Merge branch 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[linux-block.git] / kernel / sched / psi.c
CommitLineData
eb414681
JW
1/*
2 * Pressure stall information for CPU, memory and IO
3 *
4 * Copyright (c) 2018 Facebook, Inc.
5 * Author: Johannes Weiner <hannes@cmpxchg.org>
6 *
0e94682b
SB
7 * Polling support by Suren Baghdasaryan <surenb@google.com>
8 * Copyright (c) 2018 Google, Inc.
9 *
eb414681
JW
10 * When CPU, memory and IO are contended, tasks experience delays that
11 * reduce throughput and introduce latencies into the workload. Memory
12 * and IO contention, in addition, can cause a full loss of forward
13 * progress in which the CPU goes idle.
14 *
15 * This code aggregates individual task delays into resource pressure
16 * metrics that indicate problems with both workload health and
17 * resource utilization.
18 *
19 * Model
20 *
21 * The time in which a task can execute on a CPU is our baseline for
22 * productivity. Pressure expresses the amount of time in which this
23 * potential cannot be realized due to resource contention.
24 *
25 * This concept of productivity has two components: the workload and
26 * the CPU. To measure the impact of pressure on both, we define two
27 * contention states for a resource: SOME and FULL.
28 *
29 * In the SOME state of a given resource, one or more tasks are
30 * delayed on that resource. This affects the workload's ability to
31 * perform work, but the CPU may still be executing other tasks.
32 *
33 * In the FULL state of a given resource, all non-idle tasks are
34 * delayed on that resource such that nobody is advancing and the CPU
35 * goes idle. This leaves both workload and CPU unproductive.
36 *
e7fcd762
CZ
37 * Naturally, the FULL state doesn't exist for the CPU resource at the
38 * system level, but exist at the cgroup level, means all non-idle tasks
39 * in a cgroup are delayed on the CPU resource which used by others outside
40 * of the cgroup or throttled by the cgroup cpu.max configuration.
eb414681
JW
41 *
42 * SOME = nr_delayed_tasks != 0
43 * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
44 *
45 * The percentage of wallclock time spent in those compound stall
46 * states gives pressure numbers between 0 and 100 for each resource,
47 * where the SOME percentage indicates workload slowdowns and the FULL
48 * percentage indicates reduced CPU utilization:
49 *
50 * %SOME = time(SOME) / period
51 * %FULL = time(FULL) / period
52 *
53 * Multiple CPUs
54 *
55 * The more tasks and available CPUs there are, the more work can be
56 * performed concurrently. This means that the potential that can go
57 * unrealized due to resource contention *also* scales with non-idle
58 * tasks and CPUs.
59 *
60 * Consider a scenario where 257 number crunching tasks are trying to
61 * run concurrently on 256 CPUs. If we simply aggregated the task
62 * states, we would have to conclude a CPU SOME pressure number of
63 * 100%, since *somebody* is waiting on a runqueue at all
64 * times. However, that is clearly not the amount of contention the
3b03706f 65 * workload is experiencing: only one out of 256 possible execution
eb414681
JW
66 * threads will be contended at any given time, or about 0.4%.
67 *
68 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
69 * given time *one* of the tasks is delayed due to a lack of memory.
70 * Again, looking purely at the task state would yield a memory FULL
71 * pressure number of 0%, since *somebody* is always making forward
72 * progress. But again this wouldn't capture the amount of execution
73 * potential lost, which is 1 out of 4 CPUs, or 25%.
74 *
75 * To calculate wasted potential (pressure) with multiple processors,
76 * we have to base our calculation on the number of non-idle tasks in
77 * conjunction with the number of available CPUs, which is the number
78 * of potential execution threads. SOME becomes then the proportion of
3b03706f 79 * delayed tasks to possible threads, and FULL is the share of possible
eb414681
JW
80 * threads that are unproductive due to delays:
81 *
82 * threads = min(nr_nonidle_tasks, nr_cpus)
83 * SOME = min(nr_delayed_tasks / threads, 1)
84 * FULL = (threads - min(nr_running_tasks, threads)) / threads
85 *
86 * For the 257 number crunchers on 256 CPUs, this yields:
87 *
88 * threads = min(257, 256)
89 * SOME = min(1 / 256, 1) = 0.4%
90 * FULL = (256 - min(257, 256)) / 256 = 0%
91 *
92 * For the 1 out of 4 memory-delayed tasks, this yields:
93 *
94 * threads = min(4, 4)
95 * SOME = min(1 / 4, 1) = 25%
96 * FULL = (4 - min(3, 4)) / 4 = 25%
97 *
98 * [ Substitute nr_cpus with 1, and you can see that it's a natural
99 * extension of the single-CPU model. ]
100 *
101 * Implementation
102 *
103 * To assess the precise time spent in each such state, we would have
104 * to freeze the system on task changes and start/stop the state
105 * clocks accordingly. Obviously that doesn't scale in practice.
106 *
107 * Because the scheduler aims to distribute the compute load evenly
108 * among the available CPUs, we can track task state locally to each
109 * CPU and, at much lower frequency, extrapolate the global state for
110 * the cumulative stall times and the running averages.
111 *
112 * For each runqueue, we track:
113 *
114 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
115 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
116 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
117 *
118 * and then periodically aggregate:
119 *
120 * tNONIDLE = sum(tNONIDLE[i])
121 *
122 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
123 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
124 *
125 * %SOME = tSOME / period
126 * %FULL = tFULL / period
127 *
128 * This gives us an approximation of pressure that is practical
129 * cost-wise, yet way more sensitive and accurate than periodic
130 * sampling of the aggregate task states would be.
