sched/rt: Remove 'leaf_rt_rq_list' from 'struct rq'
[linux-2.6-block.git] / kernel / sched / rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
029632fb
PZ
6#include "sched.h"
7
8#include <linux/slab.h>
9
ce0dbbbb
CW
10int sched_rr_timeslice = RR_TIMESLICE;
11
029632fb
PZ
12static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14struct rt_bandwidth def_rt_bandwidth;
15
16static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17{
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
20 ktime_t now;
21 int overrun;
22 int idle = 0;
23
24 for (;;) {
25 now = hrtimer_cb_get_time(timer);
26 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28 if (!overrun)
29 break;
30
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 }
33
34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35}
36
37void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38{
39 rt_b->rt_period = ns_to_ktime(period);
40 rt_b->rt_runtime = runtime;
41
42 raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44 hrtimer_init(&rt_b->rt_period_timer,
45 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 rt_b->rt_period_timer.function = sched_rt_period_timer;
47}
48
49static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50{
51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 return;
53
54 if (hrtimer_active(&rt_b->rt_period_timer))
55 return;
56
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 raw_spin_unlock(&rt_b->rt_runtime_lock);
60}
61
62void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63{
64 struct rt_prio_array *array;
65 int i;
66
67 array = &rt_rq->active;
68 for (i = 0; i < MAX_RT_PRIO; i++) {
69 INIT_LIST_HEAD(array->queue + i);
70 __clear_bit(i, array->bitmap);
71 }
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO, array->bitmap);
74
75#if defined CONFIG_SMP
76 rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 rt_rq->highest_prio.next = MAX_RT_PRIO;
78 rt_rq->rt_nr_migratory = 0;
79 rt_rq->overloaded = 0;
80 plist_head_init(&rt_rq->pushable_tasks);
81#endif
82
83 rt_rq->rt_time = 0;
84 rt_rq->rt_throttled = 0;
85 rt_rq->rt_runtime = 0;
86 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
87}
88
8f48894f 89#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
90static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
91{
92 hrtimer_cancel(&rt_b->rt_period_timer);
93}
8f48894f
PZ
94
95#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
96
398a153b
GH
97static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
98{
8f48894f
PZ
99#ifdef CONFIG_SCHED_DEBUG
100 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
101#endif
398a153b
GH
102 return container_of(rt_se, struct task_struct, rt);
103}
104
398a153b
GH
105static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
106{
107 return rt_rq->rq;
108}
109
110static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
111{
112 return rt_se->rt_rq;
113}
114
029632fb
PZ
115void free_rt_sched_group(struct task_group *tg)
116{
117 int i;
118
119 if (tg->rt_se)
120 destroy_rt_bandwidth(&tg->rt_bandwidth);
121
122 for_each_possible_cpu(i) {
123 if (tg->rt_rq)
124 kfree(tg->rt_rq[i]);
125 if (tg->rt_se)
126 kfree(tg->rt_se[i]);
127 }
128
129 kfree(tg->rt_rq);
130 kfree(tg->rt_se);
131}
132
133void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
134 struct sched_rt_entity *rt_se, int cpu,
135 struct sched_rt_entity *parent)
136{
137 struct rq *rq = cpu_rq(cpu);
138
139 rt_rq->highest_prio.curr = MAX_RT_PRIO;
140 rt_rq->rt_nr_boosted = 0;
141 rt_rq->rq = rq;
142 rt_rq->tg = tg;
143
144 tg->rt_rq[cpu] = rt_rq;
145 tg->rt_se[cpu] = rt_se;
146
147 if (!rt_se)
148 return;
149
150 if (!parent)
151 rt_se->rt_rq = &rq->rt;
152 else
153 rt_se->rt_rq = parent->my_q;
154
155 rt_se->my_q = rt_rq;
156 rt_se->parent = parent;
157 INIT_LIST_HEAD(&rt_se->run_list);
158}
159
160int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
161{
162 struct rt_rq *rt_rq;
163 struct sched_rt_entity *rt_se;
164 int i;
165
166 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
167 if (!tg->rt_rq)
168 goto err;
169 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
170 if (!tg->rt_se)
171 goto err;
172
173 init_rt_bandwidth(&tg->rt_bandwidth,
174 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
175
176 for_each_possible_cpu(i) {
177 rt_rq = kzalloc_node(sizeof(struct rt_rq),
178 GFP_KERNEL, cpu_to_node(i));
179 if (!rt_rq)
180 goto err;
181
182 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
183 GFP_KERNEL, cpu_to_node(i));
184 if (!rt_se)
185 goto err_free_rq;
186
187 init_rt_rq(rt_rq, cpu_rq(i));
188 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
189 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
190 }
191
192 return 1;
193
194err_free_rq:
195 kfree(rt_rq);
196err:
197 return 0;
198}
199
398a153b
GH
200#else /* CONFIG_RT_GROUP_SCHED */
201
a1ba4d8b
PZ
202#define rt_entity_is_task(rt_se) (1)
203
8f48894f
PZ
204static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
205{
206 return container_of(rt_se, struct task_struct, rt);
207}
208
398a153b
GH
209static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
210{
211 return container_of(rt_rq, struct rq, rt);
212}
213
214static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
215{
216 struct task_struct *p = rt_task_of(rt_se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->rt;
220}
221
029632fb
PZ
222void free_rt_sched_group(struct task_group *tg) { }
223
224int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
225{
226 return 1;
227}
398a153b
GH
228#endif /* CONFIG_RT_GROUP_SCHED */
229
4fd29176 230#ifdef CONFIG_SMP
84de4274 231
38033c37
PZ
232static int pull_rt_task(struct rq *this_rq);
233
dc877341
PZ
234static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
235{
236 /* Try to pull RT tasks here if we lower this rq's prio */
237 return rq->rt.highest_prio.curr > prev->prio;
238}
239
637f5085 240static inline int rt_overloaded(struct rq *rq)
4fd29176 241{
637f5085 242 return atomic_read(&rq->rd->rto_count);
4fd29176 243}
84de4274 244
4fd29176
SR
245static inline void rt_set_overload(struct rq *rq)
246{
1f11eb6a
GH
247 if (!rq->online)
248 return;
249
c6c4927b 250 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
251 /*
252 * Make sure the mask is visible before we set
253 * the overload count. That is checked to determine
254 * if we should look at the mask. It would be a shame
255 * if we looked at the mask, but the mask was not
256 * updated yet.
7c3f2ab7
PZ
257 *
258 * Matched by the barrier in pull_rt_task().
