Merge tag 'media/v5.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[linux-block.git] / kernel / sched / loadavg.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
45ceebf7 2/*
3289bdb4 3 * kernel/sched/loadavg.c
45ceebf7 4 *
3289bdb4
PZ
5 * This file contains the magic bits required to compute the global loadavg
6 * figure. Its a silly number but people think its important. We go through
7 * great pains to make it work on big machines and tickless kernels.
45ceebf7 8 */
45ceebf7
PG
9#include "sched.h"
10
45ceebf7
PG
11/*
12 * Global load-average calculations
13 *
14 * We take a distributed and async approach to calculating the global load-avg
15 * in order to minimize overhead.
16 *
17 * The global load average is an exponentially decaying average of nr_running +
18 * nr_uninterruptible.
19 *
20 * Once every LOAD_FREQ:
21 *
22 * nr_active = 0;
23 * for_each_possible_cpu(cpu)
24 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
25 *
26 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
27 *
28 * Due to a number of reasons the above turns in the mess below:
29 *
30 * - for_each_possible_cpu() is prohibitively expensive on machines with
97fb7a0a 31 * serious number of CPUs, therefore we need to take a distributed approach
45ceebf7
PG
32 * to calculating nr_active.
33 *
34 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
35 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
36 *
37 * So assuming nr_active := 0 when we start out -- true per definition, we
97fb7a0a 38 * can simply take per-CPU deltas and fold those into a global accumulate
45ceebf7
PG
39 * to obtain the same result. See calc_load_fold_active().
40 *
97fb7a0a 41 * Furthermore, in order to avoid synchronizing all per-CPU delta folding
45ceebf7 42 * across the machine, we assume 10 ticks is sufficient time for every
97fb7a0a 43 * CPU to have completed this task.
45ceebf7
PG
44 *
45 * This places an upper-bound on the IRQ-off latency of the machine. Then
46 * again, being late doesn't loose the delta, just wrecks the sample.
47 *
97fb7a0a
IM
48 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-CPU because
49 * this would add another cross-CPU cacheline miss and atomic operation
50 * to the wakeup path. Instead we increment on whatever CPU the task ran
51 * when it went into uninterruptible state and decrement on whatever CPU
45ceebf7 52 * did the wakeup. This means that only the sum of nr_uninterruptible over
97fb7a0a 53 * all CPUs yields the correct result.
45ceebf7
PG
54 *
55 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
56 */
57
58/* Variables and functions for calc_load */
59atomic_long_t calc_load_tasks;
60unsigned long calc_load_update;
61unsigned long avenrun[3];
62EXPORT_SYMBOL(avenrun); /* should be removed */
63
64/**
65 * get_avenrun - get the load average array
66 * @loads: pointer to dest load array
67 * @offset: offset to add
68 * @shift: shift count to shift the result left
69 *
70 * These values are estimates at best, so no need for locking.
71 */
72void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
73{
74 loads[0] = (avenrun[0] + offset) << shift;
75 loads[1] = (avenrun[1] + offset) << shift;
76 loads[2] = (avenrun[2] + offset) << shift;
77}
78
d60585c5 79long calc_load_fold_active(struct rq *this_rq, long adjust)
45ceebf7
PG
80{
81 long nr_active, delta = 0;
82
d60585c5 83 nr_active = this_rq->nr_running - adjust;
e6fe3f42 84 nr_active += (int)this_rq->nr_uninterruptible;
45ceebf7
PG
85
86 if (nr_active != this_rq->calc_load_active) {
87 delta = nr_active - this_rq->calc_load_active;
88 this_rq->calc_load_active = nr_active;
89 }
90
91 return delta;
92}
93
5c54f5b9
JW
94/**
95 * fixed_power_int - compute: x^n, in O(log n) time
96 *
97 * @x: base of the power
98 * @frac_bits: fractional bits of @x
99 * @n: power to raise @x to.
100 *
101 * By exploiting the relation between the definition of the natural power
102 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
103 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
104 * (where: n_i \elem {0, 1}, the binary vector representing n),
105 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
106 * of course trivially computable in O(log_2 n), the length of our binary
107 * vector.
108 */
109static unsigned long
110fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
111{
112 unsigned long result = 1UL << frac_bits;
113
114 if (n) {
115 for (;;) {
116 if (n & 1) {
117 result *= x;
118 result += 1UL << (frac_bits - 1);
119 result >>= frac_bits;
120 }
121 n >>= 1;
122 if (!n)
123 break;
124 x *= x;
125 x += 1UL << (frac_bits - 1);
126 x >>= frac_bits;
127 }
128 }
129
130 return result;
131}
132
133/*
134 * a1 = a0 * e + a * (1 - e)
135 *
136 * a2 = a1 * e + a * (1 - e)
137 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
138 * = a0 * e^2 + a * (1 - e) * (1 + e)
139 *
140 * a3 = a2 * e + a * (1 - e)
141 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
142 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
143 *
144 * ...
