Merge branch 'sched/urgent' into sched/core
[linux-block.git] / kernel / sched / rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
029632fb
PZ
6#include "sched.h"
7
8#include <linux/slab.h>
9
ce0dbbbb
CW
10int sched_rr_timeslice = RR_TIMESLICE;
11
029632fb
PZ
12static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14struct rt_bandwidth def_rt_bandwidth;
15
16static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17{
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
20 ktime_t now;
21 int overrun;
22 int idle = 0;
23
24 for (;;) {
25 now = hrtimer_cb_get_time(timer);
26 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28 if (!overrun)
29 break;
30
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 }
33
34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35}
36
37void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38{
39 rt_b->rt_period = ns_to_ktime(period);
40 rt_b->rt_runtime = runtime;
41
42 raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44 hrtimer_init(&rt_b->rt_period_timer,
45 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 rt_b->rt_period_timer.function = sched_rt_period_timer;
47}
48
49static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50{
51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 return;
53
54 if (hrtimer_active(&rt_b->rt_period_timer))
55 return;
56
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 raw_spin_unlock(&rt_b->rt_runtime_lock);
60}
61
62void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63{
64 struct rt_prio_array *array;
65 int i;
66
67 array = &rt_rq->active;
68 for (i = 0; i < MAX_RT_PRIO; i++) {
69 INIT_LIST_HEAD(array->queue + i);
70 __clear_bit(i, array->bitmap);
71 }
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO, array->bitmap);
74
75#if defined CONFIG_SMP
76 rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 rt_rq->highest_prio.next = MAX_RT_PRIO;
78 rt_rq->rt_nr_migratory = 0;
79 rt_rq->overloaded = 0;
80 plist_head_init(&rt_rq->pushable_tasks);
81#endif
f4ebcbc0
KT
82 /* We start is dequeued state, because no RT tasks are queued */
83 rt_rq->rt_queued = 0;
029632fb
PZ
84
85 rt_rq->rt_time = 0;
86 rt_rq->rt_throttled = 0;
87 rt_rq->rt_runtime = 0;
88 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
89}
90
8f48894f 91#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
92static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
93{
94 hrtimer_cancel(&rt_b->rt_period_timer);
95}
8f48894f
PZ
96
97#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
98
398a153b
GH
99static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
100{
8f48894f
PZ
101#ifdef CONFIG_SCHED_DEBUG
102 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
103#endif
398a153b
GH
104 return container_of(rt_se, struct task_struct, rt);
105}
106
398a153b
GH
107static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
108{
109 return rt_rq->rq;
110}
111
112static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
113{
114 return rt_se->rt_rq;
115}
116
653d07a6
KT
117static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
118{
119 struct rt_rq *rt_rq = rt_se->rt_rq;
120
121 return rt_rq->rq;
122}
123
029632fb
PZ
124void free_rt_sched_group(struct task_group *tg)
125{
126 int i;
127
128 if (tg->rt_se)
129 destroy_rt_bandwidth(&tg->rt_bandwidth);
130
131 for_each_possible_cpu(i) {
132 if (tg->rt_rq)
133 kfree(tg->rt_rq[i]);
134 if (tg->rt_se)
135 kfree(tg->rt_se[i]);
136 }
137
138 kfree(tg->rt_rq);
139 kfree(tg->rt_se);
140}
141
142void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
143 struct sched_rt_entity *rt_se, int cpu,
144 struct sched_rt_entity *parent)
145{
146 struct rq *rq = cpu_rq(cpu);
147
148 rt_rq->highest_prio.curr = MAX_RT_PRIO;
149 rt_rq->rt_nr_boosted = 0;
150 rt_rq->rq = rq;
151 rt_rq->tg = tg;
152
153 tg->rt_rq[cpu] = rt_rq;
154 tg->rt_se[cpu] = rt_se;
155
156 if (!rt_se)
157 return;
158
159 if (!parent)
160 rt_se->rt_rq = &rq->rt;
161 else
162 rt_se->rt_rq = parent->my_q;
163
164 rt_se->my_q = rt_rq;
165 rt_se->parent = parent;
166 INIT_LIST_HEAD(&rt_se->run_list);
167}
168
169int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
170{
171 struct rt_rq *rt_rq;
172 struct sched_rt_entity *rt_se;
173 int i;
174
175 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
176 if (!tg->rt_rq)
177 goto err;
178 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
179 if (!tg->rt_se)
180 goto err;
181
182 init_rt_bandwidth(&tg->rt_bandwidth,
183 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
184
185 for_each_possible_cpu(i) {
186 rt_rq = kzalloc_node(sizeof(struct rt_rq),
187 GFP_KERNEL, cpu_to_node(i));
188 if (!rt_rq)
189 goto err;
190
191 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
192 GFP_KERNEL, cpu_to_node(i));
193 if (!rt_se)
194 goto err_free_rq;
195
196 init_rt_rq(rt_rq, cpu_rq(i));
197 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
198 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
199 }
200
201 return 1;
202
203err_free_rq:
204 kfree(rt_rq);
205err:
206 return 0;
207}
208
398a153b
GH
209#else /* CONFIG_RT_GROUP_SCHED */
210
a1ba4d8b
PZ
211#define rt_entity_is_task(rt_se) (1)
212
8f48894f
PZ
213static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
214{
215 return container_of(rt_se, struct task_struct, rt);
216}
217
398a153b
GH
218static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
219{
220 return container_of(rt_rq, struct rq, rt);
221}
222
653d07a6 223static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
398a153b
GH
224{
225 struct task_struct *p = rt_task_of(rt_se);
653d07a6
KT
226
227 return task_rq(p);
228}
229
230static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
231{
232 struct rq *rq = rq_of_rt_se(rt_se);
398a153b
GH
233
234 return &rq->rt;
235}
236
029632fb
PZ
237void free_rt_sched_group(struct task_group *tg) { }
238
239int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
240{
241 return 1;
242}
398a153b
GH
243#endif /* CONFIG_RT_GROUP_SCHED */
244
4fd29176 245#ifdef CONFIG_SMP
84de4274 246
38033c37
PZ
247static int pull_rt_task(struct rq *this_rq);
248
dc877341
PZ
249static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
250{
251 /* Try to pull RT tasks here if we lower this rq's prio */
252 return rq->rt.highest_prio.curr > prev->prio;
253}
254
637f5085 255static inline int rt_overloaded(struct rq *rq)
4fd29176 256{
637f5085 257 return atomic_read(&rq->rd->rto_count);
4fd29176 258}
84de4274 259
4fd29176
SR
260static inline void rt_set_overload(struct rq *rq)
261{
1f11eb6a
GH
262 if (!rq->online)
263 return;
264
c6c4927b 265 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
266 /*
267 * Make sure the mask is visible before we set
268 * the overload count. That is checked to determine
269 * if we should look at the mask. It would be a shame
270 * if we looked at the mask, but the mask was not
271 * updated yet.
7c3f2ab7
PZ
272 *
273 * Matched by the barrier in pull_rt_task().