4fd29176 259 */
7c3f2ab7 260 smp_wmb();
637f5085 261 atomic_inc(&rq->rd->rto_count);
4fd29176 262}
84de4274 263
4fd29176
SR
264static inline void rt_clear_overload(struct rq *rq)
265{
1f11eb6a
GH
266 if (!rq->online)
267 return;
268
4fd29176 269 /* the order here really doesn't matter */
637f5085 270 atomic_dec(&rq->rd->rto_count);
c6c4927b 271 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 272}
73fe6aae 273
398a153b 274static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 275{
a1ba4d8b 276 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
277 if (!rt_rq->overloaded) {
278 rt_set_overload(rq_of_rt_rq(rt_rq));
279 rt_rq->overloaded = 1;
cdc8eb98 280 }
398a153b
GH
281 } else if (rt_rq->overloaded) {
282 rt_clear_overload(rq_of_rt_rq(rt_rq));
283 rt_rq->overloaded = 0;
637f5085 284 }
73fe6aae 285}
4fd29176 286
398a153b
GH
287static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
288{
29baa747
PZ
289 struct task_struct *p;
290
a1ba4d8b
PZ
291 if (!rt_entity_is_task(rt_se))
292 return;
293
29baa747 294 p = rt_task_of(rt_se);
a1ba4d8b
PZ
295 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
296
297 rt_rq->rt_nr_total++;
29baa747 298 if (p->nr_cpus_allowed > 1)
398a153b
GH
299 rt_rq->rt_nr_migratory++;
300
301 update_rt_migration(rt_rq);
302}
303
304static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
305{
29baa747
PZ
306 struct task_struct *p;
307
a1ba4d8b
PZ
308 if (!rt_entity_is_task(rt_se))
309 return;
310
29baa747 311 p = rt_task_of(rt_se);
a1ba4d8b
PZ
312 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
313
314 rt_rq->rt_nr_total--;
29baa747 315 if (p->nr_cpus_allowed > 1)
398a153b
GH
316 rt_rq->rt_nr_migratory--;
317
318 update_rt_migration(rt_rq);
319}
320
5181f4a4
SR
321static inline int has_pushable_tasks(struct rq *rq)
322{
323 return !plist_head_empty(&rq->rt.pushable_tasks);
324}
325
dc877341
PZ
326static inline void set_post_schedule(struct rq *rq)
327{
328 /*
329 * We detect this state here so that we can avoid taking the RQ
330 * lock again later if there is no need to push
331 */
332 rq->post_schedule = has_pushable_tasks(rq);
333}
334
917b627d
GH
335static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
336{
337 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
338 plist_node_init(&p->pushable_tasks, p->prio);
339 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
340
341 /* Update the highest prio pushable task */
342 if (p->prio < rq->rt.highest_prio.next)
343 rq->rt.highest_prio.next = p->prio;
917b627d
GH
344}
345
346static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
347{
348 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 349
5181f4a4
SR
350 /* Update the new highest prio pushable task */
351 if (has_pushable_tasks(rq)) {
352 p = plist_first_entry(&rq->rt.pushable_tasks,
353 struct task_struct, pushable_tasks);
354 rq->rt.highest_prio.next = p->prio;
355 } else
356 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
357}
358
917b627d
GH
359#else
360
ceacc2c1 361static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 362{
6f505b16
PZ
363}
364
ceacc2c1
PZ
365static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
366{
367}
368
b07430ac 369static inline
ceacc2c1
PZ
370void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
371{
372}
373
398a153b 374static inline
ceacc2c1
PZ
375void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
376{
377}
917b627d 378
dc877341
PZ
379static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
380{
381 return false;
382}
383
384static inline int pull_rt_task(struct rq *this_rq)
385{
386 return 0;
387}
388
389static inline void set_post_schedule(struct rq *rq)
390{
391}
4fd29176
SR
392#endif /* CONFIG_SMP */
393
6f505b16
PZ
394static inline int on_rt_rq(struct sched_rt_entity *rt_se)
395{
396 return !list_empty(&rt_se->run_list);
397}
398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 400
9f0c1e56 401static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
402{
403 if (!rt_rq->tg)
9f0c1e56 404 return RUNTIME_INF;
6f505b16 405
ac086bc2
PZ
406 return rt_rq->rt_runtime;
407}
408
409static inline u64 sched_rt_period(struct rt_rq *rt_rq)
410{
411 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
412}
413
ec514c48
CX
414typedef struct task_group *rt_rq_iter_t;
415
1c09ab0d
YZ
416static inline struct task_group *next_task_group(struct task_group *tg)
417{
418 do {
419 tg = list_entry_rcu(tg->list.next,
420 typeof(struct task_group), list);
421 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
422
423 if (&tg->list == &task_groups)
424 tg = NULL;
425
426 return tg;
427}
428
429#define for_each_rt_rq(rt_rq, iter, rq) \
430 for (iter = container_of(&task_groups, typeof(*iter), list); \
431 (iter = next_task_group(iter)) && \
432 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 433
6f505b16
PZ
434#define for_each_sched_rt_entity(rt_se) \
435 for (; rt_se; rt_se = rt_se->parent)
436
437static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
438{
439 return rt_se->my_q;
440}
441
37dad3fc 442static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
443static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
444
9f0c1e56 445static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 446{
f6121f4f 447 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
74b7eb58
YZ
448 struct sched_rt_entity *rt_se;
449
0c3b9168
BS
450 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
451
452 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 453
f6121f4f
DF
454 if (rt_rq->rt_nr_running) {
455 if (rt_se && !on_rt_rq(rt_se))
37dad3fc 456 enqueue_rt_entity(rt_se, false);
e864c499 457 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 458 resched_task(curr);
6f505b16
PZ
459 }
460}
461
9f0c1e56 462static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 463{
74b7eb58 464 struct sched_rt_entity *rt_se;
0c3b9168 465 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 466
0c3b9168 467 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16
PZ
468
469 if (rt_se && on_rt_rq(rt_se))
470 dequeue_rt_entity(rt_se);
471}
472
23b0fdfc
PZ
473static inline int rt_rq_throttled(struct rt_rq *rt_rq)
474{
475 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
476}
477
478static int rt_se_boosted(struct sched_rt_entity *rt_se)
479{
480 struct rt_rq *rt_rq = group_rt_rq(rt_se);
481 struct task_struct *p;
482
483 if (rt_rq)
484 return !!rt_rq->rt_nr_boosted;
485
486 p = rt_task_of(rt_se);
487 return p->prio != p->normal_prio;
488}
489
d0b27fa7 490#ifdef CONFIG_SMP
c6c4927b 491static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 492{
424c93fe 493 return this_rq()->rd->span;
d0b27fa7 494}
6f505b16 495#else
c6c4927b 496static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 497{
c6c4927b 498 return cpu_online_mask;
d0b27fa7
PZ
499}
500#endif
6f505b16 501
d0b27fa7
PZ
502static inline
503struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 504{
d0b27fa7
PZ
505 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
506}
9f0c1e56 507
ac086bc2
PZ
508static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
509{
510 return &rt_rq->tg->rt_bandwidth;
511}
512
55e12e5e 513#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
514
515static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
516{
ac086bc2
PZ
517 return rt_rq->rt_runtime;
518}
519
520static inline u64 sched_rt_period(struct rt_rq *rt_rq)
521{
522 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
523}
524
ec514c48
CX
525typedef struct rt_rq *rt_rq_iter_t;
526
527#define for_each_rt_rq(rt_rq, iter, rq) \
528 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
529
6f505b16
PZ
530#define for_each_sched_rt_entity(rt_se) \
531 for (; rt_se; rt_se = NULL)
532
533static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
534{
535 return NULL;
536}
537
9f0c1e56 538static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 539{
f3ade837
JB
540 if (rt_rq->rt_nr_running)
541 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
542}
543
9f0c1e56 544static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
545{
546}
547
23b0fdfc
PZ
548static inline int rt_rq_throttled(struct rt_rq *rt_rq)
549{
550 return rt_rq->rt_throttled;
551}
d0b27fa7 552
c6c4927b 553static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 554{
c6c4927b 555 return cpu_online_mask;
d0b27fa7
PZ
556}
557
558static inline
559struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
560{
561 return &cpu_rq(cpu)->rt;
562}
563
ac086bc2
PZ
564static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
565{
566 return &def_rt_bandwidth;
567}
568
55e12e5e 569#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 570
ac086bc2 571#ifdef CONFIG_SMP
78333cdd
PZ
572/*
573 * We ran out of runtime, see if we can borrow some from our neighbours.
574 */
b79f3833 575static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
576{
577 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 578 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
ac086bc2
PZ
579 int i, weight, more = 0;
580 u64 rt_period;
581
c6c4927b 582 weight = cpumask_weight(rd->span);
ac086bc2 583
0986b11b 584 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 585 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 586 for_each_cpu(i, rd->span) {
ac086bc2
PZ
587 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
588 s64 diff;
589
590 if (iter == rt_rq)
591 continue;
592
0986b11b 593 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
594 /*
595 * Either all rqs have inf runtime and there's nothing to steal
596 * or __disable_runtime() below sets a specific rq to inf to
597 * indicate its been disabled and disalow stealing.
598 */
7def2be1
PZ
599 if (iter->rt_runtime == RUNTIME_INF)
600 goto next;
601
78333cdd
PZ
602 /*
603 * From runqueues with spare time, take 1/n part of their
604 * spare time, but no more than our period.
