sched: Move nr_cpus_allowed out of 'struct sched_rt_entity'
[linux-2.6-block.git] / kernel / sched / rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
029632fb
PZ
6#include "sched.h"
7
8#include <linux/slab.h>
9
10static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
11
12struct rt_bandwidth def_rt_bandwidth;
13
14static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
15{
16 struct rt_bandwidth *rt_b =
17 container_of(timer, struct rt_bandwidth, rt_period_timer);
18 ktime_t now;
19 int overrun;
20 int idle = 0;
21
22 for (;;) {
23 now = hrtimer_cb_get_time(timer);
24 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
25
26 if (!overrun)
27 break;
28
29 idle = do_sched_rt_period_timer(rt_b, overrun);
30 }
31
32 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
33}
34
35void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
36{
37 rt_b->rt_period = ns_to_ktime(period);
38 rt_b->rt_runtime = runtime;
39
40 raw_spin_lock_init(&rt_b->rt_runtime_lock);
41
42 hrtimer_init(&rt_b->rt_period_timer,
43 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
44 rt_b->rt_period_timer.function = sched_rt_period_timer;
45}
46
47static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
48{
49 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
50 return;
51
52 if (hrtimer_active(&rt_b->rt_period_timer))
53 return;
54
55 raw_spin_lock(&rt_b->rt_runtime_lock);
56 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
57 raw_spin_unlock(&rt_b->rt_runtime_lock);
58}
59
60void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
61{
62 struct rt_prio_array *array;
63 int i;
64
65 array = &rt_rq->active;
66 for (i = 0; i < MAX_RT_PRIO; i++) {
67 INIT_LIST_HEAD(array->queue + i);
68 __clear_bit(i, array->bitmap);
69 }
70 /* delimiter for bitsearch: */
71 __set_bit(MAX_RT_PRIO, array->bitmap);
72
73#if defined CONFIG_SMP
74 rt_rq->highest_prio.curr = MAX_RT_PRIO;
75 rt_rq->highest_prio.next = MAX_RT_PRIO;
76 rt_rq->rt_nr_migratory = 0;
77 rt_rq->overloaded = 0;
78 plist_head_init(&rt_rq->pushable_tasks);
79#endif
80
81 rt_rq->rt_time = 0;
82 rt_rq->rt_throttled = 0;
83 rt_rq->rt_runtime = 0;
84 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
85}
86
8f48894f 87#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
88static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
89{
90 hrtimer_cancel(&rt_b->rt_period_timer);
91}
8f48894f
PZ
92
93#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
94
398a153b
GH
95static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
96{
8f48894f
PZ
97#ifdef CONFIG_SCHED_DEBUG
98 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
99#endif
398a153b
GH
100 return container_of(rt_se, struct task_struct, rt);
101}
102
398a153b
GH
103static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
104{
105 return rt_rq->rq;
106}
107
108static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
109{
110 return rt_se->rt_rq;
111}
112
029632fb
PZ
113void free_rt_sched_group(struct task_group *tg)
114{
115 int i;
116
117 if (tg->rt_se)
118 destroy_rt_bandwidth(&tg->rt_bandwidth);
119
120 for_each_possible_cpu(i) {
121 if (tg->rt_rq)
122 kfree(tg->rt_rq[i]);
123 if (tg->rt_se)
124 kfree(tg->rt_se[i]);
125 }
126
127 kfree(tg->rt_rq);
128 kfree(tg->rt_se);
129}
130
131void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
132 struct sched_rt_entity *rt_se, int cpu,
133 struct sched_rt_entity *parent)
134{
135 struct rq *rq = cpu_rq(cpu);
136
137 rt_rq->highest_prio.curr = MAX_RT_PRIO;
138 rt_rq->rt_nr_boosted = 0;
139 rt_rq->rq = rq;
140 rt_rq->tg = tg;
141
142 tg->rt_rq[cpu] = rt_rq;
143 tg->rt_se[cpu] = rt_se;
144
145 if (!rt_se)
146 return;
147
148 if (!parent)
149 rt_se->rt_rq = &rq->rt;
150 else
151 rt_se->rt_rq = parent->my_q;
152
153 rt_se->my_q = rt_rq;
154 rt_se->parent = parent;
155 INIT_LIST_HEAD(&rt_se->run_list);
156}
157
158int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
159{
160 struct rt_rq *rt_rq;
161 struct sched_rt_entity *rt_se;
162 int i;
163
164 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
165 if (!tg->rt_rq)
166 goto err;
167 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
168 if (!tg->rt_se)
169 goto err;
170
171 init_rt_bandwidth(&tg->rt_bandwidth,
172 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
173
174 for_each_possible_cpu(i) {
175 rt_rq = kzalloc_node(sizeof(struct rt_rq),
176 GFP_KERNEL, cpu_to_node(i));
177 if (!rt_rq)
178 goto err;
179
180 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
181 GFP_KERNEL, cpu_to_node(i));
182 if (!rt_se)
183 goto err_free_rq;
184
185 init_rt_rq(rt_rq, cpu_rq(i));
186 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
187 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
188 }
189
190 return 1;
191
192err_free_rq:
193 kfree(rt_rq);
194err:
195 return 0;
196}
197
398a153b
GH
198#else /* CONFIG_RT_GROUP_SCHED */
199
a1ba4d8b
PZ
200#define rt_entity_is_task(rt_se) (1)
201
8f48894f
PZ
202static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
203{
204 return container_of(rt_se, struct task_struct, rt);
205}
206
398a153b
GH
207static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
208{
209 return container_of(rt_rq, struct rq, rt);
210}
211
212static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
213{
214 struct task_struct *p = rt_task_of(rt_se);
215 struct rq *rq = task_rq(p);
216
217 return &rq->rt;
218}
219
029632fb
PZ
220void free_rt_sched_group(struct task_group *tg) { }
221
222int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
223{
224 return 1;
225}
398a153b
GH
226#endif /* CONFIG_RT_GROUP_SCHED */
227
4fd29176 228#ifdef CONFIG_SMP
84de4274 229
637f5085 230static inline int rt_overloaded(struct rq *rq)
4fd29176 231{
637f5085 232 return atomic_read(&rq->rd->rto_count);
4fd29176 233}
84de4274 234
4fd29176
SR
235static inline void rt_set_overload(struct rq *rq)
236{
1f11eb6a
GH
237 if (!rq->online)
238 return;
239
c6c4927b 240 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
241 /*
242 * Make sure the mask is visible before we set
243 * the overload count. That is checked to determine
244 * if we should look at the mask. It would be a shame
245 * if we looked at the mask, but the mask was not
246 * updated yet.
