sched/idle: Merge kernel/sched/idle.c and kernel/sched/idle_task.c
[linux-2.6-block.git] / kernel / sched / rt.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bb44e5d1
IM
2/*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
029632fb
PZ
6#include "sched.h"
7
ce0dbbbb 8int sched_rr_timeslice = RR_TIMESLICE;
975e155e 9int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
ce0dbbbb 10
029632fb
PZ
11static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12
13struct rt_bandwidth def_rt_bandwidth;
14
15static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
16{
17 struct rt_bandwidth *rt_b =
18 container_of(timer, struct rt_bandwidth, rt_period_timer);
029632fb 19 int idle = 0;
77a4d1a1 20 int overrun;
029632fb 21
77a4d1a1 22 raw_spin_lock(&rt_b->rt_runtime_lock);
029632fb 23 for (;;) {
77a4d1a1 24 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
029632fb
PZ
25 if (!overrun)
26 break;
27
77a4d1a1 28 raw_spin_unlock(&rt_b->rt_runtime_lock);
029632fb 29 idle = do_sched_rt_period_timer(rt_b, overrun);
77a4d1a1 30 raw_spin_lock(&rt_b->rt_runtime_lock);
029632fb 31 }
4cfafd30
PZ
32 if (idle)
33 rt_b->rt_period_active = 0;
77a4d1a1 34 raw_spin_unlock(&rt_b->rt_runtime_lock);
029632fb
PZ
35
36 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
37}
38
39void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
40{
41 rt_b->rt_period = ns_to_ktime(period);
42 rt_b->rt_runtime = runtime;
43
44 raw_spin_lock_init(&rt_b->rt_runtime_lock);
45
46 hrtimer_init(&rt_b->rt_period_timer,
47 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
48 rt_b->rt_period_timer.function = sched_rt_period_timer;
49}
50
51static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
52{
53 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
54 return;
55
029632fb 56 raw_spin_lock(&rt_b->rt_runtime_lock);
4cfafd30
PZ
57 if (!rt_b->rt_period_active) {
58 rt_b->rt_period_active = 1;
c3a990dc
SR
59 /*
60 * SCHED_DEADLINE updates the bandwidth, as a run away
61 * RT task with a DL task could hog a CPU. But DL does
62 * not reset the period. If a deadline task was running
63 * without an RT task running, it can cause RT tasks to
64 * throttle when they start up. Kick the timer right away
65 * to update the period.
66 */
67 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
4cfafd30
PZ
68 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
69 }
029632fb
PZ
70 raw_spin_unlock(&rt_b->rt_runtime_lock);
71}
72
07c54f7a 73void init_rt_rq(struct rt_rq *rt_rq)
029632fb
PZ
74{
75 struct rt_prio_array *array;
76 int i;
77
78 array = &rt_rq->active;
79 for (i = 0; i < MAX_RT_PRIO; i++) {
80 INIT_LIST_HEAD(array->queue + i);
81 __clear_bit(i, array->bitmap);
82 }
83 /* delimiter for bitsearch: */
84 __set_bit(MAX_RT_PRIO, array->bitmap);
85
86#if defined CONFIG_SMP
87 rt_rq->highest_prio.curr = MAX_RT_PRIO;
88 rt_rq->highest_prio.next = MAX_RT_PRIO;
89 rt_rq->rt_nr_migratory = 0;
90 rt_rq->overloaded = 0;
91 plist_head_init(&rt_rq->pushable_tasks);
b6366f04 92#endif /* CONFIG_SMP */
f4ebcbc0
KT
93 /* We start is dequeued state, because no RT tasks are queued */
94 rt_rq->rt_queued = 0;
029632fb
PZ
95
96 rt_rq->rt_time = 0;
97 rt_rq->rt_throttled = 0;
98 rt_rq->rt_runtime = 0;
99 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
100}
101
8f48894f 102#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
103static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
104{
105 hrtimer_cancel(&rt_b->rt_period_timer);
106}
8f48894f
PZ
107
108#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
109
398a153b
GH
110static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
111{
8f48894f
PZ
112#ifdef CONFIG_SCHED_DEBUG
113 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
114#endif
398a153b
GH
115 return container_of(rt_se, struct task_struct, rt);
116}
117
398a153b
GH
118static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
119{
120 return rt_rq->rq;
121}
122
123static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
124{
125 return rt_se->rt_rq;
126}
127
653d07a6
KT
128static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
129{
130 struct rt_rq *rt_rq = rt_se->rt_rq;
131
132 return rt_rq->rq;
133}
134
029632fb
PZ
135void free_rt_sched_group(struct task_group *tg)
136{
137 int i;
138
139 if (tg->rt_se)
140 destroy_rt_bandwidth(&tg->rt_bandwidth);
141
142 for_each_possible_cpu(i) {
143 if (tg->rt_rq)
144 kfree(tg->rt_rq[i]);
145 if (tg->rt_se)
146 kfree(tg->rt_se[i]);
147 }
148
149 kfree(tg->rt_rq);
150 kfree(tg->rt_se);
151}
152
153void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
154 struct sched_rt_entity *rt_se, int cpu,
155 struct sched_rt_entity *parent)
156{
157 struct rq *rq = cpu_rq(cpu);
158
159 rt_rq->highest_prio.curr = MAX_RT_PRIO;
160 rt_rq->rt_nr_boosted = 0;
161 rt_rq->rq = rq;
162 rt_rq->tg = tg;
163
164 tg->rt_rq[cpu] = rt_rq;
165 tg->rt_se[cpu] = rt_se;
166
167 if (!rt_se)
168 return;
169
170 if (!parent)
171 rt_se->rt_rq = &rq->rt;
172 else
173 rt_se->rt_rq = parent->my_q;
174
175 rt_se->my_q = rt_rq;
176 rt_se->parent = parent;
177 INIT_LIST_HEAD(&rt_se->run_list);
178}
179
180int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
181{
182 struct rt_rq *rt_rq;
183 struct sched_rt_entity *rt_se;
184 int i;
185
186 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
187 if (!tg->rt_rq)
188 goto err;
189 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
190 if (!tg->rt_se)
191 goto err;
192
193 init_rt_bandwidth(&tg->rt_bandwidth,
194 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
195
196 for_each_possible_cpu(i) {
197 rt_rq = kzalloc_node(sizeof(struct rt_rq),
198 GFP_KERNEL, cpu_to_node(i));
199 if (!rt_rq)
200 goto err;
201
202 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
203 GFP_KERNEL, cpu_to_node(i));
204 if (!rt_se)
205 goto err_free_rq;
206
07c54f7a 207 init_rt_rq(rt_rq);
029632fb
PZ
208 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
209 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
210 }
211
212 return 1;
213
214err_free_rq:
215 kfree(rt_rq);
216err:
217 return 0;
218}
219
398a153b
GH
220#else /* CONFIG_RT_GROUP_SCHED */
221
a1ba4d8b
PZ
222#define rt_entity_is_task(rt_se) (1)
223
8f48894f
PZ
224static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
225{
226 return container_of(rt_se, struct task_struct, rt);
227}
228
398a153b
GH
229static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
230{
231 return container_of(rt_rq, struct rq, rt);
232}
233
653d07a6 234static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
398a153b
GH
235{
236 struct task_struct *p = rt_task_of(rt_se);
653d07a6
KT
237
238 return task_rq(p);
239}
240
241static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
242{
243 struct rq *rq = rq_of_rt_se(rt_se);
398a153b
GH
244
245 return &rq->rt;
246}
247
029632fb
PZ
248void free_rt_sched_group(struct task_group *tg) { }
249
250int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
251{
252 return 1;
253}
398a153b
GH
254#endif /* CONFIG_RT_GROUP_SCHED */
255
4fd29176 256#ifdef CONFIG_SMP
84de4274 257
8046d680 258static void pull_rt_task(struct rq *this_rq);
38033c37 259
dc877341
PZ
260static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
261{
262 /* Try to pull RT tasks here if we lower this rq's prio */
263 return rq->rt.highest_prio.curr > prev->prio;
264}
265
637f5085 266static inline int rt_overloaded(struct rq *rq)
4fd29176 267{
637f5085 268 return atomic_read(&rq->rd->rto_count);
4fd29176 269}
84de4274 270
4fd29176
SR
271static inline void rt_set_overload(struct rq *rq)
272{
1f11eb6a
GH
273 if (!rq->online)
274 return;
275
c6c4927b 276 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
277 /*
278 * Make sure the mask is visible before we set
279 * the overload count. That is checked to determine
280 * if we should look at the mask. It would be a shame
281 * if we looked at the mask, but the mask was not
282 * updated yet.
7c3f2ab7
PZ
283 *
284 * Matched by the barrier in pull_rt_task().