605 */
ac086bc2
PZ
606 diff = iter->rt_runtime - iter->rt_time;
607 if (diff > 0) {
58838cf3 608 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
609 if (rt_rq->rt_runtime + diff > rt_period)
610 diff = rt_period - rt_rq->rt_runtime;
611 iter->rt_runtime -= diff;
612 rt_rq->rt_runtime += diff;
613 more = 1;
614 if (rt_rq->rt_runtime == rt_period) {
0986b11b 615 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
616 break;
617 }
618 }
7def2be1 619next:
0986b11b 620 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 621 }
0986b11b 622 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
623
624 return more;
625}
7def2be1 626
78333cdd
PZ
627/*
628 * Ensure this RQ takes back all the runtime it lend to its neighbours.
629 */
7def2be1
PZ
630static void __disable_runtime(struct rq *rq)
631{
632 struct root_domain *rd = rq->rd;
ec514c48 633 rt_rq_iter_t iter;
7def2be1
PZ
634 struct rt_rq *rt_rq;
635
636 if (unlikely(!scheduler_running))
637 return;
638
ec514c48 639 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
640 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
641 s64 want;
642 int i;
643
0986b11b
TG
644 raw_spin_lock(&rt_b->rt_runtime_lock);
645 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
646 /*
647 * Either we're all inf and nobody needs to borrow, or we're
648 * already disabled and thus have nothing to do, or we have
649 * exactly the right amount of runtime to take out.
650 */
7def2be1
PZ
651 if (rt_rq->rt_runtime == RUNTIME_INF ||
652 rt_rq->rt_runtime == rt_b->rt_runtime)
653 goto balanced;
0986b11b 654 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 655
78333cdd
PZ
656 /*
657 * Calculate the difference between what we started out with
658 * and what we current have, that's the amount of runtime
659 * we lend and now have to reclaim.
660 */
7def2be1
PZ
661 want = rt_b->rt_runtime - rt_rq->rt_runtime;
662
78333cdd
PZ
663 /*
664 * Greedy reclaim, take back as much as we can.
665 */
c6c4927b 666 for_each_cpu(i, rd->span) {
7def2be1
PZ
667 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
668 s64 diff;
669
78333cdd
PZ
670 /*
671 * Can't reclaim from ourselves or disabled runqueues.
672 */
f1679d08 673 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
674 continue;
675
0986b11b 676 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
677 if (want > 0) {
678 diff = min_t(s64, iter->rt_runtime, want);
679 iter->rt_runtime -= diff;
680 want -= diff;
681 } else {
682 iter->rt_runtime -= want;
683 want -= want;
684 }
0986b11b 685 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
686
687 if (!want)
688 break;
689 }
690
0986b11b 691 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
692 /*
693 * We cannot be left wanting - that would mean some runtime
694 * leaked out of the system.
695 */
7def2be1
PZ
696 BUG_ON(want);
697balanced:
78333cdd
PZ
698 /*
699 * Disable all the borrow logic by pretending we have inf
700 * runtime - in which case borrowing doesn't make sense.
701 */
7def2be1 702 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 703 rt_rq->rt_throttled = 0;
0986b11b
TG
704 raw_spin_unlock(&rt_rq->rt_runtime_lock);
705 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
706 }
707}
708
7def2be1
PZ
709static void __enable_runtime(struct rq *rq)
710{
ec514c48 711 rt_rq_iter_t iter;
7def2be1
PZ
712 struct rt_rq *rt_rq;
713
714 if (unlikely(!scheduler_running))
715 return;
716
78333cdd
PZ
717 /*
718 * Reset each runqueue's bandwidth settings
719 */
ec514c48 720 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
721 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
722
0986b11b
TG
723 raw_spin_lock(&rt_b->rt_runtime_lock);
724 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
725 rt_rq->rt_runtime = rt_b->rt_runtime;
726 rt_rq->rt_time = 0;
baf25731 727 rt_rq->rt_throttled = 0;
0986b11b
TG
728 raw_spin_unlock(&rt_rq->rt_runtime_lock);
729 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
730 }
731}
732
eff6549b
PZ
733static int balance_runtime(struct rt_rq *rt_rq)
734{
735 int more = 0;
736
4a6184ce
PZ
737 if (!sched_feat(RT_RUNTIME_SHARE))
738 return more;
739
eff6549b 740 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 741 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 742 more = do_balance_runtime(rt_rq);
0986b11b 743 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
744 }
745
746 return more;
747}
55e12e5e 748#else /* !CONFIG_SMP */
eff6549b
PZ
749static inline int balance_runtime(struct rt_rq *rt_rq)
750{
751 return 0;
752}
55e12e5e 753#endif /* CONFIG_SMP */
ac086bc2 754
eff6549b
PZ
755static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
756{
42c62a58 757 int i, idle = 1, throttled = 0;
c6c4927b 758 const struct cpumask *span;
eff6549b 759
eff6549b 760 span = sched_rt_period_mask();
e221d028
MG
761#ifdef CONFIG_RT_GROUP_SCHED
762 /*
763 * FIXME: isolated CPUs should really leave the root task group,
764 * whether they are isolcpus or were isolated via cpusets, lest
765 * the timer run on a CPU which does not service all runqueues,
766 * potentially leaving other CPUs indefinitely throttled. If
767 * isolation is really required, the user will turn the throttle
768 * off to kill the perturbations it causes anyway. Meanwhile,
769 * this maintains functionality for boot and/or troubleshooting.
770 */
771 if (rt_b == &root_task_group.rt_bandwidth)
772 span = cpu_online_mask;
773#endif
c6c4927b 774 for_each_cpu(i, span) {
eff6549b
PZ
775 int enqueue = 0;
776 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
777 struct rq *rq = rq_of_rt_rq(rt_rq);
778
05fa785c 779 raw_spin_lock(&rq->lock);
eff6549b
PZ
780 if (rt_rq->rt_time) {
781 u64 runtime;
782
0986b11b 783 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
784 if (rt_rq->rt_throttled)
785 balance_runtime(rt_rq);
786 runtime = rt_rq->rt_runtime;
787 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
788 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
789 rt_rq->rt_throttled = 0;
790 enqueue = 1;
61eadef6
MG
791
792 /*
793 * Force a clock update if the CPU was idle,
794 * lest wakeup -> unthrottle time accumulate.
795 */
796 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
797 rq->skip_clock_update = -1;
eff6549b
PZ
798 }
799 if (rt_rq->rt_time || rt_rq->rt_nr_running)
800 idle = 0;
0986b11b 801 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 802 } else if (rt_rq->rt_nr_running) {
6c3df255 803 idle = 0;
0c3b9168
BS
804 if (!rt_rq_throttled(rt_rq))
805 enqueue = 1;
806 }
42c62a58
PZ
807 if (rt_rq->rt_throttled)
808 throttled = 1;
eff6549b
PZ
809
810 if (enqueue)
811 sched_rt_rq_enqueue(rt_rq);
05fa785c 812 raw_spin_unlock(&rq->lock);
eff6549b
PZ
813 }
814
42c62a58
PZ
815 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
816 return 1;
817
eff6549b
PZ
818 return idle;
819}
ac086bc2 820
6f505b16
PZ
821static inline int rt_se_prio(struct sched_rt_entity *rt_se)
822{
052f1dc7 823#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
824 struct rt_rq *rt_rq = group_rt_rq(rt_se);
825
826 if (rt_rq)
e864c499 827 return rt_rq->highest_prio.curr;
6f505b16
PZ
828#endif
829
830 return rt_task_of(rt_se)->prio;
831}
832
9f0c1e56 833static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 834{
9f0c1e56 835 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 836
fa85ae24 837 if (rt_rq->rt_throttled)
23b0fdfc 838 return rt_rq_throttled(rt_rq);
fa85ae24 839
5b680fd6 840 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
841 return 0;
842
b79f3833
PZ
843 balance_runtime(rt_rq);
844 runtime = sched_rt_runtime(rt_rq);
845 if (runtime == RUNTIME_INF)
846 return 0;
ac086bc2 847
9f0c1e56 848 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
849 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
850
851 /*
852 * Don't actually throttle groups that have no runtime assigned
853 * but accrue some time due to boosting.