247 */
248 wmb();
637f5085 249 atomic_inc(&rq->rd->rto_count);
4fd29176 250}
84de4274 251
4fd29176
SR
252static inline void rt_clear_overload(struct rq *rq)
253{
1f11eb6a
GH
254 if (!rq->online)
255 return;
256
4fd29176 257 /* the order here really doesn't matter */
637f5085 258 atomic_dec(&rq->rd->rto_count);
c6c4927b 259 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 260}
73fe6aae 261
398a153b 262static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 263{
a1ba4d8b 264 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
265 if (!rt_rq->overloaded) {
266 rt_set_overload(rq_of_rt_rq(rt_rq));
267 rt_rq->overloaded = 1;
cdc8eb98 268 }
398a153b
GH
269 } else if (rt_rq->overloaded) {
270 rt_clear_overload(rq_of_rt_rq(rt_rq));
271 rt_rq->overloaded = 0;
637f5085 272 }
73fe6aae 273}
4fd29176 274
398a153b
GH
275static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
276{
29baa747
PZ
277 struct task_struct *p;
278
a1ba4d8b
PZ
279 if (!rt_entity_is_task(rt_se))
280 return;
281
29baa747 282 p = rt_task_of(rt_se);
a1ba4d8b
PZ
283 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
284
285 rt_rq->rt_nr_total++;
29baa747 286 if (p->nr_cpus_allowed > 1)
398a153b
GH
287 rt_rq->rt_nr_migratory++;
288
289 update_rt_migration(rt_rq);
290}
291
292static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
293{
29baa747
PZ
294 struct task_struct *p;
295
a1ba4d8b
PZ
296 if (!rt_entity_is_task(rt_se))
297 return;
298
29baa747 299 p = rt_task_of(rt_se);
a1ba4d8b
PZ
300 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
301
302 rt_rq->rt_nr_total--;
29baa747 303 if (p->nr_cpus_allowed > 1)
398a153b
GH
304 rt_rq->rt_nr_migratory--;
305
306 update_rt_migration(rt_rq);
307}
308
5181f4a4
SR
309static inline int has_pushable_tasks(struct rq *rq)
310{
311 return !plist_head_empty(&rq->rt.pushable_tasks);
312}
313
917b627d
GH
314static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
315{
316 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
317 plist_node_init(&p->pushable_tasks, p->prio);
318 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
319
320 /* Update the highest prio pushable task */
321 if (p->prio < rq->rt.highest_prio.next)
322 rq->rt.highest_prio.next = p->prio;
917b627d
GH
323}
324
325static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
326{
327 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 328
5181f4a4
SR
329 /* Update the new highest prio pushable task */
330 if (has_pushable_tasks(rq)) {
331 p = plist_first_entry(&rq->rt.pushable_tasks,
332 struct task_struct, pushable_tasks);
333 rq->rt.highest_prio.next = p->prio;
334 } else
335 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
336}
337
917b627d
GH
338#else
339
ceacc2c1 340static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 341{
6f505b16
PZ
342}
343
ceacc2c1
PZ
344static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
345{
346}
347
b07430ac 348static inline
ceacc2c1
PZ
349void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
350{
351}
352
398a153b 353static inline
ceacc2c1
PZ
354void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
355{
356}
917b627d 357
4fd29176
SR
358#endif /* CONFIG_SMP */
359
6f505b16
PZ
360static inline int on_rt_rq(struct sched_rt_entity *rt_se)
361{
362 return !list_empty(&rt_se->run_list);
363}
364
052f1dc7 365#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 366
9f0c1e56 367static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
368{
369 if (!rt_rq->tg)
9f0c1e56 370 return RUNTIME_INF;
6f505b16 371
ac086bc2
PZ
372 return rt_rq->rt_runtime;
373}
374
375static inline u64 sched_rt_period(struct rt_rq *rt_rq)
376{
377 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
378}
379
ec514c48
CX
380typedef struct task_group *rt_rq_iter_t;
381
1c09ab0d
YZ
382static inline struct task_group *next_task_group(struct task_group *tg)
383{
384 do {
385 tg = list_entry_rcu(tg->list.next,
386 typeof(struct task_group), list);
387 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
388
389 if (&tg->list == &task_groups)
390 tg = NULL;
391
392 return tg;
393}
394
395#define for_each_rt_rq(rt_rq, iter, rq) \
396 for (iter = container_of(&task_groups, typeof(*iter), list); \
397 (iter = next_task_group(iter)) && \
398 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 399
3d4b47b4
PZ
400static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
401{
402 list_add_rcu(&rt_rq->leaf_rt_rq_list,
403 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
404}
405
406static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
407{
408 list_del_rcu(&rt_rq->leaf_rt_rq_list);
409}
410
6f505b16 411#define for_each_leaf_rt_rq(rt_rq, rq) \
80f40ee4 412 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
6f505b16 413
6f505b16
PZ
414#define for_each_sched_rt_entity(rt_se) \
415 for (; rt_se; rt_se = rt_se->parent)
416
417static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
418{
419 return rt_se->my_q;
420}
421
37dad3fc 422static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
423static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
424
9f0c1e56 425static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 426{
f6121f4f 427 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
74b7eb58
YZ
428 struct sched_rt_entity *rt_se;
429
0c3b9168
BS
430 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
431
432 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 433
f6121f4f
DF
434 if (rt_rq->rt_nr_running) {
435 if (rt_se && !on_rt_rq(rt_se))
37dad3fc 436 enqueue_rt_entity(rt_se, false);
e864c499 437 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 438 resched_task(curr);
6f505b16
PZ
439 }
440}
441
9f0c1e56 442static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 443{
74b7eb58 444 struct sched_rt_entity *rt_se;
0c3b9168 445 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 446
0c3b9168 447 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16
PZ
448
449 if (rt_se && on_rt_rq(rt_se))
450 dequeue_rt_entity(rt_se);
451}
452
23b0fdfc
PZ
453static inline int rt_rq_throttled(struct rt_rq *rt_rq)
454{
455 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
456}
457
458static int rt_se_boosted(struct sched_rt_entity *rt_se)
459{
460 struct rt_rq *rt_rq = group_rt_rq(rt_se);
461 struct task_struct *p;
462
463 if (rt_rq)
464 return !!rt_rq->rt_nr_boosted;
465
466 p = rt_task_of(rt_se);
467 return p->prio != p->normal_prio;
468}
469
d0b27fa7 470#ifdef CONFIG_SMP
c6c4927b 471static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7
PZ
472{
473 return cpu_rq(smp_processor_id())->rd->span;
474}
6f505b16 475#else
c6c4927b 476static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 477{
c6c4927b 478 return cpu_online_mask;
d0b27fa7
PZ
479}
480#endif
6f505b16 481
d0b27fa7
PZ
482static inline
483struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 484{
d0b27fa7
PZ
485 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
486}
9f0c1e56 487
ac086bc2
PZ
488static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
489{
490 return &rt_rq->tg->rt_bandwidth;
491}
492
55e12e5e 493#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
494
495static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
496{
ac086bc2
PZ
497 return rt_rq->rt_runtime;
498}
499
500static inline u64 sched_rt_period(struct rt_rq *rt_rq)
501{
502 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
503}
504
ec514c48
CX
505typedef struct rt_rq *rt_rq_iter_t;
506
507#define for_each_rt_rq(rt_rq, iter, rq) \
508 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
509
3d4b47b4
PZ
510static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
511{
512}
513
514static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
515{
516}
517
6f505b16
PZ
518#define for_each_leaf_rt_rq(rt_rq, rq) \
519 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
520
6f505b16
PZ
521#define for_each_sched_rt_entity(rt_se) \
522 for (; rt_se; rt_se = NULL)
523
524static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
525{
526 return NULL;
527}
528
9f0c1e56 529static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 530{
f3ade837
JB
531 if (rt_rq->rt_nr_running)
532 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
533}
534
9f0c1e56 535static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
536{
537}
538
23b0fdfc
PZ
539static inline int rt_rq_throttled(struct rt_rq *rt_rq)
540{
541 return rt_rq->rt_throttled;
542}
d0b27fa7 543
c6c4927b 544static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 545{
c6c4927b 546 return cpu_online_mask;
d0b27fa7
PZ
547}
548
549static inline
550struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
551{
552 return &cpu_rq(cpu)->rt;
553}
554
ac086bc2
PZ
555static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
556{
557 return &def_rt_bandwidth;
558}
559
55e12e5e 560#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 561
ac086bc2 562#ifdef CONFIG_SMP
78333cdd
PZ
563/*
564 * We ran out of runtime, see if we can borrow some from our neighbours.
565 */
b79f3833 566static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
567{
568 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
569 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
570 int i, weight, more = 0;
571 u64 rt_period;
572
c6c4927b 573 weight = cpumask_weight(rd->span);
ac086bc2 574
0986b11b 575 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 576 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 577 for_each_cpu(i, rd->span) {
ac086bc2
PZ
578 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
579 s64 diff;
580
581 if (iter == rt_rq)
582 continue;
583
0986b11b 584 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
585 /*
586 * Either all rqs have inf runtime and there's nothing to steal
587 * or __disable_runtime() below sets a specific rq to inf to
588 * indicate its been disabled and disalow stealing.
589 */
7def2be1
PZ
590 if (iter->rt_runtime == RUNTIME_INF)
591 goto next;
592
78333cdd
PZ
593 /*
594 * From runqueues with spare time, take 1/n part of their
595 * spare time, but no more than our period.
