sched/rt: Sum number of all children tasks in hierarhy at ->rt_nr_running
[linux-2.6-block.git] / kernel / sched / rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
029632fb
PZ
6#include "sched.h"
7
8#include <linux/slab.h>
9
ce0dbbbb
CW
10int sched_rr_timeslice = RR_TIMESLICE;
11
029632fb
PZ
12static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13
14struct rt_bandwidth def_rt_bandwidth;
15
16static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17{
18 struct rt_bandwidth *rt_b =
19 container_of(timer, struct rt_bandwidth, rt_period_timer);
20 ktime_t now;
21 int overrun;
22 int idle = 0;
23
24 for (;;) {
25 now = hrtimer_cb_get_time(timer);
26 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27
28 if (!overrun)
29 break;
30
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 }
33
34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35}
36
37void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38{
39 rt_b->rt_period = ns_to_ktime(period);
40 rt_b->rt_runtime = runtime;
41
42 raw_spin_lock_init(&rt_b->rt_runtime_lock);
43
44 hrtimer_init(&rt_b->rt_period_timer,
45 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 rt_b->rt_period_timer.function = sched_rt_period_timer;
47}
48
49static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50{
51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 return;
53
54 if (hrtimer_active(&rt_b->rt_period_timer))
55 return;
56
57 raw_spin_lock(&rt_b->rt_runtime_lock);
58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 raw_spin_unlock(&rt_b->rt_runtime_lock);
60}
61
62void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63{
64 struct rt_prio_array *array;
65 int i;
66
67 array = &rt_rq->active;
68 for (i = 0; i < MAX_RT_PRIO; i++) {
69 INIT_LIST_HEAD(array->queue + i);
70 __clear_bit(i, array->bitmap);
71 }
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO, array->bitmap);
74
75#if defined CONFIG_SMP
76 rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 rt_rq->highest_prio.next = MAX_RT_PRIO;
78 rt_rq->rt_nr_migratory = 0;
79 rt_rq->overloaded = 0;
80 plist_head_init(&rt_rq->pushable_tasks);
81#endif
82
83 rt_rq->rt_time = 0;
84 rt_rq->rt_throttled = 0;
85 rt_rq->rt_runtime = 0;
86 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
87}
88
8f48894f 89#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
90static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
91{
92 hrtimer_cancel(&rt_b->rt_period_timer);
93}
8f48894f
PZ
94
95#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
96
398a153b
GH
97static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
98{
8f48894f
PZ
99#ifdef CONFIG_SCHED_DEBUG
100 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
101#endif
398a153b
GH
102 return container_of(rt_se, struct task_struct, rt);
103}
104
398a153b
GH
105static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
106{
107 return rt_rq->rq;
108}
109
110static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
111{
112 return rt_se->rt_rq;
113}
114
029632fb
PZ
115void free_rt_sched_group(struct task_group *tg)
116{
117 int i;
118
119 if (tg->rt_se)
120 destroy_rt_bandwidth(&tg->rt_bandwidth);
121
122 for_each_possible_cpu(i) {
123 if (tg->rt_rq)
124 kfree(tg->rt_rq[i]);
125 if (tg->rt_se)
126 kfree(tg->rt_se[i]);
127 }
128
129 kfree(tg->rt_rq);
130 kfree(tg->rt_se);
131}
132
133void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
134 struct sched_rt_entity *rt_se, int cpu,
135 struct sched_rt_entity *parent)
136{
137 struct rq *rq = cpu_rq(cpu);
138
139 rt_rq->highest_prio.curr = MAX_RT_PRIO;
140 rt_rq->rt_nr_boosted = 0;
141 rt_rq->rq = rq;
142 rt_rq->tg = tg;
143
144 tg->rt_rq[cpu] = rt_rq;
145 tg->rt_se[cpu] = rt_se;
146
147 if (!rt_se)
148 return;
149
150 if (!parent)
151 rt_se->rt_rq = &rq->rt;
152 else
153 rt_se->rt_rq = parent->my_q;
154
155 rt_se->my_q = rt_rq;
156 rt_se->parent = parent;
157 INIT_LIST_HEAD(&rt_se->run_list);
158}
159
160int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
161{
162 struct rt_rq *rt_rq;
163 struct sched_rt_entity *rt_se;
164 int i;
165
166 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
167 if (!tg->rt_rq)
168 goto err;
169 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
170 if (!tg->rt_se)
171 goto err;
172
173 init_rt_bandwidth(&tg->rt_bandwidth,
174 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
175
176 for_each_possible_cpu(i) {
177 rt_rq = kzalloc_node(sizeof(struct rt_rq),
178 GFP_KERNEL, cpu_to_node(i));
179 if (!rt_rq)
180 goto err;
181
182 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
183 GFP_KERNEL, cpu_to_node(i));
184 if (!rt_se)
185 goto err_free_rq;
186
187 init_rt_rq(rt_rq, cpu_rq(i));
188 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
189 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
190 }
191
192 return 1;
193
194err_free_rq:
195 kfree(rt_rq);
196err:
197 return 0;
198}
199
398a153b
GH
200#else /* CONFIG_RT_GROUP_SCHED */
201
a1ba4d8b
PZ
202#define rt_entity_is_task(rt_se) (1)
203
8f48894f
PZ
204static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
205{
206 return container_of(rt_se, struct task_struct, rt);
207}
208
398a153b
GH
209static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
210{
211 return container_of(rt_rq, struct rq, rt);
212}
213
214static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
215{
216 struct task_struct *p = rt_task_of(rt_se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->rt;
220}
221
029632fb
PZ
222void free_rt_sched_group(struct task_group *tg) { }
223
224int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
225{
226 return 1;
227}
398a153b
GH
228#endif /* CONFIG_RT_GROUP_SCHED */
229
4fd29176 230#ifdef CONFIG_SMP
84de4274 231
38033c37
PZ
232static int pull_rt_task(struct rq *this_rq);
233
dc877341
PZ
234static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
235{
236 /* Try to pull RT tasks here if we lower this rq's prio */
237 return rq->rt.highest_prio.curr > prev->prio;
238}
239
637f5085 240static inline int rt_overloaded(struct rq *rq)
4fd29176 241{
637f5085 242 return atomic_read(&rq->rd->rto_count);
4fd29176 243}
84de4274 244
4fd29176
SR
245static inline void rt_set_overload(struct rq *rq)
246{
1f11eb6a
GH
247 if (!rq->online)
248 return;
249
c6c4927b 250 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
251 /*
252 * Make sure the mask is visible before we set
253 * the overload count. That is checked to determine
254 * if we should look at the mask. It would be a shame
255 * if we looked at the mask, but the mask was not
256 * updated yet.
7c3f2ab7
PZ
257 *
258 * Matched by the barrier in pull_rt_task().
