Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
bf0f6f24 IM |
2 | /* |
3 | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | |
4 | * | |
5 | * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | |
6 | * | |
7 | * Interactivity improvements by Mike Galbraith | |
8 | * (C) 2007 Mike Galbraith <efault@gmx.de> | |
9 | * | |
10 | * Various enhancements by Dmitry Adamushko. | |
11 | * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | |
12 | * | |
13 | * Group scheduling enhancements by Srivatsa Vaddagiri | |
14 | * Copyright IBM Corporation, 2007 | |
15 | * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | |
16 | * | |
17 | * Scaled math optimizations by Thomas Gleixner | |
18 | * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | |
21805085 PZ |
19 | * |
20 | * Adaptive scheduling granularity, math enhancements by Peter Zijlstra | |
90eec103 | 21 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra |
bf0f6f24 | 22 | */ |
c4ad6fcb IM |
23 | #include <linux/energy_model.h> |
24 | #include <linux/mmap_lock.h> | |
25 | #include <linux/hugetlb_inline.h> | |
26 | #include <linux/jiffies.h> | |
27 | #include <linux/mm_api.h> | |
28 | #include <linux/highmem.h> | |
29 | #include <linux/spinlock_api.h> | |
30 | #include <linux/cpumask_api.h> | |
31 | #include <linux/lockdep_api.h> | |
32 | #include <linux/softirq.h> | |
33 | #include <linux/refcount_api.h> | |
34 | #include <linux/topology.h> | |
35 | #include <linux/sched/clock.h> | |
36 | #include <linux/sched/cond_resched.h> | |
37 | #include <linux/sched/cputime.h> | |
38 | #include <linux/sched/isolation.h> | |
d664e399 | 39 | #include <linux/sched/nohz.h> |
2cf9ac40 | 40 | #include <linux/sched/prio.h> |
c4ad6fcb IM |
41 | |
42 | #include <linux/cpuidle.h> | |
43 | #include <linux/interrupt.h> | |
467b171a | 44 | #include <linux/memory-tiers.h> |
c4ad6fcb IM |
45 | #include <linux/mempolicy.h> |
46 | #include <linux/mutex_api.h> | |
47 | #include <linux/profile.h> | |
48 | #include <linux/psi.h> | |
49 | #include <linux/ratelimit.h> | |
1930a6e7 | 50 | #include <linux/task_work.h> |
147f3efa | 51 | #include <linux/rbtree_augmented.h> |
c4ad6fcb IM |
52 | |
53 | #include <asm/switch_to.h> | |
54 | ||
2cf9ac40 VG |
55 | #include <uapi/linux/sched/types.h> |
56 | ||
325ea10c | 57 | #include "sched.h" |
b9e9c6ca IM |
58 | #include "stats.h" |
59 | #include "autogroup.h" | |
029632fb | 60 | |
1983a922 CE |
61 | /* |
62 | * The initial- and re-scaling of tunables is configurable | |
1983a922 CE |
63 | * |
64 | * Options are: | |
2b4d5b25 IM |
65 | * |
66 | * SCHED_TUNABLESCALING_NONE - unscaled, always *1 | |
402de7fc | 67 | * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) |
2b4d5b25 IM |
68 | * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus |
69 | * | |
70 | * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) | |
1983a922 | 71 | */ |
8a99b683 | 72 | unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; |
1983a922 | 73 | |
2bd8e6d4 | 74 | /* |
b2be5e96 | 75 | * Minimal preemption granularity for CPU-bound tasks: |
2b4d5b25 | 76 | * |
2ae891b8 | 77 | * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds) |
2bd8e6d4 | 78 | */ |
2ae891b8 | 79 | unsigned int sysctl_sched_base_slice = 700000ULL; |
80 | static unsigned int normalized_sysctl_sched_base_slice = 700000ULL; | |
b2be5e96 | 81 | |
57903f72 | 82 | __read_mostly unsigned int sysctl_sched_migration_cost = 500000UL; |
da84d961 | 83 | |
05289b90 TG |
84 | static int __init setup_sched_thermal_decay_shift(char *str) |
85 | { | |
97450eb9 | 86 | pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); |
05289b90 TG |
87 | return 1; |
88 | } | |
89 | __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); | |
90 | ||
afe06efd TC |
91 | #ifdef CONFIG_SMP |
92 | /* | |
97fb7a0a | 93 | * For asym packing, by default the lower numbered CPU has higher priority. |
afe06efd TC |
94 | */ |
95 | int __weak arch_asym_cpu_priority(int cpu) | |
96 | { | |
97 | return -cpu; | |
98 | } | |
6d101ba6 OJ |
99 | |
100 | /* | |
60e17f5c | 101 | * The margin used when comparing utilization with CPU capacity. |
6d101ba6 OJ |
102 | * |
103 | * (default: ~20%) | |
104 | */ | |
60e17f5c VK |
105 | #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) |
106 | ||
4aed8aa4 VS |
107 | /* |
108 | * The margin used when comparing CPU capacities. | |
109 | * is 'cap1' noticeably greater than 'cap2' | |
110 | * | |
111 | * (default: ~5%) | |
112 | */ | |
113 | #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) | |
afe06efd TC |
114 | #endif |
115 | ||
ec12cb7f PT |
116 | #ifdef CONFIG_CFS_BANDWIDTH |
117 | /* | |
118 | * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool | |
119 | * each time a cfs_rq requests quota. | |
120 | * | |
121 | * Note: in the case that the slice exceeds the runtime remaining (either due | |
122 | * to consumption or the quota being specified to be smaller than the slice) | |
123 | * we will always only issue the remaining available time. | |
124 | * | |
2b4d5b25 IM |
125 | * (default: 5 msec, units: microseconds) |
126 | */ | |
d4ae80ff ZN |
127 | static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; |
128 | #endif | |
129 | ||
0dff89c4 KW |
130 | #ifdef CONFIG_NUMA_BALANCING |
131 | /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ | |
132 | static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; | |
133 | #endif | |
134 | ||
d4ae80ff | 135 | #ifdef CONFIG_SYSCTL |
1751f872 | 136 | static const struct ctl_table sched_fair_sysctls[] = { |
d4ae80ff ZN |
137 | #ifdef CONFIG_CFS_BANDWIDTH |
138 | { | |
139 | .procname = "sched_cfs_bandwidth_slice_us", | |
140 | .data = &sysctl_sched_cfs_bandwidth_slice, | |
141 | .maxlen = sizeof(unsigned int), | |
142 | .mode = 0644, | |
143 | .proc_handler = proc_dointvec_minmax, | |
144 | .extra1 = SYSCTL_ONE, | |
145 | }, | |
146 | #endif | |
0dff89c4 KW |
147 | #ifdef CONFIG_NUMA_BALANCING |
148 | { | |
149 | .procname = "numa_balancing_promote_rate_limit_MBps", | |
150 | .data = &sysctl_numa_balancing_promote_rate_limit, | |
151 | .maxlen = sizeof(unsigned int), | |
152 | .mode = 0644, | |
153 | .proc_handler = proc_dointvec_minmax, | |
154 | .extra1 = SYSCTL_ZERO, | |
155 | }, | |
156 | #endif /* CONFIG_NUMA_BALANCING */ | |
d4ae80ff ZN |
157 | }; |
158 | ||
159 | static int __init sched_fair_sysctl_init(void) | |
160 | { | |
161 | register_sysctl_init("kernel", sched_fair_sysctls); | |
162 | return 0; | |
163 | } | |
164 | late_initcall(sched_fair_sysctl_init); | |
ec12cb7f PT |
165 | #endif |
166 | ||
8527632d PG |
167 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
168 | { | |
169 | lw->weight += inc; | |
170 | lw->inv_weight = 0; | |
171 | } | |
172 | ||
173 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | |
174 | { | |
175 | lw->weight -= dec; | |
176 | lw->inv_weight = 0; | |
177 | } | |
178 | ||
179 | static inline void update_load_set(struct load_weight *lw, unsigned long w) | |
180 | { | |
181 | lw->weight = w; | |
182 | lw->inv_weight = 0; | |
183 | } | |
184 | ||
029632fb PZ |
185 | /* |
186 | * Increase the granularity value when there are more CPUs, | |
187 | * because with more CPUs the 'effective latency' as visible | |
188 | * to users decreases. But the relationship is not linear, | |
189 | * so pick a second-best guess by going with the log2 of the | |
190 | * number of CPUs. | |
191 | * | |
192 | * This idea comes from the SD scheduler of Con Kolivas: | |
193 | */ | |
58ac93e4 | 194 | static unsigned int get_update_sysctl_factor(void) |
029632fb | 195 | { |
58ac93e4 | 196 | unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); |
029632fb PZ |
197 | unsigned int factor; |
198 | ||
199 | switch (sysctl_sched_tunable_scaling) { | |
200 | case SCHED_TUNABLESCALING_NONE: | |
201 | factor = 1; | |
202 | break; | |
203 | case SCHED_TUNABLESCALING_LINEAR: | |
204 | factor = cpus; | |
205 | break; | |
206 | case SCHED_TUNABLESCALING_LOG: | |
207 | default: | |
208 | factor = 1 + ilog2(cpus); | |
209 | break; | |
210 | } | |
211 | ||
212 | return factor; | |
213 | } | |
214 | ||
215 | static void update_sysctl(void) | |
216 | { | |
217 | unsigned int factor = get_update_sysctl_factor(); | |
218 | ||
219 | #define SET_SYSCTL(name) \ | |
220 | (sysctl_##name = (factor) * normalized_sysctl_##name) | |
e4ec3318 | 221 | SET_SYSCTL(sched_base_slice); |
029632fb PZ |
222 | #undef SET_SYSCTL |
223 | } | |
224 | ||
f38f12d1 | 225 | void __init sched_init_granularity(void) |
029632fb PZ |
226 | { |
227 | update_sysctl(); | |
228 | } | |
229 | ||
9dbdb155 | 230 | #define WMULT_CONST (~0U) |
029632fb PZ |
231 | #define WMULT_SHIFT 32 |
232 | ||
9dbdb155 PZ |
233 | static void __update_inv_weight(struct load_weight *lw) |
234 | { | |
235 | unsigned long w; | |
236 | ||
237 | if (likely(lw->inv_weight)) | |
238 | return; | |
239 | ||
240 | w = scale_load_down(lw->weight); | |
241 | ||
242 | if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) | |
243 | lw->inv_weight = 1; | |
244 | else if (unlikely(!w)) | |
245 | lw->inv_weight = WMULT_CONST; | |
246 | else | |
247 | lw->inv_weight = WMULT_CONST / w; | |
248 | } | |
029632fb PZ |
249 | |
250 | /* | |
9dbdb155 PZ |
251 | * delta_exec * weight / lw.weight |
252 | * OR | |
253 | * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT | |
254 | * | |
1c3de5e1 | 255 | * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case |
9dbdb155 PZ |
256 | * we're guaranteed shift stays positive because inv_weight is guaranteed to |
257 | * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. | |
258 | * | |
259 | * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus | |
260 | * weight/lw.weight <= 1, and therefore our shift will also be positive. | |
029632fb | 261 | */ |
9dbdb155 | 262 | static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) |
029632fb | 263 | { |
9dbdb155 | 264 | u64 fact = scale_load_down(weight); |
1e17fb8e | 265 | u32 fact_hi = (u32)(fact >> 32); |
9dbdb155 | 266 | int shift = WMULT_SHIFT; |
1e17fb8e | 267 | int fs; |
029632fb | 268 | |
9dbdb155 | 269 | __update_inv_weight(lw); |
029632fb | 270 | |
1e17fb8e CC |
271 | if (unlikely(fact_hi)) { |
272 | fs = fls(fact_hi); | |
273 | shift -= fs; | |
274 | fact >>= fs; | |
029632fb PZ |
275 | } |
276 | ||
2eeb01a2 | 277 | fact = mul_u32_u32(fact, lw->inv_weight); |
029632fb | 278 | |
1e17fb8e CC |
279 | fact_hi = (u32)(fact >> 32); |
280 | if (fact_hi) { | |
281 | fs = fls(fact_hi); | |
282 | shift -= fs; | |
283 | fact >>= fs; | |
9dbdb155 | 284 | } |
029632fb | 285 | |
9dbdb155 | 286 | return mul_u64_u32_shr(delta_exec, fact, shift); |
029632fb PZ |
287 | } |
288 | ||
147f3efa PZ |
289 | /* |
290 | * delta /= w | |
291 | */ | |
292 | static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) | |
293 | { | |
294 | if (unlikely(se->load.weight != NICE_0_LOAD)) | |
295 | delta = __calc_delta(delta, NICE_0_LOAD, &se->load); | |
296 | ||
297 | return delta; | |
298 | } | |
029632fb PZ |
299 | |
300 | const struct sched_class fair_sched_class; | |
a4c2f00f | 301 | |
bf0f6f24 IM |
302 | /************************************************************** |
303 | * CFS operations on generic schedulable entities: | |
304 | */ | |
305 | ||
62160e3f | 306 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8f48894f | 307 | |
b758149c PZ |
308 | /* Walk up scheduling entities hierarchy */ |
309 | #define for_each_sched_entity(se) \ | |
310 | for (; se; se = se->parent) | |
311 | ||
f6783319 | 312 | static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
3d4b47b4 | 313 | { |
5d299eab PZ |
314 | struct rq *rq = rq_of(cfs_rq); |
315 | int cpu = cpu_of(rq); | |
316 | ||
317 | if (cfs_rq->on_list) | |
f6783319 | 318 | return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; |
5d299eab PZ |
319 | |
320 | cfs_rq->on_list = 1; | |
321 | ||
322 | /* | |
323 | * Ensure we either appear before our parent (if already | |
324 | * enqueued) or force our parent to appear after us when it is | |
325 | * enqueued. The fact that we always enqueue bottom-up | |
326 | * reduces this to two cases and a special case for the root | |
327 | * cfs_rq. Furthermore, it also means that we will always reset | |
328 | * tmp_alone_branch either when the branch is connected | |
329 | * to a tree or when we reach the top of the tree | |
330 | */ | |
331 | if (cfs_rq->tg->parent && | |
332 | cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { | |
67e86250 | 333 | /* |
5d299eab PZ |
334 | * If parent is already on the list, we add the child |
335 | * just before. Thanks to circular linked property of | |
336 | * the list, this means to put the child at the tail | |
337 | * of the list that starts by parent. | |
67e86250 | 338 | */ |
5d299eab PZ |
339 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, |
340 | &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); | |
341 | /* | |
342 | * The branch is now connected to its tree so we can | |
343 | * reset tmp_alone_branch to the beginning of the | |
344 | * list. | |
345 | */ | |
346 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | |
f6783319 | 347 | return true; |
5d299eab | 348 | } |
3d4b47b4 | 349 | |
5d299eab PZ |
350 | if (!cfs_rq->tg->parent) { |
351 | /* | |
352 | * cfs rq without parent should be put | |
353 | * at the tail of the list. | |
354 | */ | |
355 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, | |
356 | &rq->leaf_cfs_rq_list); | |
357 | /* | |
358 | * We have reach the top of a tree so we can reset | |
359 | * tmp_alone_branch to the beginning of the list. | |
360 | */ | |
361 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; | |
f6783319 | 362 | return true; |
3d4b47b4 | 363 | } |
5d299eab PZ |
364 | |
365 | /* | |
366 | * The parent has not already been added so we want to | |
367 | * make sure that it will be put after us. | |
368 | * tmp_alone_branch points to the begin of the branch | |
369 | * where we will add parent. | |
370 | */ | |
371 | list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); | |
372 | /* | |
373 | * update tmp_alone_branch to points to the new begin | |
374 | * of the branch | |
375 | */ | |
376 | rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; | |
f6783319 | 377 | return false; |
3d4b47b4 PZ |
378 | } |
379 | ||
380 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | |
381 | { | |
382 | if (cfs_rq->on_list) { | |
31bc6aea VG |
383 | struct rq *rq = rq_of(cfs_rq); |
384 | ||
385 | /* | |
386 | * With cfs_rq being unthrottled/throttled during an enqueue, | |
b9e6e286 IM |
387 | * it can happen the tmp_alone_branch points to the leaf that |
388 | * we finally want to delete. In this case, tmp_alone_branch moves | |
31bc6aea VG |
389 | * to the prev element but it will point to rq->leaf_cfs_rq_list |
390 | * at the end of the enqueue. | |
391 | */ | |
392 | if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) | |
393 | rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; | |
394 | ||
3d4b47b4 PZ |
395 | list_del_rcu(&cfs_rq->leaf_cfs_rq_list); |
396 | cfs_rq->on_list = 0; | |
397 | } | |
398 | } | |
399 | ||
5d299eab PZ |
400 | static inline void assert_list_leaf_cfs_rq(struct rq *rq) |
401 | { | |
f7d2728c | 402 | WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); |
5d299eab PZ |
403 | } |
404 | ||
b9e6e286 | 405 | /* Iterate through all leaf cfs_rq's on a runqueue */ |
039ae8bc VG |
406 | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ |
407 | list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ | |
408 | leaf_cfs_rq_list) | |
b758149c PZ |
409 | |
410 | /* Do the two (enqueued) entities belong to the same group ? */ | |
fed14d45 | 411 | static inline struct cfs_rq * |
b758149c PZ |
412 | is_same_group(struct sched_entity *se, struct sched_entity *pse) |
413 | { | |
414 | if (se->cfs_rq == pse->cfs_rq) | |
fed14d45 | 415 | return se->cfs_rq; |
b758149c | 416 | |
fed14d45 | 417 | return NULL; |
b758149c PZ |
418 | } |
419 | ||
904cbab7 | 420 | static inline struct sched_entity *parent_entity(const struct sched_entity *se) |
b758149c PZ |
421 | { |
422 | return se->parent; | |
423 | } | |
424 | ||
464b7527 PZ |
425 | static void |
426 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | |
427 | { | |
428 | int se_depth, pse_depth; | |
429 | ||
430 | /* | |
431 | * preemption test can be made between sibling entities who are in the | |
432 | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | |
433 | * both tasks until we find their ancestors who are siblings of common | |
434 | * parent. | |
435 | */ | |
436 | ||
437 | /* First walk up until both entities are at same depth */ | |
fed14d45 PZ |
438 | se_depth = (*se)->depth; |
439 | pse_depth = (*pse)->depth; | |
464b7527 PZ |
440 | |
441 | while (se_depth > pse_depth) { | |
442 | se_depth--; | |
443 | *se = parent_entity(*se); | |
444 | } | |
445 | ||
446 | while (pse_depth > se_depth) { | |
447 | pse_depth--; | |
448 | *pse = parent_entity(*pse); | |
449 | } | |
450 | ||
451 | while (!is_same_group(*se, *pse)) { | |
452 | *se = parent_entity(*se); | |
453 | *pse = parent_entity(*pse); | |
454 | } | |
455 | } | |
456 | ||
30400039 JD |
457 | static int tg_is_idle(struct task_group *tg) |
458 | { | |
459 | return tg->idle > 0; | |
460 | } | |
461 | ||
462 | static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) | |
463 | { | |
464 | return cfs_rq->idle > 0; | |
465 | } | |
466 | ||
467 | static int se_is_idle(struct sched_entity *se) | |
468 | { | |
469 | if (entity_is_task(se)) | |
470 | return task_has_idle_policy(task_of(se)); | |
471 | return cfs_rq_is_idle(group_cfs_rq(se)); | |
472 | } | |
473 | ||
8f48894f PZ |
474 | #else /* !CONFIG_FAIR_GROUP_SCHED */ |
475 | ||
b758149c PZ |
476 | #define for_each_sched_entity(se) \ |
477 | for (; se; se = NULL) | |
bf0f6f24 | 478 | |
f6783319 | 479 | static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
3d4b47b4 | 480 | { |
f6783319 | 481 | return true; |
3d4b47b4 PZ |
482 | } |
483 | ||
484 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | |
485 | { | |
486 | } | |
487 | ||
5d299eab PZ |
488 | static inline void assert_list_leaf_cfs_rq(struct rq *rq) |
489 | { | |
490 | } | |
491 | ||
039ae8bc VG |
492 | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ |
493 | for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) | |
b758149c | 494 | |
b758149c PZ |
495 | static inline struct sched_entity *parent_entity(struct sched_entity *se) |
496 | { | |
497 | return NULL; | |
498 | } | |
499 | ||
464b7527 PZ |
500 | static inline void |
501 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | |
502 | { | |
503 | } | |
504 | ||
366e7ad6 | 505 | static inline int tg_is_idle(struct task_group *tg) |
30400039 JD |
506 | { |
507 | return 0; | |
508 | } | |
509 | ||
510 | static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) | |
511 | { | |
512 | return 0; | |
513 | } | |
514 | ||
515 | static int se_is_idle(struct sched_entity *se) | |
516 | { | |
faa42d29 | 517 | return task_has_idle_policy(task_of(se)); |
30400039 JD |
518 | } |
519 | ||
b758149c PZ |
520 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
521 | ||
6c16a6dc | 522 | static __always_inline |
9dbdb155 | 523 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); |
bf0f6f24 IM |
524 | |
525 | /************************************************************** | |
526 | * Scheduling class tree data structure manipulation methods: | |
527 | */ | |
528 | ||
95d9fed3 | 529 | static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime) |
02e0431a | 530 | { |
1bf08230 | 531 | s64 delta = (s64)(vruntime - max_vruntime); |
368059a9 | 532 | if (delta > 0) |
1bf08230 | 533 | max_vruntime = vruntime; |
02e0431a | 534 | |
1bf08230 | 535 | return max_vruntime; |
02e0431a PZ |
536 | } |
537 | ||
95d9fed3 | 538 | static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime) |
b0ffd246 PZ |
539 | { |
540 | s64 delta = (s64)(vruntime - min_vruntime); | |
541 | if (delta < 0) | |
542 | min_vruntime = vruntime; | |
543 | ||
544 | return min_vruntime; | |
545 | } | |
546 | ||
904cbab7 MWO |
547 | static inline bool entity_before(const struct sched_entity *a, |
548 | const struct sched_entity *b) | |
54fdc581 | 549 | { |
2227a957 AW |
550 | /* |
551 | * Tiebreak on vruntime seems unnecessary since it can | |
552 | * hardly happen. | |
553 | */ | |
554 | return (s64)(a->deadline - b->deadline) < 0; | |
54fdc581 FC |
555 | } |
556 | ||
af4cf404 PZ |
557 | static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) |
558 | { | |
559 | return (s64)(se->vruntime - cfs_rq->min_vruntime); | |
560 | } | |
561 | ||
bf9be9a1 PZ |
562 | #define __node_2_se(node) \ |
563 | rb_entry((node), struct sched_entity, run_node) | |
564 | ||
af4cf404 PZ |
565 | /* |
566 | * Compute virtual time from the per-task service numbers: | |
567 | * | |
568 | * Fair schedulers conserve lag: | |
569 | * | |
570 | * \Sum lag_i = 0 | |
571 | * | |
572 | * Where lag_i is given by: | |
573 | * | |
574 | * lag_i = S - s_i = w_i * (V - v_i) | |
575 | * | |
576 | * Where S is the ideal service time and V is it's virtual time counterpart. | |
577 | * Therefore: | |
578 | * | |
579 | * \Sum lag_i = 0 | |
580 | * \Sum w_i * (V - v_i) = 0 | |
581 | * \Sum w_i * V - w_i * v_i = 0 | |
582 | * | |
583 | * From which we can solve an expression for V in v_i (which we have in | |
584 | * se->vruntime): | |
585 | * | |
586 | * \Sum v_i * w_i \Sum v_i * w_i | |
587 | * V = -------------- = -------------- | |
588 | * \Sum w_i W | |
589 | * | |
590 | * Specifically, this is the weighted average of all entity virtual runtimes. | |
591 | * | |
592 | * [[ NOTE: this is only equal to the ideal scheduler under the condition | |
593 | * that join/leave operations happen at lag_i = 0, otherwise the | |
b9e6e286 | 594 | * virtual time has non-contiguous motion equivalent to: |
af4cf404 PZ |
595 | * |
596 | * V +-= lag_i / W | |
597 | * | |
598 | * Also see the comment in place_entity() that deals with this. ]] | |
599 | * | |
b9e6e286 | 600 | * However, since v_i is u64, and the multiplication could easily overflow |
af4cf404 PZ |
601 | * transform it into a relative form that uses smaller quantities: |
602 | * | |
603 | * Substitute: v_i == (v_i - v0) + v0 | |
604 | * | |
605 | * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i | |
606 | * V = ---------------------------- = --------------------- + v0 | |
607 | * W W | |
608 | * | |
609 | * Which we track using: | |
610 | * | |
611 | * v0 := cfs_rq->min_vruntime | |
612 | * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime | |
613 | * \Sum w_i := cfs_rq->avg_load | |
614 | * | |
615 | * Since min_vruntime is a monotonic increasing variable that closely tracks | |
616 | * the per-task service, these deltas: (v_i - v), will be in the order of the | |
617 | * maximal (virtual) lag induced in the system due to quantisation. | |
618 | * | |
619 | * Also, we use scale_load_down() to reduce the size. | |
620 | * | |
621 | * As measured, the max (key * weight) value was ~44 bits for a kernel build. | |
622 | */ | |
623 | static void | |
624 | avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
625 | { | |
626 | unsigned long weight = scale_load_down(se->load.weight); | |
627 | s64 key = entity_key(cfs_rq, se); | |
628 | ||
629 | cfs_rq->avg_vruntime += key * weight; | |
630 | cfs_rq->avg_load += weight; | |
631 | } | |
632 | ||
633 | static void | |
634 | avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
635 | { | |
636 | unsigned long weight = scale_load_down(se->load.weight); | |
637 | s64 key = entity_key(cfs_rq, se); | |
638 | ||
639 | cfs_rq->avg_vruntime -= key * weight; | |
640 | cfs_rq->avg_load -= weight; | |