596 */
ac086bc2
PZ
597 diff = iter->rt_runtime - iter->rt_time;
598 if (diff > 0) {
58838cf3 599 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
600 if (rt_rq->rt_runtime + diff > rt_period)
601 diff = rt_period - rt_rq->rt_runtime;
602 iter->rt_runtime -= diff;
603 rt_rq->rt_runtime += diff;
604 more = 1;
605 if (rt_rq->rt_runtime == rt_period) {
0986b11b 606 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
607 break;
608 }
609 }
7def2be1 610next:
0986b11b 611 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 612 }
0986b11b 613 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
614
615 return more;
616}
7def2be1 617
78333cdd
PZ
618/*
619 * Ensure this RQ takes back all the runtime it lend to its neighbours.
620 */
7def2be1
PZ
621static void __disable_runtime(struct rq *rq)
622{
623 struct root_domain *rd = rq->rd;
ec514c48 624 rt_rq_iter_t iter;
7def2be1
PZ
625 struct rt_rq *rt_rq;
626
627 if (unlikely(!scheduler_running))
628 return;
629
ec514c48 630 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
631 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
632 s64 want;
633 int i;
634
0986b11b
TG
635 raw_spin_lock(&rt_b->rt_runtime_lock);
636 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
637 /*
638 * Either we're all inf and nobody needs to borrow, or we're
639 * already disabled and thus have nothing to do, or we have
640 * exactly the right amount of runtime to take out.
641 */
7def2be1
PZ
642 if (rt_rq->rt_runtime == RUNTIME_INF ||
643 rt_rq->rt_runtime == rt_b->rt_runtime)
644 goto balanced;
0986b11b 645 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 646
78333cdd
PZ
647 /*
648 * Calculate the difference between what we started out with
649 * and what we current have, that's the amount of runtime
650 * we lend and now have to reclaim.
651 */
7def2be1
PZ
652 want = rt_b->rt_runtime - rt_rq->rt_runtime;
653
78333cdd
PZ
654 /*
655 * Greedy reclaim, take back as much as we can.
656 */
c6c4927b 657 for_each_cpu(i, rd->span) {
7def2be1
PZ
658 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
659 s64 diff;
660
78333cdd
PZ
661 /*
662 * Can't reclaim from ourselves or disabled runqueues.
663 */
f1679d08 664 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
665 continue;
666
0986b11b 667 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
668 if (want > 0) {
669 diff = min_t(s64, iter->rt_runtime, want);
670 iter->rt_runtime -= diff;
671 want -= diff;
672 } else {
673 iter->rt_runtime -= want;
674 want -= want;
675 }
0986b11b 676 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
677
678 if (!want)
679 break;
680 }
681
0986b11b 682 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
683 /*
684 * We cannot be left wanting - that would mean some runtime
685 * leaked out of the system.
686 */
7def2be1
PZ
687 BUG_ON(want);
688balanced:
78333cdd
PZ
689 /*
690 * Disable all the borrow logic by pretending we have inf
691 * runtime - in which case borrowing doesn't make sense.
692 */
7def2be1 693 rt_rq->rt_runtime = RUNTIME_INF;
0986b11b
TG
694 raw_spin_unlock(&rt_rq->rt_runtime_lock);
695 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
696 }
697}
698
699static void disable_runtime(struct rq *rq)
700{
701 unsigned long flags;
702
05fa785c 703 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 704 __disable_runtime(rq);
05fa785c 705 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
706}
707
708static void __enable_runtime(struct rq *rq)
709{
ec514c48 710 rt_rq_iter_t iter;
7def2be1
PZ
711 struct rt_rq *rt_rq;
712
713 if (unlikely(!scheduler_running))
714 return;
715
78333cdd
PZ
716 /*
717 * Reset each runqueue's bandwidth settings
718 */
ec514c48 719 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
720 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
721
0986b11b
TG
722 raw_spin_lock(&rt_b->rt_runtime_lock);
723 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
724 rt_rq->rt_runtime = rt_b->rt_runtime;
725 rt_rq->rt_time = 0;
baf25731 726 rt_rq->rt_throttled = 0;
0986b11b
TG
727 raw_spin_unlock(&rt_rq->rt_runtime_lock);
728 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
729 }
730}
731
732static void enable_runtime(struct rq *rq)
733{
734 unsigned long flags;
735
05fa785c 736 raw_spin_lock_irqsave(&rq->lock, flags);
7def2be1 737 __enable_runtime(rq);
05fa785c 738 raw_spin_unlock_irqrestore(&rq->lock, flags);
7def2be1
PZ
739}
740
029632fb
PZ
741int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
742{
743 int cpu = (int)(long)hcpu;
744
745 switch (action) {
746 case CPU_DOWN_PREPARE:
747 case CPU_DOWN_PREPARE_FROZEN:
748 disable_runtime(cpu_rq(cpu));
749 return NOTIFY_OK;
750
751 case CPU_DOWN_FAILED:
752 case CPU_DOWN_FAILED_FROZEN:
753 case CPU_ONLINE:
754 case CPU_ONLINE_FROZEN:
755 enable_runtime(cpu_rq(cpu));
756 return NOTIFY_OK;
757
758 default:
759 return NOTIFY_DONE;
760 }
761}
762
eff6549b
PZ
763static int balance_runtime(struct rt_rq *rt_rq)
764{
765 int more = 0;
766
4a6184ce
PZ
767 if (!sched_feat(RT_RUNTIME_SHARE))
768 return more;
769
eff6549b 770 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 771 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 772 more = do_balance_runtime(rt_rq);
0986b11b 773 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
774 }
775
776 return more;
777}
55e12e5e 778#else /* !CONFIG_SMP */
eff6549b
PZ
779static inline int balance_runtime(struct rt_rq *rt_rq)
780{
781 return 0;
782}
55e12e5e 783#endif /* CONFIG_SMP */
ac086bc2 784
eff6549b
PZ
785static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
786{
42c62a58 787 int i, idle = 1, throttled = 0;
c6c4927b 788 const struct cpumask *span;
eff6549b 789
eff6549b 790 span = sched_rt_period_mask();
c6c4927b 791 for_each_cpu(i, span) {
eff6549b
PZ
792 int enqueue = 0;
793 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
794 struct rq *rq = rq_of_rt_rq(rt_rq);
795
05fa785c 796 raw_spin_lock(&rq->lock);
eff6549b
PZ
797 if (rt_rq->rt_time) {
798 u64 runtime;
799
0986b11b 800 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
801 if (rt_rq->rt_throttled)
802 balance_runtime(rt_rq);
803 runtime = rt_rq->rt_runtime;
804 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
805 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
806 rt_rq->rt_throttled = 0;
807 enqueue = 1;
61eadef6
MG
808
809 /*
810 * Force a clock update if the CPU was idle,
811 * lest wakeup -> unthrottle time accumulate.
812 */
813 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
814 rq->skip_clock_update = -1;
eff6549b
PZ
815 }
816 if (rt_rq->rt_time || rt_rq->rt_nr_running)
817 idle = 0;
0986b11b 818 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 819 } else if (rt_rq->rt_nr_running) {
6c3df255 820 idle = 0;
0c3b9168
BS
821 if (!rt_rq_throttled(rt_rq))
822 enqueue = 1;
823 }
42c62a58
PZ
824 if (rt_rq->rt_throttled)
825 throttled = 1;
eff6549b
PZ
826
827 if (enqueue)
828 sched_rt_rq_enqueue(rt_rq);
05fa785c 829 raw_spin_unlock(&rq->lock);
eff6549b
PZ
830 }
831
42c62a58
PZ
832 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
833 return 1;
834
eff6549b
PZ
835 return idle;
836}
ac086bc2 837
6f505b16
PZ
838static inline int rt_se_prio(struct sched_rt_entity *rt_se)
839{
052f1dc7 840#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
841 struct rt_rq *rt_rq = group_rt_rq(rt_se);
842
843 if (rt_rq)
e864c499 844 return rt_rq->highest_prio.curr;
6f505b16
PZ
845#endif
846
847 return rt_task_of(rt_se)->prio;
848}
849
9f0c1e56 850static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 851{
9f0c1e56 852 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 853
fa85ae24 854 if (rt_rq->rt_throttled)
23b0fdfc 855 return rt_rq_throttled(rt_rq);
fa85ae24 856
5b680fd6 857 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
858 return 0;
859
b79f3833
PZ
860 balance_runtime(rt_rq);
861 runtime = sched_rt_runtime(rt_rq);
862 if (runtime == RUNTIME_INF)
863 return 0;
ac086bc2 864
9f0c1e56 865 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
866 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
867
868 /*
869 * Don't actually throttle groups that have no runtime assigned
870 * but accrue some time due to boosting.
