/from a priority array: | |
1429 | */ | |
ea87bb78 | 1430 | static void |
371fd7e7 | 1431 | enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) |
6f505b16 PZ |
1432 | { |
1433 | struct sched_rt_entity *rt_se = &p->rt; | |
1434 | ||
371fd7e7 | 1435 | if (flags & ENQUEUE_WAKEUP) |
6f505b16 PZ |
1436 | rt_se->timeout = 0; |
1437 | ||
57a5c2da YS |
1438 | check_schedstat_required(); |
1439 | update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se); | |
1440 | ||
ff77e468 | 1441 | enqueue_rt_entity(rt_se, flags); |
c09595f6 | 1442 | |
be39617e VS |
1443 | if (task_is_blocked(p)) |
1444 | return; | |
1445 | ||
4b53a341 | 1446 | if (!task_current(rq, p) && p->nr_cpus_allowed > 1) |
917b627d | 1447 | enqueue_pushable_task(rq, p); |
6f505b16 PZ |
1448 | } |
1449 | ||
863ccdbb | 1450 | static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) |
bb44e5d1 | 1451 | { |
6f505b16 | 1452 | struct sched_rt_entity *rt_se = &p->rt; |
bb44e5d1 | 1453 | |
f1e14ef6 | 1454 | update_curr_rt(rq); |
ff77e468 | 1455 | dequeue_rt_entity(rt_se, flags); |
c09595f6 | 1456 | |
917b627d | 1457 | dequeue_pushable_task(rq, p); |
863ccdbb PZ |
1458 | |
1459 | return true; | |
bb44e5d1 IM |
1460 | } |
1461 | ||
1462 | /* | |
60686317 RW |
1463 | * Put task to the head or the end of the run list without the overhead of |
1464 | * dequeue followed by enqueue. | |
bb44e5d1 | 1465 | */ |
7ebefa8c DA |
1466 | static void |
1467 | requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) | |
6f505b16 | 1468 | { |
1cdad715 | 1469 | if (on_rt_rq(rt_se)) { |
7ebefa8c DA |
1470 | struct rt_prio_array *array = &rt_rq->active; |
1471 | struct list_head *queue = array->queue + rt_se_prio(rt_se); | |
1472 | ||
1473 | if (head) | |
1474 | list_move(&rt_se->run_list, queue); | |
1475 | else | |
1476 | list_move_tail(&rt_se->run_list, queue); | |
1cdad715 | 1477 | } |
6f505b16 PZ |
1478 | } |
1479 | ||
7ebefa8c | 1480 | static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) |
bb44e5d1 | 1481 | { |
6f505b16 PZ |
1482 | struct sched_rt_entity *rt_se = &p->rt; |
1483 | struct rt_rq *rt_rq; | |
bb44e5d1 | 1484 | |
6f505b16 PZ |
1485 | for_each_sched_rt_entity(rt_se) { |
1486 | rt_rq = rt_rq_of_se(rt_se); | |
7ebefa8c | 1487 | requeue_rt_entity(rt_rq, rt_se, head); |
6f505b16 | 1488 | } |
bb44e5d1 IM |
1489 | } |
1490 | ||
6f505b16 | 1491 | static void yield_task_rt(struct rq *rq) |
bb44e5d1 | 1492 | { |
7ebefa8c | 1493 | requeue_task_rt(rq, rq->curr, 0); |
bb44e5d1 IM |
1494 | } |
1495 | ||
318e0893 GH |
1496 | static int find_lowest_rq(struct task_struct *task); |
1497 | ||
0017d735 | 1498 | static int |
3aef1551 | 1499 | select_task_rq_rt(struct task_struct *p, int cpu, int flags) |
e7693a36 | 1500 | { |
af0c8b2b | 1501 | struct task_struct *curr, *donor; |
7608dec2 | 1502 | struct rq *rq; |
804d402f | 1503 | bool test; |
c37495fd SR |
1504 | |
1505 | /* For anything but wake ups, just return the task_cpu */ | |
3aef1551 | 1506 | if (!(flags & (WF_TTWU | WF_FORK))) |
c37495fd SR |
1507 | goto out; |
1508 | ||
7608dec2 PZ |
1509 | rq = cpu_rq(cpu); |
1510 | ||
1511 | rcu_read_lock(); | |
316c1608 | 1512 | curr = READ_ONCE(rq->curr); /* unlocked access */ |
af0c8b2b | 1513 | donor = READ_ONCE(rq->donor); |
7608dec2 | 1514 | |
318e0893 | 1515 | /* |
7608dec2 | 1516 | * If the current task on @p's runqueue is an RT task, then |
e1f47d89 SR |
1517 | * try to see if we can wake this RT task up on another |
1518 | * runqueue. Otherwise simply start this RT task | |
1519 | * on its current runqueue. | |
1520 | * | |
43fa5460 SR |
1521 | * We want to avoid overloading runqueues. If the woken |
1522 | * task is a higher priority, then it will stay on this CPU | |
1523 | * and the lower prio task should be moved to another CPU. | |
1524 | * Even though this will probably make the lower prio task | |
1525 | * lose its cache, we do not want to bounce a higher task | |
1526 | * around just because it gave up its CPU, perhaps for a | |
1527 | * lock? | |
1528 | * | |
1529 | * For equal prio tasks, we just let the scheduler sort it out. | |
7608dec2 | 1530 | * |
402de7fc | 1531 | * Otherwise, just let it ride on the affine RQ and the |
7608dec2 PZ |
1532 | * post-schedule router will push the preempted task away |
1533 | * | |
1534 | * This test is optimistic, if we get it wrong the load-balancer | |
1535 | * will have to sort it out. | |
804d402f QY |
1536 | * |
1537 | * We take into account the capacity of the CPU to ensure it fits the | |
1538 | * requirement of the task - which is only important on heterogeneous | |
1539 | * systems like big.LITTLE. | |
318e0893 | 1540 | */ |
804d402f | 1541 | test = curr && |
af0c8b2b PZ |
1542 | unlikely(rt_task(donor)) && |
1543 | (curr->nr_cpus_allowed < 2 || donor->prio <= p->prio); | |
804d402f QY |
1544 | |
1545 | if (test || !rt_task_fits_capacity(p, cpu)) { | |
7608dec2 | 1546 | int target = find_lowest_rq(p); |
318e0893 | 1547 | |
b28bc1e0 QY |
1548 | /* |
1549 | * Bail out if we were forcing a migration to find a better | |
1550 | * fitting CPU but our search failed. | |
1551 | */ | |
1552 | if (!test && target != -1 && !rt_task_fits_capacity(p, target)) | |
1553 | goto out_unlock; | |
1554 | ||
80e3d87b TC |
1555 | /* |
1556 | * Don't bother moving it if the destination CPU is | |
1557 | * not running a lower priority task. | |
1558 | */ | |
1559 | if (target != -1 && | |
1560 | p->prio < cpu_rq(target)->rt.highest_prio.curr) | |
7608dec2 | 1561 | cpu = target; |
318e0893 | 1562 | } |
b28bc1e0 QY |
1563 | |
1564 | out_unlock: | |
7608dec2 | 1565 | rcu_read_unlock(); |
318e0893 | 1566 | |
c37495fd | 1567 | out: |
7608dec2 | 1568 | return cpu; |
e7693a36 | 1569 | } |
7ebefa8c DA |
1570 | |
1571 | static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | |
1572 | { | |
4b53a341 | 1573 | if (rq->curr->nr_cpus_allowed == 1 || |
af0c8b2b | 1574 | !cpupri_find(&rq->rd->cpupri, rq->donor, NULL)) |
7ebefa8c DA |
1575 | return; |
1576 | ||
308a623a WL |
1577 | /* |
1578 | * p is migratable, so let's not schedule it and | |
1579 | * see if it is pushed or pulled somewhere else. | |
1580 | */ | |
804d402f | 1581 | if (p->nr_cpus_allowed != 1 && |
a1bd02e1 | 1582 | cpupri_find(&rq->rd->cpupri, p, NULL)) |
13b8bd0a | 1583 | return; |
24600ce8 | 1584 | |
7ebefa8c | 1585 | /* |
97fb7a0a IM |
1586 | * There appear to be other CPUs that can accept |
1587 | * the current task but none can run 'p', so lets reschedule | |
1588 | * to try and push the current task away: | |
7ebefa8c DA |
1589 | */ |
1590 | requeue_task_rt(rq, p, 1); | |
8875125e | 1591 | resched_curr(rq); |
7ebefa8c DA |
1592 | } |
1593 | ||
6e2df058 PZ |
1594 | static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf) |
1595 | { | |
1596 | if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) { | |
1597 | /* | |
1598 | * This is OK, because current is on_cpu, which avoids it being | |
1599 | * picked for load-balance and preemption/IRQs are still | |
1600 | * disabled avoiding further scheduler activity on it and we've | |
1601 | * not yet started the picking loop. | |
1602 | */ | |
1603 | rq_unpin_lock(rq, rf); | |
1604 | pull_rt_task(rq); | |
1605 | rq_repin_lock(rq, rf); | |
1606 | } | |
1607 | ||
1608 | return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq); | |