131 */
132
1b69ac6b 133#include "../workqueue_internal.h"
eb414681
JW
134#include <linux/sched/loadavg.h>
135#include <linux/seq_file.h>
136#include <linux/proc_fs.h>
137#include <linux/seqlock.h>
0e94682b 138#include <linux/uaccess.h>
eb414681
JW
139#include <linux/cgroup.h>
140#include <linux/module.h>
141#include <linux/sched.h>
0e94682b
SB
142#include <linux/ctype.h>
143#include <linux/file.h>
144#include <linux/poll.h>
eb414681
JW
145#include <linux/psi.h>
146#include "sched.h"
147
148static int psi_bug __read_mostly;
149
e0c27447
JW
150DEFINE_STATIC_KEY_FALSE(psi_disabled);
151
152#ifdef CONFIG_PSI_DEFAULT_DISABLED
9289c5e6 153static bool psi_enable;
e0c27447 154#else
9289c5e6 155static bool psi_enable = true;
e0c27447
JW
156#endif
157static int __init setup_psi(char *str)
158{
159 return kstrtobool(str, &psi_enable) == 0;
160}
161__setup("psi=", setup_psi);
eb414681
JW
162
163/* Running averages - we need to be higher-res than loadavg */
164#define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
165#define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
166#define EXP_60s 1981 /* 1/exp(2s/60s) */
167#define EXP_300s 2034 /* 1/exp(2s/300s) */
168
0e94682b
SB
169/* PSI trigger definitions */
170#define WINDOW_MIN_US 500000 /* Min window size is 500ms */
171#define WINDOW_MAX_US 10000000 /* Max window size is 10s */
172#define UPDATES_PER_WINDOW 10 /* 10 updates per window */
173
eb414681
JW
174/* Sampling frequency in nanoseconds */
175static u64 psi_period __read_mostly;
176
177/* System-level pressure and stall tracking */
178static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
df5ba5be 179struct psi_group psi_system = {
eb414681
JW
180 .pcpu = &system_group_pcpu,
181};
182
bcc78db6 183static void psi_avgs_work(struct work_struct *work);
eb414681
JW
184
185static void group_init(struct psi_group *group)
186{
187 int cpu;
188
189 for_each_possible_cpu(cpu)
190 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
3dfbe25c
JW
191 group->avg_last_update = sched_clock();
192 group->avg_next_update = group->avg_last_update + psi_period;
bcc78db6
SB
193 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
194 mutex_init(&group->avgs_lock);
0e94682b 195 /* Init trigger-related members */
0e94682b
SB
196 mutex_init(&group->trigger_lock);
197 INIT_LIST_HEAD(&group->triggers);
198 memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
199 group->poll_states = 0;
200 group->poll_min_period = U32_MAX;
201 memset(group->polling_total, 0, sizeof(group->polling_total));
202 group->polling_next_update = ULLONG_MAX;
203 group->polling_until = 0;
461daba0 204 rcu_assign_pointer(group->poll_task, NULL);
eb414681
JW
205}
206
207void __init psi_init(void)
208{
e0c27447
JW
209 if (!psi_enable) {
210 static_branch_enable(&psi_disabled);
eb414681 211 return;
e0c27447 212 }
eb414681
JW
213
214 psi_period = jiffies_to_nsecs(PSI_FREQ);
215 group_init(&psi_system);
216}
217
218static bool test_state(unsigned int *tasks, enum psi_states state)
219{
220 switch (state) {
221 case PSI_IO_SOME:
fddc8bab 222 return unlikely(tasks[NR_IOWAIT]);
eb414681 223 case PSI_IO_FULL:
fddc8bab 224 return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]);
eb414681 225 case PSI_MEM_SOME:
fddc8bab 226 return unlikely(tasks[NR_MEMSTALL]);
eb414681 227 case PSI_MEM_FULL:
fddc8bab 228 return unlikely(tasks[NR_MEMSTALL] && !tasks[NR_RUNNING]);
eb414681 229 case PSI_CPU_SOME:
fddc8bab 230 return unlikely(tasks[NR_RUNNING] > tasks[NR_ONCPU]);
e7fcd762 231 case PSI_CPU_FULL:
fddc8bab 232 return unlikely(tasks[NR_RUNNING] && !tasks[NR_ONCPU]);
eb414681
JW
233 case PSI_NONIDLE:
234 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
235 tasks[NR_RUNNING];
236 default:
237 return false;
238 }
239}
240
0e94682b
SB
241static void get_recent_times(struct psi_group *group, int cpu,
242 enum psi_aggregators aggregator, u32 *times,
333f3017 243 u32 *pchanged_states)
eb414681
JW
244{
245 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
eb414681 246 u64 now, state_start;
33b2d630 247 enum psi_states s;
eb414681 248 unsigned int seq;
33b2d630 249 u32 state_mask;
eb414681 250
333f3017
SB
251 *pchanged_states = 0;
252
eb414681
JW
253 /* Snapshot a coherent view of the CPU state */
254 do {
255 seq = read_seqcount_begin(&groupc->seq);
256 now = cpu_clock(cpu);
257 memcpy(times, groupc->times, sizeof(groupc->times));
33b2d630 258 state_mask = groupc->state_mask;
eb414681
JW
259 state_start = groupc->state_start;
260 } while (read_seqcount_retry(&groupc->seq, seq));
261
262 /* Calculate state time deltas against the previous snapshot */
263 for (s = 0; s < NR_PSI_STATES; s++) {
264 u32 delta;
265 /*
266 * In addition to already concluded states, we also
267 * incorporate currently active states on the CPU,
268 * since states may last for many sampling periods.
269 *
270 * This way we keep our delta sampling buckets small
271 * (u32) and our reported pressure close to what's
272 * actually happening.
273 */
33b2d630 274 if (state_mask & (1 << s))
eb414681
JW
275 times[s] += now - state_start;
276
0e94682b
SB
277 delta = times[s] - groupc->times_prev[aggregator][s];
278 groupc->times_prev[aggregator][s] = times[s];
eb414681
JW
279
280 times[s] = delta;
333f3017
SB
281 if (delta)
282 *pchanged_states |= (1 << s);
eb414681
JW
283 }
284}
285
286static void calc_avgs(unsigned long avg[3], int missed_periods,
287 u64 time, u64 period)
288{
289 unsigned long pct;
290
291 /* Fill in zeroes for periods of no activity */
292 if (missed_periods) {
293 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
294 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
295 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
296 }
297
298 /* Sample the most recent active period */
299 pct = div_u64(time * 100, period);
300 pct *= FIXED_1;
301 avg[0] = calc_load(avg[0], EXP_10s, pct);
302 avg[1] = calc_load(avg[1], EXP_60s, pct);
303 avg[2] = calc_load(avg[2], EXP_300s, pct);
304}
305
0e94682b
SB
306static void collect_percpu_times(struct psi_group *group,
307 enum psi_aggregators aggregator,
308 u32 *pchanged_states)
eb414681
JW
309{
310 u64 deltas[NR_PSI_STATES - 1] = { 0, };
eb414681 311 unsigned long nonidle_total = 0;
333f3017 312 u32 changed_states = 0;
eb414681
JW
313 int cpu;
314 int s;
315
eb414681
JW
316 /*
317 * Collect the per-cpu time buckets and average them into a
318 * single time sample that is normalized to wallclock time.
