sysctl: pass kernel pointers to ->proc_handler
[linux-block.git] / kernel / sched / rt.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bb44e5d1
IM
2/*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
029632fb
PZ
6#include "sched.h"
7
371bf427
VG
8#include "pelt.h"
9
ce0dbbbb 10int sched_rr_timeslice = RR_TIMESLICE;
975e155e 11int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
ce0dbbbb 12
029632fb
PZ
13static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15struct rt_bandwidth def_rt_bandwidth;
16
17static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18{
19 struct rt_bandwidth *rt_b =
20 container_of(timer, struct rt_bandwidth, rt_period_timer);
029632fb 21 int idle = 0;
77a4d1a1 22 int overrun;
029632fb 23
77a4d1a1 24 raw_spin_lock(&rt_b->rt_runtime_lock);
029632fb 25 for (;;) {
77a4d1a1 26 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
029632fb
PZ
27 if (!overrun)
28 break;
29
77a4d1a1 30 raw_spin_unlock(&rt_b->rt_runtime_lock);
029632fb 31 idle = do_sched_rt_period_timer(rt_b, overrun);
77a4d1a1 32 raw_spin_lock(&rt_b->rt_runtime_lock);
029632fb 33 }
4cfafd30
PZ
34 if (idle)
35 rt_b->rt_period_active = 0;
77a4d1a1 36 raw_spin_unlock(&rt_b->rt_runtime_lock);
029632fb
PZ
37
38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39}
40
41void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42{
43 rt_b->rt_period = ns_to_ktime(period);
44 rt_b->rt_runtime = runtime;
45
46 raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
d5096aa6
SAS
48 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
49 HRTIMER_MODE_REL_HARD);
029632fb
PZ
50 rt_b->rt_period_timer.function = sched_rt_period_timer;
51}
52
53static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54{
55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 return;
57
029632fb 58 raw_spin_lock(&rt_b->rt_runtime_lock);
4cfafd30
PZ
59 if (!rt_b->rt_period_active) {
60 rt_b->rt_period_active = 1;
c3a990dc
SR
61 /*
62 * SCHED_DEADLINE updates the bandwidth, as a run away
63 * RT task with a DL task could hog a CPU. But DL does
64 * not reset the period. If a deadline task was running
65 * without an RT task running, it can cause RT tasks to
66 * throttle when they start up. Kick the timer right away
67 * to update the period.
68 */
69 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
d5096aa6
SAS
70 hrtimer_start_expires(&rt_b->rt_period_timer,
71 HRTIMER_MODE_ABS_PINNED_HARD);
4cfafd30 72 }
029632fb
PZ
73 raw_spin_unlock(&rt_b->rt_runtime_lock);
74}
75
07c54f7a 76void init_rt_rq(struct rt_rq *rt_rq)
029632fb
PZ
77{
78 struct rt_prio_array *array;
79 int i;
80
81 array = &rt_rq->active;
82 for (i = 0; i < MAX_RT_PRIO; i++) {
83 INIT_LIST_HEAD(array->queue + i);
84 __clear_bit(i, array->bitmap);
85 }
86 /* delimiter for bitsearch: */
87 __set_bit(MAX_RT_PRIO, array->bitmap);
88
89#if defined CONFIG_SMP
90 rt_rq->highest_prio.curr = MAX_RT_PRIO;
91 rt_rq->highest_prio.next = MAX_RT_PRIO;
92 rt_rq->rt_nr_migratory = 0;
93 rt_rq->overloaded = 0;
94 plist_head_init(&rt_rq->pushable_tasks);
b6366f04 95#endif /* CONFIG_SMP */
f4ebcbc0
KT
96 /* We start is dequeued state, because no RT tasks are queued */
97 rt_rq->rt_queued = 0;
029632fb
PZ
98
99 rt_rq->rt_time = 0;
100 rt_rq->rt_throttled = 0;
101 rt_rq->rt_runtime = 0;
102 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
103}
104
8f48894f 105#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
106static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
107{
108 hrtimer_cancel(&rt_b->rt_period_timer);
109}
8f48894f
PZ
110
111#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
112
398a153b
GH
113static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
114{
8f48894f
PZ
115#ifdef CONFIG_SCHED_DEBUG
116 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
117#endif
398a153b
GH
118 return container_of(rt_se, struct task_struct, rt);
119}
120
398a153b
GH
121static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
122{
123 return rt_rq->rq;
124}
125
126static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
127{
128 return rt_se->rt_rq;
129}
130
653d07a6
KT
131static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
132{
133 struct rt_rq *rt_rq = rt_se->rt_rq;
134
135 return rt_rq->rq;
136}
137
029632fb
PZ
138void free_rt_sched_group(struct task_group *tg)
139{
140 int i;
141
142 if (tg->rt_se)
143 destroy_rt_bandwidth(&tg->rt_bandwidth);
144
145 for_each_possible_cpu(i) {
146 if (tg->rt_rq)
147 kfree(tg->rt_rq[i]);
148 if (tg->rt_se)
149 kfree(tg->rt_se[i]);
150 }
151
152 kfree(tg->rt_rq);
153 kfree(tg->rt_se);
154}
155
156void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
157 struct sched_rt_entity *rt_se, int cpu,
158 struct sched_rt_entity *parent)
159{
160 struct rq *rq = cpu_rq(cpu);
161
162 rt_rq->highest_prio.curr = MAX_RT_PRIO;
163 rt_rq->rt_nr_boosted = 0;
164 rt_rq->rq = rq;
165 rt_rq->tg = tg;
166
167 tg->rt_rq[cpu] = rt_rq;
168 tg->rt_se[cpu] = rt_se;
169
170 if (!rt_se)
171 return;
172
173 if (!parent)
174 rt_se->rt_rq = &rq->rt;
175 else
176 rt_se->rt_rq = parent->my_q;
177
178 rt_se->my_q = rt_rq;
179 rt_se->parent = parent;
180 INIT_LIST_HEAD(&rt_se->run_list);
181}
182
183int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
184{
185 struct rt_rq *rt_rq;
186 struct sched_rt_entity *rt_se;
187 int i;
188
6396bb22 189 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
029632fb
PZ
190 if (!tg->rt_rq)
191 goto err;
6396bb22 192 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
029632fb
PZ
193 if (!tg->rt_se)
194 goto err;
195
196 init_rt_bandwidth(&tg->rt_bandwidth,
197 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
198
199 for_each_possible_cpu(i) {
200 rt_rq = kzalloc_node(sizeof(struct rt_rq),
201 GFP_KERNEL, cpu_to_node(i));
202 if (!rt_rq)
203 goto err;
204
205 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
206 GFP_KERNEL, cpu_to_node(i));
207 if (!rt_se)
208 goto err_free_rq;
209
07c54f7a 210 init_rt_rq(rt_rq);
029632fb
PZ
211 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
212 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
213 }
214
215 return 1;
216
217err_free_rq:
218 kfree(rt_rq);
219err:
220 return 0;
221}
222
398a153b
GH
223#else /* CONFIG_RT_GROUP_SCHED */
224
a1ba4d8b
PZ
225#define rt_entity_is_task(rt_se) (1)
226
8f48894f
PZ
227static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
228{
229 return container_of(rt_se, struct task_struct, rt);
230}
231
398a153b
GH
232static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
233{
234 return container_of(rt_rq, struct rq, rt);
235}
236
653d07a6 237static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
398a153b
GH
238{
239 struct task_struct *p = rt_task_of(rt_se);
653d07a6
KT
240
241 return task_rq(p);
242}
243
244static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
245{
246 struct rq *rq = rq_of_rt_se(rt_se);
398a153b
GH
247
248 return &rq->rt;
249}
250
029632fb
PZ
251void free_rt_sched_group(struct task_group *tg) { }
252
253int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
254{
255 return 1;
256}
398a153b
GH
257#endif /* CONFIG_RT_GROUP_SCHED */
258
4fd29176 259#ifdef CONFIG_SMP
84de4274 260
8046d680 261static void pull_rt_task(struct rq *this_rq);
38033c37 262
dc877341
PZ
263static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
264{
265 /* Try to pull RT tasks here if we lower this rq's prio */
266 return rq->rt.highest_prio.curr > prev->prio;
267}
268
637f5085 269static inline int rt_overloaded(struct rq *rq)
4fd29176 270{
637f5085 271 return atomic_read(&rq->rd->rto_count);
4fd29176 272}
84de4274 273
4fd29176
SR
274static inline void rt_set_overload(struct rq *rq)
275{
1f11eb6a
GH
276 if (!rq->online)
277 return;
278
c6c4927b 279 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
280 /*
281 * Make sure the mask is visible before we set
282 * the overload count. That is checked to determine
283 * if we should look at the mask. It would be a shame
284 * if we looked at the mask, but the mask was not
285 * updated yet.
7c3f2ab7
PZ
286 *
287 * Matched by the barrier in pull_rt_task().
4fd29176 288 */
7c3f2ab7 289 smp_wmb();
637f5085 290 atomic_inc(&rq->rd->rto_count);
4fd29176 291}
84de4274 292
4fd29176
SR
293static inline void rt_clear_overload(struct rq *rq)
294{
1f11eb6a
GH
295 if (!rq->online)
296 return;
297
4fd29176 298 /* the order here really doesn't matter */
637f5085 299 atomic_dec(&rq->rd->rto_count);
c6c4927b 300 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 301}
73fe6aae 302
398a153b 303static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 304{
a1ba4d8b 305 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
306 if (!rt_rq->overloaded) {
307 rt_set_overload(rq_of_rt_rq(rt_rq));
308 rt_rq->overloaded = 1;
cdc8eb98 309 }
398a153b
GH
310 } else if (rt_rq->overloaded) {
311 rt_clear_overload(rq_of_rt_rq(rt_rq));
312 rt_rq->overloaded = 0;
637f5085 313 }
73fe6aae 314}
4fd29176 315
398a153b
GH
316static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
317{
29baa747
PZ
318 struct task_struct *p;
319
a1ba4d8b
PZ
320 if (!rt_entity_is_task(rt_se))
321 return;
322
29baa747 323 p = rt_task_of(rt_se);
a1ba4d8b
PZ
324 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
325
326 rt_rq->rt_nr_total++;
4b53a341 327 if (p->nr_cpus_allowed > 1)
398a153b
GH
328 rt_rq->rt_nr_migratory++;
329
330 update_rt_migration(rt_rq);
331}
332
333static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
334{
29baa747
PZ
335 struct task_struct *p;
336
a1ba4d8b
PZ
337 if (!rt_entity_is_task(rt_se))
338 return;
339
29baa747 340 p = rt_task_of(rt_se);
a1ba4d8b
PZ
341 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
342
343 rt_rq->rt_nr_total--;
4b53a341 344 if (p->nr_cpus_allowed > 1)
398a153b
GH
345 rt_rq->rt_nr_migratory--;
346
347 update_rt_migration(rt_rq);
348}
349
5181f4a4
SR
350static inline int has_pushable_tasks(struct rq *rq)
351{
352 return !plist_head_empty(&rq->rt.pushable_tasks);
353}
354
fd7a4bed
PZ
355static DEFINE_PER_CPU(struct callback_head, rt_push_head);
356static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
e3fca9e7
PZ
357
358static void push_rt_tasks(struct rq *);
fd7a4bed 359static void pull_rt_task(struct rq *);
e3fca9e7 360
02d8ec94 361static inline void rt_queue_push_tasks(struct rq *rq)
dc877341 362{
e3fca9e7
PZ
363 if (!has_pushable_tasks(rq))
364 return;
365
fd7a4bed
PZ
366 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
367}
368
02d8ec94 369static inline void rt_queue_pull_task(struct rq *rq)
fd7a4bed
PZ
370{
371 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
dc877341
PZ
372}
373
917b627d
GH
374static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
375{
376 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
377 plist_node_init(&p->pushable_tasks, p->prio);
378 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
379
380 /* Update the highest prio pushable task */
381 if (p->prio < rq->rt.highest_prio.next)
382 rq->rt.highest_prio.next = p->prio;
917b627d
GH
383}
384
385static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
386{
387 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 388
5181f4a4
SR
389 /* Update the new highest prio pushable task */
390 if (has_pushable_tasks(rq)) {
391 p = plist_first_entry(&rq->rt.pushable_tasks,
392 struct task_struct, pushable_tasks);
393 rq->rt.highest_prio.next = p->prio;
394 } else
395 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
396}
397
917b627d
GH
398#else
399
ceacc2c1 400static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 401{
6f505b16
PZ
402}
403
ceacc2c1
PZ
404static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
405{
406}
407
b07430ac 408static inline
ceacc2c1
PZ
409void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
410{
411}
412
398a153b 413static inline
ceacc2c1
PZ
414void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
415{
416}
917b627d 417
dc877341
PZ
418static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
419{
420 return false;
421}
422
8046d680 423static inline void pull_rt_task(struct rq *this_rq)
dc877341 424{
dc877341
PZ
425}
426
02d8ec94 427static inline void rt_queue_push_tasks(struct rq *rq)
dc877341
PZ
428{
429}
4fd29176
SR
430#endif /* CONFIG_SMP */
431
f4ebcbc0
KT
432static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
433static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
434
6f505b16
PZ
435static inline int on_rt_rq(struct sched_rt_entity *rt_se)
436{
ff77e468 437 return rt_se->on_rq;
6f505b16
PZ
438}
439
804d402f
QY
440#ifdef CONFIG_UCLAMP_TASK
441/*
442 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
443 * settings.
