sched/isolation: Isolate workqueues when "nohz_full=" is set
[linux-block.git] / kernel / sched / rt.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bb44e5d1
IM
2/*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6
029632fb
PZ
7#include "sched.h"
8
9#include <linux/slab.h>
b6366f04 10#include <linux/irq_work.h>
029632fb 11
ce0dbbbb 12int sched_rr_timeslice = RR_TIMESLICE;
975e155e 13int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
ce0dbbbb 14
029632fb
PZ
15static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16
17struct rt_bandwidth def_rt_bandwidth;
18
19static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20{
21 struct rt_bandwidth *rt_b =
22 container_of(timer, struct rt_bandwidth, rt_period_timer);
029632fb 23 int idle = 0;
77a4d1a1 24 int overrun;
029632fb 25
77a4d1a1 26 raw_spin_lock(&rt_b->rt_runtime_lock);
029632fb 27 for (;;) {
77a4d1a1 28 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
029632fb
PZ
29 if (!overrun)
30 break;
31
77a4d1a1 32 raw_spin_unlock(&rt_b->rt_runtime_lock);
029632fb 33 idle = do_sched_rt_period_timer(rt_b, overrun);
77a4d1a1 34 raw_spin_lock(&rt_b->rt_runtime_lock);
029632fb 35 }
4cfafd30
PZ
36 if (idle)
37 rt_b->rt_period_active = 0;
77a4d1a1 38 raw_spin_unlock(&rt_b->rt_runtime_lock);
029632fb
PZ
39
40 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41}
42
43void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44{
45 rt_b->rt_period = ns_to_ktime(period);
46 rt_b->rt_runtime = runtime;
47
48 raw_spin_lock_init(&rt_b->rt_runtime_lock);
49
50 hrtimer_init(&rt_b->rt_period_timer,
51 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
52 rt_b->rt_period_timer.function = sched_rt_period_timer;
53}
54
55static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
56{
57 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
58 return;
59
029632fb 60 raw_spin_lock(&rt_b->rt_runtime_lock);
4cfafd30
PZ
61 if (!rt_b->rt_period_active) {
62 rt_b->rt_period_active = 1;
c3a990dc
SR
63 /*
64 * SCHED_DEADLINE updates the bandwidth, as a run away
65 * RT task with a DL task could hog a CPU. But DL does
66 * not reset the period. If a deadline task was running
67 * without an RT task running, it can cause RT tasks to
68 * throttle when they start up. Kick the timer right away
69 * to update the period.
70 */
71 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
4cfafd30
PZ
72 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
73 }
029632fb
PZ
74 raw_spin_unlock(&rt_b->rt_runtime_lock);
75}
76
07c54f7a 77void init_rt_rq(struct rt_rq *rt_rq)
029632fb
PZ
78{
79 struct rt_prio_array *array;
80 int i;
81
82 array = &rt_rq->active;
83 for (i = 0; i < MAX_RT_PRIO; i++) {
84 INIT_LIST_HEAD(array->queue + i);
85 __clear_bit(i, array->bitmap);
86 }
87 /* delimiter for bitsearch: */
88 __set_bit(MAX_RT_PRIO, array->bitmap);
89
90#if defined CONFIG_SMP
91 rt_rq->highest_prio.curr = MAX_RT_PRIO;
92 rt_rq->highest_prio.next = MAX_RT_PRIO;
93 rt_rq->rt_nr_migratory = 0;
94 rt_rq->overloaded = 0;
95 plist_head_init(&rt_rq->pushable_tasks);
b6366f04 96#endif /* CONFIG_SMP */
f4ebcbc0
KT
97 /* We start is dequeued state, because no RT tasks are queued */
98 rt_rq->rt_queued = 0;
029632fb
PZ
99
100 rt_rq->rt_time = 0;
101 rt_rq->rt_throttled = 0;
102 rt_rq->rt_runtime = 0;
103 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
104}
105
8f48894f 106#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
107static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
108{
109 hrtimer_cancel(&rt_b->rt_period_timer);
110}
8f48894f
PZ
111
112#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
113
398a153b
GH
114static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
115{
8f48894f
PZ
116#ifdef CONFIG_SCHED_DEBUG
117 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
118#endif
398a153b
GH
119 return container_of(rt_se, struct task_struct, rt);
120}
121
398a153b
GH
122static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
123{
124 return rt_rq->rq;
125}
126
127static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
128{
129 return rt_se->rt_rq;
130}
131
653d07a6
KT
132static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
133{
134 struct rt_rq *rt_rq = rt_se->rt_rq;
135
136 return rt_rq->rq;
137}
138
029632fb
PZ
139void free_rt_sched_group(struct task_group *tg)
140{
141 int i;
142
143 if (tg->rt_se)
144 destroy_rt_bandwidth(&tg->rt_bandwidth);
145
146 for_each_possible_cpu(i) {
147 if (tg->rt_rq)
148 kfree(tg->rt_rq[i]);
149 if (tg->rt_se)
150 kfree(tg->rt_se[i]);
151 }
152
153 kfree(tg->rt_rq);
154 kfree(tg->rt_se);
155}
156
157void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
158 struct sched_rt_entity *rt_se, int cpu,
159 struct sched_rt_entity *parent)
160{
161 struct rq *rq = cpu_rq(cpu);
162
163 rt_rq->highest_prio.curr = MAX_RT_PRIO;
164 rt_rq->rt_nr_boosted = 0;
165 rt_rq->rq = rq;
166 rt_rq->tg = tg;
167
168 tg->rt_rq[cpu] = rt_rq;
169 tg->rt_se[cpu] = rt_se;
170
171 if (!rt_se)
172 return;
173
174 if (!parent)
175 rt_se->rt_rq = &rq->rt;
176 else
177 rt_se->rt_rq = parent->my_q;
178
179 rt_se->my_q = rt_rq;
180 rt_se->parent = parent;
181 INIT_LIST_HEAD(&rt_se->run_list);
182}
183
184int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
185{
186 struct rt_rq *rt_rq;
187 struct sched_rt_entity *rt_se;
188 int i;
189
190 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
191 if (!tg->rt_rq)
192 goto err;
193 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
194 if (!tg->rt_se)
195 goto err;
196
197 init_rt_bandwidth(&tg->rt_bandwidth,
198 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
199
200 for_each_possible_cpu(i) {
201 rt_rq = kzalloc_node(sizeof(struct rt_rq),
202 GFP_KERNEL, cpu_to_node(i));
203 if (!rt_rq)
204 goto err;
205
206 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
207 GFP_KERNEL, cpu_to_node(i));
208 if (!rt_se)
209 goto err_free_rq;
210
07c54f7a 211 init_rt_rq(rt_rq);
029632fb
PZ
212 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
213 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
214 }
215
216 return 1;
217
218err_free_rq:
219 kfree(rt_rq);
220err:
221 return 0;
222}
223
398a153b
GH
224#else /* CONFIG_RT_GROUP_SCHED */
225
a1ba4d8b
PZ
226#define rt_entity_is_task(rt_se) (1)
227
8f48894f
PZ
228static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
229{
230 return container_of(rt_se, struct task_struct, rt);
231}
232
398a153b
GH
233static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
234{
235 return container_of(rt_rq, struct rq, rt);
236}
237
653d07a6 238static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
398a153b
GH
239{
240 struct task_struct *p = rt_task_of(rt_se);
653d07a6
KT
241
242 return task_rq(p);
243}
244
245static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
246{
247 struct rq *rq = rq_of_rt_se(rt_se);
398a153b
GH
248
249 return &rq->rt;
250}
251
029632fb
PZ
252void free_rt_sched_group(struct task_group *tg) { }
253
254int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
255{
256 return 1;
257}
398a153b
GH
258#endif /* CONFIG_RT_GROUP_SCHED */
259
4fd29176 260#ifdef CONFIG_SMP
84de4274 261
8046d680 262static void pull_rt_task(struct rq *this_rq);
38033c37 263
dc877341
PZ
264static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
265{
266 /* Try to pull RT tasks here if we lower this rq's prio */
267 return rq->rt.highest_prio.curr > prev->prio;
268}
269
637f5085 270static inline int rt_overloaded(struct rq *rq)
4fd29176 271{
637f5085 272 return atomic_read(&rq->rd->rto_count);
4fd29176 273}
84de4274 274
4fd29176
SR
275static inline void rt_set_overload(struct rq *rq)
276{
1f11eb6a
GH
277 if (!rq->online)
278 return;
279
c6c4927b 280 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
281 /*
282 * Make sure the mask is visible before we set
283 * the overload count. That is checked to determine
284 * if we should look at the mask. It would be a shame
285 * if we looked at the mask, but the mask was not
286 * updated yet.
7c3f2ab7
PZ
287 *
288 * Matched by the barrier in pull_rt_task().