319 *
320 * For averaging, each CPU is weighted by its non-idle time in
321 * the sampling period. This eliminates artifacts from uneven
322 * loading, or even entirely idle CPUs.
323 */
324 for_each_possible_cpu(cpu) {
325 u32 times[NR_PSI_STATES];
326 u32 nonidle;
333f3017 327 u32 cpu_changed_states;
eb414681 328
0e94682b 329 get_recent_times(group, cpu, aggregator, times,
333f3017
SB
330 &cpu_changed_states);
331 changed_states |= cpu_changed_states;
eb414681
JW
332
333 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
334 nonidle_total += nonidle;
335
336 for (s = 0; s < PSI_NONIDLE; s++)
337 deltas[s] += (u64)times[s] * nonidle;
338 }
339
340 /*
341 * Integrate the sample into the running statistics that are
342 * reported to userspace: the cumulative stall times and the
343 * decaying averages.
344 *
345 * Pressure percentages are sampled at PSI_FREQ. We might be
346 * called more often when the user polls more frequently than
347 * that; we might be called less often when there is no task
348 * activity, thus no data, and clock ticks are sporadic. The
349 * below handles both.
350 */
351
352 /* total= */
353 for (s = 0; s < NR_PSI_STATES - 1; s++)
0e94682b
SB
354 group->total[aggregator][s] +=
355 div_u64(deltas[s], max(nonidle_total, 1UL));
eb414681 356
333f3017
SB
357 if (pchanged_states)
358 *pchanged_states = changed_states;
7fc70a39
SB
359}
360
361static u64 update_averages(struct psi_group *group, u64 now)
362{
363 unsigned long missed_periods = 0;
364 u64 expires, period;
365 u64 avg_next_update;
366 int s;
367
eb414681 368 /* avgX= */
bcc78db6 369 expires = group->avg_next_update;
4e37504d 370 if (now - expires >= psi_period)
eb414681
JW
371 missed_periods = div_u64(now - expires, psi_period);
372
373 /*
374 * The periodic clock tick can get delayed for various
375 * reasons, especially on loaded systems. To avoid clock
376 * drift, we schedule the clock in fixed psi_period intervals.
377 * But the deltas we sample out of the per-cpu buckets above
378 * are based on the actual time elapsing between clock ticks.
379 */
7fc70a39 380 avg_next_update = expires + ((1 + missed_periods) * psi_period);
bcc78db6
SB
381 period = now - (group->avg_last_update + (missed_periods * psi_period));
382 group->avg_last_update = now;
eb414681
JW
383
384 for (s = 0; s < NR_PSI_STATES - 1; s++) {
385 u32 sample;
386
0e94682b 387 sample = group->total[PSI_AVGS][s] - group->avg_total[s];
eb414681
JW
388 /*
389 * Due to the lockless sampling of the time buckets,
390 * recorded time deltas can slip into the next period,
391 * which under full pressure can result in samples in
392 * excess of the period length.
393 *
394 * We don't want to report non-sensical pressures in
395 * excess of 100%, nor do we want to drop such events
396 * on the floor. Instead we punt any overage into the
397 * future until pressure subsides. By doing this we
398 * don't underreport the occurring pressure curve, we
399 * just report it delayed by one period length.
400 *
401 * The error isn't cumulative. As soon as another
402 * delta slips from a period P to P+1, by definition
403 * it frees up its time T in P.
404 */
405 if (sample > period)
406 sample = period;
bcc78db6 407 group->avg_total[s] += sample;
eb414681
JW
408 calc_avgs(group->avg[s], missed_periods, sample, period);
409 }
7fc70a39
SB
410
411 return avg_next_update;
eb414681
JW
412}
413
bcc78db6 414static void psi_avgs_work(struct work_struct *work)
eb414681
JW
415{
416 struct delayed_work *dwork;
417 struct psi_group *group;
333f3017 418 u32 changed_states;
eb414681 419 bool nonidle;
7fc70a39 420 u64 now;
eb414681
JW
421
422 dwork = to_delayed_work(work);
bcc78db6 423 group = container_of(dwork, struct psi_group, avgs_work);
eb414681 424
7fc70a39
SB
425 mutex_lock(&group->avgs_lock);
426
427 now = sched_clock();
428
0e94682b 429 collect_percpu_times(group, PSI_AVGS, &changed_states);
333f3017 430 nonidle = changed_states & (1 << PSI_NONIDLE);
eb414681
JW
431 /*
432 * If there is task activity, periodically fold the per-cpu
433 * times and feed samples into the running averages. If things
434 * are idle and there is no data to process, stop the clock.
435 * Once restarted, we'll catch up the running averages in one
436 * go - see calc_avgs() and missed_periods.
437 */
7fc70a39
SB
438 if (now >= group->avg_next_update)
439 group->avg_next_update = update_averages(group, now);
eb414681
JW
440
441 if (nonidle) {
7fc70a39
SB
442 schedule_delayed_work(dwork, nsecs_to_jiffies(
443 group->avg_next_update - now) + 1);
eb414681 444 }
7fc70a39
SB
445
446 mutex_unlock(&group->avgs_lock);
eb414681
JW
447}
448
3b03706f 449/* Trigger tracking window manipulations */
0e94682b
SB
450static void window_reset(struct psi_window *win, u64 now, u64 value,
451 u64 prev_growth)
452{
453 win->start_time = now;
454 win->start_value = value;
455 win->prev_growth = prev_growth;
456}
457
458/*
459 * PSI growth tracking window update and growth calculation routine.
460 *
461 * This approximates a sliding tracking window by interpolating
462 * partially elapsed windows using historical growth data from the
463 * previous intervals. This minimizes memory requirements (by not storing
464 * all the intermediate values in the previous window) and simplifies
465 * the calculations. It works well because PSI signal changes only in
466 * positive direction and over relatively small window sizes the growth
467 * is close to linear.
468 */
469static u64 window_update(struct psi_window *win, u64 now, u64 value)
470{
471 u64 elapsed;
472 u64 growth;
473
474 elapsed = now - win->start_time;
475 growth = value - win->start_value;
476 /*
477 * After each tracking window passes win->start_value and
478 * win->start_time get reset and win->prev_growth stores
479 * the average per-window growth of the previous window.
480 * win->prev_growth is then used to interpolate additional
481 * growth from the previous window assuming it was linear.