4fd29176 274 */
7c3f2ab7 275 smp_wmb();
637f5085 276 atomic_inc(&rq->rd->rto_count);
4fd29176 277}
84de4274 278
4fd29176
SR
279static inline void rt_clear_overload(struct rq *rq)
280{
1f11eb6a
GH
281 if (!rq->online)
282 return;
283
4fd29176 284 /* the order here really doesn't matter */
637f5085 285 atomic_dec(&rq->rd->rto_count);
c6c4927b 286 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 287}
73fe6aae 288
398a153b 289static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 290{
a1ba4d8b 291 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
292 if (!rt_rq->overloaded) {
293 rt_set_overload(rq_of_rt_rq(rt_rq));
294 rt_rq->overloaded = 1;
cdc8eb98 295 }
398a153b
GH
296 } else if (rt_rq->overloaded) {
297 rt_clear_overload(rq_of_rt_rq(rt_rq));
298 rt_rq->overloaded = 0;
637f5085 299 }
73fe6aae 300}
4fd29176 301
398a153b
GH
302static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
303{
29baa747
PZ
304 struct task_struct *p;
305
a1ba4d8b
PZ
306 if (!rt_entity_is_task(rt_se))
307 return;
308
29baa747 309 p = rt_task_of(rt_se);
a1ba4d8b
PZ
310 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
311
312 rt_rq->rt_nr_total++;
29baa747 313 if (p->nr_cpus_allowed > 1)
398a153b
GH
314 rt_rq->rt_nr_migratory++;
315
316 update_rt_migration(rt_rq);
317}
318
319static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
320{
29baa747
PZ
321 struct task_struct *p;
322
a1ba4d8b
PZ
323 if (!rt_entity_is_task(rt_se))
324 return;
325
29baa747 326 p = rt_task_of(rt_se);
a1ba4d8b
PZ
327 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
328
329 rt_rq->rt_nr_total--;
29baa747 330 if (p->nr_cpus_allowed > 1)
398a153b
GH
331 rt_rq->rt_nr_migratory--;
332
333 update_rt_migration(rt_rq);
334}
335
5181f4a4
SR
336static inline int has_pushable_tasks(struct rq *rq)
337{
338 return !plist_head_empty(&rq->rt.pushable_tasks);
339}
340
dc877341
PZ
341static inline void set_post_schedule(struct rq *rq)
342{
343 /*
344 * We detect this state here so that we can avoid taking the RQ
345 * lock again later if there is no need to push
346 */
347 rq->post_schedule = has_pushable_tasks(rq);
348}
349
917b627d
GH
350static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
351{
352 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
353 plist_node_init(&p->pushable_tasks, p->prio);
354 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
355
356 /* Update the highest prio pushable task */
357 if (p->prio < rq->rt.highest_prio.next)
358 rq->rt.highest_prio.next = p->prio;
917b627d
GH
359}
360
361static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
362{
363 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 364
5181f4a4
SR
365 /* Update the new highest prio pushable task */
366 if (has_pushable_tasks(rq)) {
367 p = plist_first_entry(&rq->rt.pushable_tasks,
368 struct task_struct, pushable_tasks);
369 rq->rt.highest_prio.next = p->prio;
370 } else
371 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
372}
373
917b627d
GH
374#else
375
ceacc2c1 376static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 377{
6f505b16
PZ
378}
379
ceacc2c1
PZ
380static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
381{
382}
383
b07430ac 384static inline
ceacc2c1
PZ
385void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
386{
387}
388
398a153b 389static inline
ceacc2c1
PZ
390void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
391{
392}
917b627d 393
dc877341
PZ
394static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
395{
396 return false;
397}
398
399static inline int pull_rt_task(struct rq *this_rq)
400{
401 return 0;
402}
403
404static inline void set_post_schedule(struct rq *rq)
405{
406}
4fd29176
SR
407#endif /* CONFIG_SMP */
408
f4ebcbc0
KT
409static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
410static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
411
6f505b16
PZ
412static inline int on_rt_rq(struct sched_rt_entity *rt_se)
413{
414 return !list_empty(&rt_se->run_list);
415}
416
052f1dc7 417#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 418
9f0c1e56 419static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
420{
421 if (!rt_rq->tg)
9f0c1e56 422 return RUNTIME_INF;
6f505b16 423
ac086bc2
PZ
424 return rt_rq->rt_runtime;
425}
426
427static inline u64 sched_rt_period(struct rt_rq *rt_rq)
428{
429 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
430}
431
ec514c48
CX
432typedef struct task_group *rt_rq_iter_t;
433
1c09ab0d
YZ
434static inline struct task_group *next_task_group(struct task_group *tg)
435{
436 do {
437 tg = list_entry_rcu(tg->list.next,
438 typeof(struct task_group), list);
439 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
440
441 if (&tg->list == &task_groups)
442 tg = NULL;
443
444 return tg;
445}
446
447#define for_each_rt_rq(rt_rq, iter, rq) \
448 for (iter = container_of(&task_groups, typeof(*iter), list); \
449 (iter = next_task_group(iter)) && \
450 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 451
6f505b16
PZ
452#define for_each_sched_rt_entity(rt_se) \
453 for (; rt_se; rt_se = rt_se->parent)
454
455static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
456{
457 return rt_se->my_q;
458}
459
37dad3fc 460static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
461static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
462
9f0c1e56 463static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 464{
f6121f4f 465 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
8875125e 466 struct rq *rq = rq_of_rt_rq(rt_rq);
74b7eb58
YZ
467 struct sched_rt_entity *rt_se;
468
8875125e 469 int cpu = cpu_of(rq);
0c3b9168
BS
470
471 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 472
f6121f4f 473 if (rt_rq->rt_nr_running) {
f4ebcbc0
KT
474 if (!rt_se)
475 enqueue_top_rt_rq(rt_rq);
476 else if (!on_rt_rq(rt_se))
37dad3fc 477 enqueue_rt_entity(rt_se, false);
f4ebcbc0 478
e864c499 479 if (rt_rq->highest_prio.curr < curr->prio)
8875125e 480 resched_curr(rq);
6f505b16
PZ
481 }
482}
483
9f0c1e56 484static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 485{
74b7eb58 486 struct sched_rt_entity *rt_se;
0c3b9168 487 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 488
0c3b9168 489 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 490
f4ebcbc0
KT
491 if (!rt_se)
492 dequeue_top_rt_rq(rt_rq);
493 else if (on_rt_rq(rt_se))
6f505b16
PZ
494 dequeue_rt_entity(rt_se);
495}
496
46383648
KT
497static inline int rt_rq_throttled(struct rt_rq *rt_rq)
498{
499 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
500}
501
23b0fdfc
PZ
502static int rt_se_boosted(struct sched_rt_entity *rt_se)
503{
504 struct rt_rq *rt_rq = group_rt_rq(rt_se);
505 struct task_struct *p;
506
507 if (rt_rq)
508 return !!rt_rq->rt_nr_boosted;
509
510 p = rt_task_of(rt_se);
511 return p->prio != p->normal_prio;
512}
513
d0b27fa7 514#ifdef CONFIG_SMP
c6c4927b 515static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 516{
424c93fe 517 return this_rq()->rd->span;
d0b27fa7 518}
6f505b16 519#else
c6c4927b 520static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 521{
c6c4927b 522 return cpu_online_mask;
d0b27fa7
PZ
523}
524#endif
6f505b16 525
d0b27fa7
PZ
526static inline
527struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 528{
d0b27fa7
PZ
529 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
530}
9f0c1e56 531
ac086bc2
PZ
532static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
533{
534 return &rt_rq->tg->rt_bandwidth;
535}
536
55e12e5e 537#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
538
539static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
540{
ac086bc2
PZ
541 return rt_rq->rt_runtime;
542}
543
544static inline u64 sched_rt_period(struct rt_rq *rt_rq)
545{
546 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
547}
548
ec514c48
CX
549typedef struct rt_rq *rt_rq_iter_t;
550
551#define for_each_rt_rq(rt_rq, iter, rq) \
552 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
553
6f505b16
PZ
554#define for_each_sched_rt_entity(rt_se) \
555 for (; rt_se; rt_se = NULL)
556
557static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
558{
559 return NULL;
560}
561
9f0c1e56 562static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 563{
f4ebcbc0
KT
564 struct rq *rq = rq_of_rt_rq(rt_rq);
565
566 if (!rt_rq->rt_nr_running)
567 return;
568
569 enqueue_top_rt_rq(rt_rq);
8875125e 570 resched_curr(rq);
6f505b16
PZ
571}
572
9f0c1e56 573static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 574{
f4ebcbc0 575 dequeue_top_rt_rq(rt_rq);
6f505b16
PZ
576}
577
46383648
KT
578static inline int rt_rq_throttled(struct rt_rq *rt_rq)
579{
580 return rt_rq->rt_throttled;
581}
582
c6c4927b 583static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 584{
c6c4927b 585 return cpu_online_mask;
d0b27fa7
PZ
586}
587
588static inline
589struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
590{
591 return &cpu_rq(cpu)->rt;
592}
593
ac086bc2
PZ
594static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
595{
596 return &def_rt_bandwidth;
597}
598
55e12e5e 599#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 600
faa59937
JL
601bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
602{
603 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
604
605 return (hrtimer_active(&rt_b->rt_period_timer) ||
606 rt_rq->rt_time < rt_b->rt_runtime);
607}
608
ac086bc2 609#ifdef CONFIG_SMP
78333cdd
PZ
610/*
611 * We ran out of runtime, see if we can borrow some from our neighbours.
612 */
b79f3833 613static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
614{
615 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 616 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
ac086bc2
PZ
617 int i, weight, more = 0;
618 u64 rt_period;
619
c6c4927b 620 weight = cpumask_weight(rd->span);
ac086bc2 621
0986b11b 622 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 623 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 624 for_each_cpu(i, rd->span) {
ac086bc2
PZ
625 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
626 s64 diff;
627
628 if (iter == rt_rq)
629 continue;
630
0986b11b 631 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
632 /*
633 * Either all rqs have inf runtime and there's nothing to steal
634 * or __disable_runtime() below sets a specific rq to inf to
635 * indicate its been disabled and disalow stealing.