4fd29176 289 */
7c3f2ab7 290 smp_wmb();
637f5085 291 atomic_inc(&rq->rd->rto_count);
4fd29176 292}
84de4274 293
4fd29176
SR
294static inline void rt_clear_overload(struct rq *rq)
295{
1f11eb6a
GH
296 if (!rq->online)
297 return;
298
4fd29176 299 /* the order here really doesn't matter */
637f5085 300 atomic_dec(&rq->rd->rto_count);
c6c4927b 301 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 302}
73fe6aae 303
398a153b 304static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 305{
a1ba4d8b 306 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
307 if (!rt_rq->overloaded) {
308 rt_set_overload(rq_of_rt_rq(rt_rq));
309 rt_rq->overloaded = 1;
cdc8eb98 310 }
398a153b
GH
311 } else if (rt_rq->overloaded) {
312 rt_clear_overload(rq_of_rt_rq(rt_rq));
313 rt_rq->overloaded = 0;
637f5085 314 }
73fe6aae 315}
4fd29176 316
398a153b
GH
317static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
318{
29baa747
PZ
319 struct task_struct *p;
320
a1ba4d8b
PZ
321 if (!rt_entity_is_task(rt_se))
322 return;
323
29baa747 324 p = rt_task_of(rt_se);
a1ba4d8b
PZ
325 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
326
327 rt_rq->rt_nr_total++;
4b53a341 328 if (p->nr_cpus_allowed > 1)
398a153b
GH
329 rt_rq->rt_nr_migratory++;
330
331 update_rt_migration(rt_rq);
332}
333
334static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
335{
29baa747
PZ
336 struct task_struct *p;
337
a1ba4d8b
PZ
338 if (!rt_entity_is_task(rt_se))
339 return;
340
29baa747 341 p = rt_task_of(rt_se);
a1ba4d8b
PZ
342 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
343
344 rt_rq->rt_nr_total--;
4b53a341 345 if (p->nr_cpus_allowed > 1)
398a153b
GH
346 rt_rq->rt_nr_migratory--;
347
348 update_rt_migration(rt_rq);
349}
350
5181f4a4
SR
351static inline int has_pushable_tasks(struct rq *rq)
352{
353 return !plist_head_empty(&rq->rt.pushable_tasks);
354}
355
fd7a4bed
PZ
356static DEFINE_PER_CPU(struct callback_head, rt_push_head);
357static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
e3fca9e7
PZ
358
359static void push_rt_tasks(struct rq *);
fd7a4bed 360static void pull_rt_task(struct rq *);
e3fca9e7
PZ
361
362static inline void queue_push_tasks(struct rq *rq)
dc877341 363{
e3fca9e7
PZ
364 if (!has_pushable_tasks(rq))
365 return;
366
fd7a4bed
PZ
367 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
368}
369
370static inline void queue_pull_task(struct rq *rq)
371{
372 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
dc877341
PZ
373}
374
917b627d
GH
375static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
376{
377 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
378 plist_node_init(&p->pushable_tasks, p->prio);
379 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
380
381 /* Update the highest prio pushable task */
382 if (p->prio < rq->rt.highest_prio.next)
383 rq->rt.highest_prio.next = p->prio;
917b627d
GH
384}
385
386static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
387{
388 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 389
5181f4a4
SR
390 /* Update the new highest prio pushable task */
391 if (has_pushable_tasks(rq)) {
392 p = plist_first_entry(&rq->rt.pushable_tasks,
393 struct task_struct, pushable_tasks);
394 rq->rt.highest_prio.next = p->prio;
395 } else
396 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
397}
398
917b627d
GH
399#else
400
ceacc2c1 401static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 402{
6f505b16
PZ
403}
404
ceacc2c1
PZ
405static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
406{
407}
408
b07430ac 409static inline
ceacc2c1
PZ
410void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
411{
412}
413
398a153b 414static inline
ceacc2c1
PZ
415void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
416{
417}
917b627d 418
dc877341
PZ
419static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
420{
421 return false;
422}
423
8046d680 424static inline void pull_rt_task(struct rq *this_rq)
dc877341 425{
dc877341
PZ
426}
427
e3fca9e7 428static inline void queue_push_tasks(struct rq *rq)
dc877341
PZ
429{
430}
4fd29176
SR
431#endif /* CONFIG_SMP */
432
f4ebcbc0
KT
433static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
434static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
435
6f505b16
PZ
436static inline int on_rt_rq(struct sched_rt_entity *rt_se)
437{
ff77e468 438 return rt_se->on_rq;
6f505b16
PZ
439}
440
052f1dc7 441#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 442
9f0c1e56 443static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
444{
445 if (!rt_rq->tg)
9f0c1e56 446 return RUNTIME_INF;
6f505b16 447
ac086bc2
PZ
448 return rt_rq->rt_runtime;
449}
450
451static inline u64 sched_rt_period(struct rt_rq *rt_rq)
452{
453 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
454}
455
ec514c48
CX
456typedef struct task_group *rt_rq_iter_t;
457
1c09ab0d
YZ
458static inline struct task_group *next_task_group(struct task_group *tg)
459{
460 do {
461 tg = list_entry_rcu(tg->list.next,
462 typeof(struct task_group), list);
463 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
464
465 if (&tg->list == &task_groups)
466 tg = NULL;
467
468 return tg;
469}
470
471#define for_each_rt_rq(rt_rq, iter, rq) \
472 for (iter = container_of(&task_groups, typeof(*iter), list); \
473 (iter = next_task_group(iter)) && \
474 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 475
6f505b16
PZ
476#define for_each_sched_rt_entity(rt_se) \
477 for (; rt_se; rt_se = rt_se->parent)
478
479static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
480{
481 return rt_se->my_q;
482}
483
ff77e468
PZ
484static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
485static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
6f505b16 486
9f0c1e56 487static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 488{
f6121f4f 489 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
8875125e 490 struct rq *rq = rq_of_rt_rq(rt_rq);
74b7eb58
YZ
491 struct sched_rt_entity *rt_se;
492
8875125e 493 int cpu = cpu_of(rq);
0c3b9168
BS
494
495 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 496
f6121f4f 497 if (rt_rq->rt_nr_running) {
f4ebcbc0
KT
498 if (!rt_se)
499 enqueue_top_rt_rq(rt_rq);
500 else if (!on_rt_rq(rt_se))
ff77e468 501 enqueue_rt_entity(rt_se, 0);
f4ebcbc0 502
e864c499 503 if (rt_rq->highest_prio.curr < curr->prio)
8875125e 504 resched_curr(rq);
6f505b16
PZ
505 }
506}
507
9f0c1e56 508static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 509{
74b7eb58 510 struct sched_rt_entity *rt_se;
0c3b9168 511 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 512
0c3b9168 513 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 514
f4ebcbc0
KT
515 if (!rt_se)
516 dequeue_top_rt_rq(rt_rq);
517 else if (on_rt_rq(rt_se))
ff77e468 518 dequeue_rt_entity(rt_se, 0);
6f505b16
PZ
519}
520
46383648
KT
521static inline int rt_rq_throttled(struct rt_rq *rt_rq)
522{
523 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
524}
525
23b0fdfc
PZ
526static int rt_se_boosted(struct sched_rt_entity *rt_se)
527{
528 struct rt_rq *rt_rq = group_rt_rq(rt_se);
529 struct task_struct *p;
530
531 if (rt_rq)
532 return !!rt_rq->rt_nr_boosted;
533
534 p = rt_task_of(rt_se);
535 return p->prio != p->normal_prio;
536}
537
d0b27fa7 538#ifdef CONFIG_SMP
c6c4927b 539static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 540{
424c93fe 541 return this_rq()->rd->span;
d0b27fa7 542}
6f505b16 543#else
c6c4927b 544static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 545{
c6c4927b 546 return cpu_online_mask;
d0b27fa7
PZ
547}
548#endif
6f505b16 549
d0b27fa7
PZ
550static inline
551struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 552{
d0b27fa7
PZ
553 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
554}
9f0c1e56 555
ac086bc2
PZ
556static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
557{
558 return &rt_rq->tg->rt_bandwidth;
559}
560
55e12e5e 561#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
562
563static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
564{
ac086bc2
PZ
565 return rt_rq->rt_runtime;
566}
567
568static inline u64 sched_rt_period(struct rt_rq *rt_rq)
569{
570 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
571}
572
ec514c48
CX
573typedef struct rt_rq *rt_rq_iter_t;
574
575#define for_each_rt_rq(rt_rq, iter, rq) \
576 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
577
6f505b16
PZ
578#define for_each_sched_rt_entity(rt_se) \
579 for (; rt_se; rt_se = NULL)
580
581static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
582{
583 return NULL;
584}
585
9f0c1e56 586static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 587{
f4ebcbc0
KT
588 struct rq *rq = rq_of_rt_rq(rt_rq);
589
590 if (!rt_rq->rt_nr_running)
591 return;
592
593 enqueue_top_rt_rq(rt_rq);
8875125e 594 resched_curr(rq);
6f505b16
PZ
595}
596
9f0c1e56 597static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 598{
f4ebcbc0 599 dequeue_top_rt_rq(rt_rq);
6f505b16
PZ
600}
601
46383648
KT
602static inline int rt_rq_throttled(struct rt_rq *rt_rq)
603{
604 return rt_rq->rt_throttled;
605}
606
c6c4927b 607static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 608{
c6c4927b 609 return cpu_online_mask;
d0b27fa7
PZ
610}
611
612static inline
613struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
614{
615 return &cpu_rq(cpu)->rt;
616}
617
ac086bc2
PZ
618static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
619{
620 return &def_rt_bandwidth;
621}
622
55e12e5e 623#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 624
faa59937
JL
625bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
626{
627 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
628
629 return (hrtimer_active(&rt_b->rt_period_timer) ||
630 rt_rq->rt_time < rt_b->rt_runtime);
631}
632
ac086bc2 633#ifdef CONFIG_SMP
78333cdd
PZ
634/*
635 * We ran out of runtime, see if we can borrow some from our neighbours.
636 */
269b26a5 637static void do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
638{
639 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 640 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
269b26a5 641 int i, weight;
ac086bc2
PZ
642 u64 rt_period;
643
c6c4927b 644 weight = cpumask_weight(rd->span);
ac086bc2 645
0986b11b 646 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 647 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 648 for_each_cpu(i, rd->span) {
ac086bc2
PZ
649 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
650 s64 diff;
651
652 if (iter == rt_rq)
653 continue;
654
0986b11b 655 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
656 /*
657 * Either all rqs have inf runtime and there's nothing to steal
658 * or __disable_runtime() below sets a specific rq to inf to
659 * indicate its been disabled and disalow stealing.
660 */
7def2be1
PZ
661 if (iter->rt_runtime == RUNTIME_INF)
662 goto next;
663
78333cdd
PZ
664 /*
665 * From runqueues with spare time, take 1/n part of their
666 * spare time, but no more than our period.
667 */
ac086bc2
PZ
668 diff = iter->rt_runtime - iter->rt_time;
669 if (diff > 0) {
58838cf3 670 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
671 if (rt_rq->rt_runtime + diff > rt_period)
672 diff = rt_period - rt_rq->rt_runtime;
673 iter->rt_runtime -= diff;
674 rt_rq->rt_runtime += diff;
ac086bc2 675 if (rt_rq->rt_runtime == rt_period) {
0986b11b 676 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
677 break;
678 }
679 }
7def2be1 680next:
0986b11b 681 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 682 }
0986b11b 683 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2 684}
7def2be1 685
78333cdd
PZ
686/*
687 * Ensure this RQ takes back all the runtime it lend to its neighbours.
688 */
7def2be1
PZ
689static void __disable_runtime(struct rq *rq)
690{
691 struct root_domain *rd = rq->rd;
ec514c48 692 rt_rq_iter_t iter;
7def2be1
PZ
693 struct rt_rq *rt_rq;
694
695 if (unlikely(!scheduler_running))
696 return;
697
ec514c48 698 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
699 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
700 s64 want;
701 int i;
702
0986b11b
TG
703 raw_spin_lock(&rt_b->rt_runtime_lock);
704 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
705 /*
706 * Either we're all inf and nobody needs to borrow, or we're
707 * already disabled and thus have nothing to do, or we have
708 * exactly the right amount of runtime to take out.
709 */
7def2be1
PZ
710 if (rt_rq->rt_runtime == RUNTIME_INF ||
711 rt_rq->rt_runtime == rt_b->rt_runtime)
712 goto balanced;
0986b11b 713 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 714
78333cdd
PZ
715 /*
716 * Calculate the difference between what we started out with
717 * and what we current have, that's the amount of runtime
718 * we lend and now have to reclaim.
719 */
7def2be1
PZ
720 want = rt_b->rt_runtime - rt_rq->rt_runtime;
721
78333cdd
PZ
722 /*
723 * Greedy reclaim, take back as much as we can.
724 */
c6c4927b 725 for_each_cpu(i, rd->span) {
7def2be1
PZ
726 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
727 s64 diff;
728
78333cdd
PZ
729 /*
730 * Can't reclaim from ourselves or disabled runqueues.