854 */
855 if (likely(rt_b->rt_runtime)) {
3ccf3e83
PZ
856 static bool once = false;
857
7abc63b1 858 rt_rq->rt_throttled = 1;
3ccf3e83
PZ
859
860 if (!once) {
861 once = true;
862 printk_sched("sched: RT throttling activated\n");
863 }
7abc63b1
PZ
864 } else {
865 /*
866 * In case we did anyway, make it go away,
867 * replenishment is a joke, since it will replenish us
868 * with exactly 0 ns.
869 */
870 rt_rq->rt_time = 0;
871 }
872
23b0fdfc 873 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 874 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
875 return 1;
876 }
fa85ae24
PZ
877 }
878
879 return 0;
880}
881
bb44e5d1
IM
882/*
883 * Update the current task's runtime statistics. Skip current tasks that
884 * are not in our scheduling class.
885 */
a9957449 886static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
887{
888 struct task_struct *curr = rq->curr;
6f505b16
PZ
889 struct sched_rt_entity *rt_se = &curr->rt;
890 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
891 u64 delta_exec;
892
06c3bc65 893 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
894 return;
895
78becc27 896 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
fc79e240
KT
897 if (unlikely((s64)delta_exec <= 0))
898 return;
6cfb0d5d 899
42c62a58
PZ
900 schedstat_set(curr->se.statistics.exec_max,
901 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
902
903 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
904 account_group_exec_runtime(curr, delta_exec);
905
78becc27 906 curr->se.exec_start = rq_clock_task(rq);
d842de87 907 cpuacct_charge(curr, delta_exec);
fa85ae24 908
e9e9250b
PZ
909 sched_rt_avg_update(rq, delta_exec);
910
0b148fa0
PZ
911 if (!rt_bandwidth_enabled())
912 return;
913
354d60c2
DG
914 for_each_sched_rt_entity(rt_se) {
915 rt_rq = rt_rq_of_se(rt_se);
916
cc2991cf 917 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 918 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
919 rt_rq->rt_time += delta_exec;
920 if (sched_rt_runtime_exceeded(rt_rq))
921 resched_task(curr);
0986b11b 922 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 923 }
354d60c2 924 }
bb44e5d1
IM
925}
926
398a153b 927#if defined CONFIG_SMP
e864c499 928
398a153b
GH
929static void
930inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 931{
4d984277 932 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 933
757dfcaa
KT
934#ifdef CONFIG_RT_GROUP_SCHED
935 /*
936 * Change rq's cpupri only if rt_rq is the top queue.
937 */
938 if (&rq->rt != rt_rq)
939 return;
940#endif
5181f4a4
SR
941 if (rq->online && prio < prev_prio)
942 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 943}
73fe6aae 944
398a153b
GH
945static void
946dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
947{
948 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 949
757dfcaa
KT
950#ifdef CONFIG_RT_GROUP_SCHED
951 /*
952 * Change rq's cpupri only if rt_rq is the top queue.
953 */
954 if (&rq->rt != rt_rq)
955 return;
956#endif
398a153b
GH
957 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
958 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
959}
960
398a153b
GH
961#else /* CONFIG_SMP */
962
6f505b16 963static inline
398a153b
GH
964void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
965static inline
966void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
967
968#endif /* CONFIG_SMP */
6e0534f2 969
052f1dc7 970#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
971static void
972inc_rt_prio(struct rt_rq *rt_rq, int prio)
973{
974 int prev_prio = rt_rq->highest_prio.curr;
975
976 if (prio < prev_prio)
977 rt_rq->highest_prio.curr = prio;
978
979 inc_rt_prio_smp(rt_rq, prio, prev_prio);
980}
981
982static void
983dec_rt_prio(struct rt_rq *rt_rq, int prio)
984{
985 int prev_prio = rt_rq->highest_prio.curr;
986
6f505b16 987 if (rt_rq->rt_nr_running) {
764a9d6f 988
398a153b 989 WARN_ON(prio < prev_prio);
764a9d6f 990
e864c499 991 /*
398a153b
GH
992 * This may have been our highest task, and therefore
993 * we may have some recomputation to do
e864c499 994 */
398a153b 995 if (prio == prev_prio) {
e864c499
GH
996 struct rt_prio_array *array = &rt_rq->active;
997
998 rt_rq->highest_prio.curr =
764a9d6f 999 sched_find_first_bit(array->bitmap);
e864c499
GH
1000 }
1001
764a9d6f 1002 } else
e864c499 1003 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 1004
398a153b
GH
1005 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1006}
1f11eb6a 1007
398a153b
GH
1008#else
1009
1010static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1011static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1012
1013#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 1014
052f1dc7 1015#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
1016
1017static void
1018inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1019{
1020 if (rt_se_boosted(rt_se))
1021 rt_rq->rt_nr_boosted++;
1022
1023 if (rt_rq->tg)
1024 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1025}
1026
1027static void
1028dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1029{
23b0fdfc
PZ
1030 if (rt_se_boosted(rt_se))
1031 rt_rq->rt_nr_boosted--;
1032
1033 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
1034}
1035
1036#else /* CONFIG_RT_GROUP_SCHED */
1037
1038static void
1039inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1040{
1041 start_rt_bandwidth(&def_rt_bandwidth);
1042}
1043
1044static inline
1045void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1046
1047#endif /* CONFIG_RT_GROUP_SCHED */
1048
1049static inline
1050void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1051{
1052 int prio = rt_se_prio(rt_se);
1053
1054 WARN_ON(!rt_prio(prio));
1055 rt_rq->rt_nr_running++;
1056
1057 inc_rt_prio(rt_rq, prio);
1058 inc_rt_migration(rt_se, rt_rq);
1059 inc_rt_group(rt_se, rt_rq);
1060}
1061
1062static inline
1063void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1064{
1065 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1066 WARN_ON(!rt_rq->rt_nr_running);
1067 rt_rq->rt_nr_running--;
1068
1069 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1070 dec_rt_migration(rt_se, rt_rq);
1071 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1072}
1073
37dad3fc 1074static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 1075{
6f505b16
PZ
1076 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1077 struct rt_prio_array *array = &rt_rq->active;
1078 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1079 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1080
ad2a3f13
PZ
1081 /*
1082 * Don't enqueue the group if its throttled, or when empty.
1083 * The latter is a consequence of the former when a child group
1084 * get throttled and the current group doesn't have any other
1085 * active members.
1086 */
1087 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 1088 return;
63489e45 1089
37dad3fc
TG
1090 if (head)
1091 list_add(&rt_se->run_list, queue);
1092 else
1093 list_add_tail(&rt_se->run_list, queue);
6f505b16 1094 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 1095
6f505b16
PZ
1096 inc_rt_tasks(rt_se, rt_rq);
1097}
1098
ad2a3f13 1099static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
1100{
1101 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1102 struct rt_prio_array *array = &rt_rq->active;
1103
1104 list_del_init(&rt_se->run_list);
1105 if (list_empty(array->queue + rt_se_prio(rt_se)))
1106 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1107
1108 dec_rt_tasks(rt_se, rt_rq);
1109}
1110
1111/*
1112 * Because the prio of an upper entry depends on the lower
1113 * entries, we must remove entries top - down.