871 */
872 if (likely(rt_b->rt_runtime)) {
3ccf3e83
PZ
873 static bool once = false;
874
7abc63b1 875 rt_rq->rt_throttled = 1;
3ccf3e83
PZ
876
877 if (!once) {
878 once = true;
879 printk_sched("sched: RT throttling activated\n");
880 }
7abc63b1
PZ
881 } else {
882 /*
883 * In case we did anyway, make it go away,
884 * replenishment is a joke, since it will replenish us
885 * with exactly 0 ns.
886 */
887 rt_rq->rt_time = 0;
888 }
889
23b0fdfc 890 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 891 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
892 return 1;
893 }
fa85ae24
PZ
894 }
895
896 return 0;
897}
898
bb44e5d1
IM
899/*
900 * Update the current task's runtime statistics. Skip current tasks that
901 * are not in our scheduling class.
902 */
a9957449 903static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
904{
905 struct task_struct *curr = rq->curr;
6f505b16
PZ
906 struct sched_rt_entity *rt_se = &curr->rt;
907 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
908 u64 delta_exec;
909
06c3bc65 910 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
911 return;
912
305e6835 913 delta_exec = rq->clock_task - curr->se.exec_start;
bb44e5d1
IM
914 if (unlikely((s64)delta_exec < 0))
915 delta_exec = 0;
6cfb0d5d 916
42c62a58
PZ
917 schedstat_set(curr->se.statistics.exec_max,
918 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
919
920 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
921 account_group_exec_runtime(curr, delta_exec);
922
305e6835 923 curr->se.exec_start = rq->clock_task;
d842de87 924 cpuacct_charge(curr, delta_exec);
fa85ae24 925
e9e9250b
PZ
926 sched_rt_avg_update(rq, delta_exec);
927
0b148fa0
PZ
928 if (!rt_bandwidth_enabled())
929 return;
930
354d60c2
DG
931 for_each_sched_rt_entity(rt_se) {
932 rt_rq = rt_rq_of_se(rt_se);
933
cc2991cf 934 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 935 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
936 rt_rq->rt_time += delta_exec;
937 if (sched_rt_runtime_exceeded(rt_rq))
938 resched_task(curr);
0986b11b 939 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 940 }
354d60c2 941 }
bb44e5d1
IM
942}
943
398a153b 944#if defined CONFIG_SMP
e864c499 945
398a153b
GH
946static void
947inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 948{
4d984277 949 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 950
5181f4a4
SR
951 if (rq->online && prio < prev_prio)
952 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 953}
73fe6aae 954
398a153b
GH
955static void
956dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
957{
958 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 959
398a153b
GH
960 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
961 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
962}
963
398a153b
GH
964#else /* CONFIG_SMP */
965
6f505b16 966static inline
398a153b
GH
967void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
968static inline
969void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
970
971#endif /* CONFIG_SMP */
6e0534f2 972
052f1dc7 973#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
974static void
975inc_rt_prio(struct rt_rq *rt_rq, int prio)
976{
977 int prev_prio = rt_rq->highest_prio.curr;
978
979 if (prio < prev_prio)
980 rt_rq->highest_prio.curr = prio;
981
982 inc_rt_prio_smp(rt_rq, prio, prev_prio);
983}
984
985static void
986dec_rt_prio(struct rt_rq *rt_rq, int prio)
987{
988 int prev_prio = rt_rq->highest_prio.curr;
989
6f505b16 990 if (rt_rq->rt_nr_running) {
764a9d6f 991
398a153b 992 WARN_ON(prio < prev_prio);
764a9d6f 993
e864c499 994 /*
398a153b
GH
995 * This may have been our highest task, and therefore
996 * we may have some recomputation to do
e864c499 997 */
398a153b 998 if (prio == prev_prio) {
e864c499
GH
999 struct rt_prio_array *array = &rt_rq->active;
1000
1001 rt_rq->highest_prio.curr =
764a9d6f 1002 sched_find_first_bit(array->bitmap);
e864c499
GH
1003 }
1004
764a9d6f 1005 } else
e864c499 1006 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 1007
398a153b
GH
1008 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1009}
1f11eb6a 1010
398a153b
GH
1011#else
1012
1013static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1014static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1015
1016#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 1017
052f1dc7 1018#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
1019
1020static void
1021inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1022{
1023 if (rt_se_boosted(rt_se))
1024 rt_rq->rt_nr_boosted++;
1025
1026 if (rt_rq->tg)
1027 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1028}
1029
1030static void
1031dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1032{
23b0fdfc
PZ
1033 if (rt_se_boosted(rt_se))
1034 rt_rq->rt_nr_boosted--;
1035
1036 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
1037}
1038
1039#else /* CONFIG_RT_GROUP_SCHED */
1040
1041static void
1042inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1043{
1044 start_rt_bandwidth(&def_rt_bandwidth);
1045}
1046
1047static inline
1048void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1049
1050#endif /* CONFIG_RT_GROUP_SCHED */
1051
1052static inline
1053void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1054{
1055 int prio = rt_se_prio(rt_se);
1056
1057 WARN_ON(!rt_prio(prio));
1058 rt_rq->rt_nr_running++;
1059
1060 inc_rt_prio(rt_rq, prio);
1061 inc_rt_migration(rt_se, rt_rq);
1062 inc_rt_group(rt_se, rt_rq);
1063}
1064
1065static inline
1066void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1067{
1068 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1069 WARN_ON(!rt_rq->rt_nr_running);
1070 rt_rq->rt_nr_running--;
1071
1072 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1073 dec_rt_migration(rt_se, rt_rq);
1074 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1075}
1076
37dad3fc 1077static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 1078{
6f505b16
PZ
1079 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1080 struct rt_prio_array *array = &rt_rq->active;
1081 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1082 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1083
ad2a3f13
PZ
1084 /*
1085 * Don't enqueue the group if its throttled, or when empty.
1086 * The latter is a consequence of the former when a child group
1087 * get throttled and the current group doesn't have any other
1088 * active members.
1089 */
1090 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 1091 return;
63489e45 1092
3d4b47b4
PZ
1093 if (!rt_rq->rt_nr_running)
1094 list_add_leaf_rt_rq(rt_rq);
1095
37dad3fc
TG
1096 if (head)
1097 list_add(&rt_se->run_list, queue);
1098 else
1099 list_add_tail(&rt_se->run_list, queue);
6f505b16 1100 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 1101
6f505b16
PZ
1102 inc_rt_tasks(rt_se, rt_rq);
1103}
1104
ad2a3f13 1105static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
1106{
1107 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1108 struct rt_prio_array *array = &rt_rq->active;
1109
1110 list_del_init(&rt_se->run_list);
1111 if (list_empty(array->queue + rt_se_prio(rt_se)))
1112 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1113
1114 dec_rt_tasks(rt_se, rt_rq);
3d4b47b4
PZ
1115 if (!rt_rq->rt_nr_running)
1116 list_del_leaf_rt_rq(rt_rq);
6f505b16
PZ
1117}
1118
1119/*
1120 * Because the prio of an upper entry depends on the lower
1121 * entries, we must remove entries top - down.
