psi: Add a missing SPDX license header
[linux-block.git] / kernel / sched / psi.c
CommitLineData
2fb75e1b 1// SPDX-License-Identifier: GPL-2.0
eb414681
JW
2/*
3 * Pressure stall information for CPU, memory and IO
4 *
5 * Copyright (c) 2018 Facebook, Inc.
6 * Author: Johannes Weiner <hannes@cmpxchg.org>
7 *
0e94682b
SB
8 * Polling support by Suren Baghdasaryan <surenb@google.com>
9 * Copyright (c) 2018 Google, Inc.
10 *
eb414681
JW
11 * When CPU, memory and IO are contended, tasks experience delays that
12 * reduce throughput and introduce latencies into the workload. Memory
13 * and IO contention, in addition, can cause a full loss of forward
14 * progress in which the CPU goes idle.
15 *
16 * This code aggregates individual task delays into resource pressure
17 * metrics that indicate problems with both workload health and
18 * resource utilization.
19 *
20 * Model
21 *
22 * The time in which a task can execute on a CPU is our baseline for
23 * productivity. Pressure expresses the amount of time in which this
24 * potential cannot be realized due to resource contention.
25 *
26 * This concept of productivity has two components: the workload and
27 * the CPU. To measure the impact of pressure on both, we define two
28 * contention states for a resource: SOME and FULL.
29 *
30 * In the SOME state of a given resource, one or more tasks are
31 * delayed on that resource. This affects the workload's ability to
32 * perform work, but the CPU may still be executing other tasks.
33 *
34 * In the FULL state of a given resource, all non-idle tasks are
35 * delayed on that resource such that nobody is advancing and the CPU
36 * goes idle. This leaves both workload and CPU unproductive.
37 *
e7fcd762
CZ
38 * Naturally, the FULL state doesn't exist for the CPU resource at the
39 * system level, but exist at the cgroup level, means all non-idle tasks
40 * in a cgroup are delayed on the CPU resource which used by others outside
41 * of the cgroup or throttled by the cgroup cpu.max configuration.
eb414681
JW
42 *
43 * SOME = nr_delayed_tasks != 0
44 * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
45 *
46 * The percentage of wallclock time spent in those compound stall
47 * states gives pressure numbers between 0 and 100 for each resource,
48 * where the SOME percentage indicates workload slowdowns and the FULL
49 * percentage indicates reduced CPU utilization:
50 *
51 * %SOME = time(SOME) / period
52 * %FULL = time(FULL) / period
53 *
54 * Multiple CPUs
55 *
56 * The more tasks and available CPUs there are, the more work can be
57 * performed concurrently. This means that the potential that can go
58 * unrealized due to resource contention *also* scales with non-idle
59 * tasks and CPUs.
60 *
61 * Consider a scenario where 257 number crunching tasks are trying to
62 * run concurrently on 256 CPUs. If we simply aggregated the task
63 * states, we would have to conclude a CPU SOME pressure number of
64 * 100%, since *somebody* is waiting on a runqueue at all
65 * times. However, that is clearly not the amount of contention the
3b03706f 66 * workload is experiencing: only one out of 256 possible execution
eb414681
JW
67 * threads will be contended at any given time, or about 0.4%.
68 *
69 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
70 * given time *one* of the tasks is delayed due to a lack of memory.
71 * Again, looking purely at the task state would yield a memory FULL
72 * pressure number of 0%, since *somebody* is always making forward
73 * progress. But again this wouldn't capture the amount of execution
74 * potential lost, which is 1 out of 4 CPUs, or 25%.
75 *
76 * To calculate wasted potential (pressure) with multiple processors,
77 * we have to base our calculation on the number of non-idle tasks in
78 * conjunction with the number of available CPUs, which is the number
79 * of potential execution threads. SOME becomes then the proportion of
3b03706f 80 * delayed tasks to possible threads, and FULL is the share of possible
eb414681
JW
81 * threads that are unproductive due to delays:
82 *
83 * threads = min(nr_nonidle_tasks, nr_cpus)
84 * SOME = min(nr_delayed_tasks / threads, 1)
85 * FULL = (threads - min(nr_running_tasks, threads)) / threads
86 *
87 * For the 257 number crunchers on 256 CPUs, this yields:
88 *
89 * threads = min(257, 256)
90 * SOME = min(1 / 256, 1) = 0.4%
91 * FULL = (256 - min(257, 256)) / 256 = 0%
92 *
93 * For the 1 out of 4 memory-delayed tasks, this yields:
94 *
95 * threads = min(4, 4)
96 * SOME = min(1 / 4, 1) = 25%
97 * FULL = (4 - min(3, 4)) / 4 = 25%
98 *
99 * [ Substitute nr_cpus with 1, and you can see that it's a natural
100 * extension of the single-CPU model. ]
101 *
102 * Implementation
103 *
104 * To assess the precise time spent in each such state, we would have
105 * to freeze the system on task changes and start/stop the state
106 * clocks accordingly. Obviously that doesn't scale in practice.
107 *
108 * Because the scheduler aims to distribute the compute load evenly
109 * among the available CPUs, we can track task state locally to each
110 * CPU and, at much lower frequency, extrapolate the global state for
111 * the cumulative stall times and the running averages.
112 *
113 * For each runqueue, we track:
114 *
115 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
116 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
117 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
118 *
119 * and then periodically aggregate:
120 *
121 * tNONIDLE = sum(tNONIDLE[i])
122 *
123 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
124 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
125 *
126 * %SOME = tSOME / period
127 * %FULL = tFULL / period
128 *
129 * This gives us an approximation of pressure that is practical
130 * cost-wise, yet way more sensitive and accurate than periodic
131 * sampling of the aggregate task states would be.