1609 | } | |
e7693a36 | 1610 | |
bb44e5d1 IM |
1611 | /* |
1612 | * Preempt the current task with a newly woken task if needed: | |
1613 | */ | |
e23edc86 | 1614 | static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags) |
bb44e5d1 | 1615 | { |
af0c8b2b PZ |
1616 | struct task_struct *donor = rq->donor; |
1617 | ||
1618 | if (p->prio < donor->prio) { | |
8875125e | 1619 | resched_curr(rq); |
45c01e82 GH |
1620 | return; |
1621 | } | |
1622 | ||
45c01e82 GH |
1623 | /* |
1624 | * If: | |
1625 | * | |
1626 | * - the newly woken task is of equal priority to the current task | |
1627 | * - the newly woken task is non-migratable while current is migratable | |
1628 | * - current will be preempted on the next reschedule | |
1629 | * | |
1630 | * we should check to see if current can readily move to a different | |
1631 | * cpu. If so, we will reschedule to allow the push logic to try | |
1632 | * to move current somewhere else, making room for our non-migratable | |
1633 | * task. | |
1634 | */ | |
af0c8b2b | 1635 | if (p->prio == donor->prio && !test_tsk_need_resched(rq->curr)) |
7ebefa8c | 1636 | check_preempt_equal_prio(rq, p); |
bb44e5d1 IM |
1637 | } |
1638 | ||
a0e813f2 | 1639 | static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first) |
ff1cdc94 | 1640 | { |
57a5c2da YS |
1641 | struct sched_rt_entity *rt_se = &p->rt; |
1642 | struct rt_rq *rt_rq = &rq->rt; | |
1643 | ||
ff1cdc94 | 1644 | p->se.exec_start = rq_clock_task(rq); |
57a5c2da YS |
1645 | if (on_rt_rq(&p->rt)) |
1646 | update_stats_wait_end_rt(rt_rq, rt_se); | |
ff1cdc94 MS |
1647 | |
1648 | /* The running task is never eligible for pushing */ | |
1649 | dequeue_pushable_task(rq, p); | |
f95d4eae | 1650 | |
a0e813f2 PZ |
1651 | if (!first) |
1652 | return; | |
1653 | ||
f95d4eae PZ |
1654 | /* |
1655 | * If prev task was rt, put_prev_task() has already updated the | |
1656 | * utilization. We only care of the case where we start to schedule a | |
1657 | * rt task | |
1658 | */ | |
af0c8b2b | 1659 | if (rq->donor->sched_class != &rt_sched_class) |
f95d4eae PZ |
1660 | update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); |
1661 | ||
1662 | rt_queue_push_tasks(rq); | |
ff1cdc94 MS |
1663 | } |
1664 | ||
821aecd0 | 1665 | static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq) |
bb44e5d1 | 1666 | { |
6f505b16 PZ |
1667 | struct rt_prio_array *array = &rt_rq->active; |
1668 | struct sched_rt_entity *next = NULL; | |
bb44e5d1 IM |
1669 | struct list_head *queue; |
1670 | int idx; | |
1671 | ||
1672 | idx = sched_find_first_bit(array->bitmap); | |
6f505b16 | 1673 | BUG_ON(idx >= MAX_RT_PRIO); |
bb44e5d1 IM |
1674 | |
1675 | queue = array->queue + idx; | |
f7d2728c | 1676 | if (WARN_ON_ONCE(list_empty(queue))) |
7c4a5b89 | 1677 | return NULL; |
6f505b16 | 1678 | next = list_entry(queue->next, struct sched_rt_entity, run_list); |
326587b8 | 1679 | |
6f505b16 PZ |
1680 | return next; |
1681 | } | |
bb44e5d1 | 1682 | |
917b627d | 1683 | static struct task_struct *_pick_next_task_rt(struct rq *rq) |
6f505b16 PZ |
1684 | { |
1685 | struct sched_rt_entity *rt_se; | |
606dba2e | 1686 | struct rt_rq *rt_rq = &rq->rt; |
6f505b16 PZ |
1687 | |
1688 | do { | |
821aecd0 | 1689 | rt_se = pick_next_rt_entity(rt_rq); |
7c4a5b89 PB |
1690 | if (unlikely(!rt_se)) |
1691 | return NULL; | |
6f505b16 PZ |
1692 | rt_rq = group_rt_rq(rt_se); |
1693 | } while (rt_rq); | |
1694 | ||
ff1cdc94 | 1695 | return rt_task_of(rt_se); |
917b627d GH |
1696 | } |
1697 | ||
21f56ffe | 1698 | static struct task_struct *pick_task_rt(struct rq *rq) |
917b627d | 1699 | { |
606dba2e | 1700 | struct task_struct *p; |
606dba2e | 1701 | |
6e2df058 | 1702 | if (!sched_rt_runnable(rq)) |
606dba2e PZ |
1703 | return NULL; |
1704 | ||
606dba2e | 1705 | p = _pick_next_task_rt(rq); |
21f56ffe PZ |
1706 | |
1707 | return p; | |
1708 | } | |
1709 | ||
b2d70222 | 1710 | static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_struct *next) |
bb44e5d1 | 1711 | { |
57a5c2da YS |
1712 | struct sched_rt_entity *rt_se = &p->rt; |
1713 | struct rt_rq *rt_rq = &rq->rt; | |
1714 | ||
1715 | if (on_rt_rq(&p->rt)) | |
1716 | update_stats_wait_start_rt(rt_rq, rt_se); | |
1717 | ||
f1e14ef6 | 1718 | update_curr_rt(rq); |
917b627d | 1719 | |
23127296 | 1720 | update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); |
371bf427 | 1721 | |
be39617e VS |
1722 | if (task_is_blocked(p)) |
1723 | return; | |
917b627d GH |
1724 | /* |
1725 | * The previous task needs to be made eligible for pushing | |
1726 | * if it is still active | |
1727 | */ | |
4b53a341 | 1728 | if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) |
917b627d | 1729 | enqueue_pushable_task(rq, p); |
bb44e5d1 IM |
1730 | } |
1731 | ||
e8fa1362 SR |
1732 | /* Only try algorithms three times */ |
1733 | #define RT_MAX_TRIES 3 | |
1734 | ||
e23ee747 KT |
1735 | /* |
1736 | * Return the highest pushable rq's task, which is suitable to be executed | |
97fb7a0a | 1737 | * on the CPU, NULL otherwise |
e23ee747 KT |
1738 | */ |
1739 | static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) | |
e8fa1362 | 1740 | { |
e23ee747 KT |
1741 | struct plist_head *head = &rq->rt.pushable_tasks; |
1742 | struct task_struct *p; | |
3d07467b | 1743 | |
e23ee747 KT |
1744 | if (!has_pushable_tasks(rq)) |
1745 | return NULL; | |
3d07467b | 1746 | |
e23ee747 | 1747 | plist_for_each_entry(p, head, pushable_tasks) { |
18adad1d | 1748 | if (task_is_pushable(rq, p, cpu)) |
e23ee747 | 1749 | return p; |
f65eda4f SR |
1750 | } |
1751 | ||
e23ee747 | 1752 | return NULL; |
e8fa1362 SR |
1753 | } |
1754 | ||
0e3900e6 | 1755 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); |
e8fa1362 | 1756 | |
6e1254d2 GH |
1757 | static int find_lowest_rq(struct task_struct *task) |
1758 | { | |
1759 | struct sched_domain *sd; | |
4ba29684 | 1760 | struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); |
6e1254d2 GH |
1761 | int this_cpu = smp_processor_id(); |
1762 | int cpu = task_cpu(task); | |
a1bd02e1 | 1763 | int ret; |
06f90dbd | 1764 | |
0da938c4 SR |
1765 | /* Make sure the mask is initialized first */ |
1766 | if (unlikely(!lowest_mask)) | |
1767 | return -1; | |
1768 | ||
4b53a341 | 1769 | if (task->nr_cpus_allowed == 1) |
6e0534f2 | 1770 | return -1; /* No other targets possible */ |
6e1254d2 | 1771 | |
a1bd02e1 QY |
1772 | /* |
1773 | * If we're on asym system ensure we consider the different capacities | |
1774 | * of the CPUs when searching for the lowest_mask. | |
1775 | */ | |
740cf8a7 | 1776 | if (sched_asym_cpucap_active()) { |
a1bd02e1 QY |
1777 | |
1778 | ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri, | |
1779 | task, lowest_mask, | |
1780 | rt_task_fits_capacity); | |
1781 | } else { | |
1782 | ||
1783 | ret = cpupri_find(&task_rq(task)->rd->cpupri, | |
1784 | task, lowest_mask); | |
1785 | } | |
1786 | ||
1787 | if (!ret) | |
6e0534f2 | 1788 | return -1; /* No targets found */ |
6e1254d2 GH |
1789 | |
1790 | /* | |
97fb7a0a | 1791 | * At this point we have built a mask of CPUs representing the |
6e1254d2 GH |
1792 | * lowest priority tasks in the system. Now we want to elect |
1793 | * the best one based on our affinity and topology. | |
1794 | * | |
97fb7a0a | 1795 | * We prioritize the last CPU that the task executed on since |