6f505b16 1122 */
ad2a3f13 1123static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 1124{
ad2a3f13 1125 struct sched_rt_entity *back = NULL;
6f505b16 1126
58d6c2d7
PZ
1127 for_each_sched_rt_entity(rt_se) {
1128 rt_se->back = back;
1129 back = rt_se;
1130 }
1131
1132 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1133 if (on_rt_rq(rt_se))
ad2a3f13
PZ
1134 __dequeue_rt_entity(rt_se);
1135 }
1136}
1137
37dad3fc 1138static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13
PZ
1139{
1140 dequeue_rt_stack(rt_se);
1141 for_each_sched_rt_entity(rt_se)
37dad3fc 1142 __enqueue_rt_entity(rt_se, head);
ad2a3f13
PZ
1143}
1144
1145static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1146{
1147 dequeue_rt_stack(rt_se);
1148
1149 for_each_sched_rt_entity(rt_se) {
1150 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1151
1152 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 1153 __enqueue_rt_entity(rt_se, false);
58d6c2d7 1154 }
bb44e5d1
IM
1155}
1156
1157/*
1158 * Adding/removing a task to/from a priority array:
1159 */
ea87bb78 1160static void
371fd7e7 1161enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1162{
1163 struct sched_rt_entity *rt_se = &p->rt;
1164
371fd7e7 1165 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1166 rt_se->timeout = 0;
1167
371fd7e7 1168 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 1169
29baa747 1170 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1171 enqueue_pushable_task(rq, p);
953bfcd1
PT
1172
1173 inc_nr_running(rq);
6f505b16
PZ
1174}
1175
371fd7e7 1176static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1177{
6f505b16 1178 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1179
f1e14ef6 1180 update_curr_rt(rq);
ad2a3f13 1181 dequeue_rt_entity(rt_se);
c09595f6 1182
917b627d 1183 dequeue_pushable_task(rq, p);
953bfcd1
PT
1184
1185 dec_nr_running(rq);
bb44e5d1
IM
1186}
1187
1188/*
60686317
RW
1189 * Put task to the head or the end of the run list without the overhead of
1190 * dequeue followed by enqueue.
bb44e5d1 1191 */
7ebefa8c
DA
1192static void
1193requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1194{
1cdad715 1195 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1196 struct rt_prio_array *array = &rt_rq->active;
1197 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1198
1199 if (head)
1200 list_move(&rt_se->run_list, queue);
1201 else
1202 list_move_tail(&rt_se->run_list, queue);
1cdad715 1203 }
6f505b16
PZ
1204}
1205
7ebefa8c 1206static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1207{
6f505b16
PZ
1208 struct sched_rt_entity *rt_se = &p->rt;
1209 struct rt_rq *rt_rq;
bb44e5d1 1210
6f505b16
PZ
1211 for_each_sched_rt_entity(rt_se) {
1212 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1213 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1214 }
bb44e5d1
IM
1215}
1216
6f505b16 1217static void yield_task_rt(struct rq *rq)
bb44e5d1 1218{
7ebefa8c 1219 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1220}
1221
e7693a36 1222#ifdef CONFIG_SMP
318e0893
GH
1223static int find_lowest_rq(struct task_struct *task);
1224
0017d735 1225static int
7608dec2 1226select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
e7693a36 1227{
7608dec2
PZ
1228 struct task_struct *curr;
1229 struct rq *rq;
1230 int cpu;
1231
7608dec2 1232 cpu = task_cpu(p);
c37495fd 1233
29baa747 1234 if (p->nr_cpus_allowed == 1)
76854c7e
MG
1235 goto out;
1236
c37495fd
SR
1237 /* For anything but wake ups, just return the task_cpu */
1238 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1239 goto out;
1240
7608dec2
PZ
1241 rq = cpu_rq(cpu);
1242
1243 rcu_read_lock();
1244 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1245
318e0893 1246 /*
7608dec2 1247 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1248 * try to see if we can wake this RT task up on another
1249 * runqueue. Otherwise simply start this RT task
1250 * on its current runqueue.
1251 *
43fa5460
SR
1252 * We want to avoid overloading runqueues. If the woken
1253 * task is a higher priority, then it will stay on this CPU
1254 * and the lower prio task should be moved to another CPU.
1255 * Even though this will probably make the lower prio task
1256 * lose its cache, we do not want to bounce a higher task
1257 * around just because it gave up its CPU, perhaps for a
1258 * lock?
1259 *
1260 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1261 *
1262 * Otherwise, just let it ride on the affined RQ and the
1263 * post-schedule router will push the preempted task away
1264 *
1265 * This test is optimistic, if we get it wrong the load-balancer
1266 * will have to sort it out.
318e0893 1267 */
7608dec2 1268 if (curr && unlikely(rt_task(curr)) &&
29baa747 1269 (curr->nr_cpus_allowed < 2 ||
3be209a8 1270 curr->prio <= p->prio) &&
29baa747 1271 (p->nr_cpus_allowed > 1)) {
7608dec2 1272 int target = find_lowest_rq(p);
318e0893 1273
7608dec2
PZ
1274 if (target != -1)
1275 cpu = target;
318e0893 1276 }
7608dec2 1277 rcu_read_unlock();
318e0893 1278
c37495fd 1279out:
7608dec2 1280 return cpu;
e7693a36 1281}
7ebefa8c
DA
1282
1283static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1284{
29baa747 1285 if (rq->curr->nr_cpus_allowed == 1)
7ebefa8c
DA
1286 return;
1287
29baa747 1288 if (p->nr_cpus_allowed != 1
13b8bd0a
RR
1289 && cpupri_find(&rq->rd->cpupri, p, NULL))
1290 return;
24600ce8 1291
13b8bd0a
RR
1292 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1293 return;
7ebefa8c
DA
1294
1295 /*
1296 * There appears to be other cpus that can accept
1297 * current and none to run 'p', so lets reschedule
1298 * to try and push current away:
1299 */
1300 requeue_task_rt(rq, p, 1);
1301 resched_task(rq->curr);
1302}
1303
e7693a36
GH
1304#endif /* CONFIG_SMP */
1305
bb44e5d1
IM
1306/*
1307 * Preempt the current task with a newly woken task if needed:
1308 */
7d478721 1309static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1310{
45c01e82 1311 if (p->prio < rq->curr->prio) {
bb44e5d1 1312 resched_task(rq->curr);
45c01e82
GH
1313 return;
1314 }
1315
1316#ifdef CONFIG_SMP
1317 /*
1318 * If:
1319 *
1320 * - the newly woken task is of equal priority to the current task
1321 * - the newly woken task is non-migratable while current is migratable
1322 * - current will be preempted on the next reschedule
1323 *
1324 * we should check to see if current can readily move to a different
1325 * cpu. If so, we will reschedule to allow the push logic to try
1326 * to move current somewhere else, making room for our non-migratable
1327 * task.