444 *
445 * This check is only important for heterogeneous systems where uclamp_min value
446 * is higher than the capacity of a @cpu. For non-heterogeneous system this
447 * function will always return true.
448 *
449 * The function will return true if the capacity of the @cpu is >= the
450 * uclamp_min and false otherwise.
451 *
452 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
453 * > uclamp_max.
454 */
455static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
456{
457 unsigned int min_cap;
458 unsigned int max_cap;
459 unsigned int cpu_cap;
460
461 /* Only heterogeneous systems can benefit from this check */
462 if (!static_branch_unlikely(&sched_asym_cpucapacity))
463 return true;
464
465 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
466 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
467
468 cpu_cap = capacity_orig_of(cpu);
469
470 return cpu_cap >= min(min_cap, max_cap);
471}
472#else
473static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
474{
475 return true;
476}
477#endif
478
052f1dc7 479#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 480
9f0c1e56 481static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
482{
483 if (!rt_rq->tg)
9f0c1e56 484 return RUNTIME_INF;
6f505b16 485
ac086bc2
PZ
486 return rt_rq->rt_runtime;
487}
488
489static inline u64 sched_rt_period(struct rt_rq *rt_rq)
490{
491 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
492}
493
ec514c48
CX
494typedef struct task_group *rt_rq_iter_t;
495
1c09ab0d
YZ
496static inline struct task_group *next_task_group(struct task_group *tg)
497{
498 do {
499 tg = list_entry_rcu(tg->list.next,
500 typeof(struct task_group), list);
501 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
502
503 if (&tg->list == &task_groups)
504 tg = NULL;
505
506 return tg;
507}
508
509#define for_each_rt_rq(rt_rq, iter, rq) \
510 for (iter = container_of(&task_groups, typeof(*iter), list); \
511 (iter = next_task_group(iter)) && \
512 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 513
6f505b16
PZ
514#define for_each_sched_rt_entity(rt_se) \
515 for (; rt_se; rt_se = rt_se->parent)
516
517static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
518{
519 return rt_se->my_q;
520}
521
ff77e468
PZ
522static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
523static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
6f505b16 524
9f0c1e56 525static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 526{
f6121f4f 527 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
8875125e 528 struct rq *rq = rq_of_rt_rq(rt_rq);
74b7eb58
YZ
529 struct sched_rt_entity *rt_se;
530
8875125e 531 int cpu = cpu_of(rq);
0c3b9168
BS
532
533 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 534
f6121f4f 535 if (rt_rq->rt_nr_running) {
f4ebcbc0
KT
536 if (!rt_se)
537 enqueue_top_rt_rq(rt_rq);
538 else if (!on_rt_rq(rt_se))
ff77e468 539 enqueue_rt_entity(rt_se, 0);
f4ebcbc0 540
e864c499 541 if (rt_rq->highest_prio.curr < curr->prio)
8875125e 542 resched_curr(rq);
6f505b16
PZ
543 }
544}
545
9f0c1e56 546static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 547{
74b7eb58 548 struct sched_rt_entity *rt_se;
0c3b9168 549 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 550
0c3b9168 551 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 552
296b2ffe 553 if (!rt_se) {
f4ebcbc0 554 dequeue_top_rt_rq(rt_rq);
296b2ffe
VG
555 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
556 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
557 }
f4ebcbc0 558 else if (on_rt_rq(rt_se))
ff77e468 559 dequeue_rt_entity(rt_se, 0);
6f505b16
PZ
560}
561
46383648
KT
562static inline int rt_rq_throttled(struct rt_rq *rt_rq)
563{
564 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
565}
566
23b0fdfc
PZ
567static int rt_se_boosted(struct sched_rt_entity *rt_se)
568{
569 struct rt_rq *rt_rq = group_rt_rq(rt_se);
570 struct task_struct *p;
571
572 if (rt_rq)
573 return !!rt_rq->rt_nr_boosted;
574
575 p = rt_task_of(rt_se);
576 return p->prio != p->normal_prio;
577}
578
d0b27fa7 579#ifdef CONFIG_SMP
c6c4927b 580static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 581{
424c93fe 582 return this_rq()->rd->span;
d0b27fa7 583}
6f505b16 584#else
c6c4927b 585static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 586{
c6c4927b 587 return cpu_online_mask;
d0b27fa7
PZ
588}
589#endif
6f505b16 590
d0b27fa7
PZ
591static inline
592struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 593{
d0b27fa7
PZ
594 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
595}
9f0c1e56 596
ac086bc2
PZ
597static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
598{
599 return &rt_rq->tg->rt_bandwidth;
600}
601
55e12e5e 602#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
603
604static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
605{
ac086bc2
PZ
606 return rt_rq->rt_runtime;
607}
608
609static inline u64 sched_rt_period(struct rt_rq *rt_rq)
610{
611 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
612}
613
ec514c48
CX
614typedef struct rt_rq *rt_rq_iter_t;
615
616#define for_each_rt_rq(rt_rq, iter, rq) \
617 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
618
6f505b16
PZ
619#define for_each_sched_rt_entity(rt_se) \
620 for (; rt_se; rt_se = NULL)
621
622static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
623{
624 return NULL;
625}
626
9f0c1e56 627static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 628{
f4ebcbc0
KT
629 struct rq *rq = rq_of_rt_rq(rt_rq);
630
631 if (!rt_rq->rt_nr_running)
632 return;
633
634 enqueue_top_rt_rq(rt_rq);
8875125e 635 resched_curr(rq);
6f505b16
PZ
636}
637
9f0c1e56 638static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 639{
f4ebcbc0 640 dequeue_top_rt_rq(rt_rq);
6f505b16
PZ
641}
642
46383648
KT
643static inline int rt_rq_throttled(struct rt_rq *rt_rq)
644{
645 return rt_rq->rt_throttled;
646}
647
c6c4927b 648static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 649{
c6c4927b 650 return cpu_online_mask;
d0b27fa7
PZ
651}
652
653static inline
654struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
655{
656 return &cpu_rq(cpu)->rt;
657}
658
ac086bc2
PZ
659static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
660{
661 return &def_rt_bandwidth;
662}
663
55e12e5e 664#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 665
faa59937
JL
666bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
667{
668 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
669
670 return (hrtimer_active(&rt_b->rt_period_timer) ||
671 rt_rq->rt_time < rt_b->rt_runtime);
672}
673
ac086bc2 674#ifdef CONFIG_SMP
78333cdd
PZ
675/*
676 * We ran out of runtime, see if we can borrow some from our neighbours.
677 */
269b26a5 678static void do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
679{
680 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 681 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
269b26a5 682 int i, weight;
ac086bc2
PZ
683 u64 rt_period;
684
c6c4927b 685 weight = cpumask_weight(rd->span);
ac086bc2 686
0986b11b 687 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 688 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 689 for_each_cpu(i, rd->span) {
ac086bc2
PZ
690 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
691 s64 diff;
692
693 if (iter == rt_rq)
694 continue;
695
0986b11b 696 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
697 /*
698 * Either all rqs have inf runtime and there's nothing to steal
699 * or __disable_runtime() below sets a specific rq to inf to
700 * indicate its been disabled and disalow stealing.
701 */
7def2be1
PZ
702 if (iter->rt_runtime == RUNTIME_INF)
703 goto next;
704
78333cdd
PZ
705 /*
706 * From runqueues with spare time, take 1/n part of their
707 * spare time, but no more than our period.
708 */
ac086bc2
PZ
709 diff = iter->rt_runtime - iter->rt_time;
710 if (diff > 0) {
58838cf3 711 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
712 if (rt_rq->rt_runtime + diff > rt_period)
713 diff = rt_period - rt_rq->rt_runtime;
714 iter->rt_runtime -= diff;
715 rt_rq->rt_runtime += diff;
ac086bc2 716 if (rt_rq->rt_runtime == rt_period) {
0986b11b 717 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
718 break;
719 }
720 }
7def2be1 721next:
0986b11b 722 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 723 }
0986b11b 724 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2 725}
7def2be1 726
78333cdd
PZ
727/*
728 * Ensure this RQ takes back all the runtime it lend to its neighbours.
729 */
7def2be1
PZ
730static void __disable_runtime(struct rq *rq)
731{
732 struct root_domain *rd = rq->rd;
ec514c48 733 rt_rq_iter_t iter;
7def2be1
PZ
734 struct rt_rq *rt_rq;
735
736 if (unlikely(!scheduler_running))
737 return;
738
ec514c48 739 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
740 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
741 s64 want;
742 int i;
743
0986b11b
TG
744 raw_spin_lock(&rt_b->rt_runtime_lock);
745 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
746 /*
747 * Either we're all inf and nobody needs to borrow, or we're
748 * already disabled and thus have nothing to do, or we have
749 * exactly the right amount of runtime to take out.
750 */
7def2be1
PZ
751 if (rt_rq->rt_runtime == RUNTIME_INF ||
752 rt_rq->rt_runtime == rt_b->rt_runtime)
753 goto balanced;
0986b11b 754 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 755
78333cdd
PZ
756 /*
757 * Calculate the difference between what we started out with
758 * and what we current have, that's the amount of runtime
759 * we lend and now have to reclaim.
760 */
7def2be1
PZ
761 want = rt_b->rt_runtime - rt_rq->rt_runtime;
762
78333cdd
PZ
763 /*
764 * Greedy reclaim, take back as much as we can.