6e1254d2 GH |
1796 | * it is most likely cache-hot in that location. |
1797 | */ | |
96f874e2 | 1798 | if (cpumask_test_cpu(cpu, lowest_mask)) |
6e1254d2 GH |
1799 | return cpu; |
1800 | ||
1801 | /* | |
1802 | * Otherwise, we consult the sched_domains span maps to figure | |
97fb7a0a | 1803 | * out which CPU is logically closest to our hot cache data. |
6e1254d2 | 1804 | */ |
e2c88063 RR |
1805 | if (!cpumask_test_cpu(this_cpu, lowest_mask)) |
1806 | this_cpu = -1; /* Skip this_cpu opt if not among lowest */ | |
6e1254d2 | 1807 | |
cd4ae6ad | 1808 | rcu_read_lock(); |
e2c88063 RR |
1809 | for_each_domain(cpu, sd) { |
1810 | if (sd->flags & SD_WAKE_AFFINE) { | |
1811 | int best_cpu; | |
6e1254d2 | 1812 | |
e2c88063 RR |
1813 | /* |
1814 | * "this_cpu" is cheaper to preempt than a | |
1815 | * remote processor. | |
1816 | */ | |
1817 | if (this_cpu != -1 && | |
cd4ae6ad XF |
1818 | cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { |
1819 | rcu_read_unlock(); | |
e2c88063 | 1820 | return this_cpu; |
cd4ae6ad | 1821 | } |
e2c88063 | 1822 | |
14e292f8 PZ |
1823 | best_cpu = cpumask_any_and_distribute(lowest_mask, |
1824 | sched_domain_span(sd)); | |
cd4ae6ad XF |
1825 | if (best_cpu < nr_cpu_ids) { |
1826 | rcu_read_unlock(); | |
e2c88063 | 1827 | return best_cpu; |
cd4ae6ad | 1828 | } |
6e1254d2 GH |
1829 | } |
1830 | } | |
cd4ae6ad | 1831 | rcu_read_unlock(); |
6e1254d2 GH |
1832 | |
1833 | /* | |
1834 | * And finally, if there were no matches within the domains | |
1835 | * just give the caller *something* to work with from the compatible | |
1836 | * locations. | |
1837 | */ | |
e2c88063 RR |
1838 | if (this_cpu != -1) |
1839 | return this_cpu; | |
1840 | ||
14e292f8 | 1841 | cpu = cpumask_any_distribute(lowest_mask); |
e2c88063 RR |
1842 | if (cpu < nr_cpu_ids) |
1843 | return cpu; | |
97fb7a0a | 1844 | |
e2c88063 | 1845 | return -1; |
07b4032c GH |
1846 | } |
1847 | ||
690e47d1 HA |
1848 | static struct task_struct *pick_next_pushable_task(struct rq *rq) |
1849 | { | |
1850 | struct task_struct *p; | |
1851 | ||
1852 | if (!has_pushable_tasks(rq)) | |
1853 | return NULL; | |
1854 | ||
1855 | p = plist_first_entry(&rq->rt.pushable_tasks, | |
1856 | struct task_struct, pushable_tasks); | |
1857 | ||
1858 | BUG_ON(rq->cpu != task_cpu(p)); | |
1859 | BUG_ON(task_current(rq, p)); | |
1860 | BUG_ON(task_current_donor(rq, p)); | |
1861 | BUG_ON(p->nr_cpus_allowed <= 1); | |
1862 | ||
1863 | BUG_ON(!task_on_rq_queued(p)); | |
1864 | BUG_ON(!rt_task(p)); | |
1865 | ||
1866 | return p; | |
1867 | } | |
1868 | ||
07b4032c | 1869 | /* Will lock the rq it finds */ |
4df64c0b | 1870 | static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) |
07b4032c GH |
1871 | { |
1872 | struct rq *lowest_rq = NULL; | |
07b4032c | 1873 | int tries; |
4df64c0b | 1874 | int cpu; |
e8fa1362 | 1875 | |
07b4032c GH |
1876 | for (tries = 0; tries < RT_MAX_TRIES; tries++) { |
1877 | cpu = find_lowest_rq(task); | |
1878 | ||
2de0b463 | 1879 | if ((cpu == -1) || (cpu == rq->cpu)) |
e8fa1362 SR |
1880 | break; |
1881 | ||
07b4032c GH |
1882 | lowest_rq = cpu_rq(cpu); |
1883 | ||
80e3d87b TC |
1884 | if (lowest_rq->rt.highest_prio.curr <= task->prio) { |
1885 | /* | |
1886 | * Target rq has tasks of equal or higher priority, | |
1887 | * retrying does not release any lock and is unlikely | |
1888 | * to yield a different result. | |
1889 | */ | |
1890 | lowest_rq = NULL; | |
1891 | break; | |
1892 | } | |
1893 | ||
e8fa1362 | 1894 | /* if the prio of this runqueue changed, try again */ |
07b4032c | 1895 | if (double_lock_balance(rq, lowest_rq)) { |
e8fa1362 SR |
1896 | /* |
1897 | * We had to unlock the run queue. In | |
1898 | * the mean time, task could have | |
690e47d1 HA |
1899 | * migrated already or had its affinity changed, |
1900 | * therefore check if the task is still at the | |
1901 | * head of the pushable tasks list. | |
feffe5bb SS |
1902 | * It is possible the task was scheduled, set |
1903 | * "migrate_disabled" and then got preempted, so we must | |
1904 | * check the task migration disable flag here too. | |
e8fa1362 | 1905 | */ |
690e47d1 | 1906 | if (unlikely(is_migration_disabled(task) || |
95158a89 | 1907 | !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) || |
690e47d1 | 1908 | task != pick_next_pushable_task(rq))) { |
4df64c0b | 1909 | |
7f1b4393 | 1910 | double_unlock_balance(rq, lowest_rq); |
e8fa1362 SR |
1911 | lowest_rq = NULL; |
1912 | break; | |
1913 | } | |
1914 | } | |
1915 | ||
1916 | /* If this rq is still suitable use it. */ | |
e864c499 | 1917 | if (lowest_rq->rt.highest_prio.curr > task->prio) |
e8fa1362 SR |
1918 | break; |
1919 | ||
1920 | /* try again */ | |
1b12bbc7 | 1921 | double_unlock_balance(rq, lowest_rq); |
e8fa1362 SR |
1922 | lowest_rq = NULL; |
1923 | } | |
1924 | ||
1925 | return lowest_rq; | |
1926 | } | |
1927 | ||
1928 | /* | |
1929 | * If the current CPU has more than one RT task, see if the non | |
1930 | * running task can migrate over to a CPU that is running a task | |
1931 | * of lesser priority. | |
1932 | */ | |
a7c81556 | 1933 | static int push_rt_task(struct rq *rq, bool pull) |
e8fa1362 SR |
1934 | { |
1935 | struct task_struct *next_task; | |
1936 | struct rq *lowest_rq; | |
311e800e | 1937 | int ret = 0; |
e8fa1362 | 1938 | |
a22d7fc1 GH |
1939 | if (!rq->rt.overloaded) |
1940 | return 0; | |
1941 | ||
917b627d | 1942 | next_task = pick_next_pushable_task(rq); |
e8fa1362 SR |
1943 | if (!next_task) |
1944 | return 0; | |
1945 | ||
49246274 | 1946 | retry: |
49bef33e VS |
1947 | /* |
1948 | * It's possible that the next_task slipped in of | |
1949 | * higher priority than current. If that's the case | |
1950 | * just reschedule current. | |
1951 | */ | |
af0c8b2b | 1952 | if (unlikely(next_task->prio < rq->donor->prio)) { |
49bef33e VS |
1953 | resched_curr(rq); |
1954 | return 0; | |
1955 | } | |
1956 | ||
a7c81556 PZ |
1957 | if (is_migration_disabled(next_task)) { |
1958 | struct task_struct *push_task = NULL; | |
1959 | int cpu; | |
1960 | ||
1961 | if (!pull || rq->push_busy) | |
1962 | return 0; | |
1963 | ||
49bef33e VS |
1964 | /* |
1965 | * Invoking find_lowest_rq() on anything but an RT task doesn't | |
1966 | * make sense. Per the above priority check, curr has to | |
1967 | * be of higher priority than next_task, so no need to | |
1968 | * reschedule when bailing out. | |
1969 | * | |
1970 | * Note that the stoppers are masqueraded as SCHED_FIFO | |
1971 | * (cf. sched_set_stop_task()), so we can't rely on rt_task(). | |
1972 | */ | |
af0c8b2b | 1973 | if (rq->donor->sched_class != &rt_sched_class) |
49bef33e VS |
1974 | return 0; |
1975 | ||
a7c81556 PZ |
1976 | cpu = find_lowest_rq(rq->curr); |
1977 | if (cpu == -1 || cpu == rq->cpu) | |
1978 | return 0; | |
1979 | ||
1980 | /* | |
1981 | * Given we found a CPU with lower priority than @next_task, | |
1982 | * therefore it should be running. However we cannot migrate it | |
1983 | * to this other CPU, instead attempt to push the current | |
1984 | * running task on this CPU away. | |
1985 | */ | |
1986 | push_task = get_push_task(rq); | |
1987 | if (push_task) { | |
f0498d2a | 1988 | preempt_disable(); |
5cb9eaa3 | 1989 | raw_spin_rq_unlock(rq); |
a7c81556 PZ |