145 *
146 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
147 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
148 * = a0 * e^n + a * (1 - e^n)
149 *
150 * [1] application of the geometric series:
151 *
152 * n 1 - x^(n+1)
153 * S_n := \Sum x^i = -------------
154 * i=0 1 - x
155 */
156unsigned long
157calc_load_n(unsigned long load, unsigned long exp,
158 unsigned long active, unsigned int n)
159{
160 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
161}
162
45ceebf7
PG
163#ifdef CONFIG_NO_HZ_COMMON
164/*
165 * Handle NO_HZ for the global load-average.
166 *
167 * Since the above described distributed algorithm to compute the global
97fb7a0a 168 * load-average relies on per-CPU sampling from the tick, it is affected by
45ceebf7
PG
169 * NO_HZ.
170 *
3c85d6db 171 * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon
97fb7a0a 172 * entering NO_HZ state such that we can include this as an 'extra' CPU delta
45ceebf7
PG
173 * when we read the global state.
174 *
175 * Obviously reality has to ruin such a delightfully simple scheme:
176 *
177 * - When we go NO_HZ idle during the window, we can negate our sample
178 * contribution, causing under-accounting.
179 *
3c85d6db 180 * We avoid this by keeping two NO_HZ-delta counters and flipping them
45ceebf7
PG
181 * when the window starts, thus separating old and new NO_HZ load.
182 *
183 * The only trick is the slight shift in index flip for read vs write.
184 *
185 * 0s 5s 10s 15s
186 * +10 +10 +10 +10
187 * |-|-----------|-|-----------|-|-----------|-|
188 * r:0 0 1 1 0 0 1 1 0
189 * w:0 1 1 0 0 1 1 0 0
190 *
3c85d6db 191 * This ensures we'll fold the old NO_HZ contribution in this window while
3b03706f 192 * accumulating the new one.
45ceebf7 193 *
3c85d6db 194 * - When we wake up from NO_HZ during the window, we push up our
45ceebf7
PG
195 * contribution, since we effectively move our sample point to a known
196 * busy state.
197 *
198 * This is solved by pushing the window forward, and thus skipping the
97fb7a0a 199 * sample, for this CPU (effectively using the NO_HZ-delta for this CPU which
45ceebf7 200 * was in effect at the time the window opened). This also solves the issue
97fb7a0a 201 * of having to deal with a CPU having been in NO_HZ for multiple LOAD_FREQ
3c85d6db 202 * intervals.
45ceebf7
PG
203 *
204 * When making the ILB scale, we should try to pull this in as well.
205 */
3c85d6db 206static atomic_long_t calc_load_nohz[2];
45ceebf7
PG
207static int calc_load_idx;
208
209static inline int calc_load_write_idx(void)
210{
211 int idx = calc_load_idx;
212
213 /*
214 * See calc_global_nohz(), if we observe the new index, we also
215 * need to observe the new update time.
216 */
217 smp_rmb();
218
219 /*
220 * If the folding window started, make sure we start writing in the
3c85d6db 221 * next NO_HZ-delta.
45ceebf7 222 */
caeb5882 223 if (!time_before(jiffies, READ_ONCE(calc_load_update)))
45ceebf7
PG
224 idx++;
225
226 return idx & 1;
227}
228
229static inline int calc_load_read_idx(void)
230{
231 return calc_load_idx & 1;
232}
233
ebc0f83c 234static void calc_load_nohz_fold(struct rq *rq)
45ceebf7 235{
45ceebf7
PG
236 long delta;
237
ebc0f83c 238 delta = calc_load_fold_active(rq, 0);
45ceebf7
PG
239 if (delta) {
240 int idx = calc_load_write_idx();
3289bdb4 241
3c85d6db 242 atomic_long_add(delta, &calc_load_nohz[idx]);
45ceebf7
PG
243 }
244}
245
ebc0f83c
PZI
246void calc_load_nohz_start(void)
247{
248 /*
249 * We're going into NO_HZ mode, if there's any pending delta, fold it
250 * into the pending NO_HZ delta.
251 */
252 calc_load_nohz_fold(this_rq());
253}
254
255/*
256 * Keep track of the load for NOHZ_FULL, must be called between
257 * calc_load_nohz_{start,stop}().
258 */
259void calc_load_nohz_remote(struct rq *rq)
260{
261 calc_load_nohz_fold(rq);
262}
263
3c85d6db 264void calc_load_nohz_stop(void)
45ceebf7
PG
265{
266 struct rq *this_rq = this_rq();
267
268 /*
6e5f32f7 269 * If we're still before the pending sample window, we're done.
