sched: Assign correct scheduling domain to 'sd_llc'
[linux-2.6-block.git] / kernel / sched / rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
029632fb
PZ
6#include "sched.h"
7
8#include <linux/slab.h>
9
ce0dbbbb
CW
10int sched_rr_timeslice = RR_TIMESLICE;
11
029632fb
PZ
12static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14struct rt_bandwidth def_rt_bandwidth;
15
16static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17{
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
20 ktime_t now;
21 int overrun;
22 int idle = 0;
23
24 for (;;) {
25 now = hrtimer_cb_get_time(timer);
26 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28 if (!overrun)
29 break;
30
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 }
33
34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35}
36
37void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38{
39 rt_b->rt_period = ns_to_ktime(period);
40 rt_b->rt_runtime = runtime;
41
42 raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44 hrtimer_init(&rt_b->rt_period_timer,
45 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 rt_b->rt_period_timer.function = sched_rt_period_timer;
47}
48
49static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50{
51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 return;
53
54 if (hrtimer_active(&rt_b->rt_period_timer))
55 return;
56
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 raw_spin_unlock(&rt_b->rt_runtime_lock);
60}
61
62void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63{
64 struct rt_prio_array *array;
65 int i;
66
67 array = &rt_rq->active;
68 for (i = 0; i < MAX_RT_PRIO; i++) {
69 INIT_LIST_HEAD(array->queue + i);
70 __clear_bit(i, array->bitmap);
71 }
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO, array->bitmap);
74
75#if defined CONFIG_SMP
76 rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 rt_rq->highest_prio.next = MAX_RT_PRIO;
78 rt_rq->rt_nr_migratory = 0;
79 rt_rq->overloaded = 0;
80 plist_head_init(&rt_rq->pushable_tasks);
81#endif
82
83 rt_rq->rt_time = 0;
84 rt_rq->rt_throttled = 0;
85 rt_rq->rt_runtime = 0;
86 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
87}
88
8f48894f 89#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
90static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
91{
92 hrtimer_cancel(&rt_b->rt_period_timer);
93}
8f48894f
PZ
94
95#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
96
398a153b
GH
97static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
98{
8f48894f
PZ
99#ifdef CONFIG_SCHED_DEBUG
100 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
101#endif
398a153b
GH
102 return container_of(rt_se, struct task_struct, rt);
103}
104
398a153b
GH
105static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
106{
107 return rt_rq->rq;
108}
109
110static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
111{
112 return rt_se->rt_rq;
113}
114
029632fb
PZ
115void free_rt_sched_group(struct task_group *tg)
116{
117 int i;
118
119 if (tg->rt_se)
120 destroy_rt_bandwidth(&tg->rt_bandwidth);
121
122 for_each_possible_cpu(i) {
123 if (tg->rt_rq)
124 kfree(tg->rt_rq[i]);
125 if (tg->rt_se)
126 kfree(tg->rt_se[i]);
127 }
128
129 kfree(tg->rt_rq);
130 kfree(tg->rt_se);
131}
132
133void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
134 struct sched_rt_entity *rt_se, int cpu,
135 struct sched_rt_entity *parent)
136{
137 struct rq *rq = cpu_rq(cpu);
138
139 rt_rq->highest_prio.curr = MAX_RT_PRIO;
140 rt_rq->rt_nr_boosted = 0;
141 rt_rq->rq = rq;
142 rt_rq->tg = tg;
143
144 tg->rt_rq[cpu] = rt_rq;
145 tg->rt_se[cpu] = rt_se;
146
147 if (!rt_se)
148 return;
149
150 if (!parent)
151 rt_se->rt_rq = &rq->rt;
152 else
153 rt_se->rt_rq = parent->my_q;
154
155 rt_se->my_q = rt_rq;
156 rt_se->parent = parent;
157 INIT_LIST_HEAD(&rt_se->run_list);
158}
159
160int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
161{
162 struct rt_rq *rt_rq;
163 struct sched_rt_entity *rt_se;
164 int i;
165
166 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
167 if (!tg->rt_rq)
168 goto err;
169 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
170 if (!tg->rt_se)
171 goto err;
172
173 init_rt_bandwidth(&tg->rt_bandwidth,
174 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
175
176 for_each_possible_cpu(i) {
177 rt_rq = kzalloc_node(sizeof(struct rt_rq),
178 GFP_KERNEL, cpu_to_node(i));
179 if (!rt_rq)
180 goto err;
181
182 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
183 GFP_KERNEL, cpu_to_node(i));
184 if (!rt_se)
185 goto err_free_rq;
186
187 init_rt_rq(rt_rq, cpu_rq(i));
188 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
189 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
190 }
191
192 return 1;
193
194err_free_rq:
195 kfree(rt_rq);
196err:
197 return 0;
198}
199
398a153b
GH
200#else /* CONFIG_RT_GROUP_SCHED */
201
a1ba4d8b
PZ
202#define rt_entity_is_task(rt_se) (1)
203
8f48894f
PZ
204static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
205{
206 return container_of(rt_se, struct task_struct, rt);
207}
208
398a153b
GH
209static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
210{
211 return container_of(rt_rq, struct rq, rt);
212}
213
214static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
215{
216 struct task_struct *p = rt_task_of(rt_se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->rt;
220}
221
029632fb
PZ
222void free_rt_sched_group(struct task_group *tg) { }
223
224int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
225{
226 return 1;
227}
398a153b
GH
228#endif /* CONFIG_RT_GROUP_SCHED */
229
4fd29176 230#ifdef CONFIG_SMP
84de4274 231
637f5085 232static inline int rt_overloaded(struct rq *rq)
4fd29176 233{
637f5085 234 return atomic_read(&rq->rd->rto_count);
4fd29176 235}
84de4274 236
4fd29176
SR
237static inline void rt_set_overload(struct rq *rq)
238{
1f11eb6a
GH
239 if (!rq->online)
240 return;
241
c6c4927b 242 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
243 /*
244 * Make sure the mask is visible before we set
245 * the overload count. That is checked to determine
246 * if we should look at the mask. It would be a shame
247 * if we looked at the mask, but the mask was not
248 * updated yet.
7c3f2ab7
PZ
249 *
250 * Matched by the barrier in pull_rt_task().