1328 */
8dd0de8b 1329 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1330 check_preempt_equal_prio(rq, p);
45c01e82 1331#endif
bb44e5d1
IM
1332}
1333
6f505b16
PZ
1334static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1335 struct rt_rq *rt_rq)
bb44e5d1 1336{
6f505b16
PZ
1337 struct rt_prio_array *array = &rt_rq->active;
1338 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1339 struct list_head *queue;
1340 int idx;
1341
1342 idx = sched_find_first_bit(array->bitmap);
6f505b16 1343 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1344
1345 queue = array->queue + idx;
6f505b16 1346 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1347
6f505b16
PZ
1348 return next;
1349}
bb44e5d1 1350
917b627d 1351static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1352{
1353 struct sched_rt_entity *rt_se;
1354 struct task_struct *p;
1355 struct rt_rq *rt_rq;
bb44e5d1 1356
6f505b16
PZ
1357 rt_rq = &rq->rt;
1358
8e54a2c0 1359 if (!rt_rq->rt_nr_running)
6f505b16
PZ
1360 return NULL;
1361
23b0fdfc 1362 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
1363 return NULL;
1364
1365 do {
1366 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1367 BUG_ON(!rt_se);
6f505b16
PZ
1368 rt_rq = group_rt_rq(rt_se);
1369 } while (rt_rq);
1370
1371 p = rt_task_of(rt_se);
305e6835 1372 p->se.exec_start = rq->clock_task;
917b627d
GH
1373
1374 return p;
1375}
1376
1377static struct task_struct *pick_next_task_rt(struct rq *rq)
1378{
1379 struct task_struct *p = _pick_next_task_rt(rq);
1380
1381 /* The running task is never eligible for pushing */
1382 if (p)
1383 dequeue_pushable_task(rq, p);
1384
bcf08df3 1385#ifdef CONFIG_SMP
3f029d3c
GH
1386 /*
1387 * We detect this state here so that we can avoid taking the RQ
1388 * lock again later if there is no need to push
1389 */
1390 rq->post_schedule = has_pushable_tasks(rq);
bcf08df3 1391#endif
3f029d3c 1392
6f505b16 1393 return p;
bb44e5d1
IM
1394}
1395
31ee529c 1396static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1397{
f1e14ef6 1398 update_curr_rt(rq);
917b627d
GH
1399
1400 /*
1401 * The previous task needs to be made eligible for pushing
1402 * if it is still active
1403 */
29baa747 1404 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1405 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1406}
1407
681f3e68 1408#ifdef CONFIG_SMP
6f505b16 1409
e8fa1362
SR
1410/* Only try algorithms three times */
1411#define RT_MAX_TRIES 3
1412
f65eda4f
SR
1413static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1414{
1415 if (!task_running(rq, p) &&
fa17b507 1416 (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
29baa747 1417 (p->nr_cpus_allowed > 1))
f65eda4f
SR
1418 return 1;
1419 return 0;
1420}
1421
e8fa1362 1422/* Return the second highest RT task, NULL otherwise */
79064fbf 1423static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 1424{
6f505b16
PZ
1425 struct task_struct *next = NULL;
1426 struct sched_rt_entity *rt_se;
1427 struct rt_prio_array *array;
1428 struct rt_rq *rt_rq;
e8fa1362
SR
1429 int idx;
1430
6f505b16
PZ
1431 for_each_leaf_rt_rq(rt_rq, rq) {
1432 array = &rt_rq->active;
1433 idx = sched_find_first_bit(array->bitmap);
49246274 1434next_idx:
6f505b16
PZ
1435 if (idx >= MAX_RT_PRIO)
1436 continue;
1b028abc 1437 if (next && next->prio <= idx)
6f505b16
PZ
1438 continue;
1439 list_for_each_entry(rt_se, array->queue + idx, run_list) {
3d07467b
PZ
1440 struct task_struct *p;
1441
1442 if (!rt_entity_is_task(rt_se))
1443 continue;
1444
1445 p = rt_task_of(rt_se);
6f505b16
PZ
1446 if (pick_rt_task(rq, p, cpu)) {
1447 next = p;
1448 break;
1449 }
1450 }
1451 if (!next) {
1452 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1453 goto next_idx;
1454 }
f65eda4f
SR
1455 }
1456
e8fa1362
SR
1457 return next;
1458}
1459
0e3900e6 1460static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1461
6e1254d2
GH
1462static int find_lowest_rq(struct task_struct *task)
1463{
1464 struct sched_domain *sd;
96f874e2 1465 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1466 int this_cpu = smp_processor_id();
1467 int cpu = task_cpu(task);
06f90dbd 1468
0da938c4
SR
1469 /* Make sure the mask is initialized first */
1470 if (unlikely(!lowest_mask))
1471 return -1;
1472
29baa747 1473 if (task->nr_cpus_allowed == 1)
6e0534f2 1474 return -1; /* No other targets possible */
6e1254d2 1475
6e0534f2
GH
1476 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1477 return -1; /* No targets found */
6e1254d2
GH
1478
1479 /*
1480 * At this point we have built a mask of cpus representing the
1481 * lowest priority tasks in the system. Now we want to elect
1482 * the best one based on our affinity and topology.
1483 *
1484 * We prioritize the last cpu that the task executed on since
1485 * it is most likely cache-hot in that location.
1486 */
96f874e2 1487 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1488 return cpu;
1489
1490 /*
1491 * Otherwise, we consult the sched_domains span maps to figure
1492 * out which cpu is logically closest to our hot cache data.
1493 */
e2c88063
RR
1494 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1495 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1496
cd4ae6ad 1497 rcu_read_lock();
e2c88063
RR
1498 for_each_domain(cpu, sd) {
1499 if (sd->flags & SD_WAKE_AFFINE) {
1500 int best_cpu;
6e1254d2 1501
e2c88063
RR
1502 /*
1503 * "this_cpu" is cheaper to preempt than a
1504 * remote processor.
1505 */
1506 if (this_cpu != -1 &&
cd4ae6ad
XF
1507 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1508 rcu_read_unlock();
e2c88063 1509 return this_cpu;
cd4ae6ad 1510 }
e2c88063
RR
1511
1512 best_cpu = cpumask_first_and(lowest_mask,
1513 sched_domain_span(sd));
cd4ae6ad
XF
1514 if (best_cpu < nr_cpu_ids) {
1515 rcu_read_unlock();
e2c88063 1516 return best_cpu;
cd4ae6ad 1517 }
6e1254d2
GH
1518 }
1519 }
cd4ae6ad 1520 rcu_read_unlock();
6e1254d2
GH
1521
1522 /*
1523 * And finally, if there were no matches within the domains
1524 * just give the caller *something* to work with from the compatible
1525 * locations.
1526 */
e2c88063
RR
1527 if (this_cpu != -1)
1528 return this_cpu;
1529
1530 cpu = cpumask_any(lowest_mask);
1531 if (cpu < nr_cpu_ids)
1532 return cpu;
1533 return -1;
07b4032c
GH
1534}
1535
1536/* Will lock the rq it finds */
4df64c0b 1537static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1538{
1539 struct rq *lowest_rq = NULL;
07b4032c 1540 int tries;
4df64c0b 1541 int cpu;
e8fa1362 1542
07b4032c
GH
1543 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1544 cpu = find_lowest_rq(task);
1545
2de0b463 1546 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1547 break;
1548
07b4032c
GH
1549 lowest_rq = cpu_rq(cpu);
1550
e8fa1362 1551 /* if the prio of this runqueue changed, try again */
07b4032c 1552 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1553 /*
1554 * We had to unlock the run queue. In
1555 * the mean time, task could have
1556 * migrated already or had its affinity changed.
1557 * Also make sure that it wasn't scheduled on its rq.
1558 */
07b4032c 1559 if (unlikely(task_rq(task) != rq ||
96f874e2 1560 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1561 tsk_cpus_allowed(task)) ||
07b4032c 1562 task_running(rq, task) ||
fd2f4419 1563 !task->on_rq)) {
4df64c0b 1564
05fa785c 1565 raw_spin_unlock(&lowest_rq->lock);
e8fa1362
SR
1566 lowest_rq = NULL;
1567 break;
1568 }
1569 }
1570
1571 /* If this rq is still suitable use it. */
e864c499 1572 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1573 break;
1574
1575 /* try again */
1b12bbc7 1576 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1577 lowest_rq = NULL;
1578 }
1579
1580 return lowest_rq;
1581}
1582
917b627d
GH
1583static struct task_struct *pick_next_pushable_task(struct rq *rq)
1584{
1585 struct task_struct *p;
1586
1587 if (!has_pushable_tasks(rq))
1588 return NULL;
1589
1590 p = plist_first_entry(&rq->rt.pushable_tasks,
1591 struct task_struct, pushable_tasks);
1592
1593 BUG_ON(rq->cpu != task_cpu(p));
1594 BUG_ON(task_current(rq, p));
29baa747 1595 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1596
fd2f4419 1597 BUG_ON(!p->on_rq);
917b627d
GH
1598 BUG_ON(!rt_task(p));
1599
1600 return p;
1601}
1602
e8fa1362
SR
1603/*
1604 * If the current CPU has more than one RT task, see if the non
1605 * running task can migrate over to a CPU that is running a task
1606 * of lesser priority.