4fd29176 259 */
7c3f2ab7 260 smp_wmb();
637f5085 261 atomic_inc(&rq->rd->rto_count);
4fd29176 262}
84de4274 263
4fd29176
SR
264static inline void rt_clear_overload(struct rq *rq)
265{
1f11eb6a
GH
266 if (!rq->online)
267 return;
268
4fd29176 269 /* the order here really doesn't matter */
637f5085 270 atomic_dec(&rq->rd->rto_count);
c6c4927b 271 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 272}
73fe6aae 273
398a153b 274static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 275{
a1ba4d8b 276 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
277 if (!rt_rq->overloaded) {
278 rt_set_overload(rq_of_rt_rq(rt_rq));
279 rt_rq->overloaded = 1;
cdc8eb98 280 }
398a153b
GH
281 } else if (rt_rq->overloaded) {
282 rt_clear_overload(rq_of_rt_rq(rt_rq));
283 rt_rq->overloaded = 0;
637f5085 284 }
73fe6aae 285}
4fd29176 286
398a153b
GH
287static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
288{
29baa747
PZ
289 struct task_struct *p;
290
a1ba4d8b
PZ
291 if (!rt_entity_is_task(rt_se))
292 return;
293
29baa747 294 p = rt_task_of(rt_se);
a1ba4d8b
PZ
295 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
296
297 rt_rq->rt_nr_total++;
29baa747 298 if (p->nr_cpus_allowed > 1)
398a153b
GH
299 rt_rq->rt_nr_migratory++;
300
301 update_rt_migration(rt_rq);
302}
303
304static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
305{
29baa747
PZ
306 struct task_struct *p;
307
a1ba4d8b
PZ
308 if (!rt_entity_is_task(rt_se))
309 return;
310
29baa747 311 p = rt_task_of(rt_se);
a1ba4d8b
PZ
312 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
313
314 rt_rq->rt_nr_total--;
29baa747 315 if (p->nr_cpus_allowed > 1)
398a153b
GH
316 rt_rq->rt_nr_migratory--;
317
318 update_rt_migration(rt_rq);
319}
320
5181f4a4
SR
321static inline int has_pushable_tasks(struct rq *rq)
322{
323 return !plist_head_empty(&rq->rt.pushable_tasks);
324}
325
dc877341
PZ
326static inline void set_post_schedule(struct rq *rq)
327{
328 /*
329 * We detect this state here so that we can avoid taking the RQ
330 * lock again later if there is no need to push
331 */
332 rq->post_schedule = has_pushable_tasks(rq);
333}
334
917b627d
GH
335static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
336{
337 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
338 plist_node_init(&p->pushable_tasks, p->prio);
339 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
340
341 /* Update the highest prio pushable task */
342 if (p->prio < rq->rt.highest_prio.next)
343 rq->rt.highest_prio.next = p->prio;
917b627d
GH
344}
345
346static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
347{
348 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 349
5181f4a4
SR
350 /* Update the new highest prio pushable task */
351 if (has_pushable_tasks(rq)) {
352 p = plist_first_entry(&rq->rt.pushable_tasks,
353 struct task_struct, pushable_tasks);
354 rq->rt.highest_prio.next = p->prio;
355 } else
356 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
357}
358
917b627d
GH
359#else
360
ceacc2c1 361static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 362{
6f505b16
PZ
363}
364
ceacc2c1
PZ
365static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
366{
367}
368
b07430ac 369static inline
ceacc2c1
PZ
370void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
371{
372}
373
398a153b 374static inline
ceacc2c1
PZ
375void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
376{
377}
917b627d 378
dc877341
PZ
379static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
380{
381 return false;
382}
383
384static inline int pull_rt_task(struct rq *this_rq)
385{
386 return 0;
387}
388
389static inline void set_post_schedule(struct rq *rq)
390{
391}
4fd29176
SR
392#endif /* CONFIG_SMP */
393
6f505b16
PZ
394static inline int on_rt_rq(struct sched_rt_entity *rt_se)
395{
396 return !list_empty(&rt_se->run_list);
397}
398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 400
9f0c1e56 401static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
402{
403 if (!rt_rq->tg)
9f0c1e56 404 return RUNTIME_INF;
6f505b16 405
ac086bc2
PZ
406 return rt_rq->rt_runtime;
407}
408
409static inline u64 sched_rt_period(struct rt_rq *rt_rq)
410{
411 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
412}
413
ec514c48
CX
414typedef struct task_group *rt_rq_iter_t;
415
1c09ab0d
YZ
416static inline struct task_group *next_task_group(struct task_group *tg)
417{
418 do {
419 tg = list_entry_rcu(tg->list.next,
420 typeof(struct task_group), list);
421 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
422
423 if (&tg->list == &task_groups)
424 tg = NULL;
425
426 return tg;
427}
428
429#define for_each_rt_rq(rt_rq, iter, rq) \
430 for (iter = container_of(&task_groups, typeof(*iter), list); \
431 (iter = next_task_group(iter)) && \
432 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 433
6f505b16
PZ
434#define for_each_sched_rt_entity(rt_se) \
435 for (; rt_se; rt_se = rt_se->parent)
436
437static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
438{
439 return rt_se->my_q;
440}
441
37dad3fc 442static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
6f505b16
PZ
443static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
444
9f0c1e56 445static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 446{
f6121f4f 447 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
74b7eb58
YZ
448 struct sched_rt_entity *rt_se;
449
0c3b9168
BS
450 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
451
452 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 453
f6121f4f
DF
454 if (rt_rq->rt_nr_running) {
455 if (rt_se && !on_rt_rq(rt_se))
37dad3fc 456 enqueue_rt_entity(rt_se, false);
e864c499 457 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 458 resched_task(curr);
6f505b16
PZ
459 }
460}
461
9f0c1e56 462static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 463{
74b7eb58 464 struct sched_rt_entity *rt_se;
0c3b9168 465 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 466
0c3b9168 467 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16
PZ
468
469 if (rt_se && on_rt_rq(rt_se))
470 dequeue_rt_entity(rt_se);
471}
472
23b0fdfc
PZ
473static int rt_se_boosted(struct sched_rt_entity *rt_se)
474{
475 struct rt_rq *rt_rq = group_rt_rq(rt_se);
476 struct task_struct *p;
477
478 if (rt_rq)
479 return !!rt_rq->rt_nr_boosted;
480
481 p = rt_task_of(rt_se);
482 return p->prio != p->normal_prio;
483}
484
d0b27fa7 485#ifdef CONFIG_SMP
c6c4927b 486static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 487{
424c93fe 488 return this_rq()->rd->span;
d0b27fa7 489}
6f505b16 490#else
c6c4927b 491static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 492{
c6c4927b 493 return cpu_online_mask;
d0b27fa7
PZ
494}
495#endif
6f505b16 496
d0b27fa7
PZ
497static inline
498struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 499{
d0b27fa7
PZ
500 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
501}
9f0c1e56 502
ac086bc2
PZ
503static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
504{
505 return &rt_rq->tg->rt_bandwidth;
506}
507
55e12e5e 508#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
509
510static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
511{
ac086bc2
PZ
512 return rt_rq->rt_runtime;
513}
514
515static inline u64 sched_rt_period(struct rt_rq *rt_rq)
516{
517 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
518}
519
ec514c48
CX
520typedef struct rt_rq *rt_rq_iter_t;
521
522#define for_each_rt_rq(rt_rq, iter, rq) \
523 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
524
6f505b16
PZ
525#define for_each_sched_rt_entity(rt_se) \
526 for (; rt_se; rt_se = NULL)
527
528static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
529{
530 return NULL;
531}
532
9f0c1e56 533static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 534{
f3ade837
JB
535 if (rt_rq->rt_nr_running)
536 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
537}
538
9f0c1e56 539static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
540{
541}
542
c6c4927b 543static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 544{
c6c4927b 545 return cpu_online_mask;
d0b27fa7
PZ
546}
547
548static inline
549struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
550{
551 return &cpu_rq(cpu)->rt;
552}
553
ac086bc2
PZ
554static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
555{
556 return &def_rt_bandwidth;
557}
558
55e12e5e 559#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 560
faa59937
JL
561bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
562{
563 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
564
565 return (hrtimer_active(&rt_b->rt_period_timer) ||
566 rt_rq->rt_time < rt_b->rt_runtime);
567}
568
ac086bc2 569#ifdef CONFIG_SMP
78333cdd
PZ
570/*
571 * We ran out of runtime, see if we can borrow some from our neighbours.
572 */
b79f3833 573static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
574{
575 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 576 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
ac086bc2
PZ
577 int i, weight, more = 0;
578 u64 rt_period;
579
c6c4927b 580 weight = cpumask_weight(rd->span);
ac086bc2 581
0986b11b 582 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 583 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 584 for_each_cpu(i, rd->span) {
ac086bc2
PZ
585 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
586 s64 diff;
587
588 if (iter == rt_rq)
589 continue;
590
0986b11b 591 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
592 /*
593 * Either all rqs have inf runtime and there's nothing to steal
594 * or __disable_runtime() below sets a specific rq to inf to
595 * indicate its been disabled and disalow stealing.
596 */
7def2be1
PZ
597 if (iter->rt_runtime == RUNTIME_INF)
598 goto next;
599
78333cdd
PZ
600 /*
601 * From runqueues with spare time, take 1/n part of their
602 * spare time, but no more than our period.