636 */
7def2be1
PZ
637 if (iter->rt_runtime == RUNTIME_INF)
638 goto next;
639
78333cdd
PZ
640 /*
641 * From runqueues with spare time, take 1/n part of their
642 * spare time, but no more than our period.
643 */
ac086bc2
PZ
644 diff = iter->rt_runtime - iter->rt_time;
645 if (diff > 0) {
58838cf3 646 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
647 if (rt_rq->rt_runtime + diff > rt_period)
648 diff = rt_period - rt_rq->rt_runtime;
649 iter->rt_runtime -= diff;
650 rt_rq->rt_runtime += diff;
651 more = 1;
652 if (rt_rq->rt_runtime == rt_period) {
0986b11b 653 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
654 break;
655 }
656 }
7def2be1 657next:
0986b11b 658 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 659 }
0986b11b 660 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
661
662 return more;
663}
7def2be1 664
78333cdd
PZ
665/*
666 * Ensure this RQ takes back all the runtime it lend to its neighbours.
667 */
7def2be1
PZ
668static void __disable_runtime(struct rq *rq)
669{
670 struct root_domain *rd = rq->rd;
ec514c48 671 rt_rq_iter_t iter;
7def2be1
PZ
672 struct rt_rq *rt_rq;
673
674 if (unlikely(!scheduler_running))
675 return;
676
ec514c48 677 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
678 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
679 s64 want;
680 int i;
681
0986b11b
TG
682 raw_spin_lock(&rt_b->rt_runtime_lock);
683 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
684 /*
685 * Either we're all inf and nobody needs to borrow, or we're
686 * already disabled and thus have nothing to do, or we have
687 * exactly the right amount of runtime to take out.
688 */
7def2be1
PZ
689 if (rt_rq->rt_runtime == RUNTIME_INF ||
690 rt_rq->rt_runtime == rt_b->rt_runtime)
691 goto balanced;
0986b11b 692 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 693
78333cdd
PZ
694 /*
695 * Calculate the difference between what we started out with
696 * and what we current have, that's the amount of runtime
697 * we lend and now have to reclaim.
698 */
7def2be1
PZ
699 want = rt_b->rt_runtime - rt_rq->rt_runtime;
700
78333cdd
PZ
701 /*
702 * Greedy reclaim, take back as much as we can.
703 */
c6c4927b 704 for_each_cpu(i, rd->span) {
7def2be1
PZ
705 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
706 s64 diff;
707
78333cdd
PZ
708 /*
709 * Can't reclaim from ourselves or disabled runqueues.
710 */
f1679d08 711 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
712 continue;
713
0986b11b 714 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
715 if (want > 0) {
716 diff = min_t(s64, iter->rt_runtime, want);
717 iter->rt_runtime -= diff;
718 want -= diff;
719 } else {
720 iter->rt_runtime -= want;
721 want -= want;
722 }
0986b11b 723 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
724
725 if (!want)
726 break;
727 }
728
0986b11b 729 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
730 /*
731 * We cannot be left wanting - that would mean some runtime
732 * leaked out of the system.
733 */
7def2be1
PZ
734 BUG_ON(want);
735balanced:
78333cdd
PZ
736 /*
737 * Disable all the borrow logic by pretending we have inf
738 * runtime - in which case borrowing doesn't make sense.
739 */
7def2be1 740 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 741 rt_rq->rt_throttled = 0;
0986b11b
TG
742 raw_spin_unlock(&rt_rq->rt_runtime_lock);
743 raw_spin_unlock(&rt_b->rt_runtime_lock);
99b62567
KT
744
745 /* Make rt_rq available for pick_next_task() */
746 sched_rt_rq_enqueue(rt_rq);
7def2be1
PZ
747 }
748}
749
7def2be1
PZ
750static void __enable_runtime(struct rq *rq)
751{
ec514c48 752 rt_rq_iter_t iter;
7def2be1
PZ
753 struct rt_rq *rt_rq;
754
755 if (unlikely(!scheduler_running))
756 return;
757
78333cdd
PZ
758 /*
759 * Reset each runqueue's bandwidth settings
760 */
ec514c48 761 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
762 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
763
0986b11b
TG
764 raw_spin_lock(&rt_b->rt_runtime_lock);
765 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
766 rt_rq->rt_runtime = rt_b->rt_runtime;
767 rt_rq->rt_time = 0;
baf25731 768 rt_rq->rt_throttled = 0;
0986b11b
TG
769 raw_spin_unlock(&rt_rq->rt_runtime_lock);
770 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
771 }
772}
773
eff6549b
PZ
774static int balance_runtime(struct rt_rq *rt_rq)
775{
776 int more = 0;
777
4a6184ce
PZ
778 if (!sched_feat(RT_RUNTIME_SHARE))
779 return more;
780
eff6549b 781 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 782 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 783 more = do_balance_runtime(rt_rq);
0986b11b 784 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
785 }
786
787 return more;
788}
55e12e5e 789#else /* !CONFIG_SMP */
eff6549b
PZ
790static inline int balance_runtime(struct rt_rq *rt_rq)
791{
792 return 0;
793}
55e12e5e 794#endif /* CONFIG_SMP */
ac086bc2 795
eff6549b
PZ
796static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
797{
42c62a58 798 int i, idle = 1, throttled = 0;
c6c4927b 799 const struct cpumask *span;
eff6549b 800
eff6549b 801 span = sched_rt_period_mask();
e221d028
MG
802#ifdef CONFIG_RT_GROUP_SCHED
803 /*
804 * FIXME: isolated CPUs should really leave the root task group,
805 * whether they are isolcpus or were isolated via cpusets, lest
806 * the timer run on a CPU which does not service all runqueues,
807 * potentially leaving other CPUs indefinitely throttled. If
808 * isolation is really required, the user will turn the throttle
809 * off to kill the perturbations it causes anyway. Meanwhile,
810 * this maintains functionality for boot and/or troubleshooting.
811 */
812 if (rt_b == &root_task_group.rt_bandwidth)
813 span = cpu_online_mask;
814#endif
c6c4927b 815 for_each_cpu(i, span) {
eff6549b
PZ
816 int enqueue = 0;
817 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
818 struct rq *rq = rq_of_rt_rq(rt_rq);
819
05fa785c 820 raw_spin_lock(&rq->lock);
eff6549b
PZ
821 if (rt_rq->rt_time) {
822 u64 runtime;
823
0986b11b 824 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
825 if (rt_rq->rt_throttled)
826 balance_runtime(rt_rq);
827 runtime = rt_rq->rt_runtime;
828 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
829 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
830 rt_rq->rt_throttled = 0;
831 enqueue = 1;
61eadef6
MG
832
833 /*
9edfbfed
PZ
834 * When we're idle and a woken (rt) task is
835 * throttled check_preempt_curr() will set
836 * skip_update and the time between the wakeup
837 * and this unthrottle will get accounted as
838 * 'runtime'.
61eadef6
MG
839 */
840 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
9edfbfed 841 rq_clock_skip_update(rq, false);
eff6549b
PZ
842 }
843 if (rt_rq->rt_time || rt_rq->rt_nr_running)
844 idle = 0;
0986b11b 845 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 846 } else if (rt_rq->rt_nr_running) {
6c3df255 847 idle = 0;
0c3b9168
BS
848 if (!rt_rq_throttled(rt_rq))
849 enqueue = 1;
850 }
42c62a58
PZ
851 if (rt_rq->rt_throttled)
852 throttled = 1;
eff6549b
PZ
853
854 if (enqueue)
855 sched_rt_rq_enqueue(rt_rq);
05fa785c 856 raw_spin_unlock(&rq->lock);
eff6549b
PZ
857 }
858
42c62a58
PZ
859 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
860 return 1;
861
eff6549b
PZ
862 return idle;
863}
ac086bc2 864
6f505b16
PZ
865static inline int rt_se_prio(struct sched_rt_entity *rt_se)
866{
052f1dc7 867#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
868 struct rt_rq *rt_rq = group_rt_rq(rt_se);
869
870 if (rt_rq)
e864c499 871 return rt_rq->highest_prio.curr;
6f505b16
PZ
872#endif
873
874 return rt_task_of(rt_se)->prio;
875}
876
9f0c1e56 877static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 878{
9f0c1e56 879 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 880
fa85ae24 881 if (rt_rq->rt_throttled)
23b0fdfc 882 return rt_rq_throttled(rt_rq);
fa85ae24 883
5b680fd6 884 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
885 return 0;
886
b79f3833
PZ
887 balance_runtime(rt_rq);
888 runtime = sched_rt_runtime(rt_rq);
889 if (runtime == RUNTIME_INF)
890 return 0;
ac086bc2 891
9f0c1e56 892 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
893 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
894
895 /*
896 * Don't actually throttle groups that have no runtime assigned
897 * but accrue some time due to boosting.