1607 */
697f0a48 1608static int push_rt_task(struct rq *rq)
e8fa1362
SR
1609{
1610 struct task_struct *next_task;
1611 struct rq *lowest_rq;
311e800e 1612 int ret = 0;
e8fa1362 1613
a22d7fc1
GH
1614 if (!rq->rt.overloaded)
1615 return 0;
1616
917b627d 1617 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1618 if (!next_task)
1619 return 0;
1620
cb297a3e
CM
1621#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1622 if (unlikely(task_running(rq, next_task)))
1623 return 0;
1624#endif
1625
49246274 1626retry:
697f0a48 1627 if (unlikely(next_task == rq->curr)) {
f65eda4f 1628 WARN_ON(1);
e8fa1362 1629 return 0;
f65eda4f 1630 }
e8fa1362
SR
1631
1632 /*
1633 * It's possible that the next_task slipped in of
1634 * higher priority than current. If that's the case
1635 * just reschedule current.
1636 */
697f0a48
GH
1637 if (unlikely(next_task->prio < rq->curr->prio)) {
1638 resched_task(rq->curr);
e8fa1362
SR
1639 return 0;
1640 }
1641
697f0a48 1642 /* We might release rq lock */
e8fa1362
SR
1643 get_task_struct(next_task);
1644
1645 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1646 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1647 if (!lowest_rq) {
1648 struct task_struct *task;
1649 /*
311e800e 1650 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1651 * so it is possible that next_task has migrated.
1652 *
1653 * We need to make sure that the task is still on the same
1654 * run-queue and is also still the next task eligible for
1655 * pushing.
e8fa1362 1656 */
917b627d 1657 task = pick_next_pushable_task(rq);
1563513d
GH
1658 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1659 /*
311e800e
HD
1660 * The task hasn't migrated, and is still the next
1661 * eligible task, but we failed to find a run-queue
1662 * to push it to. Do not retry in this case, since
1663 * other cpus will pull from us when ready.
1563513d 1664 */
1563513d 1665 goto out;
e8fa1362 1666 }
917b627d 1667
1563513d
GH
1668 if (!task)
1669 /* No more tasks, just exit */
1670 goto out;
1671
917b627d 1672 /*
1563513d 1673 * Something has shifted, try again.
917b627d 1674 */
1563513d
GH
1675 put_task_struct(next_task);
1676 next_task = task;
1677 goto retry;
e8fa1362
SR
1678 }
1679
697f0a48 1680 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1681 set_task_cpu(next_task, lowest_rq->cpu);
1682 activate_task(lowest_rq, next_task, 0);
311e800e 1683 ret = 1;
e8fa1362
SR
1684
1685 resched_task(lowest_rq->curr);
1686
1b12bbc7 1687 double_unlock_balance(rq, lowest_rq);
e8fa1362 1688
e8fa1362
SR
1689out:
1690 put_task_struct(next_task);
1691
311e800e 1692 return ret;
e8fa1362
SR
1693}
1694
e8fa1362
SR
1695static void push_rt_tasks(struct rq *rq)
1696{
1697 /* push_rt_task will return true if it moved an RT */
1698 while (push_rt_task(rq))
1699 ;
1700}
1701
f65eda4f
SR
1702static int pull_rt_task(struct rq *this_rq)
1703{
80bf3171 1704 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1705 struct task_struct *p;
f65eda4f 1706 struct rq *src_rq;
f65eda4f 1707
637f5085 1708 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1709 return 0;
1710
c6c4927b 1711 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1712 if (this_cpu == cpu)
1713 continue;
1714
1715 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1716
1717 /*
1718 * Don't bother taking the src_rq->lock if the next highest
1719 * task is known to be lower-priority than our current task.
1720 * This may look racy, but if this value is about to go
1721 * logically higher, the src_rq will push this task away.
1722 * And if its going logically lower, we do not care
1723 */
1724 if (src_rq->rt.highest_prio.next >=
1725 this_rq->rt.highest_prio.curr)
1726 continue;
1727
f65eda4f
SR
1728 /*
1729 * We can potentially drop this_rq's lock in
1730 * double_lock_balance, and another CPU could
a8728944 1731 * alter this_rq
f65eda4f 1732 */
a8728944 1733 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1734
1735 /*
1736 * Are there still pullable RT tasks?
1737 */
614ee1f6
MG
1738 if (src_rq->rt.rt_nr_running <= 1)
1739 goto skip;
f65eda4f 1740
f65eda4f
SR
1741 p = pick_next_highest_task_rt(src_rq, this_cpu);
1742
1743 /*
1744 * Do we have an RT task that preempts
1745 * the to-be-scheduled task?
1746 */
a8728944 1747 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 1748 WARN_ON(p == src_rq->curr);
fd2f4419 1749 WARN_ON(!p->on_rq);
f65eda4f
SR
1750
1751 /*
1752 * There's a chance that p is higher in priority
1753 * than what's currently running on its cpu.
1754 * This is just that p is wakeing up and hasn't
1755 * had a chance to schedule. We only pull
1756 * p if it is lower in priority than the
a8728944 1757 * current task on the run queue
f65eda4f 1758 */
a8728944 1759 if (p->prio < src_rq->curr->prio)
614ee1f6 1760 goto skip;
f65eda4f
SR
1761
1762 ret = 1;
1763
1764 deactivate_task(src_rq, p, 0);
1765 set_task_cpu(p, this_cpu);
1766 activate_task(this_rq, p, 0);
1767 /*
1768 * We continue with the search, just in
1769 * case there's an even higher prio task
25985edc 1770 * in another runqueue. (low likelihood
f65eda4f 1771 * but possible)
f65eda4f 1772 */
f65eda4f 1773 }
49246274 1774skip:
1b12bbc7 1775 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1776 }
1777
1778 return ret;
1779}
1780
9a897c5a 1781static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1782{
1783 /* Try to pull RT tasks here if we lower this rq's prio */
33c3d6c6 1784 if (rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1785 pull_rt_task(rq);
1786}
1787
9a897c5a 1788static void post_schedule_rt(struct rq *rq)
e8fa1362 1789{
967fc046 1790 push_rt_tasks(rq);
e8fa1362
SR
1791}
1792
8ae121ac
GH
1793/*
1794 * If we are not running and we are not going to reschedule soon, we should
1795 * try to push tasks away now
1796 */
efbbd05a 1797static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1798{
9a897c5a 1799 if (!task_running(rq, p) &&
8ae121ac 1800 !test_tsk_need_resched(rq->curr) &&
917b627d 1801 has_pushable_tasks(rq) &&
29baa747 1802 p->nr_cpus_allowed > 1 &&
43fa5460 1803 rt_task(rq->curr) &&
29baa747 1804 (rq->curr->nr_cpus_allowed < 2 ||
3be209a8 1805 rq->curr->prio <= p->prio))
4642dafd
SR
1806 push_rt_tasks(rq);
1807}
1808
cd8ba7cd 1809static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1810 const struct cpumask *new_mask)
73fe6aae 1811{
8d3d5ada
KT
1812 struct rq *rq;
1813 int weight;
73fe6aae
GH
1814
1815 BUG_ON(!rt_task(p));
1816
8d3d5ada
KT
1817 if (!p->on_rq)
1818 return;
917b627d 1819
8d3d5ada 1820 weight = cpumask_weight(new_mask);
917b627d 1821
8d3d5ada
KT
1822 /*
1823 * Only update if the process changes its state from whether it
1824 * can migrate or not.
1825 */
29baa747 1826 if ((p->nr_cpus_allowed > 1) == (weight > 1))
8d3d5ada 1827 return;
917b627d 1828
8d3d5ada 1829 rq = task_rq(p);
73fe6aae 1830
8d3d5ada
KT
1831 /*
1832 * The process used to be able to migrate OR it can now migrate
1833 */
1834 if (weight <= 1) {
1835 if (!task_current(rq, p))
1836 dequeue_pushable_task(rq, p);
1837 BUG_ON(!rq->rt.rt_nr_migratory);
1838 rq->rt.rt_nr_migratory--;
1839 } else {
1840 if (!task_current(rq, p))
1841 enqueue_pushable_task(rq, p);
1842 rq->rt.rt_nr_migratory++;
73fe6aae 1843 }
8d3d5ada
KT
1844
1845 update_rt_migration(&rq->rt);
73fe6aae 1846}
deeeccd4 1847
bdd7c81b 1848/* Assumes rq->lock is held */
1f11eb6a 1849static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1850{
1851 if (rq->rt.overloaded)
1852 rt_set_overload(rq);
6e0534f2 1853
7def2be1
PZ
1854 __enable_runtime(rq);
1855
e864c499 1856 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1857}
1858
1859/* Assumes rq->lock is held */
1f11eb6a 1860static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1861{
1862 if (rq->rt.overloaded)
1863 rt_clear_overload(rq);
6e0534f2 1864
7def2be1
PZ
1865 __disable_runtime(rq);
1866
6e0534f2 1867 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1868}
cb469845
SR
1869
1870/*
1871 * When switch from the rt queue, we bring ourselves to a position
1872 * that we might want to pull RT tasks from other runqueues.