6f505b16 1114 */
ad2a3f13 1115static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 1116{
ad2a3f13 1117 struct sched_rt_entity *back = NULL;
6f505b16 1118
58d6c2d7
PZ
1119 for_each_sched_rt_entity(rt_se) {
1120 rt_se->back = back;
1121 back = rt_se;
1122 }
1123
1124 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1125 if (on_rt_rq(rt_se))
ad2a3f13
PZ
1126 __dequeue_rt_entity(rt_se);
1127 }
1128}
1129
37dad3fc 1130static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13
PZ
1131{
1132 dequeue_rt_stack(rt_se);
1133 for_each_sched_rt_entity(rt_se)
37dad3fc 1134 __enqueue_rt_entity(rt_se, head);
ad2a3f13
PZ
1135}
1136
1137static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1138{
1139 dequeue_rt_stack(rt_se);
1140
1141 for_each_sched_rt_entity(rt_se) {
1142 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1143
1144 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 1145 __enqueue_rt_entity(rt_se, false);
58d6c2d7 1146 }
bb44e5d1
IM
1147}
1148
1149/*
1150 * Adding/removing a task to/from a priority array:
1151 */
ea87bb78 1152static void
371fd7e7 1153enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1154{
1155 struct sched_rt_entity *rt_se = &p->rt;
1156
371fd7e7 1157 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1158 rt_se->timeout = 0;
1159
371fd7e7 1160 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 1161
29baa747 1162 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1163 enqueue_pushable_task(rq, p);
953bfcd1
PT
1164
1165 inc_nr_running(rq);
6f505b16
PZ
1166}
1167
371fd7e7 1168static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1169{
6f505b16 1170 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1171
f1e14ef6 1172 update_curr_rt(rq);
ad2a3f13 1173 dequeue_rt_entity(rt_se);
c09595f6 1174
917b627d 1175 dequeue_pushable_task(rq, p);
953bfcd1
PT
1176
1177 dec_nr_running(rq);
bb44e5d1
IM
1178}
1179
1180/*
60686317
RW
1181 * Put task to the head or the end of the run list without the overhead of
1182 * dequeue followed by enqueue.
bb44e5d1 1183 */
7ebefa8c
DA
1184static void
1185requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1186{
1cdad715 1187 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1188 struct rt_prio_array *array = &rt_rq->active;
1189 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1190
1191 if (head)
1192 list_move(&rt_se->run_list, queue);
1193 else
1194 list_move_tail(&rt_se->run_list, queue);
1cdad715 1195 }
6f505b16
PZ
1196}
1197
7ebefa8c 1198static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1199{
6f505b16
PZ
1200 struct sched_rt_entity *rt_se = &p->rt;
1201 struct rt_rq *rt_rq;
bb44e5d1 1202
6f505b16
PZ
1203 for_each_sched_rt_entity(rt_se) {
1204 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1205 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1206 }
bb44e5d1
IM
1207}
1208
6f505b16 1209static void yield_task_rt(struct rq *rq)
bb44e5d1 1210{
7ebefa8c 1211 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1212}
1213
e7693a36 1214#ifdef CONFIG_SMP
318e0893
GH
1215static int find_lowest_rq(struct task_struct *task);
1216
0017d735 1217static int
ac66f547 1218select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
e7693a36 1219{
7608dec2
PZ
1220 struct task_struct *curr;
1221 struct rq *rq;
c37495fd 1222
29baa747 1223 if (p->nr_cpus_allowed == 1)
76854c7e
MG
1224 goto out;
1225
c37495fd
SR
1226 /* For anything but wake ups, just return the task_cpu */
1227 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1228 goto out;
1229
7608dec2
PZ
1230 rq = cpu_rq(cpu);
1231
1232 rcu_read_lock();
1233 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1234
318e0893 1235 /*
7608dec2 1236 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1237 * try to see if we can wake this RT task up on another
1238 * runqueue. Otherwise simply start this RT task
1239 * on its current runqueue.
1240 *
43fa5460
SR
1241 * We want to avoid overloading runqueues. If the woken
1242 * task is a higher priority, then it will stay on this CPU
1243 * and the lower prio task should be moved to another CPU.
1244 * Even though this will probably make the lower prio task
1245 * lose its cache, we do not want to bounce a higher task
1246 * around just because it gave up its CPU, perhaps for a
1247 * lock?
1248 *
1249 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1250 *
1251 * Otherwise, just let it ride on the affined RQ and the
1252 * post-schedule router will push the preempted task away
1253 *
1254 * This test is optimistic, if we get it wrong the load-balancer
1255 * will have to sort it out.
318e0893 1256 */
7608dec2 1257 if (curr && unlikely(rt_task(curr)) &&
29baa747 1258 (curr->nr_cpus_allowed < 2 ||
6bfa687c 1259 curr->prio <= p->prio)) {
7608dec2 1260 int target = find_lowest_rq(p);
318e0893 1261
7608dec2
PZ
1262 if (target != -1)
1263 cpu = target;
318e0893 1264 }
7608dec2 1265 rcu_read_unlock();
318e0893 1266
c37495fd 1267out:
7608dec2 1268 return cpu;
e7693a36 1269}
7ebefa8c
DA
1270
1271static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1272{
29baa747 1273 if (rq->curr->nr_cpus_allowed == 1)
7ebefa8c
DA
1274 return;
1275
29baa747 1276 if (p->nr_cpus_allowed != 1
13b8bd0a
RR
1277 && cpupri_find(&rq->rd->cpupri, p, NULL))
1278 return;
24600ce8 1279
13b8bd0a
RR
1280 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1281 return;
7ebefa8c
DA
1282
1283 /*
1284 * There appears to be other cpus that can accept
1285 * current and none to run 'p', so lets reschedule
1286 * to try and push current away:
1287 */
1288 requeue_task_rt(rq, p, 1);
1289 resched_task(rq->curr);
1290}
1291
e7693a36
GH
1292#endif /* CONFIG_SMP */
1293
bb44e5d1
IM
1294/*
1295 * Preempt the current task with a newly woken task if needed:
1296 */
7d478721 1297static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1298{
45c01e82 1299 if (p->prio < rq->curr->prio) {
bb44e5d1 1300 resched_task(rq->curr);
45c01e82
GH
1301 return;
1302 }
1303
1304#ifdef CONFIG_SMP
1305 /*
1306 * If:
1307 *
1308 * - the newly woken task is of equal priority to the current task
1309 * - the newly woken task is non-migratable while current is migratable
1310 * - current will be preempted on the next reschedule
1311 *
1312 * we should check to see if current can readily move to a different
1313 * cpu. If so, we will reschedule to allow the push logic to try
1314 * to move current somewhere else, making room for our non-migratable
1315 * task.