603 */
ac086bc2
PZ
604 diff = iter->rt_runtime - iter->rt_time;
605 if (diff > 0) {
58838cf3 606 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
607 if (rt_rq->rt_runtime + diff > rt_period)
608 diff = rt_period - rt_rq->rt_runtime;
609 iter->rt_runtime -= diff;
610 rt_rq->rt_runtime += diff;
611 more = 1;
612 if (rt_rq->rt_runtime == rt_period) {
0986b11b 613 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
614 break;
615 }
616 }
7def2be1 617next:
0986b11b 618 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 619 }
0986b11b 620 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2
PZ
621
622 return more;
623}
7def2be1 624
78333cdd
PZ
625/*
626 * Ensure this RQ takes back all the runtime it lend to its neighbours.
627 */
7def2be1
PZ
628static void __disable_runtime(struct rq *rq)
629{
630 struct root_domain *rd = rq->rd;
ec514c48 631 rt_rq_iter_t iter;
7def2be1
PZ
632 struct rt_rq *rt_rq;
633
634 if (unlikely(!scheduler_running))
635 return;
636
ec514c48 637 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
638 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
639 s64 want;
640 int i;
641
0986b11b
TG
642 raw_spin_lock(&rt_b->rt_runtime_lock);
643 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
644 /*
645 * Either we're all inf and nobody needs to borrow, or we're
646 * already disabled and thus have nothing to do, or we have
647 * exactly the right amount of runtime to take out.
648 */
7def2be1
PZ
649 if (rt_rq->rt_runtime == RUNTIME_INF ||
650 rt_rq->rt_runtime == rt_b->rt_runtime)
651 goto balanced;
0986b11b 652 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 653
78333cdd
PZ
654 /*
655 * Calculate the difference between what we started out with
656 * and what we current have, that's the amount of runtime
657 * we lend and now have to reclaim.
658 */
7def2be1
PZ
659 want = rt_b->rt_runtime - rt_rq->rt_runtime;
660
78333cdd
PZ
661 /*
662 * Greedy reclaim, take back as much as we can.
663 */
c6c4927b 664 for_each_cpu(i, rd->span) {
7def2be1
PZ
665 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
666 s64 diff;
667
78333cdd
PZ
668 /*
669 * Can't reclaim from ourselves or disabled runqueues.
670 */
f1679d08 671 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
672 continue;
673
0986b11b 674 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
675 if (want > 0) {
676 diff = min_t(s64, iter->rt_runtime, want);
677 iter->rt_runtime -= diff;
678 want -= diff;
679 } else {
680 iter->rt_runtime -= want;
681 want -= want;
682 }
0986b11b 683 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
684
685 if (!want)
686 break;
687 }
688
0986b11b 689 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
690 /*
691 * We cannot be left wanting - that would mean some runtime
692 * leaked out of the system.
693 */
7def2be1
PZ
694 BUG_ON(want);
695balanced:
78333cdd
PZ
696 /*
697 * Disable all the borrow logic by pretending we have inf
698 * runtime - in which case borrowing doesn't make sense.
699 */
7def2be1 700 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 701 rt_rq->rt_throttled = 0;
0986b11b
TG
702 raw_spin_unlock(&rt_rq->rt_runtime_lock);
703 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
704 }
705}
706
7def2be1
PZ
707static void __enable_runtime(struct rq *rq)
708{
ec514c48 709 rt_rq_iter_t iter;
7def2be1
PZ
710 struct rt_rq *rt_rq;
711
712 if (unlikely(!scheduler_running))
713 return;
714
78333cdd
PZ
715 /*
716 * Reset each runqueue's bandwidth settings
717 */
ec514c48 718 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
719 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
720
0986b11b
TG
721 raw_spin_lock(&rt_b->rt_runtime_lock);
722 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
723 rt_rq->rt_runtime = rt_b->rt_runtime;
724 rt_rq->rt_time = 0;
baf25731 725 rt_rq->rt_throttled = 0;
0986b11b
TG
726 raw_spin_unlock(&rt_rq->rt_runtime_lock);
727 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
728 }
729}
730
eff6549b
PZ
731static int balance_runtime(struct rt_rq *rt_rq)
732{
733 int more = 0;
734
4a6184ce
PZ
735 if (!sched_feat(RT_RUNTIME_SHARE))
736 return more;
737
eff6549b 738 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 739 raw_spin_unlock(&rt_rq->rt_runtime_lock);
eff6549b 740 more = do_balance_runtime(rt_rq);
0986b11b 741 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
742 }
743
744 return more;
745}
55e12e5e 746#else /* !CONFIG_SMP */
eff6549b
PZ
747static inline int balance_runtime(struct rt_rq *rt_rq)
748{
749 return 0;
750}
55e12e5e 751#endif /* CONFIG_SMP */
ac086bc2 752
eff6549b
PZ
753static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
754{
42c62a58 755 int i, idle = 1, throttled = 0;
c6c4927b 756 const struct cpumask *span;
eff6549b 757
eff6549b 758 span = sched_rt_period_mask();
e221d028
MG
759#ifdef CONFIG_RT_GROUP_SCHED
760 /*
761 * FIXME: isolated CPUs should really leave the root task group,
762 * whether they are isolcpus or were isolated via cpusets, lest
763 * the timer run on a CPU which does not service all runqueues,
764 * potentially leaving other CPUs indefinitely throttled. If
765 * isolation is really required, the user will turn the throttle
766 * off to kill the perturbations it causes anyway. Meanwhile,
767 * this maintains functionality for boot and/or troubleshooting.
768 */
769 if (rt_b == &root_task_group.rt_bandwidth)
770 span = cpu_online_mask;
771#endif
c6c4927b 772 for_each_cpu(i, span) {
eff6549b
PZ
773 int enqueue = 0;
774 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
775 struct rq *rq = rq_of_rt_rq(rt_rq);
776
05fa785c 777 raw_spin_lock(&rq->lock);
eff6549b
PZ
778 if (rt_rq->rt_time) {
779 u64 runtime;
780
0986b11b 781 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
782 if (rt_rq->rt_throttled)
783 balance_runtime(rt_rq);
784 runtime = rt_rq->rt_runtime;
785 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
786 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
787 rt_rq->rt_throttled = 0;
788 enqueue = 1;
61eadef6
MG
789
790 /*
791 * Force a clock update if the CPU was idle,
792 * lest wakeup -> unthrottle time accumulate.
793 */
794 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
795 rq->skip_clock_update = -1;
eff6549b
PZ
796 }
797 if (rt_rq->rt_time || rt_rq->rt_nr_running)
798 idle = 0;
0986b11b 799 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 800 } else if (rt_rq->rt_nr_running) {
6c3df255 801 idle = 0;
0c3b9168
BS
802 if (!rt_rq_throttled(rt_rq))
803 enqueue = 1;
804 }
42c62a58
PZ
805 if (rt_rq->rt_throttled)
806 throttled = 1;
eff6549b
PZ
807
808 if (enqueue)
809 sched_rt_rq_enqueue(rt_rq);
05fa785c 810 raw_spin_unlock(&rq->lock);
eff6549b
PZ
811 }
812
42c62a58
PZ
813 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
814 return 1;
815
eff6549b
PZ
816 return idle;
817}
ac086bc2 818
6f505b16
PZ
819static inline int rt_se_prio(struct sched_rt_entity *rt_se)
820{
052f1dc7 821#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
822 struct rt_rq *rt_rq = group_rt_rq(rt_se);
823
824 if (rt_rq)
e864c499 825 return rt_rq->highest_prio.curr;
6f505b16
PZ
826#endif
827
828 return rt_task_of(rt_se)->prio;
829}
830
9f0c1e56 831static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 832{
9f0c1e56 833 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 834
fa85ae24 835 if (rt_rq->rt_throttled)
23b0fdfc 836 return rt_rq_throttled(rt_rq);
fa85ae24 837
5b680fd6 838 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
839 return 0;
840
b79f3833
PZ
841 balance_runtime(rt_rq);
842 runtime = sched_rt_runtime(rt_rq);
843 if (runtime == RUNTIME_INF)
844 return 0;
ac086bc2 845
9f0c1e56 846 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
847 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
848
849 /*
850 * Don't actually throttle groups that have no runtime assigned
851 * but accrue some time due to boosting.