4fd29176 285 */
7c3f2ab7 286 smp_wmb();
637f5085 287 atomic_inc(&rq->rd->rto_count);
4fd29176 288}
84de4274 289
4fd29176
SR
290static inline void rt_clear_overload(struct rq *rq)
291{
1f11eb6a
GH
292 if (!rq->online)
293 return;
294
4fd29176 295 /* the order here really doesn't matter */
637f5085 296 atomic_dec(&rq->rd->rto_count);
c6c4927b 297 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 298}
73fe6aae 299
398a153b 300static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 301{
a1ba4d8b 302 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
303 if (!rt_rq->overloaded) {
304 rt_set_overload(rq_of_rt_rq(rt_rq));
305 rt_rq->overloaded = 1;
cdc8eb98 306 }
398a153b
GH
307 } else if (rt_rq->overloaded) {
308 rt_clear_overload(rq_of_rt_rq(rt_rq));
309 rt_rq->overloaded = 0;
637f5085 310 }
73fe6aae 311}
4fd29176 312
398a153b
GH
313static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
314{
29baa747
PZ
315 struct task_struct *p;
316
a1ba4d8b
PZ
317 if (!rt_entity_is_task(rt_se))
318 return;
319
29baa747 320 p = rt_task_of(rt_se);
a1ba4d8b
PZ
321 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
322
323 rt_rq->rt_nr_total++;
4b53a341 324 if (p->nr_cpus_allowed > 1)
398a153b
GH
325 rt_rq->rt_nr_migratory++;
326
327 update_rt_migration(rt_rq);
328}
329
330static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
331{
29baa747
PZ
332 struct task_struct *p;
333
a1ba4d8b
PZ
334 if (!rt_entity_is_task(rt_se))
335 return;
336
29baa747 337 p = rt_task_of(rt_se);
a1ba4d8b
PZ
338 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
339
340 rt_rq->rt_nr_total--;
4b53a341 341 if (p->nr_cpus_allowed > 1)
398a153b
GH
342 rt_rq->rt_nr_migratory--;
343
344 update_rt_migration(rt_rq);
345}
346
5181f4a4
SR
347static inline int has_pushable_tasks(struct rq *rq)
348{
349 return !plist_head_empty(&rq->rt.pushable_tasks);
350}
351
fd7a4bed
PZ
352static DEFINE_PER_CPU(struct callback_head, rt_push_head);
353static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
e3fca9e7
PZ
354
355static void push_rt_tasks(struct rq *);
fd7a4bed 356static void pull_rt_task(struct rq *);
e3fca9e7
PZ
357
358static inline void queue_push_tasks(struct rq *rq)
dc877341 359{
e3fca9e7
PZ
360 if (!has_pushable_tasks(rq))
361 return;
362
fd7a4bed
PZ
363 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
364}
365
366static inline void queue_pull_task(struct rq *rq)
367{
368 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
dc877341
PZ
369}
370
917b627d
GH
371static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
372{
373 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
374 plist_node_init(&p->pushable_tasks, p->prio);
375 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
376
377 /* Update the highest prio pushable task */
378 if (p->prio < rq->rt.highest_prio.next)
379 rq->rt.highest_prio.next = p->prio;
917b627d
GH
380}
381
382static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
383{
384 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 385
5181f4a4
SR
386 /* Update the new highest prio pushable task */
387 if (has_pushable_tasks(rq)) {
388 p = plist_first_entry(&rq->rt.pushable_tasks,
389 struct task_struct, pushable_tasks);
390 rq->rt.highest_prio.next = p->prio;
391 } else
392 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
393}
394
917b627d
GH
395#else
396
ceacc2c1 397static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 398{
6f505b16
PZ
399}
400
ceacc2c1
PZ
401static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
402{
403}
404
b07430ac 405static inline
ceacc2c1
PZ
406void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
407{
408}
409
398a153b 410static inline
ceacc2c1
PZ
411void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
412{
413}
917b627d 414
dc877341
PZ
415static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
416{
417 return false;
418}
419
8046d680 420static inline void pull_rt_task(struct rq *this_rq)
dc877341 421{
dc877341
PZ
422}
423
e3fca9e7 424static inline void queue_push_tasks(struct rq *rq)
dc877341
PZ
425{
426}
4fd29176
SR
427#endif /* CONFIG_SMP */
428
f4ebcbc0
KT
429static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
430static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
431
6f505b16
PZ
432static inline int on_rt_rq(struct sched_rt_entity *rt_se)
433{
ff77e468 434 return rt_se->on_rq;
6f505b16
PZ
435}
436
052f1dc7 437#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 438
9f0c1e56 439static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
440{
441 if (!rt_rq->tg)
9f0c1e56 442 return RUNTIME_INF;
6f505b16 443
ac086bc2
PZ
444 return rt_rq->rt_runtime;
445}
446
447static inline u64 sched_rt_period(struct rt_rq *rt_rq)
448{
449 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
450}
451
ec514c48
CX
452typedef struct task_group *rt_rq_iter_t;
453
1c09ab0d
YZ
454static inline struct task_group *next_task_group(struct task_group *tg)
455{
456 do {
457 tg = list_entry_rcu(tg->list.next,
458 typeof(struct task_group), list);
459 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
460
461 if (&tg->list == &task_groups)
462 tg = NULL;
463
464 return tg;
465}
466
467#define for_each_rt_rq(rt_rq, iter, rq) \
468 for (iter = container_of(&task_groups, typeof(*iter), list); \
469 (iter = next_task_group(iter)) && \
470 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 471
6f505b16
PZ
472#define for_each_sched_rt_entity(rt_se) \
473 for (; rt_se; rt_se = rt_se->parent)
474
475static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
476{
477 return rt_se->my_q;
478}
479
ff77e468
PZ
480static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
481static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
6f505b16 482
9f0c1e56 483static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 484{
f6121f4f 485 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
8875125e 486 struct rq *rq = rq_of_rt_rq(rt_rq);
74b7eb58
YZ
487 struct sched_rt_entity *rt_se;
488
8875125e 489 int cpu = cpu_of(rq);
0c3b9168
BS
490
491 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 492
f6121f4f 493 if (rt_rq->rt_nr_running) {
f4ebcbc0
KT
494 if (!rt_se)
495 enqueue_top_rt_rq(rt_rq);
496 else if (!on_rt_rq(rt_se))
ff77e468 497 enqueue_rt_entity(rt_se, 0);
f4ebcbc0 498
e864c499 499 if (rt_rq->highest_prio.curr < curr->prio)
8875125e 500 resched_curr(rq);
6f505b16
PZ
501 }
502}
503
9f0c1e56 504static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 505{
74b7eb58 506 struct sched_rt_entity *rt_se;
0c3b9168 507 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 508
0c3b9168 509 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 510
f4ebcbc0
KT
511 if (!rt_se)
512 dequeue_top_rt_rq(rt_rq);
513 else if (on_rt_rq(rt_se))
ff77e468 514 dequeue_rt_entity(rt_se, 0);
6f505b16
PZ
515}
516
46383648
KT
517static inline int rt_rq_throttled(struct rt_rq *rt_rq)
518{
519 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
520}
521
23b0fdfc
PZ
522static int rt_se_boosted(struct sched_rt_entity *rt_se)
523{
524 struct rt_rq *rt_rq = group_rt_rq(rt_se);
525 struct task_struct *p;
526
527 if (rt_rq)
528 return !!rt_rq->rt_nr_boosted;
529
530 p = rt_task_of(rt_se);
531 return p->prio != p->normal_prio;
532}
533
d0b27fa7 534#ifdef CONFIG_SMP
c6c4927b 535static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 536{
424c93fe 537 return this_rq()->rd->span;
d0b27fa7 538}
6f505b16 539#else
c6c4927b 540static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 541{
c6c4927b 542 return cpu_online_mask;
d0b27fa7
PZ
543}
544#endif
6f505b16 545
d0b27fa7
PZ
546static inline
547struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 548{
d0b27fa7
PZ
549 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
550}
9f0c1e56 551
ac086bc2
PZ
552static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
553{
554 return &rt_rq->tg->rt_bandwidth;
555}
556
55e12e5e 557#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
558
559static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
560{
ac086bc2
PZ
561 return rt_rq->rt_runtime;
562}
563
564static inline u64 sched_rt_period(struct rt_rq *rt_rq)
565{
566 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
567}
568
ec514c48
CX
569typedef struct rt_rq *rt_rq_iter_t;
570
571#define for_each_rt_rq(rt_rq, iter, rq) \
572 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
573
6f505b16
PZ
574#define for_each_sched_rt_entity(rt_se) \
575 for (; rt_se; rt_se = NULL)
576
577static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
578{
579 return NULL;
580}
581
9f0c1e56 582static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 583{
f4ebcbc0
KT
584 struct rq *rq = rq_of_rt_rq(rt_rq);
585
586 if (!rt_rq->rt_nr_running)
587 return;
588
589 enqueue_top_rt_rq(rt_rq);
8875125e 590 resched_curr(rq);
6f505b16
PZ
591}
592
9f0c1e56 593static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 594{
f4ebcbc0 595 dequeue_top_rt_rq(rt_rq);
6f505b16
PZ
596}
597
46383648
KT
598static inline int rt_rq_throttled(struct rt_rq *rt_rq)
599{
600 return rt_rq->rt_throttled;
601}
602
c6c4927b 603static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 604{
c6c4927b 605 return cpu_online_mask;
d0b27fa7
PZ
606}
607
608static inline
609struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
610{
611 return &cpu_rq(cpu)->rt;
612}
613
ac086bc2
PZ
614static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
615{
616 return &def_rt_bandwidth;
617}
618
55e12e5e 619#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 620
faa59937
JL
621bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
622{
623 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
624
625 return (hrtimer_active(&rt_b->rt_period_timer) ||
626 rt_rq->rt_time < rt_b->rt_runtime);
627}
628
ac086bc2 629#ifdef CONFIG_SMP
78333cdd
PZ
630/*
631 * We ran out of runtime, see if we can borrow some from our neighbours.
632 */
269b26a5 633static void do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
634{
635 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 636 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
269b26a5 637 int i, weight;
ac086bc2
PZ
638 u64 rt_period;
639
c6c4927b 640 weight = cpumask_weight(rd->span);
ac086bc2 641
0986b11b 642 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 643 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 644 for_each_cpu(i, rd->span) {
ac086bc2
PZ
645 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
646 s64 diff;
647
648 if (iter == rt_rq)
649 continue;
650
0986b11b 651 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
652 /*
653 * Either all rqs have inf runtime and there's nothing to steal
654 * or __disable_runtime() below sets a specific rq to inf to
655 * indicate its been disabled and disalow stealing.
656 */
7def2be1
PZ
657 if (iter->rt_runtime == RUNTIME_INF)
658 goto next;
659
78333cdd
PZ
660 /*
661 * From runqueues with spare time, take 1/n part of their
662 * spare time, but no more than our period.
663 */
ac086bc2
PZ
664 diff = iter->rt_runtime - iter->rt_time;
665 if (diff > 0) {
58838cf3 666 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
667 if (rt_rq->rt_runtime + diff > rt_period)
668 diff = rt_period - rt_rq->rt_runtime;
669 iter->rt_runtime -= diff;
670 rt_rq->rt_runtime += diff;
ac086bc2 671 if (rt_rq->rt_runtime == rt_period) {
0986b11b 672 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
673 break;
674 }
675 }
7def2be1 676next:
0986b11b 677 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 678 }
0986b11b 679 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2 680}
7def2be1 681
78333cdd
PZ
682/*
683 * Ensure this RQ takes back all the runtime it lend to its neighbours.
684 */
7def2be1
PZ
685static void __disable_runtime(struct rq *rq)
686{
687 struct root_domain *rd = rq->rd;
ec514c48 688 rt_rq_iter_t iter;
7def2be1
PZ
689 struct rt_rq *rt_rq;
690
691 if (unlikely(!scheduler_running))
692 return;
693
ec514c48 694 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
695 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
696 s64 want;
697 int i;
698
0986b11b
TG
699 raw_spin_lock(&rt_b->rt_runtime_lock);
700 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
701 /*
702 * Either we're all inf and nobody needs to borrow, or we're
703 * already disabled and thus have nothing to do, or we have
704 * exactly the right amount of runtime to take out.
705 */
7def2be1
PZ
706 if (rt_rq->rt_runtime == RUNTIME_INF ||
707 rt_rq->rt_runtime == rt_b->rt_runtime)
708 goto balanced;
0986b11b 709 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 710
78333cdd
PZ
711 /*
712 * Calculate the difference between what we started out with
713 * and what we current have, that's the amount of runtime
714 * we lend and now have to reclaim.
715 */
7def2be1
PZ
716 want = rt_b->rt_runtime - rt_rq->rt_runtime;
717
78333cdd
PZ
718 /*
719 * Greedy reclaim, take back as much as we can.
720 */
c6c4927b 721 for_each_cpu(i, rd->span) {
7def2be1
PZ
722 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
723 s64 diff;
724
78333cdd
PZ
725 /*
726 * Can't reclaim from ourselves or disabled runqueues.
727 */
f1679d08 728 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
729 continue;
730
0986b11b 731 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
732 if (want > 0) {
733 diff = min_t(s64, iter->rt_runtime, want);
734 iter->rt_runtime -= diff;
735 want -= diff;
736 } else {
737 iter->rt_runtime -= want;
738 want -= want;
739 }
0986b11b 740 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
741
742 if (!want)
743 break;
744 }
745
0986b11b 746 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
747 /*
748 * We cannot be left wanting - that would mean some runtime
749 * leaked out of the system.