4fd29176 251 */
7c3f2ab7 252 smp_wmb();
637f5085 253 atomic_inc(&rq->rd->rto_count);
4fd29176 254}
84de4274 255
4fd29176
SR
256static inline void rt_clear_overload(struct rq *rq)
257{
1f11eb6a
GH
258 if (!rq->online)
259 return;
260
4fd29176 261 /* the order here really doesn't matter */
637f5085 262 atomic_dec(&rq->rd->rto_count);
c6c4927b 263 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 264}
73fe6aae 265
398a153b 266static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 267{
a1ba4d8b 268 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
269 if (!rt_rq->overloaded) {
270 rt_set_overload(rq_of_rt_rq(rt_rq));
271 rt_rq->overloaded = 1;
cdc8eb98 272 }
398a153b
GH
273 } else if (rt_rq->overloaded) {
274 rt_clear_overload(rq_of_rt_rq(rt_rq));
275 rt_rq->overloaded = 0;
637f5085 276 }
73fe6aae 277}
4fd29176 278
398a153b
GH
279static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
280{
29baa747
PZ
281 struct task_struct *p;
282
a1ba4d8b
PZ
283 if (!rt_entity_is_task(rt_se))
284 return;
285
29baa747 286 p = rt_task_of(rt_se);
a1ba4d8b
PZ
287 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
288
289 rt_rq->rt_nr_total++;
29baa747 290 if (p->nr_cpus_allowed > 1)
398a153b
GH
291 rt_rq->rt_nr_migratory++;
292
293 update_rt_migration(rt_rq);
294}
295
296static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
297{
29baa747
PZ
298 struct task_struct *p;
299
a1ba4d8b
PZ
300 if (!rt_entity_is_task(rt_se))
301 return;
302
29baa747 303 p = rt_task_of(rt_se);
a1ba4d8b
PZ
304 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
305
306 rt_rq->rt_nr_total--;
29baa747 307 if (p->nr_cpus_allowed > 1)
398a153b
GH
308 rt_rq->rt_nr_migratory--;
309
310 update_rt_migration(rt_rq);
311}
312
5181f4a4
SR
313static inline int has_pushable_tasks(struct rq *rq)
314{
315 return !plist_head_empty(&rq->rt.pushable_tasks);
316}
317
917b627d
GH
318static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
319{
320 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
321 plist_node_init(&p->pushable_tasks, p->prio);
322 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
323
324 /* Update the highest prio pushable task */
325 if (p->prio < rq->rt.highest_prio.next)
326 rq->rt.highest_prio.next = p->prio;
917b627d
GH
327}
328
329static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
330{
331 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 332
5181f4a4
SR
333 /* Update the new highest prio pushable task */
334 if (has_pushable_tasks(rq)) {
335 p = plist_first_entry(&rq->rt.pushable_tasks,
336 struct task_struct, pushable_tasks);
337 rq->rt.highest_prio.next = p->prio;
338 } else
339 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
340}
341
917b627d
GH
342#else
343
ceacc2c1 344static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 345{
6f505b16
PZ
346}
347
ceacc2c1
PZ
348static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
349{
350}
351
b07430ac 352static inline
ceacc2c1
PZ
353void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
354{
355}
356
398a153b 357static inline
ceacc2c1
PZ
358void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
359{
360}
917b627d 361
4fd29176
SR
362#endif /* CONFIG_SMP */
363
6f505b16
PZ
364static inline int on_rt_rq(struct sched_rt_entity *rt_se)
365{
366 return !list_empty(&rt_se->run_list);
367}
368
052f1dc7 369#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 370
9f0c1e56 371static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
372{
373 if (!rt_rq->tg)
9f0c1e56 374 return RUNTIME_INF;
6f505b16 375
ac086bc2
PZ
376 return rt_rq->rt_runtime;
377}
378
379static inline u64 sched_rt_period(struct rt_rq *rt_rq)
380{
381 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
382}
383
ec514c48
CX
384typedef struct task_group *rt_rq_iter_t;
385
1c09ab0d
YZ
386static inline struct task_group *next_task_group(struct task_group *tg)
387{
388 do {
389 tg = list_entry_rcu(tg->list.next,
390 typeof(struct task_group), list);
391 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
392
393 if (&tg->list == &task_groups)
394 tg = NULL;
395
396 return tg;
397}
398
399#define for_each_rt_rq(rt_rq, iter, rq) \
400 for (iter = container_of(&task_groups, typeof(*iter), list); \
401 (iter = next_task_group(iter)) && \
402 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 403
6f505b16
PZ
404#define for_each_sched_rt_entity(rt_se) \
405 for (; rt_se; rt_se = rt_se->parent)
406
407static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
408{
409 return rt_se->my_q;
410}
411
37dad3fc 412static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
413static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
414
9f0c1e56 415static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 416{
f6121f4f 417 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
74b7eb58
YZ
418 struct sched_rt_entity *rt_se;
419
0c3b9168
BS
420 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
421
422 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 423
f6121f4f
DF
424 if (rt_rq->rt_nr_running) {
425 if (rt_se && !on_rt_rq(rt_se))
37dad3fc 426 enqueue_rt_entity(rt_se, false);
e864c499 427 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 428 resched_task(curr);
6f505b16
PZ
429 }
430}
431
9f0c1e56 432static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 433{
74b7eb58 434 struct sched_rt_entity *rt_se;
0c3b9168 435 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 436
0c3b9168 437 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16
PZ
438
439 if (rt_se && on_rt_rq(rt_se))
440 dequeue_rt_entity(rt_se);
441}
442
23b0fdfc
PZ
443static inline int rt_rq_throttled(struct rt_rq *rt_rq)
444{
445 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
446}
447
448static int rt_se_boosted(struct sched_rt_entity *rt_se)
449{
450 struct rt_rq *rt_rq = group_rt_rq(rt_se);
451 struct task_struct *p;
452
453 if (rt_rq)
454 return !!rt_rq->rt_nr_boosted;
455
456 p = rt_task_of(rt_se);
457 return p->prio != p->normal_prio;
458}
459
d0b27fa7 460#ifdef CONFIG_SMP
c6c4927b 461static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 462{
424c93fe 463 return this_rq()->rd->span;
d0b27fa7 464}
6f505b16 465#else
c6c4927b 466static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 467{
c6c4927b 468 return cpu_online_mask;
d0b27fa7
PZ
469}
470#endif
6f505b16 471
d0b27fa7
PZ
472static inline
473struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 474{
d0b27fa7
PZ
475 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
476}
9f0c1e56 477
ac086bc2
PZ
478static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
479{
480 return &rt_rq->tg->rt_bandwidth;
481}
482
55e12e5e 483#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
484
485static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
486{
ac086bc2
PZ
487 return rt_rq->rt_runtime;
488}
489
490static inline u64 sched_rt_period(struct rt_rq *rt_rq)
491{
492 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
493}
494
ec514c48
CX
495typedef struct rt_rq *rt_rq_iter_t;
496
497#define for_each_rt_rq(rt_rq, iter, rq) \
498 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
499
6f505b16
PZ
500#define for_each_sched_rt_entity(rt_se) \
501 for (; rt_se; rt_se = NULL)
502
503static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
504{
505 return NULL;
506}
507
9f0c1e56 508static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 509{
f3ade837
JB
510 if (rt_rq->rt_nr_running)
511 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
512}
513
9f0c1e56 514static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
515{
516}
517
23b0fdfc
PZ
518static inline int rt_rq_throttled(struct rt_rq *rt_rq)
519{
520 return rt_rq->rt_throttled;
521}
d0b27fa7 522
c6c4927b 523static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 524{
c6c4927b 525 return cpu_online_mask;
d0b27fa7
PZ
526}
527
528static inline
529struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
530{
531 return &cpu_rq(cpu)->rt;
532}
533
ac086bc2
PZ
534static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
535{
536 return &def_rt_bandwidth;
537}
538
55e12e5e 539#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 540
ac086bc2 541#ifdef CONFIG_SMP
78333cdd
PZ
542/*
543 * We ran out of runtime, see if we can borrow some from our neighbours.
544 */
b79f3833 545static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
546{
547 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 548 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
ac086bc2
PZ
549 int i, weight, more = 0;
550 u64 rt_period;
551
c6c4927b 552 weight = cpumask_weight(rd->span);
ac086bc2 553
0986b11b 554 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 555 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 556 for_each_cpu(i, rd->span) {
ac086bc2
PZ
557 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
558 s64 diff;
559
560 if (iter == rt_rq)
561 continue;
562
0986b11b 563 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
564 /*
565 * Either all rqs have inf runtime and there's nothing to steal
566 * or __disable_runtime() below sets a specific rq to inf to
567 * indicate its been disabled and disalow stealing.
568 */
7def2be1
PZ
569 if (iter->rt_runtime == RUNTIME_INF)
570 goto next;
571
78333cdd
PZ
572 /*
573 * From runqueues with spare time, take 1/n part of their
574 * spare time, but no more than our period.