641 | } | |
642 | ||
643 | static inline | |
644 | void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) | |
645 | { | |
646 | /* | |
647 | * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load | |
648 | */ | |
649 | cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; | |
650 | } | |
651 | ||
650cad56 PZ |
652 | /* |
653 | * Specifically: avg_runtime() + 0 must result in entity_eligible() := true | |
654 | * For this to be so, the result of this function must have a left bias. | |
655 | */ | |
af4cf404 PZ |
656 | u64 avg_vruntime(struct cfs_rq *cfs_rq) |
657 | { | |
658 | struct sched_entity *curr = cfs_rq->curr; | |
659 | s64 avg = cfs_rq->avg_vruntime; | |
660 | long load = cfs_rq->avg_load; | |
661 | ||
662 | if (curr && curr->on_rq) { | |
663 | unsigned long weight = scale_load_down(curr->load.weight); | |
664 | ||
665 | avg += entity_key(cfs_rq, curr) * weight; | |
666 | load += weight; | |
667 | } | |
668 | ||
650cad56 | 669 | if (load) { |
b9e6e286 | 670 | /* sign flips effective floor / ceiling */ |
650cad56 PZ |
671 | if (avg < 0) |
672 | avg -= (load - 1); | |
af4cf404 | 673 | avg = div_s64(avg, load); |
650cad56 | 674 | } |
af4cf404 PZ |
675 | |
676 | return cfs_rq->min_vruntime + avg; | |
677 | } | |
678 | ||
86bfbb7c PZ |
679 | /* |
680 | * lag_i = S - s_i = w_i * (V - v_i) | |
147f3efa PZ |
681 | * |
682 | * However, since V is approximated by the weighted average of all entities it | |
683 | * is possible -- by addition/removal/reweight to the tree -- to move V around | |
684 | * and end up with a larger lag than we started with. | |
685 | * | |
686 | * Limit this to either double the slice length with a minimum of TICK_NSEC | |
687 | * since that is the timing granularity. | |
688 | * | |
689 | * EEVDF gives the following limit for a steady state system: | |
690 | * | |
691 | * -r_max < lag < max(r_max, q) | |
692 | * | |
693 | * XXX could add max_slice to the augmented data to track this. | |
86bfbb7c | 694 | */ |
6d71a9c6 | 695 | static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) |
86bfbb7c | 696 | { |
1560d1f6 XY |
697 | s64 vlag, limit; |
698 | ||
f7d2728c | 699 | WARN_ON_ONCE(!se->on_rq); |
147f3efa | 700 | |
6d71a9c6 PZ |
701 | vlag = avg_vruntime(cfs_rq) - se->vruntime; |
702 | limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); | |
703 | ||
704 | se->vlag = clamp(vlag, -limit, limit); | |
147f3efa PZ |
705 | } |
706 | ||
707 | /* | |
708 | * Entity is eligible once it received less service than it ought to have, | |
709 | * eg. lag >= 0. | |
710 | * | |
711 | * lag_i = S - s_i = w_i*(V - v_i) | |
712 | * | |
713 | * lag_i >= 0 -> V >= v_i | |
714 | * | |
715 | * \Sum (v_i - v)*w_i | |
716 | * V = ------------------ + v | |
717 | * \Sum w_i | |
718 | * | |
719 | * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) | |
720 | * | |
b9e6e286 | 721 | * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due |
147f3efa PZ |
722 | * to the loss in precision caused by the division. |
723 | */ | |
2227a957 | 724 | static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) |
147f3efa PZ |
725 | { |
726 | struct sched_entity *curr = cfs_rq->curr; | |
727 | s64 avg = cfs_rq->avg_vruntime; | |
728 | long load = cfs_rq->avg_load; | |
729 | ||
730 | if (curr && curr->on_rq) { | |
731 | unsigned long weight = scale_load_down(curr->load.weight); | |
732 | ||
733 | avg += entity_key(cfs_rq, curr) * weight; | |
734 | load += weight; | |
735 | } | |
736 | ||
2227a957 AW |
737 | return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; |
738 | } | |
739 | ||
740 | int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
741 | { | |
742 | return vruntime_eligible(cfs_rq, se->vruntime); | |
86bfbb7c PZ |
743 | } |
744 | ||
af4cf404 PZ |
745 | static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) |
746 | { | |
747 | u64 min_vruntime = cfs_rq->min_vruntime; | |
748 | /* | |
749 | * open coded max_vruntime() to allow updating avg_vruntime | |
750 | */ | |
751 | s64 delta = (s64)(vruntime - min_vruntime); | |
752 | if (delta > 0) { | |
753 | avg_vruntime_update(cfs_rq, delta); | |
754 | min_vruntime = vruntime; | |
755 | } | |
756 | return min_vruntime; | |
757 | } | |
758 | ||
1af5f730 PZ |
759 | static void update_min_vruntime(struct cfs_rq *cfs_rq) |
760 | { | |
2227a957 | 761 | struct sched_entity *se = __pick_root_entity(cfs_rq); |
b60205c7 | 762 | struct sched_entity *curr = cfs_rq->curr; |
1af5f730 PZ |
763 | u64 vruntime = cfs_rq->min_vruntime; |
764 | ||
b60205c7 PZ |
765 | if (curr) { |
766 | if (curr->on_rq) | |
767 | vruntime = curr->vruntime; | |
768 | else | |
769 | curr = NULL; | |
770 | } | |
1af5f730 | 771 | |
147f3efa | 772 | if (se) { |
b60205c7 | 773 | if (!curr) |
2227a957 | 774 | vruntime = se->min_vruntime; |
1af5f730 | 775 | else |
2227a957 | 776 | vruntime = min_vruntime(vruntime, se->min_vruntime); |
1af5f730 PZ |
777 | } |
778 | ||
1bf08230 | 779 | /* ensure we never gain time by being placed backwards. */ |
949090ea | 780 | cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); |
1af5f730 PZ |
781 | } |
782 | ||
aef6987d PZ |
783 | static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) |
784 | { | |
785 | struct sched_entity *root = __pick_root_entity(cfs_rq); | |
786 | struct sched_entity *curr = cfs_rq->curr; | |
787 | u64 min_slice = ~0ULL; | |
788 | ||
789 | if (curr && curr->on_rq) | |
790 | min_slice = curr->slice; | |
791 | ||
792 | if (root) | |
793 | min_slice = min(min_slice, root->min_slice); | |
794 | ||
795 | return min_slice; | |
1af5f730 PZ |
796 | } |
797 | ||
bf9be9a1 PZ |
798 | static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) |
799 | { | |
800 | return entity_before(__node_2_se(a), __node_2_se(b)); | |
801 | } | |
802 | ||
2227a957 | 803 | #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) |
147f3efa | 804 | |
2227a957 | 805 | static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) |
147f3efa PZ |
806 | { |
807 | if (node) { | |
808 | struct sched_entity *rse = __node_2_se(node); | |
2227a957 AW |
809 | if (vruntime_gt(min_vruntime, se, rse)) |
810 | se->min_vruntime = rse->min_vruntime; | |
147f3efa PZ |
811 | } |
812 | } | |
813 | ||
aef6987d PZ |
814 | static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) |
815 | { | |
816 | if (node) { | |
817 | struct sched_entity *rse = __node_2_se(node); | |
818 | if (rse->min_slice < se->min_slice) | |
819 | se->min_slice = rse->min_slice; | |
820 | } | |
821 | } | |
822 | ||
147f3efa | 823 | /* |
2227a957 | 824 | * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) |
147f3efa | 825 | */ |
2227a957 | 826 | static inline bool min_vruntime_update(struct sched_entity *se, bool exit) |
147f3efa | 827 | { |
2227a957 | 828 | u64 old_min_vruntime = se->min_vruntime; |
aef6987d | 829 | u64 old_min_slice = se->min_slice; |
147f3efa PZ |
830 | struct rb_node *node = &se->run_node; |
831 | ||
2227a957 AW |
832 | se->min_vruntime = se->vruntime; |
833 | __min_vruntime_update(se, node->rb_right); | |
834 | __min_vruntime_update(se, node->rb_left); | |
147f3efa | 835 | |
aef6987d PZ |
836 | se->min_slice = se->slice; |
837 | __min_slice_update(se, node->rb_right); | |
838 | __min_slice_update(se, node->rb_left); | |
839 | ||
840 | return se->min_vruntime == old_min_vruntime && | |
841 | se->min_slice == old_min_slice; | |
147f3efa PZ |
842 | } |
843 | ||
2227a957 AW |
844 | RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, |
845 | run_node, min_vruntime, min_vruntime_update); | |
147f3efa | 846 | |
bf0f6f24 IM |
847 | /* |
848 | * Enqueue an entity into the rb-tree: | |
849 | */ | |
0702e3eb | 850 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 851 | { |
af4cf404 | 852 | avg_vruntime_add(cfs_rq, se); |
2227a957 | 853 | se->min_vruntime = se->vruntime; |
aef6987d | 854 | se->min_slice = se->slice; |
147f3efa | 855 | rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, |
2227a957 | 856 | __entity_less, &min_vruntime_cb); |
bf0f6f24 IM |
857 | } |
858 | ||
0702e3eb | 859 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 860 | { |
147f3efa | 861 | rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, |
2227a957 | 862 | &min_vruntime_cb); |
af4cf404 | 863 | avg_vruntime_sub(cfs_rq, se); |
bf0f6f24 IM |
864 | } |
865 | ||
2227a957 AW |
866 | struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) |
867 | { | |
868 | struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; | |
869 | ||
870 | if (!root) | |
871 | return NULL; | |
872 | ||
873 | return __node_2_se(root); | |
874 | } | |
875 | ||
029632fb | 876 | struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) |
bf0f6f24 | 877 | { |
bfb06889 | 878 | struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); |
f4b6755f PZ |
879 | |
880 | if (!left) | |
881 | return NULL; | |
882 | ||
bf9be9a1 | 883 | return __node_2_se(left); |
bf0f6f24 IM |
884 | } |
885 | ||
f553741a | 886 | /* |
887 | * HACK, stash a copy of deadline at the point of pick in vlag, | |
888 | * which isn't used until dequeue. | |
889 | */ | |
890 | static inline void set_protect_slice(struct sched_entity *se) | |
891 | { | |
892 | se->vlag = se->deadline; | |
893 | } | |
894 | ||
895 | static inline bool protect_slice(struct sched_entity *se) | |
896 | { | |
897 | return se->vlag == se->deadline; | |
898 | } | |
899 | ||
900 | static inline void cancel_protect_slice(struct sched_entity *se) | |
901 | { | |
902 | if (protect_slice(se)) | |
903 | se->vlag = se->deadline + 1; | |
904 | } | |
905 | ||
147f3efa PZ |
906 | /* |
907 | * Earliest Eligible Virtual Deadline First | |
908 | * | |
909 | * In order to provide latency guarantees for different request sizes | |
910 | * EEVDF selects the best runnable task from two criteria: | |
911 | * | |
912 | * 1) the task must be eligible (must be owed service) | |
913 | * | |
914 | * 2) from those tasks that meet 1), we select the one | |
915 | * with the earliest virtual deadline. | |
916 | * | |
917 | * We can do this in O(log n) time due to an augmented RB-tree. The | |
2227a957 AW |
918 | * tree keeps the entries sorted on deadline, but also functions as a |
919 | * heap based on the vruntime by keeping: | |
147f3efa | 920 | * |
2227a957 | 921 | * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) |
147f3efa | 922 | * |
2227a957 | 923 | * Which allows tree pruning through eligibility. |
147f3efa | 924 | */ |
2227a957 | 925 | static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) |
ac53db59 | 926 | { |
147f3efa | 927 | struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; |
ee4373dc | 928 | struct sched_entity *se = __pick_first_entity(cfs_rq); |
147f3efa PZ |
929 | struct sched_entity *curr = cfs_rq->curr; |
930 | struct sched_entity *best = NULL; | |
2227a957 AW |
931 | |
932 | /* | |
933 | * We can safely skip eligibility check if there is only one entity | |
934 | * in this cfs_rq, saving some cycles. | |
935 | */ | |
736c55a0 | 936 | if (cfs_rq->nr_queued == 1) |
ee4373dc | 937 | return curr && curr->on_rq ? curr : se; |
ac53db59 | 938 | |
147f3efa PZ |
939 | if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) |
940 | curr = NULL; | |
941 | ||
f553741a | 942 | if (sched_feat(RUN_TO_PARITY) && curr && protect_slice(curr)) |
63304558 PZ |
943 | return curr; |
944 | ||
ee4373dc AW |
945 | /* Pick the leftmost entity if it's eligible */ |
946 | if (se && entity_eligible(cfs_rq, se)) { | |
947 | best = se; | |
948 | goto found; | |
949 | } | |
950 | ||
2227a957 | 951 | /* Heap search for the EEVD entity */ |
147f3efa | 952 | while (node) { |
2227a957 | 953 | struct rb_node *left = node->rb_left; |
ac53db59 | 954 | |
147f3efa | 955 | /* |
2227a957 AW |
956 | * Eligible entities in left subtree are always better |
957 | * choices, since they have earlier deadlines. | |
147f3efa | 958 | */ |
2227a957 AW |
959 | if (left && vruntime_eligible(cfs_rq, |
960 | __node_2_se(left)->min_vruntime)) { | |
961 | node = left; | |
147f3efa PZ |
962 | continue; |
963 | } | |
964 | ||
ee4373dc AW |
965 | se = __node_2_se(node); |
966 | ||
147f3efa | 967 | /* |
2227a957 AW |
968 | * The left subtree either is empty or has no eligible |
969 | * entity, so check the current node since it is the one | |
970 | * with earliest deadline that might be eligible. | |
147f3efa | 971 | */ |
2227a957 | 972 | if (entity_eligible(cfs_rq, se)) { |
147f3efa | 973 | best = se; |
b01db23d | 974 | break; |
147f3efa PZ |
975 | } |
976 | ||
977 | node = node->rb_right; | |
978 | } | |
ee4373dc | 979 | found: |
2227a957 AW |
980 | if (!best || (curr && entity_before(curr, best))) |
981 | best = curr; | |
147f3efa | 982 | |
2227a957 | 983 | return best; |
ac53db59 RR |
984 | } |
985 | ||
029632fb | 986 | struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) |
aeb73b04 | 987 | { |
bfb06889 | 988 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); |
aeb73b04 | 989 | |
70eee74b BS |
990 | if (!last) |
991 | return NULL; | |
7eee3e67 | 992 | |
bf9be9a1 | 993 | return __node_2_se(last); |
aeb73b04 PZ |
994 | } |
995 | ||
bf0f6f24 IM |
996 | /************************************************************** |
997 | * Scheduling class statistics methods: | |
998 | */ | |
22dc02f8 | 999 | #ifdef CONFIG_SMP |
8a99b683 | 1000 | int sched_update_scaling(void) |
b2be5e96 | 1001 | { |
58ac93e4 | 1002 | unsigned int factor = get_update_sysctl_factor(); |
b2be5e96 | 1003 | |
acb4a848 CE |
1004 | #define WRT_SYSCTL(name) \ |
1005 | (normalized_sysctl_##name = sysctl_##name / (factor)) | |
e4ec3318 | 1006 | WRT_SYSCTL(sched_base_slice); |
acb4a848 CE |
1007 | #undef WRT_SYSCTL |
1008 | ||
b2be5e96 PZ |
1009 | return 0; |
1010 | } | |
1011 | #endif | |
647e7cac | 1012 | |
147f3efa | 1013 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); |
51ce83ed | 1014 | |
647e7cac | 1015 | /* |
147f3efa PZ |
1016 | * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i |
1017 | * this is probably good enough. | |
647e7cac | 1018 | */ |
85e511df | 1019 | static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) |
21805085 | 1020 | { |
147f3efa | 1021 | if ((s64)(se->vruntime - se->deadline) < 0) |
85e511df | 1022 | return false; |
0a582440 | 1023 | |
5e963f2b PZ |
1024 | /* |
1025 | * For EEVDF the virtual time slope is determined by w_i (iow. | |
1026 | * nice) while the request time r_i is determined by | |
e4ec3318 | 1027 | * sysctl_sched_base_slice. |
5e963f2b | 1028 | */ |
857b158d PZ |
1029 | if (!se->custom_slice) |
1030 | se->slice = sysctl_sched_base_slice; | |
0c2de3f0 | 1031 | |
147f3efa PZ |
1032 | /* |
1033 | * EEVDF: vd_i = ve_i + r_i / w_i | |
1034 | */ | |
1035 | se->deadline = se->vruntime + calc_delta_fair(se->slice, se); | |
51ce83ed | 1036 | |
5e963f2b PZ |
1037 | /* |
1038 | * The task has consumed its request, reschedule. | |
1039 | */ | |
85e511df | 1040 | return true; |
a7be37ac PZ |
1041 | } |
1042 | ||
c0796298 | 1043 | #include "pelt.h" |
23127296 | 1044 | #ifdef CONFIG_SMP |
283e2ed3 | 1045 | |
772bd008 | 1046 | static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); |
fb13c7ee | 1047 | static unsigned long task_h_load(struct task_struct *p); |
3b1baa64 | 1048 | static unsigned long capacity_of(int cpu); |
fb13c7ee | 1049 | |
540247fb YD |
1050 | /* Give new sched_entity start runnable values to heavy its load in infant time */ |
1051 | void init_entity_runnable_average(struct sched_entity *se) | |
a75cdaa9 | 1052 | { |
540247fb | 1053 | struct sched_avg *sa = &se->avg; |
a75cdaa9 | 1054 | |
f207934f PZ |
1055 | memset(sa, 0, sizeof(*sa)); |
1056 | ||
b5a9b340 | 1057 | /* |
dfcb245e | 1058 | * Tasks are initialized with full load to be seen as heavy tasks until |
b5a9b340 | 1059 | * they get a chance to stabilize to their real load level. |
dfcb245e | 1060 | * Group entities are initialized with zero load to reflect the fact that |
b5a9b340 VG |
1061 | * nothing has been attached to the task group yet. |
1062 | */ | |
1063 | if (entity_is_task(se)) | |
0dacee1b | 1064 | sa->load_avg = scale_load_down(se->load.weight); |
f207934f | 1065 | |
b9e6e286 | 1066 | /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ |
a75cdaa9 | 1067 | } |
7ea241af | 1068 | |
2b8c41da YD |
1069 | /* |
1070 | * With new tasks being created, their initial util_avgs are extrapolated | |
1071 | * based on the cfs_rq's current util_avg: | |
1072 | * | |
72bffbf5 DL |
1073 | * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) |
1074 | * * se_weight(se) | |
2b8c41da YD |
1075 | * |
1076 | * However, in many cases, the above util_avg does not give a desired | |
1077 | * value. Moreover, the sum of the util_avgs may be divergent, such | |
1078 | * as when the series is a harmonic series. | |
1079 | * | |
1080 | * To solve this problem, we also cap the util_avg of successive tasks to | |
1081 | * only 1/2 of the left utilization budget: | |
1082 | * | |
8fe5c5a9 | 1083 | * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n |
2b8c41da | 1084 | * |
8fe5c5a9 | 1085 | * where n denotes the nth task and cpu_scale the CPU capacity. |
2b8c41da | 1086 | * |
8fe5c5a9 QP |
1087 | * For example, for a CPU with 1024 of capacity, a simplest series from |
1088 | * the beginning would be like: | |
2b8c41da YD |
1089 | * |
1090 | * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... | |
1091 | * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... | |
1092 | * | |
1093 | * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) | |
1094 | * if util_avg > util_avg_cap. | |
1095 | */ | |
d0fe0b9c | 1096 | void post_init_entity_util_avg(struct task_struct *p) |
2b8c41da | 1097 | { |
d0fe0b9c | 1098 | struct sched_entity *se = &p->se; |
2b8c41da YD |
1099 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
1100 | struct sched_avg *sa = &se->avg; | |
8ec59c0f | 1101 | long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); |
8fe5c5a9 | 1102 | long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; |
2b8c41da | 1103 | |
d0fe0b9c DE |
1104 | if (p->sched_class != &fair_sched_class) { |
1105 | /* | |
1106 | * For !fair tasks do: | |
1107 | * | |
1108 | update_cfs_rq_load_avg(now, cfs_rq); | |
a4f9a0e5 | 1109 | attach_entity_load_avg(cfs_rq, se); |
d0fe0b9c DE |
1110 | switched_from_fair(rq, p); |
1111 | * | |
1112 | * such that the next switched_to_fair() has the | |
1113 | * expected state. | |
1114 | */ | |
1115 | se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); | |
1116 | return; | |
7dc603c9 | 1117 | } |
e4fe074d CZ |
1118 | |
1119 | if (cap > 0) { | |
1120 | if (cfs_rq->avg.util_avg != 0) { | |
72bffbf5 | 1121 | sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); |
e4fe074d CZ |
1122 | sa->util_avg /= (cfs_rq->avg.load_avg + 1); |
1123 | ||
1124 | if (sa->util_avg > cap) | |
1125 | sa->util_avg = cap; | |
1126 | } else { | |
1127 | sa->util_avg = cap; | |
1128 | } | |
1129 | } | |
1130 | ||
1131 | sa->runnable_avg = sa->util_avg; | |
2b8c41da YD |
1132 | } |
1133 | ||
7dc603c9 | 1134 | #else /* !CONFIG_SMP */ |
540247fb | 1135 | void init_entity_runnable_average(struct sched_entity *se) |
a75cdaa9 AS |
1136 | { |
1137 | } | |
d0fe0b9c | 1138 | void post_init_entity_util_avg(struct task_struct *p) |
2b8c41da YD |
1139 | { |
1140 | } | |
fe749158 | 1141 | static void update_tg_load_avg(struct cfs_rq *cfs_rq) |
3d30544f PZ |
1142 | { |
1143 | } | |
7dc603c9 | 1144 | #endif /* CONFIG_SMP */ |
a75cdaa9 | 1145 | |
5d69eca5 | 1146 | static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) |
bf0f6f24 | 1147 | { |
5d69eca5 PZ |
1148 | u64 now = rq_clock_task(rq); |
1149 | s64 delta_exec; | |
bf0f6f24 | 1150 | |
9dbdb155 | 1151 | delta_exec = now - curr->exec_start; |
5d69eca5 PZ |
1152 | if (unlikely(delta_exec <= 0)) |
1153 | return delta_exec; | |
bf0f6f24 | 1154 | |
8ebc91d9 | 1155 | curr->exec_start = now; |
5d69eca5 | 1156 | curr->sum_exec_runtime += delta_exec; |
d842de87 | 1157 | |
ceeadb83 YS |
1158 | if (schedstat_enabled()) { |
1159 | struct sched_statistics *stats; | |
1160 | ||
1161 | stats = __schedstats_from_se(curr); | |
1162 | __schedstat_set(stats->exec_max, | |
1163 | max(delta_exec, stats->exec_max)); | |
1164 | } | |
9dbdb155 | 1165 | |
5d69eca5 PZ |
1166 | return delta_exec; |
1167 | } | |
1168 | ||
c708a4dc PZ |
1169 | static inline void update_curr_task(struct task_struct *p, s64 delta_exec) |
1170 | { | |
1171 | trace_sched_stat_runtime(p, delta_exec); | |
1172 | account_group_exec_runtime(p, delta_exec); | |
1173 | cgroup_account_cputime(p, delta_exec); | |
1174 | } | |
1175 | ||
85e511df PZ |
1176 | static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) |
1177 | { | |
1178 | if (!sched_feat(PREEMPT_SHORT)) | |
1179 | return false; | |
1180 | ||
1181 | if (curr->vlag == curr->deadline) | |
1182 | return false; | |
1183 | ||
1184 | return !entity_eligible(cfs_rq, curr); | |
1185 | } | |
1186 | ||
1187 | static inline bool do_preempt_short(struct cfs_rq *cfs_rq, | |
1188 | struct sched_entity *pse, struct sched_entity *se) | |
1189 | { | |
1190 | if (!sched_feat(PREEMPT_SHORT)) | |
1191 | return false; | |
1192 | ||
1193 | if (pse->slice >= se->slice) | |
1194 | return false; | |
1195 | ||
1196 | if (!entity_eligible(cfs_rq, pse)) | |
1197 | return false; | |
1198 | ||
1199 | if (entity_before(pse, se)) | |
1200 | return true; | |
1201 | ||
1202 | if (!entity_eligible(cfs_rq, se)) | |
1203 | return true; | |
1204 | ||
1205 | return false; | |
1206 | } | |
1207 | ||
5d69eca5 PZ |
1208 | /* |
1209 | * Used by other classes to account runtime. | |
1210 | */ | |
1211 | s64 update_curr_common(struct rq *rq) | |
1212 | { | |
af0c8b2b | 1213 | struct task_struct *donor = rq->donor; |
5d69eca5 PZ |
1214 | s64 delta_exec; |
1215 | ||
af0c8b2b | 1216 | delta_exec = update_curr_se(rq, &donor->se); |
c708a4dc | 1217 | if (likely(delta_exec > 0)) |
af0c8b2b | 1218 | update_curr_task(donor, delta_exec); |
5d69eca5 PZ |
1219 | |
1220 | return delta_exec; | |
1221 | } | |
1222 | ||
1223 | /* | |
1224 | * Update the current task's runtime statistics. | |
1225 | */ | |
1226 | static void update_curr(struct cfs_rq *cfs_rq) | |
1227 | { | |
1228 | struct sched_entity *curr = cfs_rq->curr; | |
a110a81c | 1229 | struct rq *rq = rq_of(cfs_rq); |
5d69eca5 | 1230 | s64 delta_exec; |
85e511df | 1231 | bool resched; |
5d69eca5 PZ |
1232 | |
1233 | if (unlikely(!curr)) | |
1234 | return; | |
1235 | ||
a110a81c | 1236 | delta_exec = update_curr_se(rq, curr); |
5d69eca5 PZ |
1237 | if (unlikely(delta_exec <= 0)) |
1238 | return; | |
9dbdb155 PZ |
1239 | |
1240 | curr->vruntime += calc_delta_fair(delta_exec, curr); | |
85e511df | 1241 | resched = update_deadline(cfs_rq, curr); |
9dbdb155 PZ |
1242 | update_min_vruntime(cfs_rq); |
1243 | ||
a110a81c DBO |
1244 | if (entity_is_task(curr)) { |
1245 | struct task_struct *p = task_of(curr); | |
1246 | ||
1247 | update_curr_task(p, delta_exec); | |
1248 | ||
1249 | /* | |
c7f7e9c7 VPG |
1250 | * If the fair_server is active, we need to account for the |
1251 | * fair_server time whether or not the task is running on | |
1252 | * behalf of fair_server or not: | |
1253 | * - If the task is running on behalf of fair_server, we need | |
1254 | * to limit its time based on the assigned runtime. | |
1255 | * - Fair task that runs outside of fair_server should account | |
1256 | * against fair_server such that it can account for this time | |
1257 | * and possibly avoid running this period. | |
a110a81c | 1258 | */ |
c7f7e9c7 | 1259 | if (dl_server_active(&rq->fair_server)) |
a110a81c DBO |
1260 | dl_server_update(&rq->fair_server, delta_exec); |
1261 | } | |
ec12cb7f PT |
1262 | |
1263 | account_cfs_rq_runtime(cfs_rq, delta_exec); | |
85e511df | 1264 | |