132 */
133
1b69ac6b 134#include "../workqueue_internal.h"
eb414681
JW
135#include <linux/sched/loadavg.h>
136#include <linux/seq_file.h>
137#include <linux/proc_fs.h>
138#include <linux/seqlock.h>
0e94682b 139#include <linux/uaccess.h>
eb414681
JW
140#include <linux/cgroup.h>
141#include <linux/module.h>
142#include <linux/sched.h>
0e94682b
SB
143#include <linux/ctype.h>
144#include <linux/file.h>
145#include <linux/poll.h>
eb414681
JW
146#include <linux/psi.h>
147#include "sched.h"
148
149static int psi_bug __read_mostly;
150
e0c27447 151DEFINE_STATIC_KEY_FALSE(psi_disabled);
3958e2d0 152DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
e0c27447
JW
153
154#ifdef CONFIG_PSI_DEFAULT_DISABLED
9289c5e6 155static bool psi_enable;
e0c27447 156#else
9289c5e6 157static bool psi_enable = true;
e0c27447
JW
158#endif
159static int __init setup_psi(char *str)
160{
161 return kstrtobool(str, &psi_enable) == 0;
162}
163__setup("psi=", setup_psi);
eb414681
JW
164
165/* Running averages - we need to be higher-res than loadavg */
166#define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
167#define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
168#define EXP_60s 1981 /* 1/exp(2s/60s) */
169#define EXP_300s 2034 /* 1/exp(2s/300s) */
170
0e94682b
SB
171/* PSI trigger definitions */
172#define WINDOW_MIN_US 500000 /* Min window size is 500ms */
173#define WINDOW_MAX_US 10000000 /* Max window size is 10s */
174#define UPDATES_PER_WINDOW 10 /* 10 updates per window */
175
eb414681
JW
176/* Sampling frequency in nanoseconds */
177static u64 psi_period __read_mostly;
178
179/* System-level pressure and stall tracking */
180static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
df5ba5be 181struct psi_group psi_system = {
eb414681
JW
182 .pcpu = &system_group_pcpu,
183};
184
bcc78db6 185static void psi_avgs_work(struct work_struct *work);
eb414681 186
8f91efd8
ZH
187static void poll_timer_fn(struct timer_list *t);
188
eb414681
JW
189static void group_init(struct psi_group *group)
190{
191 int cpu;
192
193 for_each_possible_cpu(cpu)
194 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
3dfbe25c
JW
195 group->avg_last_update = sched_clock();
196 group->avg_next_update = group->avg_last_update + psi_period;
bcc78db6
SB
197 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
198 mutex_init(&group->avgs_lock);
0e94682b 199 /* Init trigger-related members */
0e94682b
SB
200 mutex_init(&group->trigger_lock);
201 INIT_LIST_HEAD(&group->triggers);
202 memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
203 group->poll_states = 0;
204 group->poll_min_period = U32_MAX;
205 memset(group->polling_total, 0, sizeof(group->polling_total));
206 group->polling_next_update = ULLONG_MAX;
207 group->polling_until = 0;
8f91efd8
ZH
208 init_waitqueue_head(&group->poll_wait);
209 timer_setup(&group->poll_timer, poll_timer_fn, 0);
461daba0 210 rcu_assign_pointer(group->poll_task, NULL);
eb414681
JW
211}
212
213void __init psi_init(void)
214{
e0c27447
JW
215 if (!psi_enable) {
216 static_branch_enable(&psi_disabled);
eb414681 217 return;
e0c27447 218 }
eb414681 219
3958e2d0
SB
220 if (!cgroup_psi_enabled())
221 static_branch_disable(&psi_cgroups_enabled);
222
eb414681
JW
223 psi_period = jiffies_to_nsecs(PSI_FREQ);
224 group_init(&psi_system);
225}
226
227static bool test_state(unsigned int *tasks, enum psi_states state)
228{
229 switch (state) {
230 case PSI_IO_SOME:
fddc8bab 231 return unlikely(tasks[NR_IOWAIT]);
eb414681 232 case PSI_IO_FULL:
fddc8bab 233 return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]);
eb414681 234 case PSI_MEM_SOME:
fddc8bab 235 return unlikely(tasks[NR_MEMSTALL]);
eb414681 236 case PSI_MEM_FULL:
fddc8bab 237 return unlikely(tasks[NR_MEMSTALL] && !tasks[NR_RUNNING]);
eb414681 238 case PSI_CPU_SOME:
fddc8bab 239 return unlikely(tasks[NR_RUNNING] > tasks[NR_ONCPU]);
e7fcd762 240 case PSI_CPU_FULL:
fddc8bab 241 return unlikely(tasks[NR_RUNNING] && !tasks[NR_ONCPU]);
eb414681
JW
242 case PSI_NONIDLE:
243 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
244 tasks[NR_RUNNING];
245 default:
246 return false;
247 }
248}
249
0e94682b
SB
250static void get_recent_times(struct psi_group *group, int cpu,
251 enum psi_aggregators aggregator, u32 *times,
333f3017 252 u32 *pchanged_states)
eb414681
JW
253{
254 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
eb414681 255 u64 now, state_start;
33b2d630 256 enum psi_states s;
eb414681 257 unsigned int seq;
33b2d630 258 u32 state_mask;
eb414681 259
333f3017
SB
260 *pchanged_states = 0;
261
eb414681
JW
262 /* Snapshot a coherent view of the CPU state */
263 do {
264 seq = read_seqcount_begin(&groupc->seq);
265 now = cpu_clock(cpu);
266 memcpy(times, groupc->times, sizeof(groupc->times));
33b2d630 267 state_mask = groupc->state_mask;
eb414681
JW
268 state_start = groupc->state_start;
269 } while (read_seqcount_retry(&groupc->seq, seq));
270
271 /* Calculate state time deltas against the previous snapshot */
272 for (s = 0; s < NR_PSI_STATES; s++) {
273 u32 delta;
274 /*
275 * In addition to already concluded states, we also
276 * incorporate currently active states on the CPU,
277 * since states may last for many sampling periods.
278 *
279 * This way we keep our delta sampling buckets small
280 * (u32) and our reported pressure close to what's
281 * actually happening.
282 */
33b2d630 283 if (state_mask & (1 << s))
eb414681
JW
284 times[s] += now - state_start;
285
0e94682b
SB
286 delta = times[s] - groupc->times_prev[aggregator][s];
287 groupc->times_prev[aggregator][s] = times[s];
eb414681
JW
288
289 times[s] = delta;
333f3017
SB
290 if (delta)
291 *pchanged_states |= (1 << s);
eb414681
JW
292 }
293}
294
295static void calc_avgs(unsigned long avg[3], int missed_periods,
296 u64 time, u64 period)
297{
298 unsigned long pct;
299
300 /* Fill in zeroes for periods of no activity */
301 if (missed_periods) {
302 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
303 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
304 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
305 }
306
307 /* Sample the most recent active period */
308 pct = div_u64(time * 100, period);
309 pct *= FIXED_1;
310 avg[0] = calc_load(avg[0], EXP_10s, pct);
311 avg[1] = calc_load(avg[1], EXP_60s, pct);
312 avg[2] = calc_load(avg[2], EXP_300s, pct);
313}
314
0e94682b
SB
315static void collect_percpu_times(struct psi_group *group,
316 enum psi_aggregators aggregator,
317 u32 *pchanged_states)
eb414681
JW
318{
319 u64 deltas[NR_PSI_STATES - 1] = { 0, };
eb414681 320 unsigned long nonidle_total = 0;
333f3017 321 u32 changed_states = 0;
eb414681
JW
322 int cpu;
323 int s;
324
eb414681
JW
325 /*
326 * Collect the per-cpu time buckets and average them into a
327 * single time sample that is normalized to wallclock time.