898 */
899 if (likely(rt_b->rt_runtime)) {
900 rt_rq->rt_throttled = 1;
c224815d 901 printk_deferred_once("sched: RT throttling activated\n");
7abc63b1
PZ
902 } else {
903 /*
904 * In case we did anyway, make it go away,
905 * replenishment is a joke, since it will replenish us
906 * with exactly 0 ns.
907 */
908 rt_rq->rt_time = 0;
909 }
910
23b0fdfc 911 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 912 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
913 return 1;
914 }
fa85ae24
PZ
915 }
916
917 return 0;
918}
919
bb44e5d1
IM
920/*
921 * Update the current task's runtime statistics. Skip current tasks that
922 * are not in our scheduling class.
923 */
a9957449 924static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
925{
926 struct task_struct *curr = rq->curr;
6f505b16 927 struct sched_rt_entity *rt_se = &curr->rt;
bb44e5d1
IM
928 u64 delta_exec;
929
06c3bc65 930 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
931 return;
932
78becc27 933 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
fc79e240
KT
934 if (unlikely((s64)delta_exec <= 0))
935 return;
6cfb0d5d 936
42c62a58
PZ
937 schedstat_set(curr->se.statistics.exec_max,
938 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
939
940 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
941 account_group_exec_runtime(curr, delta_exec);
942
78becc27 943 curr->se.exec_start = rq_clock_task(rq);
d842de87 944 cpuacct_charge(curr, delta_exec);
fa85ae24 945
e9e9250b
PZ
946 sched_rt_avg_update(rq, delta_exec);
947
0b148fa0
PZ
948 if (!rt_bandwidth_enabled())
949 return;
950
354d60c2 951 for_each_sched_rt_entity(rt_se) {
0b07939c 952 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
354d60c2 953
cc2991cf 954 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 955 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
956 rt_rq->rt_time += delta_exec;
957 if (sched_rt_runtime_exceeded(rt_rq))
8875125e 958 resched_curr(rq);
0986b11b 959 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 960 }
354d60c2 961 }
bb44e5d1
IM
962}
963
f4ebcbc0
KT
964static void
965dequeue_top_rt_rq(struct rt_rq *rt_rq)
966{
967 struct rq *rq = rq_of_rt_rq(rt_rq);
968
969 BUG_ON(&rq->rt != rt_rq);
970
971 if (!rt_rq->rt_queued)
972 return;
973
974 BUG_ON(!rq->nr_running);
975
72465447 976 sub_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
977 rt_rq->rt_queued = 0;
978}
979
980static void
981enqueue_top_rt_rq(struct rt_rq *rt_rq)
982{
983 struct rq *rq = rq_of_rt_rq(rt_rq);
984
985 BUG_ON(&rq->rt != rt_rq);
986
987 if (rt_rq->rt_queued)
988 return;
989 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
990 return;
991
72465447 992 add_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
993 rt_rq->rt_queued = 1;
994}
995
398a153b 996#if defined CONFIG_SMP
e864c499 997
398a153b
GH
998static void
999inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 1000{
4d984277 1001 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 1002
757dfcaa
KT
1003#ifdef CONFIG_RT_GROUP_SCHED
1004 /*
1005 * Change rq's cpupri only if rt_rq is the top queue.
1006 */
1007 if (&rq->rt != rt_rq)
1008 return;
1009#endif
5181f4a4
SR
1010 if (rq->online && prio < prev_prio)
1011 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 1012}
73fe6aae 1013
398a153b
GH
1014static void
1015dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1016{
1017 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 1018
757dfcaa
KT
1019#ifdef CONFIG_RT_GROUP_SCHED
1020 /*
1021 * Change rq's cpupri only if rt_rq is the top queue.
1022 */
1023 if (&rq->rt != rt_rq)
1024 return;
1025#endif
398a153b
GH
1026 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1027 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
1028}
1029
398a153b
GH
1030#else /* CONFIG_SMP */
1031
6f505b16 1032static inline
398a153b
GH
1033void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1034static inline
1035void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1036
1037#endif /* CONFIG_SMP */
6e0534f2 1038
052f1dc7 1039#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
1040static void
1041inc_rt_prio(struct rt_rq *rt_rq, int prio)
1042{
1043 int prev_prio = rt_rq->highest_prio.curr;
1044
1045 if (prio < prev_prio)
1046 rt_rq->highest_prio.curr = prio;
1047
1048 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1049}
1050
1051static void
1052dec_rt_prio(struct rt_rq *rt_rq, int prio)
1053{
1054 int prev_prio = rt_rq->highest_prio.curr;
1055
6f505b16 1056 if (rt_rq->rt_nr_running) {
764a9d6f 1057
398a153b 1058 WARN_ON(prio < prev_prio);
764a9d6f 1059
e864c499 1060 /*
398a153b
GH
1061 * This may have been our highest task, and therefore
1062 * we may have some recomputation to do
e864c499 1063 */
398a153b 1064 if (prio == prev_prio) {
e864c499
GH
1065 struct rt_prio_array *array = &rt_rq->active;
1066
1067 rt_rq->highest_prio.curr =
764a9d6f 1068 sched_find_first_bit(array->bitmap);
e864c499
GH
1069 }
1070
764a9d6f 1071 } else
e864c499 1072 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 1073
398a153b
GH
1074 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1075}
1f11eb6a 1076
398a153b
GH
1077#else
1078
1079static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1080static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1081
1082#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 1083
052f1dc7 1084#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
1085
1086static void
1087inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1088{
1089 if (rt_se_boosted(rt_se))
1090 rt_rq->rt_nr_boosted++;
1091
1092 if (rt_rq->tg)
1093 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1094}
1095
1096static void
1097dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1098{
23b0fdfc
PZ
1099 if (rt_se_boosted(rt_se))
1100 rt_rq->rt_nr_boosted--;
1101
1102 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
1103}
1104
1105#else /* CONFIG_RT_GROUP_SCHED */
1106
1107static void
1108inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1109{
1110 start_rt_bandwidth(&def_rt_bandwidth);
1111}
1112
1113static inline
1114void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1115
1116#endif /* CONFIG_RT_GROUP_SCHED */
1117
22abdef3
KT
1118static inline
1119unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1120{
1121 struct rt_rq *group_rq = group_rt_rq(rt_se);
1122
1123 if (group_rq)
1124 return group_rq->rt_nr_running;
1125 else
1126 return 1;
1127}
1128
398a153b
GH
1129static inline
1130void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1131{
1132 int prio = rt_se_prio(rt_se);
1133
1134 WARN_ON(!rt_prio(prio));
22abdef3 1135 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
398a153b
GH
1136
1137 inc_rt_prio(rt_rq, prio);
1138 inc_rt_migration(rt_se, rt_rq);
1139 inc_rt_group(rt_se, rt_rq);
1140}
1141
1142static inline
1143void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1144{
1145 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1146 WARN_ON(!rt_rq->rt_nr_running);
22abdef3 1147 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
398a153b
GH
1148
1149 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1150 dec_rt_migration(rt_se, rt_rq);
1151 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1152}
1153
37dad3fc 1154static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 1155{
6f505b16
PZ
1156 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1157 struct rt_prio_array *array = &rt_rq->active;
1158 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1159 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1160
ad2a3f13
PZ
1161 /*
1162 * Don't enqueue the group if its throttled, or when empty.
1163 * The latter is a consequence of the former when a child group
1164 * get throttled and the current group doesn't have any other
1165 * active members.
1166 */
1167 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 1168 return;
63489e45 1169
37dad3fc
TG
1170 if (head)
1171 list_add(&rt_se->run_list, queue);
1172 else
1173 list_add_tail(&rt_se->run_list, queue);
6f505b16 1174 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 1175
6f505b16
PZ
1176 inc_rt_tasks(rt_se, rt_rq);
1177}
1178
ad2a3f13 1179static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
1180{
1181 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1182 struct rt_prio_array *array = &rt_rq->active;
1183
1184 list_del_init(&rt_se->run_list);
1185 if (list_empty(array->queue + rt_se_prio(rt_se)))
1186 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1187
1188 dec_rt_tasks(rt_se, rt_rq);
1189}
1190
1191/*
1192 * Because the prio of an upper entry depends on the lower
1193 * entries, we must remove entries top - down.