736c55a0 | 1265 | if (cfs_rq->nr_queued == 1) |
85e511df PZ |
1266 | return; |
1267 | ||
1268 | if (resched || did_preempt_short(cfs_rq, curr)) { | |
7c70cb94 | 1269 | resched_curr_lazy(rq); |
85e511df PZ |
1270 | clear_buddies(cfs_rq, curr); |
1271 | } | |
bf0f6f24 IM |
1272 | } |
1273 | ||
6e998916 SG |
1274 | static void update_curr_fair(struct rq *rq) |
1275 | { | |
af0c8b2b | 1276 | update_curr(cfs_rq_of(&rq->donor->se)); |
6e998916 SG |
1277 | } |
1278 | ||
bf0f6f24 | 1279 | static inline void |
60f2415e | 1280 | update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 1281 | { |
ceeadb83 | 1282 | struct sched_statistics *stats; |
60f2415e | 1283 | struct task_struct *p = NULL; |
4fa8d299 JP |
1284 | |
1285 | if (!schedstat_enabled()) | |
1286 | return; | |
1287 | ||
ceeadb83 YS |
1288 | stats = __schedstats_from_se(se); |
1289 | ||
60f2415e YS |
1290 | if (entity_is_task(se)) |
1291 | p = task_of(se); | |
3ea94de1 | 1292 | |
60f2415e | 1293 | __update_stats_wait_start(rq_of(cfs_rq), p, stats); |
bf0f6f24 IM |
1294 | } |
1295 | ||
4fa8d299 | 1296 | static inline void |
60f2415e | 1297 | update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) |
3ea94de1 | 1298 | { |
ceeadb83 YS |
1299 | struct sched_statistics *stats; |
1300 | struct task_struct *p = NULL; | |
cb251765 | 1301 | |
4fa8d299 JP |
1302 | if (!schedstat_enabled()) |
1303 | return; | |
1304 | ||
ceeadb83 YS |
1305 | stats = __schedstats_from_se(se); |
1306 | ||
b9c88f75 | 1307 | /* |
1308 | * When the sched_schedstat changes from 0 to 1, some sched se | |
1309 | * maybe already in the runqueue, the se->statistics.wait_start | |
1310 | * will be 0.So it will let the delta wrong. We need to avoid this | |
1311 | * scenario. | |
1312 | */ | |
ceeadb83 | 1313 | if (unlikely(!schedstat_val(stats->wait_start))) |
b9c88f75 | 1314 | return; |
1315 | ||
60f2415e | 1316 | if (entity_is_task(se)) |
3ea94de1 | 1317 | p = task_of(se); |
3ea94de1 | 1318 | |
60f2415e | 1319 | __update_stats_wait_end(rq_of(cfs_rq), p, stats); |
3ea94de1 | 1320 | } |
3ea94de1 | 1321 | |
4fa8d299 | 1322 | static inline void |
60f2415e | 1323 | update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) |
1a3d027c | 1324 | { |
ceeadb83 | 1325 | struct sched_statistics *stats; |
1a3d027c | 1326 | struct task_struct *tsk = NULL; |
4fa8d299 JP |
1327 | |
1328 | if (!schedstat_enabled()) | |
1329 | return; | |
1330 | ||
ceeadb83 YS |
1331 | stats = __schedstats_from_se(se); |
1332 | ||
1a3d027c JP |
1333 | if (entity_is_task(se)) |
1334 | tsk = task_of(se); | |
1335 | ||
60f2415e | 1336 | __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); |
3ea94de1 | 1337 | } |
3ea94de1 | 1338 | |
bf0f6f24 IM |
1339 | /* |
1340 | * Task is being enqueued - update stats: | |
1341 | */ | |
cb251765 | 1342 | static inline void |
60f2415e | 1343 | update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 1344 | { |
4fa8d299 JP |
1345 | if (!schedstat_enabled()) |
1346 | return; | |
1347 | ||
bf0f6f24 IM |
1348 | /* |
1349 | * Are we enqueueing a waiting task? (for current tasks | |
1350 | * a dequeue/enqueue event is a NOP) | |
1351 | */ | |
429d43bc | 1352 | if (se != cfs_rq->curr) |
60f2415e | 1353 | update_stats_wait_start_fair(cfs_rq, se); |
1a3d027c JP |
1354 | |
1355 | if (flags & ENQUEUE_WAKEUP) | |
60f2415e | 1356 | update_stats_enqueue_sleeper_fair(cfs_rq, se); |
bf0f6f24 IM |
1357 | } |
1358 | ||
bf0f6f24 | 1359 | static inline void |
60f2415e | 1360 | update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 1361 | { |
4fa8d299 JP |
1362 | |
1363 | if (!schedstat_enabled()) | |
1364 | return; | |
1365 | ||
bf0f6f24 IM |
1366 | /* |
1367 | * Mark the end of the wait period if dequeueing a | |
1368 | * waiting task: | |
1369 | */ | |
429d43bc | 1370 | if (se != cfs_rq->curr) |
60f2415e | 1371 | update_stats_wait_end_fair(cfs_rq, se); |
cb251765 | 1372 | |
4fa8d299 JP |
1373 | if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { |
1374 | struct task_struct *tsk = task_of(se); | |
2f064a59 | 1375 | unsigned int state; |
cb251765 | 1376 | |
2f064a59 PZ |
1377 | /* XXX racy against TTWU */ |
1378 | state = READ_ONCE(tsk->__state); | |
1379 | if (state & TASK_INTERRUPTIBLE) | |
ceeadb83 | 1380 | __schedstat_set(tsk->stats.sleep_start, |
4fa8d299 | 1381 | rq_clock(rq_of(cfs_rq))); |
2f064a59 | 1382 | if (state & TASK_UNINTERRUPTIBLE) |
ceeadb83 | 1383 | __schedstat_set(tsk->stats.block_start, |
4fa8d299 | 1384 | rq_clock(rq_of(cfs_rq))); |
cb251765 | 1385 | } |
cb251765 MG |
1386 | } |
1387 | ||
bf0f6f24 IM |
1388 | /* |
1389 | * We are picking a new current task - update its stats: | |
1390 | */ | |
1391 | static inline void | |
79303e9e | 1392 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 IM |
1393 | { |
1394 | /* | |
1395 | * We are starting a new run period: | |
1396 | */ | |
78becc27 | 1397 | se->exec_start = rq_clock_task(rq_of(cfs_rq)); |
bf0f6f24 IM |
1398 | } |
1399 | ||
bf0f6f24 IM |
1400 | /************************************************** |
1401 | * Scheduling class queueing methods: | |
1402 | */ | |
1403 | ||
8b36d07f RN |
1404 | static inline bool is_core_idle(int cpu) |
1405 | { | |
1406 | #ifdef CONFIG_SCHED_SMT | |
1407 | int sibling; | |
1408 | ||
1409 | for_each_cpu(sibling, cpu_smt_mask(cpu)) { | |
1410 | if (cpu == sibling) | |
1411 | continue; | |
1412 | ||
1413 | if (!idle_cpu(sibling)) | |
1414 | return false; | |
1415 | } | |
1416 | #endif | |
1417 | ||
1418 | return true; | |
1419 | } | |
1420 | ||
cb29a5c1 MG |
1421 | #ifdef CONFIG_NUMA |
1422 | #define NUMA_IMBALANCE_MIN 2 | |
1423 | ||
1424 | static inline long | |
1425 | adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) | |
1426 | { | |
1427 | /* | |
1428 | * Allow a NUMA imbalance if busy CPUs is less than the maximum | |
1429 | * threshold. Above this threshold, individual tasks may be contending | |
1430 | * for both memory bandwidth and any shared HT resources. This is an | |
1431 | * approximation as the number of running tasks may not be related to | |
1432 | * the number of busy CPUs due to sched_setaffinity. | |
1433 | */ | |
1434 | if (dst_running > imb_numa_nr) | |
1435 | return imbalance; | |
1436 | ||
1437 | /* | |
1438 | * Allow a small imbalance based on a simple pair of communicating | |
1439 | * tasks that remain local when the destination is lightly loaded. | |
1440 | */ | |
1441 | if (imbalance <= NUMA_IMBALANCE_MIN) | |
1442 | return 0; | |
1443 | ||
1444 | return imbalance; | |
1445 | } | |
1446 | #endif /* CONFIG_NUMA */ | |
1447 | ||
cbee9f88 PZ |
1448 | #ifdef CONFIG_NUMA_BALANCING |
1449 | /* | |
598f0ec0 MG |
1450 | * Approximate time to scan a full NUMA task in ms. The task scan period is |
1451 | * calculated based on the tasks virtual memory size and | |
1452 | * numa_balancing_scan_size. | |
cbee9f88 | 1453 | */ |
598f0ec0 MG |
1454 | unsigned int sysctl_numa_balancing_scan_period_min = 1000; |
1455 | unsigned int sysctl_numa_balancing_scan_period_max = 60000; | |
6e5fb223 PZ |
1456 | |
1457 | /* Portion of address space to scan in MB */ | |
1458 | unsigned int sysctl_numa_balancing_scan_size = 256; | |
cbee9f88 | 1459 | |
4b96a29b PZ |
1460 | /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ |
1461 | unsigned int sysctl_numa_balancing_scan_delay = 1000; | |
1462 | ||
33024536 HY |
1463 | /* The page with hint page fault latency < threshold in ms is considered hot */ |
1464 | unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; | |
1465 | ||
b5dd77c8 | 1466 | struct numa_group { |
c45a7795 | 1467 | refcount_t refcount; |
b5dd77c8 RR |
1468 | |
1469 | spinlock_t lock; /* nr_tasks, tasks */ | |
1470 | int nr_tasks; | |
1471 | pid_t gid; | |
1472 | int active_nodes; | |
1473 | ||
1474 | struct rcu_head rcu; | |
1475 | unsigned long total_faults; | |
1476 | unsigned long max_faults_cpu; | |
1477 | /* | |
5b763a14 BR |
1478 | * faults[] array is split into two regions: faults_mem and faults_cpu. |
1479 | * | |
b5dd77c8 RR |
1480 | * Faults_cpu is used to decide whether memory should move |
1481 | * towards the CPU. As a consequence, these stats are weighted | |
1482 | * more by CPU use than by memory faults. | |
1483 | */ | |
04f5c362 | 1484 | unsigned long faults[]; |
b5dd77c8 RR |
1485 | }; |
1486 | ||
cb361d8c JH |
1487 | /* |
1488 | * For functions that can be called in multiple contexts that permit reading | |
1489 | * ->numa_group (see struct task_struct for locking rules). | |
1490 | */ | |
1491 | static struct numa_group *deref_task_numa_group(struct task_struct *p) | |
1492 | { | |
1493 | return rcu_dereference_check(p->numa_group, p == current || | |
9ef7e7e3 | 1494 | (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); |
cb361d8c JH |
1495 | } |
1496 | ||
1497 | static struct numa_group *deref_curr_numa_group(struct task_struct *p) | |
1498 | { | |
1499 | return rcu_dereference_protected(p->numa_group, p == current); | |
1500 | } | |
1501 | ||
b5dd77c8 RR |
1502 | static inline unsigned long group_faults_priv(struct numa_group *ng); |
1503 | static inline unsigned long group_faults_shared(struct numa_group *ng); | |
1504 | ||
598f0ec0 MG |
1505 | static unsigned int task_nr_scan_windows(struct task_struct *p) |
1506 | { | |
1507 | unsigned long rss = 0; | |
1508 | unsigned long nr_scan_pages; | |
1509 | ||
1510 | /* | |
1511 | * Calculations based on RSS as non-present and empty pages are skipped | |
1512 | * by the PTE scanner and NUMA hinting faults should be trapped based | |
1513 | * on resident pages | |
1514 | */ | |
1515 | nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); | |
1516 | rss = get_mm_rss(p->mm); | |
1517 | if (!rss) | |
1518 | rss = nr_scan_pages; | |
1519 | ||
1520 | rss = round_up(rss, nr_scan_pages); | |
1521 | return rss / nr_scan_pages; | |
1522 | } | |
1523 | ||
3b03706f | 1524 | /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ |
598f0ec0 MG |
1525 | #define MAX_SCAN_WINDOW 2560 |
1526 | ||
1527 | static unsigned int task_scan_min(struct task_struct *p) | |
1528 | { | |
316c1608 | 1529 | unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); |
598f0ec0 MG |
1530 | unsigned int scan, floor; |
1531 | unsigned int windows = 1; | |
1532 | ||
64192658 KT |
1533 | if (scan_size < MAX_SCAN_WINDOW) |
1534 | windows = MAX_SCAN_WINDOW / scan_size; | |
598f0ec0 MG |
1535 | floor = 1000 / windows; |
1536 | ||
1537 | scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); | |
1538 | return max_t(unsigned int, floor, scan); | |
1539 | } | |
1540 | ||
b5dd77c8 RR |
1541 | static unsigned int task_scan_start(struct task_struct *p) |
1542 | { | |
1543 | unsigned long smin = task_scan_min(p); | |
1544 | unsigned long period = smin; | |
cb361d8c | 1545 | struct numa_group *ng; |
b5dd77c8 RR |
1546 | |
1547 | /* Scale the maximum scan period with the amount of shared memory. */ | |
cb361d8c JH |
1548 | rcu_read_lock(); |
1549 | ng = rcu_dereference(p->numa_group); | |
1550 | if (ng) { | |
b5dd77c8 RR |
1551 | unsigned long shared = group_faults_shared(ng); |
1552 | unsigned long private = group_faults_priv(ng); | |
1553 | ||
c45a7795 | 1554 | period *= refcount_read(&ng->refcount); |
b5dd77c8 RR |
1555 | period *= shared + 1; |
1556 | period /= private + shared + 1; | |
1557 | } | |
cb361d8c | 1558 | rcu_read_unlock(); |
b5dd77c8 RR |
1559 | |
1560 | return max(smin, period); | |
1561 | } | |
1562 | ||
598f0ec0 MG |
1563 | static unsigned int task_scan_max(struct task_struct *p) |
1564 | { | |
b5dd77c8 RR |
1565 | unsigned long smin = task_scan_min(p); |
1566 | unsigned long smax; | |
cb361d8c | 1567 | struct numa_group *ng; |
598f0ec0 MG |
1568 | |
1569 | /* Watch for min being lower than max due to floor calculations */ | |
1570 | smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); | |
b5dd77c8 RR |
1571 | |
1572 | /* Scale the maximum scan period with the amount of shared memory. */ | |
cb361d8c JH |
1573 | ng = deref_curr_numa_group(p); |
1574 | if (ng) { | |
b5dd77c8 RR |
1575 | unsigned long shared = group_faults_shared(ng); |
1576 | unsigned long private = group_faults_priv(ng); | |
1577 | unsigned long period = smax; | |
1578 | ||
c45a7795 | 1579 | period *= refcount_read(&ng->refcount); |
b5dd77c8 RR |
1580 | period *= shared + 1; |
1581 | period /= private + shared + 1; | |
1582 | ||
1583 | smax = max(smax, period); | |
1584 | } | |
1585 | ||
598f0ec0 MG |
1586 | return max(smin, smax); |
1587 | } | |
1588 | ||
0ec8aa00 PZ |
1589 | static void account_numa_enqueue(struct rq *rq, struct task_struct *p) |
1590 | { | |
98fa15f3 | 1591 | rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); |
0ec8aa00 PZ |
1592 | rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); |
1593 | } | |
1594 | ||
1595 | static void account_numa_dequeue(struct rq *rq, struct task_struct *p) | |
1596 | { | |
98fa15f3 | 1597 | rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); |
0ec8aa00 PZ |
1598 | rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); |
1599 | } | |
1600 | ||
be1e4e76 RR |
1601 | /* Shared or private faults. */ |
1602 | #define NR_NUMA_HINT_FAULT_TYPES 2 | |
1603 | ||
1604 | /* Memory and CPU locality */ | |
1605 | #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) | |
1606 | ||
1607 | /* Averaged statistics, and temporary buffers. */ | |
1608 | #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) | |
1609 | ||
e29cf08b MG |
1610 | pid_t task_numa_group_id(struct task_struct *p) |
1611 | { | |
cb361d8c JH |
1612 | struct numa_group *ng; |
1613 | pid_t gid = 0; | |
1614 | ||
1615 | rcu_read_lock(); | |
1616 | ng = rcu_dereference(p->numa_group); | |
1617 | if (ng) | |
1618 | gid = ng->gid; | |
1619 | rcu_read_unlock(); | |
1620 | ||
1621 | return gid; | |
e29cf08b MG |
1622 | } |
1623 | ||
44dba3d5 | 1624 | /* |
97fb7a0a | 1625 | * The averaged statistics, shared & private, memory & CPU, |
44dba3d5 IM |
1626 | * occupy the first half of the array. The second half of the |
1627 | * array is for current counters, which are averaged into the | |
1628 | * first set by task_numa_placement. | |
1629 | */ | |
1630 | static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) | |
ac8e895b | 1631 | { |
44dba3d5 | 1632 | return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; |
ac8e895b MG |
1633 | } |
1634 | ||
1635 | static inline unsigned long task_faults(struct task_struct *p, int nid) | |
1636 | { | |
44dba3d5 | 1637 | if (!p->numa_faults) |
ac8e895b MG |
1638 | return 0; |
1639 | ||
44dba3d5 IM |
1640 | return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + |
1641 | p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; | |
ac8e895b MG |
1642 | } |
1643 | ||
83e1d2cd MG |
1644 | static inline unsigned long group_faults(struct task_struct *p, int nid) |
1645 | { | |
cb361d8c JH |
1646 | struct numa_group *ng = deref_task_numa_group(p); |
1647 | ||
1648 | if (!ng) | |
83e1d2cd MG |
1649 | return 0; |
1650 | ||
cb361d8c JH |
1651 | return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + |
1652 | ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; | |
83e1d2cd MG |
1653 | } |
1654 | ||
20e07dea RR |
1655 | static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) |
1656 | { | |
5b763a14 BR |
1657 | return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + |
1658 | group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; | |
20e07dea RR |
1659 | } |
1660 | ||
b5dd77c8 RR |
1661 | static inline unsigned long group_faults_priv(struct numa_group *ng) |
1662 | { | |
1663 | unsigned long faults = 0; | |
1664 | int node; | |
1665 | ||
1666 | for_each_online_node(node) { | |
1667 | faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; | |
1668 | } | |
1669 | ||
1670 | return faults; | |
1671 | } | |
1672 | ||
1673 | static inline unsigned long group_faults_shared(struct numa_group *ng) | |
1674 | { | |
1675 | unsigned long faults = 0; | |
1676 | int node; | |
1677 | ||
1678 | for_each_online_node(node) { | |
1679 | faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; | |
1680 | } | |
1681 | ||
1682 | return faults; | |
1683 | } | |
1684 | ||
4142c3eb RR |
1685 | /* |
1686 | * A node triggering more than 1/3 as many NUMA faults as the maximum is | |
1687 | * considered part of a numa group's pseudo-interleaving set. Migrations | |
1688 | * between these nodes are slowed down, to allow things to settle down. | |
1689 | */ | |
1690 | #define ACTIVE_NODE_FRACTION 3 | |
1691 | ||
1692 | static bool numa_is_active_node(int nid, struct numa_group *ng) | |
1693 | { | |
1694 | return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; | |
1695 | } | |
1696 | ||
6c6b1193 RR |
1697 | /* Handle placement on systems where not all nodes are directly connected. */ |
1698 | static unsigned long score_nearby_nodes(struct task_struct *p, int nid, | |
0fb3978b | 1699 | int lim_dist, bool task) |
6c6b1193 RR |
1700 | { |
1701 | unsigned long score = 0; | |
0fb3978b | 1702 | int node, max_dist; |
6c6b1193 RR |
1703 | |
1704 | /* | |
1705 | * All nodes are directly connected, and the same distance | |
1706 | * from each other. No need for fancy placement algorithms. | |
1707 | */ | |
1708 | if (sched_numa_topology_type == NUMA_DIRECT) | |
1709 | return 0; | |
1710 | ||
0fb3978b HY |
1711 | /* sched_max_numa_distance may be changed in parallel. */ |
1712 | max_dist = READ_ONCE(sched_max_numa_distance); | |
6c6b1193 RR |
1713 | /* |
1714 | * This code is called for each node, introducing N^2 complexity, | |
b9e6e286 | 1715 | * which should be OK given the number of nodes rarely exceeds 8. |
6c6b1193 RR |
1716 | */ |
1717 | for_each_online_node(node) { | |
1718 | unsigned long faults; | |
1719 | int dist = node_distance(nid, node); | |
1720 | ||
1721 | /* | |
1722 | * The furthest away nodes in the system are not interesting | |
1723 | * for placement; nid was already counted. | |
1724 | */ | |
0fb3978b | 1725 | if (dist >= max_dist || node == nid) |
6c6b1193 RR |
1726 | continue; |
1727 | ||
1728 | /* | |
1729 | * On systems with a backplane NUMA topology, compare groups | |
1730 | * of nodes, and move tasks towards the group with the most | |
1731 | * memory accesses. When comparing two nodes at distance | |
1732 | * "hoplimit", only nodes closer by than "hoplimit" are part | |
1733 | * of each group. Skip other nodes. | |
1734 | */ | |
0fb3978b | 1735 | if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) |
6c6b1193 RR |
1736 | continue; |
1737 | ||
1738 | /* Add up the faults from nearby nodes. */ | |
1739 | if (task) | |
1740 | faults = task_faults(p, node); | |
1741 | else | |
1742 | faults = group_faults(p, node); | |
1743 | ||
1744 | /* | |
1745 | * On systems with a glueless mesh NUMA topology, there are | |
1746 | * no fixed "groups of nodes". Instead, nodes that are not | |
1747 | * directly connected bounce traffic through intermediate | |
1748 | * nodes; a numa_group can occupy any set of nodes. | |
1749 | * The further away a node is, the less the faults count. | |
1750 | * This seems to result in good task placement. | |
1751 | */ | |
1752 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | |
0fb3978b HY |
1753 | faults *= (max_dist - dist); |
1754 | faults /= (max_dist - LOCAL_DISTANCE); | |
6c6b1193 RR |
1755 | } |
1756 | ||
1757 | score += faults; | |
1758 | } | |
1759 | ||
1760 | return score; | |
1761 | } | |
1762 | ||
83e1d2cd MG |
1763 | /* |
1764 | * These return the fraction of accesses done by a particular task, or | |
1765 | * task group, on a particular numa node. The group weight is given a | |
1766 | * larger multiplier, in order to group tasks together that are almost | |
1767 | * evenly spread out between numa nodes. | |
1768 | */ | |
7bd95320 RR |
1769 | static inline unsigned long task_weight(struct task_struct *p, int nid, |
1770 | int dist) | |
83e1d2cd | 1771 | { |
7bd95320 | 1772 | unsigned long faults, total_faults; |
83e1d2cd | 1773 | |
44dba3d5 | 1774 | if (!p->numa_faults) |
83e1d2cd MG |
1775 | return 0; |
1776 | ||
1777 | total_faults = p->total_numa_faults; | |
1778 | ||
1779 | if (!total_faults) | |
1780 | return 0; | |
1781 | ||
7bd95320 | 1782 | faults = task_faults(p, nid); |
6c6b1193 RR |
1783 | faults += score_nearby_nodes(p, nid, dist, true); |
1784 | ||
7bd95320 | 1785 | return 1000 * faults / total_faults; |
83e1d2cd MG |
1786 | } |
1787 | ||
7bd95320 RR |
1788 | static inline unsigned long group_weight(struct task_struct *p, int nid, |
1789 | int dist) | |
83e1d2cd | 1790 | { |
cb361d8c | 1791 | struct numa_group *ng = deref_task_numa_group(p); |
7bd95320 RR |
1792 | unsigned long faults, total_faults; |
1793 | ||
cb361d8c | 1794 | if (!ng) |
7bd95320 RR |
1795 | return 0; |
1796 | ||
cb361d8c | 1797 | total_faults = ng->total_faults; |
7bd95320 RR |
1798 | |
1799 | if (!total_faults) | |
83e1d2cd MG |
1800 | return 0; |
1801 | ||
7bd95320 | 1802 | faults = group_faults(p, nid); |
6c6b1193 RR |
1803 | faults += score_nearby_nodes(p, nid, dist, false); |
1804 | ||
7bd95320 | 1805 | return 1000 * faults / total_faults; |
83e1d2cd MG |
1806 | } |
1807 | ||
33024536 HY |
1808 | /* |
1809 | * If memory tiering mode is enabled, cpupid of slow memory page is | |
1810 | * used to record scan time instead of CPU and PID. When tiering mode | |
1811 | * is disabled at run time, the scan time (in cpupid) will be | |
1812 | * interpreted as CPU and PID. So CPU needs to be checked to avoid to | |
1813 | * access out of array bound. | |
1814 | */ | |
1815 | static inline bool cpupid_valid(int cpupid) | |
1816 | { | |
1817 | return cpupid_to_cpu(cpupid) < nr_cpu_ids; | |
1818 | } | |
1819 | ||
1820 | /* | |
1821 | * For memory tiering mode, if there are enough free pages (more than | |
1822 | * enough watermark defined here) in fast memory node, to take full | |
1823 | * advantage of fast memory capacity, all recently accessed slow | |
1824 | * memory pages will be migrated to fast memory node without | |
1825 | * considering hot threshold. | |
1826 | */ | |
1827 | static bool pgdat_free_space_enough(struct pglist_data *pgdat) | |
1828 | { | |
1829 | int z; | |
1830 | unsigned long enough_wmark; | |
1831 | ||
1832 | enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, | |
1833 | pgdat->node_present_pages >> 4); | |
1834 | for (z = pgdat->nr_zones - 1; z >= 0; z--) { | |
1835 | struct zone *zone = pgdat->node_zones + z; | |
1836 | ||
1837 | if (!populated_zone(zone)) | |
1838 | continue; | |
1839 | ||
1840 | if (zone_watermark_ok(zone, 0, | |
03790c51 | 1841 | promo_wmark_pages(zone) + enough_wmark, |
33024536 HY |
1842 | ZONE_MOVABLE, 0)) |
1843 | return true; | |
1844 | } | |
1845 | return false; | |
1846 | } | |
1847 | ||
1848 | /* | |
1849 | * For memory tiering mode, when page tables are scanned, the scan | |
1850 | * time will be recorded in struct page in addition to make page | |
1851 | * PROT_NONE for slow memory page. So when the page is accessed, in | |
1852 | * hint page fault handler, the hint page fault latency is calculated | |
1853 | * via, | |
1854 | * | |
1855 | * hint page fault latency = hint page fault time - scan time | |
1856 | * | |
1857 | * The smaller the hint page fault latency, the higher the possibility | |
1858 | * for the page to be hot. | |
1859 | */ | |
8c9ae56d | 1860 | static int numa_hint_fault_latency(struct folio *folio) |
33024536 HY |
1861 | { |
1862 | int last_time, time; | |
1863 | ||
1864 | time = jiffies_to_msecs(jiffies); | |
0b201c36 | 1865 | last_time = folio_xchg_access_time(folio, time); |
33024536 HY |
1866 | |
1867 | return (time - last_time) & PAGE_ACCESS_TIME_MASK; | |
1868 | } | |
1869 | ||
c6833e10 HY |
1870 | /* |
1871 | * For memory tiering mode, too high promotion/demotion throughput may | |