750 */
7def2be1
PZ
751 BUG_ON(want);
752balanced:
78333cdd
PZ
753 /*
754 * Disable all the borrow logic by pretending we have inf
755 * runtime - in which case borrowing doesn't make sense.
756 */
7def2be1 757 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 758 rt_rq->rt_throttled = 0;
0986b11b
TG
759 raw_spin_unlock(&rt_rq->rt_runtime_lock);
760 raw_spin_unlock(&rt_b->rt_runtime_lock);
99b62567
KT
761
762 /* Make rt_rq available for pick_next_task() */
763 sched_rt_rq_enqueue(rt_rq);
7def2be1
PZ
764 }
765}
766
7def2be1
PZ
767static void __enable_runtime(struct rq *rq)
768{
ec514c48 769 rt_rq_iter_t iter;
7def2be1
PZ
770 struct rt_rq *rt_rq;
771
772 if (unlikely(!scheduler_running))
773 return;
774
78333cdd
PZ
775 /*
776 * Reset each runqueue's bandwidth settings
777 */
ec514c48 778 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
779 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
780
0986b11b
TG
781 raw_spin_lock(&rt_b->rt_runtime_lock);
782 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
783 rt_rq->rt_runtime = rt_b->rt_runtime;
784 rt_rq->rt_time = 0;
baf25731 785 rt_rq->rt_throttled = 0;
0986b11b
TG
786 raw_spin_unlock(&rt_rq->rt_runtime_lock);
787 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
788 }
789}
790
269b26a5 791static void balance_runtime(struct rt_rq *rt_rq)
eff6549b 792{
4a6184ce 793 if (!sched_feat(RT_RUNTIME_SHARE))
269b26a5 794 return;
4a6184ce 795
eff6549b 796 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 797 raw_spin_unlock(&rt_rq->rt_runtime_lock);
269b26a5 798 do_balance_runtime(rt_rq);
0986b11b 799 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b 800 }
eff6549b 801}
55e12e5e 802#else /* !CONFIG_SMP */
269b26a5 803static inline void balance_runtime(struct rt_rq *rt_rq) {}
55e12e5e 804#endif /* CONFIG_SMP */
ac086bc2 805
eff6549b
PZ
806static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
807{
42c62a58 808 int i, idle = 1, throttled = 0;
c6c4927b 809 const struct cpumask *span;
eff6549b 810
eff6549b 811 span = sched_rt_period_mask();
e221d028
MG
812#ifdef CONFIG_RT_GROUP_SCHED
813 /*
814 * FIXME: isolated CPUs should really leave the root task group,
815 * whether they are isolcpus or were isolated via cpusets, lest
816 * the timer run on a CPU which does not service all runqueues,
817 * potentially leaving other CPUs indefinitely throttled. If
818 * isolation is really required, the user will turn the throttle
819 * off to kill the perturbations it causes anyway. Meanwhile,
820 * this maintains functionality for boot and/or troubleshooting.
821 */
822 if (rt_b == &root_task_group.rt_bandwidth)
823 span = cpu_online_mask;
824#endif
c6c4927b 825 for_each_cpu(i, span) {
eff6549b
PZ
826 int enqueue = 0;
827 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
828 struct rq *rq = rq_of_rt_rq(rt_rq);
c249f255
DK
829 int skip;
830
831 /*
832 * When span == cpu_online_mask, taking each rq->lock
833 * can be time-consuming. Try to avoid it when possible.
834 */
835 raw_spin_lock(&rt_rq->rt_runtime_lock);
836 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
837 raw_spin_unlock(&rt_rq->rt_runtime_lock);
838 if (skip)
839 continue;
eff6549b 840
05fa785c 841 raw_spin_lock(&rq->lock);
eff6549b
PZ
842 if (rt_rq->rt_time) {
843 u64 runtime;
844
0986b11b 845 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
846 if (rt_rq->rt_throttled)
847 balance_runtime(rt_rq);
848 runtime = rt_rq->rt_runtime;
849 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
850 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
851 rt_rq->rt_throttled = 0;
852 enqueue = 1;
61eadef6
MG
853
854 /*
9edfbfed
PZ
855 * When we're idle and a woken (rt) task is
856 * throttled check_preempt_curr() will set
857 * skip_update and the time between the wakeup
858 * and this unthrottle will get accounted as
859 * 'runtime'.
61eadef6
MG
860 */
861 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
9edfbfed 862 rq_clock_skip_update(rq, false);
eff6549b
PZ
863 }
864 if (rt_rq->rt_time || rt_rq->rt_nr_running)
865 idle = 0;
0986b11b 866 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 867 } else if (rt_rq->rt_nr_running) {
6c3df255 868 idle = 0;
0c3b9168
BS
869 if (!rt_rq_throttled(rt_rq))
870 enqueue = 1;
871 }
42c62a58
PZ
872 if (rt_rq->rt_throttled)
873 throttled = 1;
eff6549b
PZ
874
875 if (enqueue)
876 sched_rt_rq_enqueue(rt_rq);
05fa785c 877 raw_spin_unlock(&rq->lock);
eff6549b
PZ
878 }
879
42c62a58
PZ
880 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
881 return 1;
882
eff6549b
PZ
883 return idle;
884}
ac086bc2 885
6f505b16
PZ
886static inline int rt_se_prio(struct sched_rt_entity *rt_se)
887{
052f1dc7 888#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
889 struct rt_rq *rt_rq = group_rt_rq(rt_se);
890
891 if (rt_rq)
e864c499 892 return rt_rq->highest_prio.curr;
6f505b16
PZ
893#endif
894
895 return rt_task_of(rt_se)->prio;
896}
897
9f0c1e56 898static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 899{
9f0c1e56 900 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 901
fa85ae24 902 if (rt_rq->rt_throttled)
23b0fdfc 903 return rt_rq_throttled(rt_rq);
fa85ae24 904
5b680fd6 905 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
906 return 0;
907
b79f3833
PZ
908 balance_runtime(rt_rq);
909 runtime = sched_rt_runtime(rt_rq);
910 if (runtime == RUNTIME_INF)
911 return 0;
ac086bc2 912
9f0c1e56 913 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
914 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
915
916 /*
917 * Don't actually throttle groups that have no runtime assigned
918 * but accrue some time due to boosting.
919 */
920 if (likely(rt_b->rt_runtime)) {
921 rt_rq->rt_throttled = 1;
c224815d 922 printk_deferred_once("sched: RT throttling activated\n");
7abc63b1
PZ
923 } else {
924 /*
925 * In case we did anyway, make it go away,
926 * replenishment is a joke, since it will replenish us
927 * with exactly 0 ns.
928 */
929 rt_rq->rt_time = 0;
930 }
931
23b0fdfc 932 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 933 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
934 return 1;
935 }
fa85ae24
PZ
936 }
937
938 return 0;
939}
940
bb44e5d1
IM
941/*
942 * Update the current task's runtime statistics. Skip current tasks that
943 * are not in our scheduling class.
944 */
a9957449 945static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
946{
947 struct task_struct *curr = rq->curr;
6f505b16 948 struct sched_rt_entity *rt_se = &curr->rt;
bb44e5d1 949 u64 delta_exec;
a7711602 950 u64 now;
bb44e5d1 951
06c3bc65 952 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
953 return;
954
a7711602 955 now = rq_clock_task(rq);
e7ad2031 956 delta_exec = now - curr->se.exec_start;
fc79e240
KT
957 if (unlikely((s64)delta_exec <= 0))
958 return;
6cfb0d5d 959
58919e83 960 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
674e7541 961 cpufreq_update_util(rq, SCHED_CPUFREQ_RT);
594dd290 962
42c62a58
PZ
963 schedstat_set(curr->se.statistics.exec_max,
964 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
965
966 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
967 account_group_exec_runtime(curr, delta_exec);
968
e7ad2031 969 curr->se.exec_start = now;
d2cc5ed6 970 cgroup_account_cputime(curr, delta_exec);
fa85ae24 971
e9e9250b
PZ
972 sched_rt_avg_update(rq, delta_exec);
973
0b148fa0
PZ
974 if (!rt_bandwidth_enabled())
975 return;
976
354d60c2 977 for_each_sched_rt_entity(rt_se) {
0b07939c 978 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
354d60c2 979
cc2991cf 980 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 981 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
982 rt_rq->rt_time += delta_exec;
983 if (sched_rt_runtime_exceeded(rt_rq))
8875125e 984 resched_curr(rq);
0986b11b 985 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 986 }
354d60c2 987 }
bb44e5d1
IM
988}
989
f4ebcbc0
KT
990static void
991dequeue_top_rt_rq(struct rt_rq *rt_rq)
992{
993 struct rq *rq = rq_of_rt_rq(rt_rq);
994
995 BUG_ON(&rq->rt != rt_rq);
996
997 if (!rt_rq->rt_queued)
998 return;
999
1000 BUG_ON(!rq->nr_running);
1001
72465447 1002 sub_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
1003 rt_rq->rt_queued = 0;
1004}
1005
1006static void
1007enqueue_top_rt_rq(struct rt_rq *rt_rq)
1008{
1009 struct rq *rq = rq_of_rt_rq(rt_rq);
1010
1011 BUG_ON(&rq->rt != rt_rq);
1012
1013 if (rt_rq->rt_queued)
1014 return;
1015 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1016 return;
1017
72465447 1018 add_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
1019 rt_rq->rt_queued = 1;
1020}
1021
398a153b 1022#if defined CONFIG_SMP
e864c499 1023
398a153b
GH
1024static void
1025inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 1026{
4d984277 1027 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 1028
757dfcaa
KT
1029#ifdef CONFIG_RT_GROUP_SCHED
1030 /*
1031 * Change rq's cpupri only if rt_rq is the top queue.
1032 */
1033 if (&rq->rt != rt_rq)
1034 return;
1035#endif
5181f4a4
SR
1036 if (rq->online && prio < prev_prio)
1037 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 1038}
73fe6aae 1039
398a153b
GH
1040static void
1041dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1042{
1043 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 1044
757dfcaa
KT
1045#ifdef CONFIG_RT_GROUP_SCHED
1046 /*
1047 * Change rq's cpupri only if rt_rq is the top queue.