328 *
329 * For averaging, each CPU is weighted by its non-idle time in
330 * the sampling period. This eliminates artifacts from uneven
331 * loading, or even entirely idle CPUs.
332 */
333 for_each_possible_cpu(cpu) {
334 u32 times[NR_PSI_STATES];
335 u32 nonidle;
333f3017 336 u32 cpu_changed_states;
eb414681 337
0e94682b 338 get_recent_times(group, cpu, aggregator, times,
333f3017
SB
339 &cpu_changed_states);
340 changed_states |= cpu_changed_states;
eb414681
JW
341
342 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
343 nonidle_total += nonidle;
344
345 for (s = 0; s < PSI_NONIDLE; s++)
346 deltas[s] += (u64)times[s] * nonidle;
347 }
348
349 /*
350 * Integrate the sample into the running statistics that are
351 * reported to userspace: the cumulative stall times and the
352 * decaying averages.
353 *
354 * Pressure percentages are sampled at PSI_FREQ. We might be
355 * called more often when the user polls more frequently than
356 * that; we might be called less often when there is no task
357 * activity, thus no data, and clock ticks are sporadic. The
358 * below handles both.
359 */
360
361 /* total= */
362 for (s = 0; s < NR_PSI_STATES - 1; s++)
0e94682b
SB
363 group->total[aggregator][s] +=
364 div_u64(deltas[s], max(nonidle_total, 1UL));
eb414681 365
333f3017
SB
366 if (pchanged_states)
367 *pchanged_states = changed_states;
7fc70a39
SB
368}
369
370static u64 update_averages(struct psi_group *group, u64 now)
371{
372 unsigned long missed_periods = 0;
373 u64 expires, period;
374 u64 avg_next_update;
375 int s;
376
eb414681 377 /* avgX= */
bcc78db6 378 expires = group->avg_next_update;
4e37504d 379 if (now - expires >= psi_period)
eb414681
JW
380 missed_periods = div_u64(now - expires, psi_period);
381
382 /*
383 * The periodic clock tick can get delayed for various
384 * reasons, especially on loaded systems. To avoid clock
385 * drift, we schedule the clock in fixed psi_period intervals.
386 * But the deltas we sample out of the per-cpu buckets above
387 * are based on the actual time elapsing between clock ticks.
388 */
7fc70a39 389 avg_next_update = expires + ((1 + missed_periods) * psi_period);
bcc78db6
SB
390 period = now - (group->avg_last_update + (missed_periods * psi_period));
391 group->avg_last_update = now;
eb414681
JW
392
393 for (s = 0; s < NR_PSI_STATES - 1; s++) {
394 u32 sample;
395
0e94682b 396 sample = group->total[PSI_AVGS][s] - group->avg_total[s];
eb414681
JW
397 /*
398 * Due to the lockless sampling of the time buckets,
399 * recorded time deltas can slip into the next period,
400 * which under full pressure can result in samples in
401 * excess of the period length.
402 *
403 * We don't want to report non-sensical pressures in
404 * excess of 100%, nor do we want to drop such events
405 * on the floor. Instead we punt any overage into the
406 * future until pressure subsides. By doing this we
407 * don't underreport the occurring pressure curve, we
408 * just report it delayed by one period length.
409 *
410 * The error isn't cumulative. As soon as another
411 * delta slips from a period P to P+1, by definition
412 * it frees up its time T in P.
413 */
414 if (sample > period)
415 sample = period;
bcc78db6 416 group->avg_total[s] += sample;
eb414681
JW
417 calc_avgs(group->avg[s], missed_periods, sample, period);
418 }
7fc70a39
SB
419
420 return avg_next_update;
eb414681
JW
421}
422
bcc78db6 423static void psi_avgs_work(struct work_struct *work)
eb414681
JW
424{
425 struct delayed_work *dwork;
426 struct psi_group *group;
333f3017 427 u32 changed_states;
eb414681 428 bool nonidle;
7fc70a39 429 u64 now;
eb414681
JW
430
431 dwork = to_delayed_work(work);
bcc78db6 432 group = container_of(dwork, struct psi_group, avgs_work);
eb414681 433
7fc70a39
SB
434 mutex_lock(&group->avgs_lock);
435
436 now = sched_clock();
437
0e94682b 438 collect_percpu_times(group, PSI_AVGS, &changed_states);
333f3017 439 nonidle = changed_states & (1 << PSI_NONIDLE);
eb414681
JW
440 /*
441 * If there is task activity, periodically fold the per-cpu
442 * times and feed samples into the running averages. If things
443 * are idle and there is no data to process, stop the clock.
444 * Once restarted, we'll catch up the running averages in one
445 * go - see calc_avgs() and missed_periods.
446 */
7fc70a39
SB
447 if (now >= group->avg_next_update)
448 group->avg_next_update = update_averages(group, now);
eb414681
JW
449
450 if (nonidle) {
7fc70a39
SB
451 schedule_delayed_work(dwork, nsecs_to_jiffies(
452 group->avg_next_update - now) + 1);
eb414681 453 }
7fc70a39
SB
454
455 mutex_unlock(&group->avgs_lock);
eb414681
JW
456}
457
3b03706f 458/* Trigger tracking window manipulations */
0e94682b
SB
459static void window_reset(struct psi_window *win, u64 now, u64 value,
460 u64 prev_growth)
461{
462 win->start_time = now;
463 win->start_value = value;
464 win->prev_growth = prev_growth;
465}
466
467/*
468 * PSI growth tracking window update and growth calculation routine.
469 *
470 * This approximates a sliding tracking window by interpolating
471 * partially elapsed windows using historical growth data from the
472 * previous intervals. This minimizes memory requirements (by not storing
473 * all the intermediate values in the previous window) and simplifies
474 * the calculations. It works well because PSI signal changes only in
475 * positive direction and over relatively small window sizes the growth
476 * is close to linear.