765 */
c6c4927b 766 for_each_cpu(i, rd->span) {
7def2be1
PZ
767 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
768 s64 diff;
769
78333cdd
PZ
770 /*
771 * Can't reclaim from ourselves or disabled runqueues.
772 */
f1679d08 773 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
774 continue;
775
0986b11b 776 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
777 if (want > 0) {
778 diff = min_t(s64, iter->rt_runtime, want);
779 iter->rt_runtime -= diff;
780 want -= diff;
781 } else {
782 iter->rt_runtime -= want;
783 want -= want;
784 }
0986b11b 785 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
786
787 if (!want)
788 break;
789 }
790
0986b11b 791 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
792 /*
793 * We cannot be left wanting - that would mean some runtime
794 * leaked out of the system.
795 */
7def2be1
PZ
796 BUG_ON(want);
797balanced:
78333cdd
PZ
798 /*
799 * Disable all the borrow logic by pretending we have inf
800 * runtime - in which case borrowing doesn't make sense.
801 */
7def2be1 802 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 803 rt_rq->rt_throttled = 0;
0986b11b
TG
804 raw_spin_unlock(&rt_rq->rt_runtime_lock);
805 raw_spin_unlock(&rt_b->rt_runtime_lock);
99b62567
KT
806
807 /* Make rt_rq available for pick_next_task() */
808 sched_rt_rq_enqueue(rt_rq);
7def2be1
PZ
809 }
810}
811
7def2be1
PZ
812static void __enable_runtime(struct rq *rq)
813{
ec514c48 814 rt_rq_iter_t iter;
7def2be1
PZ
815 struct rt_rq *rt_rq;
816
817 if (unlikely(!scheduler_running))
818 return;
819
78333cdd
PZ
820 /*
821 * Reset each runqueue's bandwidth settings
822 */
ec514c48 823 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
824 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
825
0986b11b
TG
826 raw_spin_lock(&rt_b->rt_runtime_lock);
827 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
828 rt_rq->rt_runtime = rt_b->rt_runtime;
829 rt_rq->rt_time = 0;
baf25731 830 rt_rq->rt_throttled = 0;
0986b11b
TG
831 raw_spin_unlock(&rt_rq->rt_runtime_lock);
832 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
833 }
834}
835
269b26a5 836static void balance_runtime(struct rt_rq *rt_rq)
eff6549b 837{
4a6184ce 838 if (!sched_feat(RT_RUNTIME_SHARE))
269b26a5 839 return;
4a6184ce 840
eff6549b 841 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 842 raw_spin_unlock(&rt_rq->rt_runtime_lock);
269b26a5 843 do_balance_runtime(rt_rq);
0986b11b 844 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b 845 }
eff6549b 846}
55e12e5e 847#else /* !CONFIG_SMP */
269b26a5 848static inline void balance_runtime(struct rt_rq *rt_rq) {}
55e12e5e 849#endif /* CONFIG_SMP */
ac086bc2 850
eff6549b
PZ
851static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
852{
42c62a58 853 int i, idle = 1, throttled = 0;
c6c4927b 854 const struct cpumask *span;
eff6549b 855
eff6549b 856 span = sched_rt_period_mask();
e221d028
MG
857#ifdef CONFIG_RT_GROUP_SCHED
858 /*
859 * FIXME: isolated CPUs should really leave the root task group,
860 * whether they are isolcpus or were isolated via cpusets, lest
861 * the timer run on a CPU which does not service all runqueues,
862 * potentially leaving other CPUs indefinitely throttled. If
863 * isolation is really required, the user will turn the throttle
864 * off to kill the perturbations it causes anyway. Meanwhile,
865 * this maintains functionality for boot and/or troubleshooting.
866 */
867 if (rt_b == &root_task_group.rt_bandwidth)
868 span = cpu_online_mask;
869#endif
c6c4927b 870 for_each_cpu(i, span) {
eff6549b
PZ
871 int enqueue = 0;
872 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
873 struct rq *rq = rq_of_rt_rq(rt_rq);
c249f255
DK
874 int skip;
875
876 /*
877 * When span == cpu_online_mask, taking each rq->lock
878 * can be time-consuming. Try to avoid it when possible.
879 */
880 raw_spin_lock(&rt_rq->rt_runtime_lock);
f3d133ee
HL
881 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
882 rt_rq->rt_runtime = rt_b->rt_runtime;
c249f255
DK
883 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
884 raw_spin_unlock(&rt_rq->rt_runtime_lock);
885 if (skip)
886 continue;
eff6549b 887
05fa785c 888 raw_spin_lock(&rq->lock);
d29a2064
DB
889 update_rq_clock(rq);
890
eff6549b
PZ
891 if (rt_rq->rt_time) {
892 u64 runtime;
893
0986b11b 894 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
895 if (rt_rq->rt_throttled)
896 balance_runtime(rt_rq);
897 runtime = rt_rq->rt_runtime;
898 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
899 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
900 rt_rq->rt_throttled = 0;
901 enqueue = 1;
61eadef6
MG
902
903 /*
9edfbfed
PZ
904 * When we're idle and a woken (rt) task is
905 * throttled check_preempt_curr() will set
906 * skip_update and the time between the wakeup
907 * and this unthrottle will get accounted as
908 * 'runtime'.
61eadef6
MG
909 */
910 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
adcc8da8 911 rq_clock_cancel_skipupdate(rq);
eff6549b
PZ
912 }
913 if (rt_rq->rt_time || rt_rq->rt_nr_running)
914 idle = 0;
0986b11b 915 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 916 } else if (rt_rq->rt_nr_running) {
6c3df255 917 idle = 0;
0c3b9168
BS
918 if (!rt_rq_throttled(rt_rq))
919 enqueue = 1;
920 }
42c62a58
PZ
921 if (rt_rq->rt_throttled)
922 throttled = 1;
eff6549b
PZ
923
924 if (enqueue)
925 sched_rt_rq_enqueue(rt_rq);
05fa785c 926 raw_spin_unlock(&rq->lock);
eff6549b
PZ
927 }
928
42c62a58
PZ
929 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
930 return 1;
931
eff6549b
PZ
932 return idle;
933}
ac086bc2 934
6f505b16
PZ
935static inline int rt_se_prio(struct sched_rt_entity *rt_se)
936{
052f1dc7 937#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
938 struct rt_rq *rt_rq = group_rt_rq(rt_se);
939
940 if (rt_rq)
e864c499 941 return rt_rq->highest_prio.curr;
6f505b16
PZ
942#endif
943
944 return rt_task_of(rt_se)->prio;
945}
946
9f0c1e56 947static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 948{
9f0c1e56 949 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 950
fa85ae24 951 if (rt_rq->rt_throttled)
23b0fdfc 952 return rt_rq_throttled(rt_rq);
fa85ae24 953
5b680fd6 954 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
955 return 0;
956
b79f3833
PZ
957 balance_runtime(rt_rq);
958 runtime = sched_rt_runtime(rt_rq);
959 if (runtime == RUNTIME_INF)
960 return 0;
ac086bc2 961
9f0c1e56 962 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
963 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
964
965 /*
966 * Don't actually throttle groups that have no runtime assigned
967 * but accrue some time due to boosting.
968 */
969 if (likely(rt_b->rt_runtime)) {
970 rt_rq->rt_throttled = 1;
c224815d 971 printk_deferred_once("sched: RT throttling activated\n");
7abc63b1
PZ
972 } else {
973 /*
974 * In case we did anyway, make it go away,
975 * replenishment is a joke, since it will replenish us
976 * with exactly 0 ns.
977 */
978 rt_rq->rt_time = 0;
979 }
980
23b0fdfc 981 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 982 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
983 return 1;
984 }
fa85ae24
PZ
985 }
986
987 return 0;
988}
989
bb44e5d1
IM
990/*
991 * Update the current task's runtime statistics. Skip current tasks that
992 * are not in our scheduling class.
993 */
a9957449 994static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
995{
996 struct task_struct *curr = rq->curr;
6f505b16 997 struct sched_rt_entity *rt_se = &curr->rt;
bb44e5d1 998 u64 delta_exec;
a7711602 999 u64 now;
bb44e5d1 1000
06c3bc65 1001 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
1002 return;
1003
a7711602 1004 now = rq_clock_task(rq);
e7ad2031 1005 delta_exec = now - curr->se.exec_start;
fc79e240
KT
1006 if (unlikely((s64)delta_exec <= 0))
1007 return;
6cfb0d5d 1008
42c62a58
PZ
1009 schedstat_set(curr->se.statistics.exec_max,
1010 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
1011
1012 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
1013 account_group_exec_runtime(curr, delta_exec);
1014
e7ad2031 1015 curr->se.exec_start = now;
d2cc5ed6 1016 cgroup_account_cputime(curr, delta_exec);
fa85ae24 1017
0b148fa0
PZ
1018 if (!rt_bandwidth_enabled())
1019 return;
1020
354d60c2 1021 for_each_sched_rt_entity(rt_se) {
0b07939c 1022 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
354d60c2 1023
cc2991cf 1024 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 1025 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
1026 rt_rq->rt_time += delta_exec;
1027 if (sched_rt_runtime_exceeded(rt_rq))
8875125e 1028 resched_curr(rq);
0986b11b 1029 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 1030 }
354d60c2 1031 }
bb44e5d1
IM
1032}
1033
f4ebcbc0
KT
1034static void
1035dequeue_top_rt_rq(struct rt_rq *rt_rq)
1036{
1037 struct rq *rq = rq_of_rt_rq(rt_rq);
1038
1039 BUG_ON(&rq->rt != rt_rq);
1040
1041 if (!rt_rq->rt_queued)
1042 return;
1043
1044 BUG_ON(!rq->nr_running);
1045
72465447 1046 sub_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0 1047 rt_rq->rt_queued = 0;
8f111bc3 1048
f4ebcbc0
KT
1049}
1050
1051static void
1052enqueue_top_rt_rq(struct rt_rq *rt_rq)
1053{
1054 struct rq *rq = rq_of_rt_rq(rt_rq);
1055
1056 BUG_ON(&rq->rt != rt_rq);
1057
1058 if (rt_rq->rt_queued)
1059 return;
296b2ffe
VG
1060
1061 if (rt_rq_throttled(rt_rq))
f4ebcbc0
KT
1062 return;
1063
296b2ffe
VG
1064 if (rt_rq->rt_nr_running) {
1065 add_nr_running(rq, rt_rq->rt_nr_running);
1066 rt_rq->rt_queued = 1;
1067 }
8f111bc3
PZ
1068
1069 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1070 cpufreq_update_util(rq, 0);
f4ebcbc0
KT
1071}
1072
398a153b 1073#if defined CONFIG_SMP
e864c499 1074
398a153b
GH
1075static void
1076inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 1077{
4d984277 1078 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 1079
757dfcaa
KT
1080#ifdef CONFIG_RT_GROUP_SCHED
1081 /*
1082 * Change rq's cpupri only if rt_rq is the top queue.
1083 */
1084 if (&rq->rt != rt_rq)
1085 return;
1086#endif
5181f4a4
SR
1087 if (rq->online && prio < prev_prio)
1088 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 1089}
73fe6aae 1090
398a153b
GH
1091static void
1092dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1093{
1094 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 1095
757dfcaa
KT
1096#ifdef CONFIG_RT_GROUP_SCHED
1097 /*
1098 * Change rq's cpupri only if rt_rq is the top queue.