1048 */
1049 if (&rq->rt != rt_rq)
1050 return;
1051#endif
398a153b
GH
1052 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1053 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
1054}
1055
398a153b
GH
1056#else /* CONFIG_SMP */
1057
6f505b16 1058static inline
398a153b
GH
1059void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1060static inline
1061void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1062
1063#endif /* CONFIG_SMP */
6e0534f2 1064
052f1dc7 1065#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
1066static void
1067inc_rt_prio(struct rt_rq *rt_rq, int prio)
1068{
1069 int prev_prio = rt_rq->highest_prio.curr;
1070
1071 if (prio < prev_prio)
1072 rt_rq->highest_prio.curr = prio;
1073
1074 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1075}
1076
1077static void
1078dec_rt_prio(struct rt_rq *rt_rq, int prio)
1079{
1080 int prev_prio = rt_rq->highest_prio.curr;
1081
6f505b16 1082 if (rt_rq->rt_nr_running) {
764a9d6f 1083
398a153b 1084 WARN_ON(prio < prev_prio);
764a9d6f 1085
e864c499 1086 /*
398a153b
GH
1087 * This may have been our highest task, and therefore
1088 * we may have some recomputation to do
e864c499 1089 */
398a153b 1090 if (prio == prev_prio) {
e864c499
GH
1091 struct rt_prio_array *array = &rt_rq->active;
1092
1093 rt_rq->highest_prio.curr =
764a9d6f 1094 sched_find_first_bit(array->bitmap);
e864c499
GH
1095 }
1096
764a9d6f 1097 } else
e864c499 1098 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 1099
398a153b
GH
1100 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1101}
1f11eb6a 1102
398a153b
GH
1103#else
1104
1105static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1106static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1107
1108#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 1109
052f1dc7 1110#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
1111
1112static void
1113inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1114{
1115 if (rt_se_boosted(rt_se))
1116 rt_rq->rt_nr_boosted++;
1117
1118 if (rt_rq->tg)
1119 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1120}
1121
1122static void
1123dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1124{
23b0fdfc
PZ
1125 if (rt_se_boosted(rt_se))
1126 rt_rq->rt_nr_boosted--;
1127
1128 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
1129}
1130
1131#else /* CONFIG_RT_GROUP_SCHED */
1132
1133static void
1134inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1135{
1136 start_rt_bandwidth(&def_rt_bandwidth);
1137}
1138
1139static inline
1140void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1141
1142#endif /* CONFIG_RT_GROUP_SCHED */
1143
22abdef3
KT
1144static inline
1145unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1146{
1147 struct rt_rq *group_rq = group_rt_rq(rt_se);
1148
1149 if (group_rq)
1150 return group_rq->rt_nr_running;
1151 else
1152 return 1;
1153}
1154
01d36d0a
FW
1155static inline
1156unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1157{
1158 struct rt_rq *group_rq = group_rt_rq(rt_se);
1159 struct task_struct *tsk;
1160
1161 if (group_rq)
1162 return group_rq->rr_nr_running;
1163
1164 tsk = rt_task_of(rt_se);
1165
1166 return (tsk->policy == SCHED_RR) ? 1 : 0;
1167}
1168
398a153b
GH
1169static inline
1170void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1171{
1172 int prio = rt_se_prio(rt_se);
1173
1174 WARN_ON(!rt_prio(prio));
22abdef3 1175 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
01d36d0a 1176 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
398a153b
GH
1177
1178 inc_rt_prio(rt_rq, prio);
1179 inc_rt_migration(rt_se, rt_rq);
1180 inc_rt_group(rt_se, rt_rq);
1181}
1182
1183static inline
1184void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1185{
1186 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1187 WARN_ON(!rt_rq->rt_nr_running);
22abdef3 1188 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
01d36d0a 1189 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
398a153b
GH
1190
1191 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1192 dec_rt_migration(rt_se, rt_rq);
1193 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1194}
1195
ff77e468
PZ
1196/*
1197 * Change rt_se->run_list location unless SAVE && !MOVE
1198 *
1199 * assumes ENQUEUE/DEQUEUE flags match
1200 */
1201static inline bool move_entity(unsigned int flags)
1202{
1203 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1204 return false;
1205
1206 return true;
1207}
1208
1209static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1210{
1211 list_del_init(&rt_se->run_list);
1212
1213 if (list_empty(array->queue + rt_se_prio(rt_se)))
1214 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1215
1216 rt_se->on_list = 0;
1217}
1218
1219static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
bb44e5d1 1220{
6f505b16
PZ
1221 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1222 struct rt_prio_array *array = &rt_rq->active;
1223 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1224 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1225
ad2a3f13
PZ
1226 /*
1227 * Don't enqueue the group if its throttled, or when empty.
1228 * The latter is a consequence of the former when a child group
1229 * get throttled and the current group doesn't have any other
1230 * active members.
1231 */
ff77e468
PZ
1232 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1233 if (rt_se->on_list)
1234 __delist_rt_entity(rt_se, array);
6f505b16 1235 return;
ff77e468 1236 }
63489e45 1237
ff77e468
PZ
1238 if (move_entity(flags)) {
1239 WARN_ON_ONCE(rt_se->on_list);
1240 if (flags & ENQUEUE_HEAD)
1241 list_add(&rt_se->run_list, queue);
1242 else
1243 list_add_tail(&rt_se->run_list, queue);
1244
1245 __set_bit(rt_se_prio(rt_se), array->bitmap);
1246 rt_se->on_list = 1;
1247 }
1248 rt_se->on_rq = 1;
78f2c7db 1249
6f505b16
PZ
1250 inc_rt_tasks(rt_se, rt_rq);
1251}
1252
ff77e468 1253static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
6f505b16
PZ
1254{
1255 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1256 struct rt_prio_array *array = &rt_rq->active;
1257
ff77e468
PZ
1258 if (move_entity(flags)) {
1259 WARN_ON_ONCE(!rt_se->on_list);
1260 __delist_rt_entity(rt_se, array);
1261 }
1262 rt_se->on_rq = 0;
6f505b16
PZ
1263
1264 dec_rt_tasks(rt_se, rt_rq);
1265}
1266
1267/*
1268 * Because the prio of an upper entry depends on the lower
1269 * entries, we must remove entries top - down.
6f505b16 1270 */
ff77e468 1271static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
6f505b16 1272{
ad2a3f13 1273 struct sched_rt_entity *back = NULL;
6f505b16 1274
58d6c2d7
PZ
1275 for_each_sched_rt_entity(rt_se) {
1276 rt_se->back = back;
1277 back = rt_se;
1278 }
1279
f4ebcbc0
KT
1280 dequeue_top_rt_rq(rt_rq_of_se(back));
1281
58d6c2d7
PZ
1282 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1283 if (on_rt_rq(rt_se))
ff77e468 1284 __dequeue_rt_entity(rt_se, flags);
ad2a3f13
PZ
1285 }
1286}
1287
ff77e468 1288static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
ad2a3f13 1289{
f4ebcbc0
KT
1290 struct rq *rq = rq_of_rt_se(rt_se);
1291
ff77e468 1292 dequeue_rt_stack(rt_se, flags);
ad2a3f13 1293 for_each_sched_rt_entity(rt_se)
ff77e468 1294 __enqueue_rt_entity(rt_se, flags);
f4ebcbc0 1295 enqueue_top_rt_rq(&rq->rt);
ad2a3f13
PZ
1296}
1297
ff77e468 1298static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
ad2a3f13 1299{
f4ebcbc0
KT
1300 struct rq *rq = rq_of_rt_se(rt_se);
1301
ff77e468 1302 dequeue_rt_stack(rt_se, flags);
ad2a3f13
PZ
1303
1304 for_each_sched_rt_entity(rt_se) {
1305 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1306
1307 if (rt_rq && rt_rq->rt_nr_running)
ff77e468 1308 __enqueue_rt_entity(rt_se, flags);
58d6c2d7 1309 }
f4ebcbc0 1310 enqueue_top_rt_rq(&rq->rt);
bb44e5d1
IM
1311}
1312
1313/*
1314 * Adding/removing a task to/from a priority array:
1315 */
ea87bb78 1316static void
371fd7e7 1317enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1318{
1319 struct sched_rt_entity *rt_se = &p->rt;
1320
371fd7e7 1321 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1322 rt_se->timeout = 0;
1323
ff77e468 1324 enqueue_rt_entity(rt_se, flags);
c09595f6 1325
4b53a341 1326 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1327 enqueue_pushable_task(rq, p);
6f505b16
PZ
1328}
1329
371fd7e7 1330static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1331{
6f505b16 1332 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1333
f1e14ef6 1334 update_curr_rt(rq);
ff77e468 1335 dequeue_rt_entity(rt_se, flags);
c09595f6 1336
917b627d 1337 dequeue_pushable_task(rq, p);
bb44e5d1
IM
1338}
1339
1340/*
60686317
RW
1341 * Put task to the head or the end of the run list without the overhead of
1342 * dequeue followed by enqueue.
bb44e5d1 1343 */
7ebefa8c
DA
1344static void
1345requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1346{
1cdad715 1347 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1348 struct rt_prio_array *array = &rt_rq->active;
1349 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1350
1351 if (head)
1352 list_move(&rt_se->run_list, queue);
1353 else
1354 list_move_tail(&rt_se->run_list, queue);
1cdad715 1355 }
6f505b16
PZ
1356}
1357
7ebefa8c 1358static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1359{
6f505b16
PZ
1360 struct sched_rt_entity *rt_se = &p->rt;
1361 struct rt_rq *rt_rq;
bb44e5d1 1362
6f505b16
PZ
1363 for_each_sched_rt_entity(rt_se) {
1364 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1365 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1366 }
bb44e5d1
IM
1367}
1368
6f505b16 1369static void yield_task_rt(struct rq *rq)
bb44e5d1 1370{
7ebefa8c 1371 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1372}
1373
e7693a36 1374#ifdef CONFIG_SMP
318e0893
GH
1375static int find_lowest_rq(struct task_struct *task);
1376
0017d735 1377static int
ac66f547 1378select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
e7693a36 1379{
7608dec2
PZ
1380 struct task_struct *curr;
1381 struct rq *rq;
c37495fd
SR
1382
1383 /* For anything but wake ups, just return the task_cpu */
1384 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1385 goto out;
1386
7608dec2
PZ
1387 rq = cpu_rq(cpu);
1388
1389 rcu_read_lock();
316c1608 1390 curr = READ_ONCE(rq->curr); /* unlocked access */
7608dec2 1391
318e0893 1392 /*
7608dec2 1393 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1394 * try to see if we can wake this RT task up on another
1395 * runqueue. Otherwise simply start this RT task
1396 * on its current runqueue.
1397 *
43fa5460
SR
1398 * We want to avoid overloading runqueues. If the woken
1399 * task is a higher priority, then it will stay on this CPU
1400 * and the lower prio task should be moved to another CPU.
1401 * Even though this will probably make the lower prio task
1402 * lose its cache, we do not want to bounce a higher task
1403 * around just because it gave up its CPU, perhaps for a
1404 * lock?
1405 *
1406 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1407 *
1408 * Otherwise, just let it ride on the affined RQ and the
1409 * post-schedule router will push the preempted task away
1410 *
1411 * This test is optimistic, if we get it wrong the load-balancer
1412 * will have to sort it out.
318e0893 1413 */
7608dec2 1414 if (curr && unlikely(rt_task(curr)) &&
4b53a341 1415 (curr->nr_cpus_allowed < 2 ||
6bfa687c 1416 curr->prio <= p->prio)) {
7608dec2 1417 int target = find_lowest_rq(p);
318e0893 1418
80e3d87b
TC
1419 /*
1420 * Don't bother moving it if the destination CPU is
1421 * not running a lower priority task.