1316 */
8dd0de8b 1317 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1318 check_preempt_equal_prio(rq, p);
45c01e82 1319#endif
bb44e5d1
IM
1320}
1321
6f505b16
PZ
1322static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1323 struct rt_rq *rt_rq)
bb44e5d1 1324{
6f505b16
PZ
1325 struct rt_prio_array *array = &rt_rq->active;
1326 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1327 struct list_head *queue;
1328 int idx;
1329
1330 idx = sched_find_first_bit(array->bitmap);
6f505b16 1331 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1332
1333 queue = array->queue + idx;
6f505b16 1334 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1335
6f505b16
PZ
1336 return next;
1337}
bb44e5d1 1338
917b627d 1339static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1340{
1341 struct sched_rt_entity *rt_se;
1342 struct task_struct *p;
606dba2e 1343 struct rt_rq *rt_rq = &rq->rt;
6f505b16
PZ
1344
1345 do {
1346 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1347 BUG_ON(!rt_se);
6f505b16
PZ
1348 rt_rq = group_rt_rq(rt_se);
1349 } while (rt_rq);
1350
1351 p = rt_task_of(rt_se);
78becc27 1352 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1353
1354 return p;
1355}
1356
606dba2e
PZ
1357static struct task_struct *
1358pick_next_task_rt(struct rq *rq, struct task_struct *prev)
917b627d 1359{
606dba2e
PZ
1360 struct task_struct *p;
1361 struct rt_rq *rt_rq = &rq->rt;
1362
dc877341 1363 if (need_pull_rt_task(rq, prev))
38033c37 1364 pull_rt_task(rq);
38033c37 1365
606dba2e
PZ
1366 if (!rt_rq->rt_nr_running)
1367 return NULL;
1368
1369 if (rt_rq_throttled(rt_rq))
1370 return NULL;
1371
3f1d2a31 1372 put_prev_task(rq, prev);
606dba2e
PZ
1373
1374 p = _pick_next_task_rt(rq);
917b627d
GH
1375
1376 /* The running task is never eligible for pushing */
1377 if (p)
1378 dequeue_pushable_task(rq, p);
1379
dc877341 1380 set_post_schedule(rq);
3f029d3c 1381
6f505b16 1382 return p;
bb44e5d1
IM
1383}
1384
31ee529c 1385static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1386{
f1e14ef6 1387 update_curr_rt(rq);
917b627d
GH
1388
1389 /*
1390 * The previous task needs to be made eligible for pushing
1391 * if it is still active
1392 */
29baa747 1393 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1394 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1395}
1396
681f3e68 1397#ifdef CONFIG_SMP
6f505b16 1398
e8fa1362
SR
1399/* Only try algorithms three times */
1400#define RT_MAX_TRIES 3
1401
f65eda4f
SR
1402static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1403{
1404 if (!task_running(rq, p) &&
60334caf 1405 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
f65eda4f
SR
1406 return 1;
1407 return 0;
1408}
1409
e23ee747
KT
1410/*
1411 * Return the highest pushable rq's task, which is suitable to be executed
1412 * on the cpu, NULL otherwise
1413 */
1414static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
e8fa1362 1415{
e23ee747
KT
1416 struct plist_head *head = &rq->rt.pushable_tasks;
1417 struct task_struct *p;
3d07467b 1418
e23ee747
KT
1419 if (!has_pushable_tasks(rq))
1420 return NULL;
3d07467b 1421
e23ee747
KT
1422 plist_for_each_entry(p, head, pushable_tasks) {
1423 if (pick_rt_task(rq, p, cpu))
1424 return p;
f65eda4f
SR
1425 }
1426
e23ee747 1427 return NULL;
e8fa1362
SR
1428}
1429
0e3900e6 1430static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1431
6e1254d2
GH
1432static int find_lowest_rq(struct task_struct *task)
1433{
1434 struct sched_domain *sd;
96f874e2 1435 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1436 int this_cpu = smp_processor_id();
1437 int cpu = task_cpu(task);
06f90dbd 1438
0da938c4
SR
1439 /* Make sure the mask is initialized first */
1440 if (unlikely(!lowest_mask))
1441 return -1;
1442
29baa747 1443 if (task->nr_cpus_allowed == 1)
6e0534f2 1444 return -1; /* No other targets possible */
6e1254d2 1445
6e0534f2
GH
1446 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1447 return -1; /* No targets found */
6e1254d2
GH
1448
1449 /*
1450 * At this point we have built a mask of cpus representing the
1451 * lowest priority tasks in the system. Now we want to elect
1452 * the best one based on our affinity and topology.
1453 *
1454 * We prioritize the last cpu that the task executed on since
1455 * it is most likely cache-hot in that location.
1456 */
96f874e2 1457 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1458 return cpu;
1459
1460 /*
1461 * Otherwise, we consult the sched_domains span maps to figure
1462 * out which cpu is logically closest to our hot cache data.
1463 */
e2c88063
RR
1464 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1465 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1466
cd4ae6ad 1467 rcu_read_lock();
e2c88063
RR
1468 for_each_domain(cpu, sd) {
1469 if (sd->flags & SD_WAKE_AFFINE) {
1470 int best_cpu;
6e1254d2 1471
e2c88063
RR
1472 /*
1473 * "this_cpu" is cheaper to preempt than a
1474 * remote processor.
1475 */
1476 if (this_cpu != -1 &&
cd4ae6ad
XF
1477 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1478 rcu_read_unlock();
e2c88063 1479 return this_cpu;
cd4ae6ad 1480 }
e2c88063
RR
1481
1482 best_cpu = cpumask_first_and(lowest_mask,
1483 sched_domain_span(sd));
cd4ae6ad
XF
1484 if (best_cpu < nr_cpu_ids) {
1485 rcu_read_unlock();
e2c88063 1486 return best_cpu;
cd4ae6ad 1487 }
6e1254d2
GH
1488 }
1489 }
cd4ae6ad 1490 rcu_read_unlock();
6e1254d2
GH
1491
1492 /*
1493 * And finally, if there were no matches within the domains
1494 * just give the caller *something* to work with from the compatible
1495 * locations.
1496 */
e2c88063
RR
1497 if (this_cpu != -1)
1498 return this_cpu;
1499
1500 cpu = cpumask_any(lowest_mask);
1501 if (cpu < nr_cpu_ids)
1502 return cpu;
1503 return -1;
07b4032c
GH
1504}
1505
1506/* Will lock the rq it finds */
4df64c0b 1507static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1508{
1509 struct rq *lowest_rq = NULL;
07b4032c 1510 int tries;
4df64c0b 1511 int cpu;
e8fa1362 1512
07b4032c
GH
1513 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1514 cpu = find_lowest_rq(task);
1515
2de0b463 1516 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1517 break;
1518
07b4032c
GH
1519 lowest_rq = cpu_rq(cpu);
1520
e8fa1362 1521 /* if the prio of this runqueue changed, try again */
07b4032c 1522 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1523 /*
1524 * We had to unlock the run queue. In
1525 * the mean time, task could have
1526 * migrated already or had its affinity changed.
1527 * Also make sure that it wasn't scheduled on its rq.
1528 */
07b4032c 1529 if (unlikely(task_rq(task) != rq ||
96f874e2 1530 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1531 tsk_cpus_allowed(task)) ||
07b4032c 1532 task_running(rq, task) ||
fd2f4419 1533 !task->on_rq)) {
4df64c0b 1534
7f1b4393 1535 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1536 lowest_rq = NULL;
1537 break;
1538 }
1539 }
1540
1541 /* If this rq is still suitable use it. */
e864c499 1542 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1543 break;
1544
1545 /* try again */
1b12bbc7 1546 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1547 lowest_rq = NULL;
1548 }
1549
1550 return lowest_rq;
1551}
1552
917b627d
GH
1553static struct task_struct *pick_next_pushable_task(struct rq *rq)
1554{
1555 struct task_struct *p;
1556
1557 if (!has_pushable_tasks(rq))
1558 return NULL;
1559
1560 p = plist_first_entry(&rq->rt.pushable_tasks,
1561 struct task_struct, pushable_tasks);
1562
1563 BUG_ON(rq->cpu != task_cpu(p));
1564 BUG_ON(task_current(rq, p));
29baa747 1565 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1566
fd2f4419 1567 BUG_ON(!p->on_rq);
917b627d
GH
1568 BUG_ON(!rt_task(p));
1569
1570 return p;
1571}
1572
e8fa1362
SR
1573/*
1574 * If the current CPU has more than one RT task, see if the non
1575 * running task can migrate over to a CPU that is running a task
1576 * of lesser priority.
1577 */
697f0a48 1578static int push_rt_task(struct rq *rq)
e8fa1362
SR
1579{
1580 struct task_struct *next_task;
1581 struct rq *lowest_rq;
311e800e 1582 int ret = 0;
e8fa1362 1583
a22d7fc1
GH
1584 if (!rq->rt.overloaded)
1585 return 0;
1586
917b627d 1587 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1588 if (!next_task)
1589 return 0;
1590
49246274 1591retry:
697f0a48 1592 if (unlikely(next_task == rq->curr)) {
f65eda4f 1593 WARN_ON(1);
e8fa1362 1594 return 0;
f65eda4f 1595 }
e8fa1362
SR
1596
1597 /*
1598 * It's possible that the next_task slipped in of
1599 * higher priority than current. If that's the case
1600 * just reschedule current.