1099 */
1100 if (&rq->rt != rt_rq)
1101 return;
1102#endif
398a153b
GH
1103 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1104 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
1105}
1106
398a153b
GH
1107#else /* CONFIG_SMP */
1108
6f505b16 1109static inline
398a153b
GH
1110void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1111static inline
1112void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1113
1114#endif /* CONFIG_SMP */
6e0534f2 1115
052f1dc7 1116#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
1117static void
1118inc_rt_prio(struct rt_rq *rt_rq, int prio)
1119{
1120 int prev_prio = rt_rq->highest_prio.curr;
1121
1122 if (prio < prev_prio)
1123 rt_rq->highest_prio.curr = prio;
1124
1125 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1126}
1127
1128static void
1129dec_rt_prio(struct rt_rq *rt_rq, int prio)
1130{
1131 int prev_prio = rt_rq->highest_prio.curr;
1132
6f505b16 1133 if (rt_rq->rt_nr_running) {
764a9d6f 1134
398a153b 1135 WARN_ON(prio < prev_prio);
764a9d6f 1136
e864c499 1137 /*
398a153b
GH
1138 * This may have been our highest task, and therefore
1139 * we may have some recomputation to do
e864c499 1140 */
398a153b 1141 if (prio == prev_prio) {
e864c499
GH
1142 struct rt_prio_array *array = &rt_rq->active;
1143
1144 rt_rq->highest_prio.curr =
764a9d6f 1145 sched_find_first_bit(array->bitmap);
e864c499
GH
1146 }
1147
764a9d6f 1148 } else
e864c499 1149 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 1150
398a153b
GH
1151 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1152}
1f11eb6a 1153
398a153b
GH
1154#else
1155
1156static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1157static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1158
1159#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 1160
052f1dc7 1161#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
1162
1163static void
1164inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1165{
1166 if (rt_se_boosted(rt_se))
1167 rt_rq->rt_nr_boosted++;
1168
1169 if (rt_rq->tg)
1170 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1171}
1172
1173static void
1174dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1175{
23b0fdfc
PZ
1176 if (rt_se_boosted(rt_se))
1177 rt_rq->rt_nr_boosted--;
1178
1179 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
1180}
1181
1182#else /* CONFIG_RT_GROUP_SCHED */
1183
1184static void
1185inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186{
1187 start_rt_bandwidth(&def_rt_bandwidth);
1188}
1189
1190static inline
1191void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1192
1193#endif /* CONFIG_RT_GROUP_SCHED */
1194
22abdef3
KT
1195static inline
1196unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1197{
1198 struct rt_rq *group_rq = group_rt_rq(rt_se);
1199
1200 if (group_rq)
1201 return group_rq->rt_nr_running;
1202 else
1203 return 1;
1204}
1205
01d36d0a
FW
1206static inline
1207unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1208{
1209 struct rt_rq *group_rq = group_rt_rq(rt_se);
1210 struct task_struct *tsk;
1211
1212 if (group_rq)
1213 return group_rq->rr_nr_running;
1214
1215 tsk = rt_task_of(rt_se);
1216
1217 return (tsk->policy == SCHED_RR) ? 1 : 0;
1218}
1219
398a153b
GH
1220static inline
1221void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1222{
1223 int prio = rt_se_prio(rt_se);
1224
1225 WARN_ON(!rt_prio(prio));
22abdef3 1226 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
01d36d0a 1227 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
398a153b
GH
1228
1229 inc_rt_prio(rt_rq, prio);
1230 inc_rt_migration(rt_se, rt_rq);
1231 inc_rt_group(rt_se, rt_rq);
1232}
1233
1234static inline
1235void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1236{
1237 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1238 WARN_ON(!rt_rq->rt_nr_running);
22abdef3 1239 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
01d36d0a 1240 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
398a153b
GH
1241
1242 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1243 dec_rt_migration(rt_se, rt_rq);
1244 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1245}
1246
ff77e468
PZ
1247/*
1248 * Change rt_se->run_list location unless SAVE && !MOVE
1249 *
1250 * assumes ENQUEUE/DEQUEUE flags match
1251 */
1252static inline bool move_entity(unsigned int flags)
1253{
1254 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1255 return false;
1256
1257 return true;
1258}
1259
1260static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1261{
1262 list_del_init(&rt_se->run_list);
1263
1264 if (list_empty(array->queue + rt_se_prio(rt_se)))
1265 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1266
1267 rt_se->on_list = 0;
1268}
1269
1270static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
bb44e5d1 1271{
6f505b16
PZ
1272 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1273 struct rt_prio_array *array = &rt_rq->active;
1274 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1275 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1276
ad2a3f13
PZ
1277 /*
1278 * Don't enqueue the group if its throttled, or when empty.
1279 * The latter is a consequence of the former when a child group
1280 * get throttled and the current group doesn't have any other
1281 * active members.
1282 */
ff77e468
PZ
1283 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1284 if (rt_se->on_list)
1285 __delist_rt_entity(rt_se, array);
6f505b16 1286 return;
ff77e468 1287 }
63489e45 1288
ff77e468
PZ
1289 if (move_entity(flags)) {
1290 WARN_ON_ONCE(rt_se->on_list);
1291 if (flags & ENQUEUE_HEAD)
1292 list_add(&rt_se->run_list, queue);
1293 else
1294 list_add_tail(&rt_se->run_list, queue);
1295
1296 __set_bit(rt_se_prio(rt_se), array->bitmap);
1297 rt_se->on_list = 1;
1298 }
1299 rt_se->on_rq = 1;
78f2c7db 1300
6f505b16
PZ
1301 inc_rt_tasks(rt_se, rt_rq);
1302}
1303
ff77e468 1304static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
6f505b16
PZ
1305{
1306 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1307 struct rt_prio_array *array = &rt_rq->active;
1308
ff77e468
PZ
1309 if (move_entity(flags)) {
1310 WARN_ON_ONCE(!rt_se->on_list);
1311 __delist_rt_entity(rt_se, array);
1312 }
1313 rt_se->on_rq = 0;
6f505b16
PZ
1314
1315 dec_rt_tasks(rt_se, rt_rq);
1316}
1317
1318/*
1319 * Because the prio of an upper entry depends on the lower
1320 * entries, we must remove entries top - down.
6f505b16 1321 */
ff77e468 1322static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
6f505b16 1323{
ad2a3f13 1324 struct sched_rt_entity *back = NULL;
6f505b16 1325
58d6c2d7
PZ
1326 for_each_sched_rt_entity(rt_se) {
1327 rt_se->back = back;
1328 back = rt_se;
1329 }
1330
f4ebcbc0
KT
1331 dequeue_top_rt_rq(rt_rq_of_se(back));
1332
58d6c2d7
PZ
1333 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1334 if (on_rt_rq(rt_se))
ff77e468 1335 __dequeue_rt_entity(rt_se, flags);
ad2a3f13
PZ
1336 }
1337}
1338
ff77e468 1339static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
ad2a3f13 1340{
f4ebcbc0
KT
1341 struct rq *rq = rq_of_rt_se(rt_se);
1342
ff77e468 1343 dequeue_rt_stack(rt_se, flags);
ad2a3f13 1344 for_each_sched_rt_entity(rt_se)
ff77e468 1345 __enqueue_rt_entity(rt_se, flags);
f4ebcbc0 1346 enqueue_top_rt_rq(&rq->rt);
ad2a3f13
PZ
1347}
1348
ff77e468 1349static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
ad2a3f13 1350{
f4ebcbc0
KT
1351 struct rq *rq = rq_of_rt_se(rt_se);
1352
ff77e468 1353 dequeue_rt_stack(rt_se, flags);
ad2a3f13
PZ
1354
1355 for_each_sched_rt_entity(rt_se) {
1356 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1357
1358 if (rt_rq && rt_rq->rt_nr_running)
ff77e468 1359 __enqueue_rt_entity(rt_se, flags);
58d6c2d7 1360 }
f4ebcbc0 1361 enqueue_top_rt_rq(&rq->rt);
bb44e5d1
IM
1362}
1363
1364/*
1365 * Adding/removing a task to/from a priority array:
1366 */
ea87bb78 1367static void
371fd7e7 1368enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1369{
1370 struct sched_rt_entity *rt_se = &p->rt;
1371
371fd7e7 1372 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1373 rt_se->timeout = 0;
1374
ff77e468 1375 enqueue_rt_entity(rt_se, flags);
c09595f6 1376
4b53a341 1377 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1378 enqueue_pushable_task(rq, p);
6f505b16
PZ
1379}
1380
371fd7e7 1381static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1382{
6f505b16 1383 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1384
f1e14ef6 1385 update_curr_rt(rq);
ff77e468 1386 dequeue_rt_entity(rt_se, flags);
c09595f6 1387
917b627d 1388 dequeue_pushable_task(rq, p);
bb44e5d1
IM
1389}
1390
1391/*
60686317
RW
1392 * Put task to the head or the end of the run list without the overhead of
1393 * dequeue followed by enqueue.
bb44e5d1 1394 */
7ebefa8c
DA
1395static void
1396requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1397{
1cdad715 1398 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1399 struct rt_prio_array *array = &rt_rq->active;
1400 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1401
1402 if (head)
1403 list_move(&rt_se->run_list, queue);
1404 else
1405 list_move_tail(&rt_se->run_list, queue);
1cdad715 1406 }
6f505b16
PZ
1407}
1408
7ebefa8c 1409static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1410{
6f505b16
PZ
1411 struct sched_rt_entity *rt_se = &p->rt;
1412 struct rt_rq *rt_rq;
bb44e5d1 1413
6f505b16
PZ
1414 for_each_sched_rt_entity(rt_se) {
1415 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1416 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1417 }
bb44e5d1
IM
1418}
1419
6f505b16 1420static void yield_task_rt(struct rq *rq)
bb44e5d1 1421{
7ebefa8c 1422 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1423}
1424
e7693a36 1425#ifdef CONFIG_SMP
318e0893
GH
1426static int find_lowest_rq(struct task_struct *task);
1427
0017d735 1428static int
ac66f547 1429select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
e7693a36 1430{
7608dec2
PZ
1431 struct task_struct *curr;
1432 struct rq *rq;
804d402f 1433 bool test;
c37495fd
SR
1434
1435 /* For anything but wake ups, just return the task_cpu */
1436 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1437 goto out;
1438
7608dec2
PZ
1439 rq = cpu_rq(cpu);
1440
1441 rcu_read_lock();
316c1608 1442 curr = READ_ONCE(rq->curr); /* unlocked access */
7608dec2 1443
318e0893 1444 /*
7608dec2 1445 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1446 * try to see if we can wake this RT task up on another
1447 * runqueue. Otherwise simply start this RT task
1448 * on its current runqueue.
1449 *
43fa5460
SR
1450 * We want to avoid overloading runqueues. If the woken
1451 * task is a higher priority, then it will stay on this CPU
1452 * and the lower prio task should be moved to another CPU.
1453 * Even though this will probably make the lower prio task
1454 * lose its cache, we do not want to bounce a higher task
1455 * around just because it gave up its CPU, perhaps for a
1456 * lock?
1457 *
1458 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1459 *
1460 * Otherwise, just let it ride on the affined RQ and the
1461 * post-schedule router will push the preempted task away
1462 *
1463 * This test is optimistic, if we get it wrong the load-balancer
1464 * will have to sort it out.