1990 | stop_one_cpu_nowait(rq->cpu, push_cpu_stop, |
1991 | push_task, &rq->push_work); | |
f0498d2a | 1992 | preempt_enable(); |
5cb9eaa3 | 1993 | raw_spin_rq_lock(rq); |
a7c81556 PZ |
1994 | } |
1995 | ||
1996 | return 0; | |
1997 | } | |
1998 | ||
9ebc6053 | 1999 | if (WARN_ON(next_task == rq->curr)) |
e8fa1362 SR |
2000 | return 0; |
2001 | ||
697f0a48 | 2002 | /* We might release rq lock */ |
e8fa1362 SR |
2003 | get_task_struct(next_task); |
2004 | ||
2005 | /* find_lock_lowest_rq locks the rq if found */ | |
697f0a48 | 2006 | lowest_rq = find_lock_lowest_rq(next_task, rq); |
e8fa1362 SR |
2007 | if (!lowest_rq) { |
2008 | struct task_struct *task; | |
2009 | /* | |
311e800e | 2010 | * find_lock_lowest_rq releases rq->lock |
1563513d GH |
2011 | * so it is possible that next_task has migrated. |
2012 | * | |
2013 | * We need to make sure that the task is still on the same | |
2014 | * run-queue and is also still the next task eligible for | |
2015 | * pushing. | |
e8fa1362 | 2016 | */ |
917b627d | 2017 | task = pick_next_pushable_task(rq); |
de16b91e | 2018 | if (task == next_task) { |
1563513d | 2019 | /* |
311e800e HD |
2020 | * The task hasn't migrated, and is still the next |
2021 | * eligible task, but we failed to find a run-queue | |
2022 | * to push it to. Do not retry in this case, since | |
97fb7a0a | 2023 | * other CPUs will pull from us when ready. |
1563513d | 2024 | */ |
1563513d | 2025 | goto out; |
e8fa1362 | 2026 | } |
917b627d | 2027 | |
1563513d GH |
2028 | if (!task) |
2029 | /* No more tasks, just exit */ | |
2030 | goto out; | |
2031 | ||
917b627d | 2032 | /* |
1563513d | 2033 | * Something has shifted, try again. |
917b627d | 2034 | */ |
1563513d GH |
2035 | put_task_struct(next_task); |
2036 | next_task = task; | |
2037 | goto retry; | |
e8fa1362 SR |
2038 | } |
2039 | ||
2b05a0b4 | 2040 | move_queued_task_locked(rq, lowest_rq, next_task); |
8875125e | 2041 | resched_curr(lowest_rq); |
a7c81556 | 2042 | ret = 1; |
e8fa1362 | 2043 | |
1b12bbc7 | 2044 | double_unlock_balance(rq, lowest_rq); |
e8fa1362 SR |
2045 | out: |
2046 | put_task_struct(next_task); | |
2047 | ||
311e800e | 2048 | return ret; |
e8fa1362 SR |
2049 | } |
2050 | ||
e8fa1362 SR |
2051 | static void push_rt_tasks(struct rq *rq) |
2052 | { | |
2053 | /* push_rt_task will return true if it moved an RT */ | |
a7c81556 | 2054 | while (push_rt_task(rq, false)) |
e8fa1362 SR |
2055 | ; |
2056 | } | |
2057 | ||
b6366f04 | 2058 | #ifdef HAVE_RT_PUSH_IPI |
4bdced5c | 2059 | |
b6366f04 | 2060 | /* |
4bdced5c SRRH |
2061 | * When a high priority task schedules out from a CPU and a lower priority |
2062 | * task is scheduled in, a check is made to see if there's any RT tasks | |
2063 | * on other CPUs that are waiting to run because a higher priority RT task | |
2064 | * is currently running on its CPU. In this case, the CPU with multiple RT | |
2065 | * tasks queued on it (overloaded) needs to be notified that a CPU has opened | |
2066 | * up that may be able to run one of its non-running queued RT tasks. | |
2067 | * | |
2068 | * All CPUs with overloaded RT tasks need to be notified as there is currently | |
2069 | * no way to know which of these CPUs have the highest priority task waiting | |
2070 | * to run. Instead of trying to take a spinlock on each of these CPUs, | |
2071 | * which has shown to cause large latency when done on machines with many | |
2072 | * CPUs, sending an IPI to the CPUs to have them push off the overloaded | |
2073 | * RT tasks waiting to run. | |
2074 | * | |
2075 | * Just sending an IPI to each of the CPUs is also an issue, as on large | |
2076 | * count CPU machines, this can cause an IPI storm on a CPU, especially | |
2077 | * if its the only CPU with multiple RT tasks queued, and a large number | |
2078 | * of CPUs scheduling a lower priority task at the same time. | |
2079 | * | |
402de7fc | 2080 | * Each root domain has its own IRQ work function that can iterate over |
4bdced5c | 2081 | * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT |
3b03706f | 2082 | * task must be checked if there's one or many CPUs that are lowering |
402de7fc | 2083 | * their priority, there's a single IRQ work iterator that will try to |
4bdced5c SRRH |
2084 | * push off RT tasks that are waiting to run. |
2085 | * | |
2086 | * When a CPU schedules a lower priority task, it will kick off the | |
402de7fc | 2087 | * IRQ work iterator that will jump to each CPU with overloaded RT tasks. |
4bdced5c SRRH |
2088 | * As it only takes the first CPU that schedules a lower priority task |
2089 | * to start the process, the rto_start variable is incremented and if | |
2090 | * the atomic result is one, then that CPU will try to take the rto_lock. | |
2091 | * This prevents high contention on the lock as the process handles all | |
2092 | * CPUs scheduling lower priority tasks. | |
2093 | * | |
2094 | * All CPUs that are scheduling a lower priority task will increment the | |
402de7fc | 2095 | * rt_loop_next variable. This will make sure that the IRQ work iterator |
4bdced5c SRRH |
2096 | * checks all RT overloaded CPUs whenever a CPU schedules a new lower |
2097 | * priority task, even if the iterator is in the middle of a scan. Incrementing | |
2098 | * the rt_loop_next will cause the iterator to perform another scan. | |
b6366f04 | 2099 | * |
b6366f04 | 2100 | */ |
ad0f1d9d | 2101 | static int rto_next_cpu(struct root_domain *rd) |
b6366f04 | 2102 | { |
4bdced5c | 2103 | int next; |
b6366f04 SR |
2104 | int cpu; |
2105 | ||
b6366f04 | 2106 | /* |
4bdced5c SRRH |
2107 | * When starting the IPI RT pushing, the rto_cpu is set to -1, |
2108 | * rt_next_cpu() will simply return the first CPU found in | |
2109 | * the rto_mask. | |
2110 | * | |
97fb7a0a | 2111 | * If rto_next_cpu() is called with rto_cpu is a valid CPU, it |
4bdced5c SRRH |
2112 | * will return the next CPU found in the rto_mask. |
2113 | * | |
2114 | * If there are no more CPUs left in the rto_mask, then a check is made | |
2115 | * against rto_loop and rto_loop_next. rto_loop is only updated with | |
2116 | * the rto_lock held, but any CPU may increment the rto_loop_next | |
2117 | * without any locking. | |
b6366f04 | 2118 | */ |
4bdced5c | 2119 | for (;;) { |
b6366f04 | 2120 | |
4bdced5c SRRH |
2121 | /* When rto_cpu is -1 this acts like cpumask_first() */ |
2122 | cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); | |
b6366f04 | 2123 | |
4bdced5c | 2124 | rd->rto_cpu = cpu; |
b6366f04 | 2125 | |
4bdced5c SRRH |
2126 | if (cpu < nr_cpu_ids) |
2127 | return cpu; | |
b6366f04 | 2128 | |
4bdced5c SRRH |
2129 | rd->rto_cpu = -1; |
2130 | ||
2131 | /* | |
2132 | * ACQUIRE ensures we see the @rto_mask changes | |
2133 | * made prior to the @next value observed. | |
2134 | * | |
2135 | * Matches WMB in rt_set_overload(). | |
2136 | */ | |
2137 | next = atomic_read_acquire(&rd->rto_loop_next); | |
b6366f04 | 2138 | |
4bdced5c | 2139 | if (rd->rto_loop == next) |
b6366f04 | 2140 | break; |
4bdced5c SRRH |
2141 | |
2142 | rd->rto_loop = next; | |
b6366f04 SR |
2143 | } |
2144 | ||
4bdced5c | 2145 | return -1; |
b6366f04 SR |
2146 | } |
2147 | ||
4bdced5c SRRH |
2148 | static inline bool rto_start_trylock(atomic_t *v) |
2149 | { | |
2150 | return !atomic_cmpxchg_acquire(v, 0, 1); | |