1601 */
697f0a48
GH
1602 if (unlikely(next_task->prio < rq->curr->prio)) {
1603 resched_task(rq->curr);
e8fa1362
SR
1604 return 0;
1605 }
1606
697f0a48 1607 /* We might release rq lock */
e8fa1362
SR
1608 get_task_struct(next_task);
1609
1610 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1611 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1612 if (!lowest_rq) {
1613 struct task_struct *task;
1614 /*
311e800e 1615 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1616 * so it is possible that next_task has migrated.
1617 *
1618 * We need to make sure that the task is still on the same
1619 * run-queue and is also still the next task eligible for
1620 * pushing.
e8fa1362 1621 */
917b627d 1622 task = pick_next_pushable_task(rq);
1563513d
GH
1623 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1624 /*
311e800e
HD
1625 * The task hasn't migrated, and is still the next
1626 * eligible task, but we failed to find a run-queue
1627 * to push it to. Do not retry in this case, since
1628 * other cpus will pull from us when ready.
1563513d 1629 */
1563513d 1630 goto out;
e8fa1362 1631 }
917b627d 1632
1563513d
GH
1633 if (!task)
1634 /* No more tasks, just exit */
1635 goto out;
1636
917b627d 1637 /*
1563513d 1638 * Something has shifted, try again.
917b627d 1639 */
1563513d
GH
1640 put_task_struct(next_task);
1641 next_task = task;
1642 goto retry;
e8fa1362
SR
1643 }
1644
697f0a48 1645 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1646 set_task_cpu(next_task, lowest_rq->cpu);
1647 activate_task(lowest_rq, next_task, 0);
311e800e 1648 ret = 1;
e8fa1362
SR
1649
1650 resched_task(lowest_rq->curr);
1651
1b12bbc7 1652 double_unlock_balance(rq, lowest_rq);
e8fa1362 1653
e8fa1362
SR
1654out:
1655 put_task_struct(next_task);
1656
311e800e 1657 return ret;
e8fa1362
SR
1658}
1659
e8fa1362
SR
1660static void push_rt_tasks(struct rq *rq)
1661{
1662 /* push_rt_task will return true if it moved an RT */
1663 while (push_rt_task(rq))
1664 ;
1665}
1666
f65eda4f
SR
1667static int pull_rt_task(struct rq *this_rq)
1668{
80bf3171 1669 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1670 struct task_struct *p;
f65eda4f 1671 struct rq *src_rq;
f65eda4f 1672
637f5085 1673 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1674 return 0;
1675
7c3f2ab7
PZ
1676 /*
1677 * Match the barrier from rt_set_overloaded; this guarantees that if we
1678 * see overloaded we must also see the rto_mask bit.
1679 */
1680 smp_rmb();
1681
c6c4927b 1682 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1683 if (this_cpu == cpu)
1684 continue;
1685
1686 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1687
1688 /*
1689 * Don't bother taking the src_rq->lock if the next highest
1690 * task is known to be lower-priority than our current task.
1691 * This may look racy, but if this value is about to go
1692 * logically higher, the src_rq will push this task away.
1693 * And if its going logically lower, we do not care
1694 */
1695 if (src_rq->rt.highest_prio.next >=
1696 this_rq->rt.highest_prio.curr)
1697 continue;
1698
f65eda4f
SR
1699 /*
1700 * We can potentially drop this_rq's lock in
1701 * double_lock_balance, and another CPU could
a8728944 1702 * alter this_rq
f65eda4f 1703 */
a8728944 1704 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1705
1706 /*
e23ee747
KT
1707 * We can pull only a task, which is pushable
1708 * on its rq, and no others.
f65eda4f 1709 */
e23ee747 1710 p = pick_highest_pushable_task(src_rq, this_cpu);
f65eda4f
SR
1711
1712 /*
1713 * Do we have an RT task that preempts
1714 * the to-be-scheduled task?
1715 */
a8728944 1716 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 1717 WARN_ON(p == src_rq->curr);
fd2f4419 1718 WARN_ON(!p->on_rq);
f65eda4f
SR
1719
1720 /*
1721 * There's a chance that p is higher in priority
1722 * than what's currently running on its cpu.
1723 * This is just that p is wakeing up and hasn't
1724 * had a chance to schedule. We only pull
1725 * p if it is lower in priority than the
a8728944 1726 * current task on the run queue
f65eda4f 1727 */
a8728944 1728 if (p->prio < src_rq->curr->prio)
614ee1f6 1729 goto skip;
f65eda4f
SR
1730
1731 ret = 1;
1732
1733 deactivate_task(src_rq, p, 0);
1734 set_task_cpu(p, this_cpu);
1735 activate_task(this_rq, p, 0);
1736 /*
1737 * We continue with the search, just in
1738 * case there's an even higher prio task
25985edc 1739 * in another runqueue. (low likelihood
f65eda4f 1740 * but possible)
f65eda4f 1741 */
f65eda4f 1742 }
49246274 1743skip:
1b12bbc7 1744 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1745 }
1746
1747 return ret;
1748}
1749
9a897c5a 1750static void post_schedule_rt(struct rq *rq)
e8fa1362 1751{
967fc046 1752 push_rt_tasks(rq);
e8fa1362
SR
1753}
1754
8ae121ac
GH
1755/*
1756 * If we are not running and we are not going to reschedule soon, we should
1757 * try to push tasks away now
1758 */
efbbd05a 1759static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1760{
9a897c5a 1761 if (!task_running(rq, p) &&
8ae121ac 1762 !test_tsk_need_resched(rq->curr) &&
917b627d 1763 has_pushable_tasks(rq) &&
29baa747 1764 p->nr_cpus_allowed > 1 &&
1baca4ce 1765 (dl_task(rq->curr) || rt_task(rq->curr)) &&
29baa747 1766 (rq->curr->nr_cpus_allowed < 2 ||
3be209a8 1767 rq->curr->prio <= p->prio))
4642dafd
SR
1768 push_rt_tasks(rq);
1769}
1770
cd8ba7cd 1771static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1772 const struct cpumask *new_mask)
73fe6aae 1773{
8d3d5ada
KT
1774 struct rq *rq;
1775 int weight;
73fe6aae
GH
1776
1777 BUG_ON(!rt_task(p));
1778
8d3d5ada
KT
1779 if (!p->on_rq)
1780 return;
917b627d 1781
8d3d5ada 1782 weight = cpumask_weight(new_mask);
917b627d 1783
8d3d5ada
KT
1784 /*
1785 * Only update if the process changes its state from whether it
1786 * can migrate or not.
1787 */
29baa747 1788 if ((p->nr_cpus_allowed > 1) == (weight > 1))
8d3d5ada 1789 return;
917b627d 1790
8d3d5ada 1791 rq = task_rq(p);
73fe6aae 1792
8d3d5ada
KT
1793 /*
1794 * The process used to be able to migrate OR it can now migrate
1795 */
1796 if (weight <= 1) {
1797 if (!task_current(rq, p))
1798 dequeue_pushable_task(rq, p);
1799 BUG_ON(!rq->rt.rt_nr_migratory);
1800 rq->rt.rt_nr_migratory--;
1801 } else {
1802 if (!task_current(rq, p))
1803 enqueue_pushable_task(rq, p);
1804 rq->rt.rt_nr_migratory++;
73fe6aae 1805 }
8d3d5ada
KT
1806
1807 update_rt_migration(&rq->rt);
73fe6aae 1808}
deeeccd4 1809
bdd7c81b 1810/* Assumes rq->lock is held */
1f11eb6a 1811static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1812{
1813 if (rq->rt.overloaded)
1814 rt_set_overload(rq);
6e0534f2 1815
7def2be1
PZ
1816 __enable_runtime(rq);
1817
e864c499 1818 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1819}
1820
1821/* Assumes rq->lock is held */
1f11eb6a 1822static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1823{
1824 if (rq->rt.overloaded)
1825 rt_clear_overload(rq);
6e0534f2 1826
7def2be1
PZ
1827 __disable_runtime(rq);
1828
6e0534f2 1829 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1830}
cb469845
SR
1831
1832/*
1833 * When switch from the rt queue, we bring ourselves to a position
1834 * that we might want to pull RT tasks from other runqueues.