575 */
ac086bc2
PZ
576 diff = iter->rt_runtime - iter->rt_time;
577 if (diff > 0) {
58838cf3 578 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
579 if (rt_rq->rt_runtime + diff > rt_period)
580 diff = rt_period - rt_rq->rt_runtime;
581 iter->rt_runtime -= diff;
582 rt_rq->rt_runtime += diff;
583 more = 1;
584 if (rt_rq->rt_runtime == rt_period) {
0986b11b 585 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
586 break;
587 }
588 }
7def2be1 589next:
0986b11b 590 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 591 }
0986b11b 592 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
593
594 return more;
595}
7def2be1 596
78333cdd
PZ
597/*
598 * Ensure this RQ takes back all the runtime it lend to its neighbours.
599 */
7def2be1
PZ
600static void __disable_runtime(struct rq *rq)
601{
602 struct root_domain *rd = rq->rd;
ec514c48 603 rt_rq_iter_t iter;
7def2be1
PZ
604 struct rt_rq *rt_rq;
605
606 if (unlikely(!scheduler_running))
607 return;
608
ec514c48 609 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
610 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
611 s64 want;
612 int i;
613
0986b11b
TG
614 raw_spin_lock(&rt_b->rt_runtime_lock);
615 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
616 /*
617 * Either we're all inf and nobody needs to borrow, or we're
618 * already disabled and thus have nothing to do, or we have
619 * exactly the right amount of runtime to take out.
620 */
7def2be1
PZ
621 if (rt_rq->rt_runtime == RUNTIME_INF ||
622 rt_rq->rt_runtime == rt_b->rt_runtime)
623 goto balanced;
0986b11b 624 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 625
78333cdd
PZ
626 /*
627 * Calculate the difference between what we started out with
628 * and what we current have, that's the amount of runtime
629 * we lend and now have to reclaim.
630 */
7def2be1
PZ
631 want = rt_b->rt_runtime - rt_rq->rt_runtime;
632
78333cdd
PZ
633 /*
634 * Greedy reclaim, take back as much as we can.
635 */
c6c4927b 636 for_each_cpu(i, rd->span) {
7def2be1
PZ
637 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
638 s64 diff;
639
78333cdd
PZ
640 /*
641 * Can't reclaim from ourselves or disabled runqueues.
642 */
f1679d08 643 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
644 continue;
645
0986b11b 646 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
647 if (want > 0) {
648 diff = min_t(s64, iter->rt_runtime, want);
649 iter->rt_runtime -= diff;
650 want -= diff;
651 } else {
652 iter->rt_runtime -= want;
653 want -= want;
654 }
0986b11b 655 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
656
657 if (!want)
658 break;
659 }
660
0986b11b 661 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
662 /*
663 * We cannot be left wanting - that would mean some runtime
664 * leaked out of the system.
665 */
7def2be1
PZ
666 BUG_ON(want);
667balanced:
78333cdd
PZ
668 /*
669 * Disable all the borrow logic by pretending we have inf
670 * runtime - in which case borrowing doesn't make sense.
671 */
7def2be1 672 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 673 rt_rq->rt_throttled = 0;
0986b11b
TG
674 raw_spin_unlock(&rt_rq->rt_runtime_lock);
675 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
676 }
677}
678
7def2be1
PZ
679static void __enable_runtime(struct rq *rq)
680{
ec514c48 681 rt_rq_iter_t iter;
7def2be1
PZ
682 struct rt_rq *rt_rq;
683
684 if (unlikely(!scheduler_running))
685 return;
686
78333cdd
PZ
687 /*
688 * Reset each runqueue's bandwidth settings
689 */
ec514c48 690 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
691 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
692
0986b11b
TG
693 raw_spin_lock(&rt_b->rt_runtime_lock);
694 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
695 rt_rq->rt_runtime = rt_b->rt_runtime;
696 rt_rq->rt_time = 0;
baf25731 697 rt_rq->rt_throttled = 0;
0986b11b
TG
698 raw_spin_unlock(&rt_rq->rt_runtime_lock);
699 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
700 }
701}
702
eff6549b
PZ
703static int balance_runtime(struct rt_rq *rt_rq)
704{
705 int more = 0;
706
4a6184ce
PZ
707 if (!sched_feat(RT_RUNTIME_SHARE))
708 return more;
709
eff6549b 710 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 711 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 712 more = do_balance_runtime(rt_rq);
0986b11b 713 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
714 }
715
716 return more;
717}
55e12e5e 718#else /* !CONFIG_SMP */
eff6549b
PZ
719static inline int balance_runtime(struct rt_rq *rt_rq)
720{
721 return 0;
722}
55e12e5e 723#endif /* CONFIG_SMP */
ac086bc2 724
eff6549b
PZ
725static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
726{
42c62a58 727 int i, idle = 1, throttled = 0;
c6c4927b 728 const struct cpumask *span;
eff6549b 729
eff6549b 730 span = sched_rt_period_mask();
e221d028
MG
731#ifdef CONFIG_RT_GROUP_SCHED
732 /*
733 * FIXME: isolated CPUs should really leave the root task group,
734 * whether they are isolcpus or were isolated via cpusets, lest
735 * the timer run on a CPU which does not service all runqueues,
736 * potentially leaving other CPUs indefinitely throttled. If
737 * isolation is really required, the user will turn the throttle
738 * off to kill the perturbations it causes anyway. Meanwhile,
739 * this maintains functionality for boot and/or troubleshooting.
740 */
741 if (rt_b == &root_task_group.rt_bandwidth)
742 span = cpu_online_mask;
743#endif
c6c4927b 744 for_each_cpu(i, span) {
eff6549b
PZ
745 int enqueue = 0;
746 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
747 struct rq *rq = rq_of_rt_rq(rt_rq);
748
05fa785c 749 raw_spin_lock(&rq->lock);
eff6549b
PZ
750 if (rt_rq->rt_time) {
751 u64 runtime;
752
0986b11b 753 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
754 if (rt_rq->rt_throttled)
755 balance_runtime(rt_rq);
756 runtime = rt_rq->rt_runtime;
757 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
758 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
759 rt_rq->rt_throttled = 0;
760 enqueue = 1;
61eadef6
MG
761
762 /*
763 * Force a clock update if the CPU was idle,
764 * lest wakeup -> unthrottle time accumulate.
765 */
766 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
767 rq->skip_clock_update = -1;
eff6549b
PZ
768 }
769 if (rt_rq->rt_time || rt_rq->rt_nr_running)
770 idle = 0;
0986b11b 771 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 772 } else if (rt_rq->rt_nr_running) {
6c3df255 773 idle = 0;
0c3b9168
BS
774 if (!rt_rq_throttled(rt_rq))
775 enqueue = 1;
776 }
42c62a58
PZ
777 if (rt_rq->rt_throttled)
778 throttled = 1;
eff6549b
PZ
779
780 if (enqueue)
781 sched_rt_rq_enqueue(rt_rq);
05fa785c 782 raw_spin_unlock(&rq->lock);
eff6549b
PZ
783 }
784
42c62a58
PZ
785 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
786 return 1;
787
eff6549b
PZ
788 return idle;
789}
ac086bc2 790
6f505b16
PZ
791static inline int rt_se_prio(struct sched_rt_entity *rt_se)
792{
052f1dc7 793#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
794 struct rt_rq *rt_rq = group_rt_rq(rt_se);
795
796 if (rt_rq)
e864c499 797 return rt_rq->highest_prio.curr;
6f505b16
PZ
798#endif
799
800 return rt_task_of(rt_se)->prio;
801}
802
9f0c1e56 803static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 804{
9f0c1e56 805 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 806
fa85ae24 807 if (rt_rq->rt_throttled)
23b0fdfc 808 return rt_rq_throttled(rt_rq);
fa85ae24 809
5b680fd6 810 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
811 return 0;
812
b79f3833
PZ
813 balance_runtime(rt_rq);
814 runtime = sched_rt_runtime(rt_rq);
815 if (runtime == RUNTIME_INF)
816 return 0;
ac086bc2 817
9f0c1e56 818 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
819 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
820
821 /*
822 * Don't actually throttle groups that have no runtime assigned
823 * but accrue some time due to boosting.