482 */
483 if (elapsed > win->size)
484 window_reset(win, now, value, growth);
485 else {
486 u32 remaining;
487
488 remaining = win->size - elapsed;
c3466952 489 growth += div64_u64(win->prev_growth * remaining, win->size);
0e94682b
SB
490 }
491
492 return growth;
493}
494
495static void init_triggers(struct psi_group *group, u64 now)
496{
497 struct psi_trigger *t;
498
499 list_for_each_entry(t, &group->triggers, node)
500 window_reset(&t->win, now,
501 group->total[PSI_POLL][t->state], 0);
502 memcpy(group->polling_total, group->total[PSI_POLL],
503 sizeof(group->polling_total));
504 group->polling_next_update = now + group->poll_min_period;
505}
506
507static u64 update_triggers(struct psi_group *group, u64 now)
508{
509 struct psi_trigger *t;
510 bool new_stall = false;
511 u64 *total = group->total[PSI_POLL];
512
513 /*
514 * On subsequent updates, calculate growth deltas and let
515 * watchers know when their specified thresholds are exceeded.
516 */
517 list_for_each_entry(t, &group->triggers, node) {
518 u64 growth;
519
520 /* Check for stall activity */
521 if (group->polling_total[t->state] == total[t->state])
522 continue;
523
524 /*
525 * Multiple triggers might be looking at the same state,
526 * remember to update group->polling_total[] once we've
527 * been through all of them. Also remember to extend the
528 * polling time if we see new stall activity.
529 */
530 new_stall = true;
531
532 /* Calculate growth since last update */
533 growth = window_update(&t->win, now, total[t->state]);
534 if (growth < t->threshold)
535 continue;
536
537 /* Limit event signaling to once per window */
538 if (now < t->last_event_time + t->win.size)
539 continue;
540
541 /* Generate an event */
542 if (cmpxchg(&t->event, 0, 1) == 0)
543 wake_up_interruptible(&t->event_wait);
544 t->last_event_time = now;
545 }
546
547 if (new_stall)
548 memcpy(group->polling_total, total,
549 sizeof(group->polling_total));
550
551 return now + group->poll_min_period;
552}
553
461daba0 554/* Schedule polling if it's not already scheduled. */
0e94682b
SB
555static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
556{
461daba0 557 struct task_struct *task;
0e94682b 558
461daba0
SB
559 /*
560 * Do not reschedule if already scheduled.
561 * Possible race with a timer scheduled after this check but before
562 * mod_timer below can be tolerated because group->polling_next_update
563 * will keep updates on schedule.
564 */
565 if (timer_pending(&group->poll_timer))
0e94682b
SB
566 return;
567
568 rcu_read_lock();
569
461daba0 570 task = rcu_dereference(group->poll_task);
0e94682b
SB
571 /*
572 * kworker might be NULL in case psi_trigger_destroy races with
573 * psi_task_change (hotpath) which can't use locks
574 */
461daba0
SB
575 if (likely(task))
576 mod_timer(&group->poll_timer, jiffies + delay);
0e94682b
SB
577
578 rcu_read_unlock();
579}
580
461daba0 581static void psi_poll_work(struct psi_group *group)
0e94682b 582{
0e94682b
SB
583 u32 changed_states;
584 u64 now;
585
0e94682b
SB
586 mutex_lock(&group->trigger_lock);
587
588 now = sched_clock();
589
590 collect_percpu_times(group, PSI_POLL, &changed_states);
591
592 if (changed_states & group->poll_states) {
593 /* Initialize trigger windows when entering polling mode */
594 if (now > group->polling_until)
595 init_triggers(group, now);
596
597 /*
598 * Keep the monitor active for at least the duration of the
599 * minimum tracking window as long as monitor states are
600 * changing.
601 */
602 group->polling_until = now +
603 group->poll_min_period * UPDATES_PER_WINDOW;
604 }
605
606 if (now > group->polling_until) {
607 group->polling_next_update = ULLONG_MAX;
608 goto out;
609 }
610
611 if (now >= group->polling_next_update)
612 group->polling_next_update = update_triggers(group, now);
613
614 psi_schedule_poll_work(group,
615 nsecs_to_jiffies(group->polling_next_update - now) + 1);
616
617out:
618 mutex_unlock(&group->trigger_lock);
619}
620
461daba0
SB
621static int psi_poll_worker(void *data)
622{
623 struct psi_group *group = (struct psi_group *)data;
461daba0 624
2cca5426 625 sched_set_fifo_low(current);
461daba0
SB
626
627 while (true) {
628 wait_event_interruptible(group->poll_wait,
629 atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
630 kthread_should_stop());
631 if (kthread_should_stop())
632 break;
633
634 psi_poll_work(group);
635 }
636 return 0;
637}
638
639static void poll_timer_fn(struct timer_list *t)
640{
641 struct psi_group *group = from_timer(group, t, poll_timer);
642
643 atomic_set(&group->poll_wakeup, 1);
644 wake_up_interruptible(&group->poll_wait);
645}
646
df774306 647static void record_times(struct psi_group_cpu *groupc, u64 now)
eb414681
JW
648{
649 u32 delta;
eb414681 650
eb414681
JW
651 delta = now - groupc->state_start;
652 groupc->state_start = now;
653
33b2d630 654 if (groupc->state_mask & (1 << PSI_IO_SOME)) {
eb414681 655 groupc->times[PSI_IO_SOME] += delta;
33b2d630 656 if (groupc->state_mask & (1 << PSI_IO_FULL))
eb414681
JW
657 groupc->times[PSI_IO_FULL] += delta;
658 }
659
33b2d630 660 if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
eb414681 661 groupc->times[PSI_MEM_SOME] += delta;
33b2d630 662 if (groupc->state_mask & (1 << PSI_MEM_FULL))
eb414681 663 groupc->times[PSI_MEM_FULL] += delta;
eb414681
JW
664 }
665
e7fcd762 666 if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
eb414681 667 groupc->times[PSI_CPU_SOME] += delta;
e7fcd762
CZ
668 if (groupc->state_mask & (1 << PSI_CPU_FULL))
669 groupc->times[PSI_CPU_FULL] += delta;
670 }
eb414681 671
33b2d630 672 if (groupc->state_mask & (1 << PSI_NONIDLE))
eb414681
JW
673 groupc->times[PSI_NONIDLE] += delta;
674}
675
36b238d5 676static void psi_group_change(struct psi_group *group, int cpu,
df774306 677 unsigned int clear, unsigned int set, u64 now,
36b238d5 678 bool wake_clock)
eb414681
JW
679{
680 struct psi_group_cpu *groupc;
36b238d5 681 u32 state_mask = 0;
eb414681 682 unsigned int t, m;
33b2d630 683 enum psi_states s;
eb414681
JW
684
685 groupc = per_cpu_ptr(group->pcpu, cpu);
686
687 /*
688 * First we assess the aggregate resource states this CPU's
689 * tasks have been in since the last change, and account any
690 * SOME and FULL time these may have resulted in.