6f505b16 1194 */
ad2a3f13 1195static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 1196{
ad2a3f13 1197 struct sched_rt_entity *back = NULL;
6f505b16 1198
58d6c2d7
PZ
1199 for_each_sched_rt_entity(rt_se) {
1200 rt_se->back = back;
1201 back = rt_se;
1202 }
1203
f4ebcbc0
KT
1204 dequeue_top_rt_rq(rt_rq_of_se(back));
1205
58d6c2d7
PZ
1206 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1207 if (on_rt_rq(rt_se))
ad2a3f13
PZ
1208 __dequeue_rt_entity(rt_se);
1209 }
1210}
1211
37dad3fc 1212static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13 1213{
f4ebcbc0
KT
1214 struct rq *rq = rq_of_rt_se(rt_se);
1215
ad2a3f13
PZ
1216 dequeue_rt_stack(rt_se);
1217 for_each_sched_rt_entity(rt_se)
37dad3fc 1218 __enqueue_rt_entity(rt_se, head);
f4ebcbc0 1219 enqueue_top_rt_rq(&rq->rt);
ad2a3f13
PZ
1220}
1221
1222static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1223{
f4ebcbc0
KT
1224 struct rq *rq = rq_of_rt_se(rt_se);
1225
ad2a3f13
PZ
1226 dequeue_rt_stack(rt_se);
1227
1228 for_each_sched_rt_entity(rt_se) {
1229 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1230
1231 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 1232 __enqueue_rt_entity(rt_se, false);
58d6c2d7 1233 }
f4ebcbc0 1234 enqueue_top_rt_rq(&rq->rt);
bb44e5d1
IM
1235}
1236
1237/*
1238 * Adding/removing a task to/from a priority array:
1239 */
ea87bb78 1240static void
371fd7e7 1241enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1242{
1243 struct sched_rt_entity *rt_se = &p->rt;
1244
371fd7e7 1245 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1246 rt_se->timeout = 0;
1247
371fd7e7 1248 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 1249
29baa747 1250 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1251 enqueue_pushable_task(rq, p);
6f505b16
PZ
1252}
1253
371fd7e7 1254static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1255{
6f505b16 1256 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1257
f1e14ef6 1258 update_curr_rt(rq);
ad2a3f13 1259 dequeue_rt_entity(rt_se);
c09595f6 1260
917b627d 1261 dequeue_pushable_task(rq, p);
bb44e5d1
IM
1262}
1263
1264/*
60686317
RW
1265 * Put task to the head or the end of the run list without the overhead of
1266 * dequeue followed by enqueue.
bb44e5d1 1267 */
7ebefa8c
DA
1268static void
1269requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1270{
1cdad715 1271 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1272 struct rt_prio_array *array = &rt_rq->active;
1273 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1274
1275 if (head)
1276 list_move(&rt_se->run_list, queue);
1277 else
1278 list_move_tail(&rt_se->run_list, queue);
1cdad715 1279 }
6f505b16
PZ
1280}
1281
7ebefa8c 1282static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1283{
6f505b16
PZ
1284 struct sched_rt_entity *rt_se = &p->rt;
1285 struct rt_rq *rt_rq;
bb44e5d1 1286
6f505b16
PZ
1287 for_each_sched_rt_entity(rt_se) {
1288 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1289 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1290 }
bb44e5d1
IM
1291}
1292
6f505b16 1293static void yield_task_rt(struct rq *rq)
bb44e5d1 1294{
7ebefa8c 1295 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1296}
1297
e7693a36 1298#ifdef CONFIG_SMP
318e0893
GH
1299static int find_lowest_rq(struct task_struct *task);
1300
0017d735 1301static int
ac66f547 1302select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
e7693a36 1303{
7608dec2
PZ
1304 struct task_struct *curr;
1305 struct rq *rq;
c37495fd
SR
1306
1307 /* For anything but wake ups, just return the task_cpu */
1308 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1309 goto out;
1310
7608dec2
PZ
1311 rq = cpu_rq(cpu);
1312
1313 rcu_read_lock();
1314 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1315
318e0893 1316 /*
7608dec2 1317 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1318 * try to see if we can wake this RT task up on another
1319 * runqueue. Otherwise simply start this RT task
1320 * on its current runqueue.
1321 *
43fa5460
SR
1322 * We want to avoid overloading runqueues. If the woken
1323 * task is a higher priority, then it will stay on this CPU
1324 * and the lower prio task should be moved to another CPU.
1325 * Even though this will probably make the lower prio task
1326 * lose its cache, we do not want to bounce a higher task
1327 * around just because it gave up its CPU, perhaps for a
1328 * lock?
1329 *
1330 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1331 *
1332 * Otherwise, just let it ride on the affined RQ and the
1333 * post-schedule router will push the preempted task away
1334 *
1335 * This test is optimistic, if we get it wrong the load-balancer
1336 * will have to sort it out.
318e0893 1337 */
7608dec2 1338 if (curr && unlikely(rt_task(curr)) &&
29baa747 1339 (curr->nr_cpus_allowed < 2 ||
6bfa687c 1340 curr->prio <= p->prio)) {
7608dec2 1341 int target = find_lowest_rq(p);
318e0893 1342
7608dec2
PZ
1343 if (target != -1)
1344 cpu = target;
318e0893 1345 }
7608dec2 1346 rcu_read_unlock();
318e0893 1347
c37495fd 1348out:
7608dec2 1349 return cpu;
e7693a36 1350}
7ebefa8c
DA
1351
1352static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1353{
308a623a
WL
1354 /*
1355 * Current can't be migrated, useless to reschedule,
1356 * let's hope p can move out.
1357 */
1358 if (rq->curr->nr_cpus_allowed == 1 ||
1359 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
7ebefa8c
DA
1360 return;
1361
308a623a
WL
1362 /*
1363 * p is migratable, so let's not schedule it and
1364 * see if it is pushed or pulled somewhere else.
1365 */
29baa747 1366 if (p->nr_cpus_allowed != 1
13b8bd0a
RR
1367 && cpupri_find(&rq->rd->cpupri, p, NULL))
1368 return;
24600ce8 1369
7ebefa8c
DA
1370 /*
1371 * There appears to be other cpus that can accept
1372 * current and none to run 'p', so lets reschedule
1373 * to try and push current away:
1374 */
1375 requeue_task_rt(rq, p, 1);
8875125e 1376 resched_curr(rq);
7ebefa8c
DA
1377}
1378
e7693a36
GH
1379#endif /* CONFIG_SMP */
1380
bb44e5d1
IM
1381/*
1382 * Preempt the current task with a newly woken task if needed:
1383 */
7d478721 1384static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1385{
45c01e82 1386 if (p->prio < rq->curr->prio) {
8875125e 1387 resched_curr(rq);
45c01e82
GH
1388 return;
1389 }
1390
1391#ifdef CONFIG_SMP
1392 /*
1393 * If:
1394 *
1395 * - the newly woken task is of equal priority to the current task
1396 * - the newly woken task is non-migratable while current is migratable
1397 * - current will be preempted on the next reschedule
1398 *
1399 * we should check to see if current can readily move to a different
1400 * cpu. If so, we will reschedule to allow the push logic to try
1401 * to move current somewhere else, making room for our non-migratable
1402 * task.