2151 | } | |
b6366f04 | 2152 | |
4bdced5c | 2153 | static inline void rto_start_unlock(atomic_t *v) |
b6366f04 | 2154 | { |
4bdced5c SRRH |
2155 | atomic_set_release(v, 0); |
2156 | } | |
b6366f04 | 2157 | |
4bdced5c SRRH |
2158 | static void tell_cpu_to_push(struct rq *rq) |
2159 | { | |
2160 | int cpu = -1; | |
b6366f04 | 2161 | |
4bdced5c SRRH |
2162 | /* Keep the loop going if the IPI is currently active */ |
2163 | atomic_inc(&rq->rd->rto_loop_next); | |
b6366f04 | 2164 | |
4bdced5c SRRH |
2165 | /* Only one CPU can initiate a loop at a time */ |
2166 | if (!rto_start_trylock(&rq->rd->rto_loop_start)) | |
b6366f04 SR |
2167 | return; |
2168 | ||
4bdced5c | 2169 | raw_spin_lock(&rq->rd->rto_lock); |
b6366f04 | 2170 | |
4bdced5c | 2171 | /* |
97fb7a0a | 2172 | * The rto_cpu is updated under the lock, if it has a valid CPU |
4bdced5c SRRH |
2173 | * then the IPI is still running and will continue due to the |
2174 | * update to loop_next, and nothing needs to be done here. | |
402de7fc | 2175 | * Otherwise it is finishing up and an IPI needs to be sent. |
4bdced5c SRRH |
2176 | */ |
2177 | if (rq->rd->rto_cpu < 0) | |
ad0f1d9d | 2178 | cpu = rto_next_cpu(rq->rd); |
4bdced5c SRRH |
2179 | |
2180 | raw_spin_unlock(&rq->rd->rto_lock); | |
2181 | ||
2182 | rto_start_unlock(&rq->rd->rto_loop_start); | |
2183 | ||
364f5665 SRV |
2184 | if (cpu >= 0) { |
2185 | /* Make sure the rd does not get freed while pushing */ | |
2186 | sched_get_rd(rq->rd); | |
4bdced5c | 2187 | irq_work_queue_on(&rq->rd->rto_push_work, cpu); |
364f5665 | 2188 | } |
b6366f04 SR |
2189 | } |
2190 | ||
2191 | /* Called from hardirq context */ | |
4bdced5c | 2192 | void rto_push_irq_work_func(struct irq_work *work) |
b6366f04 | 2193 | { |
ad0f1d9d SRV |
2194 | struct root_domain *rd = |
2195 | container_of(work, struct root_domain, rto_push_work); | |
4bdced5c | 2196 | struct rq *rq; |
b6366f04 SR |
2197 | int cpu; |
2198 | ||
4bdced5c | 2199 | rq = this_rq(); |
b6366f04 | 2200 | |
4bdced5c SRRH |
2201 | /* |
2202 | * We do not need to grab the lock to check for has_pushable_tasks. | |
2203 | * When it gets updated, a check is made if a push is possible. | |
2204 | */ | |
b6366f04 | 2205 | if (has_pushable_tasks(rq)) { |
5cb9eaa3 | 2206 | raw_spin_rq_lock(rq); |
a7c81556 PZ |
2207 | while (push_rt_task(rq, true)) |
2208 | ; | |
5cb9eaa3 | 2209 | raw_spin_rq_unlock(rq); |
b6366f04 SR |
2210 | } |
2211 | ||
ad0f1d9d | 2212 | raw_spin_lock(&rd->rto_lock); |
b6366f04 | 2213 | |
4bdced5c | 2214 | /* Pass the IPI to the next rt overloaded queue */ |
ad0f1d9d | 2215 | cpu = rto_next_cpu(rd); |
b6366f04 | 2216 | |
ad0f1d9d | 2217 | raw_spin_unlock(&rd->rto_lock); |
b6366f04 | 2218 | |
364f5665 SRV |
2219 | if (cpu < 0) { |
2220 | sched_put_rd(rd); | |
b6366f04 | 2221 | return; |
364f5665 | 2222 | } |
b6366f04 | 2223 | |
b6366f04 | 2224 | /* Try the next RT overloaded CPU */ |
ad0f1d9d | 2225 | irq_work_queue_on(&rd->rto_push_work, cpu); |
b6366f04 SR |
2226 | } |
2227 | #endif /* HAVE_RT_PUSH_IPI */ | |
2228 | ||
8046d680 | 2229 | static void pull_rt_task(struct rq *this_rq) |
f65eda4f | 2230 | { |
8046d680 PZ |
2231 | int this_cpu = this_rq->cpu, cpu; |
2232 | bool resched = false; | |
a7c81556 | 2233 | struct task_struct *p, *push_task; |
f65eda4f | 2234 | struct rq *src_rq; |
f73c52a5 | 2235 | int rt_overload_count = rt_overloaded(this_rq); |
f65eda4f | 2236 | |
f73c52a5 | 2237 | if (likely(!rt_overload_count)) |
8046d680 | 2238 | return; |
f65eda4f | 2239 | |
7c3f2ab7 PZ |
2240 | /* |
2241 | * Match the barrier from rt_set_overloaded; this guarantees that if we | |
2242 | * see overloaded we must also see the rto_mask bit. | |
2243 | */ | |
2244 | smp_rmb(); | |
2245 | ||
f73c52a5 SR |
2246 | /* If we are the only overloaded CPU do nothing */ |
2247 | if (rt_overload_count == 1 && | |
2248 | cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) | |
2249 | return; | |
2250 | ||
b6366f04 SR |
2251 | #ifdef HAVE_RT_PUSH_IPI |
2252 | if (sched_feat(RT_PUSH_IPI)) { | |
2253 | tell_cpu_to_push(this_rq); | |
8046d680 | 2254 | return; |
b6366f04 SR |
2255 | } |
2256 | #endif | |
2257 | ||
c6c4927b | 2258 | for_each_cpu(cpu, this_rq->rd->rto_mask) { |
f65eda4f SR |
2259 | if (this_cpu == cpu) |
2260 | continue; | |
2261 | ||
2262 | src_rq = cpu_rq(cpu); | |
74ab8e4f GH |
2263 | |
2264 | /* | |
2265 | * Don't bother taking the src_rq->lock if the next highest | |
2266 | * task is known to be lower-priority than our current task. | |
2267 | * This may look racy, but if this value is about to go | |
2268 | * logically higher, the src_rq will push this task away. | |
2269 | * And if its going logically lower, we do not care | |
2270 | */ | |
2271 | if (src_rq->rt.highest_prio.next >= | |
2272 | this_rq->rt.highest_prio.curr) | |
2273 | continue; | |
2274 | ||
f65eda4f SR |
2275 | /* |
2276 | * We can potentially drop this_rq's lock in | |
2277 | * double_lock_balance, and another CPU could | |
a8728944 | 2278 | * alter this_rq |
f65eda4f | 2279 | */ |
a7c81556 | 2280 | push_task = NULL; |
a8728944 | 2281 | double_lock_balance(this_rq, src_rq); |
f65eda4f SR |
2282 | |
2283 | /* | |
e23ee747 KT |
2284 | * We can pull only a task, which is pushable |
2285 | * on its rq, and no others. | |
f65eda4f | 2286 | */ |
e23ee747 | 2287 | p = pick_highest_pushable_task(src_rq, this_cpu); |
f65eda4f SR |
2288 | |
2289 | /* | |
2290 | * Do we have an RT task that preempts | |
2291 | * the to-be-scheduled task? | |
2292 | */ | |
a8728944 | 2293 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { |
f65eda4f | 2294 | WARN_ON(p == src_rq->curr); |
da0c1e65 | 2295 | WARN_ON(!task_on_rq_queued(p)); |
f65eda4f SR |
2296 | |
2297 | /* | |
2298 | * There's a chance that p is higher in priority | |
97fb7a0a | 2299 | * than what's currently running on its CPU. |
3b03706f | 2300 | * This is just that p is waking up and hasn't |
f65eda4f SR |
2301 | * had a chance to schedule. We only pull |
2302 | * p if it is lower in priority than the | |
a8728944 | 2303 | * current task on the run queue |
f65eda4f | 2304 | */ |
af0c8b2b | 2305 | if (p->prio < src_rq->donor->prio) |
614ee1f6 | 2306 | goto skip; |
f65eda4f | 2307 | |
a7c81556 PZ |
2308 | if (is_migration_disabled(p)) { |
2309 | push_task = get_push_task(src_rq); | |
2310 | } else { | |
2b05a0b4 | 2311 | move_queued_task_locked(src_rq, this_rq, p); |
a7c81556 PZ |
2312 | resched = true; |
2313 | } | |
f65eda4f SR |
2314 | /* |
2315 | * We continue with the search, just in | |
2316 | * case there's an even higher prio task | |
25985edc | 2317 | * in another runqueue. (low likelihood |
f65eda4f | 2318 | * but possible) |
f65eda4f | 2319 | */ |
f65eda4f | 2320 | } |
49246274 | 2321 | skip: |
1b12bbc7 | 2322 | double_unlock_balance(this_rq, src_rq); |
a7c81556 PZ |
2323 | |
2324 | if (push_task) { | |
f0498d2a | 2325 | preempt_disable(); |
5cb9eaa3 | 2326 | raw_spin_rq_unlock(this_rq); |
a7c81556 PZ |
2327 | stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, |
2328 | push_task, &src_rq->push_work); | |
f0498d2a | 2329 | preempt_enable(); |
5cb9eaa3 | 2330 | raw_spin_rq_lock(this_rq); |
a7c81556 | 2331 | } |
f65eda4f SR |
2332 | } |
2333 | ||
8046d680 PZ |
2334 | if (resched) |
2335 | resched_curr(this_rq); | |
f65eda4f SR |