1872 | * hurt application latency. So we provide a mechanism to rate limit | |
1873 | * the number of pages that are tried to be promoted. | |
1874 | */ | |
1875 | static bool numa_promotion_rate_limit(struct pglist_data *pgdat, | |
1876 | unsigned long rate_limit, int nr) | |
1877 | { | |
1878 | unsigned long nr_cand; | |
1879 | unsigned int now, start; | |
1880 | ||
1881 | now = jiffies_to_msecs(jiffies); | |
1882 | mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); | |
1883 | nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); | |
1884 | start = pgdat->nbp_rl_start; | |
1885 | if (now - start > MSEC_PER_SEC && | |
1886 | cmpxchg(&pgdat->nbp_rl_start, start, now) == start) | |
1887 | pgdat->nbp_rl_nr_cand = nr_cand; | |
1888 | if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) | |
1889 | return true; | |
1890 | return false; | |
1891 | } | |
1892 | ||
c959924b HY |
1893 | #define NUMA_MIGRATION_ADJUST_STEPS 16 |
1894 | ||
1895 | static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, | |
1896 | unsigned long rate_limit, | |
1897 | unsigned int ref_th) | |
1898 | { | |
1899 | unsigned int now, start, th_period, unit_th, th; | |
1900 | unsigned long nr_cand, ref_cand, diff_cand; | |
1901 | ||
1902 | now = jiffies_to_msecs(jiffies); | |
1903 | th_period = sysctl_numa_balancing_scan_period_max; | |
1904 | start = pgdat->nbp_th_start; | |
1905 | if (now - start > th_period && | |
1906 | cmpxchg(&pgdat->nbp_th_start, start, now) == start) { | |
1907 | ref_cand = rate_limit * | |
1908 | sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; | |
1909 | nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); | |
1910 | diff_cand = nr_cand - pgdat->nbp_th_nr_cand; | |
1911 | unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; | |
1912 | th = pgdat->nbp_threshold ? : ref_th; | |
1913 | if (diff_cand > ref_cand * 11 / 10) | |
1914 | th = max(th - unit_th, unit_th); | |
1915 | else if (diff_cand < ref_cand * 9 / 10) | |
1916 | th = min(th + unit_th, ref_th * 2); | |
1917 | pgdat->nbp_th_nr_cand = nr_cand; | |
1918 | pgdat->nbp_threshold = th; | |
1919 | } | |
1920 | } | |
1921 | ||
8c9ae56d | 1922 | bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, |
10f39042 RR |
1923 | int src_nid, int dst_cpu) |
1924 | { | |
cb361d8c | 1925 | struct numa_group *ng = deref_curr_numa_group(p); |
10f39042 RR |
1926 | int dst_nid = cpu_to_node(dst_cpu); |
1927 | int last_cpupid, this_cpupid; | |
1928 | ||
3fb43636 BP |
1929 | /* |
1930 | * Cannot migrate to memoryless nodes. | |
1931 | */ | |
1932 | if (!node_state(dst_nid, N_MEMORY)) | |
1933 | return false; | |
1934 | ||
33024536 HY |
1935 | /* |
1936 | * The pages in slow memory node should be migrated according | |
1937 | * to hot/cold instead of private/shared. | |
1938 | */ | |
2a28713a | 1939 | if (folio_use_access_time(folio)) { |
33024536 | 1940 | struct pglist_data *pgdat; |
c959924b HY |
1941 | unsigned long rate_limit; |
1942 | unsigned int latency, th, def_th; | |
33024536 HY |
1943 | |
1944 | pgdat = NODE_DATA(dst_nid); | |
c959924b HY |
1945 | if (pgdat_free_space_enough(pgdat)) { |
1946 | /* workload changed, reset hot threshold */ | |
1947 | pgdat->nbp_threshold = 0; | |
33024536 | 1948 | return true; |
c959924b HY |
1949 | } |
1950 | ||
1951 | def_th = sysctl_numa_balancing_hot_threshold; | |
1952 | rate_limit = sysctl_numa_balancing_promote_rate_limit << \ | |
1953 | (20 - PAGE_SHIFT); | |
1954 | numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); | |
33024536 | 1955 | |
c959924b | 1956 | th = pgdat->nbp_threshold ? : def_th; |
8c9ae56d | 1957 | latency = numa_hint_fault_latency(folio); |
33024536 HY |
1958 | if (latency >= th) |
1959 | return false; | |
1960 | ||
c6833e10 | 1961 | return !numa_promotion_rate_limit(pgdat, rate_limit, |
8c9ae56d | 1962 | folio_nr_pages(folio)); |
33024536 HY |
1963 | } |
1964 | ||
10f39042 | 1965 | this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); |
1b143cc7 | 1966 | last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); |
37355bdc | 1967 | |
33024536 HY |
1968 | if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && |
1969 | !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) | |
1970 | return false; | |
1971 | ||
37355bdc MG |
1972 | /* |
1973 | * Allow first faults or private faults to migrate immediately early in | |
1974 | * the lifetime of a task. The magic number 4 is based on waiting for | |
1975 | * two full passes of the "multi-stage node selection" test that is | |
1976 | * executed below. | |
1977 | */ | |
98fa15f3 | 1978 | if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && |
37355bdc MG |
1979 | (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) |
1980 | return true; | |
10f39042 RR |
1981 | |
1982 | /* | |
1983 | * Multi-stage node selection is used in conjunction with a periodic | |
1984 | * migration fault to build a temporal task<->page relation. By using | |
1985 | * a two-stage filter we remove short/unlikely relations. | |
1986 | * | |
1987 | * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate | |
1988 | * a task's usage of a particular page (n_p) per total usage of this | |
1989 | * page (n_t) (in a given time-span) to a probability. | |
1990 | * | |
1991 | * Our periodic faults will sample this probability and getting the | |
1992 | * same result twice in a row, given these samples are fully | |
1993 | * independent, is then given by P(n)^2, provided our sample period | |
1994 | * is sufficiently short compared to the usage pattern. | |
1995 | * | |
1996 | * This quadric squishes small probabilities, making it less likely we | |
1997 | * act on an unlikely task<->page relation. | |
1998 | */ | |
10f39042 RR |
1999 | if (!cpupid_pid_unset(last_cpupid) && |
2000 | cpupid_to_nid(last_cpupid) != dst_nid) | |
2001 | return false; | |
2002 | ||
2003 | /* Always allow migrate on private faults */ | |
2004 | if (cpupid_match_pid(p, last_cpupid)) | |
2005 | return true; | |
2006 | ||
2007 | /* A shared fault, but p->numa_group has not been set up yet. */ | |
2008 | if (!ng) | |
2009 | return true; | |
2010 | ||
2011 | /* | |
4142c3eb RR |
2012 | * Destination node is much more heavily used than the source |
2013 | * node? Allow migration. | |
10f39042 | 2014 | */ |
4142c3eb RR |
2015 | if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * |
2016 | ACTIVE_NODE_FRACTION) | |
10f39042 RR |
2017 | return true; |
2018 | ||
2019 | /* | |
4142c3eb RR |
2020 | * Distribute memory according to CPU & memory use on each node, |
2021 | * with 3/4 hysteresis to avoid unnecessary memory migrations: | |
2022 | * | |
2023 | * faults_cpu(dst) 3 faults_cpu(src) | |
2024 | * --------------- * - > --------------- | |
2025 | * faults_mem(dst) 4 faults_mem(src) | |
10f39042 | 2026 | */ |
4142c3eb RR |
2027 | return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > |
2028 | group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; | |
10f39042 RR |
2029 | } |
2030 | ||
6499b1b2 VG |
2031 | /* |
2032 | * 'numa_type' describes the node at the moment of load balancing. | |
2033 | */ | |
2034 | enum numa_type { | |
2035 | /* The node has spare capacity that can be used to run more tasks. */ | |
2036 | node_has_spare = 0, | |
2037 | /* | |
2038 | * The node is fully used and the tasks don't compete for more CPU | |
2039 | * cycles. Nevertheless, some tasks might wait before running. | |
2040 | */ | |
2041 | node_fully_busy, | |
2042 | /* | |
2043 | * The node is overloaded and can't provide expected CPU cycles to all | |
2044 | * tasks. | |
2045 | */ | |
2046 | node_overloaded | |
2047 | }; | |
58d081b5 | 2048 | |
fb13c7ee | 2049 | /* Cached statistics for all CPUs within a node */ |
58d081b5 MG |
2050 | struct numa_stats { |
2051 | unsigned long load; | |
8e0e0eda | 2052 | unsigned long runnable; |
6499b1b2 | 2053 | unsigned long util; |
fb13c7ee | 2054 | /* Total compute capacity of CPUs on a node */ |
5ef20ca1 | 2055 | unsigned long compute_capacity; |
6499b1b2 VG |
2056 | unsigned int nr_running; |
2057 | unsigned int weight; | |
2058 | enum numa_type node_type; | |
ff7db0bf | 2059 | int idle_cpu; |
58d081b5 | 2060 | }; |
e6628d5b | 2061 | |
58d081b5 MG |
2062 | struct task_numa_env { |
2063 | struct task_struct *p; | |
e6628d5b | 2064 | |
58d081b5 MG |
2065 | int src_cpu, src_nid; |
2066 | int dst_cpu, dst_nid; | |
e496132e | 2067 | int imb_numa_nr; |
e6628d5b | 2068 | |
58d081b5 | 2069 | struct numa_stats src_stats, dst_stats; |
e6628d5b | 2070 | |
40ea2b42 | 2071 | int imbalance_pct; |
7bd95320 | 2072 | int dist; |
fb13c7ee MG |
2073 | |
2074 | struct task_struct *best_task; | |
2075 | long best_imp; | |
58d081b5 MG |
2076 | int best_cpu; |
2077 | }; | |
2078 | ||
6499b1b2 | 2079 | static unsigned long cpu_load(struct rq *rq); |
8e0e0eda | 2080 | static unsigned long cpu_runnable(struct rq *rq); |
6499b1b2 VG |
2081 | |
2082 | static inline enum | |
2083 | numa_type numa_classify(unsigned int imbalance_pct, | |
2084 | struct numa_stats *ns) | |
2085 | { | |
2086 | if ((ns->nr_running > ns->weight) && | |
8e0e0eda VG |
2087 | (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || |
2088 | ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) | |
6499b1b2 VG |
2089 | return node_overloaded; |
2090 | ||
2091 | if ((ns->nr_running < ns->weight) || | |
8e0e0eda VG |
2092 | (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && |
2093 | ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) | |
6499b1b2 VG |
2094 | return node_has_spare; |
2095 | ||
2096 | return node_fully_busy; | |
2097 | } | |
2098 | ||
76c389ab VS |
2099 | #ifdef CONFIG_SCHED_SMT |
2100 | /* Forward declarations of select_idle_sibling helpers */ | |
398ba2b0 | 2101 | static inline bool test_idle_cores(int cpu); |
ff7db0bf MG |
2102 | static inline int numa_idle_core(int idle_core, int cpu) |
2103 | { | |
ff7db0bf | 2104 | if (!static_branch_likely(&sched_smt_present) || |
398ba2b0 | 2105 | idle_core >= 0 || !test_idle_cores(cpu)) |
ff7db0bf MG |
2106 | return idle_core; |
2107 | ||
2108 | /* | |
2109 | * Prefer cores instead of packing HT siblings | |
2110 | * and triggering future load balancing. | |
2111 | */ | |
2112 | if (is_core_idle(cpu)) | |
2113 | idle_core = cpu; | |
ff7db0bf MG |
2114 | |
2115 | return idle_core; | |
2116 | } | |
76c389ab VS |
2117 | #else |
2118 | static inline int numa_idle_core(int idle_core, int cpu) | |
2119 | { | |
2120 | return idle_core; | |
2121 | } | |
2122 | #endif | |
ff7db0bf | 2123 | |
6499b1b2 | 2124 | /* |
ff7db0bf MG |
2125 | * Gather all necessary information to make NUMA balancing placement |
2126 | * decisions that are compatible with standard load balancer. This | |
2127 | * borrows code and logic from update_sg_lb_stats but sharing a | |
2128 | * common implementation is impractical. | |
6499b1b2 VG |
2129 | */ |
2130 | static void update_numa_stats(struct task_numa_env *env, | |
ff7db0bf MG |
2131 | struct numa_stats *ns, int nid, |
2132 | bool find_idle) | |
6499b1b2 | 2133 | { |
ff7db0bf | 2134 | int cpu, idle_core = -1; |
6499b1b2 VG |
2135 | |
2136 | memset(ns, 0, sizeof(*ns)); | |
ff7db0bf MG |
2137 | ns->idle_cpu = -1; |
2138 | ||
0621df31 | 2139 | rcu_read_lock(); |
6499b1b2 VG |
2140 | for_each_cpu(cpu, cpumask_of_node(nid)) { |
2141 | struct rq *rq = cpu_rq(cpu); | |
2142 | ||
2143 | ns->load += cpu_load(rq); | |
8e0e0eda | 2144 | ns->runnable += cpu_runnable(rq); |
82762d2a | 2145 | ns->util += cpu_util_cfs(cpu); |
1a491044 | 2146 | ns->nr_running += rq->cfs.h_nr_runnable; |
6499b1b2 | 2147 | ns->compute_capacity += capacity_of(cpu); |
ff7db0bf | 2148 | |
feaed763 | 2149 | if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { |
ff7db0bf MG |
2150 | if (READ_ONCE(rq->numa_migrate_on) || |
2151 | !cpumask_test_cpu(cpu, env->p->cpus_ptr)) | |
2152 | continue; | |
2153 | ||
2154 | if (ns->idle_cpu == -1) | |
2155 | ns->idle_cpu = cpu; | |
2156 | ||
2157 | idle_core = numa_idle_core(idle_core, cpu); | |
2158 | } | |
6499b1b2 | 2159 | } |
0621df31 | 2160 | rcu_read_unlock(); |
6499b1b2 VG |
2161 | |
2162 | ns->weight = cpumask_weight(cpumask_of_node(nid)); | |
2163 | ||
2164 | ns->node_type = numa_classify(env->imbalance_pct, ns); | |
ff7db0bf MG |
2165 | |
2166 | if (idle_core >= 0) | |
2167 | ns->idle_cpu = idle_core; | |
6499b1b2 VG |
2168 | } |
2169 | ||
fb13c7ee MG |
2170 | static void task_numa_assign(struct task_numa_env *env, |
2171 | struct task_struct *p, long imp) | |
2172 | { | |
a4739eca SD |
2173 | struct rq *rq = cpu_rq(env->dst_cpu); |
2174 | ||
5fb52dd9 MG |
2175 | /* Check if run-queue part of active NUMA balance. */ |
2176 | if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { | |
2177 | int cpu; | |
2178 | int start = env->dst_cpu; | |
2179 | ||
2180 | /* Find alternative idle CPU. */ | |
8589018a | 2181 | for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { |
5fb52dd9 MG |
2182 | if (cpu == env->best_cpu || !idle_cpu(cpu) || |
2183 | !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { | |
2184 | continue; | |
2185 | } | |
2186 | ||
2187 | env->dst_cpu = cpu; | |
2188 | rq = cpu_rq(env->dst_cpu); | |
2189 | if (!xchg(&rq->numa_migrate_on, 1)) | |
2190 | goto assign; | |
2191 | } | |
2192 | ||
2193 | /* Failed to find an alternative idle CPU */ | |
a4739eca | 2194 | return; |
5fb52dd9 | 2195 | } |
a4739eca | 2196 | |
5fb52dd9 | 2197 | assign: |
a4739eca SD |
2198 | /* |
2199 | * Clear previous best_cpu/rq numa-migrate flag, since task now | |
2200 | * found a better CPU to move/swap. | |
2201 | */ | |
5fb52dd9 | 2202 | if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { |
a4739eca SD |
2203 | rq = cpu_rq(env->best_cpu); |
2204 | WRITE_ONCE(rq->numa_migrate_on, 0); | |
2205 | } | |
2206 | ||
fb13c7ee MG |
2207 | if (env->best_task) |
2208 | put_task_struct(env->best_task); | |
bac78573 ON |
2209 | if (p) |
2210 | get_task_struct(p); | |
fb13c7ee MG |
2211 | |
2212 | env->best_task = p; | |
2213 | env->best_imp = imp; | |
2214 | env->best_cpu = env->dst_cpu; | |
2215 | } | |
2216 | ||
28a21745 | 2217 | static bool load_too_imbalanced(long src_load, long dst_load, |
e63da036 RR |
2218 | struct task_numa_env *env) |
2219 | { | |
e4991b24 RR |
2220 | long imb, old_imb; |
2221 | long orig_src_load, orig_dst_load; | |
28a21745 RR |
2222 | long src_capacity, dst_capacity; |
2223 | ||
2224 | /* | |
2225 | * The load is corrected for the CPU capacity available on each node. | |
2226 | * | |
2227 | * src_load dst_load | |
2228 | * ------------ vs --------- | |
2229 | * src_capacity dst_capacity | |
2230 | */ | |
2231 | src_capacity = env->src_stats.compute_capacity; | |
2232 | dst_capacity = env->dst_stats.compute_capacity; | |
e63da036 | 2233 | |
5f95ba7a | 2234 | imb = abs(dst_load * src_capacity - src_load * dst_capacity); |
e63da036 | 2235 | |
28a21745 | 2236 | orig_src_load = env->src_stats.load; |
e4991b24 | 2237 | orig_dst_load = env->dst_stats.load; |
28a21745 | 2238 | |
5f95ba7a | 2239 | old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); |
e4991b24 RR |
2240 | |
2241 | /* Would this change make things worse? */ | |
2242 | return (imb > old_imb); | |
e63da036 RR |
2243 | } |
2244 | ||
6fd98e77 SD |
2245 | /* |
2246 | * Maximum NUMA importance can be 1998 (2*999); | |
2247 | * SMALLIMP @ 30 would be close to 1998/64. | |
2248 | * Used to deter task migration. | |
2249 | */ | |
2250 | #define SMALLIMP 30 | |
2251 | ||
fb13c7ee MG |
2252 | /* |
2253 | * This checks if the overall compute and NUMA accesses of the system would | |
2254 | * be improved if the source tasks was migrated to the target dst_cpu taking | |
2255 | * into account that it might be best if task running on the dst_cpu should | |
2256 | * be exchanged with the source task | |
2257 | */ | |
a0f03b61 | 2258 | static bool task_numa_compare(struct task_numa_env *env, |
305c1fac | 2259 | long taskimp, long groupimp, bool maymove) |
fb13c7ee | 2260 | { |
cb361d8c | 2261 | struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); |
fb13c7ee | 2262 | struct rq *dst_rq = cpu_rq(env->dst_cpu); |
cb361d8c | 2263 | long imp = p_ng ? groupimp : taskimp; |
fb13c7ee | 2264 | struct task_struct *cur; |
28a21745 | 2265 | long src_load, dst_load; |
7bd95320 | 2266 | int dist = env->dist; |
cb361d8c JH |
2267 | long moveimp = imp; |
2268 | long load; | |
a0f03b61 | 2269 | bool stopsearch = false; |
fb13c7ee | 2270 | |
a4739eca | 2271 | if (READ_ONCE(dst_rq->numa_migrate_on)) |
a0f03b61 | 2272 | return false; |
a4739eca | 2273 | |
fb13c7ee | 2274 | rcu_read_lock(); |
154abafc | 2275 | cur = rcu_dereference(dst_rq->curr); |
9709eb0f LC |
2276 | if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) || |
2277 | !cur->mm)) | |
fb13c7ee MG |
2278 | cur = NULL; |
2279 | ||
7af68335 PZ |
2280 | /* |
2281 | * Because we have preemption enabled we can get migrated around and | |
2282 | * end try selecting ourselves (current == env->p) as a swap candidate. | |
2283 | */ | |
a0f03b61 MG |
2284 | if (cur == env->p) { |
2285 | stopsearch = true; | |
7af68335 | 2286 | goto unlock; |
a0f03b61 | 2287 | } |
7af68335 | 2288 | |
305c1fac | 2289 | if (!cur) { |
6fd98e77 | 2290 | if (maymove && moveimp >= env->best_imp) |
305c1fac SD |
2291 | goto assign; |
2292 | else | |
2293 | goto unlock; | |
2294 | } | |
2295 | ||
88cca72c MG |
2296 | /* Skip this swap candidate if cannot move to the source cpu. */ |
2297 | if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) | |
2298 | goto unlock; | |
2299 | ||
2300 | /* | |
2301 | * Skip this swap candidate if it is not moving to its preferred | |
2302 | * node and the best task is. | |
2303 | */ | |
2304 | if (env->best_task && | |
2305 | env->best_task->numa_preferred_nid == env->src_nid && | |
2306 | cur->numa_preferred_nid != env->src_nid) { | |
2307 | goto unlock; | |
2308 | } | |
2309 | ||
fb13c7ee MG |
2310 | /* |
2311 | * "imp" is the fault differential for the source task between the | |
2312 | * source and destination node. Calculate the total differential for | |
2313 | * the source task and potential destination task. The more negative | |
305c1fac | 2314 | * the value is, the more remote accesses that would be expected to |
fb13c7ee | 2315 | * be incurred if the tasks were swapped. |
88cca72c | 2316 | * |
305c1fac SD |
2317 | * If dst and source tasks are in the same NUMA group, or not |
2318 | * in any group then look only at task weights. | |
2319 | */ | |
cb361d8c JH |
2320 | cur_ng = rcu_dereference(cur->numa_group); |
2321 | if (cur_ng == p_ng) { | |
13ede331 MG |
2322 | /* |
2323 | * Do not swap within a group or between tasks that have | |
2324 | * no group if there is spare capacity. Swapping does | |
2325 | * not address the load imbalance and helps one task at | |
2326 | * the cost of punishing another. | |
2327 | */ | |
2328 | if (env->dst_stats.node_type == node_has_spare) | |
2329 | goto unlock; | |
2330 | ||
305c1fac SD |
2331 | imp = taskimp + task_weight(cur, env->src_nid, dist) - |
2332 | task_weight(cur, env->dst_nid, dist); | |
887c290e | 2333 | /* |
305c1fac SD |
2334 | * Add some hysteresis to prevent swapping the |
2335 | * tasks within a group over tiny differences. | |
887c290e | 2336 | */ |
cb361d8c | 2337 | if (cur_ng) |
305c1fac SD |
2338 | imp -= imp / 16; |
2339 | } else { | |
2340 | /* | |
2341 | * Compare the group weights. If a task is all by itself | |
2342 | * (not part of a group), use the task weight instead. | |
2343 | */ | |
cb361d8c | 2344 | if (cur_ng && p_ng) |
305c1fac SD |
2345 | imp += group_weight(cur, env->src_nid, dist) - |
2346 | group_weight(cur, env->dst_nid, dist); | |
2347 | else | |
2348 | imp += task_weight(cur, env->src_nid, dist) - | |
2349 | task_weight(cur, env->dst_nid, dist); | |
fb13c7ee MG |
2350 | } |
2351 | ||
88cca72c MG |
2352 | /* Discourage picking a task already on its preferred node */ |
2353 | if (cur->numa_preferred_nid == env->dst_nid) | |
2354 | imp -= imp / 16; | |
2355 | ||
2356 | /* | |
2357 | * Encourage picking a task that moves to its preferred node. | |
2358 | * This potentially makes imp larger than it's maximum of | |
2359 | * 1998 (see SMALLIMP and task_weight for why) but in this | |
2360 | * case, it does not matter. | |
2361 | */ | |
2362 | if (cur->numa_preferred_nid == env->src_nid) | |
2363 | imp += imp / 8; | |
2364 | ||
305c1fac | 2365 | if (maymove && moveimp > imp && moveimp > env->best_imp) { |
6fd98e77 | 2366 | imp = moveimp; |
305c1fac | 2367 | cur = NULL; |
fb13c7ee | 2368 | goto assign; |
305c1fac | 2369 | } |
fb13c7ee | 2370 | |
88cca72c MG |
2371 | /* |
2372 | * Prefer swapping with a task moving to its preferred node over a | |
2373 | * task that is not. | |
2374 | */ | |
2375 | if (env->best_task && cur->numa_preferred_nid == env->src_nid && | |
2376 | env->best_task->numa_preferred_nid != env->src_nid) { | |
2377 | goto assign; | |
2378 | } | |
2379 | ||
6fd98e77 SD |
2380 | /* |
2381 | * If the NUMA importance is less than SMALLIMP, | |
2382 | * task migration might only result in ping pong | |
2383 | * of tasks and also hurt performance due to cache | |
2384 | * misses. | |
2385 | */ | |
2386 | if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) | |
2387 | goto unlock; | |
2388 | ||
fb13c7ee MG |
2389 | /* |
2390 | * In the overloaded case, try and keep the load balanced. | |
2391 | */ | |
305c1fac SD |
2392 | load = task_h_load(env->p) - task_h_load(cur); |
2393 | if (!load) | |
2394 | goto assign; | |
2395 | ||
e720fff6 PZ |
2396 | dst_load = env->dst_stats.load + load; |
2397 | src_load = env->src_stats.load - load; | |
fb13c7ee | 2398 | |
28a21745 | 2399 | if (load_too_imbalanced(src_load, dst_load, env)) |
fb13c7ee MG |
2400 | goto unlock; |
2401 | ||
305c1fac | 2402 | assign: |
ff7db0bf | 2403 | /* Evaluate an idle CPU for a task numa move. */ |
10e2f1ac | 2404 | if (!cur) { |
ff7db0bf MG |
2405 | int cpu = env->dst_stats.idle_cpu; |
2406 | ||
2407 | /* Nothing cached so current CPU went idle since the search. */ | |
2408 | if (cpu < 0) | |
2409 | cpu = env->dst_cpu; | |
2410 | ||
10e2f1ac | 2411 | /* |
ff7db0bf MG |
2412 | * If the CPU is no longer truly idle and the previous best CPU |
2413 | * is, keep using it. | |
10e2f1ac | 2414 | */ |
ff7db0bf MG |
2415 | if (!idle_cpu(cpu) && env->best_cpu >= 0 && |
2416 | idle_cpu(env->best_cpu)) { | |
2417 | cpu = env->best_cpu; | |
2418 | } | |
2419 | ||
ff7db0bf | 2420 | env->dst_cpu = cpu; |
10e2f1ac | 2421 | } |
ba7e5a27 | 2422 | |
fb13c7ee | 2423 | task_numa_assign(env, cur, imp); |
a0f03b61 MG |
2424 | |
2425 | /* | |
2426 | * If a move to idle is allowed because there is capacity or load | |
2427 | * balance improves then stop the search. While a better swap | |
2428 | * candidate may exist, a search is not free. | |
2429 | */ | |
2430 | if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) | |
2431 | stopsearch = true; | |
2432 | ||
2433 | /* | |
2434 | * If a swap candidate must be identified and the current best task | |
2435 | * moves its preferred node then stop the search. | |
2436 | */ | |
2437 | if (!maymove && env->best_task && | |
2438 | env->best_task->numa_preferred_nid == env->src_nid) { | |
2439 | stopsearch = true; | |
2440 | } | |
fb13c7ee MG |
2441 | unlock: |
2442 | rcu_read_unlock(); | |
a0f03b61 MG |
2443 | |
2444 | return stopsearch; | |
fb13c7ee MG |
2445 | } |
2446 | ||
887c290e RR |
2447 | static void task_numa_find_cpu(struct task_numa_env *env, |
2448 | long taskimp, long groupimp) | |
2c8a50aa | 2449 | { |
305c1fac | 2450 | bool maymove = false; |
2c8a50aa MG |
2451 | int cpu; |
2452 | ||
305c1fac | 2453 | /* |
fb86f5b2 MG |
2454 | * If dst node has spare capacity, then check if there is an |