804d402f
QY
1465 *
1466 * We take into account the capacity of the CPU to ensure it fits the
1467 * requirement of the task - which is only important on heterogeneous
1468 * systems like big.LITTLE.
318e0893 1469 */
804d402f
QY
1470 test = curr &&
1471 unlikely(rt_task(curr)) &&
1472 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1473
1474 if (test || !rt_task_fits_capacity(p, cpu)) {
7608dec2 1475 int target = find_lowest_rq(p);
318e0893 1476
b28bc1e0
QY
1477 /*
1478 * Bail out if we were forcing a migration to find a better
1479 * fitting CPU but our search failed.
1480 */
1481 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1482 goto out_unlock;
1483
80e3d87b
TC
1484 /*
1485 * Don't bother moving it if the destination CPU is
1486 * not running a lower priority task.
1487 */
1488 if (target != -1 &&
1489 p->prio < cpu_rq(target)->rt.highest_prio.curr)
7608dec2 1490 cpu = target;
318e0893 1491 }
b28bc1e0
QY
1492
1493out_unlock:
7608dec2 1494 rcu_read_unlock();
318e0893 1495
c37495fd 1496out:
7608dec2 1497 return cpu;
e7693a36 1498}
7ebefa8c
DA
1499
1500static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1501{
308a623a
WL
1502 /*
1503 * Current can't be migrated, useless to reschedule,
1504 * let's hope p can move out.
1505 */
4b53a341 1506 if (rq->curr->nr_cpus_allowed == 1 ||
a1bd02e1 1507 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
7ebefa8c
DA
1508 return;
1509
308a623a
WL
1510 /*
1511 * p is migratable, so let's not schedule it and
1512 * see if it is pushed or pulled somewhere else.
1513 */
804d402f 1514 if (p->nr_cpus_allowed != 1 &&
a1bd02e1 1515 cpupri_find(&rq->rd->cpupri, p, NULL))
13b8bd0a 1516 return;
24600ce8 1517
7ebefa8c 1518 /*
97fb7a0a
IM
1519 * There appear to be other CPUs that can accept
1520 * the current task but none can run 'p', so lets reschedule
1521 * to try and push the current task away:
7ebefa8c
DA
1522 */
1523 requeue_task_rt(rq, p, 1);
8875125e 1524 resched_curr(rq);
7ebefa8c
DA
1525}
1526
6e2df058
PZ
1527static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1528{
1529 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1530 /*
1531 * This is OK, because current is on_cpu, which avoids it being
1532 * picked for load-balance and preemption/IRQs are still
1533 * disabled avoiding further scheduler activity on it and we've
1534 * not yet started the picking loop.
1535 */
1536 rq_unpin_lock(rq, rf);
1537 pull_rt_task(rq);
1538 rq_repin_lock(rq, rf);
1539 }
1540
1541 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1542}
e7693a36
GH
1543#endif /* CONFIG_SMP */
1544
bb44e5d1
IM
1545/*
1546 * Preempt the current task with a newly woken task if needed:
1547 */
7d478721 1548static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1549{
45c01e82 1550 if (p->prio < rq->curr->prio) {
8875125e 1551 resched_curr(rq);
45c01e82
GH
1552 return;
1553 }
1554
1555#ifdef CONFIG_SMP
1556 /*
1557 * If:
1558 *
1559 * - the newly woken task is of equal priority to the current task
1560 * - the newly woken task is non-migratable while current is migratable
1561 * - current will be preempted on the next reschedule
1562 *
1563 * we should check to see if current can readily move to a different
1564 * cpu. If so, we will reschedule to allow the push logic to try
1565 * to move current somewhere else, making room for our non-migratable
1566 * task.
1567 */
8dd0de8b 1568 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1569 check_preempt_equal_prio(rq, p);
45c01e82 1570#endif
bb44e5d1
IM
1571}
1572
a0e813f2 1573static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
ff1cdc94
MS
1574{
1575 p->se.exec_start = rq_clock_task(rq);
1576
1577 /* The running task is never eligible for pushing */
1578 dequeue_pushable_task(rq, p);
f95d4eae 1579
a0e813f2
PZ
1580 if (!first)
1581 return;
1582
f95d4eae
PZ
1583 /*
1584 * If prev task was rt, put_prev_task() has already updated the
1585 * utilization. We only care of the case where we start to schedule a
1586 * rt task
1587 */
1588 if (rq->curr->sched_class != &rt_sched_class)
1589 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1590
1591 rt_queue_push_tasks(rq);
ff1cdc94
MS
1592}
1593
6f505b16
PZ
1594static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1595 struct rt_rq *rt_rq)
bb44e5d1 1596{
6f505b16
PZ
1597 struct rt_prio_array *array = &rt_rq->active;
1598 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1599 struct list_head *queue;
1600 int idx;
1601
1602 idx = sched_find_first_bit(array->bitmap);
6f505b16 1603 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1604
1605 queue = array->queue + idx;
6f505b16 1606 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1607
6f505b16
PZ
1608 return next;
1609}
bb44e5d1 1610
917b627d 1611static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1612{
1613 struct sched_rt_entity *rt_se;
606dba2e 1614 struct rt_rq *rt_rq = &rq->rt;
6f505b16
PZ
1615
1616 do {
1617 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1618 BUG_ON(!rt_se);
6f505b16
PZ
1619 rt_rq = group_rt_rq(rt_se);
1620 } while (rt_rq);
1621
ff1cdc94 1622 return rt_task_of(rt_se);
917b627d
GH
1623}
1624
98c2f700 1625static struct task_struct *pick_next_task_rt(struct rq *rq)
917b627d 1626{
606dba2e 1627 struct task_struct *p;
606dba2e 1628
6e2df058 1629 if (!sched_rt_runnable(rq))
606dba2e
PZ
1630 return NULL;
1631
606dba2e 1632 p = _pick_next_task_rt(rq);
a0e813f2 1633 set_next_task_rt(rq, p, true);
6f505b16 1634 return p;
bb44e5d1
IM
1635}
1636
6e2df058 1637static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1638{
f1e14ef6 1639 update_curr_rt(rq);
917b627d 1640
23127296 1641 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
371bf427 1642
917b627d
GH
1643 /*
1644 * The previous task needs to be made eligible for pushing
1645 * if it is still active
1646 */
4b53a341 1647 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1648 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1649}
1650
681f3e68 1651#ifdef CONFIG_SMP
6f505b16 1652
e8fa1362
SR
1653/* Only try algorithms three times */
1654#define RT_MAX_TRIES 3
1655
f65eda4f
SR
1656static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1657{
1658 if (!task_running(rq, p) &&
98ca645f 1659 cpumask_test_cpu(cpu, p->cpus_ptr))
f65eda4f 1660 return 1;
97fb7a0a 1661
f65eda4f
SR
1662 return 0;
1663}
1664
e23ee747
KT
1665/*
1666 * Return the highest pushable rq's task, which is suitable to be executed
97fb7a0a 1667 * on the CPU, NULL otherwise
e23ee747
KT
1668 */
1669static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
e8fa1362 1670{
e23ee747
KT
1671 struct plist_head *head = &rq->rt.pushable_tasks;
1672 struct task_struct *p;
3d07467b 1673
e23ee747
KT
1674 if (!has_pushable_tasks(rq))
1675 return NULL;
3d07467b 1676
e23ee747
KT
1677 plist_for_each_entry(p, head, pushable_tasks) {
1678 if (pick_rt_task(rq, p, cpu))
1679 return p;
f65eda4f
SR
1680 }
1681
e23ee747 1682 return NULL;
e8fa1362
SR
1683}
1684
0e3900e6 1685static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1686
6e1254d2
GH
1687static int find_lowest_rq(struct task_struct *task)
1688{
1689 struct sched_domain *sd;
4ba29684 1690 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
6e1254d2
GH
1691 int this_cpu = smp_processor_id();
1692 int cpu = task_cpu(task);
a1bd02e1 1693 int ret;
06f90dbd 1694
0da938c4
SR
1695 /* Make sure the mask is initialized first */
1696 if (unlikely(!lowest_mask))
1697 return -1;
1698
4b53a341 1699 if (task->nr_cpus_allowed == 1)
6e0534f2 1700 return -1; /* No other targets possible */
6e1254d2 1701
a1bd02e1
QY
1702 /*
1703 * If we're on asym system ensure we consider the different capacities
1704 * of the CPUs when searching for the lowest_mask.
1705 */
1706 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1707
1708 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1709 task, lowest_mask,
1710 rt_task_fits_capacity);
1711 } else {
1712
1713 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1714 task, lowest_mask);
1715 }
1716
1717 if (!ret)
6e0534f2 1718 return -1; /* No targets found */
6e1254d2
GH
1719
1720 /*
97fb7a0a 1721 * At this point we have built a mask of CPUs representing the
6e1254d2
GH
1722 * lowest priority tasks in the system. Now we want to elect
1723 * the best one based on our affinity and topology.
1724 *
97fb7a0a 1725 * We prioritize the last CPU that the task executed on since
6e1254d2
GH
1726 * it is most likely cache-hot in that location.
1727 */
96f874e2 1728 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1729 return cpu;
1730
1731 /*
1732 * Otherwise, we consult the sched_domains span maps to figure
97fb7a0a 1733 * out which CPU is logically closest to our hot cache data.
6e1254d2 1734 */
e2c88063
RR
1735 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1736 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1737
cd4ae6ad 1738 rcu_read_lock();
e2c88063
RR
1739 for_each_domain(cpu, sd) {
1740 if (sd->flags & SD_WAKE_AFFINE) {
1741 int best_cpu;
6e1254d2 1742
e2c88063
RR
1743 /*
1744 * "this_cpu" is cheaper to preempt than a
1745 * remote processor.
1746 */
1747 if (this_cpu != -1 &&
cd4ae6ad
XF
1748 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1749 rcu_read_unlock();
e2c88063 1750 return this_cpu;
cd4ae6ad 1751 }
e2c88063
RR
1752
1753 best_cpu = cpumask_first_and(lowest_mask,
1754 sched_domain_span(sd));
cd4ae6ad
XF
1755 if (best_cpu < nr_cpu_ids) {
1756 rcu_read_unlock();
e2c88063 1757 return best_cpu;
cd4ae6ad 1758 }
6e1254d2
GH
1759 }
1760 }
cd4ae6ad 1761 rcu_read_unlock();
6e1254d2
GH
1762
1763 /*
1764 * And finally, if there were no matches within the domains
1765 * just give the caller *something* to work with from the compatible
1766 * locations.
1767 */
e2c88063
RR
1768 if (this_cpu != -1)
1769 return this_cpu;
1770
1771 cpu = cpumask_any(lowest_mask);
1772 if (cpu < nr_cpu_ids)
1773 return cpu;
97fb7a0a 1774
e2c88063 1775 return -1;
07b4032c
GH
1776}
1777
1778/* Will lock the rq it finds */
4df64c0b 1779static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1780{
1781 struct rq *lowest_rq = NULL;
07b4032c 1782 int tries;
4df64c0b 1783 int cpu;
e8fa1362 1784
07b4032c
GH
1785 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1786 cpu = find_lowest_rq(task);
1787
2de0b463 1788 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1789 break;
1790
07b4032c
GH
1791 lowest_rq = cpu_rq(cpu);
1792
80e3d87b
TC
1793 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1794 /*
1795 * Target rq has tasks of equal or higher priority,
1796 * retrying does not release any lock and is unlikely
1797 * to yield a different result.