2336 | } |
2337 | ||
8ae121ac GH |
2338 | /* |
2339 | * If we are not running and we are not going to reschedule soon, we should | |
2340 | * try to push tasks away now | |
2341 | */ | |
efbbd05a | 2342 | static void task_woken_rt(struct rq *rq, struct task_struct *p) |
4642dafd | 2343 | { |
0b9d46fc | 2344 | bool need_to_push = !task_on_cpu(rq, p) && |
804d402f QY |
2345 | !test_tsk_need_resched(rq->curr) && |
2346 | p->nr_cpus_allowed > 1 && | |
af0c8b2b | 2347 | (dl_task(rq->donor) || rt_task(rq->donor)) && |
804d402f | 2348 | (rq->curr->nr_cpus_allowed < 2 || |
af0c8b2b | 2349 | rq->donor->prio <= p->prio); |
804d402f | 2350 | |
d94a9df4 | 2351 | if (need_to_push) |
4642dafd SR |
2352 | push_rt_tasks(rq); |
2353 | } | |
2354 | ||
bdd7c81b | 2355 | /* Assumes rq->lock is held */ |
1f11eb6a | 2356 | static void rq_online_rt(struct rq *rq) |
bdd7c81b IM |
2357 | { |
2358 | if (rq->rt.overloaded) | |
2359 | rt_set_overload(rq); | |
6e0534f2 | 2360 | |
7def2be1 PZ |
2361 | __enable_runtime(rq); |
2362 | ||
e864c499 | 2363 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); |
bdd7c81b IM |
2364 | } |
2365 | ||
2366 | /* Assumes rq->lock is held */ | |
1f11eb6a | 2367 | static void rq_offline_rt(struct rq *rq) |
bdd7c81b IM |
2368 | { |
2369 | if (rq->rt.overloaded) | |
2370 | rt_clear_overload(rq); | |
6e0534f2 | 2371 | |
7def2be1 PZ |
2372 | __disable_runtime(rq); |
2373 | ||
6e0534f2 | 2374 | cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); |
bdd7c81b | 2375 | } |
cb469845 SR |
2376 | |
2377 | /* | |
2378 | * When switch from the rt queue, we bring ourselves to a position | |
2379 | * that we might want to pull RT tasks from other runqueues. | |
2380 | */ | |
da7a735e | 2381 | static void switched_from_rt(struct rq *rq, struct task_struct *p) |
cb469845 SR |
2382 | { |
2383 | /* | |
2384 | * If there are other RT tasks then we will reschedule | |
2385 | * and the scheduling of the other RT tasks will handle | |
2386 | * the balancing. But if we are the last RT task | |
2387 | * we may need to handle the pulling of RT tasks | |
2388 | * now. | |
2389 | */ | |
da0c1e65 | 2390 | if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) |
1158ddb5 KT |
2391 | return; |
2392 | ||
02d8ec94 | 2393 | rt_queue_pull_task(rq); |
cb469845 | 2394 | } |
3d8cbdf8 | 2395 | |
11c785b7 | 2396 | void __init init_sched_rt_class(void) |
3d8cbdf8 RR |
2397 | { |
2398 | unsigned int i; | |
2399 | ||
029632fb | 2400 | for_each_possible_cpu(i) { |
eaa95840 | 2401 | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), |
6ca09dfc | 2402 | GFP_KERNEL, cpu_to_node(i)); |
029632fb | 2403 | } |
3d8cbdf8 | 2404 | } |
cb469845 SR |
2405 | |
2406 | /* | |
2407 | * When switching a task to RT, we may overload the runqueue | |
2408 | * with RT tasks. In this case we try to push them off to | |
2409 | * other runqueues. | |
2410 | */ | |
da7a735e | 2411 | static void switched_to_rt(struct rq *rq, struct task_struct *p) |
cb469845 | 2412 | { |
cb469845 | 2413 | /* |
fecfcbc2 VD |
2414 | * If we are running, update the avg_rt tracking, as the running time |
2415 | * will now on be accounted into the latter. | |
2416 | */ | |
2417 | if (task_current(rq, p)) { | |
2418 | update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); | |
2419 | return; | |
2420 | } | |
2421 | ||
2422 | /* | |
2423 | * If we are not running we may need to preempt the current | |
2424 | * running task. If that current running task is also an RT task | |
cb469845 SR |
2425 | * then see if we can move to another run queue. |
2426 | */ | |
fecfcbc2 | 2427 | if (task_on_rq_queued(p)) { |
d94a9df4 | 2428 | if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) |
02d8ec94 | 2429 | rt_queue_push_tasks(rq); |
af0c8b2b | 2430 | if (p->prio < rq->donor->prio && cpu_online(cpu_of(rq))) |
8875125e | 2431 | resched_curr(rq); |
cb469845 SR |
2432 | } |
2433 | } | |
2434 | ||
2435 | /* | |
2436 | * Priority of the task has changed. This may cause | |
2437 | * us to initiate a push or pull. | |
2438 | */ | |
da7a735e PZ |
2439 | static void |
2440 | prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) | |
cb469845 | 2441 | { |
da0c1e65 | 2442 | if (!task_on_rq_queued(p)) |
da7a735e PZ |
2443 | return; |
2444 | ||
af0c8b2b | 2445 | if (task_current_donor(rq, p)) { |
cb469845 SR |
2446 | /* |
2447 | * If our priority decreases while running, we | |
2448 | * may need to pull tasks to this runqueue. | |
2449 | */ | |
2450 | if (oldprio < p->prio) | |
02d8ec94 | 2451 | rt_queue_pull_task(rq); |
fd7a4bed | 2452 | |
cb469845 SR |
2453 | /* |
2454 | * If there's a higher priority task waiting to run | |
fd7a4bed | 2455 | * then reschedule. |
cb469845 | 2456 | */ |
fd7a4bed | 2457 | if (p->prio > rq->rt.highest_prio.curr) |
8875125e | 2458 | resched_curr(rq); |
cb469845 SR |
2459 | } else { |
2460 | /* | |
2461 | * This task is not running, but if it is | |
2462 | * greater than the current running task | |
2463 | * then reschedule. | |
2464 | */ | |
af0c8b2b | 2465 | if (p->prio < rq->donor->prio) |
8875125e | 2466 | resched_curr(rq); |
cb469845 SR |
2467 | } |
2468 | } | |
2469 | ||
b18b6a9c | 2470 | #ifdef CONFIG_POSIX_TIMERS |
78f2c7db PZ |
2471 | static void watchdog(struct rq *rq, struct task_struct *p) |
2472 | { | |
2473 | unsigned long soft, hard; | |
2474 | ||
78d7d407 JS |
2475 | /* max may change after cur was read, this will be fixed next tick */ |
2476 | soft = task_rlimit(p, RLIMIT_RTTIME); | |
2477 | hard = task_rlimit_max(p, RLIMIT_RTTIME); | |
78f2c7db PZ |
2478 | |
2479 | if (soft != RLIM_INFINITY) { | |
2480 | unsigned long next; | |
2481 | ||
57d2aa00 YX |
2482 | if (p->rt.watchdog_stamp != jiffies) { |
2483 | p->rt.timeout++; | |
2484 | p->rt.watchdog_stamp = jiffies; | |
2485 | } | |
2486 | ||
78f2c7db | 2487 | next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); |
3a245c0f TG |
2488 | if (p->rt.timeout > next) { |
2489 | posix_cputimers_rt_watchdog(&p->posix_cputimers, | |
2490 | p->se.sum_exec_runtime); | |
2491 | } | |
78f2c7db PZ |
2492 | } |
2493 | } | |
3eca109a | 2494 | #else /* !CONFIG_POSIX_TIMERS: */ |
b18b6a9c | 2495 | static inline void watchdog(struct rq *rq, struct task_struct *p) { } |
3eca109a | 2496 | #endif /* !CONFIG_POSIX_TIMERS */ |
bb44e5d1 | 2497 | |
d84b3131 FW |
2498 | /* |
2499 | * scheduler tick hitting a task of our scheduling class. | |
2500 | * | |
2501 | * NOTE: This function can be called remotely by the tick offload that | |
2502 | * goes along full dynticks. Therefore no local assumption can be made | |
2503 | * and everything must be accessed through the @rq and @curr passed in | |
2504 | * parameters. | |
2505 | */ | |
8f4d37ec | 2506 | static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) |
bb44e5d1 | 2507 | { |
454c7999 CC |
2508 | struct sched_rt_entity *rt_se = &p->rt; |
2509 | ||
67e2be02 | 2510 | update_curr_rt(rq); |
23127296 | 2511 | update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); |
67e2be02 | 2512 | |
78f2c7db PZ |
2513 | watchdog(rq, p); |
2514 | ||
bb44e5d1 | 2515 | /* |
402de7fc | 2516 | * RR tasks need a special form of time-slice management. |
bb44e5d1 IM |
2517 | * FIFO tasks have no timeslices. |
2518 | */ | |
2519 | if (p->policy != SCHED_RR) | |
2520 | return; | |
2521 | ||