691 *
692 * Then we update the task counts according to the state
693 * change requested through the @clear and @set bits.
694 */
695 write_seqcount_begin(&groupc->seq);
696
df774306 697 record_times(groupc, now);
eb414681
JW
698
699 for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
700 if (!(m & (1 << t)))
701 continue;
9d10a13d
CTR
702 if (groupc->tasks[t]) {
703 groupc->tasks[t]--;
704 } else if (!psi_bug) {
b05e75d6 705 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
eb414681
JW
706 cpu, t, groupc->tasks[0],
707 groupc->tasks[1], groupc->tasks[2],
b05e75d6 708 groupc->tasks[3], clear, set);
eb414681
JW
709 psi_bug = 1;
710 }
eb414681
JW
711 }
712
713 for (t = 0; set; set &= ~(1 << t), t++)
714 if (set & (1 << t))
715 groupc->tasks[t]++;
716
33b2d630
SB
717 /* Calculate state mask representing active states */
718 for (s = 0; s < NR_PSI_STATES; s++) {
719 if (test_state(groupc->tasks, s))
720 state_mask |= (1 << s);
721 }
7fae6c81
CZ
722
723 /*
724 * Since we care about lost potential, a memstall is FULL
725 * when there are no other working tasks, but also when
726 * the CPU is actively reclaiming and nothing productive
727 * could run even if it were runnable. So when the current
728 * task in a cgroup is in_memstall, the corresponding groupc
729 * on that cpu is in PSI_MEM_FULL state.
730 */
fddc8bab 731 if (unlikely(groupc->tasks[NR_ONCPU] && cpu_curr(cpu)->in_memstall))
7fae6c81
CZ
732 state_mask |= (1 << PSI_MEM_FULL);
733
33b2d630
SB
734 groupc->state_mask = state_mask;
735
eb414681 736 write_seqcount_end(&groupc->seq);
0e94682b 737
36b238d5
JW
738 if (state_mask & group->poll_states)
739 psi_schedule_poll_work(group, 1);
740
741 if (wake_clock && !delayed_work_pending(&group->avgs_work))
742 schedule_delayed_work(&group->avgs_work, PSI_FREQ);
eb414681
JW
743}
744
2ce7135a
JW
745static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
746{
747#ifdef CONFIG_CGROUPS
748 struct cgroup *cgroup = NULL;
749
750 if (!*iter)
751 cgroup = task->cgroups->dfl_cgrp;
752 else if (*iter == &psi_system)
753 return NULL;
754 else
755 cgroup = cgroup_parent(*iter);
756
757 if (cgroup && cgroup_parent(cgroup)) {
758 *iter = cgroup;
759 return cgroup_psi(cgroup);
760 }
761#else
762 if (*iter)
763 return NULL;
764#endif
765 *iter = &psi_system;
766 return &psi_system;
767}
768
36b238d5 769static void psi_flags_change(struct task_struct *task, int clear, int set)
eb414681 770{
eb414681
JW
771 if (((task->psi_flags & set) ||
772 (task->psi_flags & clear) != clear) &&
773 !psi_bug) {
774 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
36b238d5 775 task->pid, task->comm, task_cpu(task),
eb414681
JW
776 task->psi_flags, clear, set);
777 psi_bug = 1;
778 }
779
780 task->psi_flags &= ~clear;
781 task->psi_flags |= set;
36b238d5
JW
782}
783
784void psi_task_change(struct task_struct *task, int clear, int set)
785{
786 int cpu = task_cpu(task);
787 struct psi_group *group;
788 bool wake_clock = true;
789 void *iter = NULL;
df774306 790 u64 now;
36b238d5
JW
791
792 if (!task->pid)
793 return;
794
795 psi_flags_change(task, clear, set);
eb414681 796
df774306 797 now = cpu_clock(cpu);
1b69ac6b
JW
798 /*
799 * Periodic aggregation shuts off if there is a period of no
800 * task changes, so we wake it back up if necessary. However,
801 * don't do this if the task change is the aggregation worker
802 * itself going to sleep, or we'll ping-pong forever.
803 */
804 if (unlikely((clear & TSK_RUNNING) &&
805 (task->flags & PF_WQ_WORKER) &&
bcc78db6 806 wq_worker_last_func(task) == psi_avgs_work))
1b69ac6b
JW
807 wake_clock = false;
808
36b238d5 809 while ((group = iterate_groups(task, &iter)))
df774306 810 psi_group_change(group, cpu, clear, set, now, wake_clock);
36b238d5
JW
811}
812
813void psi_task_switch(struct task_struct *prev, struct task_struct *next,
814 bool sleep)
815{
816 struct psi_group *group, *common = NULL;
817 int cpu = task_cpu(prev);
818 void *iter;
df774306 819 u64 now = cpu_clock(cpu);
36b238d5
JW
820
821 if (next->pid) {
7fae6c81
CZ
822 bool identical_state;
823
36b238d5
JW
824 psi_flags_change(next, 0, TSK_ONCPU);
825 /*
7fae6c81
CZ
826 * When switching between tasks that have an identical
827 * runtime state, the cgroup that contains both tasks
828 * runtime state, the cgroup that contains both tasks
829 * we reach the first common ancestor. Iterate @next's
830 * ancestors only until we encounter @prev's ONCPU.
36b238d5 831 */
7fae6c81 832 identical_state = prev->psi_flags == next->psi_flags;
36b238d5
JW
833 iter = NULL;
834 while ((group = iterate_groups(next, &iter))) {
7fae6c81
CZ
835 if (identical_state &&
836 per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) {
36b238d5
JW
837 common = group;
838 break;
839 }
840
df774306 841 psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
36b238d5
JW
842 }
843 }
844
36b238d5 845 if (prev->pid) {
4117cebf
CZ
846 int clear = TSK_ONCPU, set = 0;
847
848 /*
849 * When we're going to sleep, psi_dequeue() lets us handle
850 * TSK_RUNNING and TSK_IOWAIT here, where we can combine it
851 * with TSK_ONCPU and save walking common ancestors twice.