1403 */
8dd0de8b 1404 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1405 check_preempt_equal_prio(rq, p);
45c01e82 1406#endif
bb44e5d1
IM
1407}
1408
6f505b16
PZ
1409static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1410 struct rt_rq *rt_rq)
bb44e5d1 1411{
6f505b16
PZ
1412 struct rt_prio_array *array = &rt_rq->active;
1413 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1414 struct list_head *queue;
1415 int idx;
1416
1417 idx = sched_find_first_bit(array->bitmap);
6f505b16 1418 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1419
1420 queue = array->queue + idx;
6f505b16 1421 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1422
6f505b16
PZ
1423 return next;
1424}
bb44e5d1 1425
917b627d 1426static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1427{
1428 struct sched_rt_entity *rt_se;
1429 struct task_struct *p;
606dba2e 1430 struct rt_rq *rt_rq = &rq->rt;
6f505b16
PZ
1431
1432 do {
1433 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1434 BUG_ON(!rt_se);
6f505b16
PZ
1435 rt_rq = group_rt_rq(rt_se);
1436 } while (rt_rq);
1437
1438 p = rt_task_of(rt_se);
78becc27 1439 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1440
1441 return p;
1442}
1443
606dba2e
PZ
1444static struct task_struct *
1445pick_next_task_rt(struct rq *rq, struct task_struct *prev)
917b627d 1446{
606dba2e
PZ
1447 struct task_struct *p;
1448 struct rt_rq *rt_rq = &rq->rt;
1449
37e117c0 1450 if (need_pull_rt_task(rq, prev)) {
38033c37 1451 pull_rt_task(rq);
37e117c0
PZ
1452 /*
1453 * pull_rt_task() can drop (and re-acquire) rq->lock; this
a1d9a323
KT
1454 * means a dl or stop task can slip in, in which case we need
1455 * to re-start task selection.
37e117c0 1456 */
da0c1e65 1457 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
a1d9a323 1458 rq->dl.dl_nr_running))
37e117c0
PZ
1459 return RETRY_TASK;
1460 }
38033c37 1461
734ff2a7
KT
1462 /*
1463 * We may dequeue prev's rt_rq in put_prev_task().
1464 * So, we update time before rt_nr_running check.
1465 */
1466 if (prev->sched_class == &rt_sched_class)
1467 update_curr_rt(rq);
1468
f4ebcbc0 1469 if (!rt_rq->rt_queued)
606dba2e
PZ
1470 return NULL;
1471
3f1d2a31 1472 put_prev_task(rq, prev);
606dba2e
PZ
1473
1474 p = _pick_next_task_rt(rq);
917b627d
GH
1475
1476 /* The running task is never eligible for pushing */
f3f1768f 1477 dequeue_pushable_task(rq, p);
917b627d 1478
dc877341 1479 set_post_schedule(rq);
3f029d3c 1480
6f505b16 1481 return p;
bb44e5d1
IM
1482}
1483
31ee529c 1484static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1485{
f1e14ef6 1486 update_curr_rt(rq);
917b627d
GH
1487
1488 /*
1489 * The previous task needs to be made eligible for pushing
1490 * if it is still active
1491 */
29baa747 1492 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1493 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1494}
1495
681f3e68 1496#ifdef CONFIG_SMP
6f505b16 1497
e8fa1362
SR
1498/* Only try algorithms three times */
1499#define RT_MAX_TRIES 3
1500
f65eda4f
SR
1501static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1502{
1503 if (!task_running(rq, p) &&
60334caf 1504 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
f65eda4f
SR
1505 return 1;
1506 return 0;
1507}
1508
e23ee747
KT
1509/*
1510 * Return the highest pushable rq's task, which is suitable to be executed
1511 * on the cpu, NULL otherwise
1512 */
1513static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
e8fa1362 1514{
e23ee747
KT
1515 struct plist_head *head = &rq->rt.pushable_tasks;
1516 struct task_struct *p;
3d07467b 1517
e23ee747
KT
1518 if (!has_pushable_tasks(rq))
1519 return NULL;
3d07467b 1520
e23ee747
KT
1521 plist_for_each_entry(p, head, pushable_tasks) {
1522 if (pick_rt_task(rq, p, cpu))
1523 return p;
f65eda4f
SR
1524 }
1525
e23ee747 1526 return NULL;
e8fa1362
SR
1527}
1528
0e3900e6 1529static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1530
6e1254d2
GH
1531static int find_lowest_rq(struct task_struct *task)
1532{
1533 struct sched_domain *sd;
4ba29684 1534 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
6e1254d2
GH
1535 int this_cpu = smp_processor_id();
1536 int cpu = task_cpu(task);
06f90dbd 1537
0da938c4
SR
1538 /* Make sure the mask is initialized first */
1539 if (unlikely(!lowest_mask))
1540 return -1;
1541
29baa747 1542 if (task->nr_cpus_allowed == 1)
6e0534f2 1543 return -1; /* No other targets possible */
6e1254d2 1544
6e0534f2
GH
1545 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1546 return -1; /* No targets found */
6e1254d2
GH
1547
1548 /*
1549 * At this point we have built a mask of cpus representing the
1550 * lowest priority tasks in the system. Now we want to elect
1551 * the best one based on our affinity and topology.
1552 *
1553 * We prioritize the last cpu that the task executed on since
1554 * it is most likely cache-hot in that location.
1555 */
96f874e2 1556 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1557 return cpu;
1558
1559 /*
1560 * Otherwise, we consult the sched_domains span maps to figure
1561 * out which cpu is logically closest to our hot cache data.
1562 */
e2c88063
RR
1563 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1564 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1565
cd4ae6ad 1566 rcu_read_lock();
e2c88063
RR
1567 for_each_domain(cpu, sd) {
1568 if (sd->flags & SD_WAKE_AFFINE) {
1569 int best_cpu;
6e1254d2 1570
e2c88063
RR
1571 /*
1572 * "this_cpu" is cheaper to preempt than a
1573 * remote processor.
1574 */
1575 if (this_cpu != -1 &&
cd4ae6ad
XF
1576 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1577 rcu_read_unlock();
e2c88063 1578 return this_cpu;
cd4ae6ad 1579 }
e2c88063
RR
1580
1581 best_cpu = cpumask_first_and(lowest_mask,
1582 sched_domain_span(sd));
cd4ae6ad
XF
1583 if (best_cpu < nr_cpu_ids) {
1584 rcu_read_unlock();
e2c88063 1585 return best_cpu;
cd4ae6ad 1586 }
6e1254d2
GH
1587 }
1588 }
cd4ae6ad 1589 rcu_read_unlock();
6e1254d2
GH
1590
1591 /*
1592 * And finally, if there were no matches within the domains
1593 * just give the caller *something* to work with from the compatible
1594 * locations.
1595 */
e2c88063
RR
1596 if (this_cpu != -1)
1597 return this_cpu;
1598
1599 cpu = cpumask_any(lowest_mask);
1600 if (cpu < nr_cpu_ids)
1601 return cpu;
1602 return -1;
07b4032c
GH
1603}
1604
1605/* Will lock the rq it finds */
4df64c0b 1606static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1607{
1608 struct rq *lowest_rq = NULL;
07b4032c 1609 int tries;
4df64c0b 1610 int cpu;
e8fa1362 1611
07b4032c
GH
1612 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1613 cpu = find_lowest_rq(task);
1614
2de0b463 1615 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1616 break;
1617
07b4032c
GH
1618 lowest_rq = cpu_rq(cpu);
1619
e8fa1362 1620 /* if the prio of this runqueue changed, try again */
07b4032c 1621 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1622 /*
1623 * We had to unlock the run queue. In
1624 * the mean time, task could have
1625 * migrated already or had its affinity changed.
1626 * Also make sure that it wasn't scheduled on its rq.
1627 */
07b4032c 1628 if (unlikely(task_rq(task) != rq ||
96f874e2 1629 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1630 tsk_cpus_allowed(task)) ||
07b4032c 1631 task_running(rq, task) ||
da0c1e65 1632 !task_on_rq_queued(task))) {
4df64c0b 1633
7f1b4393 1634 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1635 lowest_rq = NULL;
1636 break;
1637 }
1638 }
1639
1640 /* If this rq is still suitable use it. */
e864c499 1641 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1642 break;
1643
1644 /* try again */
1b12bbc7 1645 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1646 lowest_rq = NULL;
1647 }
1648
1649 return lowest_rq;
1650}
1651
917b627d
GH
1652static struct task_struct *pick_next_pushable_task(struct rq *rq)
1653{
1654 struct task_struct *p;
1655
1656 if (!has_pushable_tasks(rq))
1657 return NULL;
1658
1659 p = plist_first_entry(&rq->rt.pushable_tasks,
1660 struct task_struct, pushable_tasks);
1661
1662 BUG_ON(rq->cpu != task_cpu(p));
1663 BUG_ON(task_current(rq, p));
29baa747 1664 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1665
da0c1e65 1666 BUG_ON(!task_on_rq_queued(p));
917b627d
GH
1667 BUG_ON(!rt_task(p));
1668
1669 return p;
1670}
1671
e8fa1362
SR
1672/*
1673 * If the current CPU has more than one RT task, see if the non
1674 * running task can migrate over to a CPU that is running a task
1675 * of lesser priority.