731 */
f1679d08 732 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
733 continue;
734
0986b11b 735 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
736 if (want > 0) {
737 diff = min_t(s64, iter->rt_runtime, want);
738 iter->rt_runtime -= diff;
739 want -= diff;
740 } else {
741 iter->rt_runtime -= want;
742 want -= want;
743 }
0986b11b 744 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
745
746 if (!want)
747 break;
748 }
749
0986b11b 750 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
751 /*
752 * We cannot be left wanting - that would mean some runtime
753 * leaked out of the system.
754 */
7def2be1
PZ
755 BUG_ON(want);
756balanced:
78333cdd
PZ
757 /*
758 * Disable all the borrow logic by pretending we have inf
759 * runtime - in which case borrowing doesn't make sense.
760 */
7def2be1 761 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 762 rt_rq->rt_throttled = 0;
0986b11b
TG
763 raw_spin_unlock(&rt_rq->rt_runtime_lock);
764 raw_spin_unlock(&rt_b->rt_runtime_lock);
99b62567
KT
765
766 /* Make rt_rq available for pick_next_task() */
767 sched_rt_rq_enqueue(rt_rq);
7def2be1
PZ
768 }
769}
770
7def2be1
PZ
771static void __enable_runtime(struct rq *rq)
772{
ec514c48 773 rt_rq_iter_t iter;
7def2be1
PZ
774 struct rt_rq *rt_rq;
775
776 if (unlikely(!scheduler_running))
777 return;
778
78333cdd
PZ
779 /*
780 * Reset each runqueue's bandwidth settings
781 */
ec514c48 782 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
783 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
784
0986b11b
TG
785 raw_spin_lock(&rt_b->rt_runtime_lock);
786 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
787 rt_rq->rt_runtime = rt_b->rt_runtime;
788 rt_rq->rt_time = 0;
baf25731 789 rt_rq->rt_throttled = 0;
0986b11b
TG
790 raw_spin_unlock(&rt_rq->rt_runtime_lock);
791 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
792 }
793}
794
269b26a5 795static void balance_runtime(struct rt_rq *rt_rq)
eff6549b 796{
4a6184ce 797 if (!sched_feat(RT_RUNTIME_SHARE))
269b26a5 798 return;
4a6184ce 799
eff6549b 800 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 801 raw_spin_unlock(&rt_rq->rt_runtime_lock);
269b26a5 802 do_balance_runtime(rt_rq);
0986b11b 803 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b 804 }
eff6549b 805}
55e12e5e 806#else /* !CONFIG_SMP */
269b26a5 807static inline void balance_runtime(struct rt_rq *rt_rq) {}
55e12e5e 808#endif /* CONFIG_SMP */
ac086bc2 809
eff6549b
PZ
810static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
811{
42c62a58 812 int i, idle = 1, throttled = 0;
c6c4927b 813 const struct cpumask *span;
eff6549b 814
eff6549b 815 span = sched_rt_period_mask();
e221d028
MG
816#ifdef CONFIG_RT_GROUP_SCHED
817 /*
818 * FIXME: isolated CPUs should really leave the root task group,
819 * whether they are isolcpus or were isolated via cpusets, lest
820 * the timer run on a CPU which does not service all runqueues,
821 * potentially leaving other CPUs indefinitely throttled. If
822 * isolation is really required, the user will turn the throttle
823 * off to kill the perturbations it causes anyway. Meanwhile,
824 * this maintains functionality for boot and/or troubleshooting.
825 */
826 if (rt_b == &root_task_group.rt_bandwidth)
827 span = cpu_online_mask;
828#endif
c6c4927b 829 for_each_cpu(i, span) {
eff6549b
PZ
830 int enqueue = 0;
831 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
832 struct rq *rq = rq_of_rt_rq(rt_rq);
c249f255
DK
833 int skip;
834
835 /*
836 * When span == cpu_online_mask, taking each rq->lock
837 * can be time-consuming. Try to avoid it when possible.
838 */
839 raw_spin_lock(&rt_rq->rt_runtime_lock);
840 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
841 raw_spin_unlock(&rt_rq->rt_runtime_lock);
842 if (skip)
843 continue;
eff6549b 844
05fa785c 845 raw_spin_lock(&rq->lock);
eff6549b
PZ
846 if (rt_rq->rt_time) {
847 u64 runtime;
848
0986b11b 849 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
850 if (rt_rq->rt_throttled)
851 balance_runtime(rt_rq);
852 runtime = rt_rq->rt_runtime;
853 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
854 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
855 rt_rq->rt_throttled = 0;
856 enqueue = 1;
61eadef6
MG
857
858 /*
9edfbfed
PZ
859 * When we're idle and a woken (rt) task is
860 * throttled check_preempt_curr() will set
861 * skip_update and the time between the wakeup
862 * and this unthrottle will get accounted as
863 * 'runtime'.
61eadef6
MG
864 */
865 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
9edfbfed 866 rq_clock_skip_update(rq, false);
eff6549b
PZ
867 }
868 if (rt_rq->rt_time || rt_rq->rt_nr_running)
869 idle = 0;
0986b11b 870 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 871 } else if (rt_rq->rt_nr_running) {
6c3df255 872 idle = 0;
0c3b9168
BS
873 if (!rt_rq_throttled(rt_rq))
874 enqueue = 1;
875 }
42c62a58
PZ
876 if (rt_rq->rt_throttled)
877 throttled = 1;
eff6549b
PZ
878
879 if (enqueue)
880 sched_rt_rq_enqueue(rt_rq);
05fa785c 881 raw_spin_unlock(&rq->lock);
eff6549b
PZ
882 }
883
42c62a58
PZ
884 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
885 return 1;
886
eff6549b
PZ
887 return idle;
888}
ac086bc2 889
6f505b16
PZ
890static inline int rt_se_prio(struct sched_rt_entity *rt_se)
891{
052f1dc7 892#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
893 struct rt_rq *rt_rq = group_rt_rq(rt_se);
894
895 if (rt_rq)
e864c499 896 return rt_rq->highest_prio.curr;
6f505b16
PZ
897#endif
898
899 return rt_task_of(rt_se)->prio;
900}
901
9f0c1e56 902static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 903{
9f0c1e56 904 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 905
fa85ae24 906 if (rt_rq->rt_throttled)
23b0fdfc 907 return rt_rq_throttled(rt_rq);
fa85ae24 908
5b680fd6 909 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
910 return 0;
911
b79f3833
PZ
912 balance_runtime(rt_rq);
913 runtime = sched_rt_runtime(rt_rq);
914 if (runtime == RUNTIME_INF)
915 return 0;
ac086bc2 916
9f0c1e56 917 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
918 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
919
920 /*
921 * Don't actually throttle groups that have no runtime assigned
922 * but accrue some time due to boosting.
923 */
924 if (likely(rt_b->rt_runtime)) {
925 rt_rq->rt_throttled = 1;
c224815d 926 printk_deferred_once("sched: RT throttling activated\n");
7abc63b1
PZ
927 } else {
928 /*
929 * In case we did anyway, make it go away,
930 * replenishment is a joke, since it will replenish us
931 * with exactly 0 ns.
932 */
933 rt_rq->rt_time = 0;
934 }
935
23b0fdfc 936 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 937 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
938 return 1;
939 }
fa85ae24
PZ
940 }
941
942 return 0;
943}
944
bb44e5d1
IM
945/*
946 * Update the current task's runtime statistics. Skip current tasks that
947 * are not in our scheduling class.
948 */
a9957449 949static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
950{
951 struct task_struct *curr = rq->curr;
6f505b16 952 struct sched_rt_entity *rt_se = &curr->rt;
bb44e5d1 953 u64 delta_exec;
a7711602 954 u64 now;
bb44e5d1 955
06c3bc65 956 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
957 return;
958
a7711602 959 now = rq_clock_task(rq);
e7ad2031 960 delta_exec = now - curr->se.exec_start;
fc79e240
KT
961 if (unlikely((s64)delta_exec <= 0))
962 return;
6cfb0d5d 963
58919e83 964 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
674e7541 965 cpufreq_update_util(rq, SCHED_CPUFREQ_RT);
594dd290 966
42c62a58
PZ
967 schedstat_set(curr->se.statistics.exec_max,
968 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
969
970 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
971 account_group_exec_runtime(curr, delta_exec);
972
e7ad2031 973 curr->se.exec_start = now;
d2cc5ed6 974 cgroup_account_cputime(curr, delta_exec);
fa85ae24 975
e9e9250b
PZ
976 sched_rt_avg_update(rq, delta_exec);
977
0b148fa0
PZ
978 if (!rt_bandwidth_enabled())
979 return;
980
354d60c2 981 for_each_sched_rt_entity(rt_se) {
0b07939c 982 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
354d60c2 983
cc2991cf 984 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 985 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
986 rt_rq->rt_time += delta_exec;
987 if (sched_rt_runtime_exceeded(rt_rq))
8875125e 988 resched_curr(rq);
0986b11b 989 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 990 }
354d60c2 991 }
bb44e5d1
IM
992}
993
f4ebcbc0
KT
994static void
995dequeue_top_rt_rq(struct rt_rq *rt_rq)
996{
997 struct rq *rq = rq_of_rt_rq(rt_rq);
998
999 BUG_ON(&rq->rt != rt_rq);
1000
1001 if (!rt_rq->rt_queued)
1002 return;
1003
1004 BUG_ON(!rq->nr_running);
1005
72465447 1006 sub_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
1007 rt_rq->rt_queued = 0;
1008}
1009
1010static void
1011enqueue_top_rt_rq(struct rt_rq *rt_rq)
1012{
1013 struct rq *rq = rq_of_rt_rq(rt_rq);
1014
1015 BUG_ON(&rq->rt != rt_rq);
1016
1017 if (rt_rq->rt_queued)
1018 return;
1019 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1020 return;
1021
72465447 1022 add_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
1023 rt_rq->rt_queued = 1;
1024}
1025
398a153b 1026#if defined CONFIG_SMP
e864c499 1027
398a153b
GH
1028static void
1029inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 1030{
4d984277 1031 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 1032
757dfcaa
KT
1033#ifdef CONFIG_RT_GROUP_SCHED
1034 /*
1035 * Change rq's cpupri only if rt_rq is the top queue.
1036 */
1037 if (&rq->rt != rt_rq)
1038 return;
1039#endif
5181f4a4
SR
1040 if (rq->online && prio < prev_prio)
1041 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 1042}
73fe6aae 1043
398a153b
GH
1044static void
1045dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1046{
1047 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 1048
757dfcaa
KT
1049#ifdef CONFIG_RT_GROUP_SCHED
1050 /*
1051 * Change rq's cpupri only if rt_rq is the top queue.