824 */
825 if (likely(rt_b->rt_runtime)) {
3ccf3e83
PZ
826 static bool once = false;
827
7abc63b1 828 rt_rq->rt_throttled = 1;
3ccf3e83
PZ
829
830 if (!once) {
831 once = true;
832 printk_sched("sched: RT throttling activated\n");
833 }
7abc63b1
PZ
834 } else {
835 /*
836 * In case we did anyway, make it go away,
837 * replenishment is a joke, since it will replenish us
838 * with exactly 0 ns.
839 */
840 rt_rq->rt_time = 0;
841 }
842
23b0fdfc 843 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 844 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
845 return 1;
846 }
fa85ae24
PZ
847 }
848
849 return 0;
850}
851
bb44e5d1
IM
852/*
853 * Update the current task's runtime statistics. Skip current tasks that
854 * are not in our scheduling class.
855 */
a9957449 856static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
857{
858 struct task_struct *curr = rq->curr;
6f505b16
PZ
859 struct sched_rt_entity *rt_se = &curr->rt;
860 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
861 u64 delta_exec;
862
06c3bc65 863 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
864 return;
865
78becc27 866 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
fc79e240
KT
867 if (unlikely((s64)delta_exec <= 0))
868 return;
6cfb0d5d 869
42c62a58
PZ
870 schedstat_set(curr->se.statistics.exec_max,
871 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
872
873 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
874 account_group_exec_runtime(curr, delta_exec);
875
78becc27 876 curr->se.exec_start = rq_clock_task(rq);
d842de87 877 cpuacct_charge(curr, delta_exec);
fa85ae24 878
e9e9250b
PZ
879 sched_rt_avg_update(rq, delta_exec);
880
0b148fa0
PZ
881 if (!rt_bandwidth_enabled())
882 return;
883
354d60c2
DG
884 for_each_sched_rt_entity(rt_se) {
885 rt_rq = rt_rq_of_se(rt_se);
886
cc2991cf 887 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 888 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
889 rt_rq->rt_time += delta_exec;
890 if (sched_rt_runtime_exceeded(rt_rq))
891 resched_task(curr);
0986b11b 892 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 893 }
354d60c2 894 }
bb44e5d1
IM
895}
896
398a153b 897#if defined CONFIG_SMP
e864c499 898
398a153b
GH
899static void
900inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 901{
4d984277 902 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 903
5181f4a4
SR
904 if (rq->online && prio < prev_prio)
905 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 906}
73fe6aae 907
398a153b
GH
908static void
909dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
910{
911 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 912
398a153b
GH
913 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
914 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
915}
916
398a153b
GH
917#else /* CONFIG_SMP */
918
6f505b16 919static inline
398a153b
GH
920void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
921static inline
922void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
923
924#endif /* CONFIG_SMP */
6e0534f2 925
052f1dc7 926#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
927static void
928inc_rt_prio(struct rt_rq *rt_rq, int prio)
929{
930 int prev_prio = rt_rq->highest_prio.curr;
931
932 if (prio < prev_prio)
933 rt_rq->highest_prio.curr = prio;
934
935 inc_rt_prio_smp(rt_rq, prio, prev_prio);
936}
937
938static void
939dec_rt_prio(struct rt_rq *rt_rq, int prio)
940{
941 int prev_prio = rt_rq->highest_prio.curr;
942
6f505b16 943 if (rt_rq->rt_nr_running) {
764a9d6f 944
398a153b 945 WARN_ON(prio < prev_prio);
764a9d6f 946
e864c499 947 /*
398a153b
GH
948 * This may have been our highest task, and therefore
949 * we may have some recomputation to do
e864c499 950 */
398a153b 951 if (prio == prev_prio) {
e864c499
GH
952 struct rt_prio_array *array = &rt_rq->active;
953
954 rt_rq->highest_prio.curr =
764a9d6f 955 sched_find_first_bit(array->bitmap);
e864c499
GH
956 }
957
764a9d6f 958 } else
e864c499 959 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 960
398a153b
GH
961 dec_rt_prio_smp(rt_rq, prio, prev_prio);
962}
1f11eb6a 963
398a153b
GH
964#else
965
966static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
967static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
968
969#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 970
052f1dc7 971#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
972
973static void
974inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
975{
976 if (rt_se_boosted(rt_se))
977 rt_rq->rt_nr_boosted++;
978
979 if (rt_rq->tg)
980 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
981}
982
983static void
984dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
985{
23b0fdfc
PZ
986 if (rt_se_boosted(rt_se))
987 rt_rq->rt_nr_boosted--;
988
989 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
990}
991
992#else /* CONFIG_RT_GROUP_SCHED */
993
994static void
995inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
996{
997 start_rt_bandwidth(&def_rt_bandwidth);
998}
999
1000static inline
1001void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1002
1003#endif /* CONFIG_RT_GROUP_SCHED */
1004
1005static inline
1006void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1007{
1008 int prio = rt_se_prio(rt_se);
1009
1010 WARN_ON(!rt_prio(prio));
1011 rt_rq->rt_nr_running++;
1012
1013 inc_rt_prio(rt_rq, prio);
1014 inc_rt_migration(rt_se, rt_rq);
1015 inc_rt_group(rt_se, rt_rq);
1016}
1017
1018static inline
1019void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1020{
1021 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1022 WARN_ON(!rt_rq->rt_nr_running);
1023 rt_rq->rt_nr_running--;
1024
1025 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1026 dec_rt_migration(rt_se, rt_rq);
1027 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1028}
1029
37dad3fc 1030static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 1031{
6f505b16
PZ
1032 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1033 struct rt_prio_array *array = &rt_rq->active;
1034 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1035 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1036
ad2a3f13
PZ
1037 /*
1038 * Don't enqueue the group if its throttled, or when empty.
1039 * The latter is a consequence of the former when a child group
1040 * get throttled and the current group doesn't have any other
1041 * active members.
1042 */
1043 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 1044 return;
63489e45 1045
37dad3fc
TG
1046 if (head)
1047 list_add(&rt_se->run_list, queue);
1048 else
1049 list_add_tail(&rt_se->run_list, queue);
6f505b16 1050 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 1051
6f505b16
PZ
1052 inc_rt_tasks(rt_se, rt_rq);
1053}
1054
ad2a3f13 1055static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
1056{
1057 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1058 struct rt_prio_array *array = &rt_rq->active;
1059
1060 list_del_init(&rt_se->run_list);
1061 if (list_empty(array->queue + rt_se_prio(rt_se)))
1062 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1063
1064 dec_rt_tasks(rt_se, rt_rq);
1065}
1066
1067/*
1068 * Because the prio of an upper entry depends on the lower
1069 * entries, we must remove entries top - down.