45ceebf7 270 */
caeb5882 271 this_rq->calc_load_update = READ_ONCE(calc_load_update);
45ceebf7
PG
272 if (time_before(jiffies, this_rq->calc_load_update))
273 return;
274
275 /*
276 * We woke inside or after the sample window, this means we're already
277 * accounted through the nohz accounting, so skip the entire deal and
278 * sync up for the next window.
279 */
45ceebf7
PG
280 if (time_before(jiffies, this_rq->calc_load_update + 10))
281 this_rq->calc_load_update += LOAD_FREQ;
282}
283
ebc0f83c 284static long calc_load_nohz_read(void)
45ceebf7
PG
285{
286 int idx = calc_load_read_idx();
287 long delta = 0;
288
3c85d6db
FW
289 if (atomic_long_read(&calc_load_nohz[idx]))
290 delta = atomic_long_xchg(&calc_load_nohz[idx], 0);
45ceebf7
PG
291
292 return delta;
293}
294
45ceebf7 295/*
97fb7a0a 296 * NO_HZ can leave us missing all per-CPU ticks calling
3c85d6db
FW
297 * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into
298 * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold
299 * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary.
45ceebf7
PG
300 *
301 * Once we've updated the global active value, we need to apply the exponential
302 * weights adjusted to the number of cycles missed.
303 */
304static void calc_global_nohz(void)
305{
caeb5882 306 unsigned long sample_window;
45ceebf7
PG
307 long delta, active, n;
308
caeb5882
MF
309 sample_window = READ_ONCE(calc_load_update);
310 if (!time_before(jiffies, sample_window + 10)) {
45ceebf7
PG
311 /*
312 * Catch-up, fold however many we are behind still
313 */
caeb5882 314 delta = jiffies - sample_window - 10;
45ceebf7
PG
315 n = 1 + (delta / LOAD_FREQ);
316
317 active = atomic_long_read(&calc_load_tasks);
318 active = active > 0 ? active * FIXED_1 : 0;
319
320 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
321 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
322 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
323
caeb5882 324 WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ);
45ceebf7
PG
325 }
326
327 /*
3c85d6db 328 * Flip the NO_HZ index...
45ceebf7
PG
329 *
330 * Make sure we first write the new time then flip the index, so that
331 * calc_load_write_idx() will see the new time when it reads the new
332 * index, this avoids a double flip messing things up.
333 */
334 smp_wmb();
335 calc_load_idx++;
336}
337#else /* !CONFIG_NO_HZ_COMMON */
338
ebc0f83c 339static inline long calc_load_nohz_read(void) { return 0; }
45ceebf7
PG
340static inline void calc_global_nohz(void) { }
341
342#endif /* CONFIG_NO_HZ_COMMON */
343
344/*
345 * calc_load - update the avenrun load estimates 10 ticks after the
346 * CPUs have updated calc_load_tasks.
3289bdb4
PZ
347 *
348 * Called from the global timer code.
45ceebf7 349 */
46132e3a 350void calc_global_load(void)
45ceebf7 351{
caeb5882 352 unsigned long sample_window;
45ceebf7
PG
353 long active, delta;
354
caeb5882
MF
355 sample_window = READ_ONCE(calc_load_update);
356 if (time_before(jiffies, sample_window + 10))
45ceebf7
PG
357 return;
358
359 /*
97fb7a0a 360 * Fold the 'old' NO_HZ-delta to include all NO_HZ CPUs.
45ceebf7 361 */
ebc0f83c 362 delta = calc_load_nohz_read();
45ceebf7
PG
363 if (delta)
364 atomic_long_add(delta, &calc_load_tasks);
365
366 active = atomic_long_read(&calc_load_tasks);
367 active = active > 0 ? active * FIXED_1 : 0;
368
369 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
370 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
371 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
372
caeb5882 373 WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ);
45ceebf7
PG
374
375 /*
3c85d6db
FW
376 * In case we went to NO_HZ for multiple LOAD_FREQ intervals
377 * catch up in bulk.
45ceebf7
PG
378 */
379 calc_global_nohz();
380}
381
382/*
3289bdb4 383 * Called from scheduler_tick() to periodically update this CPU's
45ceebf7
PG
384 * active count.
385 */
3289bdb4 386void calc_global_load_tick(struct rq *this_rq)
45ceebf7
PG
387{
388 long delta;
389
390 if (time_before(jiffies, this_rq->calc_load_update))
391 return;
392
d60585c5 393 delta = calc_load_fold_active(this_rq, 0);
45ceebf7
PG
394 if (delta)
395 atomic_long_add(delta, &calc_load_tasks);
396
397 this_rq->calc_load_update += LOAD_FREQ;
398}