852 */
853 if (likely(rt_b->rt_runtime)) {
3ccf3e83
PZ
854 static bool once = false;
855
7abc63b1 856 rt_rq->rt_throttled = 1;
3ccf3e83
PZ
857
858 if (!once) {
859 once = true;
860 printk_sched("sched: RT throttling activated\n");
861 }
7abc63b1
PZ
862 } else {
863 /*
864 * In case we did anyway, make it go away,
865 * replenishment is a joke, since it will replenish us
866 * with exactly 0 ns.
867 */
868 rt_rq->rt_time = 0;
869 }
870
23b0fdfc 871 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 872 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
873 return 1;
874 }
fa85ae24
PZ
875 }
876
877 return 0;
878}
879
bb44e5d1
IM
880/*
881 * Update the current task's runtime statistics. Skip current tasks that
882 * are not in our scheduling class.
883 */
a9957449 884static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
885{
886 struct task_struct *curr = rq->curr;
6f505b16
PZ
887 struct sched_rt_entity *rt_se = &curr->rt;
888 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
889 u64 delta_exec;
890
06c3bc65 891 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
892 return;
893
78becc27 894 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
fc79e240
KT
895 if (unlikely((s64)delta_exec <= 0))
896 return;
6cfb0d5d 897
42c62a58
PZ
898 schedstat_set(curr->se.statistics.exec_max,
899 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
900
901 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
902 account_group_exec_runtime(curr, delta_exec);
903
78becc27 904 curr->se.exec_start = rq_clock_task(rq);
d842de87 905 cpuacct_charge(curr, delta_exec);
fa85ae24 906
e9e9250b
PZ
907 sched_rt_avg_update(rq, delta_exec);
908
0b148fa0
PZ
909 if (!rt_bandwidth_enabled())
910 return;
911
354d60c2
DG
912 for_each_sched_rt_entity(rt_se) {
913 rt_rq = rt_rq_of_se(rt_se);
914
cc2991cf 915 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 916 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
917 rt_rq->rt_time += delta_exec;
918 if (sched_rt_runtime_exceeded(rt_rq))
919 resched_task(curr);
0986b11b 920 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 921 }
354d60c2 922 }
bb44e5d1
IM
923}
924
398a153b 925#if defined CONFIG_SMP
e864c499 926
398a153b
GH
927static void
928inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 929{
4d984277 930 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 931
757dfcaa
KT
932#ifdef CONFIG_RT_GROUP_SCHED
933 /*
934 * Change rq's cpupri only if rt_rq is the top queue.
935 */
936 if (&rq->rt != rt_rq)
937 return;
938#endif
5181f4a4
SR
939 if (rq->online && prio < prev_prio)
940 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 941}
73fe6aae 942
398a153b
GH
943static void
944dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
945{
946 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 947
757dfcaa
KT
948#ifdef CONFIG_RT_GROUP_SCHED
949 /*
950 * Change rq's cpupri only if rt_rq is the top queue.
951 */
952 if (&rq->rt != rt_rq)
953 return;
954#endif
398a153b
GH
955 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
956 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
957}
958
398a153b
GH
959#else /* CONFIG_SMP */
960
6f505b16 961static inline
398a153b
GH
962void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
963static inline
964void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
965
966#endif /* CONFIG_SMP */
6e0534f2 967
052f1dc7 968#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
969static void
970inc_rt_prio(struct rt_rq *rt_rq, int prio)
971{
972 int prev_prio = rt_rq->highest_prio.curr;
973
974 if (prio < prev_prio)
975 rt_rq->highest_prio.curr = prio;
976
977 inc_rt_prio_smp(rt_rq, prio, prev_prio);
978}
979
980static void
981dec_rt_prio(struct rt_rq *rt_rq, int prio)
982{
983 int prev_prio = rt_rq->highest_prio.curr;
984
6f505b16 985 if (rt_rq->rt_nr_running) {
764a9d6f 986
398a153b 987 WARN_ON(prio < prev_prio);
764a9d6f 988
e864c499 989 /*
398a153b
GH
990 * This may have been our highest task, and therefore
991 * we may have some recomputation to do
e864c499 992 */
398a153b 993 if (prio == prev_prio) {
e864c499
GH
994 struct rt_prio_array *array = &rt_rq->active;
995
996 rt_rq->highest_prio.curr =
764a9d6f 997 sched_find_first_bit(array->bitmap);
e864c499
GH
998 }
999
764a9d6f 1000 } else
e864c499 1001 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 1002
398a153b
GH
1003 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1004}
1f11eb6a 1005
398a153b
GH
1006#else
1007
1008static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1009static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1010
1011#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 1012
052f1dc7 1013#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
1014
1015static void
1016inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1017{
1018 if (rt_se_boosted(rt_se))
1019 rt_rq->rt_nr_boosted++;
1020
1021 if (rt_rq->tg)
1022 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1023}
1024
1025static void
1026dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1027{
23b0fdfc
PZ
1028 if (rt_se_boosted(rt_se))
1029 rt_rq->rt_nr_boosted--;
1030
1031 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
1032}
1033
1034#else /* CONFIG_RT_GROUP_SCHED */
1035
1036static void
1037inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1038{
1039 start_rt_bandwidth(&def_rt_bandwidth);
1040}
1041
1042static inline
1043void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1044
1045#endif /* CONFIG_RT_GROUP_SCHED */
1046
22abdef3
KT
1047static inline
1048unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1049{
1050 struct rt_rq *group_rq = group_rt_rq(rt_se);
1051
1052 if (group_rq)
1053 return group_rq->rt_nr_running;
1054 else
1055 return 1;
1056}
1057
398a153b
GH
1058static inline
1059void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1060{
1061 int prio = rt_se_prio(rt_se);
1062
1063 WARN_ON(!rt_prio(prio));
22abdef3 1064 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
398a153b
GH
1065
1066 inc_rt_prio(rt_rq, prio);
1067 inc_rt_migration(rt_se, rt_rq);
1068 inc_rt_group(rt_se, rt_rq);
1069}
1070
1071static inline
1072void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1073{
1074 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1075 WARN_ON(!rt_rq->rt_nr_running);
22abdef3 1076 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
398a153b
GH
1077
1078 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1079 dec_rt_migration(rt_se, rt_rq);
1080 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1081}
1082
37dad3fc 1083static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
bb44e5d1 1084{
6f505b16
PZ
1085 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1086 struct rt_prio_array *array = &rt_rq->active;
1087 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1088 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1089
ad2a3f13
PZ
1090 /*
1091 * Don't enqueue the group if its throttled, or when empty.
1092 * The latter is a consequence of the former when a child group
1093 * get throttled and the current group doesn't have any other
1094 * active members.
1095 */
1096 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 1097 return;
63489e45 1098
37dad3fc
TG
1099 if (head)
1100 list_add(&rt_se->run_list, queue);
1101 else
1102 list_add_tail(&rt_se->run_list, queue);
6f505b16 1103 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 1104
6f505b16
PZ
1105 inc_rt_tasks(rt_se, rt_rq);
1106}
1107
ad2a3f13 1108static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
1109{
1110 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1111 struct rt_prio_array *array = &rt_rq->active;
1112
1113 list_del_init(&rt_se->run_list);
1114 if (list_empty(array->queue + rt_se_prio(rt_se)))
1115 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1116
1117 dec_rt_tasks(rt_se, rt_rq);
1118}
1119
1120/*
1121 * Because the prio of an upper entry depends on the lower
1122 * entries, we must remove entries top - down.