2455 | * imbalance that would be overruled by the load balancer. | |
305c1fac | 2456 | */ |
fb86f5b2 MG |
2457 | if (env->dst_stats.node_type == node_has_spare) { |
2458 | unsigned int imbalance; | |
2459 | int src_running, dst_running; | |
2460 | ||
2461 | /* | |
2462 | * Would movement cause an imbalance? Note that if src has | |
2463 | * more running tasks that the imbalance is ignored as the | |
2464 | * move improves the imbalance from the perspective of the | |
2465 | * CPU load balancer. | |
2466 | * */ | |
2467 | src_running = env->src_stats.nr_running - 1; | |
2468 | dst_running = env->dst_stats.nr_running + 1; | |
2469 | imbalance = max(0, dst_running - src_running); | |
7d2b5dd0 | 2470 | imbalance = adjust_numa_imbalance(imbalance, dst_running, |
e496132e | 2471 | env->imb_numa_nr); |
fb86f5b2 MG |
2472 | |
2473 | /* Use idle CPU if there is no imbalance */ | |
ff7db0bf | 2474 | if (!imbalance) { |
fb86f5b2 | 2475 | maymove = true; |
ff7db0bf MG |
2476 | if (env->dst_stats.idle_cpu >= 0) { |
2477 | env->dst_cpu = env->dst_stats.idle_cpu; | |
2478 | task_numa_assign(env, NULL, 0); | |
2479 | return; | |
2480 | } | |
2481 | } | |
fb86f5b2 MG |
2482 | } else { |
2483 | long src_load, dst_load, load; | |
2484 | /* | |
2485 | * If the improvement from just moving env->p direction is better | |
2486 | * than swapping tasks around, check if a move is possible. | |
2487 | */ | |
2488 | load = task_h_load(env->p); | |
2489 | dst_load = env->dst_stats.load + load; | |
2490 | src_load = env->src_stats.load - load; | |
2491 | maymove = !load_too_imbalanced(src_load, dst_load, env); | |
2492 | } | |
305c1fac | 2493 | |
2c8a50aa MG |
2494 | for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { |
2495 | /* Skip this CPU if the source task cannot migrate */ | |
3bd37062 | 2496 | if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) |
2c8a50aa MG |
2497 | continue; |
2498 | ||
2499 | env->dst_cpu = cpu; | |
a0f03b61 MG |
2500 | if (task_numa_compare(env, taskimp, groupimp, maymove)) |
2501 | break; | |
2c8a50aa MG |
2502 | } |
2503 | } | |
2504 | ||
58d081b5 MG |
2505 | static int task_numa_migrate(struct task_struct *p) |
2506 | { | |
58d081b5 MG |
2507 | struct task_numa_env env = { |
2508 | .p = p, | |
fb13c7ee | 2509 | |
58d081b5 | 2510 | .src_cpu = task_cpu(p), |
b32e86b4 | 2511 | .src_nid = task_node(p), |
fb13c7ee MG |
2512 | |
2513 | .imbalance_pct = 112, | |
2514 | ||
2515 | .best_task = NULL, | |
2516 | .best_imp = 0, | |
4142c3eb | 2517 | .best_cpu = -1, |
58d081b5 | 2518 | }; |
cb361d8c | 2519 | unsigned long taskweight, groupweight; |
58d081b5 | 2520 | struct sched_domain *sd; |
cb361d8c JH |
2521 | long taskimp, groupimp; |
2522 | struct numa_group *ng; | |
a4739eca | 2523 | struct rq *best_rq; |
7bd95320 | 2524 | int nid, ret, dist; |
e6628d5b | 2525 | |
58d081b5 | 2526 | /* |
fb13c7ee MG |
2527 | * Pick the lowest SD_NUMA domain, as that would have the smallest |
2528 | * imbalance and would be the first to start moving tasks about. | |
2529 | * | |
2530 | * And we want to avoid any moving of tasks about, as that would create | |
2531 | * random movement of tasks -- counter the numa conditions we're trying | |
2532 | * to satisfy here. | |
58d081b5 MG |
2533 | */ |
2534 | rcu_read_lock(); | |
fb13c7ee | 2535 | sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); |
e496132e | 2536 | if (sd) { |
46a73e8a | 2537 | env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; |
e496132e MG |
2538 | env.imb_numa_nr = sd->imb_numa_nr; |
2539 | } | |
e6628d5b MG |
2540 | rcu_read_unlock(); |
2541 | ||
46a73e8a RR |
2542 | /* |
2543 | * Cpusets can break the scheduler domain tree into smaller | |
2544 | * balance domains, some of which do not cross NUMA boundaries. | |
2545 | * Tasks that are "trapped" in such domains cannot be migrated | |
2546 | * elsewhere, so there is no point in (re)trying. | |
2547 | */ | |
2548 | if (unlikely(!sd)) { | |
8cd45eee | 2549 | sched_setnuma(p, task_node(p)); |
46a73e8a RR |
2550 | return -EINVAL; |
2551 | } | |
2552 | ||
2c8a50aa | 2553 | env.dst_nid = p->numa_preferred_nid; |
7bd95320 RR |
2554 | dist = env.dist = node_distance(env.src_nid, env.dst_nid); |
2555 | taskweight = task_weight(p, env.src_nid, dist); | |
2556 | groupweight = group_weight(p, env.src_nid, dist); | |
ff7db0bf | 2557 | update_numa_stats(&env, &env.src_stats, env.src_nid, false); |
7bd95320 RR |
2558 | taskimp = task_weight(p, env.dst_nid, dist) - taskweight; |
2559 | groupimp = group_weight(p, env.dst_nid, dist) - groupweight; | |
ff7db0bf | 2560 | update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); |
58d081b5 | 2561 | |
a43455a1 | 2562 | /* Try to find a spot on the preferred nid. */ |
2d4056fa | 2563 | task_numa_find_cpu(&env, taskimp, groupimp); |
e1dda8a7 | 2564 | |
9de05d48 RR |
2565 | /* |
2566 | * Look at other nodes in these cases: | |
2567 | * - there is no space available on the preferred_nid | |
2568 | * - the task is part of a numa_group that is interleaved across | |
2569 | * multiple NUMA nodes; in order to better consolidate the group, | |
2570 | * we need to check other locations. | |
2571 | */ | |
cb361d8c JH |
2572 | ng = deref_curr_numa_group(p); |
2573 | if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { | |
5c7b1aaf | 2574 | for_each_node_state(nid, N_CPU) { |
2c8a50aa MG |
2575 | if (nid == env.src_nid || nid == p->numa_preferred_nid) |
2576 | continue; | |
58d081b5 | 2577 | |
7bd95320 | 2578 | dist = node_distance(env.src_nid, env.dst_nid); |
6c6b1193 RR |
2579 | if (sched_numa_topology_type == NUMA_BACKPLANE && |
2580 | dist != env.dist) { | |
2581 | taskweight = task_weight(p, env.src_nid, dist); | |
2582 | groupweight = group_weight(p, env.src_nid, dist); | |
2583 | } | |
7bd95320 | 2584 | |
83e1d2cd | 2585 | /* Only consider nodes where both task and groups benefit */ |
7bd95320 RR |
2586 | taskimp = task_weight(p, nid, dist) - taskweight; |
2587 | groupimp = group_weight(p, nid, dist) - groupweight; | |
887c290e | 2588 | if (taskimp < 0 && groupimp < 0) |
fb13c7ee MG |
2589 | continue; |
2590 | ||
7bd95320 | 2591 | env.dist = dist; |
2c8a50aa | 2592 | env.dst_nid = nid; |
ff7db0bf | 2593 | update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); |
2d4056fa | 2594 | task_numa_find_cpu(&env, taskimp, groupimp); |
58d081b5 MG |
2595 | } |
2596 | } | |
2597 | ||
68d1b02a RR |
2598 | /* |
2599 | * If the task is part of a workload that spans multiple NUMA nodes, | |
2600 | * and is migrating into one of the workload's active nodes, remember | |
2601 | * this node as the task's preferred numa node, so the workload can | |
2602 | * settle down. | |
2603 | * A task that migrated to a second choice node will be better off | |
2604 | * trying for a better one later. Do not set the preferred node here. | |
2605 | */ | |
cb361d8c | 2606 | if (ng) { |
db015dae RR |
2607 | if (env.best_cpu == -1) |
2608 | nid = env.src_nid; | |
2609 | else | |
8cd45eee | 2610 | nid = cpu_to_node(env.best_cpu); |
db015dae | 2611 | |
8cd45eee SD |
2612 | if (nid != p->numa_preferred_nid) |
2613 | sched_setnuma(p, nid); | |
db015dae RR |
2614 | } |
2615 | ||
2616 | /* No better CPU than the current one was found. */ | |
f22aef4a | 2617 | if (env.best_cpu == -1) { |
b2b2042b | 2618 | trace_sched_stick_numa(p, env.src_cpu, NULL, -1); |
db015dae | 2619 | return -EAGAIN; |
f22aef4a | 2620 | } |
0ec8aa00 | 2621 | |
a4739eca | 2622 | best_rq = cpu_rq(env.best_cpu); |
fb13c7ee | 2623 | if (env.best_task == NULL) { |
286549dc | 2624 | ret = migrate_task_to(p, env.best_cpu); |
a4739eca | 2625 | WRITE_ONCE(best_rq->numa_migrate_on, 0); |
286549dc | 2626 | if (ret != 0) |
b2b2042b | 2627 | trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); |
fb13c7ee MG |
2628 | return ret; |
2629 | } | |
2630 | ||
0ad4e3df | 2631 | ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); |
a4739eca | 2632 | WRITE_ONCE(best_rq->numa_migrate_on, 0); |
0ad4e3df | 2633 | |
286549dc | 2634 | if (ret != 0) |
b2b2042b | 2635 | trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); |
fb13c7ee MG |
2636 | put_task_struct(env.best_task); |
2637 | return ret; | |
e6628d5b MG |
2638 | } |
2639 | ||
6b9a7460 MG |
2640 | /* Attempt to migrate a task to a CPU on the preferred node. */ |
2641 | static void numa_migrate_preferred(struct task_struct *p) | |
2642 | { | |
5085e2a3 RR |
2643 | unsigned long interval = HZ; |
2644 | ||
2739d3ee | 2645 | /* This task has no NUMA fault statistics yet */ |
98fa15f3 | 2646 | if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) |
6b9a7460 MG |
2647 | return; |
2648 | ||
2739d3ee | 2649 | /* Periodically retry migrating the task to the preferred node */ |
5085e2a3 | 2650 | interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); |
789ba280 | 2651 | p->numa_migrate_retry = jiffies + interval; |
2739d3ee RR |
2652 | |
2653 | /* Success if task is already running on preferred CPU */ | |
de1b301a | 2654 | if (task_node(p) == p->numa_preferred_nid) |
6b9a7460 MG |
2655 | return; |
2656 | ||
2657 | /* Otherwise, try migrate to a CPU on the preferred node */ | |
2739d3ee | 2658 | task_numa_migrate(p); |
6b9a7460 MG |
2659 | } |
2660 | ||
20e07dea | 2661 | /* |
7d380f24 | 2662 | * Find out how many nodes the workload is actively running on. Do this by |
20e07dea RR |
2663 | * tracking the nodes from which NUMA hinting faults are triggered. This can |
2664 | * be different from the set of nodes where the workload's memory is currently | |
2665 | * located. | |
20e07dea | 2666 | */ |
4142c3eb | 2667 | static void numa_group_count_active_nodes(struct numa_group *numa_group) |
20e07dea RR |
2668 | { |
2669 | unsigned long faults, max_faults = 0; | |
4142c3eb | 2670 | int nid, active_nodes = 0; |
20e07dea | 2671 | |
5c7b1aaf | 2672 | for_each_node_state(nid, N_CPU) { |
20e07dea RR |
2673 | faults = group_faults_cpu(numa_group, nid); |
2674 | if (faults > max_faults) | |
2675 | max_faults = faults; | |
2676 | } | |
2677 | ||
5c7b1aaf | 2678 | for_each_node_state(nid, N_CPU) { |
20e07dea | 2679 | faults = group_faults_cpu(numa_group, nid); |
4142c3eb RR |
2680 | if (faults * ACTIVE_NODE_FRACTION > max_faults) |
2681 | active_nodes++; | |
20e07dea | 2682 | } |
4142c3eb RR |
2683 | |
2684 | numa_group->max_faults_cpu = max_faults; | |
2685 | numa_group->active_nodes = active_nodes; | |
20e07dea RR |
2686 | } |
2687 | ||
04bb2f94 RR |
2688 | /* |
2689 | * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS | |
2690 | * increments. The more local the fault statistics are, the higher the scan | |
a22b4b01 RR |
2691 | * period will be for the next scan window. If local/(local+remote) ratio is |
2692 | * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) | |
2693 | * the scan period will decrease. Aim for 70% local accesses. | |
04bb2f94 RR |
2694 | */ |
2695 | #define NUMA_PERIOD_SLOTS 10 | |
a22b4b01 | 2696 | #define NUMA_PERIOD_THRESHOLD 7 |
04bb2f94 RR |
2697 | |
2698 | /* | |
2699 | * Increase the scan period (slow down scanning) if the majority of | |
2700 | * our memory is already on our local node, or if the majority of | |
2701 | * the page accesses are shared with other processes. | |
2702 | * Otherwise, decrease the scan period. | |
2703 | */ | |
2704 | static void update_task_scan_period(struct task_struct *p, | |
2705 | unsigned long shared, unsigned long private) | |
2706 | { | |
2707 | unsigned int period_slot; | |
37ec97de | 2708 | int lr_ratio, ps_ratio; |
04bb2f94 RR |
2709 | int diff; |
2710 | ||
2711 | unsigned long remote = p->numa_faults_locality[0]; | |
2712 | unsigned long local = p->numa_faults_locality[1]; | |
2713 | ||
2714 | /* | |
2715 | * If there were no record hinting faults then either the task is | |
7d380f24 | 2716 | * completely idle or all activity is in areas that are not of interest |
074c2381 MG |
2717 | * to automatic numa balancing. Related to that, if there were failed |
2718 | * migration then it implies we are migrating too quickly or the local | |
2719 | * node is overloaded. In either case, scan slower | |
04bb2f94 | 2720 | */ |
074c2381 | 2721 | if (local + shared == 0 || p->numa_faults_locality[2]) { |
04bb2f94 RR |
2722 | p->numa_scan_period = min(p->numa_scan_period_max, |
2723 | p->numa_scan_period << 1); | |
2724 | ||
2725 | p->mm->numa_next_scan = jiffies + | |
2726 | msecs_to_jiffies(p->numa_scan_period); | |
2727 | ||
2728 | return; | |
2729 | } | |
2730 | ||
2731 | /* | |
2732 | * Prepare to scale scan period relative to the current period. | |
2733 | * == NUMA_PERIOD_THRESHOLD scan period stays the same | |
2734 | * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) | |
2735 | * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) | |
2736 | */ | |
2737 | period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); | |
37ec97de RR |
2738 | lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); |
2739 | ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); | |
2740 | ||
2741 | if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { | |
2742 | /* | |
2743 | * Most memory accesses are local. There is no need to | |
2744 | * do fast NUMA scanning, since memory is already local. | |
2745 | */ | |
2746 | int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; | |
2747 | if (!slot) | |
2748 | slot = 1; | |
2749 | diff = slot * period_slot; | |
2750 | } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { | |
2751 | /* | |
2752 | * Most memory accesses are shared with other tasks. | |
2753 | * There is no point in continuing fast NUMA scanning, | |
2754 | * since other tasks may just move the memory elsewhere. | |
2755 | */ | |
2756 | int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; | |
04bb2f94 RR |
2757 | if (!slot) |
2758 | slot = 1; | |
2759 | diff = slot * period_slot; | |
2760 | } else { | |
04bb2f94 | 2761 | /* |
37ec97de RR |
2762 | * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, |
2763 | * yet they are not on the local NUMA node. Speed up | |
2764 | * NUMA scanning to get the memory moved over. | |
04bb2f94 | 2765 | */ |
37ec97de RR |
2766 | int ratio = max(lr_ratio, ps_ratio); |
2767 | diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; | |
04bb2f94 RR |
2768 | } |
2769 | ||
2770 | p->numa_scan_period = clamp(p->numa_scan_period + diff, | |
2771 | task_scan_min(p), task_scan_max(p)); | |
2772 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); | |
2773 | } | |
2774 | ||
7e2703e6 RR |
2775 | /* |
2776 | * Get the fraction of time the task has been running since the last | |
2777 | * NUMA placement cycle. The scheduler keeps similar statistics, but | |
2778 | * decays those on a 32ms period, which is orders of magnitude off | |
2779 | * from the dozens-of-seconds NUMA balancing period. Use the scheduler | |
2780 | * stats only if the task is so new there are no NUMA statistics yet. | |
2781 | */ | |
2782 | static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) | |
2783 | { | |
2784 | u64 runtime, delta, now; | |
2785 | /* Use the start of this time slice to avoid calculations. */ | |
2786 | now = p->se.exec_start; | |
2787 | runtime = p->se.sum_exec_runtime; | |
2788 | ||
2789 | if (p->last_task_numa_placement) { | |
2790 | delta = runtime - p->last_sum_exec_runtime; | |
2791 | *period = now - p->last_task_numa_placement; | |
a860fa7b XX |
2792 | |
2793 | /* Avoid time going backwards, prevent potential divide error: */ | |
2794 | if (unlikely((s64)*period < 0)) | |
2795 | *period = 0; | |
7e2703e6 | 2796 | } else { |
c7b50216 | 2797 | delta = p->se.avg.load_sum; |
9d89c257 | 2798 | *period = LOAD_AVG_MAX; |
7e2703e6 RR |
2799 | } |
2800 | ||
2801 | p->last_sum_exec_runtime = runtime; | |
2802 | p->last_task_numa_placement = now; | |
2803 | ||
2804 | return delta; | |
2805 | } | |
2806 | ||
54009416 RR |
2807 | /* |
2808 | * Determine the preferred nid for a task in a numa_group. This needs to | |
2809 | * be done in a way that produces consistent results with group_weight, | |
2810 | * otherwise workloads might not converge. | |
2811 | */ | |
2812 | static int preferred_group_nid(struct task_struct *p, int nid) | |
2813 | { | |
2814 | nodemask_t nodes; | |
2815 | int dist; | |
2816 | ||
2817 | /* Direct connections between all NUMA nodes. */ | |
2818 | if (sched_numa_topology_type == NUMA_DIRECT) | |
2819 | return nid; | |
2820 | ||
2821 | /* | |
2822 | * On a system with glueless mesh NUMA topology, group_weight | |
2823 | * scores nodes according to the number of NUMA hinting faults on | |
2824 | * both the node itself, and on nearby nodes. | |
2825 | */ | |
2826 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | |
2827 | unsigned long score, max_score = 0; | |
2828 | int node, max_node = nid; | |
2829 | ||
2830 | dist = sched_max_numa_distance; | |
2831 | ||
5c7b1aaf | 2832 | for_each_node_state(node, N_CPU) { |
54009416 RR |
2833 | score = group_weight(p, node, dist); |
2834 | if (score > max_score) { | |
2835 | max_score = score; | |
2836 | max_node = node; | |
2837 | } | |
2838 | } | |
2839 | return max_node; | |
2840 | } | |
2841 | ||
2842 | /* | |
2843 | * Finding the preferred nid in a system with NUMA backplane | |
2844 | * interconnect topology is more involved. The goal is to locate | |
2845 | * tasks from numa_groups near each other in the system, and | |
2846 | * untangle workloads from different sides of the system. This requires | |
2847 | * searching down the hierarchy of node groups, recursively searching | |
2848 | * inside the highest scoring group of nodes. The nodemask tricks | |
2849 | * keep the complexity of the search down. | |
2850 | */ | |
5c7b1aaf | 2851 | nodes = node_states[N_CPU]; |
54009416 RR |
2852 | for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { |
2853 | unsigned long max_faults = 0; | |
81907478 | 2854 | nodemask_t max_group = NODE_MASK_NONE; |
54009416 RR |
2855 | int a, b; |
2856 | ||
2857 | /* Are there nodes at this distance from each other? */ | |
2858 | if (!find_numa_distance(dist)) | |
2859 | continue; | |
2860 | ||
2861 | for_each_node_mask(a, nodes) { | |
2862 | unsigned long faults = 0; | |
2863 | nodemask_t this_group; | |
2864 | nodes_clear(this_group); | |
2865 | ||
2866 | /* Sum group's NUMA faults; includes a==b case. */ | |
2867 | for_each_node_mask(b, nodes) { | |
2868 | if (node_distance(a, b) < dist) { | |
2869 | faults += group_faults(p, b); | |
2870 | node_set(b, this_group); | |
2871 | node_clear(b, nodes); | |
2872 | } | |
2873 | } | |
2874 | ||
2875 | /* Remember the top group. */ | |
2876 | if (faults > max_faults) { | |
2877 | max_faults = faults; | |
2878 | max_group = this_group; | |
2879 | /* | |
2880 | * subtle: at the smallest distance there is | |
2881 | * just one node left in each "group", the | |
2882 | * winner is the preferred nid. | |
2883 | */ | |
2884 | nid = a; | |
2885 | } | |
2886 | } | |
2887 | /* Next round, evaluate the nodes within max_group. */ | |
890a5409 JB |
2888 | if (!max_faults) |
2889 | break; | |
54009416 RR |
2890 | nodes = max_group; |
2891 | } | |
2892 | return nid; | |
2893 | } | |
2894 | ||
cbee9f88 PZ |
2895 | static void task_numa_placement(struct task_struct *p) |
2896 | { | |
98fa15f3 | 2897 | int seq, nid, max_nid = NUMA_NO_NODE; |
f03bb676 | 2898 | unsigned long max_faults = 0; |
04bb2f94 | 2899 | unsigned long fault_types[2] = { 0, 0 }; |
7e2703e6 RR |
2900 | unsigned long total_faults; |
2901 | u64 runtime, period; | |
7dbd13ed | 2902 | spinlock_t *group_lock = NULL; |
cb361d8c | 2903 | struct numa_group *ng; |
cbee9f88 | 2904 | |
7e5a2c17 JL |
2905 | /* |
2906 | * The p->mm->numa_scan_seq field gets updated without | |
2907 | * exclusive access. Use READ_ONCE() here to ensure | |
2908 | * that the field is read in a single access: | |
2909 | */ | |
316c1608 | 2910 | seq = READ_ONCE(p->mm->numa_scan_seq); |
cbee9f88 PZ |
2911 | if (p->numa_scan_seq == seq) |
2912 | return; | |
2913 | p->numa_scan_seq = seq; | |
598f0ec0 | 2914 | p->numa_scan_period_max = task_scan_max(p); |
cbee9f88 | 2915 | |
7e2703e6 RR |
2916 | total_faults = p->numa_faults_locality[0] + |
2917 | p->numa_faults_locality[1]; | |
2918 | runtime = numa_get_avg_runtime(p, &period); | |
2919 | ||
7dbd13ed | 2920 | /* If the task is part of a group prevent parallel updates to group stats */ |
cb361d8c JH |
2921 | ng = deref_curr_numa_group(p); |
2922 | if (ng) { | |
2923 | group_lock = &ng->lock; | |
60e69eed | 2924 | spin_lock_irq(group_lock); |
7dbd13ed MG |
2925 | } |
2926 | ||
688b7585 MG |
2927 | /* Find the node with the highest number of faults */ |
2928 | for_each_online_node(nid) { | |
44dba3d5 IM |
2929 | /* Keep track of the offsets in numa_faults array */ |
2930 | int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; | |
83e1d2cd | 2931 | unsigned long faults = 0, group_faults = 0; |
44dba3d5 | 2932 | int priv; |
745d6147 | 2933 | |
be1e4e76 | 2934 | for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { |
7e2703e6 | 2935 | long diff, f_diff, f_weight; |
8c8a743c | 2936 | |
44dba3d5 IM |
2937 | mem_idx = task_faults_idx(NUMA_MEM, nid, priv); |
2938 | membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); | |
2939 | cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); | |
2940 | cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); | |
745d6147 | 2941 | |
ac8e895b | 2942 | /* Decay existing window, copy faults since last scan */ |
44dba3d5 IM |
2943 | diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; |
2944 | fault_types[priv] += p->numa_faults[membuf_idx]; | |
2945 | p->numa_faults[membuf_idx] = 0; | |
fb13c7ee | 2946 | |
7e2703e6 RR |
2947 | /* |
2948 | * Normalize the faults_from, so all tasks in a group | |
2949 | * count according to CPU use, instead of by the raw | |
2950 | * number of faults. Tasks with little runtime have | |
2951 | * little over-all impact on throughput, and thus their | |
2952 | * faults are less important. | |
2953 | */ | |
2954 | f_weight = div64_u64(runtime << 16, period + 1); | |
44dba3d5 | 2955 | f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / |
7e2703e6 | 2956 | (total_faults + 1); |
44dba3d5 IM |
2957 | f_diff = f_weight - p->numa_faults[cpu_idx] / 2; |
2958 | p->numa_faults[cpubuf_idx] = 0; | |
50ec8a40 | 2959 | |
44dba3d5 IM |
2960 | p->numa_faults[mem_idx] += diff; |
2961 | p->numa_faults[cpu_idx] += f_diff; | |
2962 | faults += p->numa_faults[mem_idx]; | |
83e1d2cd | 2963 | p->total_numa_faults += diff; |
cb361d8c | 2964 | if (ng) { |
44dba3d5 IM |
2965 | /* |
2966 | * safe because we can only change our own group | |
2967 | * | |
2968 | * mem_idx represents the offset for a given | |
2969 | * nid and priv in a specific region because it | |
2970 | * is at the beginning of the numa_faults array. | |
2971 | */ | |
cb361d8c | 2972 | ng->faults[mem_idx] += diff; |
5b763a14 | 2973 | ng->faults[cpu_idx] += f_diff; |
cb361d8c JH |
2974 | ng->total_faults += diff; |
2975 | group_faults += ng->faults[mem_idx]; | |
8c8a743c | 2976 | } |
ac8e895b MG |
2977 | } |
2978 | ||
cb361d8c | 2979 | if (!ng) { |
f03bb676 SD |
2980 | if (faults > max_faults) { |
2981 | max_faults = faults; | |
2982 | max_nid = nid; | |
2983 | } | |
2984 | } else if (group_faults > max_faults) { | |
2985 | max_faults = group_faults; | |
688b7585 MG |
2986 | max_nid = nid; |
2987 | } | |
83e1d2cd MG |
2988 | } |
2989 | ||
5c7b1aaf | 2990 | /* Cannot migrate task to CPU-less node */ |
d1db9fb4 | 2991 | max_nid = numa_nearest_node(max_nid, N_CPU); |
5c7b1aaf | 2992 | |
cb361d8c JH |
2993 | if (ng) { |
2994 | numa_group_count_active_nodes(ng); | |
60e69eed | 2995 | spin_unlock_irq(group_lock); |
f03bb676 | 2996 | max_nid = preferred_group_nid(p, max_nid); |
688b7585 MG |
2997 | } |
2998 | ||