477 */
478static u64 window_update(struct psi_window *win, u64 now, u64 value)
479{
480 u64 elapsed;
481 u64 growth;
482
483 elapsed = now - win->start_time;
484 growth = value - win->start_value;
485 /*
486 * After each tracking window passes win->start_value and
487 * win->start_time get reset and win->prev_growth stores
488 * the average per-window growth of the previous window.
489 * win->prev_growth is then used to interpolate additional
490 * growth from the previous window assuming it was linear.
491 */
492 if (elapsed > win->size)
493 window_reset(win, now, value, growth);
494 else {
495 u32 remaining;
496
497 remaining = win->size - elapsed;
c3466952 498 growth += div64_u64(win->prev_growth * remaining, win->size);
0e94682b
SB
499 }
500
501 return growth;
502}
503
504static void init_triggers(struct psi_group *group, u64 now)
505{
506 struct psi_trigger *t;
507
508 list_for_each_entry(t, &group->triggers, node)
509 window_reset(&t->win, now,
510 group->total[PSI_POLL][t->state], 0);
511 memcpy(group->polling_total, group->total[PSI_POLL],
512 sizeof(group->polling_total));
513 group->polling_next_update = now + group->poll_min_period;
514}
515
516static u64 update_triggers(struct psi_group *group, u64 now)
517{
518 struct psi_trigger *t;
519 bool new_stall = false;
520 u64 *total = group->total[PSI_POLL];
521
522 /*
523 * On subsequent updates, calculate growth deltas and let
524 * watchers know when their specified thresholds are exceeded.
525 */
526 list_for_each_entry(t, &group->triggers, node) {
527 u64 growth;
528
529 /* Check for stall activity */
530 if (group->polling_total[t->state] == total[t->state])
531 continue;
532
533 /*
534 * Multiple triggers might be looking at the same state,
535 * remember to update group->polling_total[] once we've
536 * been through all of them. Also remember to extend the
537 * polling time if we see new stall activity.
538 */
539 new_stall = true;
540
541 /* Calculate growth since last update */
542 growth = window_update(&t->win, now, total[t->state]);
543 if (growth < t->threshold)
544 continue;
545
546 /* Limit event signaling to once per window */
547 if (now < t->last_event_time + t->win.size)
548 continue;
549
550 /* Generate an event */
551 if (cmpxchg(&t->event, 0, 1) == 0)
552 wake_up_interruptible(&t->event_wait);
553 t->last_event_time = now;
554 }
555
556 if (new_stall)
557 memcpy(group->polling_total, total,
558 sizeof(group->polling_total));
559
560 return now + group->poll_min_period;
561}
562
461daba0 563/* Schedule polling if it's not already scheduled. */
0e94682b
SB
564static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
565{
461daba0 566 struct task_struct *task;
0e94682b 567
461daba0
SB
568 /*
569 * Do not reschedule if already scheduled.
570 * Possible race with a timer scheduled after this check but before
571 * mod_timer below can be tolerated because group->polling_next_update
572 * will keep updates on schedule.
573 */
574 if (timer_pending(&group->poll_timer))
0e94682b
SB
575 return;
576
577 rcu_read_lock();
578
461daba0 579 task = rcu_dereference(group->poll_task);
0e94682b
SB
580 /*
581 * kworker might be NULL in case psi_trigger_destroy races with
582 * psi_task_change (hotpath) which can't use locks
583 */
461daba0
SB
584 if (likely(task))
585 mod_timer(&group->poll_timer, jiffies + delay);
0e94682b
SB
586
587 rcu_read_unlock();
588}
589
461daba0 590static void psi_poll_work(struct psi_group *group)
0e94682b 591{
0e94682b
SB
592 u32 changed_states;
593 u64 now;
594
0e94682b
SB
595 mutex_lock(&group->trigger_lock);
596
597 now = sched_clock();
598
599 collect_percpu_times(group, PSI_POLL, &changed_states);
600
601 if (changed_states & group->poll_states) {
602 /* Initialize trigger windows when entering polling mode */
603 if (now > group->polling_until)
604 init_triggers(group, now);
605
606 /*
607 * Keep the monitor active for at least the duration of the
608 * minimum tracking window as long as monitor states are
609 * changing.
610 */
611 group->polling_until = now +
612 group->poll_min_period * UPDATES_PER_WINDOW;
613 }
614
615 if (now > group->polling_until) {
616 group->polling_next_update = ULLONG_MAX;
617 goto out;
618 }
619
620 if (now >= group->polling_next_update)
621 group->polling_next_update = update_triggers(group, now);
622
623 psi_schedule_poll_work(group,
624 nsecs_to_jiffies(group->polling_next_update - now) + 1);
625
626out:
627 mutex_unlock(&group->trigger_lock);
628}
629
461daba0
SB
630static int psi_poll_worker(void *data)
631{
632 struct psi_group *group = (struct psi_group *)data;
461daba0 633
2cca5426 634 sched_set_fifo_low(current);
461daba0
SB
635
636 while (true) {
637 wait_event_interruptible(group->poll_wait,
638 atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
639 kthread_should_stop());
640 if (kthread_should_stop())
641 break;
642
643 psi_poll_work(group);
644 }
645 return 0;
646}
647
648static void poll_timer_fn(struct timer_list *t)
649{
650 struct psi_group *group = from_timer(group, t, poll_timer);
651
652 atomic_set(&group->poll_wakeup, 1);
653 wake_up_interruptible(&group->poll_wait);
654}
655
df774306 656static void record_times(struct psi_group_cpu *groupc, u64 now)
eb414681
JW
657{
658 u32 delta;
eb414681 659
eb414681
JW
660 delta = now - groupc->state_start;
661 groupc->state_start = now;
662
33b2d630 663 if (groupc->state_mask & (1 << PSI_IO_SOME)) {
eb414681 664 groupc->times[PSI_IO_SOME] += delta;
33b2d630 665 if (groupc->state_mask & (1 << PSI_IO_FULL))
eb414681
JW
666 groupc->times[PSI_IO_FULL] += delta;
667 }
668
33b2d630 669 if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
eb414681 670 groupc->times[PSI_MEM_SOME] += delta;
33b2d630 671 if (groupc->state_mask & (1 << PSI_MEM_FULL))
eb414681 672 groupc->times[PSI_MEM_FULL] += delta;
eb414681
JW
673 }
674
e7fcd762 675 if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
eb414681 676 groupc->times[PSI_CPU_SOME] += delta;
e7fcd762
CZ
677 if (groupc->state_mask & (1 << PSI_CPU_FULL))
678 groupc->times[PSI_CPU_FULL] += delta;
679 }
eb414681 680
33b2d630 681 if (groupc->state_mask & (1 << PSI_NONIDLE))
eb414681
JW
682 groupc->times[PSI_NONIDLE] += delta;
683}
684
36b238d5 685static void psi_group_change(struct psi_group *group, int cpu,
df774306 686 unsigned int clear, unsigned int set, u64 now,
36b238d5 687 bool wake_clock)
eb414681
JW
688{
689 struct psi_group_cpu *groupc;
36b238d5 690 u32 state_mask = 0;
eb414681 691 unsigned int t, m;
33b2d630 692 enum psi_states s;
eb414681
JW
693
694 groupc = per_cpu_ptr(group->pcpu, cpu);
695
696 /*
697 * First we assess the aggregate resource states this CPU's
698 * tasks have been in since the last change, and account any
699 * SOME and FULL time these may have resulted in.