6f505b16 1123 */
ad2a3f13 1124static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 1125{
ad2a3f13 1126 struct sched_rt_entity *back = NULL;
6f505b16 1127
58d6c2d7
PZ
1128 for_each_sched_rt_entity(rt_se) {
1129 rt_se->back = back;
1130 back = rt_se;
1131 }
1132
1133 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1134 if (on_rt_rq(rt_se))
ad2a3f13
PZ
1135 __dequeue_rt_entity(rt_se);
1136 }
1137}
1138
37dad3fc 1139static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
ad2a3f13
PZ
1140{
1141 dequeue_rt_stack(rt_se);
1142 for_each_sched_rt_entity(rt_se)
37dad3fc 1143 __enqueue_rt_entity(rt_se, head);
ad2a3f13
PZ
1144}
1145
1146static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1147{
1148 dequeue_rt_stack(rt_se);
1149
1150 for_each_sched_rt_entity(rt_se) {
1151 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1152
1153 if (rt_rq && rt_rq->rt_nr_running)
37dad3fc 1154 __enqueue_rt_entity(rt_se, false);
58d6c2d7 1155 }
bb44e5d1
IM
1156}
1157
1158/*
1159 * Adding/removing a task to/from a priority array:
1160 */
ea87bb78 1161static void
371fd7e7 1162enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1163{
1164 struct sched_rt_entity *rt_se = &p->rt;
1165
371fd7e7 1166 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1167 rt_se->timeout = 0;
1168
371fd7e7 1169 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
c09595f6 1170
29baa747 1171 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1172 enqueue_pushable_task(rq, p);
953bfcd1
PT
1173
1174 inc_nr_running(rq);
6f505b16
PZ
1175}
1176
371fd7e7 1177static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1178{
6f505b16 1179 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1180
f1e14ef6 1181 update_curr_rt(rq);
ad2a3f13 1182 dequeue_rt_entity(rt_se);
c09595f6 1183
917b627d 1184 dequeue_pushable_task(rq, p);
953bfcd1
PT
1185
1186 dec_nr_running(rq);
bb44e5d1
IM
1187}
1188
1189/*
60686317
RW
1190 * Put task to the head or the end of the run list without the overhead of
1191 * dequeue followed by enqueue.
bb44e5d1 1192 */
7ebefa8c
DA
1193static void
1194requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1195{
1cdad715 1196 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1197 struct rt_prio_array *array = &rt_rq->active;
1198 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1199
1200 if (head)
1201 list_move(&rt_se->run_list, queue);
1202 else
1203 list_move_tail(&rt_se->run_list, queue);
1cdad715 1204 }
6f505b16
PZ
1205}
1206
7ebefa8c 1207static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1208{
6f505b16
PZ
1209 struct sched_rt_entity *rt_se = &p->rt;
1210 struct rt_rq *rt_rq;
bb44e5d1 1211
6f505b16
PZ
1212 for_each_sched_rt_entity(rt_se) {
1213 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1214 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1215 }
bb44e5d1
IM
1216}
1217
6f505b16 1218static void yield_task_rt(struct rq *rq)
bb44e5d1 1219{
7ebefa8c 1220 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1221}
1222
e7693a36 1223#ifdef CONFIG_SMP
318e0893
GH
1224static int find_lowest_rq(struct task_struct *task);
1225
0017d735 1226static int
ac66f547 1227select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
e7693a36 1228{
7608dec2
PZ
1229 struct task_struct *curr;
1230 struct rq *rq;
c37495fd 1231
29baa747 1232 if (p->nr_cpus_allowed == 1)
76854c7e
MG
1233 goto out;
1234
c37495fd
SR
1235 /* For anything but wake ups, just return the task_cpu */
1236 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1237 goto out;
1238
7608dec2
PZ
1239 rq = cpu_rq(cpu);
1240
1241 rcu_read_lock();
1242 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1243
318e0893 1244 /*
7608dec2 1245 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1246 * try to see if we can wake this RT task up on another
1247 * runqueue. Otherwise simply start this RT task
1248 * on its current runqueue.
1249 *
43fa5460
SR
1250 * We want to avoid overloading runqueues. If the woken
1251 * task is a higher priority, then it will stay on this CPU
1252 * and the lower prio task should be moved to another CPU.
1253 * Even though this will probably make the lower prio task
1254 * lose its cache, we do not want to bounce a higher task
1255 * around just because it gave up its CPU, perhaps for a
1256 * lock?
1257 *
1258 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1259 *
1260 * Otherwise, just let it ride on the affined RQ and the
1261 * post-schedule router will push the preempted task away
1262 *
1263 * This test is optimistic, if we get it wrong the load-balancer
1264 * will have to sort it out.
318e0893 1265 */
7608dec2 1266 if (curr && unlikely(rt_task(curr)) &&
29baa747 1267 (curr->nr_cpus_allowed < 2 ||
6bfa687c 1268 curr->prio <= p->prio)) {
7608dec2 1269 int target = find_lowest_rq(p);
318e0893 1270
7608dec2
PZ
1271 if (target != -1)
1272 cpu = target;
318e0893 1273 }
7608dec2 1274 rcu_read_unlock();
318e0893 1275
c37495fd 1276out:
7608dec2 1277 return cpu;
e7693a36 1278}
7ebefa8c
DA
1279
1280static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1281{
29baa747 1282 if (rq->curr->nr_cpus_allowed == 1)
7ebefa8c
DA
1283 return;
1284
29baa747 1285 if (p->nr_cpus_allowed != 1
13b8bd0a
RR
1286 && cpupri_find(&rq->rd->cpupri, p, NULL))
1287 return;
24600ce8 1288
13b8bd0a
RR
1289 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1290 return;
7ebefa8c
DA
1291
1292 /*
1293 * There appears to be other cpus that can accept
1294 * current and none to run 'p', so lets reschedule
1295 * to try and push current away:
1296 */
1297 requeue_task_rt(rq, p, 1);
1298 resched_task(rq->curr);
1299}
1300
e7693a36
GH
1301#endif /* CONFIG_SMP */
1302
bb44e5d1
IM
1303/*
1304 * Preempt the current task with a newly woken task if needed:
1305 */
7d478721 1306static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1307{
45c01e82 1308 if (p->prio < rq->curr->prio) {
bb44e5d1 1309 resched_task(rq->curr);
45c01e82
GH
1310 return;
1311 }
1312
1313#ifdef CONFIG_SMP
1314 /*
1315 * If:
1316 *
1317 * - the newly woken task is of equal priority to the current task
1318 * - the newly woken task is non-migratable while current is migratable
1319 * - current will be preempted on the next reschedule
1320 *
1321 * we should check to see if current can readily move to a different
1322 * cpu. If so, we will reschedule to allow the push logic to try
1323 * to move current somewhere else, making room for our non-migratable
1324 * task.
1325 */
8dd0de8b 1326 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1327 check_preempt_equal_prio(rq, p);
45c01e82 1328#endif
bb44e5d1
IM
1329}
1330
6f505b16
PZ
1331static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1332 struct rt_rq *rt_rq)
bb44e5d1 1333{
6f505b16
PZ
1334 struct rt_prio_array *array = &rt_rq->active;
1335 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1336 struct list_head *queue;
1337 int idx;
1338
1339 idx = sched_find_first_bit(array->bitmap);
6f505b16 1340 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1341
1342 queue = array->queue + idx;
6f505b16 1343 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1344
6f505b16
PZ
1345 return next;
1346}
bb44e5d1 1347
917b627d 1348static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1349{
1350 struct sched_rt_entity *rt_se;
1351 struct task_struct *p;
606dba2e 1352 struct rt_rq *rt_rq = &rq->rt;
6f505b16
PZ
1353
1354 do {
1355 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1356 BUG_ON(!rt_se);
6f505b16
PZ
1357 rt_rq = group_rt_rq(rt_se);
1358 } while (rt_rq);
1359
1360 p = rt_task_of(rt_se);
78becc27 1361 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1362
1363 return p;
1364}
1365
606dba2e
PZ
1366static struct task_struct *
1367pick_next_task_rt(struct rq *rq, struct task_struct *prev)
917b627d 1368{
606dba2e
PZ
1369 struct task_struct *p;
1370 struct rt_rq *rt_rq = &rq->rt;
1371
37e117c0 1372 if (need_pull_rt_task(rq, prev)) {
38033c37 1373 pull_rt_task(rq);
37e117c0
PZ
1374 /*
1375 * pull_rt_task() can drop (and re-acquire) rq->lock; this
a1d9a323
KT
1376 * means a dl or stop task can slip in, in which case we need
1377 * to re-start task selection.