bb97fc31 RR |
2999 | if (max_faults) { |
3000 | /* Set the new preferred node */ | |
3001 | if (max_nid != p->numa_preferred_nid) | |
3002 | sched_setnuma(p, max_nid); | |
3a7053b3 | 3003 | } |
30619c89 SD |
3004 | |
3005 | update_task_scan_period(p, fault_types[0], fault_types[1]); | |
cbee9f88 PZ |
3006 | } |
3007 | ||
8c8a743c PZ |
3008 | static inline int get_numa_group(struct numa_group *grp) |
3009 | { | |
c45a7795 | 3010 | return refcount_inc_not_zero(&grp->refcount); |
8c8a743c PZ |
3011 | } |
3012 | ||
3013 | static inline void put_numa_group(struct numa_group *grp) | |
3014 | { | |
c45a7795 | 3015 | if (refcount_dec_and_test(&grp->refcount)) |
8c8a743c PZ |
3016 | kfree_rcu(grp, rcu); |
3017 | } | |
3018 | ||
3e6a9418 MG |
3019 | static void task_numa_group(struct task_struct *p, int cpupid, int flags, |
3020 | int *priv) | |
8c8a743c PZ |
3021 | { |
3022 | struct numa_group *grp, *my_grp; | |
3023 | struct task_struct *tsk; | |
3024 | bool join = false; | |
3025 | int cpu = cpupid_to_cpu(cpupid); | |
3026 | int i; | |
3027 | ||
cb361d8c | 3028 | if (unlikely(!deref_curr_numa_group(p))) { |
8c8a743c | 3029 | unsigned int size = sizeof(struct numa_group) + |
7a2341fc BR |
3030 | NR_NUMA_HINT_FAULT_STATS * |
3031 | nr_node_ids * sizeof(unsigned long); | |
8c8a743c PZ |
3032 | |
3033 | grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); | |
3034 | if (!grp) | |
3035 | return; | |
3036 | ||
c45a7795 | 3037 | refcount_set(&grp->refcount, 1); |
4142c3eb RR |
3038 | grp->active_nodes = 1; |
3039 | grp->max_faults_cpu = 0; | |
8c8a743c | 3040 | spin_lock_init(&grp->lock); |
e29cf08b | 3041 | grp->gid = p->pid; |
8c8a743c | 3042 | |
be1e4e76 | 3043 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) |
44dba3d5 | 3044 | grp->faults[i] = p->numa_faults[i]; |
8c8a743c | 3045 | |
989348b5 | 3046 | grp->total_faults = p->total_numa_faults; |
83e1d2cd | 3047 | |
8c8a743c PZ |
3048 | grp->nr_tasks++; |
3049 | rcu_assign_pointer(p->numa_group, grp); | |
3050 | } | |
3051 | ||
3052 | rcu_read_lock(); | |
316c1608 | 3053 | tsk = READ_ONCE(cpu_rq(cpu)->curr); |
8c8a743c PZ |
3054 | |
3055 | if (!cpupid_match_pid(tsk, cpupid)) | |
3354781a | 3056 | goto no_join; |
8c8a743c PZ |
3057 | |
3058 | grp = rcu_dereference(tsk->numa_group); | |
3059 | if (!grp) | |
3354781a | 3060 | goto no_join; |
8c8a743c | 3061 | |
cb361d8c | 3062 | my_grp = deref_curr_numa_group(p); |
8c8a743c | 3063 | if (grp == my_grp) |
3354781a | 3064 | goto no_join; |
8c8a743c PZ |
3065 | |
3066 | /* | |
3067 | * Only join the other group if its bigger; if we're the bigger group, | |
3068 | * the other task will join us. | |
3069 | */ | |
3070 | if (my_grp->nr_tasks > grp->nr_tasks) | |
3354781a | 3071 | goto no_join; |
8c8a743c PZ |
3072 | |
3073 | /* | |
3074 | * Tie-break on the grp address. | |
3075 | */ | |
3076 | if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) | |
3354781a | 3077 | goto no_join; |
8c8a743c | 3078 | |
dabe1d99 RR |
3079 | /* Always join threads in the same process. */ |
3080 | if (tsk->mm == current->mm) | |
3081 | join = true; | |
3082 | ||
3083 | /* Simple filter to avoid false positives due to PID collisions */ | |
3084 | if (flags & TNF_SHARED) | |
3085 | join = true; | |
8c8a743c | 3086 | |
3e6a9418 MG |
3087 | /* Update priv based on whether false sharing was detected */ |
3088 | *priv = !join; | |
3089 | ||
dabe1d99 | 3090 | if (join && !get_numa_group(grp)) |
3354781a | 3091 | goto no_join; |
8c8a743c | 3092 | |
8c8a743c PZ |
3093 | rcu_read_unlock(); |
3094 | ||
3095 | if (!join) | |
3096 | return; | |
3097 | ||
09348d75 | 3098 | WARN_ON_ONCE(irqs_disabled()); |
60e69eed | 3099 | double_lock_irq(&my_grp->lock, &grp->lock); |
989348b5 | 3100 | |
be1e4e76 | 3101 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { |
44dba3d5 IM |
3102 | my_grp->faults[i] -= p->numa_faults[i]; |
3103 | grp->faults[i] += p->numa_faults[i]; | |
8c8a743c | 3104 | } |
989348b5 MG |
3105 | my_grp->total_faults -= p->total_numa_faults; |
3106 | grp->total_faults += p->total_numa_faults; | |
8c8a743c | 3107 | |
8c8a743c PZ |
3108 | my_grp->nr_tasks--; |
3109 | grp->nr_tasks++; | |
3110 | ||
3111 | spin_unlock(&my_grp->lock); | |
60e69eed | 3112 | spin_unlock_irq(&grp->lock); |
8c8a743c PZ |
3113 | |
3114 | rcu_assign_pointer(p->numa_group, grp); | |
3115 | ||
3116 | put_numa_group(my_grp); | |
3354781a PZ |
3117 | return; |
3118 | ||
3119 | no_join: | |
3120 | rcu_read_unlock(); | |
3121 | return; | |
8c8a743c PZ |
3122 | } |
3123 | ||
16d51a59 | 3124 | /* |
3b03706f | 3125 | * Get rid of NUMA statistics associated with a task (either current or dead). |
16d51a59 JH |
3126 | * If @final is set, the task is dead and has reached refcount zero, so we can |
3127 | * safely free all relevant data structures. Otherwise, there might be | |
3128 | * concurrent reads from places like load balancing and procfs, and we should | |
3129 | * reset the data back to default state without freeing ->numa_faults. | |
3130 | */ | |
3131 | void task_numa_free(struct task_struct *p, bool final) | |
8c8a743c | 3132 | { |
cb361d8c JH |
3133 | /* safe: p either is current or is being freed by current */ |
3134 | struct numa_group *grp = rcu_dereference_raw(p->numa_group); | |
16d51a59 | 3135 | unsigned long *numa_faults = p->numa_faults; |
e9dd685c SR |
3136 | unsigned long flags; |
3137 | int i; | |
8c8a743c | 3138 | |
16d51a59 JH |
3139 | if (!numa_faults) |
3140 | return; | |
3141 | ||
8c8a743c | 3142 | if (grp) { |
e9dd685c | 3143 | spin_lock_irqsave(&grp->lock, flags); |
be1e4e76 | 3144 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) |
44dba3d5 | 3145 | grp->faults[i] -= p->numa_faults[i]; |
989348b5 | 3146 | grp->total_faults -= p->total_numa_faults; |
83e1d2cd | 3147 | |
8c8a743c | 3148 | grp->nr_tasks--; |
e9dd685c | 3149 | spin_unlock_irqrestore(&grp->lock, flags); |
35b123e2 | 3150 | RCU_INIT_POINTER(p->numa_group, NULL); |
8c8a743c PZ |
3151 | put_numa_group(grp); |
3152 | } | |
3153 | ||
16d51a59 JH |
3154 | if (final) { |
3155 | p->numa_faults = NULL; | |
3156 | kfree(numa_faults); | |
3157 | } else { | |
3158 | p->total_numa_faults = 0; | |
3159 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) | |
3160 | numa_faults[i] = 0; | |
3161 | } | |
8c8a743c PZ |
3162 | } |
3163 | ||
cbee9f88 PZ |
3164 | /* |
3165 | * Got a PROT_NONE fault for a page on @node. | |
3166 | */ | |
58b46da3 | 3167 | void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) |
cbee9f88 PZ |
3168 | { |
3169 | struct task_struct *p = current; | |
6688cc05 | 3170 | bool migrated = flags & TNF_MIGRATED; |
58b46da3 | 3171 | int cpu_node = task_node(current); |
792568ec | 3172 | int local = !!(flags & TNF_FAULT_LOCAL); |
4142c3eb | 3173 | struct numa_group *ng; |
ac8e895b | 3174 | int priv; |
cbee9f88 | 3175 | |
2a595721 | 3176 | if (!static_branch_likely(&sched_numa_balancing)) |
1a687c2e MG |
3177 | return; |
3178 | ||
9ff1d9ff MG |
3179 | /* for example, ksmd faulting in a user's mm */ |
3180 | if (!p->mm) | |
3181 | return; | |
3182 | ||
33024536 HY |
3183 | /* |
3184 | * NUMA faults statistics are unnecessary for the slow memory | |
3185 | * node for memory tiering mode. | |
3186 | */ | |
3187 | if (!node_is_toptier(mem_node) && | |
3188 | (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || | |
3189 | !cpupid_valid(last_cpupid))) | |
3190 | return; | |
3191 | ||
f809ca9a | 3192 | /* Allocate buffer to track faults on a per-node basis */ |
44dba3d5 IM |
3193 | if (unlikely(!p->numa_faults)) { |
3194 | int size = sizeof(*p->numa_faults) * | |
be1e4e76 | 3195 | NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; |
f809ca9a | 3196 | |
44dba3d5 IM |
3197 | p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); |
3198 | if (!p->numa_faults) | |
f809ca9a | 3199 | return; |
745d6147 | 3200 | |
83e1d2cd | 3201 | p->total_numa_faults = 0; |
04bb2f94 | 3202 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); |
f809ca9a | 3203 | } |
cbee9f88 | 3204 | |
8c8a743c PZ |
3205 | /* |
3206 | * First accesses are treated as private, otherwise consider accesses | |
3207 | * to be private if the accessing pid has not changed | |
3208 | */ | |
3209 | if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { | |
3210 | priv = 1; | |
3211 | } else { | |
3212 | priv = cpupid_match_pid(p, last_cpupid); | |
6688cc05 | 3213 | if (!priv && !(flags & TNF_NO_GROUP)) |
3e6a9418 | 3214 | task_numa_group(p, last_cpupid, flags, &priv); |
8c8a743c PZ |
3215 | } |
3216 | ||
792568ec RR |
3217 | /* |
3218 | * If a workload spans multiple NUMA nodes, a shared fault that | |
3219 | * occurs wholly within the set of nodes that the workload is | |
3220 | * actively using should be counted as local. This allows the | |
3221 | * scan rate to slow down when a workload has settled down. | |
3222 | */ | |
cb361d8c | 3223 | ng = deref_curr_numa_group(p); |
4142c3eb RR |
3224 | if (!priv && !local && ng && ng->active_nodes > 1 && |
3225 | numa_is_active_node(cpu_node, ng) && | |
3226 | numa_is_active_node(mem_node, ng)) | |
792568ec RR |
3227 | local = 1; |
3228 | ||
2739d3ee | 3229 | /* |
e1ff516a YW |
3230 | * Retry to migrate task to preferred node periodically, in case it |
3231 | * previously failed, or the scheduler moved us. | |
2739d3ee | 3232 | */ |
b6a60cf3 SD |
3233 | if (time_after(jiffies, p->numa_migrate_retry)) { |
3234 | task_numa_placement(p); | |
6b9a7460 | 3235 | numa_migrate_preferred(p); |
b6a60cf3 | 3236 | } |
6b9a7460 | 3237 | |
b32e86b4 IM |
3238 | if (migrated) |
3239 | p->numa_pages_migrated += pages; | |
074c2381 MG |
3240 | if (flags & TNF_MIGRATE_FAIL) |
3241 | p->numa_faults_locality[2] += pages; | |
b32e86b4 | 3242 | |
44dba3d5 IM |
3243 | p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; |
3244 | p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; | |
792568ec | 3245 | p->numa_faults_locality[local] += pages; |
cbee9f88 PZ |
3246 | } |
3247 | ||
6e5fb223 PZ |
3248 | static void reset_ptenuma_scan(struct task_struct *p) |
3249 | { | |
7e5a2c17 JL |
3250 | /* |
3251 | * We only did a read acquisition of the mmap sem, so | |
3252 | * p->mm->numa_scan_seq is written to without exclusive access | |
3253 | * and the update is not guaranteed to be atomic. That's not | |
3254 | * much of an issue though, since this is just used for | |
3255 | * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not | |
3256 | * expensive, to avoid any form of compiler optimizations: | |
3257 | */ | |
316c1608 | 3258 | WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); |
6e5fb223 PZ |
3259 | p->mm->numa_scan_offset = 0; |
3260 | } | |
3261 | ||
b7a5b537 | 3262 | static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) |
fc137c0d | 3263 | { |
20f58648 | 3264 | unsigned long pids; |
fc137c0d R |
3265 | /* |
3266 | * Allow unconditional access first two times, so that all the (pages) | |
3267 | * of VMAs get prot_none fault introduced irrespective of accesses. | |
3268 | * This is also done to avoid any side effect of task scanning | |
3269 | * amplifying the unfairness of disjoint set of VMAs' access. | |
3270 | */ | |
84db47ca | 3271 | if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) |
fc137c0d R |
3272 | return true; |
3273 | ||
f3a6c979 | 3274 | pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; |
b7a5b537 MG |
3275 | if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) |
3276 | return true; | |
3277 | ||
3278 | /* | |
3279 | * Complete a scan that has already started regardless of PID access, or | |
3280 | * some VMAs may never be scanned in multi-threaded applications: | |
3281 | */ | |
3282 | if (mm->numa_scan_offset > vma->vm_start) { | |
3283 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); | |
3284 | return true; | |
3285 | } | |
3286 | ||
f22cde43 YL |
3287 | /* |
3288 | * This vma has not been accessed for a while, and if the number | |
3289 | * the threads in the same process is low, which means no other | |
3290 | * threads can help scan this vma, force a vma scan. | |
3291 | */ | |
3292 | if (READ_ONCE(mm->numa_scan_seq) > | |
3293 | (vma->numab_state->prev_scan_seq + get_nr_threads(current))) | |
3294 | return true; | |
3295 | ||
b7a5b537 | 3296 | return false; |
fc137c0d R |
3297 | } |
3298 | ||
20f58648 R |
3299 | #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) |
3300 | ||
cbee9f88 PZ |
3301 | /* |
3302 | * The expensive part of numa migration is done from task_work context. | |
3303 | * Triggered from task_tick_numa(). | |
3304 | */ | |
9434f9f5 | 3305 | static void task_numa_work(struct callback_head *work) |
cbee9f88 PZ |
3306 | { |
3307 | unsigned long migrate, next_scan, now = jiffies; | |
3308 | struct task_struct *p = current; | |
3309 | struct mm_struct *mm = p->mm; | |
51170840 | 3310 | u64 runtime = p->se.sum_exec_runtime; |
6e5fb223 | 3311 | struct vm_area_struct *vma; |
9f40604c | 3312 | unsigned long start, end; |
598f0ec0 | 3313 | unsigned long nr_pte_updates = 0; |
4620f8c1 | 3314 | long pages, virtpages; |
214dbc42 | 3315 | struct vma_iterator vmi; |
f169c62f MG |
3316 | bool vma_pids_skipped; |
3317 | bool vma_pids_forced = false; | |
cbee9f88 | 3318 | |
f7d2728c | 3319 | WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); |
cbee9f88 | 3320 | |
b34920d4 | 3321 | work->next = work; |
cbee9f88 PZ |
3322 | /* |
3323 | * Who cares about NUMA placement when they're dying. | |
3324 | * | |
3325 | * NOTE: make sure not to dereference p->mm before this check, | |
3326 | * exit_task_work() happens _after_ exit_mm() so we could be called | |
3327 | * without p->mm even though we still had it when we enqueued this | |
3328 | * work. | |
3329 | */ | |
3330 | if (p->flags & PF_EXITING) | |
3331 | return; | |
3332 | ||
1f6c6ac0 LC |
3333 | /* |
3334 | * Memory is pinned to only one NUMA node via cpuset.mems, naturally | |
3335 | * no page can be migrated. | |
3336 | */ | |
3fc567e4 LC |
3337 | if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) { |
3338 | trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed); | |
1f6c6ac0 | 3339 | return; |
3fc567e4 | 3340 | } |
1f6c6ac0 | 3341 | |
930aa174 | 3342 | if (!mm->numa_next_scan) { |
7e8d16b6 MG |
3343 | mm->numa_next_scan = now + |
3344 | msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | |
b8593bfd MG |
3345 | } |
3346 | ||
cbee9f88 PZ |
3347 | /* |
3348 | * Enforce maximal scan/migration frequency.. | |
3349 | */ | |
3350 | migrate = mm->numa_next_scan; | |
3351 | if (time_before(now, migrate)) | |
3352 | return; | |
3353 | ||
598f0ec0 MG |
3354 | if (p->numa_scan_period == 0) { |
3355 | p->numa_scan_period_max = task_scan_max(p); | |
b5dd77c8 | 3356 | p->numa_scan_period = task_scan_start(p); |
598f0ec0 | 3357 | } |
cbee9f88 | 3358 | |
fb003b80 | 3359 | next_scan = now + msecs_to_jiffies(p->numa_scan_period); |
8baceabc | 3360 | if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) |
cbee9f88 PZ |
3361 | return; |
3362 | ||
19a78d11 PZ |
3363 | /* |
3364 | * Delay this task enough that another task of this mm will likely win | |
3365 | * the next time around. | |
3366 | */ | |
3367 | p->node_stamp += 2 * TICK_NSEC; | |
3368 | ||
9f40604c MG |
3369 | pages = sysctl_numa_balancing_scan_size; |
3370 | pages <<= 20 - PAGE_SHIFT; /* MB in pages */ | |
4620f8c1 | 3371 | virtpages = pages * 8; /* Scan up to this much virtual space */ |
9f40604c MG |
3372 | if (!pages) |
3373 | return; | |
cbee9f88 | 3374 | |
4620f8c1 | 3375 | |
d8ed45c5 | 3376 | if (!mmap_read_trylock(mm)) |
8655d549 | 3377 | return; |
f169c62f MG |
3378 | |
3379 | /* | |
3380 | * VMAs are skipped if the current PID has not trapped a fault within | |
3381 | * the VMA recently. Allow scanning to be forced if there is no | |
3382 | * suitable VMA remaining. | |
3383 | */ | |
3384 | vma_pids_skipped = false; | |
3385 | ||
3386 | retry_pids: | |
3387 | start = mm->numa_scan_offset; | |
214dbc42 LH |
3388 | vma_iter_init(&vmi, mm, start); |
3389 | vma = vma_next(&vmi); | |
6e5fb223 PZ |
3390 | if (!vma) { |
3391 | reset_ptenuma_scan(p); | |
9f40604c | 3392 | start = 0; |
214dbc42 LH |
3393 | vma_iter_set(&vmi, start); |
3394 | vma = vma_next(&vmi); | |
6e5fb223 | 3395 | } |
0cd4d02c | 3396 | |
9c70b2a3 | 3397 | for (; vma; vma = vma_next(&vmi)) { |
6b79c57b | 3398 | if (!vma_migratable(vma) || !vma_policy_mof(vma) || |
8e76d4ee | 3399 | is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { |
ed2da8b7 | 3400 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); |
6e5fb223 | 3401 | continue; |
6b79c57b | 3402 | } |
6e5fb223 | 3403 | |
4591ce4f MG |
3404 | /* |
3405 | * Shared library pages mapped by multiple processes are not | |
3406 | * migrated as it is expected they are cache replicated. Avoid | |
b9e6e286 | 3407 | * hinting faults in read-only file-backed mappings or the vDSO |
4591ce4f MG |
3408 | * as migrating the pages will be of marginal benefit. |
3409 | */ | |
3410 | if (!vma->vm_mm || | |
ed2da8b7 MG |
3411 | (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { |
3412 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); | |
4591ce4f | 3413 | continue; |
ed2da8b7 | 3414 | } |
4591ce4f | 3415 | |
3c67f474 MG |
3416 | /* |
3417 | * Skip inaccessible VMAs to avoid any confusion between | |
b9e6e286 | 3418 | * PROT_NONE and NUMA hinting PTEs |
3c67f474 | 3419 | */ |
ed2da8b7 MG |
3420 | if (!vma_is_accessible(vma)) { |
3421 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); | |
3c67f474 | 3422 | continue; |
ed2da8b7 | 3423 | } |
4591ce4f | 3424 | |
ef6a22b7 MG |
3425 | /* Initialise new per-VMA NUMAB state. */ |
3426 | if (!vma->numab_state) { | |
5f1b64e9 AH |
3427 | struct vma_numab_state *ptr; |
3428 | ||
3429 | ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); | |
3430 | if (!ptr) | |
3431 | continue; | |
3432 | ||
3433 | if (cmpxchg(&vma->numab_state, NULL, ptr)) { | |
3434 | kfree(ptr); | |
ef6a22b7 | 3435 | continue; |
5f1b64e9 | 3436 | } |
ef6a22b7 | 3437 | |
84db47ca R |
3438 | vma->numab_state->start_scan_seq = mm->numa_scan_seq; |
3439 | ||
ef6a22b7 MG |
3440 | vma->numab_state->next_scan = now + |
3441 | msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | |
20f58648 R |
3442 | |
3443 | /* Reset happens after 4 times scan delay of scan start */ | |
f3a6c979 | 3444 | vma->numab_state->pids_active_reset = vma->numab_state->next_scan + |
20f58648 | 3445 | msecs_to_jiffies(VMA_PID_RESET_PERIOD); |
f169c62f MG |
3446 | |
3447 | /* | |
3448 | * Ensure prev_scan_seq does not match numa_scan_seq, | |
3449 | * to prevent VMAs being skipped prematurely on the | |
3450 | * first scan: | |
3451 | */ | |
3452 | vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; | |
ef6a22b7 MG |
3453 | } |
3454 | ||
3455 | /* | |
b9e6e286 | 3456 | * Scanning the VMAs of short lived tasks add more overhead. So |
ef6a22b7 MG |
3457 | * delay the scan for new VMAs. |
3458 | */ | |
3459 | if (mm->numa_scan_seq && time_before(jiffies, | |
ed2da8b7 MG |
3460 | vma->numab_state->next_scan)) { |
3461 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); | |
ef6a22b7 | 3462 | continue; |
ed2da8b7 | 3463 | } |
ef6a22b7 | 3464 | |
2e2675db | 3465 | /* RESET access PIDs regularly for old VMAs. */ |
20f58648 | 3466 | if (mm->numa_scan_seq && |
f3a6c979 MG |
3467 | time_after(jiffies, vma->numab_state->pids_active_reset)) { |
3468 | vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + | |
20f58648 | 3469 | msecs_to_jiffies(VMA_PID_RESET_PERIOD); |
f3a6c979 MG |
3470 | vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); |
3471 | vma->numab_state->pids_active[1] = 0; | |
20f58648 R |
3472 | } |
3473 | ||
f169c62f MG |
3474 | /* Do not rescan VMAs twice within the same sequence. */ |
3475 | if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { | |
3476 | mm->numa_scan_offset = vma->vm_end; | |
3477 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); | |
3478 | continue; | |
3479 | } | |
3480 | ||
3481 | /* | |
3482 | * Do not scan the VMA if task has not accessed it, unless no other | |
3483 | * VMA candidate exists. | |
3484 | */ | |
3485 | if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { | |
3486 | vma_pids_skipped = true; | |
2e2675db R |
3487 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); |
3488 | continue; | |
3489 | } | |
3490 | ||
9f40604c MG |
3491 | do { |
3492 | start = max(start, vma->vm_start); | |
3493 | end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); | |
3494 | end = min(end, vma->vm_end); | |
4620f8c1 | 3495 | nr_pte_updates = change_prot_numa(vma, start, end); |
598f0ec0 MG |
3496 | |
3497 | /* | |
4620f8c1 RR |
3498 | * Try to scan sysctl_numa_balancing_size worth of |
3499 | * hpages that have at least one present PTE that | |
b9e6e286 | 3500 | * is not already PTE-numa. If the VMA contains |
4620f8c1 RR |
3501 | * areas that are unused or already full of prot_numa |
3502 | * PTEs, scan up to virtpages, to skip through those | |
3503 | * areas faster. | |
598f0ec0 MG |
3504 | */ |
3505 | if (nr_pte_updates) | |
3506 | pages -= (end - start) >> PAGE_SHIFT; | |
4620f8c1 | 3507 | virtpages -= (end - start) >> PAGE_SHIFT; |
6e5fb223 | 3508 | |
9f40604c | 3509 | start = end; |
4620f8c1 | 3510 | if (pages <= 0 || virtpages <= 0) |
9f40604c | 3511 | goto out; |
3cf1962c RR |
3512 | |
3513 | cond_resched(); | |
9f40604c | 3514 | } while (end != vma->vm_end); |
f169c62f MG |
3515 | |
3516 | /* VMA scan is complete, do not scan until next sequence. */ | |
3517 | vma->numab_state->prev_scan_seq = mm->numa_scan_seq; | |
3518 | ||
3519 | /* | |
3520 | * Only force scan within one VMA at a time, to limit the | |
3521 | * cost of scanning a potentially uninteresting VMA. | |
3522 | */ | |
3523 | if (vma_pids_forced) | |
3524 | break; | |
9c70b2a3 | 3525 | } |
6e5fb223 | 3526 | |
f169c62f MG |
3527 | /* |
3528 | * If no VMAs are remaining and VMAs were skipped due to the PID | |
3529 | * not accessing the VMA previously, then force a scan to ensure | |
3530 | * forward progress: | |
3531 | */ | |
3532 | if (!vma && !vma_pids_forced && vma_pids_skipped) { | |
3533 | vma_pids_forced = true; | |
3534 | goto retry_pids; | |
3535 | } | |
3536 | ||
9f40604c | 3537 | out: |
6e5fb223 | 3538 | /* |
c69307d5 PZ |
3539 | * It is possible to reach the end of the VMA list but the last few |
3540 | * VMAs are not guaranteed to the vma_migratable. If they are not, we | |
3541 | * would find the !migratable VMA on the next scan but not reset the | |
3542 | * scanner to the start so check it now. | |
6e5fb223 PZ |
3543 | */ |
3544 | if (vma) | |
9f40604c | 3545 | mm->numa_scan_offset = start; |
6e5fb223 PZ |
3546 | else |
3547 | reset_ptenuma_scan(p); | |
d8ed45c5 | 3548 | mmap_read_unlock(mm); |
51170840 RR |
3549 | |
3550 | /* | |
3551 | * Make sure tasks use at least 32x as much time to run other code | |
3552 | * than they used here, to limit NUMA PTE scanning overhead to 3% max. | |
3553 | * Usually update_task_scan_period slows down scanning enough; on an | |
3554 | * overloaded system we need to limit overhead on a per task basis. | |
3555 | */ | |
3556 | if (unlikely(p->se.sum_exec_runtime != runtime)) { | |
3557 | u64 diff = p->se.sum_exec_runtime - runtime; | |
3558 | p->node_stamp += 32 * diff; | |
3559 | } | |
cbee9f88 PZ |
3560 | } |
3561 | ||
d35927a1 VS |
3562 | void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) |
3563 | { | |
3564 | int mm_users = 0; | |
3565 | struct mm_struct *mm = p->mm; | |
3566 | ||
3567 | if (mm) { | |
3568 | mm_users = atomic_read(&mm->mm_users); | |
3569 | if (mm_users == 1) { | |
3570 | mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | |
3571 | mm->numa_scan_seq = 0; | |
3572 | } | |
3573 | } | |
3574 | p->node_stamp = 0; | |