1052 */
1053 if (&rq->rt != rt_rq)
1054 return;
1055#endif
398a153b
GH
1056 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1057 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
1058}
1059
398a153b
GH
1060#else /* CONFIG_SMP */
1061
6f505b16 1062static inline
398a153b
GH
1063void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1064static inline
1065void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1066
1067#endif /* CONFIG_SMP */
6e0534f2 1068
052f1dc7 1069#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
1070static void
1071inc_rt_prio(struct rt_rq *rt_rq, int prio)
1072{
1073 int prev_prio = rt_rq->highest_prio.curr;
1074
1075 if (prio < prev_prio)
1076 rt_rq->highest_prio.curr = prio;
1077
1078 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1079}
1080
1081static void
1082dec_rt_prio(struct rt_rq *rt_rq, int prio)
1083{
1084 int prev_prio = rt_rq->highest_prio.curr;
1085
6f505b16 1086 if (rt_rq->rt_nr_running) {
764a9d6f 1087
398a153b 1088 WARN_ON(prio < prev_prio);
764a9d6f 1089
e864c499 1090 /*
398a153b
GH
1091 * This may have been our highest task, and therefore
1092 * we may have some recomputation to do
e864c499 1093 */
398a153b 1094 if (prio == prev_prio) {
e864c499
GH
1095 struct rt_prio_array *array = &rt_rq->active;
1096
1097 rt_rq->highest_prio.curr =
764a9d6f 1098 sched_find_first_bit(array->bitmap);
e864c499
GH
1099 }
1100
764a9d6f 1101 } else
e864c499 1102 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 1103
398a153b
GH
1104 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1105}
1f11eb6a 1106
398a153b
GH
1107#else
1108
1109static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1110static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1111
1112#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 1113
052f1dc7 1114#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
1115
1116static void
1117inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1118{
1119 if (rt_se_boosted(rt_se))
1120 rt_rq->rt_nr_boosted++;
1121
1122 if (rt_rq->tg)
1123 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1124}
1125
1126static void
1127dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1128{
23b0fdfc
PZ
1129 if (rt_se_boosted(rt_se))
1130 rt_rq->rt_nr_boosted--;
1131
1132 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
1133}
1134
1135#else /* CONFIG_RT_GROUP_SCHED */
1136
1137static void
1138inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1139{
1140 start_rt_bandwidth(&def_rt_bandwidth);
1141}
1142
1143static inline
1144void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1145
1146#endif /* CONFIG_RT_GROUP_SCHED */
1147
22abdef3
KT
1148static inline
1149unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1150{
1151 struct rt_rq *group_rq = group_rt_rq(rt_se);
1152
1153 if (group_rq)
1154 return group_rq->rt_nr_running;
1155 else
1156 return 1;
1157}
1158
01d36d0a
FW
1159static inline
1160unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1161{
1162 struct rt_rq *group_rq = group_rt_rq(rt_se);
1163 struct task_struct *tsk;
1164
1165 if (group_rq)
1166 return group_rq->rr_nr_running;
1167
1168 tsk = rt_task_of(rt_se);
1169
1170 return (tsk->policy == SCHED_RR) ? 1 : 0;
1171}
1172
398a153b
GH
1173static inline
1174void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1175{
1176 int prio = rt_se_prio(rt_se);
1177
1178 WARN_ON(!rt_prio(prio));
22abdef3 1179 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
01d36d0a 1180 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
398a153b
GH
1181
1182 inc_rt_prio(rt_rq, prio);
1183 inc_rt_migration(rt_se, rt_rq);
1184 inc_rt_group(rt_se, rt_rq);
1185}
1186
1187static inline
1188void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1189{
1190 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1191 WARN_ON(!rt_rq->rt_nr_running);
22abdef3 1192 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
01d36d0a 1193 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
398a153b
GH
1194
1195 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1196 dec_rt_migration(rt_se, rt_rq);
1197 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1198}
1199
ff77e468
PZ
1200/*
1201 * Change rt_se->run_list location unless SAVE && !MOVE
1202 *
1203 * assumes ENQUEUE/DEQUEUE flags match
1204 */
1205static inline bool move_entity(unsigned int flags)
1206{
1207 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1208 return false;
1209
1210 return true;
1211}
1212
1213static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1214{
1215 list_del_init(&rt_se->run_list);
1216
1217 if (list_empty(array->queue + rt_se_prio(rt_se)))
1218 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1219
1220 rt_se->on_list = 0;
1221}
1222
1223static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
bb44e5d1 1224{
6f505b16
PZ
1225 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1226 struct rt_prio_array *array = &rt_rq->active;
1227 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1228 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1229
ad2a3f13
PZ
1230 /*
1231 * Don't enqueue the group if its throttled, or when empty.
1232 * The latter is a consequence of the former when a child group
1233 * get throttled and the current group doesn't have any other
1234 * active members.
1235 */
ff77e468
PZ
1236 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1237 if (rt_se->on_list)
1238 __delist_rt_entity(rt_se, array);
6f505b16 1239 return;
ff77e468 1240 }
63489e45 1241
ff77e468
PZ
1242 if (move_entity(flags)) {
1243 WARN_ON_ONCE(rt_se->on_list);
1244 if (flags & ENQUEUE_HEAD)
1245 list_add(&rt_se->run_list, queue);
1246 else
1247 list_add_tail(&rt_se->run_list, queue);
1248
1249 __set_bit(rt_se_prio(rt_se), array->bitmap);
1250 rt_se->on_list = 1;
1251 }
1252 rt_se->on_rq = 1;
78f2c7db 1253
6f505b16
PZ
1254 inc_rt_tasks(rt_se, rt_rq);
1255}
1256
ff77e468 1257static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
6f505b16
PZ
1258{
1259 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1260 struct rt_prio_array *array = &rt_rq->active;
1261
ff77e468
PZ
1262 if (move_entity(flags)) {
1263 WARN_ON_ONCE(!rt_se->on_list);
1264 __delist_rt_entity(rt_se, array);
1265 }
1266 rt_se->on_rq = 0;
6f505b16
PZ
1267
1268 dec_rt_tasks(rt_se, rt_rq);
1269}
1270
1271/*
1272 * Because the prio of an upper entry depends on the lower
1273 * entries, we must remove entries top - down.
6f505b16 1274 */
ff77e468 1275static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
6f505b16 1276{
ad2a3f13 1277 struct sched_rt_entity *back = NULL;
6f505b16 1278
58d6c2d7
PZ
1279 for_each_sched_rt_entity(rt_se) {
1280 rt_se->back = back;
1281 back = rt_se;
1282 }
1283
f4ebcbc0
KT
1284 dequeue_top_rt_rq(rt_rq_of_se(back));
1285
58d6c2d7
PZ
1286 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1287 if (on_rt_rq(rt_se))
ff77e468 1288 __dequeue_rt_entity(rt_se, flags);
ad2a3f13
PZ
1289 }
1290}
1291
ff77e468 1292static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
ad2a3f13 1293{
f4ebcbc0
KT
1294 struct rq *rq = rq_of_rt_se(rt_se);
1295
ff77e468 1296 dequeue_rt_stack(rt_se, flags);
ad2a3f13 1297 for_each_sched_rt_entity(rt_se)
ff77e468 1298 __enqueue_rt_entity(rt_se, flags);
f4ebcbc0 1299 enqueue_top_rt_rq(&rq->rt);
ad2a3f13
PZ
1300}
1301
ff77e468 1302static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
ad2a3f13 1303{
f4ebcbc0
KT
1304 struct rq *rq = rq_of_rt_se(rt_se);
1305
ff77e468 1306 dequeue_rt_stack(rt_se, flags);
ad2a3f13
PZ
1307
1308 for_each_sched_rt_entity(rt_se) {
1309 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1310
1311 if (rt_rq && rt_rq->rt_nr_running)
ff77e468 1312 __enqueue_rt_entity(rt_se, flags);
58d6c2d7 1313 }
f4ebcbc0 1314 enqueue_top_rt_rq(&rq->rt);
bb44e5d1
IM
1315}
1316
1317/*
1318 * Adding/removing a task to/from a priority array:
1319 */
ea87bb78 1320static void
371fd7e7 1321enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1322{
1323 struct sched_rt_entity *rt_se = &p->rt;
1324
371fd7e7 1325 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1326 rt_se->timeout = 0;
1327
ff77e468 1328 enqueue_rt_entity(rt_se, flags);
c09595f6 1329
4b53a341 1330 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1331 enqueue_pushable_task(rq, p);
6f505b16
PZ
1332}
1333
371fd7e7 1334static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1335{
6f505b16 1336 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1337
f1e14ef6 1338 update_curr_rt(rq);
ff77e468 1339 dequeue_rt_entity(rt_se, flags);
c09595f6 1340
917b627d 1341 dequeue_pushable_task(rq, p);
bb44e5d1
IM
1342}
1343
1344/*
60686317
RW
1345 * Put task to the head or the end of the run list without the overhead of
1346 * dequeue followed by enqueue.
bb44e5d1 1347 */
7ebefa8c
DA
1348static void
1349requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1350{
1cdad715 1351 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1352 struct rt_prio_array *array = &rt_rq->active;
1353 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1354
1355 if (head)
1356 list_move(&rt_se->run_list, queue);
1357 else
1358 list_move_tail(&rt_se->run_list, queue);
1cdad715 1359 }
6f505b16
PZ
1360}
1361
7ebefa8c 1362static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1363{
6f505b16
PZ
1364 struct sched_rt_entity *rt_se = &p->rt;
1365 struct rt_rq *rt_rq;
bb44e5d1 1366
6f505b16
PZ
1367 for_each_sched_rt_entity(rt_se) {
1368 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1369 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1370 }
bb44e5d1
IM
1371}
1372
6f505b16 1373static void yield_task_rt(struct rq *rq)
bb44e5d1 1374{
7ebefa8c 1375 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1376}
1377
e7693a36 1378#ifdef CONFIG_SMP
318e0893
GH
1379static int find_lowest_rq(struct task_struct *task);
1380
0017d735 1381static int
ac66f547 1382select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
e7693a36 1383{
7608dec2
PZ
1384 struct task_struct *curr;
1385 struct rq *rq;
c37495fd
SR
1386
1387 /* For anything but wake ups, just return the task_cpu */
1388 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1389 goto out;
1390
7608dec2
PZ
1391 rq = cpu_rq(cpu);
1392
1393 rcu_read_lock();
316c1608 1394 curr = READ_ONCE(rq->curr); /* unlocked access */
7608dec2 1395
318e0893 1396 /*
7608dec2 1397 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1398 * try to see if we can wake this RT task up on another
1399 * runqueue. Otherwise simply start this RT task
1400 * on its current runqueue.
1401 *
43fa5460
SR
1402 * We want to avoid overloading runqueues. If the woken
1403 * task is a higher priority, then it will stay on this CPU
1404 * and the lower prio task should be moved to another CPU.
1405 * Even though this will probably make the lower prio task
1406 * lose its cache, we do not want to bounce a higher task
1407 * around just because it gave up its CPU, perhaps for a
1408 * lock?
1409 *
1410 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1411 *
1412 * Otherwise, just let it ride on the affined RQ and the
1413 * post-schedule router will push the preempted task away
1414 *
1415 * This test is optimistic, if we get it wrong the load-balancer
1416 * will have to sort it out.
318e0893 1417 */
7608dec2 1418 if (curr && unlikely(rt_task(curr)) &&
4b53a341 1419 (curr->nr_cpus_allowed < 2 ||
6bfa687c 1420 curr->prio <= p->prio)) {
7608dec2 1421 int target = find_lowest_rq(p);
318e0893 1422
80e3d87b
TC
1423 /*
1424 * Don't bother moving it if the destination CPU is
1425 * not running a lower priority task.