37e117c0 1378 */
a1d9a323
KT
1379 if (unlikely((rq->stop && rq->stop->on_rq) ||
1380 rq->dl.dl_nr_running))
37e117c0
PZ
1381 return RETRY_TASK;
1382 }
38033c37 1383
734ff2a7
KT
1384 /*
1385 * We may dequeue prev's rt_rq in put_prev_task().
1386 * So, we update time before rt_nr_running check.
1387 */
1388 if (prev->sched_class == &rt_sched_class)
1389 update_curr_rt(rq);
1390
606dba2e
PZ
1391 if (!rt_rq->rt_nr_running)
1392 return NULL;
1393
1394 if (rt_rq_throttled(rt_rq))
1395 return NULL;
1396
3f1d2a31 1397 put_prev_task(rq, prev);
606dba2e
PZ
1398
1399 p = _pick_next_task_rt(rq);
917b627d
GH
1400
1401 /* The running task is never eligible for pushing */
1402 if (p)
1403 dequeue_pushable_task(rq, p);
1404
dc877341 1405 set_post_schedule(rq);
3f029d3c 1406
6f505b16 1407 return p;
bb44e5d1
IM
1408}
1409
31ee529c 1410static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1411{
f1e14ef6 1412 update_curr_rt(rq);
917b627d
GH
1413
1414 /*
1415 * The previous task needs to be made eligible for pushing
1416 * if it is still active
1417 */
29baa747 1418 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1419 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1420}
1421
681f3e68 1422#ifdef CONFIG_SMP
6f505b16 1423
e8fa1362
SR
1424/* Only try algorithms three times */
1425#define RT_MAX_TRIES 3
1426
f65eda4f
SR
1427static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1428{
1429 if (!task_running(rq, p) &&
60334caf 1430 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
f65eda4f
SR
1431 return 1;
1432 return 0;
1433}
1434
e23ee747
KT
1435/*
1436 * Return the highest pushable rq's task, which is suitable to be executed
1437 * on the cpu, NULL otherwise
1438 */
1439static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
e8fa1362 1440{
e23ee747
KT
1441 struct plist_head *head = &rq->rt.pushable_tasks;
1442 struct task_struct *p;
3d07467b 1443
e23ee747
KT
1444 if (!has_pushable_tasks(rq))
1445 return NULL;
3d07467b 1446
e23ee747
KT
1447 plist_for_each_entry(p, head, pushable_tasks) {
1448 if (pick_rt_task(rq, p, cpu))
1449 return p;
f65eda4f
SR
1450 }
1451
e23ee747 1452 return NULL;
e8fa1362
SR
1453}
1454
0e3900e6 1455static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1456
6e1254d2
GH
1457static int find_lowest_rq(struct task_struct *task)
1458{
1459 struct sched_domain *sd;
96f874e2 1460 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1461 int this_cpu = smp_processor_id();
1462 int cpu = task_cpu(task);
06f90dbd 1463
0da938c4
SR
1464 /* Make sure the mask is initialized first */
1465 if (unlikely(!lowest_mask))
1466 return -1;
1467
29baa747 1468 if (task->nr_cpus_allowed == 1)
6e0534f2 1469 return -1; /* No other targets possible */
6e1254d2 1470
6e0534f2
GH
1471 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1472 return -1; /* No targets found */
6e1254d2
GH
1473
1474 /*
1475 * At this point we have built a mask of cpus representing the
1476 * lowest priority tasks in the system. Now we want to elect
1477 * the best one based on our affinity and topology.
1478 *
1479 * We prioritize the last cpu that the task executed on since
1480 * it is most likely cache-hot in that location.
1481 */
96f874e2 1482 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1483 return cpu;
1484
1485 /*
1486 * Otherwise, we consult the sched_domains span maps to figure
1487 * out which cpu is logically closest to our hot cache data.
1488 */
e2c88063
RR
1489 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1490 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1491
cd4ae6ad 1492 rcu_read_lock();
e2c88063
RR
1493 for_each_domain(cpu, sd) {
1494 if (sd->flags & SD_WAKE_AFFINE) {
1495 int best_cpu;
6e1254d2 1496
e2c88063
RR
1497 /*
1498 * "this_cpu" is cheaper to preempt than a
1499 * remote processor.
1500 */
1501 if (this_cpu != -1 &&
cd4ae6ad
XF
1502 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1503 rcu_read_unlock();
e2c88063 1504 return this_cpu;
cd4ae6ad 1505 }
e2c88063
RR
1506
1507 best_cpu = cpumask_first_and(lowest_mask,
1508 sched_domain_span(sd));
cd4ae6ad
XF
1509 if (best_cpu < nr_cpu_ids) {
1510 rcu_read_unlock();
e2c88063 1511 return best_cpu;
cd4ae6ad 1512 }
6e1254d2
GH
1513 }
1514 }
cd4ae6ad 1515 rcu_read_unlock();
6e1254d2
GH
1516
1517 /*
1518 * And finally, if there were no matches within the domains
1519 * just give the caller *something* to work with from the compatible
1520 * locations.
1521 */
e2c88063
RR
1522 if (this_cpu != -1)
1523 return this_cpu;
1524
1525 cpu = cpumask_any(lowest_mask);
1526 if (cpu < nr_cpu_ids)
1527 return cpu;
1528 return -1;
07b4032c
GH
1529}
1530
1531/* Will lock the rq it finds */
4df64c0b 1532static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1533{
1534 struct rq *lowest_rq = NULL;
07b4032c 1535 int tries;
4df64c0b 1536 int cpu;
e8fa1362 1537
07b4032c
GH
1538 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1539 cpu = find_lowest_rq(task);
1540
2de0b463 1541 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1542 break;
1543
07b4032c
GH
1544 lowest_rq = cpu_rq(cpu);
1545
e8fa1362 1546 /* if the prio of this runqueue changed, try again */
07b4032c 1547 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1548 /*
1549 * We had to unlock the run queue. In
1550 * the mean time, task could have
1551 * migrated already or had its affinity changed.
1552 * Also make sure that it wasn't scheduled on its rq.
1553 */
07b4032c 1554 if (unlikely(task_rq(task) != rq ||
96f874e2 1555 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1556 tsk_cpus_allowed(task)) ||
07b4032c 1557 task_running(rq, task) ||
fd2f4419 1558 !task->on_rq)) {
4df64c0b 1559
7f1b4393 1560 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1561 lowest_rq = NULL;
1562 break;
1563 }
1564 }
1565
1566 /* If this rq is still suitable use it. */
e864c499 1567 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1568 break;
1569
1570 /* try again */
1b12bbc7 1571 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1572 lowest_rq = NULL;
1573 }
1574
1575 return lowest_rq;
1576}
1577
917b627d
GH
1578static struct task_struct *pick_next_pushable_task(struct rq *rq)
1579{
1580 struct task_struct *p;
1581
1582 if (!has_pushable_tasks(rq))
1583 return NULL;
1584
1585 p = plist_first_entry(&rq->rt.pushable_tasks,
1586 struct task_struct, pushable_tasks);
1587
1588 BUG_ON(rq->cpu != task_cpu(p));
1589 BUG_ON(task_current(rq, p));
29baa747 1590 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1591
fd2f4419 1592 BUG_ON(!p->on_rq);
917b627d
GH
1593 BUG_ON(!rt_task(p));
1594
1595 return p;
1596}
1597
e8fa1362
SR
1598/*
1599 * If the current CPU has more than one RT task, see if the non
1600 * running task can migrate over to a CPU that is running a task
1601 * of lesser priority.
1602 */
697f0a48 1603static int push_rt_task(struct rq *rq)
e8fa1362
SR
1604{
1605 struct task_struct *next_task;
1606 struct rq *lowest_rq;
311e800e 1607 int ret = 0;
e8fa1362 1608
a22d7fc1
GH
1609 if (!rq->rt.overloaded)
1610 return 0;
1611
917b627d 1612 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1613 if (!next_task)
1614 return 0;
1615
49246274 1616retry:
697f0a48 1617 if (unlikely(next_task == rq->curr)) {
f65eda4f 1618 WARN_ON(1);
e8fa1362 1619 return 0;
f65eda4f 1620 }
e8fa1362
SR
1621
1622 /*
1623 * It's possible that the next_task slipped in of
1624 * higher priority than current. If that's the case
1625 * just reschedule current.