852 */
853 if (sleep) {
854 clear |= TSK_RUNNING;
855 if (prev->in_iowait)
856 set |= TSK_IOWAIT;
857 }
858
859 psi_flags_change(prev, clear, set);
0e94682b 860
36b238d5
JW
861 iter = NULL;
862 while ((group = iterate_groups(prev, &iter)) && group != common)
df774306 863 psi_group_change(group, cpu, clear, set, now, true);
4117cebf
CZ
864
865 /*
866 * TSK_ONCPU is handled up to the common ancestor. If we're tasked
867 * with dequeuing too, finish that for the rest of the hierarchy.
868 */
869 if (sleep) {
870 clear &= ~TSK_ONCPU;
871 for (; group; group = iterate_groups(prev, &iter))
df774306 872 psi_group_change(group, cpu, clear, set, now, true);
4117cebf 873 }
1b69ac6b 874 }
eb414681
JW
875}
876
eb414681
JW
877/**
878 * psi_memstall_enter - mark the beginning of a memory stall section
879 * @flags: flags to handle nested sections
880 *
881 * Marks the calling task as being stalled due to a lack of memory,
882 * such as waiting for a refault or performing reclaim.
883 */
884void psi_memstall_enter(unsigned long *flags)
885{
886 struct rq_flags rf;
887 struct rq *rq;
888
e0c27447 889 if (static_branch_likely(&psi_disabled))
eb414681
JW
890 return;
891
1066d1b6 892 *flags = current->in_memstall;
eb414681
JW
893 if (*flags)
894 return;
895 /*
1066d1b6 896 * in_memstall setting & accounting needs to be atomic wrt
eb414681
JW
897 * changes to the task's scheduling state, otherwise we can
898 * race with CPU migration.
899 */
900 rq = this_rq_lock_irq(&rf);
901
1066d1b6 902 current->in_memstall = 1;
eb414681
JW
903 psi_task_change(current, 0, TSK_MEMSTALL);
904
905 rq_unlock_irq(rq, &rf);
906}
907
908/**
909 * psi_memstall_leave - mark the end of an memory stall section
910 * @flags: flags to handle nested memdelay sections
911 *
912 * Marks the calling task as no longer stalled due to lack of memory.
913 */
914void psi_memstall_leave(unsigned long *flags)
915{
916 struct rq_flags rf;
917 struct rq *rq;
918
e0c27447 919 if (static_branch_likely(&psi_disabled))
eb414681
JW
920 return;
921
922 if (*flags)
923 return;
924 /*
1066d1b6 925 * in_memstall clearing & accounting needs to be atomic wrt
eb414681
JW
926 * changes to the task's scheduling state, otherwise we could
927 * race with CPU migration.
928 */
929 rq = this_rq_lock_irq(&rf);
930
1066d1b6 931 current->in_memstall = 0;
eb414681
JW
932 psi_task_change(current, TSK_MEMSTALL, 0);
933
934 rq_unlock_irq(rq, &rf);
935}
936
2ce7135a
JW
937#ifdef CONFIG_CGROUPS
938int psi_cgroup_alloc(struct cgroup *cgroup)
939{
e0c27447 940 if (static_branch_likely(&psi_disabled))
2ce7135a
JW
941 return 0;
942
943 cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
944 if (!cgroup->psi.pcpu)
945 return -ENOMEM;
946 group_init(&cgroup->psi);
947 return 0;
948}
949
950void psi_cgroup_free(struct cgroup *cgroup)
951{
e0c27447 952 if (static_branch_likely(&psi_disabled))
2ce7135a
JW
953 return;
954
bcc78db6 955 cancel_delayed_work_sync(&cgroup->psi.avgs_work);
2ce7135a 956 free_percpu(cgroup->psi.pcpu);
0e94682b
SB
957 /* All triggers must be removed by now */
958 WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
2ce7135a
JW
959}
960
961/**
962 * cgroup_move_task - move task to a different cgroup
963 * @task: the task
964 * @to: the target css_set
965 *
966 * Move task to a new cgroup and safely migrate its associated stall
967 * state between the different groups.
968 *
969 * This function acquires the task's rq lock to lock out concurrent
970 * changes to the task's scheduling state and - in case the task is
971 * running - concurrent changes to its stall state.
972 */
973void cgroup_move_task(struct task_struct *task, struct css_set *to)
974{
d583d360 975 unsigned int task_flags;
2ce7135a
JW
976 struct rq_flags rf;
977 struct rq *rq;
978
e0c27447 979 if (static_branch_likely(&psi_disabled)) {
8fcb2312
OJ
980 /*
981 * Lame to do this here, but the scheduler cannot be locked
982 * from the outside, so we move cgroups from inside sched/.
983 */
984 rcu_assign_pointer(task->cgroups, to);
985 return;
986 }
2ce7135a 987
8fcb2312 988 rq = task_rq_lock(task, &rf);
2ce7135a 989
d583d360
JW
990 /*
991 * We may race with schedule() dropping the rq lock between
992 * deactivating prev and switching to next. Because the psi
993 * updates from the deactivation are deferred to the switch
994 * callback to save cgroup tree updates, the task's scheduling
995 * state here is not coherent with its psi state:
996 *
997 * schedule() cgroup_move_task()
998 * rq_lock()
999 * deactivate_task()
1000 * p->on_rq = 0
1001 * psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1002 * pick_next_task()
1003 * rq_unlock()
1004 * rq_lock()
1005 * psi_task_change() // old cgroup
1006 * task->cgroups = to
1007 * psi_task_change() // new cgroup
1008 * rq_unlock()
1009 * rq_lock()
1010 * psi_sched_switch() // does deferred updates in new cgroup
1011 *
1012 * Don't rely on the scheduling state. Use psi_flags instead.