1798 */
1799 lowest_rq = NULL;
1800 break;
1801 }
1802
e8fa1362 1803 /* if the prio of this runqueue changed, try again */
07b4032c 1804 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1805 /*
1806 * We had to unlock the run queue. In
1807 * the mean time, task could have
1808 * migrated already or had its affinity changed.
1809 * Also make sure that it wasn't scheduled on its rq.
1810 */
07b4032c 1811 if (unlikely(task_rq(task) != rq ||
3bd37062 1812 !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
07b4032c 1813 task_running(rq, task) ||
13b5ab02 1814 !rt_task(task) ||
da0c1e65 1815 !task_on_rq_queued(task))) {
4df64c0b 1816
7f1b4393 1817 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1818 lowest_rq = NULL;
1819 break;
1820 }
1821 }
1822
1823 /* If this rq is still suitable use it. */
e864c499 1824 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1825 break;
1826
1827 /* try again */
1b12bbc7 1828 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1829 lowest_rq = NULL;
1830 }
1831
1832 return lowest_rq;
1833}
1834
917b627d
GH
1835static struct task_struct *pick_next_pushable_task(struct rq *rq)
1836{
1837 struct task_struct *p;
1838
1839 if (!has_pushable_tasks(rq))
1840 return NULL;
1841
1842 p = plist_first_entry(&rq->rt.pushable_tasks,
1843 struct task_struct, pushable_tasks);
1844
1845 BUG_ON(rq->cpu != task_cpu(p));
1846 BUG_ON(task_current(rq, p));
4b53a341 1847 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1848
da0c1e65 1849 BUG_ON(!task_on_rq_queued(p));
917b627d
GH
1850 BUG_ON(!rt_task(p));
1851
1852 return p;
1853}
1854
e8fa1362
SR
1855/*
1856 * If the current CPU has more than one RT task, see if the non
1857 * running task can migrate over to a CPU that is running a task
1858 * of lesser priority.
1859 */
697f0a48 1860static int push_rt_task(struct rq *rq)
e8fa1362
SR
1861{
1862 struct task_struct *next_task;
1863 struct rq *lowest_rq;
311e800e 1864 int ret = 0;
e8fa1362 1865
a22d7fc1
GH
1866 if (!rq->rt.overloaded)
1867 return 0;
1868
917b627d 1869 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1870 if (!next_task)
1871 return 0;
1872
49246274 1873retry:
9ebc6053 1874 if (WARN_ON(next_task == rq->curr))
e8fa1362
SR
1875 return 0;
1876
1877 /*
1878 * It's possible that the next_task slipped in of
1879 * higher priority than current. If that's the case
1880 * just reschedule current.
1881 */
697f0a48 1882 if (unlikely(next_task->prio < rq->curr->prio)) {
8875125e 1883 resched_curr(rq);
e8fa1362
SR
1884 return 0;
1885 }
1886
697f0a48 1887 /* We might release rq lock */
e8fa1362
SR
1888 get_task_struct(next_task);
1889
1890 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1891 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1892 if (!lowest_rq) {
1893 struct task_struct *task;
1894 /*
311e800e 1895 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1896 * so it is possible that next_task has migrated.
1897 *
1898 * We need to make sure that the task is still on the same
1899 * run-queue and is also still the next task eligible for
1900 * pushing.
e8fa1362 1901 */
917b627d 1902 task = pick_next_pushable_task(rq);
de16b91e 1903 if (task == next_task) {
1563513d 1904 /*
311e800e
HD
1905 * The task hasn't migrated, and is still the next
1906 * eligible task, but we failed to find a run-queue
1907 * to push it to. Do not retry in this case, since
97fb7a0a 1908 * other CPUs will pull from us when ready.
1563513d 1909 */
1563513d 1910 goto out;
e8fa1362 1911 }
917b627d 1912
1563513d
GH
1913 if (!task)
1914 /* No more tasks, just exit */
1915 goto out;
1916
917b627d 1917 /*
1563513d 1918 * Something has shifted, try again.
917b627d 1919 */
1563513d
GH
1920 put_task_struct(next_task);
1921 next_task = task;
1922 goto retry;
e8fa1362
SR
1923 }
1924
697f0a48 1925 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1926 set_task_cpu(next_task, lowest_rq->cpu);
1927 activate_task(lowest_rq, next_task, 0);
311e800e 1928 ret = 1;
e8fa1362 1929
8875125e 1930 resched_curr(lowest_rq);
e8fa1362 1931
1b12bbc7 1932 double_unlock_balance(rq, lowest_rq);
e8fa1362 1933
e8fa1362
SR
1934out:
1935 put_task_struct(next_task);
1936
311e800e 1937 return ret;
e8fa1362
SR
1938}
1939
e8fa1362
SR
1940static void push_rt_tasks(struct rq *rq)
1941{
1942 /* push_rt_task will return true if it moved an RT */
1943 while (push_rt_task(rq))
1944 ;
1945}
1946
b6366f04 1947#ifdef HAVE_RT_PUSH_IPI
4bdced5c 1948
b6366f04 1949/*
4bdced5c
SRRH
1950 * When a high priority task schedules out from a CPU and a lower priority
1951 * task is scheduled in, a check is made to see if there's any RT tasks
1952 * on other CPUs that are waiting to run because a higher priority RT task
1953 * is currently running on its CPU. In this case, the CPU with multiple RT
1954 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1955 * up that may be able to run one of its non-running queued RT tasks.
1956 *
1957 * All CPUs with overloaded RT tasks need to be notified as there is currently
1958 * no way to know which of these CPUs have the highest priority task waiting
1959 * to run. Instead of trying to take a spinlock on each of these CPUs,
1960 * which has shown to cause large latency when done on machines with many
1961 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1962 * RT tasks waiting to run.
1963 *
1964 * Just sending an IPI to each of the CPUs is also an issue, as on large
1965 * count CPU machines, this can cause an IPI storm on a CPU, especially
1966 * if its the only CPU with multiple RT tasks queued, and a large number
1967 * of CPUs scheduling a lower priority task at the same time.
1968 *
1969 * Each root domain has its own irq work function that can iterate over
1970 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1971 * tassk must be checked if there's one or many CPUs that are lowering
1972 * their priority, there's a single irq work iterator that will try to
1973 * push off RT tasks that are waiting to run.
1974 *
1975 * When a CPU schedules a lower priority task, it will kick off the
1976 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1977 * As it only takes the first CPU that schedules a lower priority task
1978 * to start the process, the rto_start variable is incremented and if
1979 * the atomic result is one, then that CPU will try to take the rto_lock.
1980 * This prevents high contention on the lock as the process handles all
1981 * CPUs scheduling lower priority tasks.
1982 *
1983 * All CPUs that are scheduling a lower priority task will increment the
1984 * rt_loop_next variable. This will make sure that the irq work iterator
1985 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1986 * priority task, even if the iterator is in the middle of a scan. Incrementing
1987 * the rt_loop_next will cause the iterator to perform another scan.
b6366f04 1988 *
b6366f04 1989 */
ad0f1d9d 1990static int rto_next_cpu(struct root_domain *rd)
b6366f04 1991{
4bdced5c 1992 int next;
b6366f04
SR
1993 int cpu;
1994
b6366f04 1995 /*
4bdced5c
SRRH
1996 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1997 * rt_next_cpu() will simply return the first CPU found in
1998 * the rto_mask.
1999 *
97fb7a0a 2000 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
4bdced5c
SRRH
2001 * will return the next CPU found in the rto_mask.
2002 *
2003 * If there are no more CPUs left in the rto_mask, then a check is made
2004 * against rto_loop and rto_loop_next. rto_loop is only updated with
2005 * the rto_lock held, but any CPU may increment the rto_loop_next
2006 * without any locking.
b6366f04 2007 */
4bdced5c 2008 for (;;) {
b6366f04 2009
4bdced5c
SRRH
2010 /* When rto_cpu is -1 this acts like cpumask_first() */
2011 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
b6366f04 2012
4bdced5c 2013 rd->rto_cpu = cpu;
b6366f04 2014
4bdced5c
SRRH
2015 if (cpu < nr_cpu_ids)
2016 return cpu;
b6366f04 2017
4bdced5c
SRRH
2018 rd->rto_cpu = -1;
2019
2020 /*
2021 * ACQUIRE ensures we see the @rto_mask changes
2022 * made prior to the @next value observed.
2023 *
2024 * Matches WMB in rt_set_overload().
2025 */
2026 next = atomic_read_acquire(&rd->rto_loop_next);
b6366f04 2027
4bdced5c 2028 if (rd->rto_loop == next)
b6366f04 2029 break;
4bdced5c
SRRH
2030
2031 rd->rto_loop = next;
b6366f04
SR
2032 }
2033
4bdced5c 2034 return -1;
b6366f04
SR
2035}
2036
4bdced5c
SRRH
2037static inline bool rto_start_trylock(atomic_t *v)
2038{
2039 return !atomic_cmpxchg_acquire(v, 0, 1);
2040}
b6366f04 2041
4bdced5c 2042static inline void rto_start_unlock(atomic_t *v)
b6366f04 2043{
4bdced5c
SRRH
2044 atomic_set_release(v, 0);
2045}
b6366f04 2046
4bdced5c
SRRH
2047static void tell_cpu_to_push(struct rq *rq)
2048{
2049 int cpu = -1;
b6366f04 2050
4bdced5c
SRRH
2051 /* Keep the loop going if the IPI is currently active */
2052 atomic_inc(&rq->rd->rto_loop_next);
b6366f04 2053
4bdced5c
SRRH
2054 /* Only one CPU can initiate a loop at a time */
2055 if (!rto_start_trylock(&rq->rd->rto_loop_start))
b6366f04
SR
2056 return;
2057
4bdced5c 2058 raw_spin_lock(&rq->rd->rto_lock);
b6366f04 2059
4bdced5c 2060 /*
97fb7a0a 2061 * The rto_cpu is updated under the lock, if it has a valid CPU
4bdced5c
SRRH
2062 * then the IPI is still running and will continue due to the
2063 * update to loop_next, and nothing needs to be done here.
2064 * Otherwise it is finishing up and an ipi needs to be sent.
2065 */
2066 if (rq->rd->rto_cpu < 0)
ad0f1d9d 2067 cpu = rto_next_cpu(rq->rd);
4bdced5c
SRRH
2068
2069 raw_spin_unlock(&rq->rd->rto_lock);
2070
2071 rto_start_unlock(&rq->rd->rto_loop_start);
2072
364f5665
SRV
2073 if (cpu >= 0) {
2074 /* Make sure the rd does not get freed while pushing */
2075 sched_get_rd(rq->rd);
4bdced5c 2076 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
364f5665 2077 }
b6366f04
SR
2078}
2079
2080/* Called from hardirq context */
4bdced5c 2081void rto_push_irq_work_func(struct irq_work *work)
b6366f04 2082{
ad0f1d9d
SRV
2083 struct root_domain *rd =
2084 container_of(work, struct root_domain, rto_push_work);
4bdced5c 2085 struct rq *rq;
b6366f04
SR
2086 int cpu;
2087
4bdced5c 2088 rq = this_rq();
b6366f04 2089
4bdced5c
SRRH
2090 /*
2091 * We do not need to grab the lock to check for has_pushable_tasks.
2092 * When it gets updated, a check is made if a push is possible.