1422 */
1423 if (target != -1 &&
1424 p->prio < cpu_rq(target)->rt.highest_prio.curr)
7608dec2 1425 cpu = target;
318e0893 1426 }
7608dec2 1427 rcu_read_unlock();
318e0893 1428
c37495fd 1429out:
7608dec2 1430 return cpu;
e7693a36 1431}
7ebefa8c
DA
1432
1433static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1434{
308a623a
WL
1435 /*
1436 * Current can't be migrated, useless to reschedule,
1437 * let's hope p can move out.
1438 */
4b53a341 1439 if (rq->curr->nr_cpus_allowed == 1 ||
308a623a 1440 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
7ebefa8c
DA
1441 return;
1442
308a623a
WL
1443 /*
1444 * p is migratable, so let's not schedule it and
1445 * see if it is pushed or pulled somewhere else.
1446 */
4b53a341 1447 if (p->nr_cpus_allowed != 1
13b8bd0a
RR
1448 && cpupri_find(&rq->rd->cpupri, p, NULL))
1449 return;
24600ce8 1450
7ebefa8c 1451 /*
97fb7a0a
IM
1452 * There appear to be other CPUs that can accept
1453 * the current task but none can run 'p', so lets reschedule
1454 * to try and push the current task away:
7ebefa8c
DA
1455 */
1456 requeue_task_rt(rq, p, 1);
8875125e 1457 resched_curr(rq);
7ebefa8c
DA
1458}
1459
e7693a36
GH
1460#endif /* CONFIG_SMP */
1461
bb44e5d1
IM
1462/*
1463 * Preempt the current task with a newly woken task if needed:
1464 */
7d478721 1465static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1466{
45c01e82 1467 if (p->prio < rq->curr->prio) {
8875125e 1468 resched_curr(rq);
45c01e82
GH
1469 return;
1470 }
1471
1472#ifdef CONFIG_SMP
1473 /*
1474 * If:
1475 *
1476 * - the newly woken task is of equal priority to the current task
1477 * - the newly woken task is non-migratable while current is migratable
1478 * - current will be preempted on the next reschedule
1479 *
1480 * we should check to see if current can readily move to a different
1481 * cpu. If so, we will reschedule to allow the push logic to try
1482 * to move current somewhere else, making room for our non-migratable
1483 * task.
1484 */
8dd0de8b 1485 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1486 check_preempt_equal_prio(rq, p);
45c01e82 1487#endif
bb44e5d1
IM
1488}
1489
6f505b16
PZ
1490static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1491 struct rt_rq *rt_rq)
bb44e5d1 1492{
6f505b16
PZ
1493 struct rt_prio_array *array = &rt_rq->active;
1494 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1495 struct list_head *queue;
1496 int idx;
1497
1498 idx = sched_find_first_bit(array->bitmap);
6f505b16 1499 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1500
1501 queue = array->queue + idx;
6f505b16 1502 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1503
6f505b16
PZ
1504 return next;
1505}
bb44e5d1 1506
917b627d 1507static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1508{
1509 struct sched_rt_entity *rt_se;
1510 struct task_struct *p;
606dba2e 1511 struct rt_rq *rt_rq = &rq->rt;
6f505b16
PZ
1512
1513 do {
1514 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1515 BUG_ON(!rt_se);
6f505b16
PZ
1516 rt_rq = group_rt_rq(rt_se);
1517 } while (rt_rq);
1518
1519 p = rt_task_of(rt_se);
78becc27 1520 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1521
1522 return p;
1523}
1524
606dba2e 1525static struct task_struct *
d8ac8971 1526pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
917b627d 1527{
606dba2e
PZ
1528 struct task_struct *p;
1529 struct rt_rq *rt_rq = &rq->rt;
1530
37e117c0 1531 if (need_pull_rt_task(rq, prev)) {
cbce1a68
PZ
1532 /*
1533 * This is OK, because current is on_cpu, which avoids it being
1534 * picked for load-balance and preemption/IRQs are still
1535 * disabled avoiding further scheduler activity on it and we're
1536 * being very careful to re-start the picking loop.
1537 */
d8ac8971 1538 rq_unpin_lock(rq, rf);
38033c37 1539 pull_rt_task(rq);
d8ac8971 1540 rq_repin_lock(rq, rf);
37e117c0
PZ
1541 /*
1542 * pull_rt_task() can drop (and re-acquire) rq->lock; this
a1d9a323
KT
1543 * means a dl or stop task can slip in, in which case we need
1544 * to re-start task selection.
37e117c0 1545 */
da0c1e65 1546 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
a1d9a323 1547 rq->dl.dl_nr_running))
37e117c0
PZ
1548 return RETRY_TASK;
1549 }
38033c37 1550
734ff2a7
KT
1551 /*
1552 * We may dequeue prev's rt_rq in put_prev_task().
1553 * So, we update time before rt_nr_running check.
1554 */
1555 if (prev->sched_class == &rt_sched_class)
1556 update_curr_rt(rq);
1557
f4ebcbc0 1558 if (!rt_rq->rt_queued)
606dba2e
PZ
1559 return NULL;
1560
3f1d2a31 1561 put_prev_task(rq, prev);
606dba2e
PZ
1562
1563 p = _pick_next_task_rt(rq);
917b627d
GH
1564
1565 /* The running task is never eligible for pushing */
f3f1768f 1566 dequeue_pushable_task(rq, p);
917b627d 1567
e3fca9e7 1568 queue_push_tasks(rq);
3f029d3c 1569
6f505b16 1570 return p;
bb44e5d1
IM
1571}
1572
31ee529c 1573static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1574{
f1e14ef6 1575 update_curr_rt(rq);
917b627d
GH
1576
1577 /*
1578 * The previous task needs to be made eligible for pushing
1579 * if it is still active
1580 */
4b53a341 1581 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1582 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1583}
1584
681f3e68 1585#ifdef CONFIG_SMP
6f505b16 1586
e8fa1362
SR
1587/* Only try algorithms three times */
1588#define RT_MAX_TRIES 3
1589
f65eda4f
SR
1590static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1591{
1592 if (!task_running(rq, p) &&
0c98d344 1593 cpumask_test_cpu(cpu, &p->cpus_allowed))
f65eda4f 1594 return 1;
97fb7a0a 1595
f65eda4f
SR
1596 return 0;
1597}
1598
e23ee747
KT
1599/*
1600 * Return the highest pushable rq's task, which is suitable to be executed
97fb7a0a 1601 * on the CPU, NULL otherwise
e23ee747
KT
1602 */
1603static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
e8fa1362 1604{
e23ee747
KT
1605 struct plist_head *head = &rq->rt.pushable_tasks;
1606 struct task_struct *p;
3d07467b 1607
e23ee747
KT
1608 if (!has_pushable_tasks(rq))
1609 return NULL;
3d07467b 1610
e23ee747
KT
1611 plist_for_each_entry(p, head, pushable_tasks) {
1612 if (pick_rt_task(rq, p, cpu))
1613 return p;
f65eda4f
SR
1614 }
1615
e23ee747 1616 return NULL;
e8fa1362
SR
1617}
1618
0e3900e6 1619static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1620
6e1254d2
GH
1621static int find_lowest_rq(struct task_struct *task)
1622{
1623 struct sched_domain *sd;
4ba29684 1624 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
6e1254d2
GH
1625 int this_cpu = smp_processor_id();
1626 int cpu = task_cpu(task);
06f90dbd 1627
0da938c4
SR
1628 /* Make sure the mask is initialized first */
1629 if (unlikely(!lowest_mask))
1630 return -1;
1631
4b53a341 1632 if (task->nr_cpus_allowed == 1)
6e0534f2 1633 return -1; /* No other targets possible */
6e1254d2 1634
6e0534f2
GH
1635 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1636 return -1; /* No targets found */
6e1254d2
GH
1637
1638 /*
97fb7a0a 1639 * At this point we have built a mask of CPUs representing the
6e1254d2
GH
1640 * lowest priority tasks in the system. Now we want to elect
1641 * the best one based on our affinity and topology.
1642 *
97fb7a0a 1643 * We prioritize the last CPU that the task executed on since
6e1254d2
GH
1644 * it is most likely cache-hot in that location.
1645 */
96f874e2 1646 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1647 return cpu;
1648
1649 /*
1650 * Otherwise, we consult the sched_domains span maps to figure
97fb7a0a 1651 * out which CPU is logically closest to our hot cache data.
6e1254d2 1652 */
e2c88063
RR
1653 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1654 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1655
cd4ae6ad 1656 rcu_read_lock();
e2c88063
RR
1657 for_each_domain(cpu, sd) {
1658 if (sd->flags & SD_WAKE_AFFINE) {
1659 int best_cpu;
6e1254d2 1660
e2c88063
RR
1661 /*
1662 * "this_cpu" is cheaper to preempt than a
1663 * remote processor.
1664 */
1665 if (this_cpu != -1 &&
cd4ae6ad
XF
1666 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1667 rcu_read_unlock();
e2c88063 1668 return this_cpu;
cd4ae6ad 1669 }
e2c88063
RR
1670
1671 best_cpu = cpumask_first_and(lowest_mask,
1672 sched_domain_span(sd));
cd4ae6ad
XF
1673 if (best_cpu < nr_cpu_ids) {
1674 rcu_read_unlock();
e2c88063 1675 return best_cpu;
cd4ae6ad 1676 }
6e1254d2
GH
1677 }
1678 }
cd4ae6ad 1679 rcu_read_unlock();
6e1254d2
GH
1680
1681 /*
1682 * And finally, if there were no matches within the domains
1683 * just give the caller *something* to work with from the compatible
1684 * locations.
1685 */
e2c88063
RR
1686 if (this_cpu != -1)
1687 return this_cpu;
1688
1689 cpu = cpumask_any(lowest_mask);
1690 if (cpu < nr_cpu_ids)
1691 return cpu;
97fb7a0a 1692
e2c88063 1693 return -1;
07b4032c
GH
1694}
1695
1696/* Will lock the rq it finds */
4df64c0b 1697static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1698{
1699 struct rq *lowest_rq = NULL;
07b4032c 1700 int tries;
4df64c0b 1701 int cpu;
e8fa1362 1702
07b4032c
GH
1703 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1704 cpu = find_lowest_rq(task);
1705
2de0b463 1706 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1707 break;
1708
07b4032c
GH
1709 lowest_rq = cpu_rq(cpu);
1710
80e3d87b
TC
1711 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1712 /*
1713 * Target rq has tasks of equal or higher priority,
1714 * retrying does not release any lock and is unlikely
1715 * to yield a different result.
1716 */
1717 lowest_rq = NULL;
1718 break;
1719 }
1720
e8fa1362 1721 /* if the prio of this runqueue changed, try again */
07b4032c 1722 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1723 /*
1724 * We had to unlock the run queue. In
1725 * the mean time, task could have
1726 * migrated already or had its affinity changed.
1727 * Also make sure that it wasn't scheduled on its rq.