fa717060 | 2522 | if (--p->rt.time_slice) |
bb44e5d1 IM |
2523 | return; |
2524 | ||
ce0dbbbb | 2525 | p->rt.time_slice = sched_rr_timeslice; |
bb44e5d1 | 2526 | |
98fbc798 | 2527 | /* |
e9aa39bb LB |
2528 | * Requeue to the end of queue if we (and all of our ancestors) are not |
2529 | * the only element on the queue | |
98fbc798 | 2530 | */ |
454c7999 CC |
2531 | for_each_sched_rt_entity(rt_se) { |
2532 | if (rt_se->run_list.prev != rt_se->run_list.next) { | |
2533 | requeue_task_rt(rq, p, 0); | |
8aa6f0eb | 2534 | resched_curr(rq); |
454c7999 CC |
2535 | return; |
2536 | } | |
98fbc798 | 2537 | } |
bb44e5d1 IM |
2538 | } |
2539 | ||
6d686f45 | 2540 | static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) |
0d721cea PW |
2541 | { |
2542 | /* | |
2543 | * Time slice is 0 for SCHED_FIFO tasks | |
2544 | */ | |
2545 | if (task->policy == SCHED_RR) | |
ce0dbbbb | 2546 | return sched_rr_timeslice; |
0d721cea PW |
2547 | else |
2548 | return 0; | |
2549 | } | |
2550 | ||
530bfad1 HJ |
2551 | #ifdef CONFIG_SCHED_CORE |
2552 | static int task_is_throttled_rt(struct task_struct *p, int cpu) | |
2553 | { | |
2554 | struct rt_rq *rt_rq; | |
2555 | ||
87f1fb77 | 2556 | #ifdef CONFIG_RT_GROUP_SCHED // XXX maybe add task_rt_rq(), see also sched_rt_period_rt_rq |
530bfad1 | 2557 | rt_rq = task_group(p)->rt_rq[cpu]; |
87f1fb77 | 2558 | WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group); |
530bfad1 HJ |
2559 | #else |
2560 | rt_rq = &cpu_rq(cpu)->rt; | |
2561 | #endif | |
2562 | ||
2563 | return rt_rq_throttled(rt_rq); | |
2564 | } | |
3eca109a | 2565 | #endif /* CONFIG_SCHED_CORE */ |
530bfad1 | 2566 | |
43c31ac0 PZ |
2567 | DEFINE_SCHED_CLASS(rt) = { |
2568 | ||
bb44e5d1 IM |
2569 | .enqueue_task = enqueue_task_rt, |
2570 | .dequeue_task = dequeue_task_rt, | |
2571 | .yield_task = yield_task_rt, | |
2572 | ||
e23edc86 | 2573 | .wakeup_preempt = wakeup_preempt_rt, |
bb44e5d1 | 2574 | |
fd03c5b8 | 2575 | .pick_task = pick_task_rt, |
bb44e5d1 | 2576 | .put_prev_task = put_prev_task_rt, |
03b7fad1 | 2577 | .set_next_task = set_next_task_rt, |
bb44e5d1 | 2578 | |
6e2df058 | 2579 | .balance = balance_rt, |
4ce72a2c | 2580 | .select_task_rq = select_task_rq_rt, |
6c37067e | 2581 | .set_cpus_allowed = set_cpus_allowed_common, |
1f11eb6a GH |
2582 | .rq_online = rq_online_rt, |
2583 | .rq_offline = rq_offline_rt, | |
efbbd05a | 2584 | .task_woken = task_woken_rt, |
cb469845 | 2585 | .switched_from = switched_from_rt, |
a7c81556 | 2586 | .find_lock_rq = find_lock_lowest_rq, |
bb44e5d1 IM |
2587 | |
2588 | .task_tick = task_tick_rt, | |
cb469845 | 2589 | |
0d721cea PW |
2590 | .get_rr_interval = get_rr_interval_rt, |
2591 | ||
cb469845 SR |
2592 | .prio_changed = prio_changed_rt, |
2593 | .switched_to = switched_to_rt, | |
6e998916 SG |
2594 | |
2595 | .update_curr = update_curr_rt, | |
982d9cdc | 2596 | |
530bfad1 HJ |
2597 | #ifdef CONFIG_SCHED_CORE |
2598 | .task_is_throttled = task_is_throttled_rt, | |
2599 | #endif | |
2600 | ||
982d9cdc PB |
2601 | #ifdef CONFIG_UCLAMP_TASK |
2602 | .uclamp_enabled = 1, | |
2603 | #endif | |
bb44e5d1 | 2604 | }; |
ada18de2 | 2605 | |
8887cd99 NP |
2606 | #ifdef CONFIG_RT_GROUP_SCHED |
2607 | /* | |
2608 | * Ensure that the real time constraints are schedulable. | |
2609 | */ | |
2610 | static DEFINE_MUTEX(rt_constraints_mutex); | |
2611 | ||
8887cd99 NP |
2612 | static inline int tg_has_rt_tasks(struct task_group *tg) |
2613 | { | |
b4fb015e KK |
2614 | struct task_struct *task; |
2615 | struct css_task_iter it; | |
2616 | int ret = 0; | |
8887cd99 NP |
2617 | |
2618 | /* | |
2619 | * Autogroups do not have RT tasks; see autogroup_create(). | |
2620 | */ | |
2621 | if (task_group_is_autogroup(tg)) | |
2622 | return 0; | |
2623 | ||
b4fb015e KK |
2624 | css_task_iter_start(&tg->css, 0, &it); |
2625 | while (!ret && (task = css_task_iter_next(&it))) | |
2626 | ret |= rt_task(task); | |
2627 | css_task_iter_end(&it); | |
8887cd99 | 2628 | |
b4fb015e | 2629 | return ret; |
8887cd99 NP |
2630 | } |
2631 | ||
2632 | struct rt_schedulable_data { | |
2633 | struct task_group *tg; | |
2634 | u64 rt_period; | |
2635 | u64 rt_runtime; | |
2636 | }; | |
2637 | ||
2638 | static int tg_rt_schedulable(struct task_group *tg, void *data) | |
2639 | { | |
2640 | struct rt_schedulable_data *d = data; | |
2641 | struct task_group *child; | |
2642 | unsigned long total, sum = 0; | |
2643 | u64 period, runtime; | |
2644 | ||
2645 | period = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
2646 | runtime = tg->rt_bandwidth.rt_runtime; | |
2647 | ||
2648 | if (tg == d->tg) { | |
2649 | period = d->rt_period; | |
2650 | runtime = d->rt_runtime; | |
2651 | } | |
2652 | ||
2653 | /* | |
2654 | * Cannot have more runtime than the period. | |
2655 | */ | |
2656 | if (runtime > period && runtime != RUNTIME_INF) | |
2657 | return -EINVAL; | |
2658 | ||
2659 | /* | |
b4fb015e | 2660 | * Ensure we don't starve existing RT tasks if runtime turns zero. |
8887cd99 | 2661 | */ |
b4fb015e KK |
2662 | if (rt_bandwidth_enabled() && !runtime && |
2663 | tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg)) | |
8887cd99 NP |
2664 | return -EBUSY; |
2665 | ||
87f1fb77 MK |
2666 | if (WARN_ON(!rt_group_sched_enabled() && tg != &root_task_group)) |
2667 | return -EBUSY; | |
2668 | ||
8887cd99 NP |
2669 | total = to_ratio(period, runtime); |
2670 | ||
2671 | /* | |
2672 | * Nobody can have more than the global setting allows. | |
2673 | */ | |
2674 | if (total > to_ratio(global_rt_period(), global_rt_runtime())) | |
2675 | return -EINVAL; | |
2676 | ||
2677 | /* | |
2678 | * The sum of our children's runtime should not exceed our own. | |
2679 | */ | |
2680 | list_for_each_entry_rcu(child, &tg->children, siblings) { | |
2681 | period = ktime_to_ns(child->rt_bandwidth.rt_period); | |
2682 | runtime = child->rt_bandwidth.rt_runtime; | |
2683 | ||
2684 | if (child == d->tg) { | |
2685 | period = d->rt_period; | |
2686 | runtime = d->rt_runtime; | |
2687 | } | |
2688 | ||
2689 | sum += to_ratio(period, runtime); | |
2690 | } | |
2691 | ||
2692 | if (sum > total) | |
2693 | return -EINVAL; | |
2694 | ||
2695 | return 0; | |
2696 | } | |
2697 | ||
2698 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) | |
2699 | { | |
2700 | int ret; | |
2701 | ||
2702 | struct rt_schedulable_data data = { | |
2703 | .tg = tg, | |
2704 | .rt_period = period, | |
2705 | .rt_runtime = runtime, | |
2706 | }; | |
2707 | ||
2708 | rcu_read_lock(); | |
2709 | ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); | |
2710 | rcu_read_unlock(); | |
2711 | ||
2712 | return ret; | |
2713 | } | |
2714 | ||
2715 | static int tg_set_rt_bandwidth(struct task_group *tg, | |
2716 | u64 rt_period, u64 rt_runtime) | |
2717 | { | |
2718 | int i, err = 0; | |
2719 | ||
2720 | /* | |
2721 | * Disallowing the root group RT runtime is BAD, it would disallow the | |
2722 | * kernel creating (and or operating) RT threads. | |
2723 | */ | |
2724 | if (tg == &root_task_group && rt_runtime == 0) | |
2725 | return -EINVAL; | |
2726 | ||
2727 | /* No period doesn't make any sense. */ | |
2728 | if (rt_period == 0) | |
2729 | return -EINVAL; | |
2730 | ||
d505b8af HC |
2731 | /* |
2732 | * Bound quota to defend quota against overflow during bandwidth shift. | |
2733 | */ | |