700 *
701 * Then we update the task counts according to the state
702 * change requested through the @clear and @set bits.
703 */
704 write_seqcount_begin(&groupc->seq);
705
df774306 706 record_times(groupc, now);
eb414681
JW
707
708 for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
709 if (!(m & (1 << t)))
710 continue;
9d10a13d
CTR
711 if (groupc->tasks[t]) {
712 groupc->tasks[t]--;
713 } else if (!psi_bug) {
b05e75d6 714 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
eb414681
JW
715 cpu, t, groupc->tasks[0],
716 groupc->tasks[1], groupc->tasks[2],
b05e75d6 717 groupc->tasks[3], clear, set);
eb414681
JW
718 psi_bug = 1;
719 }
eb414681
JW
720 }
721
722 for (t = 0; set; set &= ~(1 << t), t++)
723 if (set & (1 << t))
724 groupc->tasks[t]++;
725
33b2d630
SB
726 /* Calculate state mask representing active states */
727 for (s = 0; s < NR_PSI_STATES; s++) {
728 if (test_state(groupc->tasks, s))
729 state_mask |= (1 << s);
730 }
7fae6c81
CZ
731
732 /*
733 * Since we care about lost potential, a memstall is FULL
734 * when there are no other working tasks, but also when
735 * the CPU is actively reclaiming and nothing productive
736 * could run even if it were runnable. So when the current
737 * task in a cgroup is in_memstall, the corresponding groupc
738 * on that cpu is in PSI_MEM_FULL state.
739 */
fddc8bab 740 if (unlikely(groupc->tasks[NR_ONCPU] && cpu_curr(cpu)->in_memstall))
7fae6c81
CZ
741 state_mask |= (1 << PSI_MEM_FULL);
742
33b2d630
SB
743 groupc->state_mask = state_mask;
744
eb414681 745 write_seqcount_end(&groupc->seq);
0e94682b 746
36b238d5
JW
747 if (state_mask & group->poll_states)
748 psi_schedule_poll_work(group, 1);
749
750 if (wake_clock && !delayed_work_pending(&group->avgs_work))
751 schedule_delayed_work(&group->avgs_work, PSI_FREQ);
eb414681
JW
752}
753
2ce7135a
JW
754static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
755{
3958e2d0
SB
756 if (*iter == &psi_system)
757 return NULL;
758
2ce7135a 759#ifdef CONFIG_CGROUPS
3958e2d0
SB
760 if (static_branch_likely(&psi_cgroups_enabled)) {
761 struct cgroup *cgroup = NULL;
2ce7135a 762
3958e2d0
SB
763 if (!*iter)
764 cgroup = task->cgroups->dfl_cgrp;
765 else
766 cgroup = cgroup_parent(*iter);
2ce7135a 767
3958e2d0
SB
768 if (cgroup && cgroup_parent(cgroup)) {
769 *iter = cgroup;
770 return cgroup_psi(cgroup);
771 }
2ce7135a 772 }
2ce7135a
JW
773#endif
774 *iter = &psi_system;
775 return &psi_system;
776}
777
36b238d5 778static void psi_flags_change(struct task_struct *task, int clear, int set)
eb414681 779{
eb414681
JW
780 if (((task->psi_flags & set) ||
781 (task->psi_flags & clear) != clear) &&
782 !psi_bug) {
783 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
36b238d5 784 task->pid, task->comm, task_cpu(task),
eb414681
JW
785 task->psi_flags, clear, set);
786 psi_bug = 1;
787 }
788
789 task->psi_flags &= ~clear;
790 task->psi_flags |= set;
36b238d5
JW
791}
792
793void psi_task_change(struct task_struct *task, int clear, int set)
794{
795 int cpu = task_cpu(task);
796 struct psi_group *group;
797 bool wake_clock = true;
798 void *iter = NULL;
df774306 799 u64 now;
36b238d5
JW
800
801 if (!task->pid)
802 return;
803
804 psi_flags_change(task, clear, set);
eb414681 805
df774306 806 now = cpu_clock(cpu);
1b69ac6b
JW
807 /*
808 * Periodic aggregation shuts off if there is a period of no
809 * task changes, so we wake it back up if necessary. However,
810 * don't do this if the task change is the aggregation worker
811 * itself going to sleep, or we'll ping-pong forever.
812 */
813 if (unlikely((clear & TSK_RUNNING) &&
814 (task->flags & PF_WQ_WORKER) &&
bcc78db6 815 wq_worker_last_func(task) == psi_avgs_work))
1b69ac6b
JW
816 wake_clock = false;
817
36b238d5 818 while ((group = iterate_groups(task, &iter)))
df774306 819 psi_group_change(group, cpu, clear, set, now, wake_clock);
36b238d5
JW
820}
821
822void psi_task_switch(struct task_struct *prev, struct task_struct *next,
823 bool sleep)
824{
825 struct psi_group *group, *common = NULL;
826 int cpu = task_cpu(prev);
827 void *iter;
df774306 828 u64 now = cpu_clock(cpu);
36b238d5
JW
829
830 if (next->pid) {
7fae6c81
CZ
831 bool identical_state;
832
36b238d5
JW
833 psi_flags_change(next, 0, TSK_ONCPU);
834 /*
7fae6c81
CZ
835 * When switching between tasks that have an identical
836 * runtime state, the cgroup that contains both tasks
7fae6c81
CZ
837 * we reach the first common ancestor. Iterate @next's
838 * ancestors only until we encounter @prev's ONCPU.