6f505b16 1070 */
ad2a3f13 1071static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 1072{
ad2a3f13 1073 struct sched_rt_entity *back = NULL;
6f505b16 1074
58d6c2d7
PZ
1075 for_each_sched_rt_entity(rt_se) {
1076 rt_se->back = back;
1077 back = rt_se;
1078 }
1079
1080 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1081 if (on_rt_rq(rt_se))
ad2a3f13
PZ
1082 __dequeue_rt_entity(rt_se);
1083 }
1084}
1085
37dad3fc 1086static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13
PZ
1087{
1088 dequeue_rt_stack(rt_se);
1089 for_each_sched_rt_entity(rt_se)
37dad3fc 1090 __enqueue_rt_entity(rt_se, head);
ad2a3f13
PZ
1091}
1092
1093static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1094{
1095 dequeue_rt_stack(rt_se);
1096
1097 for_each_sched_rt_entity(rt_se) {
1098 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1099
1100 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 1101 __enqueue_rt_entity(rt_se, false);
58d6c2d7 1102 }
bb44e5d1
IM
1103}
1104
1105/*
1106 * Adding/removing a task to/from a priority array:
1107 */
ea87bb78 1108static void
371fd7e7 1109enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1110{
1111 struct sched_rt_entity *rt_se = &p->rt;
1112
371fd7e7 1113 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1114 rt_se->timeout = 0;
1115
371fd7e7 1116 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 1117
29baa747 1118 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1119 enqueue_pushable_task(rq, p);
953bfcd1
PT
1120
1121 inc_nr_running(rq);
6f505b16
PZ
1122}
1123
371fd7e7 1124static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1125{
6f505b16 1126 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1127
f1e14ef6 1128 update_curr_rt(rq);
ad2a3f13 1129 dequeue_rt_entity(rt_se);
c09595f6 1130
917b627d 1131 dequeue_pushable_task(rq, p);
953bfcd1
PT
1132
1133 dec_nr_running(rq);
bb44e5d1
IM
1134}
1135
1136/*
60686317
RW
1137 * Put task to the head or the end of the run list without the overhead of
1138 * dequeue followed by enqueue.
bb44e5d1 1139 */
7ebefa8c
DA
1140static void
1141requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1142{
1cdad715 1143 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1144 struct rt_prio_array *array = &rt_rq->active;
1145 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1146
1147 if (head)
1148 list_move(&rt_se->run_list, queue);
1149 else
1150 list_move_tail(&rt_se->run_list, queue);
1cdad715 1151 }
6f505b16
PZ
1152}
1153
7ebefa8c 1154static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1155{
6f505b16
PZ
1156 struct sched_rt_entity *rt_se = &p->rt;
1157 struct rt_rq *rt_rq;
bb44e5d1 1158
6f505b16
PZ
1159 for_each_sched_rt_entity(rt_se) {
1160 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1161 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1162 }
bb44e5d1
IM
1163}
1164
6f505b16 1165static void yield_task_rt(struct rq *rq)
bb44e5d1 1166{
7ebefa8c 1167 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1168}
1169
e7693a36 1170#ifdef CONFIG_SMP
318e0893
GH
1171static int find_lowest_rq(struct task_struct *task);
1172
0017d735 1173static int
ac66f547 1174select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
e7693a36 1175{
7608dec2
PZ
1176 struct task_struct *curr;
1177 struct rq *rq;
c37495fd 1178
29baa747 1179 if (p->nr_cpus_allowed == 1)
76854c7e
MG
1180 goto out;
1181
c37495fd
SR
1182 /* For anything but wake ups, just return the task_cpu */
1183 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1184 goto out;
1185
7608dec2
PZ
1186 rq = cpu_rq(cpu);
1187
1188 rcu_read_lock();
1189 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1190
318e0893 1191 /*
7608dec2 1192 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1193 * try to see if we can wake this RT task up on another
1194 * runqueue. Otherwise simply start this RT task
1195 * on its current runqueue.
1196 *
43fa5460
SR
1197 * We want to avoid overloading runqueues. If the woken
1198 * task is a higher priority, then it will stay on this CPU
1199 * and the lower prio task should be moved to another CPU.
1200 * Even though this will probably make the lower prio task
1201 * lose its cache, we do not want to bounce a higher task
1202 * around just because it gave up its CPU, perhaps for a
1203 * lock?
1204 *
1205 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1206 *
1207 * Otherwise, just let it ride on the affined RQ and the
1208 * post-schedule router will push the preempted task away
1209 *
1210 * This test is optimistic, if we get it wrong the load-balancer
1211 * will have to sort it out.
318e0893 1212 */
7608dec2 1213 if (curr && unlikely(rt_task(curr)) &&
29baa747 1214 (curr->nr_cpus_allowed < 2 ||
6bfa687c 1215 curr->prio <= p->prio)) {
7608dec2 1216 int target = find_lowest_rq(p);
318e0893 1217
7608dec2
PZ
1218 if (target != -1)
1219 cpu = target;
318e0893 1220 }
7608dec2 1221 rcu_read_unlock();
318e0893 1222
c37495fd 1223out:
7608dec2 1224 return cpu;
e7693a36 1225}
7ebefa8c
DA
1226
1227static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1228{
29baa747 1229 if (rq->curr->nr_cpus_allowed == 1)
7ebefa8c
DA
1230 return;
1231
29baa747 1232 if (p->nr_cpus_allowed != 1
13b8bd0a
RR
1233 && cpupri_find(&rq->rd->cpupri, p, NULL))
1234 return;
24600ce8 1235
13b8bd0a
RR
1236 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1237 return;
7ebefa8c
DA
1238
1239 /*
1240 * There appears to be other cpus that can accept
1241 * current and none to run 'p', so lets reschedule
1242 * to try and push current away:
1243 */
1244 requeue_task_rt(rq, p, 1);
1245 resched_task(rq->curr);
1246}
1247
e7693a36
GH
1248#endif /* CONFIG_SMP */
1249
bb44e5d1
IM
1250/*
1251 * Preempt the current task with a newly woken task if needed:
1252 */
7d478721 1253static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1254{
45c01e82 1255 if (p->prio < rq->curr->prio) {
bb44e5d1 1256 resched_task(rq->curr);
45c01e82
GH
1257 return;
1258 }
1259
1260#ifdef CONFIG_SMP
1261 /*
1262 * If:
1263 *
1264 * - the newly woken task is of equal priority to the current task
1265 * - the newly woken task is non-migratable while current is migratable
1266 * - current will be preempted on the next reschedule
1267 *
1268 * we should check to see if current can readily move to a different
1269 * cpu. If so, we will reschedule to allow the push logic to try
1270 * to move current somewhere else, making room for our non-migratable
1271 * task.