1013 */
1014 task_flags = task->psi_flags;
2ce7135a 1015
8fcb2312
OJ
1016 if (task_flags)
1017 psi_task_change(task, task_flags, 0);
1018
1019 /* See comment above */
2ce7135a
JW
1020 rcu_assign_pointer(task->cgroups, to);
1021
8fcb2312
OJ
1022 if (task_flags)
1023 psi_task_change(task, 0, task_flags);
2ce7135a 1024
8fcb2312 1025 task_rq_unlock(rq, task, &rf);
2ce7135a
JW
1026}
1027#endif /* CONFIG_CGROUPS */
1028
1029int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
eb414681
JW
1030{
1031 int full;
7fc70a39 1032 u64 now;
eb414681 1033
e0c27447 1034 if (static_branch_likely(&psi_disabled))
eb414681
JW
1035 return -EOPNOTSUPP;
1036
7fc70a39
SB
1037 /* Update averages before reporting them */
1038 mutex_lock(&group->avgs_lock);
1039 now = sched_clock();
0e94682b 1040 collect_percpu_times(group, PSI_AVGS, NULL);
7fc70a39
SB
1041 if (now >= group->avg_next_update)
1042 group->avg_next_update = update_averages(group, now);
1043 mutex_unlock(&group->avgs_lock);
eb414681 1044
e7fcd762 1045 for (full = 0; full < 2; full++) {
eb414681
JW
1046 unsigned long avg[3];
1047 u64 total;
1048 int w;
1049
1050 for (w = 0; w < 3; w++)
1051 avg[w] = group->avg[res * 2 + full][w];
0e94682b
SB
1052 total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1053 NSEC_PER_USEC);
eb414681
JW
1054
1055 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1056 full ? "full" : "some",
1057 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1058 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1059 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1060 total);
1061 }
1062
1063 return 0;
1064}
1065
1066static int psi_io_show(struct seq_file *m, void *v)
1067{
1068 return psi_show(m, &psi_system, PSI_IO);
1069}
1070
1071static int psi_memory_show(struct seq_file *m, void *v)
1072{
1073 return psi_show(m, &psi_system, PSI_MEM);
1074}
1075
1076static int psi_cpu_show(struct seq_file *m, void *v)
1077{
1078 return psi_show(m, &psi_system, PSI_CPU);
1079}
1080
6db12ee0
JH
1081static int psi_open(struct file *file, int (*psi_show)(struct seq_file *, void *))
1082{
1083 if (file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE))
1084 return -EPERM;
1085
1086 return single_open(file, psi_show, NULL);
1087}
1088
eb414681
JW
1089static int psi_io_open(struct inode *inode, struct file *file)
1090{
6db12ee0 1091 return psi_open(file, psi_io_show);
eb414681
JW
1092}
1093
1094static int psi_memory_open(struct inode *inode, struct file *file)
1095{
6db12ee0 1096 return psi_open(file, psi_memory_show);
eb414681
JW
1097}
1098
1099static int psi_cpu_open(struct inode *inode, struct file *file)
1100{
6db12ee0 1101 return psi_open(file, psi_cpu_show);
eb414681
JW
1102}
1103
0e94682b
SB
1104struct psi_trigger *psi_trigger_create(struct psi_group *group,
1105 char *buf, size_t nbytes, enum psi_res res)
1106{
1107 struct psi_trigger *t;
1108 enum psi_states state;
1109 u32 threshold_us;
1110 u32 window_us;
1111
1112 if (static_branch_likely(&psi_disabled))
1113 return ERR_PTR(-EOPNOTSUPP);
1114
1115 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1116 state = PSI_IO_SOME + res * 2;
1117 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1118 state = PSI_IO_FULL + res * 2;
1119 else
1120 return ERR_PTR(-EINVAL);
1121
1122 if (state >= PSI_NONIDLE)
1123 return ERR_PTR(-EINVAL);
1124
1125 if (window_us < WINDOW_MIN_US ||
1126 window_us > WINDOW_MAX_US)
1127 return ERR_PTR(-EINVAL);
1128
1129 /* Check threshold */
1130 if (threshold_us == 0 || threshold_us > window_us)
1131 return ERR_PTR(-EINVAL);
1132
1133 t = kmalloc(sizeof(*t), GFP_KERNEL);
1134 if (!t)
1135 return ERR_PTR(-ENOMEM);
1136
1137 t->group = group;
1138 t->state = state;
1139 t->threshold = threshold_us * NSEC_PER_USEC;
1140 t->win.size = window_us * NSEC_PER_USEC;
1141 window_reset(&t->win, 0, 0, 0);
1142
1143 t->event = 0;
1144 t->last_event_time = 0;
1145 init_waitqueue_head(&t->event_wait);
1146 kref_init(&t->refcount);
1147
1148 mutex_lock(&group->trigger_lock);
1149
461daba0
SB
1150 if (!rcu_access_pointer(group->poll_task)) {
1151 struct task_struct *task;
0e94682b 1152
461daba0
SB
1153 task = kthread_create(psi_poll_worker, group, "psimon");
1154 if (IS_ERR(task)) {
0e94682b
SB
1155 kfree(t);
1156 mutex_unlock(&group->trigger_lock);
461daba0 1157 return ERR_CAST(task);
0e94682b 1158 }
461daba0
SB
1159 atomic_set(&group->poll_wakeup, 0);
1160 init_waitqueue_head(&group->poll_wait);
1161 wake_up_process(task);
1162 timer_setup(&group->poll_timer, poll_timer_fn, 0);
1163 rcu_assign_pointer(group->poll_task, task);
0e94682b
SB
1164 }
1165
1166 list_add(&t->node, &group->triggers);
1167 group->poll_min_period = min(group->poll_min_period,
1168 div_u64(t->win.size, UPDATES_PER_WINDOW));
1169 group->nr_triggers[t->state]++;
1170 group->poll_states |= (1 << t->state);
1171
1172 mutex_unlock(&group->trigger_lock);
1173
1174 return t;
1175}
1176
1177static void psi_trigger_destroy(struct kref *ref)
1178{
1179 struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount);
1180 struct psi_group *group = t->group;
461daba0 1181 struct task_struct *task_to_destroy = NULL;
0e94682b
SB
1182
1183 if (static_branch_likely(&psi_disabled))
1184 return;
1185
1186 /*
1187 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1188 * from under a polling process.