3575 | p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; | |
3576 | p->numa_scan_period = sysctl_numa_balancing_scan_delay; | |
70ce3ea9 | 3577 | p->numa_migrate_retry = 0; |
b34920d4 | 3578 | /* Protect against double add, see task_tick_numa and task_numa_work */ |
d35927a1 VS |
3579 | p->numa_work.next = &p->numa_work; |
3580 | p->numa_faults = NULL; | |
12bf8a7e HW |
3581 | p->numa_pages_migrated = 0; |
3582 | p->total_numa_faults = 0; | |
d35927a1 VS |
3583 | RCU_INIT_POINTER(p->numa_group, NULL); |
3584 | p->last_task_numa_placement = 0; | |
3585 | p->last_sum_exec_runtime = 0; | |
3586 | ||
b34920d4 VS |
3587 | init_task_work(&p->numa_work, task_numa_work); |
3588 | ||
d35927a1 VS |
3589 | /* New address space, reset the preferred nid */ |
3590 | if (!(clone_flags & CLONE_VM)) { | |
3591 | p->numa_preferred_nid = NUMA_NO_NODE; | |
3592 | return; | |
3593 | } | |
3594 | ||
3595 | /* | |
3596 | * New thread, keep existing numa_preferred_nid which should be copied | |
3597 | * already by arch_dup_task_struct but stagger when scans start. | |
3598 | */ | |
3599 | if (mm) { | |
3600 | unsigned int delay; | |
3601 | ||
3602 | delay = min_t(unsigned int, task_scan_max(current), | |
3603 | current->numa_scan_period * mm_users * NSEC_PER_MSEC); | |
3604 | delay += 2 * TICK_NSEC; | |
3605 | p->node_stamp = delay; | |
3606 | } | |
3607 | } | |
3608 | ||
cbee9f88 PZ |
3609 | /* |
3610 | * Drive the periodic memory faults.. | |
3611 | */ | |
b1546edc | 3612 | static void task_tick_numa(struct rq *rq, struct task_struct *curr) |
cbee9f88 PZ |
3613 | { |
3614 | struct callback_head *work = &curr->numa_work; | |
3615 | u64 period, now; | |
3616 | ||
3617 | /* | |
3618 | * We don't care about NUMA placement if we don't have memory. | |
3619 | */ | |
b3f9916d | 3620 | if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) |
cbee9f88 PZ |
3621 | return; |
3622 | ||
3623 | /* | |
3624 | * Using runtime rather than walltime has the dual advantage that | |
3625 | * we (mostly) drive the selection from busy threads and that the | |
3626 | * task needs to have done some actual work before we bother with | |
3627 | * NUMA placement. | |
3628 | */ | |
3629 | now = curr->se.sum_exec_runtime; | |
3630 | period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; | |
3631 | ||
25b3e5a3 | 3632 | if (now > curr->node_stamp + period) { |
4b96a29b | 3633 | if (!curr->node_stamp) |
b5dd77c8 | 3634 | curr->numa_scan_period = task_scan_start(curr); |
19a78d11 | 3635 | curr->node_stamp += period; |
cbee9f88 | 3636 | |
b34920d4 | 3637 | if (!time_before(jiffies, curr->mm->numa_next_scan)) |
91989c70 | 3638 | task_work_add(curr, work, TWA_RESUME); |
cbee9f88 PZ |
3639 | } |
3640 | } | |
3fed382b | 3641 | |
3f9672ba SD |
3642 | static void update_scan_period(struct task_struct *p, int new_cpu) |
3643 | { | |
3644 | int src_nid = cpu_to_node(task_cpu(p)); | |
3645 | int dst_nid = cpu_to_node(new_cpu); | |
3646 | ||
05cbdf4f MG |
3647 | if (!static_branch_likely(&sched_numa_balancing)) |
3648 | return; | |
3649 | ||
3f9672ba SD |
3650 | if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) |
3651 | return; | |
3652 | ||
05cbdf4f MG |
3653 | if (src_nid == dst_nid) |
3654 | return; | |
3655 | ||
3656 | /* | |
3657 | * Allow resets if faults have been trapped before one scan | |
3658 | * has completed. This is most likely due to a new task that | |
3659 | * is pulled cross-node due to wakeups or load balancing. | |
3660 | */ | |
3661 | if (p->numa_scan_seq) { | |
3662 | /* | |
3663 | * Avoid scan adjustments if moving to the preferred | |
3664 | * node or if the task was not previously running on | |
3665 | * the preferred node. | |
3666 | */ | |
3667 | if (dst_nid == p->numa_preferred_nid || | |
98fa15f3 AK |
3668 | (p->numa_preferred_nid != NUMA_NO_NODE && |
3669 | src_nid != p->numa_preferred_nid)) | |
05cbdf4f MG |
3670 | return; |
3671 | } | |
3672 | ||
3673 | p->numa_scan_period = task_scan_start(p); | |
3f9672ba SD |
3674 | } |
3675 | ||
cbee9f88 PZ |
3676 | #else |
3677 | static void task_tick_numa(struct rq *rq, struct task_struct *curr) | |
3678 | { | |
3679 | } | |
0ec8aa00 PZ |
3680 | |
3681 | static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) | |
3682 | { | |
3683 | } | |
3684 | ||
3685 | static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) | |
3686 | { | |
3687 | } | |
3fed382b | 3688 | |
3f9672ba SD |
3689 | static inline void update_scan_period(struct task_struct *p, int new_cpu) |
3690 | { | |
3691 | } | |
3692 | ||
cbee9f88 PZ |
3693 | #endif /* CONFIG_NUMA_BALANCING */ |
3694 | ||
30cfdcfc DA |
3695 | static void |
3696 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
3697 | { | |
3698 | update_load_add(&cfs_rq->load, se->load.weight); | |
367456c7 | 3699 | #ifdef CONFIG_SMP |
0ec8aa00 PZ |
3700 | if (entity_is_task(se)) { |
3701 | struct rq *rq = rq_of(cfs_rq); | |
3702 | ||
3703 | account_numa_enqueue(rq, task_of(se)); | |
3704 | list_add(&se->group_node, &rq->cfs_tasks); | |
3705 | } | |
367456c7 | 3706 | #endif |
736c55a0 | 3707 | cfs_rq->nr_queued++; |
30cfdcfc DA |
3708 | } |
3709 | ||
3710 | static void | |
3711 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
3712 | { | |
3713 | update_load_sub(&cfs_rq->load, se->load.weight); | |
bfdb198c | 3714 | #ifdef CONFIG_SMP |
0ec8aa00 PZ |
3715 | if (entity_is_task(se)) { |
3716 | account_numa_dequeue(rq_of(cfs_rq), task_of(se)); | |
b87f1724 | 3717 | list_del_init(&se->group_node); |
0ec8aa00 | 3718 | } |
bfdb198c | 3719 | #endif |
736c55a0 | 3720 | cfs_rq->nr_queued--; |
30cfdcfc DA |
3721 | } |
3722 | ||
8d5b9025 PZ |
3723 | /* |
3724 | * Signed add and clamp on underflow. | |
3725 | * | |
3726 | * Explicitly do a load-store to ensure the intermediate value never hits | |
3727 | * memory. This allows lockless observations without ever seeing the negative | |
3728 | * values. | |
3729 | */ | |
3730 | #define add_positive(_ptr, _val) do { \ | |
3731 | typeof(_ptr) ptr = (_ptr); \ | |
3732 | typeof(_val) val = (_val); \ | |
3733 | typeof(*ptr) res, var = READ_ONCE(*ptr); \ | |
3734 | \ | |
3735 | res = var + val; \ | |
3736 | \ | |
3737 | if (val < 0 && res > var) \ | |
3738 | res = 0; \ | |
3739 | \ | |
3740 | WRITE_ONCE(*ptr, res); \ | |
3741 | } while (0) | |
3742 | ||
3743 | /* | |
3744 | * Unsigned subtract and clamp on underflow. | |
3745 | * | |
3746 | * Explicitly do a load-store to ensure the intermediate value never hits | |
3747 | * memory. This allows lockless observations without ever seeing the negative | |
3748 | * values. | |
3749 | */ | |
3750 | #define sub_positive(_ptr, _val) do { \ | |
3751 | typeof(_ptr) ptr = (_ptr); \ | |
3752 | typeof(*ptr) val = (_val); \ | |
3753 | typeof(*ptr) res, var = READ_ONCE(*ptr); \ | |
3754 | res = var - val; \ | |
3755 | if (res > var) \ | |
3756 | res = 0; \ | |
3757 | WRITE_ONCE(*ptr, res); \ | |
3758 | } while (0) | |
3759 | ||
b5c0ce7b PB |
3760 | /* |
3761 | * Remove and clamp on negative, from a local variable. | |
3762 | * | |
3763 | * A variant of sub_positive(), which does not use explicit load-store | |
3764 | * and is thus optimized for local variable updates. | |
3765 | */ | |
3766 | #define lsub_positive(_ptr, _val) do { \ | |
3767 | typeof(_ptr) ptr = (_ptr); \ | |
3768 | *ptr -= min_t(typeof(*ptr), *ptr, _val); \ | |
3769 | } while (0) | |
3770 | ||
8d5b9025 | 3771 | #ifdef CONFIG_SMP |
8d5b9025 PZ |
3772 | static inline void |
3773 | enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
3774 | { | |
3775 | cfs_rq->avg.load_avg += se->avg.load_avg; | |
3776 | cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; | |
3777 | } | |
3778 | ||
3779 | static inline void | |
3780 | dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
3781 | { | |
3782 | sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); | |
2d02fa8c VG |
3783 | sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); |
3784 | /* See update_cfs_rq_load_avg() */ | |
3785 | cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, | |
3786 | cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); | |
8d5b9025 PZ |
3787 | } |
3788 | #else | |
3789 | static inline void | |
8d5b9025 PZ |
3790 | enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } |
3791 | static inline void | |
3792 | dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } | |
3793 | #endif | |
3794 | ||
6d71a9c6 | 3795 | static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags); |
eab03c23 | 3796 | |
9059393e | 3797 | static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, |
0dacee1b | 3798 | unsigned long weight) |
9059393e | 3799 | { |
eab03c23 | 3800 | bool curr = cfs_rq->curr == se; |
86bfbb7c | 3801 | |
9059393e VG |
3802 | if (se->on_rq) { |
3803 | /* commit outstanding execution time */ | |
11b1b8bc | 3804 | update_curr(cfs_rq); |
6d71a9c6 PZ |
3805 | update_entity_lag(cfs_rq, se); |
3806 | se->deadline -= se->vruntime; | |
3807 | se->rel_deadline = 1; | |
c70fc32f | 3808 | cfs_rq->nr_queued--; |
11b1b8bc | 3809 | if (!curr) |
eab03c23 | 3810 | __dequeue_entity(cfs_rq, se); |
1724b95b | 3811 | update_load_sub(&cfs_rq->load, se->load.weight); |
9059393e VG |
3812 | } |
3813 | dequeue_load_avg(cfs_rq, se); | |
3814 | ||
6d71a9c6 PZ |
3815 | /* |
3816 | * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), | |
3817 | * we need to scale se->vlag when w_i changes. | |
3818 | */ | |
3819 | se->vlag = div_s64(se->vlag * se->load.weight, weight); | |
3820 | if (se->rel_deadline) | |
3821 | se->deadline = div_s64(se->deadline * se->load.weight, weight); | |
86bfbb7c | 3822 | |
eab03c23 AW |
3823 | update_load_set(&se->load, weight); |
3824 | ||
9059393e | 3825 | #ifdef CONFIG_SMP |
1ea6c46a | 3826 | do { |
87e867b4 | 3827 | u32 divider = get_pelt_divider(&se->avg); |
1ea6c46a PZ |
3828 | |
3829 | se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); | |
1ea6c46a | 3830 | } while (0); |
9059393e VG |
3831 | #endif |
3832 | ||
3833 | enqueue_load_avg(cfs_rq, se); | |
af4cf404 | 3834 | if (se->on_rq) { |
6d71a9c6 | 3835 | place_entity(cfs_rq, se, 0); |
c70fc32f | 3836 | update_load_add(&cfs_rq->load, se->load.weight); |
5068d840 | 3837 | if (!curr) |
eab03c23 | 3838 | __enqueue_entity(cfs_rq, se); |
c70fc32f | 3839 | cfs_rq->nr_queued++; |
5068d840 YL |
3840 | |
3841 | /* | |
3842 | * The entity's vruntime has been adjusted, so let's check | |
3843 | * whether the rq-wide min_vruntime needs updated too. Since | |
3844 | * the calculations above require stable min_vruntime rather | |
3845 | * than up-to-date one, we do the update at the end of the | |
3846 | * reweight process. | |
3847 | */ | |
3848 | update_min_vruntime(cfs_rq); | |
af4cf404 | 3849 | } |
9059393e VG |
3850 | } |
3851 | ||
7b9f6c86 TH |
3852 | static void reweight_task_fair(struct rq *rq, struct task_struct *p, |
3853 | const struct load_weight *lw) | |
9059393e VG |
3854 | { |
3855 | struct sched_entity *se = &p->se; | |
3856 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
3857 | struct load_weight *load = &se->load; | |
9059393e | 3858 | |
d3296052 TH |
3859 | reweight_entity(cfs_rq, se, lw->weight); |
3860 | load->inv_weight = lw->inv_weight; | |
9059393e VG |
3861 | } |
3862 | ||
51bf903b CZ |
3863 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); |
3864 | ||
3ff6dcac | 3865 | #ifdef CONFIG_FAIR_GROUP_SCHED |
387f77cc | 3866 | #ifdef CONFIG_SMP |
cef27403 PZ |
3867 | /* |
3868 | * All this does is approximate the hierarchical proportion which includes that | |
3869 | * global sum we all love to hate. | |
3870 | * | |
3871 | * That is, the weight of a group entity, is the proportional share of the | |
3872 | * group weight based on the group runqueue weights. That is: | |
3873 | * | |
3874 | * tg->weight * grq->load.weight | |
3875 | * ge->load.weight = ----------------------------- (1) | |
08f7c2f4 | 3876 | * \Sum grq->load.weight |
cef27403 PZ |
3877 | * |
3878 | * Now, because computing that sum is prohibitively expensive to compute (been | |
3879 | * there, done that) we approximate it with this average stuff. The average | |
3880 | * moves slower and therefore the approximation is cheaper and more stable. | |
3881 | * | |
3882 | * So instead of the above, we substitute: | |
3883 | * | |
3884 | * grq->load.weight -> grq->avg.load_avg (2) | |
3885 | * | |
3886 | * which yields the following: | |
3887 | * | |
3888 | * tg->weight * grq->avg.load_avg | |
3889 | * ge->load.weight = ------------------------------ (3) | |
08f7c2f4 | 3890 | * tg->load_avg |
cef27403 PZ |
3891 | * |
3892 | * Where: tg->load_avg ~= \Sum grq->avg.load_avg | |
3893 | * | |
3894 | * That is shares_avg, and it is right (given the approximation (2)). | |
3895 | * | |
3896 | * The problem with it is that because the average is slow -- it was designed | |
3897 | * to be exactly that of course -- this leads to transients in boundary | |
3898 | * conditions. In specific, the case where the group was idle and we start the | |
3899 | * one task. It takes time for our CPU's grq->avg.load_avg to build up, | |
3900 | * yielding bad latency etc.. | |
3901 | * | |
3902 | * Now, in that special case (1) reduces to: | |
3903 | * | |
3904 | * tg->weight * grq->load.weight | |
17de4ee0 | 3905 | * ge->load.weight = ----------------------------- = tg->weight (4) |
08f7c2f4 | 3906 | * grp->load.weight |
cef27403 PZ |
3907 | * |
3908 | * That is, the sum collapses because all other CPUs are idle; the UP scenario. | |
3909 | * | |
3910 | * So what we do is modify our approximation (3) to approach (4) in the (near) | |
3911 | * UP case, like: | |
3912 | * | |
3913 | * ge->load.weight = | |
3914 | * | |
3915 | * tg->weight * grq->load.weight | |
3916 | * --------------------------------------------------- (5) | |
3917 | * tg->load_avg - grq->avg.load_avg + grq->load.weight | |
3918 | * | |
17de4ee0 PZ |
3919 | * But because grq->load.weight can drop to 0, resulting in a divide by zero, |
3920 | * we need to use grq->avg.load_avg as its lower bound, which then gives: | |
3921 | * | |
3922 | * | |
3923 | * tg->weight * grq->load.weight | |
3924 | * ge->load.weight = ----------------------------- (6) | |
08f7c2f4 | 3925 | * tg_load_avg' |
17de4ee0 PZ |
3926 | * |
3927 | * Where: | |
3928 | * | |
3929 | * tg_load_avg' = tg->load_avg - grq->avg.load_avg + | |
3930 | * max(grq->load.weight, grq->avg.load_avg) | |
cef27403 PZ |
3931 | * |
3932 | * And that is shares_weight and is icky. In the (near) UP case it approaches | |
3933 | * (4) while in the normal case it approaches (3). It consistently | |
3934 | * overestimates the ge->load.weight and therefore: | |
3935 | * | |
3936 | * \Sum ge->load.weight >= tg->weight | |
3937 | * | |
3938 | * hence icky! | |
3939 | */ | |
2c8e4dce | 3940 | static long calc_group_shares(struct cfs_rq *cfs_rq) |
cf5f0acf | 3941 | { |
7c80cfc9 PZ |
3942 | long tg_weight, tg_shares, load, shares; |
3943 | struct task_group *tg = cfs_rq->tg; | |
3944 | ||
3945 | tg_shares = READ_ONCE(tg->shares); | |
cf5f0acf | 3946 | |
3d4b60d3 | 3947 | load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); |
cf5f0acf | 3948 | |
ea1dc6fc | 3949 | tg_weight = atomic_long_read(&tg->load_avg); |
3ff6dcac | 3950 | |
ea1dc6fc PZ |
3951 | /* Ensure tg_weight >= load */ |
3952 | tg_weight -= cfs_rq->tg_load_avg_contrib; | |
3953 | tg_weight += load; | |
3ff6dcac | 3954 | |
7c80cfc9 | 3955 | shares = (tg_shares * load); |
cf5f0acf PZ |
3956 | if (tg_weight) |
3957 | shares /= tg_weight; | |
3ff6dcac | 3958 | |
b8fd8423 DE |
3959 | /* |
3960 | * MIN_SHARES has to be unscaled here to support per-CPU partitioning | |
3961 | * of a group with small tg->shares value. It is a floor value which is | |
3962 | * assigned as a minimum load.weight to the sched_entity representing | |
3963 | * the group on a CPU. | |
3964 | * | |
3965 | * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 | |
3966 | * on an 8-core system with 8 tasks each runnable on one CPU shares has | |
3967 | * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In | |
3968 | * case no task is runnable on a CPU MIN_SHARES=2 should be returned | |
3969 | * instead of 0. | |
3970 | */ | |
7c80cfc9 | 3971 | return clamp_t(long, shares, MIN_SHARES, tg_shares); |
3ff6dcac | 3972 | } |
387f77cc | 3973 | #endif /* CONFIG_SMP */ |
ea1dc6fc | 3974 | |
1ea6c46a PZ |
3975 | /* |
3976 | * Recomputes the group entity based on the current state of its group | |
3977 | * runqueue. | |
3978 | */ | |
3979 | static void update_cfs_group(struct sched_entity *se) | |
2069dd75 | 3980 | { |
1ea6c46a | 3981 | struct cfs_rq *gcfs_rq = group_cfs_rq(se); |
0dacee1b | 3982 | long shares; |
2069dd75 | 3983 | |
66951e48 PZ |
3984 | /* |
3985 | * When a group becomes empty, preserve its weight. This matters for | |
3986 | * DELAY_DEQUEUE. | |
3987 | */ | |
3988 | if (!gcfs_rq || !gcfs_rq->load.weight) | |
89ee048f VG |
3989 | return; |
3990 | ||
1ea6c46a | 3991 | if (throttled_hierarchy(gcfs_rq)) |
2069dd75 | 3992 | return; |
89ee048f | 3993 | |
3ff6dcac | 3994 | #ifndef CONFIG_SMP |
0dacee1b | 3995 | shares = READ_ONCE(gcfs_rq->tg->shares); |
7c80cfc9 | 3996 | #else |
eab03c23 | 3997 | shares = calc_group_shares(gcfs_rq); |
3ff6dcac | 3998 | #endif |
eab03c23 AW |
3999 | if (unlikely(se->load.weight != shares)) |
4000 | reweight_entity(cfs_rq_of(se), se, shares); | |
2069dd75 | 4001 | } |
89ee048f | 4002 | |
2069dd75 | 4003 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
1ea6c46a | 4004 | static inline void update_cfs_group(struct sched_entity *se) |
2069dd75 PZ |
4005 | { |
4006 | } | |
4007 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | |
4008 | ||
ea14b57e | 4009 | static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) |
a030d738 | 4010 | { |
43964409 LT |
4011 | struct rq *rq = rq_of(cfs_rq); |
4012 | ||
a4f9a0e5 | 4013 | if (&rq->cfs == cfs_rq) { |
a030d738 VK |
4014 | /* |
4015 | * There are a few boundary cases this might miss but it should | |
4016 | * get called often enough that that should (hopefully) not be | |
9783be2c | 4017 | * a real problem. |
a030d738 VK |
4018 | * |
4019 | * It will not get called when we go idle, because the idle | |
4020 | * thread is a different class (!fair), nor will the utilization | |
4021 | * number include things like RT tasks. | |
4022 | * | |
4023 | * As is, the util number is not freq-invariant (we'd have to | |
4024 | * implement arch_scale_freq_capacity() for that). | |
4025 | * | |
82762d2a | 4026 | * See cpu_util_cfs(). |
a030d738 | 4027 | */ |
ea14b57e | 4028 | cpufreq_update_util(rq, flags); |
a030d738 VK |
4029 | } |
4030 | } | |
4031 | ||
141965c7 | 4032 | #ifdef CONFIG_SMP |
e2f3e35f VD |
4033 | static inline bool load_avg_is_decayed(struct sched_avg *sa) |
4034 | { | |
4035 | if (sa->load_sum) | |
4036 | return false; | |
4037 | ||
4038 | if (sa->util_sum) | |
4039 | return false; | |
4040 | ||
4041 | if (sa->runnable_sum) | |
4042 | return false; | |
4043 | ||
4044 | /* | |
4045 | * _avg must be null when _sum are null because _avg = _sum / divider | |
4046 | * Make sure that rounding and/or propagation of PELT values never | |
4047 | * break this. | |
4048 | */ | |
f7d2728c | 4049 | WARN_ON_ONCE(sa->load_avg || |
e2f3e35f VD |
4050 | sa->util_avg || |
4051 | sa->runnable_avg); | |
4052 | ||
4053 | return true; | |
4054 | } | |
4055 | ||
d05b4305 VD |
4056 | static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) |
4057 | { | |
4058 | return u64_u32_load_copy(cfs_rq->avg.last_update_time, | |
4059 | cfs_rq->last_update_time_copy); | |
4060 | } | |
c566e8e9 | 4061 | #ifdef CONFIG_FAIR_GROUP_SCHED |
fdaba61e RR |
4062 | /* |
4063 | * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list | |
4064 | * immediately before a parent cfs_rq, and cfs_rqs are removed from the list | |
4065 | * bottom-up, we only have to test whether the cfs_rq before us on the list | |
4066 | * is our child. | |
4067 | * If cfs_rq is not on the list, test whether a child needs its to be added to | |
4068 | * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). | |
4069 | */ | |
4070 | static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) | |
4071 | { | |
4072 | struct cfs_rq *prev_cfs_rq; | |
4073 | struct list_head *prev; | |
3b4035dd | 4074 | struct rq *rq = rq_of(cfs_rq); |
fdaba61e RR |
4075 | |
4076 | if (cfs_rq->on_list) { | |
4077 | prev = cfs_rq->leaf_cfs_rq_list.prev; | |
4078 | } else { | |
fdaba61e RR |
4079 | prev = rq->tmp_alone_branch; |
4080 | } | |
4081 | ||
3b4035dd ZL |
4082 | if (prev == &rq->leaf_cfs_rq_list) |
4083 | return false; | |
4084 | ||
fdaba61e RR |
4085 | prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); |
4086 | ||
4087 | return (prev_cfs_rq->tg->parent == cfs_rq->tg); | |
4088 | } | |
a7b359fc OU |
4089 | |
4090 | static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) | |
4091 | { | |
4092 | if (cfs_rq->load.weight) | |
4093 | return false; | |
4094 | ||
e2f3e35f | 4095 | if (!load_avg_is_decayed(&cfs_rq->avg)) |
a7b359fc OU |
4096 | return false; |
4097 | ||
fdaba61e RR |
4098 | if (child_cfs_rq_on_list(cfs_rq)) |
4099 | return false; | |
4100 | ||
a7b359fc OU |
4101 | return true; |
4102 | } | |
4103 | ||
7c3edd2c PZ |
4104 | /** |
4105 | * update_tg_load_avg - update the tg's load avg | |
4106 | * @cfs_rq: the cfs_rq whose avg changed | |
7c3edd2c PZ |
4107 | * |
4108 | * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. | |
4109 | * However, because tg->load_avg is a global value there are performance | |
4110 | * considerations. | |
4111 | * | |
4112 | * In order to avoid having to look at the other cfs_rq's, we use a | |
4113 | * differential update where we store the last value we propagated. This in | |
4114 | * turn allows skipping updates if the differential is 'small'. | |
4115 | * | |
815abf5a | 4116 | * Updating tg's load_avg is necessary before update_cfs_share(). |
bb17f655 | 4117 | */ |
fe749158 | 4118 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) |
bb17f655 | 4119 | { |
1528c661 AL |
4120 | long delta; |
4121 | u64 now; | |
bb17f655 | 4122 | |
aa0b7ae0 WL |
4123 | /* |
4124 | * No need to update load_avg for root_task_group as it is not used. | |
4125 | */ | |
4126 | if (cfs_rq->tg == &root_task_group) | |
4127 | return; | |
4128 | ||
f60a631a VG |
4129 | /* rq has been offline and doesn't contribute to the share anymore: */ |
4130 | if (!cpu_active(cpu_of(rq_of(cfs_rq)))) | |
4131 | return; | |
4132 | ||
1528c661 AL |
4133 | /* |
4134 | * For migration heavy workloads, access to tg->load_avg can be | |
4135 | * unbound. Limit the update rate to at most once per ms. | |
4136 | */ | |
4137 | now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); | |
4138 | if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) | |
4139 | return; | |
4140 | ||
4141 | delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; | |
fe749158 | 4142 | if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { |
9d89c257 YD |
4143 | atomic_long_add(delta, &cfs_rq->tg->load_avg); |
4144 | cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; | |
1528c661 | 4145 | cfs_rq->last_update_tg_load_avg = now; |
bb17f655 | 4146 | } |
8165e145 | 4147 | } |
f5f9739d | 4148 | |
f60a631a VG |
4149 | static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) |
4150 | { | |
4151 | long delta; | |
4152 | u64 now; | |
4153 | ||
4154 | /* | |
4155 | * No need to update load_avg for root_task_group, as it is not used. | |
4156 | */ | |
4157 | if (cfs_rq->tg == &root_task_group) | |
4158 | return; | |
4159 | ||
4160 | now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); | |
4161 | delta = 0 - cfs_rq->tg_load_avg_contrib; | |