1728 */
07b4032c 1729 if (unlikely(task_rq(task) != rq ||
0c98d344 1730 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
07b4032c 1731 task_running(rq, task) ||
13b5ab02 1732 !rt_task(task) ||
da0c1e65 1733 !task_on_rq_queued(task))) {
4df64c0b 1734
7f1b4393 1735 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1736 lowest_rq = NULL;
1737 break;
1738 }
1739 }
1740
1741 /* If this rq is still suitable use it. */
e864c499 1742 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1743 break;
1744
1745 /* try again */
1b12bbc7 1746 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1747 lowest_rq = NULL;
1748 }
1749
1750 return lowest_rq;
1751}
1752
917b627d
GH
1753static struct task_struct *pick_next_pushable_task(struct rq *rq)
1754{
1755 struct task_struct *p;
1756
1757 if (!has_pushable_tasks(rq))
1758 return NULL;
1759
1760 p = plist_first_entry(&rq->rt.pushable_tasks,
1761 struct task_struct, pushable_tasks);
1762
1763 BUG_ON(rq->cpu != task_cpu(p));
1764 BUG_ON(task_current(rq, p));
4b53a341 1765 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1766
da0c1e65 1767 BUG_ON(!task_on_rq_queued(p));
917b627d
GH
1768 BUG_ON(!rt_task(p));
1769
1770 return p;
1771}
1772
e8fa1362
SR
1773/*
1774 * If the current CPU has more than one RT task, see if the non
1775 * running task can migrate over to a CPU that is running a task
1776 * of lesser priority.
1777 */
697f0a48 1778static int push_rt_task(struct rq *rq)
e8fa1362
SR
1779{
1780 struct task_struct *next_task;
1781 struct rq *lowest_rq;
311e800e 1782 int ret = 0;
e8fa1362 1783
a22d7fc1
GH
1784 if (!rq->rt.overloaded)
1785 return 0;
1786
917b627d 1787 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1788 if (!next_task)
1789 return 0;
1790
49246274 1791retry:
697f0a48 1792 if (unlikely(next_task == rq->curr)) {
f65eda4f 1793 WARN_ON(1);
e8fa1362 1794 return 0;
f65eda4f 1795 }
e8fa1362
SR
1796
1797 /*
1798 * It's possible that the next_task slipped in of
1799 * higher priority than current. If that's the case
1800 * just reschedule current.
1801 */
697f0a48 1802 if (unlikely(next_task->prio < rq->curr->prio)) {
8875125e 1803 resched_curr(rq);
e8fa1362
SR
1804 return 0;
1805 }
1806
697f0a48 1807 /* We might release rq lock */
e8fa1362
SR
1808 get_task_struct(next_task);
1809
1810 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1811 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1812 if (!lowest_rq) {
1813 struct task_struct *task;
1814 /*
311e800e 1815 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1816 * so it is possible that next_task has migrated.
1817 *
1818 * We need to make sure that the task is still on the same
1819 * run-queue and is also still the next task eligible for
1820 * pushing.
e8fa1362 1821 */
917b627d 1822 task = pick_next_pushable_task(rq);
de16b91e 1823 if (task == next_task) {
1563513d 1824 /*
311e800e
HD
1825 * The task hasn't migrated, and is still the next
1826 * eligible task, but we failed to find a run-queue
1827 * to push it to. Do not retry in this case, since
97fb7a0a 1828 * other CPUs will pull from us when ready.
1563513d 1829 */
1563513d 1830 goto out;
e8fa1362 1831 }
917b627d 1832
1563513d
GH
1833 if (!task)
1834 /* No more tasks, just exit */
1835 goto out;
1836
917b627d 1837 /*
1563513d 1838 * Something has shifted, try again.
917b627d 1839 */
1563513d
GH
1840 put_task_struct(next_task);
1841 next_task = task;
1842 goto retry;
e8fa1362
SR
1843 }
1844
697f0a48 1845 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1846 set_task_cpu(next_task, lowest_rq->cpu);
1847 activate_task(lowest_rq, next_task, 0);
311e800e 1848 ret = 1;
e8fa1362 1849
8875125e 1850 resched_curr(lowest_rq);
e8fa1362 1851
1b12bbc7 1852 double_unlock_balance(rq, lowest_rq);
e8fa1362 1853
e8fa1362
SR
1854out:
1855 put_task_struct(next_task);
1856
311e800e 1857 return ret;
e8fa1362
SR
1858}
1859
e8fa1362
SR
1860static void push_rt_tasks(struct rq *rq)
1861{
1862 /* push_rt_task will return true if it moved an RT */
1863 while (push_rt_task(rq))
1864 ;
1865}
1866
b6366f04 1867#ifdef HAVE_RT_PUSH_IPI
4bdced5c 1868
b6366f04 1869/*
4bdced5c
SRRH
1870 * When a high priority task schedules out from a CPU and a lower priority
1871 * task is scheduled in, a check is made to see if there's any RT tasks
1872 * on other CPUs that are waiting to run because a higher priority RT task
1873 * is currently running on its CPU. In this case, the CPU with multiple RT
1874 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1875 * up that may be able to run one of its non-running queued RT tasks.
1876 *
1877 * All CPUs with overloaded RT tasks need to be notified as there is currently
1878 * no way to know which of these CPUs have the highest priority task waiting
1879 * to run. Instead of trying to take a spinlock on each of these CPUs,
1880 * which has shown to cause large latency when done on machines with many
1881 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1882 * RT tasks waiting to run.
1883 *
1884 * Just sending an IPI to each of the CPUs is also an issue, as on large
1885 * count CPU machines, this can cause an IPI storm on a CPU, especially
1886 * if its the only CPU with multiple RT tasks queued, and a large number
1887 * of CPUs scheduling a lower priority task at the same time.
1888 *
1889 * Each root domain has its own irq work function that can iterate over
1890 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1891 * tassk must be checked if there's one or many CPUs that are lowering
1892 * their priority, there's a single irq work iterator that will try to
1893 * push off RT tasks that are waiting to run.
1894 *
1895 * When a CPU schedules a lower priority task, it will kick off the
1896 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1897 * As it only takes the first CPU that schedules a lower priority task
1898 * to start the process, the rto_start variable is incremented and if
1899 * the atomic result is one, then that CPU will try to take the rto_lock.
1900 * This prevents high contention on the lock as the process handles all
1901 * CPUs scheduling lower priority tasks.
1902 *
1903 * All CPUs that are scheduling a lower priority task will increment the
1904 * rt_loop_next variable. This will make sure that the irq work iterator
1905 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1906 * priority task, even if the iterator is in the middle of a scan. Incrementing
1907 * the rt_loop_next will cause the iterator to perform another scan.
b6366f04 1908 *
b6366f04 1909 */
ad0f1d9d 1910static int rto_next_cpu(struct root_domain *rd)
b6366f04 1911{
4bdced5c 1912 int next;
b6366f04
SR
1913 int cpu;
1914
b6366f04 1915 /*
4bdced5c
SRRH
1916 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1917 * rt_next_cpu() will simply return the first CPU found in
1918 * the rto_mask.
1919 *
97fb7a0a 1920 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
4bdced5c
SRRH
1921 * will return the next CPU found in the rto_mask.
1922 *
1923 * If there are no more CPUs left in the rto_mask, then a check is made
1924 * against rto_loop and rto_loop_next. rto_loop is only updated with
1925 * the rto_lock held, but any CPU may increment the rto_loop_next
1926 * without any locking.
b6366f04 1927 */
4bdced5c 1928 for (;;) {
b6366f04 1929
4bdced5c
SRRH
1930 /* When rto_cpu is -1 this acts like cpumask_first() */
1931 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
b6366f04 1932
4bdced5c 1933 rd->rto_cpu = cpu;
b6366f04 1934
4bdced5c
SRRH
1935 if (cpu < nr_cpu_ids)
1936 return cpu;
b6366f04 1937
4bdced5c
SRRH
1938 rd->rto_cpu = -1;
1939
1940 /*
1941 * ACQUIRE ensures we see the @rto_mask changes
1942 * made prior to the @next value observed.
1943 *
1944 * Matches WMB in rt_set_overload().
1945 */
1946 next = atomic_read_acquire(&rd->rto_loop_next);
b6366f04 1947
4bdced5c 1948 if (rd->rto_loop == next)
b6366f04 1949 break;
4bdced5c
SRRH
1950
1951 rd->rto_loop = next;
b6366f04
SR
1952 }
1953
4bdced5c 1954 return -1;
b6366f04
SR
1955}
1956
4bdced5c
SRRH
1957static inline bool rto_start_trylock(atomic_t *v)
1958{
1959 return !atomic_cmpxchg_acquire(v, 0, 1);
1960}
b6366f04 1961
4bdced5c 1962static inline void rto_start_unlock(atomic_t *v)
b6366f04 1963{
4bdced5c
SRRH
1964 atomic_set_release(v, 0);
1965}
b6366f04 1966
4bdced5c
SRRH
1967static void tell_cpu_to_push(struct rq *rq)
1968{
1969 int cpu = -1;
b6366f04 1970
4bdced5c
SRRH
1971 /* Keep the loop going if the IPI is currently active */
1972 atomic_inc(&rq->rd->rto_loop_next);
b6366f04 1973
4bdced5c
SRRH
1974 /* Only one CPU can initiate a loop at a time */
1975 if (!rto_start_trylock(&rq->rd->rto_loop_start))
b6366f04
SR
1976 return;
1977
4bdced5c 1978 raw_spin_lock(&rq->rd->rto_lock);
b6366f04 1979
4bdced5c 1980 /*
97fb7a0a 1981 * The rto_cpu is updated under the lock, if it has a valid CPU
4bdced5c
SRRH
1982 * then the IPI is still running and will continue due to the
1983 * update to loop_next, and nothing needs to be done here.
1984 * Otherwise it is finishing up and an ipi needs to be sent.
1985 */
1986 if (rq->rd->rto_cpu < 0)
ad0f1d9d 1987 cpu = rto_next_cpu(rq->rd);
4bdced5c
SRRH
1988
1989 raw_spin_unlock(&rq->rd->rto_lock);
1990
1991 rto_start_unlock(&rq->rd->rto_loop_start);
1992
364f5665
SRV
1993 if (cpu >= 0) {
1994 /* Make sure the rd does not get freed while pushing */
1995 sched_get_rd(rq->rd);
4bdced5c 1996 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
364f5665 1997 }
b6366f04
SR
1998}
1999
2000/* Called from hardirq context */
4bdced5c 2001void rto_push_irq_work_func(struct irq_work *work)
b6366f04 2002{
ad0f1d9d
SRV
2003 struct root_domain *rd =
2004 container_of(work, struct root_domain, rto_push_work);
4bdced5c 2005 struct rq *rq;
b6366f04
SR
2006 int cpu;
2007
4bdced5c 2008 rq = this_rq();
b6366f04 2009
4bdced5c
SRRH
2010 /*
2011 * We do not need to grab the lock to check for has_pushable_tasks.
2012 * When it gets updated, a check is made if a push is possible.