1189 */
1190 wake_up_interruptible(&t->event_wait);
1191
1192 mutex_lock(&group->trigger_lock);
1193
1194 if (!list_empty(&t->node)) {
1195 struct psi_trigger *tmp;
1196 u64 period = ULLONG_MAX;
1197
1198 list_del(&t->node);
1199 group->nr_triggers[t->state]--;
1200 if (!group->nr_triggers[t->state])
1201 group->poll_states &= ~(1 << t->state);
1202 /* reset min update period for the remaining triggers */
1203 list_for_each_entry(tmp, &group->triggers, node)
1204 period = min(period, div_u64(tmp->win.size,
1205 UPDATES_PER_WINDOW));
1206 group->poll_min_period = period;
461daba0 1207 /* Destroy poll_task when the last trigger is destroyed */
0e94682b
SB
1208 if (group->poll_states == 0) {
1209 group->polling_until = 0;
461daba0
SB
1210 task_to_destroy = rcu_dereference_protected(
1211 group->poll_task,
0e94682b 1212 lockdep_is_held(&group->trigger_lock));
461daba0 1213 rcu_assign_pointer(group->poll_task, NULL);
0e94682b
SB
1214 }
1215 }
1216
1217 mutex_unlock(&group->trigger_lock);
1218
1219 /*
1220 * Wait for both *trigger_ptr from psi_trigger_replace and
461daba0
SB
1221 * poll_task RCUs to complete their read-side critical sections
1222 * before destroying the trigger and optionally the poll_task
0e94682b
SB
1223 */
1224 synchronize_rcu();
1225 /*
1226 * Destroy the kworker after releasing trigger_lock to prevent a
1227 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1228 */
461daba0 1229 if (task_to_destroy) {
7b2b55da
JX
1230 /*
1231 * After the RCU grace period has expired, the worker
461daba0 1232 * can no longer be found through group->poll_task.
7b2b55da
JX
1233 * But it might have been already scheduled before
1234 * that - deschedule it cleanly before destroying it.
1235 */
461daba0
SB
1236 del_timer_sync(&group->poll_timer);
1237 kthread_stop(task_to_destroy);
0e94682b
SB
1238 }
1239 kfree(t);
1240}
1241
1242void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new)
1243{
1244 struct psi_trigger *old = *trigger_ptr;
1245
1246 if (static_branch_likely(&psi_disabled))
1247 return;
1248
1249 rcu_assign_pointer(*trigger_ptr, new);
1250 if (old)
1251 kref_put(&old->refcount, psi_trigger_destroy);
1252}
1253
1254__poll_t psi_trigger_poll(void **trigger_ptr,
1255 struct file *file, poll_table *wait)
1256{
1257 __poll_t ret = DEFAULT_POLLMASK;
1258 struct psi_trigger *t;
1259
1260 if (static_branch_likely(&psi_disabled))
1261 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1262
1263 rcu_read_lock();
1264
1265 t = rcu_dereference(*(void __rcu __force **)trigger_ptr);
1266 if (!t) {
1267 rcu_read_unlock();
1268 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1269 }
1270 kref_get(&t->refcount);
1271
1272 rcu_read_unlock();
1273
1274 poll_wait(file, &t->event_wait, wait);
1275
1276 if (cmpxchg(&t->event, 1, 0) == 1)
1277 ret |= EPOLLPRI;
1278
1279 kref_put(&t->refcount, psi_trigger_destroy);
1280
1281 return ret;
1282}
1283
1284static ssize_t psi_write(struct file *file, const char __user *user_buf,
1285 size_t nbytes, enum psi_res res)
1286{
1287 char buf[32];
1288 size_t buf_size;
1289 struct seq_file *seq;
1290 struct psi_trigger *new;
1291
1292 if (static_branch_likely(&psi_disabled))
1293 return -EOPNOTSUPP;
1294
6fcca0fa
SB
1295 if (!nbytes)
1296 return -EINVAL;
1297
4adcdcea 1298 buf_size = min(nbytes, sizeof(buf));
0e94682b
SB
1299 if (copy_from_user(buf, user_buf, buf_size))
1300 return -EFAULT;
1301
1302 buf[buf_size - 1] = '\0';
1303
1304 new = psi_trigger_create(&psi_system, buf, nbytes, res);
1305 if (IS_ERR(new))
1306 return PTR_ERR(new);
1307
1308 seq = file->private_data;
1309 /* Take seq->lock to protect seq->private from concurrent writes */
1310 mutex_lock(&seq->lock);
1311 psi_trigger_replace(&seq->private, new);
1312 mutex_unlock(&seq->lock);
1313
1314 return nbytes;
1315}
1316
1317static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1318 size_t nbytes, loff_t *ppos)
1319{
1320 return psi_write(file, user_buf, nbytes, PSI_IO);
1321}
1322
1323static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1324 size_t nbytes, loff_t *ppos)
1325{
1326 return psi_write(file, user_buf, nbytes, PSI_MEM);
1327}
1328
1329static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1330 size_t nbytes, loff_t *ppos)
1331{
1332 return psi_write(file, user_buf, nbytes, PSI_CPU);
1333}
1334
1335static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1336{
1337 struct seq_file *seq = file->private_data;
1338
1339 return psi_trigger_poll(&seq->private, file, wait);
1340}
1341
1342static int psi_fop_release(struct inode *inode, struct file *file)
1343{
1344 struct seq_file *seq = file->private_data;
1345
1346 psi_trigger_replace(&seq->private, NULL);
1347 return single_release(inode, file);
1348}
1349
97a32539
AD
1350static const struct proc_ops psi_io_proc_ops = {
1351 .proc_open = psi_io_open,
1352 .proc_read = seq_read,
1353 .proc_lseek = seq_lseek,
1354 .proc_write = psi_io_write,
1355 .proc_poll = psi_fop_poll,
1356 .proc_release = psi_fop_release,
eb414681
JW
1357};
1358
97a32539
AD
1359static const struct proc_ops psi_memory_proc_ops = {
1360 .proc_open = psi_memory_open,
1361 .proc_read = seq_read,
1362 .proc_lseek = seq_lseek,
1363 .proc_write = psi_memory_write,
1364 .proc_poll = psi_fop_poll,
1365 .proc_release = psi_fop_release,
eb414681
JW
1366};
1367
97a32539
AD
1368static const struct proc_ops psi_cpu_proc_ops = {
1369 .proc_open = psi_cpu_open,
1370 .proc_read = seq_read,
1371 .proc_lseek = seq_lseek,
1372 .proc_write = psi_cpu_write,
1373 .proc_poll = psi_fop_poll,
1374 .proc_release = psi_fop_release,
eb414681
JW
1375};
1376
1377static int __init psi_proc_init(void)
1378{
3d817689
WL
1379 if (psi_enable) {
1380 proc_mkdir("pressure", NULL);
6db12ee0
JH
1381 proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1382 proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1383 proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
3d817689 1384 }
eb414681
JW
1385 return 0;
1386}
1387module_init(psi_proc_init);