1835 */
da7a735e 1836static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1837{
1838 /*
1839 * If there are other RT tasks then we will reschedule
1840 * and the scheduling of the other RT tasks will handle
1841 * the balancing. But if we are the last RT task
1842 * we may need to handle the pulling of RT tasks
1843 * now.
1844 */
1158ddb5
KT
1845 if (!p->on_rq || rq->rt.rt_nr_running)
1846 return;
1847
1848 if (pull_rt_task(rq))
1849 resched_task(rq->curr);
cb469845 1850}
3d8cbdf8 1851
029632fb 1852void init_sched_rt_class(void)
3d8cbdf8
RR
1853{
1854 unsigned int i;
1855
029632fb 1856 for_each_possible_cpu(i) {
eaa95840 1857 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1858 GFP_KERNEL, cpu_to_node(i));
029632fb 1859 }
3d8cbdf8 1860}
cb469845
SR
1861#endif /* CONFIG_SMP */
1862
1863/*
1864 * When switching a task to RT, we may overload the runqueue
1865 * with RT tasks. In this case we try to push them off to
1866 * other runqueues.
1867 */
da7a735e 1868static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1869{
1870 int check_resched = 1;
1871
1872 /*
1873 * If we are already running, then there's nothing
1874 * that needs to be done. But if we are not running
1875 * we may need to preempt the current running task.
1876 * If that current running task is also an RT task
1877 * then see if we can move to another run queue.
1878 */
fd2f4419 1879 if (p->on_rq && rq->curr != p) {
cb469845
SR
1880#ifdef CONFIG_SMP
1881 if (rq->rt.overloaded && push_rt_task(rq) &&
1882 /* Don't resched if we changed runqueues */
1883 rq != task_rq(p))
1884 check_resched = 0;
1885#endif /* CONFIG_SMP */
1886 if (check_resched && p->prio < rq->curr->prio)
1887 resched_task(rq->curr);
1888 }
1889}
1890
1891/*
1892 * Priority of the task has changed. This may cause
1893 * us to initiate a push or pull.
1894 */
da7a735e
PZ
1895static void
1896prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1897{
fd2f4419 1898 if (!p->on_rq)
da7a735e
PZ
1899 return;
1900
1901 if (rq->curr == p) {
cb469845
SR
1902#ifdef CONFIG_SMP
1903 /*
1904 * If our priority decreases while running, we
1905 * may need to pull tasks to this runqueue.
1906 */
1907 if (oldprio < p->prio)
1908 pull_rt_task(rq);
1909 /*
1910 * If there's a higher priority task waiting to run
6fa46fa5
SR
1911 * then reschedule. Note, the above pull_rt_task
1912 * can release the rq lock and p could migrate.
1913 * Only reschedule if p is still on the same runqueue.
cb469845 1914 */
e864c499 1915 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1916 resched_task(p);
1917#else
1918 /* For UP simply resched on drop of prio */
1919 if (oldprio < p->prio)
1920 resched_task(p);
e8fa1362 1921#endif /* CONFIG_SMP */
cb469845
SR
1922 } else {
1923 /*
1924 * This task is not running, but if it is
1925 * greater than the current running task
1926 * then reschedule.
1927 */
1928 if (p->prio < rq->curr->prio)
1929 resched_task(rq->curr);
1930 }
1931}
1932
78f2c7db
PZ
1933static void watchdog(struct rq *rq, struct task_struct *p)
1934{
1935 unsigned long soft, hard;
1936
78d7d407
JS
1937 /* max may change after cur was read, this will be fixed next tick */
1938 soft = task_rlimit(p, RLIMIT_RTTIME);
1939 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
1940
1941 if (soft != RLIM_INFINITY) {
1942 unsigned long next;
1943
57d2aa00
YX
1944 if (p->rt.watchdog_stamp != jiffies) {
1945 p->rt.timeout++;
1946 p->rt.watchdog_stamp = jiffies;
1947 }
1948
78f2c7db 1949 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1950 if (p->rt.timeout > next)
f06febc9 1951 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1952 }
1953}
bb44e5d1 1954
8f4d37ec 1955static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1956{
454c7999
CC
1957 struct sched_rt_entity *rt_se = &p->rt;
1958
67e2be02
PZ
1959 update_curr_rt(rq);
1960
78f2c7db
PZ
1961 watchdog(rq, p);
1962
bb44e5d1
IM
1963 /*
1964 * RR tasks need a special form of timeslice management.
1965 * FIFO tasks have no timeslices.
1966 */
1967 if (p->policy != SCHED_RR)
1968 return;
1969
fa717060 1970 if (--p->rt.time_slice)
bb44e5d1
IM
1971 return;
1972
ce0dbbbb 1973 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 1974
98fbc798 1975 /*
e9aa39bb
LB
1976 * Requeue to the end of queue if we (and all of our ancestors) are not
1977 * the only element on the queue
98fbc798 1978 */
454c7999
CC
1979 for_each_sched_rt_entity(rt_se) {
1980 if (rt_se->run_list.prev != rt_se->run_list.next) {
1981 requeue_task_rt(rq, p, 0);
1982 set_tsk_need_resched(p);
1983 return;
1984 }
98fbc798 1985 }
bb44e5d1
IM
1986}
1987
83b699ed
SV
1988static void set_curr_task_rt(struct rq *rq)
1989{
1990 struct task_struct *p = rq->curr;
1991
78becc27 1992 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1993
1994 /* The running task is never eligible for pushing */
1995 dequeue_pushable_task(rq, p);
83b699ed
SV
1996}
1997
6d686f45 1998static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
1999{
2000 /*
2001 * Time slice is 0 for SCHED_FIFO tasks
2002 */
2003 if (task->policy == SCHED_RR)
ce0dbbbb 2004 return sched_rr_timeslice;
0d721cea
PW
2005 else
2006 return 0;
2007}
2008
029632fb 2009const struct sched_class rt_sched_class = {
5522d5d5 2010 .next = &fair_sched_class,
bb44e5d1
IM
2011 .enqueue_task = enqueue_task_rt,
2012 .dequeue_task = dequeue_task_rt,
2013 .yield_task = yield_task_rt,
2014
2015 .check_preempt_curr = check_preempt_curr_rt,
2016
2017 .pick_next_task = pick_next_task_rt,
2018 .put_prev_task = put_prev_task_rt,
2019
681f3e68 2020#ifdef CONFIG_SMP
4ce72a2c
LZ
2021 .select_task_rq = select_task_rq_rt,
2022
73fe6aae 2023 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
2024 .rq_online = rq_online_rt,
2025 .rq_offline = rq_offline_rt,
9a897c5a 2026 .post_schedule = post_schedule_rt,
efbbd05a 2027 .task_woken = task_woken_rt,
cb469845 2028 .switched_from = switched_from_rt,
681f3e68 2029#endif
bb44e5d1 2030
83b699ed 2031 .set_curr_task = set_curr_task_rt,
bb44e5d1 2032 .task_tick = task_tick_rt,
cb469845 2033
0d721cea
PW
2034 .get_rr_interval = get_rr_interval_rt,
2035
cb469845
SR
2036 .prio_changed = prio_changed_rt,
2037 .switched_to = switched_to_rt,
bb44e5d1 2038};
ada18de2
PZ
2039
2040#ifdef CONFIG_SCHED_DEBUG
2041extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2042
029632fb 2043void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2044{
ec514c48 2045 rt_rq_iter_t iter;
ada18de2
PZ
2046 struct rt_rq *rt_rq;
2047
2048 rcu_read_lock();
ec514c48 2049 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2050 print_rt_rq(m, cpu, rt_rq);
2051 rcu_read_unlock();
2052}
55e12e5e 2053#endif /* CONFIG_SCHED_DEBUG */