1676 */
697f0a48 1677static int push_rt_task(struct rq *rq)
e8fa1362
SR
1678{
1679 struct task_struct *next_task;
1680 struct rq *lowest_rq;
311e800e 1681 int ret = 0;
e8fa1362 1682
a22d7fc1
GH
1683 if (!rq->rt.overloaded)
1684 return 0;
1685
917b627d 1686 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1687 if (!next_task)
1688 return 0;
1689
49246274 1690retry:
697f0a48 1691 if (unlikely(next_task == rq->curr)) {
f65eda4f 1692 WARN_ON(1);
e8fa1362 1693 return 0;
f65eda4f 1694 }
e8fa1362
SR
1695
1696 /*
1697 * It's possible that the next_task slipped in of
1698 * higher priority than current. If that's the case
1699 * just reschedule current.
1700 */
697f0a48 1701 if (unlikely(next_task->prio < rq->curr->prio)) {
8875125e 1702 resched_curr(rq);
e8fa1362
SR
1703 return 0;
1704 }
1705
697f0a48 1706 /* We might release rq lock */
e8fa1362
SR
1707 get_task_struct(next_task);
1708
1709 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1710 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1711 if (!lowest_rq) {
1712 struct task_struct *task;
1713 /*
311e800e 1714 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1715 * so it is possible that next_task has migrated.
1716 *
1717 * We need to make sure that the task is still on the same
1718 * run-queue and is also still the next task eligible for
1719 * pushing.
e8fa1362 1720 */
917b627d 1721 task = pick_next_pushable_task(rq);
1563513d
GH
1722 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1723 /*
311e800e
HD
1724 * The task hasn't migrated, and is still the next
1725 * eligible task, but we failed to find a run-queue
1726 * to push it to. Do not retry in this case, since
1727 * other cpus will pull from us when ready.
1563513d 1728 */
1563513d 1729 goto out;
e8fa1362 1730 }
917b627d 1731
1563513d
GH
1732 if (!task)
1733 /* No more tasks, just exit */
1734 goto out;
1735
917b627d 1736 /*
1563513d 1737 * Something has shifted, try again.
917b627d 1738 */
1563513d
GH
1739 put_task_struct(next_task);
1740 next_task = task;
1741 goto retry;
e8fa1362
SR
1742 }
1743
697f0a48 1744 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1745 set_task_cpu(next_task, lowest_rq->cpu);
1746 activate_task(lowest_rq, next_task, 0);
311e800e 1747 ret = 1;
e8fa1362 1748
8875125e 1749 resched_curr(lowest_rq);
e8fa1362 1750
1b12bbc7 1751 double_unlock_balance(rq, lowest_rq);
e8fa1362 1752
e8fa1362
SR
1753out:
1754 put_task_struct(next_task);
1755
311e800e 1756 return ret;
e8fa1362
SR
1757}
1758
e8fa1362
SR
1759static void push_rt_tasks(struct rq *rq)
1760{
1761 /* push_rt_task will return true if it moved an RT */
1762 while (push_rt_task(rq))
1763 ;
1764}
1765
f65eda4f
SR
1766static int pull_rt_task(struct rq *this_rq)
1767{
80bf3171 1768 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1769 struct task_struct *p;
f65eda4f 1770 struct rq *src_rq;
f65eda4f 1771
637f5085 1772 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1773 return 0;
1774
7c3f2ab7
PZ
1775 /*
1776 * Match the barrier from rt_set_overloaded; this guarantees that if we
1777 * see overloaded we must also see the rto_mask bit.
1778 */
1779 smp_rmb();
1780
c6c4927b 1781 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1782 if (this_cpu == cpu)
1783 continue;
1784
1785 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1786
1787 /*
1788 * Don't bother taking the src_rq->lock if the next highest
1789 * task is known to be lower-priority than our current task.
1790 * This may look racy, but if this value is about to go
1791 * logically higher, the src_rq will push this task away.
1792 * And if its going logically lower, we do not care
1793 */
1794 if (src_rq->rt.highest_prio.next >=
1795 this_rq->rt.highest_prio.curr)
1796 continue;
1797
f65eda4f
SR
1798 /*
1799 * We can potentially drop this_rq's lock in
1800 * double_lock_balance, and another CPU could
a8728944 1801 * alter this_rq
f65eda4f 1802 */
a8728944 1803 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1804
1805 /*
e23ee747
KT
1806 * We can pull only a task, which is pushable
1807 * on its rq, and no others.
f65eda4f 1808 */
e23ee747 1809 p = pick_highest_pushable_task(src_rq, this_cpu);
f65eda4f
SR
1810
1811 /*
1812 * Do we have an RT task that preempts
1813 * the to-be-scheduled task?
1814 */
a8728944 1815 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 1816 WARN_ON(p == src_rq->curr);
da0c1e65 1817 WARN_ON(!task_on_rq_queued(p));
f65eda4f
SR
1818
1819 /*
1820 * There's a chance that p is higher in priority
1821 * than what's currently running on its cpu.
1822 * This is just that p is wakeing up and hasn't
1823 * had a chance to schedule. We only pull
1824 * p if it is lower in priority than the
a8728944 1825 * current task on the run queue
f65eda4f 1826 */
a8728944 1827 if (p->prio < src_rq->curr->prio)
614ee1f6 1828 goto skip;
f65eda4f
SR
1829
1830 ret = 1;
1831
1832 deactivate_task(src_rq, p, 0);
1833 set_task_cpu(p, this_cpu);
1834 activate_task(this_rq, p, 0);
1835 /*
1836 * We continue with the search, just in
1837 * case there's an even higher prio task
25985edc 1838 * in another runqueue. (low likelihood
f65eda4f 1839 * but possible)
f65eda4f 1840 */
f65eda4f 1841 }
49246274 1842skip:
1b12bbc7 1843 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1844 }
1845
1846 return ret;
1847}
1848
9a897c5a 1849static void post_schedule_rt(struct rq *rq)
e8fa1362 1850{
967fc046 1851 push_rt_tasks(rq);
e8fa1362
SR
1852}
1853
8ae121ac
GH
1854/*
1855 * If we are not running and we are not going to reschedule soon, we should
1856 * try to push tasks away now
1857 */
efbbd05a 1858static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1859{
9a897c5a 1860 if (!task_running(rq, p) &&
8ae121ac 1861 !test_tsk_need_resched(rq->curr) &&
917b627d 1862 has_pushable_tasks(rq) &&
29baa747 1863 p->nr_cpus_allowed > 1 &&
1baca4ce 1864 (dl_task(rq->curr) || rt_task(rq->curr)) &&
29baa747 1865 (rq->curr->nr_cpus_allowed < 2 ||
3be209a8 1866 rq->curr->prio <= p->prio))
4642dafd
SR
1867 push_rt_tasks(rq);
1868}
1869
cd8ba7cd 1870static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1871 const struct cpumask *new_mask)
73fe6aae 1872{
8d3d5ada
KT
1873 struct rq *rq;
1874 int weight;
73fe6aae
GH
1875
1876 BUG_ON(!rt_task(p));
1877
da0c1e65 1878 if (!task_on_rq_queued(p))
8d3d5ada 1879 return;
917b627d 1880
8d3d5ada 1881 weight = cpumask_weight(new_mask);
917b627d 1882
8d3d5ada
KT
1883 /*
1884 * Only update if the process changes its state from whether it
1885 * can migrate or not.
1886 */
29baa747 1887 if ((p->nr_cpus_allowed > 1) == (weight > 1))
8d3d5ada 1888 return;
917b627d 1889
8d3d5ada 1890 rq = task_rq(p);
73fe6aae 1891
8d3d5ada
KT
1892 /*
1893 * The process used to be able to migrate OR it can now migrate
1894 */
1895 if (weight <= 1) {
1896 if (!task_current(rq, p))
1897 dequeue_pushable_task(rq, p);
1898 BUG_ON(!rq->rt.rt_nr_migratory);
1899 rq->rt.rt_nr_migratory--;
1900 } else {
1901 if (!task_current(rq, p))
1902 enqueue_pushable_task(rq, p);
1903 rq->rt.rt_nr_migratory++;
73fe6aae 1904 }
8d3d5ada
KT
1905
1906 update_rt_migration(&rq->rt);
73fe6aae 1907}
deeeccd4 1908
bdd7c81b 1909/* Assumes rq->lock is held */
1f11eb6a 1910static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1911{
1912 if (rq->rt.overloaded)
1913 rt_set_overload(rq);
6e0534f2 1914
7def2be1
PZ
1915 __enable_runtime(rq);
1916
e864c499 1917 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1918}
1919
1920/* Assumes rq->lock is held */
1f11eb6a 1921static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1922{
1923 if (rq->rt.overloaded)
1924 rt_clear_overload(rq);
6e0534f2 1925
7def2be1
PZ
1926 __disable_runtime(rq);
1927
6e0534f2 1928 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1929}
cb469845
SR
1930
1931/*
1932 * When switch from the rt queue, we bring ourselves to a position
1933 * that we might want to pull RT tasks from other runqueues.