1626 */
697f0a48
GH
1627 if (unlikely(next_task->prio < rq->curr->prio)) {
1628 resched_task(rq->curr);
e8fa1362
SR
1629 return 0;
1630 }
1631
697f0a48 1632 /* We might release rq lock */
e8fa1362
SR
1633 get_task_struct(next_task);
1634
1635 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1636 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1637 if (!lowest_rq) {
1638 struct task_struct *task;
1639 /*
311e800e 1640 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1641 * so it is possible that next_task has migrated.
1642 *
1643 * We need to make sure that the task is still on the same
1644 * run-queue and is also still the next task eligible for
1645 * pushing.
e8fa1362 1646 */
917b627d 1647 task = pick_next_pushable_task(rq);
1563513d
GH
1648 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1649 /*
311e800e
HD
1650 * The task hasn't migrated, and is still the next
1651 * eligible task, but we failed to find a run-queue
1652 * to push it to. Do not retry in this case, since
1653 * other cpus will pull from us when ready.
1563513d 1654 */
1563513d 1655 goto out;
e8fa1362 1656 }
917b627d 1657
1563513d
GH
1658 if (!task)
1659 /* No more tasks, just exit */
1660 goto out;
1661
917b627d 1662 /*
1563513d 1663 * Something has shifted, try again.
917b627d 1664 */
1563513d
GH
1665 put_task_struct(next_task);
1666 next_task = task;
1667 goto retry;
e8fa1362
SR
1668 }
1669
697f0a48 1670 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1671 set_task_cpu(next_task, lowest_rq->cpu);
1672 activate_task(lowest_rq, next_task, 0);
311e800e 1673 ret = 1;
e8fa1362
SR
1674
1675 resched_task(lowest_rq->curr);
1676
1b12bbc7 1677 double_unlock_balance(rq, lowest_rq);
e8fa1362 1678
e8fa1362
SR
1679out:
1680 put_task_struct(next_task);
1681
311e800e 1682 return ret;
e8fa1362
SR
1683}
1684
e8fa1362
SR
1685static void push_rt_tasks(struct rq *rq)
1686{
1687 /* push_rt_task will return true if it moved an RT */
1688 while (push_rt_task(rq))
1689 ;
1690}
1691
f65eda4f
SR
1692static int pull_rt_task(struct rq *this_rq)
1693{
80bf3171 1694 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1695 struct task_struct *p;
f65eda4f 1696 struct rq *src_rq;
f65eda4f 1697
637f5085 1698 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1699 return 0;
1700
7c3f2ab7
PZ
1701 /*
1702 * Match the barrier from rt_set_overloaded; this guarantees that if we
1703 * see overloaded we must also see the rto_mask bit.
1704 */
1705 smp_rmb();
1706
c6c4927b 1707 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1708 if (this_cpu == cpu)
1709 continue;
1710
1711 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1712
1713 /*
1714 * Don't bother taking the src_rq->lock if the next highest
1715 * task is known to be lower-priority than our current task.
1716 * This may look racy, but if this value is about to go
1717 * logically higher, the src_rq will push this task away.
1718 * And if its going logically lower, we do not care
1719 */
1720 if (src_rq->rt.highest_prio.next >=
1721 this_rq->rt.highest_prio.curr)
1722 continue;
1723
f65eda4f
SR
1724 /*
1725 * We can potentially drop this_rq's lock in
1726 * double_lock_balance, and another CPU could
a8728944 1727 * alter this_rq
f65eda4f 1728 */
a8728944 1729 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1730
1731 /*
e23ee747
KT
1732 * We can pull only a task, which is pushable
1733 * on its rq, and no others.
f65eda4f 1734 */
e23ee747 1735 p = pick_highest_pushable_task(src_rq, this_cpu);
f65eda4f
SR
1736
1737 /*
1738 * Do we have an RT task that preempts
1739 * the to-be-scheduled task?
1740 */
a8728944 1741 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 1742 WARN_ON(p == src_rq->curr);
fd2f4419 1743 WARN_ON(!p->on_rq);
f65eda4f
SR
1744
1745 /*
1746 * There's a chance that p is higher in priority
1747 * than what's currently running on its cpu.
1748 * This is just that p is wakeing up and hasn't
1749 * had a chance to schedule. We only pull
1750 * p if it is lower in priority than the
a8728944 1751 * current task on the run queue
f65eda4f 1752 */
a8728944 1753 if (p->prio < src_rq->curr->prio)
614ee1f6 1754 goto skip;
f65eda4f
SR
1755
1756 ret = 1;
1757
1758 deactivate_task(src_rq, p, 0);
1759 set_task_cpu(p, this_cpu);
1760 activate_task(this_rq, p, 0);
1761 /*
1762 * We continue with the search, just in
1763 * case there's an even higher prio task
25985edc 1764 * in another runqueue. (low likelihood
f65eda4f 1765 * but possible)
f65eda4f 1766 */
f65eda4f 1767 }
49246274 1768skip:
1b12bbc7 1769 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1770 }
1771
1772 return ret;
1773}
1774
9a897c5a 1775static void post_schedule_rt(struct rq *rq)
e8fa1362 1776{
967fc046 1777 push_rt_tasks(rq);
e8fa1362
SR
1778}
1779
8ae121ac
GH
1780/*
1781 * If we are not running and we are not going to reschedule soon, we should
1782 * try to push tasks away now
1783 */
efbbd05a 1784static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 1785{
9a897c5a 1786 if (!task_running(rq, p) &&
8ae121ac 1787 !test_tsk_need_resched(rq->curr) &&
917b627d 1788 has_pushable_tasks(rq) &&
29baa747 1789 p->nr_cpus_allowed > 1 &&
1baca4ce 1790 (dl_task(rq->curr) || rt_task(rq->curr)) &&
29baa747 1791 (rq->curr->nr_cpus_allowed < 2 ||
3be209a8 1792 rq->curr->prio <= p->prio))
4642dafd
SR
1793 push_rt_tasks(rq);
1794}
1795
cd8ba7cd 1796static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1797 const struct cpumask *new_mask)
73fe6aae 1798{
8d3d5ada
KT
1799 struct rq *rq;
1800 int weight;
73fe6aae
GH
1801
1802 BUG_ON(!rt_task(p));
1803
8d3d5ada
KT
1804 if (!p->on_rq)
1805 return;
917b627d 1806
8d3d5ada 1807 weight = cpumask_weight(new_mask);
917b627d 1808
8d3d5ada
KT
1809 /*
1810 * Only update if the process changes its state from whether it
1811 * can migrate or not.
1812 */
29baa747 1813 if ((p->nr_cpus_allowed > 1) == (weight > 1))
8d3d5ada 1814 return;
917b627d 1815
8d3d5ada 1816 rq = task_rq(p);
73fe6aae 1817
8d3d5ada
KT
1818 /*
1819 * The process used to be able to migrate OR it can now migrate
1820 */
1821 if (weight <= 1) {
1822 if (!task_current(rq, p))
1823 dequeue_pushable_task(rq, p);
1824 BUG_ON(!rq->rt.rt_nr_migratory);
1825 rq->rt.rt_nr_migratory--;
1826 } else {
1827 if (!task_current(rq, p))
1828 enqueue_pushable_task(rq, p);
1829 rq->rt.rt_nr_migratory++;
73fe6aae 1830 }
8d3d5ada
KT
1831
1832 update_rt_migration(&rq->rt);
73fe6aae 1833}
deeeccd4 1834
bdd7c81b 1835/* Assumes rq->lock is held */
1f11eb6a 1836static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1837{
1838 if (rq->rt.overloaded)
1839 rt_set_overload(rq);
6e0534f2 1840
7def2be1
PZ
1841 __enable_runtime(rq);
1842
e864c499 1843 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1844}
1845
1846/* Assumes rq->lock is held */
1f11eb6a 1847static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1848{
1849 if (rq->rt.overloaded)
1850 rt_clear_overload(rq);
6e0534f2 1851
7def2be1
PZ
1852 __disable_runtime(rq);
1853
6e0534f2 1854 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1855}
cb469845
SR
1856
1857/*
1858 * When switch from the rt queue, we bring ourselves to a position
1859 * that we might want to pull RT tasks from other runqueues.