1426 */
1427 if (target != -1 &&
1428 p->prio < cpu_rq(target)->rt.highest_prio.curr)
7608dec2 1429 cpu = target;
318e0893 1430 }
7608dec2 1431 rcu_read_unlock();
318e0893 1432
c37495fd 1433out:
7608dec2 1434 return cpu;
e7693a36 1435}
7ebefa8c
DA
1436
1437static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1438{
308a623a
WL
1439 /*
1440 * Current can't be migrated, useless to reschedule,
1441 * let's hope p can move out.
1442 */
4b53a341 1443 if (rq->curr->nr_cpus_allowed == 1 ||
308a623a 1444 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
7ebefa8c
DA
1445 return;
1446
308a623a
WL
1447 /*
1448 * p is migratable, so let's not schedule it and
1449 * see if it is pushed or pulled somewhere else.
1450 */
4b53a341 1451 if (p->nr_cpus_allowed != 1
13b8bd0a
RR
1452 && cpupri_find(&rq->rd->cpupri, p, NULL))
1453 return;
24600ce8 1454
7ebefa8c
DA
1455 /*
1456 * There appears to be other cpus that can accept
1457 * current and none to run 'p', so lets reschedule
1458 * to try and push current away:
1459 */
1460 requeue_task_rt(rq, p, 1);
8875125e 1461 resched_curr(rq);
7ebefa8c
DA
1462}
1463
e7693a36
GH
1464#endif /* CONFIG_SMP */
1465
bb44e5d1
IM
1466/*
1467 * Preempt the current task with a newly woken task if needed:
1468 */
7d478721 1469static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1470{
45c01e82 1471 if (p->prio < rq->curr->prio) {
8875125e 1472 resched_curr(rq);
45c01e82
GH
1473 return;
1474 }
1475
1476#ifdef CONFIG_SMP
1477 /*
1478 * If:
1479 *
1480 * - the newly woken task is of equal priority to the current task
1481 * - the newly woken task is non-migratable while current is migratable
1482 * - current will be preempted on the next reschedule
1483 *
1484 * we should check to see if current can readily move to a different
1485 * cpu. If so, we will reschedule to allow the push logic to try
1486 * to move current somewhere else, making room for our non-migratable
1487 * task.
1488 */
8dd0de8b 1489 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1490 check_preempt_equal_prio(rq, p);
45c01e82 1491#endif
bb44e5d1
IM
1492}
1493
6f505b16
PZ
1494static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1495 struct rt_rq *rt_rq)
bb44e5d1 1496{
6f505b16
PZ
1497 struct rt_prio_array *array = &rt_rq->active;
1498 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1499 struct list_head *queue;
1500 int idx;
1501
1502 idx = sched_find_first_bit(array->bitmap);
6f505b16 1503 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1504
1505 queue = array->queue + idx;
6f505b16 1506 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1507
6f505b16
PZ
1508 return next;
1509}
bb44e5d1 1510
917b627d 1511static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1512{
1513 struct sched_rt_entity *rt_se;
1514 struct task_struct *p;
606dba2e 1515 struct rt_rq *rt_rq = &rq->rt;
6f505b16
PZ
1516
1517 do {
1518 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1519 BUG_ON(!rt_se);
6f505b16
PZ
1520 rt_rq = group_rt_rq(rt_se);
1521 } while (rt_rq);
1522
1523 p = rt_task_of(rt_se);
78becc27 1524 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1525
1526 return p;
1527}
1528
606dba2e 1529static struct task_struct *
d8ac8971 1530pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
917b627d 1531{
606dba2e
PZ
1532 struct task_struct *p;
1533 struct rt_rq *rt_rq = &rq->rt;
1534
37e117c0 1535 if (need_pull_rt_task(rq, prev)) {
cbce1a68
PZ
1536 /*
1537 * This is OK, because current is on_cpu, which avoids it being
1538 * picked for load-balance and preemption/IRQs are still
1539 * disabled avoiding further scheduler activity on it and we're
1540 * being very careful to re-start the picking loop.
1541 */
d8ac8971 1542 rq_unpin_lock(rq, rf);
38033c37 1543 pull_rt_task(rq);
d8ac8971 1544 rq_repin_lock(rq, rf);
37e117c0
PZ
1545 /*
1546 * pull_rt_task() can drop (and re-acquire) rq->lock; this
a1d9a323
KT
1547 * means a dl or stop task can slip in, in which case we need
1548 * to re-start task selection.
37e117c0 1549 */
da0c1e65 1550 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
a1d9a323 1551 rq->dl.dl_nr_running))
37e117c0
PZ
1552 return RETRY_TASK;
1553 }
38033c37 1554
734ff2a7
KT
1555 /*
1556 * We may dequeue prev's rt_rq in put_prev_task().
1557 * So, we update time before rt_nr_running check.
1558 */
1559 if (prev->sched_class == &rt_sched_class)
1560 update_curr_rt(rq);
1561
f4ebcbc0 1562 if (!rt_rq->rt_queued)
606dba2e
PZ
1563 return NULL;
1564
3f1d2a31 1565 put_prev_task(rq, prev);
606dba2e
PZ
1566
1567 p = _pick_next_task_rt(rq);
917b627d
GH
1568
1569 /* The running task is never eligible for pushing */
f3f1768f 1570 dequeue_pushable_task(rq, p);
917b627d 1571
e3fca9e7 1572 queue_push_tasks(rq);
3f029d3c 1573
6f505b16 1574 return p;
bb44e5d1
IM
1575}
1576
31ee529c 1577static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1578{
f1e14ef6 1579 update_curr_rt(rq);
917b627d
GH
1580
1581 /*
1582 * The previous task needs to be made eligible for pushing
1583 * if it is still active
1584 */
4b53a341 1585 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1586 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1587}
1588
681f3e68 1589#ifdef CONFIG_SMP
6f505b16 1590
e8fa1362
SR
1591/* Only try algorithms three times */
1592#define RT_MAX_TRIES 3
1593
f65eda4f
SR
1594static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1595{
1596 if (!task_running(rq, p) &&
0c98d344 1597 cpumask_test_cpu(cpu, &p->cpus_allowed))
f65eda4f
SR
1598 return 1;
1599 return 0;
1600}
1601
e23ee747
KT
1602/*
1603 * Return the highest pushable rq's task, which is suitable to be executed
1604 * on the cpu, NULL otherwise
1605 */
1606static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
e8fa1362 1607{
e23ee747
KT
1608 struct plist_head *head = &rq->rt.pushable_tasks;
1609 struct task_struct *p;
3d07467b 1610
e23ee747
KT
1611 if (!has_pushable_tasks(rq))
1612 return NULL;
3d07467b 1613
e23ee747
KT
1614 plist_for_each_entry(p, head, pushable_tasks) {
1615 if (pick_rt_task(rq, p, cpu))
1616 return p;
f65eda4f
SR
1617 }
1618
e23ee747 1619 return NULL;
e8fa1362
SR
1620}
1621
0e3900e6 1622static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1623
6e1254d2
GH
1624static int find_lowest_rq(struct task_struct *task)
1625{
1626 struct sched_domain *sd;
4ba29684 1627 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
6e1254d2
GH
1628 int this_cpu = smp_processor_id();
1629 int cpu = task_cpu(task);
06f90dbd 1630
0da938c4
SR
1631 /* Make sure the mask is initialized first */
1632 if (unlikely(!lowest_mask))
1633 return -1;
1634
4b53a341 1635 if (task->nr_cpus_allowed == 1)
6e0534f2 1636 return -1; /* No other targets possible */
6e1254d2 1637
6e0534f2
GH
1638 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1639 return -1; /* No targets found */
6e1254d2
GH
1640
1641 /*
1642 * At this point we have built a mask of cpus representing the
1643 * lowest priority tasks in the system. Now we want to elect
1644 * the best one based on our affinity and topology.
1645 *
1646 * We prioritize the last cpu that the task executed on since
1647 * it is most likely cache-hot in that location.
1648 */
96f874e2 1649 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1650 return cpu;
1651
1652 /*
1653 * Otherwise, we consult the sched_domains span maps to figure
1654 * out which cpu is logically closest to our hot cache data.
1655 */
e2c88063
RR
1656 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1657 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1658
cd4ae6ad 1659 rcu_read_lock();
e2c88063
RR
1660 for_each_domain(cpu, sd) {
1661 if (sd->flags & SD_WAKE_AFFINE) {
1662 int best_cpu;
6e1254d2 1663
e2c88063
RR
1664 /*
1665 * "this_cpu" is cheaper to preempt than a
1666 * remote processor.
1667 */
1668 if (this_cpu != -1 &&
cd4ae6ad
XF
1669 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1670 rcu_read_unlock();
e2c88063 1671 return this_cpu;
cd4ae6ad 1672 }
e2c88063
RR
1673
1674 best_cpu = cpumask_first_and(lowest_mask,
1675 sched_domain_span(sd));
cd4ae6ad
XF
1676 if (best_cpu < nr_cpu_ids) {
1677 rcu_read_unlock();
e2c88063 1678 return best_cpu;
cd4ae6ad 1679 }
6e1254d2
GH
1680 }
1681 }
cd4ae6ad 1682 rcu_read_unlock();
6e1254d2
GH
1683
1684 /*
1685 * And finally, if there were no matches within the domains
1686 * just give the caller *something* to work with from the compatible
1687 * locations.
1688 */
e2c88063
RR
1689 if (this_cpu != -1)
1690 return this_cpu;
1691
1692 cpu = cpumask_any(lowest_mask);
1693 if (cpu < nr_cpu_ids)
1694 return cpu;
1695 return -1;
07b4032c
GH
1696}
1697
1698/* Will lock the rq it finds */
4df64c0b 1699static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1700{
1701 struct rq *lowest_rq = NULL;
07b4032c 1702 int tries;
4df64c0b 1703 int cpu;
e8fa1362 1704
07b4032c
GH
1705 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1706 cpu = find_lowest_rq(task);
1707
2de0b463 1708 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1709 break;
1710
07b4032c
GH
1711 lowest_rq = cpu_rq(cpu);
1712
80e3d87b
TC
1713 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1714 /*
1715 * Target rq has tasks of equal or higher priority,
1716 * retrying does not release any lock and is unlikely
1717 * to yield a different result.
1718 */
1719 lowest_rq = NULL;
1720 break;
1721 }
1722
e8fa1362 1723 /* if the prio of this runqueue changed, try again */
07b4032c 1724 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1725 /*
1726 * We had to unlock the run queue. In
1727 * the mean time, task could have
1728 * migrated already or had its affinity changed.
1729 * Also make sure that it wasn't scheduled on its rq.