2093 */
b6366f04
SR
2094 if (has_pushable_tasks(rq)) {
2095 raw_spin_lock(&rq->lock);
4bdced5c 2096 push_rt_tasks(rq);
b6366f04
SR
2097 raw_spin_unlock(&rq->lock);
2098 }
2099
ad0f1d9d 2100 raw_spin_lock(&rd->rto_lock);
b6366f04 2101
4bdced5c 2102 /* Pass the IPI to the next rt overloaded queue */
ad0f1d9d 2103 cpu = rto_next_cpu(rd);
b6366f04 2104
ad0f1d9d 2105 raw_spin_unlock(&rd->rto_lock);
b6366f04 2106
364f5665
SRV
2107 if (cpu < 0) {
2108 sched_put_rd(rd);
b6366f04 2109 return;
364f5665 2110 }
b6366f04 2111
b6366f04 2112 /* Try the next RT overloaded CPU */
ad0f1d9d 2113 irq_work_queue_on(&rd->rto_push_work, cpu);
b6366f04
SR
2114}
2115#endif /* HAVE_RT_PUSH_IPI */
2116
8046d680 2117static void pull_rt_task(struct rq *this_rq)
f65eda4f 2118{
8046d680
PZ
2119 int this_cpu = this_rq->cpu, cpu;
2120 bool resched = false;
a8728944 2121 struct task_struct *p;
f65eda4f 2122 struct rq *src_rq;
f73c52a5 2123 int rt_overload_count = rt_overloaded(this_rq);
f65eda4f 2124
f73c52a5 2125 if (likely(!rt_overload_count))
8046d680 2126 return;
f65eda4f 2127
7c3f2ab7
PZ
2128 /*
2129 * Match the barrier from rt_set_overloaded; this guarantees that if we
2130 * see overloaded we must also see the rto_mask bit.
2131 */
2132 smp_rmb();
2133
f73c52a5
SR
2134 /* If we are the only overloaded CPU do nothing */
2135 if (rt_overload_count == 1 &&
2136 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2137 return;
2138
b6366f04
SR
2139#ifdef HAVE_RT_PUSH_IPI
2140 if (sched_feat(RT_PUSH_IPI)) {
2141 tell_cpu_to_push(this_rq);
8046d680 2142 return;
b6366f04
SR
2143 }
2144#endif
2145
c6c4927b 2146 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
2147 if (this_cpu == cpu)
2148 continue;
2149
2150 src_rq = cpu_rq(cpu);
74ab8e4f
GH
2151
2152 /*
2153 * Don't bother taking the src_rq->lock if the next highest
2154 * task is known to be lower-priority than our current task.
2155 * This may look racy, but if this value is about to go
2156 * logically higher, the src_rq will push this task away.
2157 * And if its going logically lower, we do not care
2158 */
2159 if (src_rq->rt.highest_prio.next >=
2160 this_rq->rt.highest_prio.curr)
2161 continue;
2162
f65eda4f
SR
2163 /*
2164 * We can potentially drop this_rq's lock in
2165 * double_lock_balance, and another CPU could
a8728944 2166 * alter this_rq
f65eda4f 2167 */
a8728944 2168 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
2169
2170 /*
e23ee747
KT
2171 * We can pull only a task, which is pushable
2172 * on its rq, and no others.
f65eda4f 2173 */
e23ee747 2174 p = pick_highest_pushable_task(src_rq, this_cpu);
f65eda4f
SR
2175
2176 /*
2177 * Do we have an RT task that preempts
2178 * the to-be-scheduled task?
2179 */
a8728944 2180 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 2181 WARN_ON(p == src_rq->curr);
da0c1e65 2182 WARN_ON(!task_on_rq_queued(p));
f65eda4f
SR
2183
2184 /*
2185 * There's a chance that p is higher in priority
97fb7a0a 2186 * than what's currently running on its CPU.
f65eda4f
SR
2187 * This is just that p is wakeing up and hasn't
2188 * had a chance to schedule. We only pull
2189 * p if it is lower in priority than the
a8728944 2190 * current task on the run queue
f65eda4f 2191 */
a8728944 2192 if (p->prio < src_rq->curr->prio)
614ee1f6 2193 goto skip;
f65eda4f 2194
8046d680 2195 resched = true;
f65eda4f
SR
2196
2197 deactivate_task(src_rq, p, 0);
2198 set_task_cpu(p, this_cpu);
2199 activate_task(this_rq, p, 0);
2200 /*
2201 * We continue with the search, just in
2202 * case there's an even higher prio task
25985edc 2203 * in another runqueue. (low likelihood
f65eda4f 2204 * but possible)
f65eda4f 2205 */
f65eda4f 2206 }
49246274 2207skip:
1b12bbc7 2208 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
2209 }
2210
8046d680
PZ
2211 if (resched)
2212 resched_curr(this_rq);
f65eda4f
SR
2213}
2214
8ae121ac
GH
2215/*
2216 * If we are not running and we are not going to reschedule soon, we should
2217 * try to push tasks away now
2218 */
efbbd05a 2219static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 2220{
804d402f
QY
2221 bool need_to_push = !task_running(rq, p) &&
2222 !test_tsk_need_resched(rq->curr) &&
2223 p->nr_cpus_allowed > 1 &&
2224 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2225 (rq->curr->nr_cpus_allowed < 2 ||
2226 rq->curr->prio <= p->prio);
2227
d94a9df4 2228 if (need_to_push)
4642dafd
SR
2229 push_rt_tasks(rq);
2230}
2231
bdd7c81b 2232/* Assumes rq->lock is held */
1f11eb6a 2233static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
2234{
2235 if (rq->rt.overloaded)
2236 rt_set_overload(rq);
6e0534f2 2237
7def2be1
PZ
2238 __enable_runtime(rq);
2239
e864c499 2240 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
2241}
2242
2243/* Assumes rq->lock is held */
1f11eb6a 2244static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
2245{
2246 if (rq->rt.overloaded)
2247 rt_clear_overload(rq);
6e0534f2 2248
7def2be1
PZ
2249 __disable_runtime(rq);
2250
6e0534f2 2251 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 2252}
cb469845
SR
2253
2254/*
2255 * When switch from the rt queue, we bring ourselves to a position
2256 * that we might want to pull RT tasks from other runqueues.
2257 */
da7a735e 2258static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
2259{
2260 /*
2261 * If there are other RT tasks then we will reschedule
2262 * and the scheduling of the other RT tasks will handle
2263 * the balancing. But if we are the last RT task
2264 * we may need to handle the pulling of RT tasks
2265 * now.
2266 */
da0c1e65 2267 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
1158ddb5
KT
2268 return;
2269
02d8ec94 2270 rt_queue_pull_task(rq);
cb469845 2271}
3d8cbdf8 2272
11c785b7 2273void __init init_sched_rt_class(void)
3d8cbdf8
RR
2274{
2275 unsigned int i;
2276
029632fb 2277 for_each_possible_cpu(i) {
eaa95840 2278 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 2279 GFP_KERNEL, cpu_to_node(i));
029632fb 2280 }
3d8cbdf8 2281}
cb469845
SR
2282#endif /* CONFIG_SMP */
2283
2284/*
2285 * When switching a task to RT, we may overload the runqueue
2286 * with RT tasks. In this case we try to push them off to
2287 * other runqueues.
2288 */
da7a735e 2289static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845 2290{
cb469845
SR
2291 /*
2292 * If we are already running, then there's nothing
2293 * that needs to be done. But if we are not running
2294 * we may need to preempt the current running task.
2295 * If that current running task is also an RT task
2296 * then see if we can move to another run queue.
2297 */
da0c1e65 2298 if (task_on_rq_queued(p) && rq->curr != p) {
cb469845 2299#ifdef CONFIG_SMP
d94a9df4 2300 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
02d8ec94 2301 rt_queue_push_tasks(rq);
619bd4a7 2302#endif /* CONFIG_SMP */
2fe25826 2303 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
8875125e 2304 resched_curr(rq);
cb469845
SR
2305 }
2306}
2307
2308/*
2309 * Priority of the task has changed. This may cause
2310 * us to initiate a push or pull.
2311 */
da7a735e
PZ
2312static void
2313prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 2314{
da0c1e65 2315 if (!task_on_rq_queued(p))
da7a735e
PZ
2316 return;
2317
2318 if (rq->curr == p) {
cb469845
SR
2319#ifdef CONFIG_SMP
2320 /*
2321 * If our priority decreases while running, we
2322 * may need to pull tasks to this runqueue.
2323 */
2324 if (oldprio < p->prio)
02d8ec94 2325 rt_queue_pull_task(rq);
fd7a4bed 2326
cb469845
SR
2327 /*
2328 * If there's a higher priority task waiting to run
fd7a4bed 2329 * then reschedule.
cb469845 2330 */
fd7a4bed 2331 if (p->prio > rq->rt.highest_prio.curr)
8875125e 2332 resched_curr(rq);
cb469845
SR
2333#else
2334 /* For UP simply resched on drop of prio */
2335 if (oldprio < p->prio)
8875125e 2336 resched_curr(rq);
e8fa1362 2337#endif /* CONFIG_SMP */
cb469845
SR
2338 } else {
2339 /*
2340 * This task is not running, but if it is
2341 * greater than the current running task
2342 * then reschedule.
2343 */
2344 if (p->prio < rq->curr->prio)
8875125e 2345 resched_curr(rq);
cb469845
SR
2346 }
2347}
2348
b18b6a9c 2349#ifdef CONFIG_POSIX_TIMERS
78f2c7db
PZ
2350static void watchdog(struct rq *rq, struct task_struct *p)
2351{
2352 unsigned long soft, hard;
2353
78d7d407
JS
2354 /* max may change after cur was read, this will be fixed next tick */
2355 soft = task_rlimit(p, RLIMIT_RTTIME);
2356 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
2357
2358 if (soft != RLIM_INFINITY) {
2359 unsigned long next;
2360
57d2aa00
YX
2361 if (p->rt.watchdog_stamp != jiffies) {
2362 p->rt.timeout++;
2363 p->rt.watchdog_stamp = jiffies;
2364 }
2365
78f2c7db 2366 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
3a245c0f
TG
2367 if (p->rt.timeout > next) {
2368 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2369 p->se.sum_exec_runtime);
2370 }
78f2c7db
PZ
2371 }
2372}
b18b6a9c
NP
2373#else
2374static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2375#endif
bb44e5d1 2376
d84b3131
FW
2377/*
2378 * scheduler tick hitting a task of our scheduling class.
2379 *
2380 * NOTE: This function can be called remotely by the tick offload that
2381 * goes along full dynticks. Therefore no local assumption can be made
2382 * and everything must be accessed through the @rq and @curr passed in
2383 * parameters.
2384 */
8f4d37ec 2385static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 2386{
454c7999
CC
2387 struct sched_rt_entity *rt_se = &p->rt;
2388
67e2be02 2389 update_curr_rt(rq);
23127296 2390 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
67e2be02 2391
78f2c7db
PZ
2392 watchdog(rq, p);
2393
bb44e5d1
IM
2394 /*
2395 * RR tasks need a special form of timeslice management.
2396 * FIFO tasks have no timeslices.