36b238d5 839 */
7fae6c81 840 identical_state = prev->psi_flags == next->psi_flags;
36b238d5
JW
841 iter = NULL;
842 while ((group = iterate_groups(next, &iter))) {
7fae6c81
CZ
843 if (identical_state &&
844 per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) {
36b238d5
JW
845 common = group;
846 break;
847 }
848
df774306 849 psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
36b238d5
JW
850 }
851 }
852
36b238d5 853 if (prev->pid) {
4117cebf
CZ
854 int clear = TSK_ONCPU, set = 0;
855
856 /*
857 * When we're going to sleep, psi_dequeue() lets us handle
858 * TSK_RUNNING and TSK_IOWAIT here, where we can combine it
859 * with TSK_ONCPU and save walking common ancestors twice.
860 */
861 if (sleep) {
862 clear |= TSK_RUNNING;
863 if (prev->in_iowait)
864 set |= TSK_IOWAIT;
865 }
866
867 psi_flags_change(prev, clear, set);
0e94682b 868
36b238d5
JW
869 iter = NULL;
870 while ((group = iterate_groups(prev, &iter)) && group != common)
df774306 871 psi_group_change(group, cpu, clear, set, now, true);
4117cebf
CZ
872
873 /*
874 * TSK_ONCPU is handled up to the common ancestor. If we're tasked
875 * with dequeuing too, finish that for the rest of the hierarchy.
876 */
877 if (sleep) {
878 clear &= ~TSK_ONCPU;
879 for (; group; group = iterate_groups(prev, &iter))
df774306 880 psi_group_change(group, cpu, clear, set, now, true);
4117cebf 881 }
1b69ac6b 882 }
eb414681
JW
883}
884
eb414681
JW
885/**
886 * psi_memstall_enter - mark the beginning of a memory stall section
887 * @flags: flags to handle nested sections
888 *
889 * Marks the calling task as being stalled due to a lack of memory,
890 * such as waiting for a refault or performing reclaim.
891 */
892void psi_memstall_enter(unsigned long *flags)
893{
894 struct rq_flags rf;
895 struct rq *rq;
896
e0c27447 897 if (static_branch_likely(&psi_disabled))
eb414681
JW
898 return;
899
1066d1b6 900 *flags = current->in_memstall;
eb414681
JW
901 if (*flags)
902 return;
903 /*
1066d1b6 904 * in_memstall setting & accounting needs to be atomic wrt
eb414681
JW
905 * changes to the task's scheduling state, otherwise we can
906 * race with CPU migration.
907 */
908 rq = this_rq_lock_irq(&rf);
909
1066d1b6 910 current->in_memstall = 1;
eb414681
JW
911 psi_task_change(current, 0, TSK_MEMSTALL);
912
913 rq_unlock_irq(rq, &rf);
914}
915
916/**
917 * psi_memstall_leave - mark the end of an memory stall section
918 * @flags: flags to handle nested memdelay sections
919 *
920 * Marks the calling task as no longer stalled due to lack of memory.
921 */
922void psi_memstall_leave(unsigned long *flags)
923{
924 struct rq_flags rf;
925 struct rq *rq;
926
e0c27447 927 if (static_branch_likely(&psi_disabled))
eb414681
JW
928 return;
929
930 if (*flags)
931 return;
932 /*
1066d1b6 933 * in_memstall clearing & accounting needs to be atomic wrt
eb414681
JW
934 * changes to the task's scheduling state, otherwise we could
935 * race with CPU migration.
936 */
937 rq = this_rq_lock_irq(&rf);
938
1066d1b6 939 current->in_memstall = 0;
eb414681
JW
940 psi_task_change(current, TSK_MEMSTALL, 0);
941
942 rq_unlock_irq(rq, &rf);
943}
944
2ce7135a
JW
945#ifdef CONFIG_CGROUPS
946int psi_cgroup_alloc(struct cgroup *cgroup)
947{
e0c27447 948 if (static_branch_likely(&psi_disabled))
2ce7135a
JW
949 return 0;
950
951 cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
952 if (!cgroup->psi.pcpu)
953 return -ENOMEM;
954 group_init(&cgroup->psi);
955 return 0;
956}
957
958void psi_cgroup_free(struct cgroup *cgroup)
959{
e0c27447 960 if (static_branch_likely(&psi_disabled))
2ce7135a
JW
961 return;
962
bcc78db6 963 cancel_delayed_work_sync(&cgroup->psi.avgs_work);
2ce7135a 964 free_percpu(cgroup->psi.pcpu);
0e94682b
SB
965 /* All triggers must be removed by now */
966 WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
2ce7135a
JW
967}
968
969/**
970 * cgroup_move_task - move task to a different cgroup
971 * @task: the task
972 * @to: the target css_set
973 *
974 * Move task to a new cgroup and safely migrate its associated stall
975 * state between the different groups.
976 *
977 * This function acquires the task's rq lock to lock out concurrent
978 * changes to the task's scheduling state and - in case the task is
979 * running - concurrent changes to its stall state.
980 */
981void cgroup_move_task(struct task_struct *task, struct css_set *to)
982{
d583d360 983 unsigned int task_flags;
2ce7135a
JW
984 struct rq_flags rf;
985 struct rq *rq;
986
e0c27447 987 if (static_branch_likely(&psi_disabled)) {
8fcb2312
OJ
988 /*
989 * Lame to do this here, but the scheduler cannot be locked
990 * from the outside, so we move cgroups from inside sched/.
991 */
992 rcu_assign_pointer(task->cgroups, to);
993 return;
994 }
2ce7135a 995
8fcb2312 996 rq = task_rq_lock(task, &rf);
2ce7135a 997
d583d360
JW
998 /*
999 * We may race with schedule() dropping the rq lock between
1000 * deactivating prev and switching to next. Because the psi
1001 * updates from the deactivation are deferred to the switch
1002 * callback to save cgroup tree updates, the task's scheduling
1003 * state here is not coherent with its psi state:
1004 *
1005 * schedule() cgroup_move_task()
1006 * rq_lock()
1007 * deactivate_task()
1008 * p->on_rq = 0
1009 * psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1010 * pick_next_task()
1011 * rq_unlock()
1012 * rq_lock()
1013 * psi_task_change() // old cgroup
1014 * task->cgroups = to
1015 * psi_task_change() // new cgroup
1016 * rq_unlock()
1017 * rq_lock()
1018 * psi_sched_switch() // does deferred updates in new cgroup
1019 *
1020 * Don't rely on the scheduling state. Use psi_flags instead.