1730 */
07b4032c 1731 if (unlikely(task_rq(task) != rq ||
0c98d344 1732 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
07b4032c 1733 task_running(rq, task) ||
13b5ab02 1734 !rt_task(task) ||
da0c1e65 1735 !task_on_rq_queued(task))) {
4df64c0b 1736
7f1b4393 1737 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1738 lowest_rq = NULL;
1739 break;
1740 }
1741 }
1742
1743 /* If this rq is still suitable use it. */
e864c499 1744 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1745 break;
1746
1747 /* try again */
1b12bbc7 1748 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1749 lowest_rq = NULL;
1750 }
1751
1752 return lowest_rq;
1753}
1754
917b627d
GH
1755static struct task_struct *pick_next_pushable_task(struct rq *rq)
1756{
1757 struct task_struct *p;
1758
1759 if (!has_pushable_tasks(rq))
1760 return NULL;
1761
1762 p = plist_first_entry(&rq->rt.pushable_tasks,
1763 struct task_struct, pushable_tasks);
1764
1765 BUG_ON(rq->cpu != task_cpu(p));
1766 BUG_ON(task_current(rq, p));
4b53a341 1767 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1768
da0c1e65 1769 BUG_ON(!task_on_rq_queued(p));
917b627d
GH
1770 BUG_ON(!rt_task(p));
1771
1772 return p;
1773}
1774
e8fa1362
SR
1775/*
1776 * If the current CPU has more than one RT task, see if the non
1777 * running task can migrate over to a CPU that is running a task
1778 * of lesser priority.
1779 */
697f0a48 1780static int push_rt_task(struct rq *rq)
e8fa1362
SR
1781{
1782 struct task_struct *next_task;
1783 struct rq *lowest_rq;
311e800e 1784 int ret = 0;
e8fa1362 1785
a22d7fc1
GH
1786 if (!rq->rt.overloaded)
1787 return 0;
1788
917b627d 1789 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1790 if (!next_task)
1791 return 0;
1792
49246274 1793retry:
697f0a48 1794 if (unlikely(next_task == rq->curr)) {
f65eda4f 1795 WARN_ON(1);
e8fa1362 1796 return 0;
f65eda4f 1797 }
e8fa1362
SR
1798
1799 /*
1800 * It's possible that the next_task slipped in of
1801 * higher priority than current. If that's the case
1802 * just reschedule current.
1803 */
697f0a48 1804 if (unlikely(next_task->prio < rq->curr->prio)) {
8875125e 1805 resched_curr(rq);
e8fa1362
SR
1806 return 0;
1807 }
1808
697f0a48 1809 /* We might release rq lock */
e8fa1362
SR
1810 get_task_struct(next_task);
1811
1812 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1813 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1814 if (!lowest_rq) {
1815 struct task_struct *task;
1816 /*
311e800e 1817 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1818 * so it is possible that next_task has migrated.
1819 *
1820 * We need to make sure that the task is still on the same
1821 * run-queue and is also still the next task eligible for
1822 * pushing.
e8fa1362 1823 */
917b627d 1824 task = pick_next_pushable_task(rq);
de16b91e 1825 if (task == next_task) {
1563513d 1826 /*
311e800e
HD
1827 * The task hasn't migrated, and is still the next
1828 * eligible task, but we failed to find a run-queue
1829 * to push it to. Do not retry in this case, since
1830 * other cpus will pull from us when ready.
1563513d 1831 */
1563513d 1832 goto out;
e8fa1362 1833 }
917b627d 1834
1563513d
GH
1835 if (!task)
1836 /* No more tasks, just exit */
1837 goto out;
1838
917b627d 1839 /*
1563513d 1840 * Something has shifted, try again.
917b627d 1841 */
1563513d
GH
1842 put_task_struct(next_task);
1843 next_task = task;
1844 goto retry;
e8fa1362
SR
1845 }
1846
697f0a48 1847 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1848 set_task_cpu(next_task, lowest_rq->cpu);
1849 activate_task(lowest_rq, next_task, 0);
311e800e 1850 ret = 1;
e8fa1362 1851
8875125e 1852 resched_curr(lowest_rq);
e8fa1362 1853
1b12bbc7 1854 double_unlock_balance(rq, lowest_rq);
e8fa1362 1855
e8fa1362
SR
1856out:
1857 put_task_struct(next_task);
1858
311e800e 1859 return ret;
e8fa1362
SR
1860}
1861
e8fa1362
SR
1862static void push_rt_tasks(struct rq *rq)
1863{
1864 /* push_rt_task will return true if it moved an RT */
1865 while (push_rt_task(rq))
1866 ;
1867}
1868
b6366f04 1869#ifdef HAVE_RT_PUSH_IPI
4bdced5c 1870
b6366f04 1871/*
4bdced5c
SRRH
1872 * When a high priority task schedules out from a CPU and a lower priority
1873 * task is scheduled in, a check is made to see if there's any RT tasks
1874 * on other CPUs that are waiting to run because a higher priority RT task
1875 * is currently running on its CPU. In this case, the CPU with multiple RT
1876 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1877 * up that may be able to run one of its non-running queued RT tasks.
1878 *
1879 * All CPUs with overloaded RT tasks need to be notified as there is currently
1880 * no way to know which of these CPUs have the highest priority task waiting
1881 * to run. Instead of trying to take a spinlock on each of these CPUs,
1882 * which has shown to cause large latency when done on machines with many
1883 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1884 * RT tasks waiting to run.
1885 *
1886 * Just sending an IPI to each of the CPUs is also an issue, as on large
1887 * count CPU machines, this can cause an IPI storm on a CPU, especially
1888 * if its the only CPU with multiple RT tasks queued, and a large number
1889 * of CPUs scheduling a lower priority task at the same time.
1890 *
1891 * Each root domain has its own irq work function that can iterate over
1892 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1893 * tassk must be checked if there's one or many CPUs that are lowering
1894 * their priority, there's a single irq work iterator that will try to
1895 * push off RT tasks that are waiting to run.
1896 *
1897 * When a CPU schedules a lower priority task, it will kick off the
1898 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1899 * As it only takes the first CPU that schedules a lower priority task
1900 * to start the process, the rto_start variable is incremented and if
1901 * the atomic result is one, then that CPU will try to take the rto_lock.
1902 * This prevents high contention on the lock as the process handles all
1903 * CPUs scheduling lower priority tasks.
1904 *
1905 * All CPUs that are scheduling a lower priority task will increment the
1906 * rt_loop_next variable. This will make sure that the irq work iterator
1907 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1908 * priority task, even if the iterator is in the middle of a scan. Incrementing
1909 * the rt_loop_next will cause the iterator to perform another scan.
b6366f04 1910 *
b6366f04 1911 */
ad0f1d9d 1912static int rto_next_cpu(struct root_domain *rd)
b6366f04 1913{
4bdced5c 1914 int next;
b6366f04
SR
1915 int cpu;
1916
b6366f04 1917 /*
4bdced5c
SRRH
1918 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1919 * rt_next_cpu() will simply return the first CPU found in
1920 * the rto_mask.
1921 *
1922 * If rto_next_cpu() is called with rto_cpu is a valid cpu, it
1923 * will return the next CPU found in the rto_mask.
1924 *
1925 * If there are no more CPUs left in the rto_mask, then a check is made
1926 * against rto_loop and rto_loop_next. rto_loop is only updated with
1927 * the rto_lock held, but any CPU may increment the rto_loop_next
1928 * without any locking.
b6366f04 1929 */
4bdced5c 1930 for (;;) {
b6366f04 1931
4bdced5c
SRRH
1932 /* When rto_cpu is -1 this acts like cpumask_first() */
1933 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
b6366f04 1934
4bdced5c 1935 rd->rto_cpu = cpu;
b6366f04 1936
4bdced5c
SRRH
1937 if (cpu < nr_cpu_ids)
1938 return cpu;
b6366f04 1939
4bdced5c
SRRH
1940 rd->rto_cpu = -1;
1941
1942 /*
1943 * ACQUIRE ensures we see the @rto_mask changes
1944 * made prior to the @next value observed.
1945 *
1946 * Matches WMB in rt_set_overload().
1947 */
1948 next = atomic_read_acquire(&rd->rto_loop_next);
b6366f04 1949
4bdced5c 1950 if (rd->rto_loop == next)
b6366f04 1951 break;
4bdced5c
SRRH
1952
1953 rd->rto_loop = next;
b6366f04
SR
1954 }
1955
4bdced5c 1956 return -1;
b6366f04
SR
1957}
1958
4bdced5c
SRRH
1959static inline bool rto_start_trylock(atomic_t *v)
1960{
1961 return !atomic_cmpxchg_acquire(v, 0, 1);
1962}
b6366f04 1963
4bdced5c 1964static inline void rto_start_unlock(atomic_t *v)
b6366f04 1965{
4bdced5c
SRRH
1966 atomic_set_release(v, 0);
1967}
b6366f04 1968
4bdced5c
SRRH
1969static void tell_cpu_to_push(struct rq *rq)
1970{
1971 int cpu = -1;
b6366f04 1972
4bdced5c
SRRH
1973 /* Keep the loop going if the IPI is currently active */
1974 atomic_inc(&rq->rd->rto_loop_next);
b6366f04 1975
4bdced5c
SRRH
1976 /* Only one CPU can initiate a loop at a time */
1977 if (!rto_start_trylock(&rq->rd->rto_loop_start))
b6366f04
SR
1978 return;
1979
4bdced5c 1980 raw_spin_lock(&rq->rd->rto_lock);
b6366f04 1981
4bdced5c
SRRH
1982 /*
1983 * The rto_cpu is updated under the lock, if it has a valid cpu
1984 * then the IPI is still running and will continue due to the
1985 * update to loop_next, and nothing needs to be done here.
1986 * Otherwise it is finishing up and an ipi needs to be sent.
1987 */
1988 if (rq->rd->rto_cpu < 0)
ad0f1d9d 1989 cpu = rto_next_cpu(rq->rd);
4bdced5c
SRRH
1990
1991 raw_spin_unlock(&rq->rd->rto_lock);
1992
1993 rto_start_unlock(&rq->rd->rto_loop_start);
1994
364f5665
SRV
1995 if (cpu >= 0) {
1996 /* Make sure the rd does not get freed while pushing */
1997 sched_get_rd(rq->rd);
4bdced5c 1998 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
364f5665 1999 }
b6366f04
SR
2000}
2001
2002/* Called from hardirq context */
4bdced5c 2003void rto_push_irq_work_func(struct irq_work *work)
b6366f04 2004{
ad0f1d9d
SRV
2005 struct root_domain *rd =
2006 container_of(work, struct root_domain, rto_push_work);
4bdced5c 2007 struct rq *rq;
b6366f04
SR
2008 int cpu;
2009
4bdced5c 2010 rq = this_rq();
b6366f04 2011
4bdced5c
SRRH
2012 /*
2013 * We do not need to grab the lock to check for has_pushable_tasks.
2014 * When it gets updated, a check is made if a push is possible.