1860 */
da7a735e 1861static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1862{
1863 /*
1864 * If there are other RT tasks then we will reschedule
1865 * and the scheduling of the other RT tasks will handle
1866 * the balancing. But if we are the last RT task
1867 * we may need to handle the pulling of RT tasks
1868 * now.
1869 */
1158ddb5
KT
1870 if (!p->on_rq || rq->rt.rt_nr_running)
1871 return;
1872
1873 if (pull_rt_task(rq))
1874 resched_task(rq->curr);
cb469845 1875}
3d8cbdf8 1876
11c785b7 1877void __init init_sched_rt_class(void)
3d8cbdf8
RR
1878{
1879 unsigned int i;
1880
029632fb 1881 for_each_possible_cpu(i) {
eaa95840 1882 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 1883 GFP_KERNEL, cpu_to_node(i));
029632fb 1884 }
3d8cbdf8 1885}
cb469845
SR
1886#endif /* CONFIG_SMP */
1887
1888/*
1889 * When switching a task to RT, we may overload the runqueue
1890 * with RT tasks. In this case we try to push them off to
1891 * other runqueues.
1892 */
da7a735e 1893static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
1894{
1895 int check_resched = 1;
1896
1897 /*
1898 * If we are already running, then there's nothing
1899 * that needs to be done. But if we are not running
1900 * we may need to preempt the current running task.
1901 * If that current running task is also an RT task
1902 * then see if we can move to another run queue.
1903 */
fd2f4419 1904 if (p->on_rq && rq->curr != p) {
cb469845 1905#ifdef CONFIG_SMP
10447917 1906 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
cb469845 1907 /* Don't resched if we changed runqueues */
10447917 1908 push_rt_task(rq) && rq != task_rq(p))
cb469845
SR
1909 check_resched = 0;
1910#endif /* CONFIG_SMP */
1911 if (check_resched && p->prio < rq->curr->prio)
1912 resched_task(rq->curr);
1913 }
1914}
1915
1916/*
1917 * Priority of the task has changed. This may cause
1918 * us to initiate a push or pull.
1919 */
da7a735e
PZ
1920static void
1921prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 1922{
fd2f4419 1923 if (!p->on_rq)
da7a735e
PZ
1924 return;
1925
1926 if (rq->curr == p) {
cb469845
SR
1927#ifdef CONFIG_SMP
1928 /*
1929 * If our priority decreases while running, we
1930 * may need to pull tasks to this runqueue.
1931 */
1932 if (oldprio < p->prio)
1933 pull_rt_task(rq);
1934 /*
1935 * If there's a higher priority task waiting to run
6fa46fa5
SR
1936 * then reschedule. Note, the above pull_rt_task
1937 * can release the rq lock and p could migrate.
1938 * Only reschedule if p is still on the same runqueue.
cb469845 1939 */
e864c499 1940 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1941 resched_task(p);
1942#else
1943 /* For UP simply resched on drop of prio */
1944 if (oldprio < p->prio)
1945 resched_task(p);
e8fa1362 1946#endif /* CONFIG_SMP */
cb469845
SR
1947 } else {
1948 /*
1949 * This task is not running, but if it is
1950 * greater than the current running task
1951 * then reschedule.
1952 */
1953 if (p->prio < rq->curr->prio)
1954 resched_task(rq->curr);
1955 }
1956}
1957
78f2c7db
PZ
1958static void watchdog(struct rq *rq, struct task_struct *p)
1959{
1960 unsigned long soft, hard;
1961
78d7d407
JS
1962 /* max may change after cur was read, this will be fixed next tick */
1963 soft = task_rlimit(p, RLIMIT_RTTIME);
1964 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
1965
1966 if (soft != RLIM_INFINITY) {
1967 unsigned long next;
1968
57d2aa00
YX
1969 if (p->rt.watchdog_stamp != jiffies) {
1970 p->rt.timeout++;
1971 p->rt.watchdog_stamp = jiffies;
1972 }
1973
78f2c7db 1974 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1975 if (p->rt.timeout > next)
f06febc9 1976 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1977 }
1978}
bb44e5d1 1979
8f4d37ec 1980static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1981{
454c7999
CC
1982 struct sched_rt_entity *rt_se = &p->rt;
1983
67e2be02
PZ
1984 update_curr_rt(rq);
1985
78f2c7db
PZ
1986 watchdog(rq, p);
1987
bb44e5d1
IM
1988 /*
1989 * RR tasks need a special form of timeslice management.
1990 * FIFO tasks have no timeslices.
1991 */
1992 if (p->policy != SCHED_RR)
1993 return;
1994
fa717060 1995 if (--p->rt.time_slice)
bb44e5d1
IM
1996 return;
1997
ce0dbbbb 1998 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 1999
98fbc798 2000 /*
e9aa39bb
LB
2001 * Requeue to the end of queue if we (and all of our ancestors) are not
2002 * the only element on the queue
98fbc798 2003 */
454c7999
CC
2004 for_each_sched_rt_entity(rt_se) {
2005 if (rt_se->run_list.prev != rt_se->run_list.next) {
2006 requeue_task_rt(rq, p, 0);
2007 set_tsk_need_resched(p);
2008 return;
2009 }
98fbc798 2010 }
bb44e5d1
IM
2011}
2012
83b699ed
SV
2013static void set_curr_task_rt(struct rq *rq)
2014{
2015 struct task_struct *p = rq->curr;
2016
78becc27 2017 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
2018
2019 /* The running task is never eligible for pushing */
2020 dequeue_pushable_task(rq, p);
83b699ed
SV
2021}
2022
6d686f45 2023static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
2024{
2025 /*
2026 * Time slice is 0 for SCHED_FIFO tasks
2027 */
2028 if (task->policy == SCHED_RR)
ce0dbbbb 2029 return sched_rr_timeslice;
0d721cea
PW
2030 else
2031 return 0;
2032}
2033
029632fb 2034const struct sched_class rt_sched_class = {
5522d5d5 2035 .next = &fair_sched_class,
bb44e5d1
IM
2036 .enqueue_task = enqueue_task_rt,
2037 .dequeue_task = dequeue_task_rt,
2038 .yield_task = yield_task_rt,
2039
2040 .check_preempt_curr = check_preempt_curr_rt,
2041
2042 .pick_next_task = pick_next_task_rt,
2043 .put_prev_task = put_prev_task_rt,
2044
681f3e68 2045#ifdef CONFIG_SMP
4ce72a2c
LZ
2046 .select_task_rq = select_task_rq_rt,
2047
73fe6aae 2048 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
2049 .rq_online = rq_online_rt,
2050 .rq_offline = rq_offline_rt,
9a897c5a 2051 .post_schedule = post_schedule_rt,
efbbd05a 2052 .task_woken = task_woken_rt,
cb469845 2053 .switched_from = switched_from_rt,
681f3e68 2054#endif
bb44e5d1 2055
83b699ed 2056 .set_curr_task = set_curr_task_rt,
bb44e5d1 2057 .task_tick = task_tick_rt,
cb469845 2058
0d721cea
PW
2059 .get_rr_interval = get_rr_interval_rt,
2060
cb469845
SR
2061 .prio_changed = prio_changed_rt,
2062 .switched_to = switched_to_rt,
bb44e5d1 2063};
ada18de2
PZ
2064
2065#ifdef CONFIG_SCHED_DEBUG
2066extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2067
029632fb 2068void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2069{
ec514c48 2070 rt_rq_iter_t iter;
ada18de2
PZ
2071 struct rt_rq *rt_rq;
2072
2073 rcu_read_lock();
ec514c48 2074 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2075 print_rt_rq(m, cpu, rt_rq);
2076 rcu_read_unlock();
2077}
55e12e5e 2078#endif /* CONFIG_SCHED_DEBUG */