1021 */
1022 task_flags = task->psi_flags;
2ce7135a 1023
8fcb2312
OJ
1024 if (task_flags)
1025 psi_task_change(task, task_flags, 0);
1026
1027 /* See comment above */
2ce7135a
JW
1028 rcu_assign_pointer(task->cgroups, to);
1029
8fcb2312
OJ
1030 if (task_flags)
1031 psi_task_change(task, 0, task_flags);
2ce7135a 1032
8fcb2312 1033 task_rq_unlock(rq, task, &rf);
2ce7135a
JW
1034}
1035#endif /* CONFIG_CGROUPS */
1036
1037int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
eb414681
JW
1038{
1039 int full;
7fc70a39 1040 u64 now;
eb414681 1041
e0c27447 1042 if (static_branch_likely(&psi_disabled))
eb414681
JW
1043 return -EOPNOTSUPP;
1044
7fc70a39
SB
1045 /* Update averages before reporting them */
1046 mutex_lock(&group->avgs_lock);
1047 now = sched_clock();
0e94682b 1048 collect_percpu_times(group, PSI_AVGS, NULL);
7fc70a39
SB
1049 if (now >= group->avg_next_update)
1050 group->avg_next_update = update_averages(group, now);
1051 mutex_unlock(&group->avgs_lock);
eb414681 1052
e7fcd762 1053 for (full = 0; full < 2; full++) {
eb414681
JW
1054 unsigned long avg[3];
1055 u64 total;
1056 int w;
1057
1058 for (w = 0; w < 3; w++)
1059 avg[w] = group->avg[res * 2 + full][w];
0e94682b
SB
1060 total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1061 NSEC_PER_USEC);
eb414681
JW
1062
1063 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1064 full ? "full" : "some",
1065 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1066 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1067 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1068 total);
1069 }
1070
1071 return 0;
1072}
1073
1074static int psi_io_show(struct seq_file *m, void *v)
1075{
1076 return psi_show(m, &psi_system, PSI_IO);
1077}
1078
1079static int psi_memory_show(struct seq_file *m, void *v)
1080{
1081 return psi_show(m, &psi_system, PSI_MEM);
1082}
1083
1084static int psi_cpu_show(struct seq_file *m, void *v)
1085{
1086 return psi_show(m, &psi_system, PSI_CPU);
1087}
1088
6db12ee0
JH
1089static int psi_open(struct file *file, int (*psi_show)(struct seq_file *, void *))
1090{
1091 if (file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE))
1092 return -EPERM;
1093
1094 return single_open(file, psi_show, NULL);
1095}
1096
eb414681
JW
1097static int psi_io_open(struct inode *inode, struct file *file)
1098{
6db12ee0 1099 return psi_open(file, psi_io_show);
eb414681
JW
1100}
1101
1102static int psi_memory_open(struct inode *inode, struct file *file)
1103{
6db12ee0 1104 return psi_open(file, psi_memory_show);
eb414681
JW
1105}
1106
1107static int psi_cpu_open(struct inode *inode, struct file *file)
1108{
6db12ee0 1109 return psi_open(file, psi_cpu_show);
eb414681
JW
1110}
1111
0e94682b
SB
1112struct psi_trigger *psi_trigger_create(struct psi_group *group,
1113 char *buf, size_t nbytes, enum psi_res res)
1114{
1115 struct psi_trigger *t;
1116 enum psi_states state;
1117 u32 threshold_us;
1118 u32 window_us;
1119
1120 if (static_branch_likely(&psi_disabled))
1121 return ERR_PTR(-EOPNOTSUPP);
1122
1123 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1124 state = PSI_IO_SOME + res * 2;
1125 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1126 state = PSI_IO_FULL + res * 2;
1127 else
1128 return ERR_PTR(-EINVAL);
1129
1130 if (state >= PSI_NONIDLE)
1131 return ERR_PTR(-EINVAL);
1132
1133 if (window_us < WINDOW_MIN_US ||
1134 window_us > WINDOW_MAX_US)
1135 return ERR_PTR(-EINVAL);
1136
1137 /* Check threshold */
1138 if (threshold_us == 0 || threshold_us > window_us)
1139 return ERR_PTR(-EINVAL);
1140
1141 t = kmalloc(sizeof(*t), GFP_KERNEL);
1142 if (!t)
1143 return ERR_PTR(-ENOMEM);
1144
1145 t->group = group;
1146 t->state = state;
1147 t->threshold = threshold_us * NSEC_PER_USEC;
1148 t->win.size = window_us * NSEC_PER_USEC;
1149 window_reset(&t->win, 0, 0, 0);
1150
1151 t->event = 0;
1152 t->last_event_time = 0;
1153 init_waitqueue_head(&t->event_wait);
1154 kref_init(&t->refcount);
1155
1156 mutex_lock(&group->trigger_lock);
1157
461daba0
SB
1158 if (!rcu_access_pointer(group->poll_task)) {
1159 struct task_struct *task;
0e94682b 1160
461daba0
SB
1161 task = kthread_create(psi_poll_worker, group, "psimon");
1162 if (IS_ERR(task)) {
0e94682b
SB
1163 kfree(t);
1164 mutex_unlock(&group->trigger_lock);
461daba0 1165 return ERR_CAST(task);
0e94682b 1166 }
461daba0 1167 atomic_set(&group->poll_wakeup, 0);
461daba0 1168 wake_up_process(task);
461daba0 1169 rcu_assign_pointer(group->poll_task, task);
0e94682b
SB
1170 }
1171
1172 list_add(&t->node, &group->triggers);
1173 group->poll_min_period = min(group->poll_min_period,
1174 div_u64(t->win.size, UPDATES_PER_WINDOW));
1175 group->nr_triggers[t->state]++;
1176 group->poll_states |= (1 << t->state);
1177
1178 mutex_unlock(&group->trigger_lock);
1179
1180 return t;
1181}
1182
1183static void psi_trigger_destroy(struct kref *ref)
1184{
1185 struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount);
1186 struct psi_group *group = t->group;
461daba0 1187 struct task_struct *task_to_destroy = NULL;
0e94682b
SB
1188
1189 if (static_branch_likely(&psi_disabled))
1190 return;
1191
1192 /*
1193 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1194 * from under a polling process.