2015 */
b6366f04
SR
2016 if (has_pushable_tasks(rq)) {
2017 raw_spin_lock(&rq->lock);
4bdced5c 2018 push_rt_tasks(rq);
b6366f04
SR
2019 raw_spin_unlock(&rq->lock);
2020 }
2021
ad0f1d9d 2022 raw_spin_lock(&rd->rto_lock);
b6366f04 2023
4bdced5c 2024 /* Pass the IPI to the next rt overloaded queue */
ad0f1d9d 2025 cpu = rto_next_cpu(rd);
b6366f04 2026
ad0f1d9d 2027 raw_spin_unlock(&rd->rto_lock);
b6366f04 2028
364f5665
SRV
2029 if (cpu < 0) {
2030 sched_put_rd(rd);
b6366f04 2031 return;
364f5665 2032 }
b6366f04 2033
b6366f04 2034 /* Try the next RT overloaded CPU */
ad0f1d9d 2035 irq_work_queue_on(&rd->rto_push_work, cpu);
b6366f04
SR
2036}
2037#endif /* HAVE_RT_PUSH_IPI */
2038
8046d680 2039static void pull_rt_task(struct rq *this_rq)
f65eda4f 2040{
8046d680
PZ
2041 int this_cpu = this_rq->cpu, cpu;
2042 bool resched = false;
a8728944 2043 struct task_struct *p;
f65eda4f 2044 struct rq *src_rq;
f73c52a5 2045 int rt_overload_count = rt_overloaded(this_rq);
f65eda4f 2046
f73c52a5 2047 if (likely(!rt_overload_count))
8046d680 2048 return;
f65eda4f 2049
7c3f2ab7
PZ
2050 /*
2051 * Match the barrier from rt_set_overloaded; this guarantees that if we
2052 * see overloaded we must also see the rto_mask bit.
2053 */
2054 smp_rmb();
2055
f73c52a5
SR
2056 /* If we are the only overloaded CPU do nothing */
2057 if (rt_overload_count == 1 &&
2058 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2059 return;
2060
b6366f04
SR
2061#ifdef HAVE_RT_PUSH_IPI
2062 if (sched_feat(RT_PUSH_IPI)) {
2063 tell_cpu_to_push(this_rq);
8046d680 2064 return;
b6366f04
SR
2065 }
2066#endif
2067
c6c4927b 2068 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
2069 if (this_cpu == cpu)
2070 continue;
2071
2072 src_rq = cpu_rq(cpu);
74ab8e4f
GH
2073
2074 /*
2075 * Don't bother taking the src_rq->lock if the next highest
2076 * task is known to be lower-priority than our current task.
2077 * This may look racy, but if this value is about to go
2078 * logically higher, the src_rq will push this task away.
2079 * And if its going logically lower, we do not care
2080 */
2081 if (src_rq->rt.highest_prio.next >=
2082 this_rq->rt.highest_prio.curr)
2083 continue;
2084
f65eda4f
SR
2085 /*
2086 * We can potentially drop this_rq's lock in
2087 * double_lock_balance, and another CPU could
a8728944 2088 * alter this_rq
f65eda4f 2089 */
a8728944 2090 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
2091
2092 /*
e23ee747
KT
2093 * We can pull only a task, which is pushable
2094 * on its rq, and no others.
f65eda4f 2095 */
e23ee747 2096 p = pick_highest_pushable_task(src_rq, this_cpu);
f65eda4f
SR
2097
2098 /*
2099 * Do we have an RT task that preempts
2100 * the to-be-scheduled task?
2101 */
a8728944 2102 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 2103 WARN_ON(p == src_rq->curr);
da0c1e65 2104 WARN_ON(!task_on_rq_queued(p));
f65eda4f
SR
2105
2106 /*
2107 * There's a chance that p is higher in priority
2108 * than what's currently running on its cpu.
2109 * This is just that p is wakeing up and hasn't
2110 * had a chance to schedule. We only pull
2111 * p if it is lower in priority than the
a8728944 2112 * current task on the run queue
f65eda4f 2113 */
a8728944 2114 if (p->prio < src_rq->curr->prio)
614ee1f6 2115 goto skip;
f65eda4f 2116
8046d680 2117 resched = true;
f65eda4f
SR
2118
2119 deactivate_task(src_rq, p, 0);
2120 set_task_cpu(p, this_cpu);
2121 activate_task(this_rq, p, 0);
2122 /*
2123 * We continue with the search, just in
2124 * case there's an even higher prio task
25985edc 2125 * in another runqueue. (low likelihood
f65eda4f 2126 * but possible)
f65eda4f 2127 */
f65eda4f 2128 }
49246274 2129skip:
1b12bbc7 2130 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
2131 }
2132
8046d680
PZ
2133 if (resched)
2134 resched_curr(this_rq);
f65eda4f
SR
2135}
2136
8ae121ac
GH
2137/*
2138 * If we are not running and we are not going to reschedule soon, we should
2139 * try to push tasks away now
2140 */
efbbd05a 2141static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 2142{
9a897c5a 2143 if (!task_running(rq, p) &&
8ae121ac 2144 !test_tsk_need_resched(rq->curr) &&
4b53a341 2145 p->nr_cpus_allowed > 1 &&
1baca4ce 2146 (dl_task(rq->curr) || rt_task(rq->curr)) &&
4b53a341 2147 (rq->curr->nr_cpus_allowed < 2 ||
3be209a8 2148 rq->curr->prio <= p->prio))
4642dafd
SR
2149 push_rt_tasks(rq);
2150}
2151
bdd7c81b 2152/* Assumes rq->lock is held */
1f11eb6a 2153static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
2154{
2155 if (rq->rt.overloaded)
2156 rt_set_overload(rq);
6e0534f2 2157
7def2be1
PZ
2158 __enable_runtime(rq);
2159
e864c499 2160 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
2161}
2162
2163/* Assumes rq->lock is held */
1f11eb6a 2164static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
2165{
2166 if (rq->rt.overloaded)
2167 rt_clear_overload(rq);
6e0534f2 2168
7def2be1
PZ
2169 __disable_runtime(rq);
2170
6e0534f2 2171 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 2172}
cb469845
SR
2173
2174/*
2175 * When switch from the rt queue, we bring ourselves to a position
2176 * that we might want to pull RT tasks from other runqueues.
2177 */
da7a735e 2178static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
2179{
2180 /*
2181 * If there are other RT tasks then we will reschedule
2182 * and the scheduling of the other RT tasks will handle
2183 * the balancing. But if we are the last RT task
2184 * we may need to handle the pulling of RT tasks
2185 * now.
2186 */
da0c1e65 2187 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
1158ddb5
KT
2188 return;
2189
fd7a4bed 2190 queue_pull_task(rq);
cb469845 2191}
3d8cbdf8 2192
11c785b7 2193void __init init_sched_rt_class(void)
3d8cbdf8
RR
2194{
2195 unsigned int i;
2196
029632fb 2197 for_each_possible_cpu(i) {
eaa95840 2198 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 2199 GFP_KERNEL, cpu_to_node(i));
029632fb 2200 }
3d8cbdf8 2201}
cb469845
SR
2202#endif /* CONFIG_SMP */
2203
2204/*
2205 * When switching a task to RT, we may overload the runqueue
2206 * with RT tasks. In this case we try to push them off to
2207 * other runqueues.
2208 */
da7a735e 2209static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845 2210{
cb469845
SR
2211 /*
2212 * If we are already running, then there's nothing
2213 * that needs to be done. But if we are not running
2214 * we may need to preempt the current running task.
2215 * If that current running task is also an RT task
2216 * then see if we can move to another run queue.
2217 */
da0c1e65 2218 if (task_on_rq_queued(p) && rq->curr != p) {
cb469845 2219#ifdef CONFIG_SMP
4b53a341 2220 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
fd7a4bed 2221 queue_push_tasks(rq);
619bd4a7 2222#endif /* CONFIG_SMP */
2fe25826 2223 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
8875125e 2224 resched_curr(rq);
cb469845
SR
2225 }
2226}
2227
2228/*
2229 * Priority of the task has changed. This may cause
2230 * us to initiate a push or pull.
2231 */
da7a735e
PZ
2232static void
2233prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 2234{
da0c1e65 2235 if (!task_on_rq_queued(p))
da7a735e
PZ
2236 return;
2237
2238 if (rq->curr == p) {
cb469845
SR
2239#ifdef CONFIG_SMP
2240 /*
2241 * If our priority decreases while running, we
2242 * may need to pull tasks to this runqueue.
2243 */
2244 if (oldprio < p->prio)
fd7a4bed
PZ
2245 queue_pull_task(rq);
2246
cb469845
SR
2247 /*
2248 * If there's a higher priority task waiting to run
fd7a4bed 2249 * then reschedule.
cb469845 2250 */
fd7a4bed 2251 if (p->prio > rq->rt.highest_prio.curr)
8875125e 2252 resched_curr(rq);
cb469845
SR
2253#else
2254 /* For UP simply resched on drop of prio */
2255 if (oldprio < p->prio)
8875125e 2256 resched_curr(rq);
e8fa1362 2257#endif /* CONFIG_SMP */
cb469845
SR
2258 } else {
2259 /*
2260 * This task is not running, but if it is
2261 * greater than the current running task
2262 * then reschedule.
2263 */
2264 if (p->prio < rq->curr->prio)
8875125e 2265 resched_curr(rq);
cb469845
SR
2266 }
2267}
2268
b18b6a9c 2269#ifdef CONFIG_POSIX_TIMERS
78f2c7db
PZ
2270static void watchdog(struct rq *rq, struct task_struct *p)
2271{
2272 unsigned long soft, hard;
2273
78d7d407
JS
2274 /* max may change after cur was read, this will be fixed next tick */
2275 soft = task_rlimit(p, RLIMIT_RTTIME);
2276 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
2277
2278 if (soft != RLIM_INFINITY) {
2279 unsigned long next;
2280
57d2aa00
YX
2281 if (p->rt.watchdog_stamp != jiffies) {
2282 p->rt.timeout++;
2283 p->rt.watchdog_stamp = jiffies;
2284 }
2285
78f2c7db 2286 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 2287 if (p->rt.timeout > next)
f06febc9 2288 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
2289 }
2290}
b18b6a9c
NP
2291#else
2292static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2293#endif
bb44e5d1 2294
8f4d37ec 2295static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 2296{
454c7999
CC
2297 struct sched_rt_entity *rt_se = &p->rt;
2298
67e2be02
PZ
2299 update_curr_rt(rq);
2300
78f2c7db
PZ
2301 watchdog(rq, p);
2302
bb44e5d1
IM
2303 /*
2304 * RR tasks need a special form of timeslice management.
2305 * FIFO tasks have no timeslices.