1272 */
8dd0de8b 1273 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1274 check_preempt_equal_prio(rq, p);
45c01e82 1275#endif
bb44e5d1
IM
1276}
1277
6f505b16
PZ
1278static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1279 struct rt_rq *rt_rq)
bb44e5d1 1280{
6f505b16
PZ
1281 struct rt_prio_array *array = &rt_rq->active;
1282 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1283 struct list_head *queue;
1284 int idx;
1285
1286 idx = sched_find_first_bit(array->bitmap);
6f505b16 1287 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1288
1289 queue = array->queue + idx;
6f505b16 1290 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1291
6f505b16
PZ
1292 return next;
1293}
bb44e5d1 1294
917b627d 1295static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1296{
1297 struct sched_rt_entity *rt_se;
1298 struct task_struct *p;
1299 struct rt_rq *rt_rq;
bb44e5d1 1300
6f505b16
PZ
1301 rt_rq = &rq->rt;
1302
8e54a2c0 1303 if (!rt_rq->rt_nr_running)
6f505b16
PZ
1304 return NULL;
1305
23b0fdfc 1306 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
1307 return NULL;
1308
1309 do {
1310 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1311 BUG_ON(!rt_se);
6f505b16
PZ
1312 rt_rq = group_rt_rq(rt_se);
1313 } while (rt_rq);
1314
1315 p = rt_task_of(rt_se);
78becc27 1316 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1317
1318 return p;
1319}
1320
1321static struct task_struct *pick_next_task_rt(struct rq *rq)
1322{
1323 struct task_struct *p = _pick_next_task_rt(rq);
1324
1325 /* The running task is never eligible for pushing */
1326 if (p)
1327 dequeue_pushable_task(rq, p);
1328
bcf08df3 1329#ifdef CONFIG_SMP
3f029d3c
GH
1330 /*
1331 * We detect this state here so that we can avoid taking the RQ
1332 * lock again later if there is no need to push
1333 */
1334 rq->post_schedule = has_pushable_tasks(rq);
bcf08df3 1335#endif
3f029d3c 1336
6f505b16 1337 return p;
bb44e5d1
IM
1338}
1339
31ee529c 1340static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1341{
f1e14ef6 1342 update_curr_rt(rq);
917b627d
GH
1343
1344 /*
1345 * The previous task needs to be made eligible for pushing
1346 * if it is still active
1347 */
29baa747 1348 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1349 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1350}
1351
681f3e68 1352#ifdef CONFIG_SMP
6f505b16 1353
e8fa1362
SR
1354/* Only try algorithms three times */
1355#define RT_MAX_TRIES 3
1356
f65eda4f
SR
1357static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1358{
1359 if (!task_running(rq, p) &&
60334caf 1360 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
f65eda4f
SR
1361 return 1;
1362 return 0;
1363}
1364
e23ee747
KT
1365/*
1366 * Return the highest pushable rq's task, which is suitable to be executed
1367 * on the cpu, NULL otherwise
1368 */
1369static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
e8fa1362 1370{
e23ee747
KT
1371 struct plist_head *head = &rq->rt.pushable_tasks;
1372 struct task_struct *p;
3d07467b 1373
e23ee747
KT
1374 if (!has_pushable_tasks(rq))
1375 return NULL;
3d07467b 1376
e23ee747
KT
1377 plist_for_each_entry(p, head, pushable_tasks) {
1378 if (pick_rt_task(rq, p, cpu))
1379 return p;
f65eda4f
SR
1380 }
1381
e23ee747 1382 return NULL;
e8fa1362
SR
1383}
1384
0e3900e6 1385static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1386
6e1254d2
GH
1387static int find_lowest_rq(struct task_struct *task)
1388{
1389 struct sched_domain *sd;
96f874e2 1390 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1391 int this_cpu = smp_processor_id();
1392 int cpu = task_cpu(task);
06f90dbd 1393
0da938c4
SR
1394 /* Make sure the mask is initialized first */
1395 if (unlikely(!lowest_mask))
1396 return -1;
1397
29baa747 1398 if (task->nr_cpus_allowed == 1)
6e0534f2 1399 return -1; /* No other targets possible */
6e1254d2 1400
6e0534f2
GH
1401 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1402 return -1; /* No targets found */
6e1254d2
GH
1403
1404 /*
1405 * At this point we have built a mask of cpus representing the
1406 * lowest priority tasks in the system. Now we want to elect
1407 * the best one based on our affinity and topology.
1408 *
1409 * We prioritize the last cpu that the task executed on since
1410 * it is most likely cache-hot in that location.
1411 */
96f874e2 1412 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1413 return cpu;
1414
1415 /*
1416 * Otherwise, we consult the sched_domains span maps to figure
1417 * out which cpu is logically closest to our hot cache data.
1418 */
e2c88063
RR
1419 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1420 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1421
cd4ae6ad 1422 rcu_read_lock();
e2c88063
RR
1423 for_each_domain(cpu, sd) {
1424 if (sd->flags & SD_WAKE_AFFINE) {
1425 int best_cpu;
6e1254d2 1426
e2c88063
RR
1427 /*
1428 * "this_cpu" is cheaper to preempt than a
1429 * remote processor.
1430 */
1431 if (this_cpu != -1 &&
cd4ae6ad
XF
1432 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1433 rcu_read_unlock();
e2c88063 1434 return this_cpu;
cd4ae6ad 1435 }
e2c88063
RR
1436
1437 best_cpu = cpumask_first_and(lowest_mask,
1438 sched_domain_span(sd));
cd4ae6ad
XF
1439 if (best_cpu < nr_cpu_ids) {
1440 rcu_read_unlock();
e2c88063 1441 return best_cpu;
cd4ae6ad 1442 }
6e1254d2
GH
1443 }
1444 }
cd4ae6ad 1445 rcu_read_unlock();
6e1254d2
GH
1446
1447 /*
1448 * And finally, if there were no matches within the domains
1449 * just give the caller *something* to work with from the compatible
1450 * locations.
1451 */
e2c88063
RR
1452 if (this_cpu != -1)
1453 return this_cpu;
1454
1455 cpu = cpumask_any(lowest_mask);
1456 if (cpu < nr_cpu_ids)
1457 return cpu;
1458 return -1;
07b4032c
GH
1459}
1460
1461/* Will lock the rq it finds */
4df64c0b 1462static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1463{
1464 struct rq *lowest_rq = NULL;
07b4032c 1465 int tries;
4df64c0b 1466 int cpu;
e8fa1362 1467
07b4032c
GH
1468 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1469 cpu = find_lowest_rq(task);
1470
2de0b463 1471 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1472 break;
1473
07b4032c
GH
1474 lowest_rq = cpu_rq(cpu);
1475
e8fa1362 1476 /* if the prio of this runqueue changed, try again */
07b4032c 1477 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1478 /*
1479 * We had to unlock the run queue. In
1480 * the mean time, task could have
1481 * migrated already or had its affinity changed.
1482 * Also make sure that it wasn't scheduled on its rq.
1483 */
07b4032c 1484 if (unlikely(task_rq(task) != rq ||
96f874e2 1485 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1486 tsk_cpus_allowed(task)) ||
07b4032c 1487 task_running(rq, task) ||
fd2f4419 1488 !task->on_rq)) {
4df64c0b 1489
7f1b4393 1490 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1491 lowest_rq = NULL;
1492 break;
1493 }
1494 }
1495
1496 /* If this rq is still suitable use it. */
e864c499 1497 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1498 break;
1499
1500 /* try again */
1b12bbc7 1501 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1502 lowest_rq = NULL;
1503 }
1504
1505 return lowest_rq;
1506}
1507
917b627d
GH
1508static struct task_struct *pick_next_pushable_task(struct rq *rq)
1509{
1510 struct task_struct *p;
1511
1512 if (!has_pushable_tasks(rq))
1513 return NULL;
1514
1515 p = plist_first_entry(&rq->rt.pushable_tasks,
1516 struct task_struct, pushable_tasks);
1517
1518 BUG_ON(rq->cpu != task_cpu(p));
1519 BUG_ON(task_current(rq, p));
29baa747 1520 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1521
fd2f4419 1522 BUG_ON(!p->on_rq);
917b627d
GH
1523 BUG_ON(!rt_task(p));
1524
1525 return p;
1526}
1527
e8fa1362
SR
1528/*
1529 * If the current CPU has more than one RT task, see if the non
1530 * running task can migrate over to a CPU that is running a task
1531 * of lesser priority.
1532 */
697f0a48 1533static int push_rt_task(struct rq *rq)
e8fa1362
SR
1534{
1535 struct task_struct *next_task;
1536 struct rq *lowest_rq;
311e800e 1537 int ret = 0;
e8fa1362 1538
a22d7fc1
GH
1539 if (!rq->rt.overloaded)
1540 return 0;
1541
917b627d 1542 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1543 if (!next_task)
1544 return 0;
1545
49246274 1546retry:
697f0a48 1547 if (unlikely(next_task == rq->curr)) {
f65eda4f 1548 WARN_ON(1);
e8fa1362 1549 return 0;
f65eda4f 1550 }
e8fa1362
SR
1551
1552 /*
1553 * It's possible that the next_task slipped in of
1554 * higher priority than current. If that's the case
1555 * just reschedule current.
1556 */
697f0a48
GH
1557 if (unlikely(next_task->prio < rq->curr->prio)) {
1558 resched_task(rq->curr);
e8fa1362
SR
1559 return 0;
1560 }
1561
697f0a48 1562 /* We might release rq lock */
e8fa1362
SR
1563 get_task_struct(next_task);
1564
1565 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1566 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1567 if (!lowest_rq) {
1568 struct task_struct *task;
1569 /*
311e800e 1570 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1571 * so it is possible that next_task has migrated.