2397 */
2398 if (p->policy != SCHED_RR)
2399 return;
2400
fa717060 2401 if (--p->rt.time_slice)
bb44e5d1
IM
2402 return;
2403
ce0dbbbb 2404 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 2405
98fbc798 2406 /*
e9aa39bb
LB
2407 * Requeue to the end of queue if we (and all of our ancestors) are not
2408 * the only element on the queue
98fbc798 2409 */
454c7999
CC
2410 for_each_sched_rt_entity(rt_se) {
2411 if (rt_se->run_list.prev != rt_se->run_list.next) {
2412 requeue_task_rt(rq, p, 0);
8aa6f0eb 2413 resched_curr(rq);
454c7999
CC
2414 return;
2415 }
98fbc798 2416 }
bb44e5d1
IM
2417}
2418
6d686f45 2419static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
2420{
2421 /*
2422 * Time slice is 0 for SCHED_FIFO tasks
2423 */
2424 if (task->policy == SCHED_RR)
ce0dbbbb 2425 return sched_rr_timeslice;
0d721cea
PW
2426 else
2427 return 0;
2428}
2429
029632fb 2430const struct sched_class rt_sched_class = {
5522d5d5 2431 .next = &fair_sched_class,
bb44e5d1
IM
2432 .enqueue_task = enqueue_task_rt,
2433 .dequeue_task = dequeue_task_rt,
2434 .yield_task = yield_task_rt,
2435
2436 .check_preempt_curr = check_preempt_curr_rt,
2437
2438 .pick_next_task = pick_next_task_rt,
2439 .put_prev_task = put_prev_task_rt,
03b7fad1 2440 .set_next_task = set_next_task_rt,
bb44e5d1 2441
681f3e68 2442#ifdef CONFIG_SMP
6e2df058 2443 .balance = balance_rt,
4ce72a2c 2444 .select_task_rq = select_task_rq_rt,
6c37067e 2445 .set_cpus_allowed = set_cpus_allowed_common,
1f11eb6a
GH
2446 .rq_online = rq_online_rt,
2447 .rq_offline = rq_offline_rt,
efbbd05a 2448 .task_woken = task_woken_rt,
cb469845 2449 .switched_from = switched_from_rt,
681f3e68 2450#endif
bb44e5d1
IM
2451
2452 .task_tick = task_tick_rt,
cb469845 2453
0d721cea
PW
2454 .get_rr_interval = get_rr_interval_rt,
2455
cb469845
SR
2456 .prio_changed = prio_changed_rt,
2457 .switched_to = switched_to_rt,
6e998916
SG
2458
2459 .update_curr = update_curr_rt,
982d9cdc
PB
2460
2461#ifdef CONFIG_UCLAMP_TASK
2462 .uclamp_enabled = 1,
2463#endif
bb44e5d1 2464};
ada18de2 2465
8887cd99
NP
2466#ifdef CONFIG_RT_GROUP_SCHED
2467/*
2468 * Ensure that the real time constraints are schedulable.
2469 */
2470static DEFINE_MUTEX(rt_constraints_mutex);
2471
8887cd99
NP
2472static inline int tg_has_rt_tasks(struct task_group *tg)
2473{
b4fb015e
KK
2474 struct task_struct *task;
2475 struct css_task_iter it;
2476 int ret = 0;
8887cd99
NP
2477
2478 /*
2479 * Autogroups do not have RT tasks; see autogroup_create().
2480 */
2481 if (task_group_is_autogroup(tg))
2482 return 0;
2483
b4fb015e
KK
2484 css_task_iter_start(&tg->css, 0, &it);
2485 while (!ret && (task = css_task_iter_next(&it)))
2486 ret |= rt_task(task);
2487 css_task_iter_end(&it);
8887cd99 2488
b4fb015e 2489 return ret;
8887cd99
NP
2490}
2491
2492struct rt_schedulable_data {
2493 struct task_group *tg;
2494 u64 rt_period;
2495 u64 rt_runtime;
2496};
2497
2498static int tg_rt_schedulable(struct task_group *tg, void *data)
2499{
2500 struct rt_schedulable_data *d = data;
2501 struct task_group *child;
2502 unsigned long total, sum = 0;
2503 u64 period, runtime;
2504
2505 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2506 runtime = tg->rt_bandwidth.rt_runtime;
2507
2508 if (tg == d->tg) {
2509 period = d->rt_period;
2510 runtime = d->rt_runtime;
2511 }
2512
2513 /*
2514 * Cannot have more runtime than the period.
2515 */
2516 if (runtime > period && runtime != RUNTIME_INF)
2517 return -EINVAL;
2518
2519 /*
b4fb015e 2520 * Ensure we don't starve existing RT tasks if runtime turns zero.
8887cd99 2521 */
b4fb015e
KK
2522 if (rt_bandwidth_enabled() && !runtime &&
2523 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
8887cd99
NP
2524 return -EBUSY;
2525
2526 total = to_ratio(period, runtime);
2527
2528 /*
2529 * Nobody can have more than the global setting allows.
2530 */
2531 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2532 return -EINVAL;
2533
2534 /*
2535 * The sum of our children's runtime should not exceed our own.
2536 */
2537 list_for_each_entry_rcu(child, &tg->children, siblings) {
2538 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2539 runtime = child->rt_bandwidth.rt_runtime;
2540
2541 if (child == d->tg) {
2542 period = d->rt_period;
2543 runtime = d->rt_runtime;
2544 }
2545
2546 sum += to_ratio(period, runtime);
2547 }
2548
2549 if (sum > total)
2550 return -EINVAL;
2551
2552 return 0;
2553}
2554
2555static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2556{
2557 int ret;
2558
2559 struct rt_schedulable_data data = {
2560 .tg = tg,
2561 .rt_period = period,
2562 .rt_runtime = runtime,
2563 };
2564
2565 rcu_read_lock();
2566 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2567 rcu_read_unlock();
2568
2569 return ret;
2570}
2571
2572static int tg_set_rt_bandwidth(struct task_group *tg,
2573 u64 rt_period, u64 rt_runtime)
2574{
2575 int i, err = 0;
2576
2577 /*
2578 * Disallowing the root group RT runtime is BAD, it would disallow the
2579 * kernel creating (and or operating) RT threads.
2580 */
2581 if (tg == &root_task_group && rt_runtime == 0)
2582 return -EINVAL;
2583
2584 /* No period doesn't make any sense. */
2585 if (rt_period == 0)
2586 return -EINVAL;
2587
2588 mutex_lock(&rt_constraints_mutex);
8887cd99
NP
2589 err = __rt_schedulable(tg, rt_period, rt_runtime);
2590 if (err)
2591 goto unlock;
2592
2593 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2594 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2595 tg->rt_bandwidth.rt_runtime = rt_runtime;
2596
2597 for_each_possible_cpu(i) {
2598 struct rt_rq *rt_rq = tg->rt_rq[i];
2599
2600 raw_spin_lock(&rt_rq->rt_runtime_lock);
2601 rt_rq->rt_runtime = rt_runtime;
2602 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2603 }
2604 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2605unlock:
8887cd99
NP
2606 mutex_unlock(&rt_constraints_mutex);
2607
2608 return err;
2609}
2610
2611int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2612{
2613 u64 rt_runtime, rt_period;
2614
2615 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2616 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2617 if (rt_runtime_us < 0)
2618 rt_runtime = RUNTIME_INF;
1a010e29
KK
2619 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2620 return -EINVAL;
8887cd99
NP
2621
2622 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2623}
2624
2625long sched_group_rt_runtime(struct task_group *tg)
2626{
2627 u64 rt_runtime_us;
2628
2629 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2630 return -1;
2631
2632 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2633 do_div(rt_runtime_us, NSEC_PER_USEC);
2634 return rt_runtime_us;
2635}
2636
2637int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2638{
2639 u64 rt_runtime, rt_period;
2640
1a010e29
KK
2641 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2642 return -EINVAL;
2643
8887cd99
NP
2644 rt_period = rt_period_us * NSEC_PER_USEC;
2645 rt_runtime = tg->rt_bandwidth.rt_runtime;
2646
2647 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2648}
2649
2650long sched_group_rt_period(struct task_group *tg)
2651{
2652 u64 rt_period_us;
2653
2654 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2655 do_div(rt_period_us, NSEC_PER_USEC);
2656 return rt_period_us;
2657}
2658
2659static int sched_rt_global_constraints(void)
2660{
2661 int ret = 0;
2662
2663 mutex_lock(&rt_constraints_mutex);
8887cd99 2664 ret = __rt_schedulable(NULL, 0, 0);
8887cd99
NP
2665 mutex_unlock(&rt_constraints_mutex);
2666
2667 return ret;
2668}
2669
2670int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2671{
2672 /* Don't accept realtime tasks when there is no way for them to run */
2673 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2674 return 0;
2675
2676 return 1;
2677}
2678
2679#else /* !CONFIG_RT_GROUP_SCHED */
2680static int sched_rt_global_constraints(void)
2681{
2682 unsigned long flags;
2683 int i;
2684
2685 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2686 for_each_possible_cpu(i) {
2687 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2688
2689 raw_spin_lock(&rt_rq->rt_runtime_lock);
2690 rt_rq->rt_runtime = global_rt_runtime();
2691 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2692 }
2693 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2694
2695 return 0;
2696}
2697#endif /* CONFIG_RT_GROUP_SCHED */
2698
2699static int sched_rt_global_validate(void)
2700{
2701 if (sysctl_sched_rt_period <= 0)
2702 return -EINVAL;
2703
2704 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2705 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2706 return -EINVAL;
2707
2708 return 0;
2709}
2710
2711static void sched_rt_do_global(void)
2712{
2713 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2714 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2715}
2716
32927393
CH
2717int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2718 size_t *lenp, loff_t *ppos)
8887cd99
NP
2719{
2720 int old_period, old_runtime;
2721 static DEFINE_MUTEX(mutex);
2722 int ret;
2723
2724 mutex_lock(&mutex);
2725 old_period = sysctl_sched_rt_period;
2726 old_runtime = sysctl_sched_rt_runtime;
2727
2728 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2729
2730 if (!ret && write) {
2731 ret = sched_rt_global_validate();
2732 if (ret)
2733 goto undo;
2734
2735 ret = sched_dl_global_validate();
2736 if (ret)
2737 goto undo;
2738
2739 ret = sched_rt_global_constraints();
2740 if (ret)
2741 goto undo;
2742
2743 sched_rt_do_global();
2744 sched_dl_do_global();
2745 }
2746 if (0) {
2747undo:
2748 sysctl_sched_rt_period = old_period;
2749 sysctl_sched_rt_runtime = old_runtime;
2750 }
2751 mutex_unlock(&mutex);
2752
2753 return ret;
2754}
2755
32927393
CH
2756int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2757 size_t *lenp, loff_t *ppos)
8887cd99
NP
2758{
2759 int ret;
2760 static DEFINE_MUTEX(mutex);
2761
2762 mutex_lock(&mutex);
2763 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2764 /*
2765 * Make sure that internally we keep jiffies.
2766 * Also, writing zero resets the timeslice to default:
2767 */
2768 if (!ret && write) {
2769 sched_rr_timeslice =
2770 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2771 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2772 }
2773 mutex_unlock(&mutex);
97fb7a0a 2774
8887cd99
NP
2775 return ret;
2776}
2777
ada18de2 2778#ifdef CONFIG_SCHED_DEBUG
029632fb 2779void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2780{
ec514c48 2781 rt_rq_iter_t iter;
ada18de2
PZ
2782 struct rt_rq *rt_rq;
2783
2784 rcu_read_lock();
ec514c48 2785 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2786 print_rt_rq(m, cpu, rt_rq);
2787 rcu_read_unlock();
2788}
55e12e5e 2789#endif /* CONFIG_SCHED_DEBUG */