2013 */
b6366f04
SR
2014 if (has_pushable_tasks(rq)) {
2015 raw_spin_lock(&rq->lock);
4bdced5c 2016 push_rt_tasks(rq);
b6366f04
SR
2017 raw_spin_unlock(&rq->lock);
2018 }
2019
ad0f1d9d 2020 raw_spin_lock(&rd->rto_lock);
b6366f04 2021
4bdced5c 2022 /* Pass the IPI to the next rt overloaded queue */
ad0f1d9d 2023 cpu = rto_next_cpu(rd);
b6366f04 2024
ad0f1d9d 2025 raw_spin_unlock(&rd->rto_lock);
b6366f04 2026
364f5665
SRV
2027 if (cpu < 0) {
2028 sched_put_rd(rd);
b6366f04 2029 return;
364f5665 2030 }
b6366f04 2031
b6366f04 2032 /* Try the next RT overloaded CPU */
ad0f1d9d 2033 irq_work_queue_on(&rd->rto_push_work, cpu);
b6366f04
SR
2034}
2035#endif /* HAVE_RT_PUSH_IPI */
2036
8046d680 2037static void pull_rt_task(struct rq *this_rq)
f65eda4f 2038{
8046d680
PZ
2039 int this_cpu = this_rq->cpu, cpu;
2040 bool resched = false;
a8728944 2041 struct task_struct *p;
f65eda4f 2042 struct rq *src_rq;
f73c52a5 2043 int rt_overload_count = rt_overloaded(this_rq);
f65eda4f 2044
f73c52a5 2045 if (likely(!rt_overload_count))
8046d680 2046 return;
f65eda4f 2047
7c3f2ab7
PZ
2048 /*
2049 * Match the barrier from rt_set_overloaded; this guarantees that if we
2050 * see overloaded we must also see the rto_mask bit.
2051 */
2052 smp_rmb();
2053
f73c52a5
SR
2054 /* If we are the only overloaded CPU do nothing */
2055 if (rt_overload_count == 1 &&
2056 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2057 return;
2058
b6366f04
SR
2059#ifdef HAVE_RT_PUSH_IPI
2060 if (sched_feat(RT_PUSH_IPI)) {
2061 tell_cpu_to_push(this_rq);
8046d680 2062 return;
b6366f04
SR
2063 }
2064#endif
2065
c6c4927b 2066 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
2067 if (this_cpu == cpu)
2068 continue;
2069
2070 src_rq = cpu_rq(cpu);
74ab8e4f
GH
2071
2072 /*
2073 * Don't bother taking the src_rq->lock if the next highest
2074 * task is known to be lower-priority than our current task.
2075 * This may look racy, but if this value is about to go
2076 * logically higher, the src_rq will push this task away.
2077 * And if its going logically lower, we do not care
2078 */
2079 if (src_rq->rt.highest_prio.next >=
2080 this_rq->rt.highest_prio.curr)
2081 continue;
2082
f65eda4f
SR
2083 /*
2084 * We can potentially drop this_rq's lock in
2085 * double_lock_balance, and another CPU could
a8728944 2086 * alter this_rq
f65eda4f 2087 */
a8728944 2088 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
2089
2090 /*
e23ee747
KT
2091 * We can pull only a task, which is pushable
2092 * on its rq, and no others.
f65eda4f 2093 */
e23ee747 2094 p = pick_highest_pushable_task(src_rq, this_cpu);
f65eda4f
SR
2095
2096 /*
2097 * Do we have an RT task that preempts
2098 * the to-be-scheduled task?
2099 */
a8728944 2100 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 2101 WARN_ON(p == src_rq->curr);
da0c1e65 2102 WARN_ON(!task_on_rq_queued(p));
f65eda4f
SR
2103
2104 /*
2105 * There's a chance that p is higher in priority
97fb7a0a 2106 * than what's currently running on its CPU.
f65eda4f
SR
2107 * This is just that p is wakeing up and hasn't
2108 * had a chance to schedule. We only pull
2109 * p if it is lower in priority than the
a8728944 2110 * current task on the run queue
f65eda4f 2111 */
a8728944 2112 if (p->prio < src_rq->curr->prio)
614ee1f6 2113 goto skip;
f65eda4f 2114
8046d680 2115 resched = true;
f65eda4f
SR
2116
2117 deactivate_task(src_rq, p, 0);
2118 set_task_cpu(p, this_cpu);
2119 activate_task(this_rq, p, 0);
2120 /*
2121 * We continue with the search, just in
2122 * case there's an even higher prio task
25985edc 2123 * in another runqueue. (low likelihood
f65eda4f 2124 * but possible)
f65eda4f 2125 */
f65eda4f 2126 }
49246274 2127skip:
1b12bbc7 2128 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
2129 }
2130
8046d680
PZ
2131 if (resched)
2132 resched_curr(this_rq);
f65eda4f
SR
2133}
2134
8ae121ac
GH
2135/*
2136 * If we are not running and we are not going to reschedule soon, we should
2137 * try to push tasks away now
2138 */
efbbd05a 2139static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 2140{
9a897c5a 2141 if (!task_running(rq, p) &&
8ae121ac 2142 !test_tsk_need_resched(rq->curr) &&
4b53a341 2143 p->nr_cpus_allowed > 1 &&
1baca4ce 2144 (dl_task(rq->curr) || rt_task(rq->curr)) &&
4b53a341 2145 (rq->curr->nr_cpus_allowed < 2 ||
3be209a8 2146 rq->curr->prio <= p->prio))
4642dafd
SR
2147 push_rt_tasks(rq);
2148}
2149
bdd7c81b 2150/* Assumes rq->lock is held */
1f11eb6a 2151static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
2152{
2153 if (rq->rt.overloaded)
2154 rt_set_overload(rq);
6e0534f2 2155
7def2be1
PZ
2156 __enable_runtime(rq);
2157
e864c499 2158 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
2159}
2160
2161/* Assumes rq->lock is held */
1f11eb6a 2162static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
2163{
2164 if (rq->rt.overloaded)
2165 rt_clear_overload(rq);
6e0534f2 2166
7def2be1
PZ
2167 __disable_runtime(rq);
2168
6e0534f2 2169 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 2170}
cb469845
SR
2171
2172/*
2173 * When switch from the rt queue, we bring ourselves to a position
2174 * that we might want to pull RT tasks from other runqueues.
2175 */
da7a735e 2176static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
2177{
2178 /*
2179 * If there are other RT tasks then we will reschedule
2180 * and the scheduling of the other RT tasks will handle
2181 * the balancing. But if we are the last RT task
2182 * we may need to handle the pulling of RT tasks
2183 * now.
2184 */
da0c1e65 2185 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
1158ddb5
KT
2186 return;
2187
fd7a4bed 2188 queue_pull_task(rq);
cb469845 2189}
3d8cbdf8 2190
11c785b7 2191void __init init_sched_rt_class(void)
3d8cbdf8
RR
2192{
2193 unsigned int i;
2194
029632fb 2195 for_each_possible_cpu(i) {
eaa95840 2196 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 2197 GFP_KERNEL, cpu_to_node(i));
029632fb 2198 }
3d8cbdf8 2199}
cb469845
SR
2200#endif /* CONFIG_SMP */
2201
2202/*
2203 * When switching a task to RT, we may overload the runqueue
2204 * with RT tasks. In this case we try to push them off to
2205 * other runqueues.
2206 */
da7a735e 2207static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845 2208{
cb469845
SR
2209 /*
2210 * If we are already running, then there's nothing
2211 * that needs to be done. But if we are not running
2212 * we may need to preempt the current running task.
2213 * If that current running task is also an RT task
2214 * then see if we can move to another run queue.
2215 */
da0c1e65 2216 if (task_on_rq_queued(p) && rq->curr != p) {
cb469845 2217#ifdef CONFIG_SMP
4b53a341 2218 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
fd7a4bed 2219 queue_push_tasks(rq);
619bd4a7 2220#endif /* CONFIG_SMP */
2fe25826 2221 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
8875125e 2222 resched_curr(rq);
cb469845
SR
2223 }
2224}
2225
2226/*
2227 * Priority of the task has changed. This may cause
2228 * us to initiate a push or pull.
2229 */
da7a735e
PZ
2230static void
2231prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 2232{
da0c1e65 2233 if (!task_on_rq_queued(p))
da7a735e
PZ
2234 return;
2235
2236 if (rq->curr == p) {
cb469845
SR
2237#ifdef CONFIG_SMP
2238 /*
2239 * If our priority decreases while running, we
2240 * may need to pull tasks to this runqueue.
2241 */
2242 if (oldprio < p->prio)
fd7a4bed
PZ
2243 queue_pull_task(rq);
2244
cb469845
SR
2245 /*
2246 * If there's a higher priority task waiting to run
fd7a4bed 2247 * then reschedule.
cb469845 2248 */
fd7a4bed 2249 if (p->prio > rq->rt.highest_prio.curr)
8875125e 2250 resched_curr(rq);
cb469845
SR
2251#else
2252 /* For UP simply resched on drop of prio */
2253 if (oldprio < p->prio)
8875125e 2254 resched_curr(rq);
e8fa1362 2255#endif /* CONFIG_SMP */
cb469845
SR
2256 } else {
2257 /*
2258 * This task is not running, but if it is
2259 * greater than the current running task
2260 * then reschedule.
2261 */
2262 if (p->prio < rq->curr->prio)
8875125e 2263 resched_curr(rq);
cb469845
SR
2264 }
2265}
2266
b18b6a9c 2267#ifdef CONFIG_POSIX_TIMERS
78f2c7db
PZ
2268static void watchdog(struct rq *rq, struct task_struct *p)
2269{
2270 unsigned long soft, hard;
2271
78d7d407
JS
2272 /* max may change after cur was read, this will be fixed next tick */
2273 soft = task_rlimit(p, RLIMIT_RTTIME);
2274 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
2275
2276 if (soft != RLIM_INFINITY) {
2277 unsigned long next;
2278
57d2aa00
YX
2279 if (p->rt.watchdog_stamp != jiffies) {
2280 p->rt.timeout++;
2281 p->rt.watchdog_stamp = jiffies;
2282 }
2283
78f2c7db 2284 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 2285 if (p->rt.timeout > next)
f06febc9 2286 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
2287 }
2288}
b18b6a9c
NP
2289#else
2290static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2291#endif
bb44e5d1 2292
d84b3131
FW
2293/*
2294 * scheduler tick hitting a task of our scheduling class.
2295 *
2296 * NOTE: This function can be called remotely by the tick offload that
2297 * goes along full dynticks. Therefore no local assumption can be made
2298 * and everything must be accessed through the @rq and @curr passed in
2299 * parameters.
2300 */
8f4d37ec 2301static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 2302{
454c7999
CC
2303 struct sched_rt_entity *rt_se = &p->rt;
2304
67e2be02
PZ
2305 update_curr_rt(rq);
2306
78f2c7db
PZ
2307 watchdog(rq, p);
2308
bb44e5d1
IM
2309 /*
2310 * RR tasks need a special form of timeslice management.
2311 * FIFO tasks have no timeslices.