1572 *
1573 * We need to make sure that the task is still on the same
1574 * run-queue and is also still the next task eligible for
1575 * pushing.
e8fa1362 1576 */
917b627d 1577 task = pick_next_pushable_task(rq);
1563513d
GH
1578 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1579 /*
311e800e
HD
1580 * The task hasn't migrated, and is still the next
1581 * eligible task, but we failed to find a run-queue
1582 * to push it to. Do not retry in this case, since
1583 * other cpus will pull from us when ready.
1563513d 1584 */
1563513d 1585 goto out;
e8fa1362 1586 }
917b627d 1587
1563513d
GH
1588 if (!task)
1589 /* No more tasks, just exit */
1590 goto out;
1591
917b627d 1592 /*
1563513d 1593 * Something has shifted, try again.
917b627d 1594 */
1563513d
GH
1595 put_task_struct(next_task);
1596 next_task = task;
1597 goto retry;
e8fa1362
SR
1598 }
1599
697f0a48 1600 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1601 set_task_cpu(next_task, lowest_rq->cpu);
1602 activate_task(lowest_rq, next_task, 0);
311e800e 1603 ret = 1;
e8fa1362
SR
1604
1605 resched_task(lowest_rq->curr);
1606
1b12bbc7 1607 double_unlock_balance(rq, lowest_rq);
e8fa1362 1608
e8fa1362
SR
1609out:
1610 put_task_struct(next_task);
1611
311e800e 1612 return ret;
e8fa1362
SR
1613}
1614
e8fa1362
SR
1615static void push_rt_tasks(struct rq *rq)
1616{
1617 /* push_rt_task will return true if it moved an RT */
1618 while (push_rt_task(rq))
1619 ;
1620}
1621
f65eda4f
SR
1622static int pull_rt_task(struct rq *this_rq)
1623{
80bf3171 1624 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1625 struct task_struct *p;
f65eda4f 1626 struct rq *src_rq;
f65eda4f 1627
637f5085 1628 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1629 return 0;
1630
7c3f2ab7
PZ
1631 /*
1632 * Match the barrier from rt_set_overloaded; this guarantees that if we
1633 * see overloaded we must also see the rto_mask bit.
1634 */
1635 smp_rmb();
1636
c6c4927b 1637 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1638 if (this_cpu == cpu)
1639 continue;
1640
1641 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1642
1643 /*
1644 * Don't bother taking the src_rq->lock if the next highest
1645 * task is known to be lower-priority than our current task.
1646 * This may look racy, but if this value is about to go
1647 * logically higher, the src_rq will push this task away.
1648 * And if its going logically lower, we do not care
1649 */
1650 if (src_rq->rt.highest_prio.next >=
1651 this_rq->rt.highest_prio.curr)
1652 continue;
1653
f65eda4f
SR
1654 /*
1655 * We can potentially drop this_rq's lock in
1656 * double_lock_balance, and another CPU could
a8728944 1657 * alter this_rq
f65eda4f 1658 */
a8728944 1659 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1660
1661 /*
e23ee747
KT
1662 * We can pull only a task, which is pushable
1663 * on its rq, and no others.
f65eda4f 1664 */
e23ee747 1665 p = pick_highest_pushable_task(src_rq, this_cpu);
f65eda4f
SR
1666
1667 /*
1668 * Do we have an RT task that preempts
1669 * the to-be-scheduled task?
1670 */
a8728944 1671 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 1672 WARN_ON(p == src_rq->curr);
fd2f4419 1673 WARN_ON(!p->on_rq);
f65eda4f
SR
1674
1675 /*
1676 * There's a chance that p is higher in priority
1677 * than what's currently running on its cpu.
1678 * This is just that p is wakeing up and hasn't
1679 * had a chance to schedule. We only pull
1680 * p if it is lower in priority than the
a8728944 1681 * current task on the run queue
f65eda4f 1682 */
a8728944 1683 if (p->prio < src_rq->curr->prio)
614ee1f6 1684 goto skip;
f65eda4f
SR
1685
1686 ret = 1;
1687
1688 deactivate_task(src_rq, p, 0);
1689 set_task_cpu(p, this_cpu);
1690 activate_task(this_rq, p, 0);
1691 /*
1692 * We continue with the search, just in
1693 * case there's an even higher prio task
25985edc 1694 * in another runqueue. (low likelihood
f65eda4f 1695 * but possible)
f65eda4f 1696 */
f65eda4f 1697 }
49246274 1698skip:
1b12bbc7 1699 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1700 }
1701
1702 return ret;
1703}
1704
9a897c5a 1705static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1706{
1707 /* Try to pull RT tasks here if we lower this rq's prio */
33c3d6c6 1708 if (rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1709 pull_rt_task(rq);
1710}
1711
9a897c5a 1712static void post_schedule_rt(struct rq *rq)
e8fa1362 1713{
967fc046 1714 push_rt_tasks(rq);
e8fa1362
SR
1715}
1716
8ae121ac
GH
1717/*
1718 * If we are not running and we are not going to reschedule soon, we should
1719 * try to push tasks away now
1720 */
efbbd05a 1721static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1722{
9a897c5a 1723 if (!task_running(rq, p) &&
8ae121ac 1724 !test_tsk_need_resched(rq->curr) &&
917b627d 1725 has_pushable_tasks(rq) &&
29baa747 1726 p->nr_cpus_allowed > 1 &&
43fa5460 1727 rt_task(rq->curr) &&
29baa747 1728 (rq->curr->nr_cpus_allowed < 2 ||
3be209a8 1729 rq->curr->prio <= p->prio))
4642dafd
SR
1730 push_rt_tasks(rq);
1731}
1732
cd8ba7cd 1733static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1734 const struct cpumask *new_mask)
73fe6aae 1735{
8d3d5ada
KT
1736 struct rq *rq;
1737 int weight;
73fe6aae
GH
1738
1739 BUG_ON(!rt_task(p));
1740
8d3d5ada
KT
1741 if (!p->on_rq)
1742 return;
917b627d 1743
8d3d5ada 1744 weight = cpumask_weight(new_mask);
917b627d 1745
8d3d5ada
KT
1746 /*
1747 * Only update if the process changes its state from whether it
1748 * can migrate or not.
1749 */
29baa747 1750 if ((p->nr_cpus_allowed > 1) == (weight > 1))
8d3d5ada 1751 return;
917b627d 1752
8d3d5ada 1753 rq = task_rq(p);
73fe6aae 1754
8d3d5ada
KT
1755 /*
1756 * The process used to be able to migrate OR it can now migrate
1757 */
1758 if (weight <= 1) {
1759 if (!task_current(rq, p))
1760 dequeue_pushable_task(rq, p);
1761 BUG_ON(!rq->rt.rt_nr_migratory);
1762 rq->rt.rt_nr_migratory--;
1763 } else {
1764 if (!task_current(rq, p))
1765 enqueue_pushable_task(rq, p);
1766 rq->rt.rt_nr_migratory++;
73fe6aae 1767 }
8d3d5ada
KT
1768
1769 update_rt_migration(&rq->rt);
73fe6aae 1770}
deeeccd4 1771
bdd7c81b 1772/* Assumes rq->lock is held */
1f11eb6a 1773static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1774{
1775 if (rq->rt.overloaded)
1776 rt_set_overload(rq);
6e0534f2 1777
7def2be1
PZ
1778 __enable_runtime(rq);
1779
e864c499 1780 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1781}
1782
1783/* Assumes rq->lock is held */
1f11eb6a 1784static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1785{
1786 if (rq->rt.overloaded)
1787 rt_clear_overload(rq);
6e0534f2 1788
7def2be1
PZ
1789 __disable_runtime(rq);
1790
6e0534f2 1791 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1792}
cb469845
SR
1793
1794/*
1795 * When switch from the rt queue, we bring ourselves to a position
1796 * that we might want to pull RT tasks from other runqueues.