2306 */
2307 if (p->policy != SCHED_RR)
2308 return;
2309
fa717060 2310 if (--p->rt.time_slice)
bb44e5d1
IM
2311 return;
2312
ce0dbbbb 2313 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 2314
98fbc798 2315 /*
e9aa39bb
LB
2316 * Requeue to the end of queue if we (and all of our ancestors) are not
2317 * the only element on the queue
98fbc798 2318 */
454c7999
CC
2319 for_each_sched_rt_entity(rt_se) {
2320 if (rt_se->run_list.prev != rt_se->run_list.next) {
2321 requeue_task_rt(rq, p, 0);
8aa6f0eb 2322 resched_curr(rq);
454c7999
CC
2323 return;
2324 }
98fbc798 2325 }
bb44e5d1
IM
2326}
2327
83b699ed
SV
2328static void set_curr_task_rt(struct rq *rq)
2329{
2330 struct task_struct *p = rq->curr;
2331
78becc27 2332 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
2333
2334 /* The running task is never eligible for pushing */
2335 dequeue_pushable_task(rq, p);
83b699ed
SV
2336}
2337
6d686f45 2338static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
2339{
2340 /*
2341 * Time slice is 0 for SCHED_FIFO tasks
2342 */
2343 if (task->policy == SCHED_RR)
ce0dbbbb 2344 return sched_rr_timeslice;
0d721cea
PW
2345 else
2346 return 0;
2347}
2348
029632fb 2349const struct sched_class rt_sched_class = {
5522d5d5 2350 .next = &fair_sched_class,
bb44e5d1
IM
2351 .enqueue_task = enqueue_task_rt,
2352 .dequeue_task = dequeue_task_rt,
2353 .yield_task = yield_task_rt,
2354
2355 .check_preempt_curr = check_preempt_curr_rt,
2356
2357 .pick_next_task = pick_next_task_rt,
2358 .put_prev_task = put_prev_task_rt,
2359
681f3e68 2360#ifdef CONFIG_SMP
4ce72a2c
LZ
2361 .select_task_rq = select_task_rq_rt,
2362
6c37067e 2363 .set_cpus_allowed = set_cpus_allowed_common,
1f11eb6a
GH
2364 .rq_online = rq_online_rt,
2365 .rq_offline = rq_offline_rt,
efbbd05a 2366 .task_woken = task_woken_rt,
cb469845 2367 .switched_from = switched_from_rt,
681f3e68 2368#endif
bb44e5d1 2369
83b699ed 2370 .set_curr_task = set_curr_task_rt,
bb44e5d1 2371 .task_tick = task_tick_rt,
cb469845 2372
0d721cea
PW
2373 .get_rr_interval = get_rr_interval_rt,
2374
cb469845
SR
2375 .prio_changed = prio_changed_rt,
2376 .switched_to = switched_to_rt,
6e998916
SG
2377
2378 .update_curr = update_curr_rt,
bb44e5d1 2379};
ada18de2 2380
8887cd99
NP
2381#ifdef CONFIG_RT_GROUP_SCHED
2382/*
2383 * Ensure that the real time constraints are schedulable.
2384 */
2385static DEFINE_MUTEX(rt_constraints_mutex);
2386
2387/* Must be called with tasklist_lock held */
2388static inline int tg_has_rt_tasks(struct task_group *tg)
2389{
2390 struct task_struct *g, *p;
2391
2392 /*
2393 * Autogroups do not have RT tasks; see autogroup_create().
2394 */
2395 if (task_group_is_autogroup(tg))
2396 return 0;
2397
2398 for_each_process_thread(g, p) {
2399 if (rt_task(p) && task_group(p) == tg)
2400 return 1;
2401 }
2402
2403 return 0;
2404}
2405
2406struct rt_schedulable_data {
2407 struct task_group *tg;
2408 u64 rt_period;
2409 u64 rt_runtime;
2410};
2411
2412static int tg_rt_schedulable(struct task_group *tg, void *data)
2413{
2414 struct rt_schedulable_data *d = data;
2415 struct task_group *child;
2416 unsigned long total, sum = 0;
2417 u64 period, runtime;
2418
2419 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2420 runtime = tg->rt_bandwidth.rt_runtime;
2421
2422 if (tg == d->tg) {
2423 period = d->rt_period;
2424 runtime = d->rt_runtime;
2425 }
2426
2427 /*
2428 * Cannot have more runtime than the period.
2429 */
2430 if (runtime > period && runtime != RUNTIME_INF)
2431 return -EINVAL;
2432
2433 /*
2434 * Ensure we don't starve existing RT tasks.
2435 */
2436 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2437 return -EBUSY;
2438
2439 total = to_ratio(period, runtime);
2440
2441 /*
2442 * Nobody can have more than the global setting allows.
2443 */
2444 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2445 return -EINVAL;
2446
2447 /*
2448 * The sum of our children's runtime should not exceed our own.
2449 */
2450 list_for_each_entry_rcu(child, &tg->children, siblings) {
2451 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2452 runtime = child->rt_bandwidth.rt_runtime;
2453
2454 if (child == d->tg) {
2455 period = d->rt_period;
2456 runtime = d->rt_runtime;
2457 }
2458
2459 sum += to_ratio(period, runtime);
2460 }
2461
2462 if (sum > total)
2463 return -EINVAL;
2464
2465 return 0;
2466}
2467
2468static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2469{
2470 int ret;
2471
2472 struct rt_schedulable_data data = {
2473 .tg = tg,
2474 .rt_period = period,
2475 .rt_runtime = runtime,
2476 };
2477
2478 rcu_read_lock();
2479 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2480 rcu_read_unlock();
2481
2482 return ret;
2483}
2484
2485static int tg_set_rt_bandwidth(struct task_group *tg,
2486 u64 rt_period, u64 rt_runtime)
2487{
2488 int i, err = 0;
2489
2490 /*
2491 * Disallowing the root group RT runtime is BAD, it would disallow the
2492 * kernel creating (and or operating) RT threads.
2493 */
2494 if (tg == &root_task_group && rt_runtime == 0)
2495 return -EINVAL;
2496
2497 /* No period doesn't make any sense. */
2498 if (rt_period == 0)
2499 return -EINVAL;
2500
2501 mutex_lock(&rt_constraints_mutex);
2502 read_lock(&tasklist_lock);
2503 err = __rt_schedulable(tg, rt_period, rt_runtime);
2504 if (err)
2505 goto unlock;
2506
2507 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2508 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2509 tg->rt_bandwidth.rt_runtime = rt_runtime;
2510
2511 for_each_possible_cpu(i) {
2512 struct rt_rq *rt_rq = tg->rt_rq[i];
2513
2514 raw_spin_lock(&rt_rq->rt_runtime_lock);
2515 rt_rq->rt_runtime = rt_runtime;
2516 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2517 }
2518 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2519unlock:
2520 read_unlock(&tasklist_lock);
2521 mutex_unlock(&rt_constraints_mutex);
2522
2523 return err;
2524}
2525
2526int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2527{
2528 u64 rt_runtime, rt_period;
2529
2530 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2531 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2532 if (rt_runtime_us < 0)
2533 rt_runtime = RUNTIME_INF;
2534
2535 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2536}
2537
2538long sched_group_rt_runtime(struct task_group *tg)
2539{
2540 u64 rt_runtime_us;
2541
2542 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2543 return -1;
2544
2545 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2546 do_div(rt_runtime_us, NSEC_PER_USEC);
2547 return rt_runtime_us;
2548}
2549
2550int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2551{
2552 u64 rt_runtime, rt_period;
2553
2554 rt_period = rt_period_us * NSEC_PER_USEC;
2555 rt_runtime = tg->rt_bandwidth.rt_runtime;
2556
2557 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2558}
2559
2560long sched_group_rt_period(struct task_group *tg)
2561{
2562 u64 rt_period_us;
2563
2564 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2565 do_div(rt_period_us, NSEC_PER_USEC);
2566 return rt_period_us;
2567}
2568
2569static int sched_rt_global_constraints(void)
2570{
2571 int ret = 0;
2572
2573 mutex_lock(&rt_constraints_mutex);
2574 read_lock(&tasklist_lock);
2575 ret = __rt_schedulable(NULL, 0, 0);
2576 read_unlock(&tasklist_lock);
2577 mutex_unlock(&rt_constraints_mutex);
2578
2579 return ret;
2580}
2581
2582int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2583{
2584 /* Don't accept realtime tasks when there is no way for them to run */
2585 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2586 return 0;
2587
2588 return 1;
2589}
2590
2591#else /* !CONFIG_RT_GROUP_SCHED */
2592static int sched_rt_global_constraints(void)
2593{
2594 unsigned long flags;
2595 int i;
2596
2597 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2598 for_each_possible_cpu(i) {
2599 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2600
2601 raw_spin_lock(&rt_rq->rt_runtime_lock);
2602 rt_rq->rt_runtime = global_rt_runtime();
2603 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2604 }
2605 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2606
2607 return 0;
2608}
2609#endif /* CONFIG_RT_GROUP_SCHED */
2610
2611static int sched_rt_global_validate(void)
2612{
2613 if (sysctl_sched_rt_period <= 0)
2614 return -EINVAL;
2615
2616 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2617 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2618 return -EINVAL;
2619
2620 return 0;
2621}
2622
2623static void sched_rt_do_global(void)
2624{
2625 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2626 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2627}
2628
2629int sched_rt_handler(struct ctl_table *table, int write,
2630 void __user *buffer, size_t *lenp,
2631 loff_t *ppos)
2632{
2633 int old_period, old_runtime;
2634 static DEFINE_MUTEX(mutex);
2635 int ret;
2636
2637 mutex_lock(&mutex);
2638 old_period = sysctl_sched_rt_period;
2639 old_runtime = sysctl_sched_rt_runtime;
2640
2641 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2642
2643 if (!ret && write) {
2644 ret = sched_rt_global_validate();
2645 if (ret)
2646 goto undo;
2647
2648 ret = sched_dl_global_validate();
2649 if (ret)
2650 goto undo;
2651
2652 ret = sched_rt_global_constraints();
2653 if (ret)
2654 goto undo;
2655
2656 sched_rt_do_global();
2657 sched_dl_do_global();
2658 }
2659 if (0) {
2660undo:
2661 sysctl_sched_rt_period = old_period;
2662 sysctl_sched_rt_runtime = old_runtime;
2663 }
2664 mutex_unlock(&mutex);
2665
2666 return ret;
2667}
2668
2669int sched_rr_handler(struct ctl_table *table, int write,
2670 void __user *buffer, size_t *lenp,
2671 loff_t *ppos)
2672{
2673 int ret;
2674 static DEFINE_MUTEX(mutex);
2675
2676 mutex_lock(&mutex);
2677 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2678 /*
2679 * Make sure that internally we keep jiffies.
2680 * Also, writing zero resets the timeslice to default:
2681 */
2682 if (!ret && write) {
2683 sched_rr_timeslice =
2684 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2685 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2686 }
2687 mutex_unlock(&mutex);
2688 return ret;
2689}
2690
ada18de2
PZ
2691#ifdef CONFIG_SCHED_DEBUG
2692extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2693
029632fb 2694void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2695{
ec514c48 2696 rt_rq_iter_t iter;
ada18de2
PZ
2697 struct rt_rq *rt_rq;
2698
2699 rcu_read_lock();
ec514c48 2700 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2701 print_rt_rq(m, cpu, rt_rq);
2702 rcu_read_unlock();
2703}
55e12e5e 2704#endif /* CONFIG_SCHED_DEBUG */