1195 */
1196 wake_up_interruptible(&t->event_wait);
1197
1198 mutex_lock(&group->trigger_lock);
1199
1200 if (!list_empty(&t->node)) {
1201 struct psi_trigger *tmp;
1202 u64 period = ULLONG_MAX;
1203
1204 list_del(&t->node);
1205 group->nr_triggers[t->state]--;
1206 if (!group->nr_triggers[t->state])
1207 group->poll_states &= ~(1 << t->state);
1208 /* reset min update period for the remaining triggers */
1209 list_for_each_entry(tmp, &group->triggers, node)
1210 period = min(period, div_u64(tmp->win.size,
1211 UPDATES_PER_WINDOW));
1212 group->poll_min_period = period;
461daba0 1213 /* Destroy poll_task when the last trigger is destroyed */
0e94682b
SB
1214 if (group->poll_states == 0) {
1215 group->polling_until = 0;
461daba0
SB
1216 task_to_destroy = rcu_dereference_protected(
1217 group->poll_task,
0e94682b 1218 lockdep_is_held(&group->trigger_lock));
461daba0 1219 rcu_assign_pointer(group->poll_task, NULL);
8f91efd8 1220 del_timer(&group->poll_timer);
0e94682b
SB
1221 }
1222 }
1223
1224 mutex_unlock(&group->trigger_lock);
1225
1226 /*
1227 * Wait for both *trigger_ptr from psi_trigger_replace and
461daba0
SB
1228 * poll_task RCUs to complete their read-side critical sections
1229 * before destroying the trigger and optionally the poll_task
0e94682b
SB
1230 */
1231 synchronize_rcu();
1232 /*
8f91efd8 1233 * Stop kthread 'psimon' after releasing trigger_lock to prevent a
0e94682b
SB
1234 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1235 */
461daba0 1236 if (task_to_destroy) {
7b2b55da
JX
1237 /*
1238 * After the RCU grace period has expired, the worker
461daba0 1239 * can no longer be found through group->poll_task.
7b2b55da 1240 */
461daba0 1241 kthread_stop(task_to_destroy);
0e94682b
SB
1242 }
1243 kfree(t);
1244}
1245
1246void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new)
1247{
1248 struct psi_trigger *old = *trigger_ptr;
1249
1250 if (static_branch_likely(&psi_disabled))
1251 return;
1252
1253 rcu_assign_pointer(*trigger_ptr, new);
1254 if (old)
1255 kref_put(&old->refcount, psi_trigger_destroy);
1256}
1257
1258__poll_t psi_trigger_poll(void **trigger_ptr,
1259 struct file *file, poll_table *wait)
1260{
1261 __poll_t ret = DEFAULT_POLLMASK;
1262 struct psi_trigger *t;
1263
1264 if (static_branch_likely(&psi_disabled))
1265 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1266
1267 rcu_read_lock();
1268
1269 t = rcu_dereference(*(void __rcu __force **)trigger_ptr);
1270 if (!t) {
1271 rcu_read_unlock();
1272 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1273 }
1274 kref_get(&t->refcount);
1275
1276 rcu_read_unlock();
1277
1278 poll_wait(file, &t->event_wait, wait);
1279
1280 if (cmpxchg(&t->event, 1, 0) == 1)
1281 ret |= EPOLLPRI;
1282
1283 kref_put(&t->refcount, psi_trigger_destroy);
1284
1285 return ret;
1286}
1287
1288static ssize_t psi_write(struct file *file, const char __user *user_buf,
1289 size_t nbytes, enum psi_res res)
1290{
1291 char buf[32];
1292 size_t buf_size;
1293 struct seq_file *seq;
1294 struct psi_trigger *new;
1295
1296 if (static_branch_likely(&psi_disabled))
1297 return -EOPNOTSUPP;
1298
6fcca0fa
SB
1299 if (!nbytes)
1300 return -EINVAL;
1301
4adcdcea 1302 buf_size = min(nbytes, sizeof(buf));
0e94682b
SB
1303 if (copy_from_user(buf, user_buf, buf_size))
1304 return -EFAULT;
1305
1306 buf[buf_size - 1] = '\0';
1307
1308 new = psi_trigger_create(&psi_system, buf, nbytes, res);
1309 if (IS_ERR(new))
1310 return PTR_ERR(new);
1311
1312 seq = file->private_data;
1313 /* Take seq->lock to protect seq->private from concurrent writes */
1314 mutex_lock(&seq->lock);
1315 psi_trigger_replace(&seq->private, new);
1316 mutex_unlock(&seq->lock);
1317
1318 return nbytes;
1319}
1320
1321static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1322 size_t nbytes, loff_t *ppos)
1323{
1324 return psi_write(file, user_buf, nbytes, PSI_IO);
1325}
1326
1327static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1328 size_t nbytes, loff_t *ppos)
1329{
1330 return psi_write(file, user_buf, nbytes, PSI_MEM);
1331}
1332
1333static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1334 size_t nbytes, loff_t *ppos)
1335{
1336 return psi_write(file, user_buf, nbytes, PSI_CPU);
1337}
1338
1339static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1340{
1341 struct seq_file *seq = file->private_data;
1342
1343 return psi_trigger_poll(&seq->private, file, wait);
1344}
1345
1346static int psi_fop_release(struct inode *inode, struct file *file)
1347{
1348 struct seq_file *seq = file->private_data;
1349
1350 psi_trigger_replace(&seq->private, NULL);
1351 return single_release(inode, file);
1352}
1353
97a32539
AD
1354static const struct proc_ops psi_io_proc_ops = {
1355 .proc_open = psi_io_open,
1356 .proc_read = seq_read,
1357 .proc_lseek = seq_lseek,
1358 .proc_write = psi_io_write,
1359 .proc_poll = psi_fop_poll,
1360 .proc_release = psi_fop_release,
eb414681
JW
1361};
1362
97a32539
AD
1363static const struct proc_ops psi_memory_proc_ops = {
1364 .proc_open = psi_memory_open,
1365 .proc_read = seq_read,
1366 .proc_lseek = seq_lseek,
1367 .proc_write = psi_memory_write,
1368 .proc_poll = psi_fop_poll,
1369 .proc_release = psi_fop_release,
eb414681
JW
1370};
1371
97a32539
AD
1372static const struct proc_ops psi_cpu_proc_ops = {
1373 .proc_open = psi_cpu_open,
1374 .proc_read = seq_read,
1375 .proc_lseek = seq_lseek,
1376 .proc_write = psi_cpu_write,
1377 .proc_poll = psi_fop_poll,
1378 .proc_release = psi_fop_release,
eb414681
JW
1379};
1380
1381static int __init psi_proc_init(void)
1382{
3d817689
WL
1383 if (psi_enable) {
1384 proc_mkdir("pressure", NULL);
6db12ee0
JH
1385 proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1386 proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1387 proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
3d817689 1388 }
eb414681
JW
1389 return 0;
1390}
1391module_init(psi_proc_init);