1797 */
da7a735e 1798static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1799{
1800 /*
1801 * If there are other RT tasks then we will reschedule
1802 * and the scheduling of the other RT tasks will handle
1803 * the balancing. But if we are the last RT task
1804 * we may need to handle the pulling of RT tasks
1805 * now.
1806 */
1158ddb5
KT
1807 if (!p->on_rq || rq->rt.rt_nr_running)
1808 return;
1809
1810 if (pull_rt_task(rq))
1811 resched_task(rq->curr);
cb469845 1812}
3d8cbdf8 1813
029632fb 1814void init_sched_rt_class(void)
3d8cbdf8
RR
1815{
1816 unsigned int i;
1817
029632fb 1818 for_each_possible_cpu(i) {
eaa95840 1819 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1820 GFP_KERNEL, cpu_to_node(i));
029632fb 1821 }
3d8cbdf8 1822}
cb469845
SR
1823#endif /* CONFIG_SMP */
1824
1825/*
1826 * When switching a task to RT, we may overload the runqueue
1827 * with RT tasks. In this case we try to push them off to
1828 * other runqueues.
1829 */
da7a735e 1830static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1831{
1832 int check_resched = 1;
1833
1834 /*
1835 * If we are already running, then there's nothing
1836 * that needs to be done. But if we are not running
1837 * we may need to preempt the current running task.
1838 * If that current running task is also an RT task
1839 * then see if we can move to another run queue.
1840 */
fd2f4419 1841 if (p->on_rq && rq->curr != p) {
cb469845
SR
1842#ifdef CONFIG_SMP
1843 if (rq->rt.overloaded && push_rt_task(rq) &&
1844 /* Don't resched if we changed runqueues */
1845 rq != task_rq(p))
1846 check_resched = 0;
1847#endif /* CONFIG_SMP */
1848 if (check_resched && p->prio < rq->curr->prio)
1849 resched_task(rq->curr);
1850 }
1851}
1852
1853/*
1854 * Priority of the task has changed. This may cause
1855 * us to initiate a push or pull.
1856 */
da7a735e
PZ
1857static void
1858prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1859{
fd2f4419 1860 if (!p->on_rq)
da7a735e
PZ
1861 return;
1862
1863 if (rq->curr == p) {
cb469845
SR
1864#ifdef CONFIG_SMP
1865 /*
1866 * If our priority decreases while running, we
1867 * may need to pull tasks to this runqueue.
1868 */
1869 if (oldprio < p->prio)
1870 pull_rt_task(rq);
1871 /*
1872 * If there's a higher priority task waiting to run
6fa46fa5
SR
1873 * then reschedule. Note, the above pull_rt_task
1874 * can release the rq lock and p could migrate.
1875 * Only reschedule if p is still on the same runqueue.
cb469845 1876 */
e864c499 1877 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1878 resched_task(p);
1879#else
1880 /* For UP simply resched on drop of prio */
1881 if (oldprio < p->prio)
1882 resched_task(p);
e8fa1362 1883#endif /* CONFIG_SMP */
cb469845
SR
1884 } else {
1885 /*
1886 * This task is not running, but if it is
1887 * greater than the current running task
1888 * then reschedule.
1889 */
1890 if (p->prio < rq->curr->prio)
1891 resched_task(rq->curr);
1892 }
1893}
1894
78f2c7db
PZ
1895static void watchdog(struct rq *rq, struct task_struct *p)
1896{
1897 unsigned long soft, hard;
1898
78d7d407
JS
1899 /* max may change after cur was read, this will be fixed next tick */
1900 soft = task_rlimit(p, RLIMIT_RTTIME);
1901 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
1902
1903 if (soft != RLIM_INFINITY) {
1904 unsigned long next;
1905
57d2aa00
YX
1906 if (p->rt.watchdog_stamp != jiffies) {
1907 p->rt.timeout++;
1908 p->rt.watchdog_stamp = jiffies;
1909 }
1910
78f2c7db 1911 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1912 if (p->rt.timeout > next)
f06febc9 1913 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1914 }
1915}
bb44e5d1 1916
8f4d37ec 1917static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1918{
454c7999
CC
1919 struct sched_rt_entity *rt_se = &p->rt;
1920
67e2be02
PZ
1921 update_curr_rt(rq);
1922
78f2c7db
PZ
1923 watchdog(rq, p);
1924
bb44e5d1
IM
1925 /*
1926 * RR tasks need a special form of timeslice management.
1927 * FIFO tasks have no timeslices.
1928 */
1929 if (p->policy != SCHED_RR)
1930 return;
1931
fa717060 1932 if (--p->rt.time_slice)
bb44e5d1
IM
1933 return;
1934
ce0dbbbb 1935 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 1936
98fbc798 1937 /*
e9aa39bb
LB
1938 * Requeue to the end of queue if we (and all of our ancestors) are not
1939 * the only element on the queue
98fbc798 1940 */
454c7999
CC
1941 for_each_sched_rt_entity(rt_se) {
1942 if (rt_se->run_list.prev != rt_se->run_list.next) {
1943 requeue_task_rt(rq, p, 0);
1944 set_tsk_need_resched(p);
1945 return;
1946 }
98fbc798 1947 }
bb44e5d1
IM
1948}
1949
83b699ed
SV
1950static void set_curr_task_rt(struct rq *rq)
1951{
1952 struct task_struct *p = rq->curr;
1953
78becc27 1954 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1955
1956 /* The running task is never eligible for pushing */
1957 dequeue_pushable_task(rq, p);
83b699ed
SV
1958}
1959
6d686f45 1960static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
1961{
1962 /*
1963 * Time slice is 0 for SCHED_FIFO tasks
1964 */
1965 if (task->policy == SCHED_RR)
ce0dbbbb 1966 return sched_rr_timeslice;
0d721cea
PW
1967 else
1968 return 0;
1969}
1970
029632fb 1971const struct sched_class rt_sched_class = {
5522d5d5 1972 .next = &fair_sched_class,
bb44e5d1
IM
1973 .enqueue_task = enqueue_task_rt,
1974 .dequeue_task = dequeue_task_rt,
1975 .yield_task = yield_task_rt,
1976
1977 .check_preempt_curr = check_preempt_curr_rt,
1978
1979 .pick_next_task = pick_next_task_rt,
1980 .put_prev_task = put_prev_task_rt,
1981
681f3e68 1982#ifdef CONFIG_SMP
4ce72a2c
LZ
1983 .select_task_rq = select_task_rq_rt,
1984
73fe6aae 1985 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1986 .rq_online = rq_online_rt,
1987 .rq_offline = rq_offline_rt,
9a897c5a
SR
1988 .pre_schedule = pre_schedule_rt,
1989 .post_schedule = post_schedule_rt,
efbbd05a 1990 .task_woken = task_woken_rt,
cb469845 1991 .switched_from = switched_from_rt,
681f3e68 1992#endif
bb44e5d1 1993
83b699ed 1994 .set_curr_task = set_curr_task_rt,
bb44e5d1 1995 .task_tick = task_tick_rt,
cb469845 1996
0d721cea
PW
1997 .get_rr_interval = get_rr_interval_rt,
1998
cb469845
SR
1999 .prio_changed = prio_changed_rt,
2000 .switched_to = switched_to_rt,
bb44e5d1 2001};
ada18de2
PZ
2002
2003#ifdef CONFIG_SCHED_DEBUG
2004extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2005
029632fb 2006void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2007{
ec514c48 2008 rt_rq_iter_t iter;
ada18de2
PZ
2009 struct rt_rq *rt_rq;
2010
2011 rcu_read_lock();
ec514c48 2012 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2013 print_rt_rq(m, cpu, rt_rq);
2014 rcu_read_unlock();
2015}
55e12e5e 2016#endif /* CONFIG_SCHED_DEBUG */