2312 */
2313 if (p->policy != SCHED_RR)
2314 return;
2315
fa717060 2316 if (--p->rt.time_slice)
bb44e5d1
IM
2317 return;
2318
ce0dbbbb 2319 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 2320
98fbc798 2321 /*
e9aa39bb
LB
2322 * Requeue to the end of queue if we (and all of our ancestors) are not
2323 * the only element on the queue
98fbc798 2324 */
454c7999
CC
2325 for_each_sched_rt_entity(rt_se) {
2326 if (rt_se->run_list.prev != rt_se->run_list.next) {
2327 requeue_task_rt(rq, p, 0);
8aa6f0eb 2328 resched_curr(rq);
454c7999
CC
2329 return;
2330 }
98fbc798 2331 }
bb44e5d1
IM
2332}
2333
83b699ed
SV
2334static void set_curr_task_rt(struct rq *rq)
2335{
2336 struct task_struct *p = rq->curr;
2337
78becc27 2338 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
2339
2340 /* The running task is never eligible for pushing */
2341 dequeue_pushable_task(rq, p);
83b699ed
SV
2342}
2343
6d686f45 2344static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
2345{
2346 /*
2347 * Time slice is 0 for SCHED_FIFO tasks
2348 */
2349 if (task->policy == SCHED_RR)
ce0dbbbb 2350 return sched_rr_timeslice;
0d721cea
PW
2351 else
2352 return 0;
2353}
2354
029632fb 2355const struct sched_class rt_sched_class = {
5522d5d5 2356 .next = &fair_sched_class,
bb44e5d1
IM
2357 .enqueue_task = enqueue_task_rt,
2358 .dequeue_task = dequeue_task_rt,
2359 .yield_task = yield_task_rt,
2360
2361 .check_preempt_curr = check_preempt_curr_rt,
2362
2363 .pick_next_task = pick_next_task_rt,
2364 .put_prev_task = put_prev_task_rt,
2365
681f3e68 2366#ifdef CONFIG_SMP
4ce72a2c
LZ
2367 .select_task_rq = select_task_rq_rt,
2368
6c37067e 2369 .set_cpus_allowed = set_cpus_allowed_common,
1f11eb6a
GH
2370 .rq_online = rq_online_rt,
2371 .rq_offline = rq_offline_rt,
efbbd05a 2372 .task_woken = task_woken_rt,
cb469845 2373 .switched_from = switched_from_rt,
681f3e68 2374#endif
bb44e5d1 2375
83b699ed 2376 .set_curr_task = set_curr_task_rt,
bb44e5d1 2377 .task_tick = task_tick_rt,
cb469845 2378
0d721cea
PW
2379 .get_rr_interval = get_rr_interval_rt,
2380
cb469845
SR
2381 .prio_changed = prio_changed_rt,
2382 .switched_to = switched_to_rt,
6e998916
SG
2383
2384 .update_curr = update_curr_rt,
bb44e5d1 2385};
ada18de2 2386
8887cd99
NP
2387#ifdef CONFIG_RT_GROUP_SCHED
2388/*
2389 * Ensure that the real time constraints are schedulable.
2390 */
2391static DEFINE_MUTEX(rt_constraints_mutex);
2392
2393/* Must be called with tasklist_lock held */
2394static inline int tg_has_rt_tasks(struct task_group *tg)
2395{
2396 struct task_struct *g, *p;
2397
2398 /*
2399 * Autogroups do not have RT tasks; see autogroup_create().
2400 */
2401 if (task_group_is_autogroup(tg))
2402 return 0;
2403
2404 for_each_process_thread(g, p) {
2405 if (rt_task(p) && task_group(p) == tg)
2406 return 1;
2407 }
2408
2409 return 0;
2410}
2411
2412struct rt_schedulable_data {
2413 struct task_group *tg;
2414 u64 rt_period;
2415 u64 rt_runtime;
2416};
2417
2418static int tg_rt_schedulable(struct task_group *tg, void *data)
2419{
2420 struct rt_schedulable_data *d = data;
2421 struct task_group *child;
2422 unsigned long total, sum = 0;
2423 u64 period, runtime;
2424
2425 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2426 runtime = tg->rt_bandwidth.rt_runtime;
2427
2428 if (tg == d->tg) {
2429 period = d->rt_period;
2430 runtime = d->rt_runtime;
2431 }
2432
2433 /*
2434 * Cannot have more runtime than the period.
2435 */
2436 if (runtime > period && runtime != RUNTIME_INF)
2437 return -EINVAL;
2438
2439 /*
2440 * Ensure we don't starve existing RT tasks.
2441 */
2442 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2443 return -EBUSY;
2444
2445 total = to_ratio(period, runtime);
2446
2447 /*
2448 * Nobody can have more than the global setting allows.
2449 */
2450 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2451 return -EINVAL;
2452
2453 /*
2454 * The sum of our children's runtime should not exceed our own.
2455 */
2456 list_for_each_entry_rcu(child, &tg->children, siblings) {
2457 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2458 runtime = child->rt_bandwidth.rt_runtime;
2459
2460 if (child == d->tg) {
2461 period = d->rt_period;
2462 runtime = d->rt_runtime;
2463 }
2464
2465 sum += to_ratio(period, runtime);
2466 }
2467
2468 if (sum > total)
2469 return -EINVAL;
2470
2471 return 0;
2472}
2473
2474static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2475{
2476 int ret;
2477
2478 struct rt_schedulable_data data = {
2479 .tg = tg,
2480 .rt_period = period,
2481 .rt_runtime = runtime,
2482 };
2483
2484 rcu_read_lock();
2485 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2486 rcu_read_unlock();
2487
2488 return ret;
2489}
2490
2491static int tg_set_rt_bandwidth(struct task_group *tg,
2492 u64 rt_period, u64 rt_runtime)
2493{
2494 int i, err = 0;
2495
2496 /*
2497 * Disallowing the root group RT runtime is BAD, it would disallow the
2498 * kernel creating (and or operating) RT threads.
2499 */
2500 if (tg == &root_task_group && rt_runtime == 0)
2501 return -EINVAL;
2502
2503 /* No period doesn't make any sense. */
2504 if (rt_period == 0)
2505 return -EINVAL;
2506
2507 mutex_lock(&rt_constraints_mutex);
2508 read_lock(&tasklist_lock);
2509 err = __rt_schedulable(tg, rt_period, rt_runtime);
2510 if (err)
2511 goto unlock;
2512
2513 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2514 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2515 tg->rt_bandwidth.rt_runtime = rt_runtime;
2516
2517 for_each_possible_cpu(i) {
2518 struct rt_rq *rt_rq = tg->rt_rq[i];
2519
2520 raw_spin_lock(&rt_rq->rt_runtime_lock);
2521 rt_rq->rt_runtime = rt_runtime;
2522 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2523 }
2524 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2525unlock:
2526 read_unlock(&tasklist_lock);
2527 mutex_unlock(&rt_constraints_mutex);
2528
2529 return err;
2530}
2531
2532int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2533{
2534 u64 rt_runtime, rt_period;
2535
2536 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2537 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2538 if (rt_runtime_us < 0)
2539 rt_runtime = RUNTIME_INF;
2540
2541 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2542}
2543
2544long sched_group_rt_runtime(struct task_group *tg)
2545{
2546 u64 rt_runtime_us;
2547
2548 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2549 return -1;
2550
2551 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2552 do_div(rt_runtime_us, NSEC_PER_USEC);
2553 return rt_runtime_us;
2554}
2555
2556int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2557{
2558 u64 rt_runtime, rt_period;
2559
2560 rt_period = rt_period_us * NSEC_PER_USEC;
2561 rt_runtime = tg->rt_bandwidth.rt_runtime;
2562
2563 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2564}
2565
2566long sched_group_rt_period(struct task_group *tg)
2567{
2568 u64 rt_period_us;
2569
2570 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2571 do_div(rt_period_us, NSEC_PER_USEC);
2572 return rt_period_us;
2573}
2574
2575static int sched_rt_global_constraints(void)
2576{
2577 int ret = 0;
2578
2579 mutex_lock(&rt_constraints_mutex);
2580 read_lock(&tasklist_lock);
2581 ret = __rt_schedulable(NULL, 0, 0);
2582 read_unlock(&tasklist_lock);
2583 mutex_unlock(&rt_constraints_mutex);
2584
2585 return ret;
2586}
2587
2588int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2589{
2590 /* Don't accept realtime tasks when there is no way for them to run */
2591 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2592 return 0;
2593
2594 return 1;
2595}
2596
2597#else /* !CONFIG_RT_GROUP_SCHED */
2598static int sched_rt_global_constraints(void)
2599{
2600 unsigned long flags;
2601 int i;
2602
2603 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2604 for_each_possible_cpu(i) {
2605 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2606
2607 raw_spin_lock(&rt_rq->rt_runtime_lock);
2608 rt_rq->rt_runtime = global_rt_runtime();
2609 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2610 }
2611 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2612
2613 return 0;
2614}
2615#endif /* CONFIG_RT_GROUP_SCHED */
2616
2617static int sched_rt_global_validate(void)
2618{
2619 if (sysctl_sched_rt_period <= 0)
2620 return -EINVAL;
2621
2622 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2623 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2624 return -EINVAL;
2625
2626 return 0;
2627}
2628
2629static void sched_rt_do_global(void)
2630{
2631 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2632 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2633}
2634
2635int sched_rt_handler(struct ctl_table *table, int write,
2636 void __user *buffer, size_t *lenp,
2637 loff_t *ppos)
2638{
2639 int old_period, old_runtime;
2640 static DEFINE_MUTEX(mutex);
2641 int ret;
2642
2643 mutex_lock(&mutex);
2644 old_period = sysctl_sched_rt_period;
2645 old_runtime = sysctl_sched_rt_runtime;
2646
2647 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2648
2649 if (!ret && write) {
2650 ret = sched_rt_global_validate();
2651 if (ret)
2652 goto undo;
2653
2654 ret = sched_dl_global_validate();
2655 if (ret)
2656 goto undo;
2657
2658 ret = sched_rt_global_constraints();
2659 if (ret)
2660 goto undo;
2661
2662 sched_rt_do_global();
2663 sched_dl_do_global();
2664 }
2665 if (0) {
2666undo:
2667 sysctl_sched_rt_period = old_period;
2668 sysctl_sched_rt_runtime = old_runtime;
2669 }
2670 mutex_unlock(&mutex);
2671
2672 return ret;
2673}
2674
2675int sched_rr_handler(struct ctl_table *table, int write,
2676 void __user *buffer, size_t *lenp,
2677 loff_t *ppos)
2678{
2679 int ret;
2680 static DEFINE_MUTEX(mutex);
2681
2682 mutex_lock(&mutex);
2683 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2684 /*
2685 * Make sure that internally we keep jiffies.
2686 * Also, writing zero resets the timeslice to default:
2687 */
2688 if (!ret && write) {
2689 sched_rr_timeslice =
2690 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2691 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2692 }
2693 mutex_unlock(&mutex);
97fb7a0a 2694
8887cd99
NP
2695 return ret;
2696}
2697
ada18de2
PZ
2698#ifdef CONFIG_SCHED_DEBUG
2699extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2700
029632fb 2701void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2702{
ec514c48 2703 rt_rq_iter_t iter;
ada18de2
PZ
2704 struct rt_rq *rt_rq;
2705
2706 rcu_read_lock();
ec514c48 2707 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2708 print_rt_rq(m, cpu, rt_rq);
2709 rcu_read_unlock();
2710}
55e12e5e 2711#endif /* CONFIG_SCHED_DEBUG */