1873 */
da7a735e 1874static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1875{
1876 /*
1877 * If there are other RT tasks then we will reschedule
1878 * and the scheduling of the other RT tasks will handle
1879 * the balancing. But if we are the last RT task
1880 * we may need to handle the pulling of RT tasks
1881 * now.
1882 */
fd2f4419 1883 if (p->on_rq && !rq->rt.rt_nr_running)
cb469845
SR
1884 pull_rt_task(rq);
1885}
3d8cbdf8 1886
029632fb 1887void init_sched_rt_class(void)
3d8cbdf8
RR
1888{
1889 unsigned int i;
1890
029632fb 1891 for_each_possible_cpu(i) {
eaa95840 1892 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1893 GFP_KERNEL, cpu_to_node(i));
029632fb 1894 }
3d8cbdf8 1895}
cb469845
SR
1896#endif /* CONFIG_SMP */
1897
1898/*
1899 * When switching a task to RT, we may overload the runqueue
1900 * with RT tasks. In this case we try to push them off to
1901 * other runqueues.
1902 */
da7a735e 1903static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1904{
1905 int check_resched = 1;
1906
1907 /*
1908 * If we are already running, then there's nothing
1909 * that needs to be done. But if we are not running
1910 * we may need to preempt the current running task.
1911 * If that current running task is also an RT task
1912 * then see if we can move to another run queue.
1913 */
fd2f4419 1914 if (p->on_rq && rq->curr != p) {
cb469845
SR
1915#ifdef CONFIG_SMP
1916 if (rq->rt.overloaded && push_rt_task(rq) &&
1917 /* Don't resched if we changed runqueues */
1918 rq != task_rq(p))
1919 check_resched = 0;
1920#endif /* CONFIG_SMP */
1921 if (check_resched && p->prio < rq->curr->prio)
1922 resched_task(rq->curr);
1923 }
1924}
1925
1926/*
1927 * Priority of the task has changed. This may cause
1928 * us to initiate a push or pull.
1929 */
da7a735e
PZ
1930static void
1931prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1932{
fd2f4419 1933 if (!p->on_rq)
da7a735e
PZ
1934 return;
1935
1936 if (rq->curr == p) {
cb469845
SR
1937#ifdef CONFIG_SMP
1938 /*
1939 * If our priority decreases while running, we
1940 * may need to pull tasks to this runqueue.
1941 */
1942 if (oldprio < p->prio)
1943 pull_rt_task(rq);
1944 /*
1945 * If there's a higher priority task waiting to run
6fa46fa5
SR
1946 * then reschedule. Note, the above pull_rt_task
1947 * can release the rq lock and p could migrate.
1948 * Only reschedule if p is still on the same runqueue.
cb469845 1949 */
e864c499 1950 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1951 resched_task(p);
1952#else
1953 /* For UP simply resched on drop of prio */
1954 if (oldprio < p->prio)
1955 resched_task(p);
e8fa1362 1956#endif /* CONFIG_SMP */
cb469845
SR
1957 } else {
1958 /*
1959 * This task is not running, but if it is
1960 * greater than the current running task
1961 * then reschedule.
1962 */
1963 if (p->prio < rq->curr->prio)
1964 resched_task(rq->curr);
1965 }
1966}
1967
78f2c7db
PZ
1968static void watchdog(struct rq *rq, struct task_struct *p)
1969{
1970 unsigned long soft, hard;
1971
78d7d407
JS
1972 /* max may change after cur was read, this will be fixed next tick */
1973 soft = task_rlimit(p, RLIMIT_RTTIME);
1974 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
1975
1976 if (soft != RLIM_INFINITY) {
1977 unsigned long next;
1978
1979 p->rt.timeout++;
1980 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1981 if (p->rt.timeout > next)
f06febc9 1982 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1983 }
1984}
bb44e5d1 1985
8f4d37ec 1986static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1987{
67e2be02
PZ
1988 update_curr_rt(rq);
1989
78f2c7db
PZ
1990 watchdog(rq, p);
1991
bb44e5d1
IM
1992 /*
1993 * RR tasks need a special form of timeslice management.
1994 * FIFO tasks have no timeslices.
1995 */
1996 if (p->policy != SCHED_RR)
1997 return;
1998
fa717060 1999 if (--p->rt.time_slice)
bb44e5d1
IM
2000 return;
2001
de5bdff7 2002 p->rt.time_slice = RR_TIMESLICE;
bb44e5d1 2003
98fbc798
DA
2004 /*
2005 * Requeue to the end of queue if we are not the only element
2006 * on the queue:
2007 */
fa717060 2008 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 2009 requeue_task_rt(rq, p, 0);
98fbc798
DA
2010 set_tsk_need_resched(p);
2011 }
bb44e5d1
IM
2012}
2013
83b699ed
SV
2014static void set_curr_task_rt(struct rq *rq)
2015{
2016 struct task_struct *p = rq->curr;
2017
305e6835 2018 p->se.exec_start = rq->clock_task;
917b627d
GH
2019
2020 /* The running task is never eligible for pushing */
2021 dequeue_pushable_task(rq, p);
83b699ed
SV
2022}
2023
6d686f45 2024static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
2025{
2026 /*
2027 * Time slice is 0 for SCHED_FIFO tasks
2028 */
2029 if (task->policy == SCHED_RR)
de5bdff7 2030 return RR_TIMESLICE;
0d721cea
PW
2031 else
2032 return 0;
2033}
2034
029632fb 2035const struct sched_class rt_sched_class = {
5522d5d5 2036 .next = &fair_sched_class,
bb44e5d1
IM
2037 .enqueue_task = enqueue_task_rt,
2038 .dequeue_task = dequeue_task_rt,
2039 .yield_task = yield_task_rt,
2040
2041 .check_preempt_curr = check_preempt_curr_rt,
2042
2043 .pick_next_task = pick_next_task_rt,
2044 .put_prev_task = put_prev_task_rt,
2045
681f3e68 2046#ifdef CONFIG_SMP
4ce72a2c
LZ
2047 .select_task_rq = select_task_rq_rt,
2048
73fe6aae 2049 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
2050 .rq_online = rq_online_rt,
2051 .rq_offline = rq_offline_rt,
9a897c5a
SR
2052 .pre_schedule = pre_schedule_rt,
2053 .post_schedule = post_schedule_rt,
efbbd05a 2054 .task_woken = task_woken_rt,
cb469845 2055 .switched_from = switched_from_rt,
681f3e68 2056#endif
bb44e5d1 2057
83b699ed 2058 .set_curr_task = set_curr_task_rt,
bb44e5d1 2059 .task_tick = task_tick_rt,
cb469845 2060
0d721cea
PW
2061 .get_rr_interval = get_rr_interval_rt,
2062
cb469845
SR
2063 .prio_changed = prio_changed_rt,
2064 .switched_to = switched_to_rt,
bb44e5d1 2065};
ada18de2
PZ
2066
2067#ifdef CONFIG_SCHED_DEBUG
2068extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2069
029632fb 2070void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2071{
ec514c48 2072 rt_rq_iter_t iter;
ada18de2
PZ
2073 struct rt_rq *rt_rq;
2074
2075 rcu_read_lock();
ec514c48 2076 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2077 print_rt_rq(m, cpu, rt_rq);
2078 rcu_read_unlock();
2079}
55e12e5e 2080#endif /* CONFIG_SCHED_DEBUG */