2734 | if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime) | |
2735 | return -EINVAL; | |
2736 | ||
8887cd99 | 2737 | mutex_lock(&rt_constraints_mutex); |
8887cd99 NP |
2738 | err = __rt_schedulable(tg, rt_period, rt_runtime); |
2739 | if (err) | |
2740 | goto unlock; | |
2741 | ||
2742 | raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); | |
2743 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); | |
2744 | tg->rt_bandwidth.rt_runtime = rt_runtime; | |
2745 | ||
2746 | for_each_possible_cpu(i) { | |
2747 | struct rt_rq *rt_rq = tg->rt_rq[i]; | |
2748 | ||
2749 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
2750 | rt_rq->rt_runtime = rt_runtime; | |
2751 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | |
2752 | } | |
2753 | raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); | |
2754 | unlock: | |
8887cd99 NP |
2755 | mutex_unlock(&rt_constraints_mutex); |
2756 | ||
2757 | return err; | |
2758 | } | |
2759 | ||
2760 | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) | |
2761 | { | |
2762 | u64 rt_runtime, rt_period; | |
2763 | ||
2764 | rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
2765 | rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; | |
2766 | if (rt_runtime_us < 0) | |
2767 | rt_runtime = RUNTIME_INF; | |
1a010e29 KK |
2768 | else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) |
2769 | return -EINVAL; | |
8887cd99 NP |
2770 | |
2771 | return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); | |
2772 | } | |
2773 | ||
2774 | long sched_group_rt_runtime(struct task_group *tg) | |
2775 | { | |
2776 | u64 rt_runtime_us; | |
2777 | ||
2778 | if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) | |
2779 | return -1; | |
2780 | ||
2781 | rt_runtime_us = tg->rt_bandwidth.rt_runtime; | |
2782 | do_div(rt_runtime_us, NSEC_PER_USEC); | |
2783 | return rt_runtime_us; | |
2784 | } | |
2785 | ||
2786 | int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) | |
2787 | { | |
2788 | u64 rt_runtime, rt_period; | |
2789 | ||
1a010e29 KK |
2790 | if (rt_period_us > U64_MAX / NSEC_PER_USEC) |
2791 | return -EINVAL; | |
2792 | ||
8887cd99 NP |
2793 | rt_period = rt_period_us * NSEC_PER_USEC; |
2794 | rt_runtime = tg->rt_bandwidth.rt_runtime; | |
2795 | ||
2796 | return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); | |
2797 | } | |
2798 | ||
2799 | long sched_group_rt_period(struct task_group *tg) | |
2800 | { | |
2801 | u64 rt_period_us; | |
2802 | ||
2803 | rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
2804 | do_div(rt_period_us, NSEC_PER_USEC); | |
2805 | return rt_period_us; | |
2806 | } | |
2807 | ||
28f152cd | 2808 | #ifdef CONFIG_SYSCTL |
8887cd99 NP |
2809 | static int sched_rt_global_constraints(void) |
2810 | { | |
2811 | int ret = 0; | |
2812 | ||
2813 | mutex_lock(&rt_constraints_mutex); | |
8887cd99 | 2814 | ret = __rt_schedulable(NULL, 0, 0); |
8887cd99 NP |
2815 | mutex_unlock(&rt_constraints_mutex); |
2816 | ||
2817 | return ret; | |
2818 | } | |
28f152cd | 2819 | #endif /* CONFIG_SYSCTL */ |
8887cd99 NP |
2820 | |
2821 | int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) | |
2822 | { | |
402de7fc | 2823 | /* Don't accept real-time tasks when there is no way for them to run */ |
277e0909 | 2824 | if (rt_group_sched_enabled() && rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) |
8887cd99 NP |
2825 | return 0; |
2826 | ||
2827 | return 1; | |
2828 | } | |
2829 | ||
3eca109a | 2830 | #else /* !CONFIG_RT_GROUP_SCHED: */ |
28f152cd BZ |
2831 | |
2832 | #ifdef CONFIG_SYSCTL | |
8887cd99 NP |
2833 | static int sched_rt_global_constraints(void) |
2834 | { | |
8887cd99 NP |
2835 | return 0; |
2836 | } | |
28f152cd | 2837 | #endif /* CONFIG_SYSCTL */ |
3eca109a | 2838 | #endif /* !CONFIG_RT_GROUP_SCHED */ |
8887cd99 | 2839 | |
28f152cd | 2840 | #ifdef CONFIG_SYSCTL |
8887cd99 NP |
2841 | static int sched_rt_global_validate(void) |
2842 | { | |
8887cd99 | 2843 | if ((sysctl_sched_rt_runtime != RUNTIME_INF) && |
d505b8af HC |
2844 | ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) || |
2845 | ((u64)sysctl_sched_rt_runtime * | |
2846 | NSEC_PER_USEC > max_rt_runtime))) | |
8887cd99 NP |
2847 | return -EINVAL; |
2848 | ||
2849 | return 0; | |
2850 | } | |
2851 | ||
2852 | static void sched_rt_do_global(void) | |
2853 | { | |
8887cd99 NP |
2854 | } |
2855 | ||
78eb4ea2 | 2856 | static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer, |
32927393 | 2857 | size_t *lenp, loff_t *ppos) |
8887cd99 NP |
2858 | { |
2859 | int old_period, old_runtime; | |
2860 | static DEFINE_MUTEX(mutex); | |
2861 | int ret; | |
2862 | ||
2863 | mutex_lock(&mutex); | |
45007c6f | 2864 | sched_domains_mutex_lock(); |
8887cd99 NP |
2865 | old_period = sysctl_sched_rt_period; |
2866 | old_runtime = sysctl_sched_rt_runtime; | |
2867 | ||
079be8fc | 2868 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
8887cd99 NP |
2869 | |
2870 | if (!ret && write) { | |
2871 | ret = sched_rt_global_validate(); | |
2872 | if (ret) | |
2873 | goto undo; | |
2874 | ||
2875 | ret = sched_dl_global_validate(); | |
2876 | if (ret) | |
2877 | goto undo; | |
2878 | ||
2879 | ret = sched_rt_global_constraints(); | |
2880 | if (ret) | |
2881 | goto undo; | |
2882 | ||
2883 | sched_rt_do_global(); | |
2884 | sched_dl_do_global(); | |
2885 | } | |
2886 | if (0) { | |
2887 | undo: | |
2888 | sysctl_sched_rt_period = old_period; | |
2889 | sysctl_sched_rt_runtime = old_runtime; | |
2890 | } | |
45007c6f | 2891 | sched_domains_mutex_unlock(); |
8887cd99 NP |
2892 | mutex_unlock(&mutex); |
2893 | ||
440989c1 JL |
2894 | /* |
2895 | * After changing maximum available bandwidth for DEADLINE, we need to | |
2896 | * recompute per root domain and per cpus variables accordingly. | |
2897 | */ | |
2898 | rebuild_sched_domains(); | |
2899 | ||
8887cd99 NP |
2900 | return ret; |
2901 | } | |
2902 | ||
78eb4ea2 | 2903 | static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer, |
32927393 | 2904 | size_t *lenp, loff_t *ppos) |
8887cd99 NP |
2905 | { |
2906 | int ret; | |
2907 | static DEFINE_MUTEX(mutex); | |
2908 | ||
2909 | mutex_lock(&mutex); | |
2910 | ret = proc_dointvec(table, write, buffer, lenp, ppos); | |
2911 | /* | |
2912 | * Make sure that internally we keep jiffies. | |
402de7fc | 2913 | * Also, writing zero resets the time-slice to default: |
8887cd99 NP |
2914 | */ |
2915 | if (!ret && write) { | |
2916 | sched_rr_timeslice = | |
2917 | sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : | |
2918 | msecs_to_jiffies(sysctl_sched_rr_timeslice); | |
c1fc6484 CH |
2919 | |
2920 | if (sysctl_sched_rr_timeslice <= 0) | |
2921 | sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE); | |
8887cd99 NP |
2922 | } |
2923 | mutex_unlock(&mutex); | |
97fb7a0a | 2924 | |
8887cd99 NP |
2925 | return ret; |
2926 | } | |
28f152cd | 2927 | #endif /* CONFIG_SYSCTL */ |
8887cd99 | 2928 | |
029632fb | 2929 | void print_rt_stats(struct seq_file *m, int cpu) |
ada18de2 | 2930 | { |
ec514c48 | 2931 | rt_rq_iter_t iter; |
ada18de2 PZ |
2932 | struct rt_rq *rt_rq; |
2933 | ||
2934 | rcu_read_lock(); | |
ec514c48 | 2935 | for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) |
ada18de2 PZ |
2936 | print_rt_rq(m, cpu, rt_rq); |
2937 | rcu_read_unlock(); | |
2938 | } |