1934 */
da7a735e 1935static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1936{
1937 /*
1938 * If there are other RT tasks then we will reschedule
1939 * and the scheduling of the other RT tasks will handle
1940 * the balancing. But if we are the last RT task
1941 * we may need to handle the pulling of RT tasks
1942 * now.
1943 */
da0c1e65 1944 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
1158ddb5
KT
1945 return;
1946
1947 if (pull_rt_task(rq))
8875125e 1948 resched_curr(rq);
cb469845 1949}
3d8cbdf8 1950
11c785b7 1951void __init init_sched_rt_class(void)
3d8cbdf8
RR
1952{
1953 unsigned int i;
1954
029632fb 1955 for_each_possible_cpu(i) {
eaa95840 1956 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1957 GFP_KERNEL, cpu_to_node(i));
029632fb 1958 }
3d8cbdf8 1959}
cb469845
SR
1960#endif /* CONFIG_SMP */
1961
1962/*
1963 * When switching a task to RT, we may overload the runqueue
1964 * with RT tasks. In this case we try to push them off to
1965 * other runqueues.
1966 */
da7a735e 1967static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1968{
1969 int check_resched = 1;
1970
1971 /*
1972 * If we are already running, then there's nothing
1973 * that needs to be done. But if we are not running
1974 * we may need to preempt the current running task.
1975 * If that current running task is also an RT task
1976 * then see if we can move to another run queue.
1977 */
da0c1e65 1978 if (task_on_rq_queued(p) && rq->curr != p) {
cb469845 1979#ifdef CONFIG_SMP
10447917 1980 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
cb469845 1981 /* Don't resched if we changed runqueues */
10447917 1982 push_rt_task(rq) && rq != task_rq(p))
cb469845
SR
1983 check_resched = 0;
1984#endif /* CONFIG_SMP */
1985 if (check_resched && p->prio < rq->curr->prio)
8875125e 1986 resched_curr(rq);
cb469845
SR
1987 }
1988}
1989
1990/*
1991 * Priority of the task has changed. This may cause
1992 * us to initiate a push or pull.
1993 */
da7a735e
PZ
1994static void
1995prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1996{
da0c1e65 1997 if (!task_on_rq_queued(p))
da7a735e
PZ
1998 return;
1999
2000 if (rq->curr == p) {
cb469845
SR
2001#ifdef CONFIG_SMP
2002 /*
2003 * If our priority decreases while running, we
2004 * may need to pull tasks to this runqueue.
2005 */
2006 if (oldprio < p->prio)
2007 pull_rt_task(rq);
2008 /*
2009 * If there's a higher priority task waiting to run
6fa46fa5
SR
2010 * then reschedule. Note, the above pull_rt_task
2011 * can release the rq lock and p could migrate.
2012 * Only reschedule if p is still on the same runqueue.
cb469845 2013 */
e864c499 2014 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
8875125e 2015 resched_curr(rq);
cb469845
SR
2016#else
2017 /* For UP simply resched on drop of prio */
2018 if (oldprio < p->prio)
8875125e 2019 resched_curr(rq);
e8fa1362 2020#endif /* CONFIG_SMP */
cb469845
SR
2021 } else {
2022 /*
2023 * This task is not running, but if it is
2024 * greater than the current running task
2025 * then reschedule.
2026 */
2027 if (p->prio < rq->curr->prio)
8875125e 2028 resched_curr(rq);
cb469845
SR
2029 }
2030}
2031
78f2c7db
PZ
2032static void watchdog(struct rq *rq, struct task_struct *p)
2033{
2034 unsigned long soft, hard;
2035
78d7d407
JS
2036 /* max may change after cur was read, this will be fixed next tick */
2037 soft = task_rlimit(p, RLIMIT_RTTIME);
2038 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
2039
2040 if (soft != RLIM_INFINITY) {
2041 unsigned long next;
2042
57d2aa00
YX
2043 if (p->rt.watchdog_stamp != jiffies) {
2044 p->rt.timeout++;
2045 p->rt.watchdog_stamp = jiffies;
2046 }
2047
78f2c7db 2048 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 2049 if (p->rt.timeout > next)
f06febc9 2050 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
2051 }
2052}
bb44e5d1 2053
8f4d37ec 2054static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 2055{
454c7999
CC
2056 struct sched_rt_entity *rt_se = &p->rt;
2057
67e2be02
PZ
2058 update_curr_rt(rq);
2059
78f2c7db
PZ
2060 watchdog(rq, p);
2061
bb44e5d1
IM
2062 /*
2063 * RR tasks need a special form of timeslice management.
2064 * FIFO tasks have no timeslices.
2065 */
2066 if (p->policy != SCHED_RR)
2067 return;
2068
fa717060 2069 if (--p->rt.time_slice)
bb44e5d1
IM
2070 return;
2071
ce0dbbbb 2072 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 2073
98fbc798 2074 /*
e9aa39bb
LB
2075 * Requeue to the end of queue if we (and all of our ancestors) are not
2076 * the only element on the queue
98fbc798 2077 */
454c7999
CC
2078 for_each_sched_rt_entity(rt_se) {
2079 if (rt_se->run_list.prev != rt_se->run_list.next) {
2080 requeue_task_rt(rq, p, 0);
8aa6f0eb 2081 resched_curr(rq);
454c7999
CC
2082 return;
2083 }
98fbc798 2084 }
bb44e5d1
IM
2085}
2086
83b699ed
SV
2087static void set_curr_task_rt(struct rq *rq)
2088{
2089 struct task_struct *p = rq->curr;
2090
78becc27 2091 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
2092
2093 /* The running task is never eligible for pushing */
2094 dequeue_pushable_task(rq, p);
83b699ed
SV
2095}
2096
6d686f45 2097static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
2098{
2099 /*
2100 * Time slice is 0 for SCHED_FIFO tasks
2101 */
2102 if (task->policy == SCHED_RR)
ce0dbbbb 2103 return sched_rr_timeslice;
0d721cea
PW
2104 else
2105 return 0;
2106}
2107
029632fb 2108const struct sched_class rt_sched_class = {
5522d5d5 2109 .next = &fair_sched_class,
bb44e5d1
IM
2110 .enqueue_task = enqueue_task_rt,
2111 .dequeue_task = dequeue_task_rt,
2112 .yield_task = yield_task_rt,
2113
2114 .check_preempt_curr = check_preempt_curr_rt,
2115
2116 .pick_next_task = pick_next_task_rt,
2117 .put_prev_task = put_prev_task_rt,
2118
681f3e68 2119#ifdef CONFIG_SMP
4ce72a2c
LZ
2120 .select_task_rq = select_task_rq_rt,
2121
73fe6aae 2122 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
2123 .rq_online = rq_online_rt,
2124 .rq_offline = rq_offline_rt,
9a897c5a 2125 .post_schedule = post_schedule_rt,
efbbd05a 2126 .task_woken = task_woken_rt,
cb469845 2127 .switched_from = switched_from_rt,
681f3e68 2128#endif
bb44e5d1 2129
83b699ed 2130 .set_curr_task = set_curr_task_rt,
bb44e5d1 2131 .task_tick = task_tick_rt,
cb469845 2132
0d721cea
PW
2133 .get_rr_interval = get_rr_interval_rt,
2134
cb469845
SR
2135 .prio_changed = prio_changed_rt,
2136 .switched_to = switched_to_rt,
6e998916
SG
2137
2138 .update_curr = update_curr_rt,
bb44e5d1 2139};
ada18de2
PZ
2140
2141#ifdef CONFIG_SCHED_DEBUG
2142extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2143
029632fb 2144void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2145{
ec514c48 2146 rt_rq_iter_t iter;
ada18de2
PZ
2147 struct rt_rq *rt_rq;
2148
2149 rcu_read_lock();
ec514c48 2150 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2151 print_rt_rq(m, cpu, rt_rq);
2152 rcu_read_unlock();
2153}
55e12e5e 2154#endif /* CONFIG_SCHED_DEBUG */