4162 | atomic_long_add(delta, &cfs_rq->tg->load_avg); | |
4163 | cfs_rq->tg_load_avg_contrib = 0; | |
4164 | cfs_rq->last_update_tg_load_avg = now; | |
4165 | } | |
4166 | ||
4167 | /* CPU offline callback: */ | |
4168 | static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) | |
4169 | { | |
4170 | struct task_group *tg; | |
4171 | ||
4172 | lockdep_assert_rq_held(rq); | |
4173 | ||
4174 | /* | |
4175 | * The rq clock has already been updated in | |
4176 | * set_rq_offline(), so we should skip updating | |
4177 | * the rq clock again in unthrottle_cfs_rq(). | |
4178 | */ | |
4179 | rq_clock_start_loop_update(rq); | |
4180 | ||
4181 | rcu_read_lock(); | |
4182 | list_for_each_entry_rcu(tg, &task_groups, list) { | |
4183 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
4184 | ||
4185 | clear_tg_load_avg(cfs_rq); | |
4186 | } | |
4187 | rcu_read_unlock(); | |
4188 | ||
4189 | rq_clock_stop_loop_update(rq); | |
4190 | } | |
4191 | ||
ad936d86 | 4192 | /* |
97fb7a0a | 4193 | * Called within set_task_rq() right before setting a task's CPU. The |
ad936d86 BP |
4194 | * caller only guarantees p->pi_lock is held; no other assumptions, |
4195 | * including the state of rq->lock, should be made. | |
4196 | */ | |
4197 | void set_task_rq_fair(struct sched_entity *se, | |
4198 | struct cfs_rq *prev, struct cfs_rq *next) | |
4199 | { | |
0ccb977f PZ |
4200 | u64 p_last_update_time; |
4201 | u64 n_last_update_time; | |
4202 | ||
ad936d86 BP |
4203 | if (!sched_feat(ATTACH_AGE_LOAD)) |
4204 | return; | |
4205 | ||
4206 | /* | |
4207 | * We are supposed to update the task to "current" time, then its up to | |
4208 | * date and ready to go to new CPU/cfs_rq. But we have difficulty in | |
4209 | * getting what current time is, so simply throw away the out-of-date | |
4210 | * time. This will result in the wakee task is less decayed, but giving | |
4211 | * the wakee more load sounds not bad. | |
4212 | */ | |
0ccb977f PZ |
4213 | if (!(se->avg.last_update_time && prev)) |
4214 | return; | |
ad936d86 | 4215 | |
d05b4305 VD |
4216 | p_last_update_time = cfs_rq_last_update_time(prev); |
4217 | n_last_update_time = cfs_rq_last_update_time(next); | |
ad936d86 | 4218 | |
23127296 | 4219 | __update_load_avg_blocked_se(p_last_update_time, se); |
0ccb977f | 4220 | se->avg.last_update_time = n_last_update_time; |
ad936d86 | 4221 | } |
09a43ace | 4222 | |
0e2d2aaa PZ |
4223 | /* |
4224 | * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to | |
4225 | * propagate its contribution. The key to this propagation is the invariant | |
4226 | * that for each group: | |
4227 | * | |
4228 | * ge->avg == grq->avg (1) | |
4229 | * | |
4230 | * _IFF_ we look at the pure running and runnable sums. Because they | |
4231 | * represent the very same entity, just at different points in the hierarchy. | |
4232 | * | |
9f683953 VG |
4233 | * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial |
4234 | * and simply copies the running/runnable sum over (but still wrong, because | |
4235 | * the group entity and group rq do not have their PELT windows aligned). | |
0e2d2aaa | 4236 | * |
0dacee1b | 4237 | * However, update_tg_cfs_load() is more complex. So we have: |
0e2d2aaa PZ |
4238 | * |
4239 | * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) | |
4240 | * | |
4241 | * And since, like util, the runnable part should be directly transferable, | |
4242 | * the following would _appear_ to be the straight forward approach: | |
4243 | * | |
a4c3c049 | 4244 | * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) |
0e2d2aaa PZ |
4245 | * |
4246 | * And per (1) we have: | |
4247 | * | |
a4c3c049 | 4248 | * ge->avg.runnable_avg == grq->avg.runnable_avg |
0e2d2aaa PZ |
4249 | * |
4250 | * Which gives: | |
4251 | * | |
4252 | * ge->load.weight * grq->avg.load_avg | |
4253 | * ge->avg.load_avg = ----------------------------------- (4) | |
4254 | * grq->load.weight | |
4255 | * | |
4256 | * Except that is wrong! | |
4257 | * | |
4258 | * Because while for entities historical weight is not important and we | |
4259 | * really only care about our future and therefore can consider a pure | |
4260 | * runnable sum, runqueues can NOT do this. | |
4261 | * | |
4262 | * We specifically want runqueues to have a load_avg that includes | |
4263 | * historical weights. Those represent the blocked load, the load we expect | |
4264 | * to (shortly) return to us. This only works by keeping the weights as | |
4265 | * integral part of the sum. We therefore cannot decompose as per (3). | |
4266 | * | |
a4c3c049 VG |
4267 | * Another reason this doesn't work is that runnable isn't a 0-sum entity. |
4268 | * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the | |
4269 | * rq itself is runnable anywhere between 2/3 and 1 depending on how the | |
4270 | * runnable section of these tasks overlap (or not). If they were to perfectly | |
4271 | * align the rq as a whole would be runnable 2/3 of the time. If however we | |
4272 | * always have at least 1 runnable task, the rq as a whole is always runnable. | |
0e2d2aaa | 4273 | * |
a4c3c049 | 4274 | * So we'll have to approximate.. :/ |
0e2d2aaa | 4275 | * |
a4c3c049 | 4276 | * Given the constraint: |
0e2d2aaa | 4277 | * |
a4c3c049 | 4278 | * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX |
0e2d2aaa | 4279 | * |
a4c3c049 VG |
4280 | * We can construct a rule that adds runnable to a rq by assuming minimal |
4281 | * overlap. | |
0e2d2aaa | 4282 | * |
a4c3c049 | 4283 | * On removal, we'll assume each task is equally runnable; which yields: |
0e2d2aaa | 4284 | * |
a4c3c049 | 4285 | * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight |
0e2d2aaa | 4286 | * |
a4c3c049 | 4287 | * XXX: only do this for the part of runnable > running ? |
0e2d2aaa | 4288 | * |
0e2d2aaa | 4289 | */ |
09a43ace | 4290 | static inline void |
0e2d2aaa | 4291 | update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) |
09a43ace | 4292 | { |
7ceb7710 VG |
4293 | long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; |
4294 | u32 new_sum, divider; | |
09a43ace VG |
4295 | |
4296 | /* Nothing to update */ | |
7ceb7710 | 4297 | if (!delta_avg) |
09a43ace VG |
4298 | return; |
4299 | ||
87e867b4 VG |
4300 | /* |
4301 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | |
4302 | * See ___update_load_avg() for details. | |
4303 | */ | |
4304 | divider = get_pelt_divider(&cfs_rq->avg); | |
4305 | ||
7ceb7710 | 4306 | |
09a43ace VG |
4307 | /* Set new sched_entity's utilization */ |
4308 | se->avg.util_avg = gcfs_rq->avg.util_avg; | |
7ceb7710 VG |
4309 | new_sum = se->avg.util_avg * divider; |
4310 | delta_sum = (long)new_sum - (long)se->avg.util_sum; | |
4311 | se->avg.util_sum = new_sum; | |
09a43ace VG |
4312 | |
4313 | /* Update parent cfs_rq utilization */ | |
7ceb7710 VG |
4314 | add_positive(&cfs_rq->avg.util_avg, delta_avg); |
4315 | add_positive(&cfs_rq->avg.util_sum, delta_sum); | |
4316 | ||
4317 | /* See update_cfs_rq_load_avg() */ | |
4318 | cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, | |
4319 | cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); | |
09a43ace VG |
4320 | } |
4321 | ||
9f683953 VG |
4322 | static inline void |
4323 | update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) | |
4324 | { | |
95246d1e VG |
4325 | long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; |
4326 | u32 new_sum, divider; | |
9f683953 VG |
4327 | |
4328 | /* Nothing to update */ | |
95246d1e | 4329 | if (!delta_avg) |
9f683953 VG |
4330 | return; |
4331 | ||
87e867b4 VG |
4332 | /* |
4333 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | |
4334 | * See ___update_load_avg() for details. | |
4335 | */ | |
4336 | divider = get_pelt_divider(&cfs_rq->avg); | |
4337 | ||
9f683953 VG |
4338 | /* Set new sched_entity's runnable */ |
4339 | se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; | |
95246d1e VG |
4340 | new_sum = se->avg.runnable_avg * divider; |
4341 | delta_sum = (long)new_sum - (long)se->avg.runnable_sum; | |
4342 | se->avg.runnable_sum = new_sum; | |
9f683953 VG |
4343 | |
4344 | /* Update parent cfs_rq runnable */ | |
95246d1e VG |
4345 | add_positive(&cfs_rq->avg.runnable_avg, delta_avg); |
4346 | add_positive(&cfs_rq->avg.runnable_sum, delta_sum); | |
4347 | /* See update_cfs_rq_load_avg() */ | |
4348 | cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, | |
4349 | cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); | |
9f683953 VG |
4350 | } |
4351 | ||
09a43ace | 4352 | static inline void |
0dacee1b | 4353 | update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) |
09a43ace | 4354 | { |
2d02fa8c | 4355 | long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; |
0dacee1b VG |
4356 | unsigned long load_avg; |
4357 | u64 load_sum = 0; | |
2d02fa8c | 4358 | s64 delta_sum; |
95d68593 | 4359 | u32 divider; |
09a43ace | 4360 | |
0e2d2aaa PZ |
4361 | if (!runnable_sum) |
4362 | return; | |
09a43ace | 4363 | |
0e2d2aaa | 4364 | gcfs_rq->prop_runnable_sum = 0; |
09a43ace | 4365 | |
95d68593 VG |
4366 | /* |
4367 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | |
4368 | * See ___update_load_avg() for details. | |
4369 | */ | |
87e867b4 | 4370 | divider = get_pelt_divider(&cfs_rq->avg); |
95d68593 | 4371 | |
a4c3c049 VG |
4372 | if (runnable_sum >= 0) { |
4373 | /* | |
4374 | * Add runnable; clip at LOAD_AVG_MAX. Reflects that until | |
4375 | * the CPU is saturated running == runnable. | |
4376 | */ | |
4377 | runnable_sum += se->avg.load_sum; | |
95d68593 | 4378 | runnable_sum = min_t(long, runnable_sum, divider); |
a4c3c049 VG |
4379 | } else { |
4380 | /* | |
4381 | * Estimate the new unweighted runnable_sum of the gcfs_rq by | |
4382 | * assuming all tasks are equally runnable. | |
4383 | */ | |
4384 | if (scale_load_down(gcfs_rq->load.weight)) { | |
2d02fa8c | 4385 | load_sum = div_u64(gcfs_rq->avg.load_sum, |
a4c3c049 VG |
4386 | scale_load_down(gcfs_rq->load.weight)); |
4387 | } | |
4388 | ||
4389 | /* But make sure to not inflate se's runnable */ | |
4390 | runnable_sum = min(se->avg.load_sum, load_sum); | |
4391 | } | |
4392 | ||
4393 | /* | |
4394 | * runnable_sum can't be lower than running_sum | |
23127296 VG |
4395 | * Rescale running sum to be in the same range as runnable sum |
4396 | * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] | |
4397 | * runnable_sum is in [0 : LOAD_AVG_MAX] | |
a4c3c049 | 4398 | */ |
23127296 | 4399 | running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; |
a4c3c049 VG |
4400 | runnable_sum = max(runnable_sum, running_sum); |
4401 | ||
2d02fa8c VG |
4402 | load_sum = se_weight(se) * runnable_sum; |
4403 | load_avg = div_u64(load_sum, divider); | |
83c5e9d5 | 4404 | |
2d02fa8c VG |
4405 | delta_avg = load_avg - se->avg.load_avg; |
4406 | if (!delta_avg) | |
83c5e9d5 | 4407 | return; |
09a43ace | 4408 | |
2d02fa8c | 4409 | delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; |
7c7ad626 | 4410 | |
2d02fa8c VG |
4411 | se->avg.load_sum = runnable_sum; |
4412 | se->avg.load_avg = load_avg; | |
4413 | add_positive(&cfs_rq->avg.load_avg, delta_avg); | |
4414 | add_positive(&cfs_rq->avg.load_sum, delta_sum); | |
4415 | /* See update_cfs_rq_load_avg() */ | |
4416 | cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, | |
4417 | cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); | |
09a43ace VG |
4418 | } |
4419 | ||
0e2d2aaa | 4420 | static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) |
09a43ace | 4421 | { |
0e2d2aaa PZ |
4422 | cfs_rq->propagate = 1; |
4423 | cfs_rq->prop_runnable_sum += runnable_sum; | |
09a43ace VG |
4424 | } |
4425 | ||
4426 | /* Update task and its cfs_rq load average */ | |
4427 | static inline int propagate_entity_load_avg(struct sched_entity *se) | |
4428 | { | |
0e2d2aaa | 4429 | struct cfs_rq *cfs_rq, *gcfs_rq; |
09a43ace VG |
4430 | |
4431 | if (entity_is_task(se)) | |
4432 | return 0; | |
4433 | ||
0e2d2aaa PZ |
4434 | gcfs_rq = group_cfs_rq(se); |
4435 | if (!gcfs_rq->propagate) | |
09a43ace VG |
4436 | return 0; |
4437 | ||
0e2d2aaa PZ |
4438 | gcfs_rq->propagate = 0; |
4439 | ||
09a43ace VG |
4440 | cfs_rq = cfs_rq_of(se); |
4441 | ||
0e2d2aaa | 4442 | add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); |
09a43ace | 4443 | |
0e2d2aaa | 4444 | update_tg_cfs_util(cfs_rq, se, gcfs_rq); |
9f683953 | 4445 | update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); |
0dacee1b | 4446 | update_tg_cfs_load(cfs_rq, se, gcfs_rq); |
09a43ace | 4447 | |
ba19f51f | 4448 | trace_pelt_cfs_tp(cfs_rq); |
8de6242c | 4449 | trace_pelt_se_tp(se); |
ba19f51f | 4450 | |
09a43ace VG |
4451 | return 1; |
4452 | } | |
4453 | ||
bc427898 VG |
4454 | /* |
4455 | * Check if we need to update the load and the utilization of a blocked | |
4456 | * group_entity: | |
4457 | */ | |
4458 | static inline bool skip_blocked_update(struct sched_entity *se) | |
4459 | { | |
4460 | struct cfs_rq *gcfs_rq = group_cfs_rq(se); | |
4461 | ||
4462 | /* | |
4463 | * If sched_entity still have not zero load or utilization, we have to | |
4464 | * decay it: | |
4465 | */ | |
4466 | if (se->avg.load_avg || se->avg.util_avg) | |
4467 | return false; | |
4468 | ||
4469 | /* | |
4470 | * If there is a pending propagation, we have to update the load and | |
4471 | * the utilization of the sched_entity: | |
4472 | */ | |
0e2d2aaa | 4473 | if (gcfs_rq->propagate) |
bc427898 VG |
4474 | return false; |
4475 | ||
4476 | /* | |
4477 | * Otherwise, the load and the utilization of the sched_entity is | |
4478 | * already zero and there is no pending propagation, so it will be a | |
4479 | * waste of time to try to decay it: | |
4480 | */ | |
4481 | return true; | |
4482 | } | |
4483 | ||
6e83125c | 4484 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
09a43ace | 4485 | |
fe749158 | 4486 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} |
09a43ace | 4487 | |
f60a631a VG |
4488 | static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} |
4489 | ||
09a43ace VG |
4490 | static inline int propagate_entity_load_avg(struct sched_entity *se) |
4491 | { | |
4492 | return 0; | |
4493 | } | |
4494 | ||
0e2d2aaa | 4495 | static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} |
09a43ace | 4496 | |
6e83125c | 4497 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
c566e8e9 | 4498 | |
e2f3e35f VD |
4499 | #ifdef CONFIG_NO_HZ_COMMON |
4500 | static inline void migrate_se_pelt_lag(struct sched_entity *se) | |
4501 | { | |
4502 | u64 throttled = 0, now, lut; | |
4503 | struct cfs_rq *cfs_rq; | |
4504 | struct rq *rq; | |
4505 | bool is_idle; | |
4506 | ||
4507 | if (load_avg_is_decayed(&se->avg)) | |
4508 | return; | |
4509 | ||
4510 | cfs_rq = cfs_rq_of(se); | |
4511 | rq = rq_of(cfs_rq); | |
4512 | ||
4513 | rcu_read_lock(); | |
4514 | is_idle = is_idle_task(rcu_dereference(rq->curr)); | |
4515 | rcu_read_unlock(); | |
4516 | ||
4517 | /* | |
4518 | * The lag estimation comes with a cost we don't want to pay all the | |
4519 | * time. Hence, limiting to the case where the source CPU is idle and | |
4520 | * we know we are at the greatest risk to have an outdated clock. | |
4521 | */ | |
4522 | if (!is_idle) | |
4523 | return; | |
4524 | ||
4525 | /* | |
4526 | * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: | |
4527 | * | |
4528 | * last_update_time (the cfs_rq's last_update_time) | |
4529 | * = cfs_rq_clock_pelt()@cfs_rq_idle | |
4530 | * = rq_clock_pelt()@cfs_rq_idle | |
4531 | * - cfs->throttled_clock_pelt_time@cfs_rq_idle | |
4532 | * | |
4533 | * cfs_idle_lag (delta between rq's update and cfs_rq's update) | |
4534 | * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle | |
4535 | * | |
4536 | * rq_idle_lag (delta between now and rq's update) | |
4537 | * = sched_clock_cpu() - rq_clock()@rq_idle | |
4538 | * | |
4539 | * We can then write: | |
4540 | * | |
4541 | * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + | |
4542 | * sched_clock_cpu() - rq_clock()@rq_idle | |
4543 | * Where: | |
4544 | * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle | |
4545 | * rq_clock()@rq_idle is rq->clock_idle | |
4546 | * cfs->throttled_clock_pelt_time@cfs_rq_idle | |
4547 | * is cfs_rq->throttled_pelt_idle | |
4548 | */ | |
4549 | ||
4550 | #ifdef CONFIG_CFS_BANDWIDTH | |
4551 | throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); | |
4552 | /* The clock has been stopped for throttling */ | |
4553 | if (throttled == U64_MAX) | |
4554 | return; | |
4555 | #endif | |
4556 | now = u64_u32_load(rq->clock_pelt_idle); | |
4557 | /* | |
4558 | * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case | |
4559 | * is observed the old clock_pelt_idle value and the new clock_idle, | |
4560 | * which lead to an underestimation. The opposite would lead to an | |
4561 | * overestimation. | |
4562 | */ | |
4563 | smp_rmb(); | |
4564 | lut = cfs_rq_last_update_time(cfs_rq); | |
4565 | ||
4566 | now -= throttled; | |
4567 | if (now < lut) | |
4568 | /* | |
4569 | * cfs_rq->avg.last_update_time is more recent than our | |
4570 | * estimation, let's use it. | |
4571 | */ | |
4572 | now = lut; | |
4573 | else | |
4574 | now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); | |
4575 | ||
4576 | __update_load_avg_blocked_se(now, se); | |
4577 | } | |
4578 | #else | |
4579 | static void migrate_se_pelt_lag(struct sched_entity *se) {} | |
4580 | #endif | |
4581 | ||
3d30544f PZ |
4582 | /** |
4583 | * update_cfs_rq_load_avg - update the cfs_rq's load/util averages | |
23127296 | 4584 | * @now: current time, as per cfs_rq_clock_pelt() |
3d30544f | 4585 | * @cfs_rq: cfs_rq to update |
3d30544f PZ |
4586 | * |
4587 | * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) | |
d6531ab6 | 4588 | * avg. The immediate corollary is that all (fair) tasks must be attached. |
3d30544f PZ |
4589 | * |
4590 | * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. | |
4591 | * | |
a315da5e | 4592 | * Return: true if the load decayed or we removed load. |
7c3edd2c PZ |
4593 | * |
4594 | * Since both these conditions indicate a changed cfs_rq->avg.load we should | |
4595 | * call update_tg_load_avg() when this function returns true. | |
3d30544f | 4596 | */ |
a2c6c91f | 4597 | static inline int |
3a123bbb | 4598 | update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) |
2dac754e | 4599 | { |
9f683953 | 4600 | unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; |
9d89c257 | 4601 | struct sched_avg *sa = &cfs_rq->avg; |
2a2f5d4e | 4602 | int decayed = 0; |
2dac754e | 4603 | |
2a2f5d4e PZ |
4604 | if (cfs_rq->removed.nr) { |
4605 | unsigned long r; | |
87e867b4 | 4606 | u32 divider = get_pelt_divider(&cfs_rq->avg); |
2a2f5d4e PZ |
4607 | |
4608 | raw_spin_lock(&cfs_rq->removed.lock); | |
4609 | swap(cfs_rq->removed.util_avg, removed_util); | |
4610 | swap(cfs_rq->removed.load_avg, removed_load); | |
9f683953 | 4611 | swap(cfs_rq->removed.runnable_avg, removed_runnable); |
2a2f5d4e PZ |
4612 | cfs_rq->removed.nr = 0; |
4613 | raw_spin_unlock(&cfs_rq->removed.lock); | |
4614 | ||
2a2f5d4e | 4615 | r = removed_load; |
89741892 | 4616 | sub_positive(&sa->load_avg, r); |
2d02fa8c VG |
4617 | sub_positive(&sa->load_sum, r * divider); |
4618 | /* See sa->util_sum below */ | |
4619 | sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); | |
2dac754e | 4620 | |
2a2f5d4e | 4621 | r = removed_util; |
89741892 | 4622 | sub_positive(&sa->util_avg, r); |
98b0d890 VG |
4623 | sub_positive(&sa->util_sum, r * divider); |
4624 | /* | |
4625 | * Because of rounding, se->util_sum might ends up being +1 more than | |
4626 | * cfs->util_sum. Although this is not a problem by itself, detaching | |
4627 | * a lot of tasks with the rounding problem between 2 updates of | |
4628 | * util_avg (~1ms) can make cfs->util_sum becoming null whereas | |
4629 | * cfs_util_avg is not. | |
4630 | * Check that util_sum is still above its lower bound for the new | |
4631 | * util_avg. Given that period_contrib might have moved since the last | |
4632 | * sync, we are only sure that util_sum must be above or equal to | |
4633 | * util_avg * minimum possible divider | |
4634 | */ | |
4635 | sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); | |
2a2f5d4e | 4636 | |
9f683953 VG |
4637 | r = removed_runnable; |
4638 | sub_positive(&sa->runnable_avg, r); | |
95246d1e VG |
4639 | sub_positive(&sa->runnable_sum, r * divider); |
4640 | /* See sa->util_sum above */ | |
4641 | sa->runnable_sum = max_t(u32, sa->runnable_sum, | |
4642 | sa->runnable_avg * PELT_MIN_DIVIDER); | |
9f683953 VG |
4643 | |
4644 | /* | |
4645 | * removed_runnable is the unweighted version of removed_load so we | |
4646 | * can use it to estimate removed_load_sum. | |
4647 | */ | |
4648 | add_tg_cfs_propagate(cfs_rq, | |
4649 | -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); | |
2a2f5d4e PZ |
4650 | |
4651 | decayed = 1; | |
9d89c257 | 4652 | } |
36ee28e4 | 4653 | |
23127296 | 4654 | decayed |= __update_load_avg_cfs_rq(now, cfs_rq); |
d05b4305 VD |
4655 | u64_u32_store_copy(sa->last_update_time, |
4656 | cfs_rq->last_update_time_copy, | |
4657 | sa->last_update_time); | |
2a2f5d4e | 4658 | return decayed; |
21e96f88 SM |
4659 | } |
4660 | ||
3d30544f PZ |
4661 | /** |
4662 | * attach_entity_load_avg - attach this entity to its cfs_rq load avg | |
4663 | * @cfs_rq: cfs_rq to attach to | |
4664 | * @se: sched_entity to attach | |
4665 | * | |
4666 | * Must call update_cfs_rq_load_avg() before this, since we rely on | |
4667 | * cfs_rq->avg.last_update_time being current. | |
4668 | */ | |
a4f9a0e5 | 4669 | static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
a05e8c51 | 4670 | { |
95d68593 VG |
4671 | /* |
4672 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. | |
4673 | * See ___update_load_avg() for details. | |
4674 | */ | |
87e867b4 | 4675 | u32 divider = get_pelt_divider(&cfs_rq->avg); |
f207934f PZ |
4676 | |
4677 | /* | |
4678 | * When we attach the @se to the @cfs_rq, we must align the decay | |
4679 | * window because without that, really weird and wonderful things can | |
4680 | * happen. | |
4681 | * | |
4682 | * XXX illustrate | |
4683 | */ | |
a05e8c51 | 4684 | se->avg.last_update_time = cfs_rq->avg.last_update_time; |
f207934f PZ |
4685 | se->avg.period_contrib = cfs_rq->avg.period_contrib; |
4686 | ||
4687 | /* | |
4688 | * Hell(o) Nasty stuff.. we need to recompute _sum based on the new | |
4689 | * period_contrib. This isn't strictly correct, but since we're | |
4690 | * entirely outside of the PELT hierarchy, nobody cares if we truncate | |
4691 | * _sum a little. | |
4692 | */ | |
4693 | se->avg.util_sum = se->avg.util_avg * divider; | |
4694 | ||
9f683953 VG |
4695 | se->avg.runnable_sum = se->avg.runnable_avg * divider; |
4696 | ||
40f5aa4c | 4697 | se->avg.load_sum = se->avg.load_avg * divider; |
4698 | if (se_weight(se) < se->avg.load_sum) | |
4699 | se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); | |
4700 | else | |
4701 | se->avg.load_sum = 1; | |
f207934f | 4702 | |
8d5b9025 | 4703 | enqueue_load_avg(cfs_rq, se); |
a05e8c51 BP |
4704 | cfs_rq->avg.util_avg += se->avg.util_avg; |
4705 | cfs_rq->avg.util_sum += se->avg.util_sum; | |
9f683953 VG |
4706 | cfs_rq->avg.runnable_avg += se->avg.runnable_avg; |
4707 | cfs_rq->avg.runnable_sum += se->avg.runnable_sum; | |
0e2d2aaa PZ |
4708 | |
4709 | add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); | |
a2c6c91f | 4710 | |
a4f9a0e5 | 4711 | cfs_rq_util_change(cfs_rq, 0); |
ba19f51f QY |
4712 | |
4713 | trace_pelt_cfs_tp(cfs_rq); | |
a05e8c51 BP |
4714 | } |
4715 | ||
3d30544f PZ |
4716 | /** |
4717 | * detach_entity_load_avg - detach this entity from its cfs_rq load avg | |
4718 | * @cfs_rq: cfs_rq to detach from | |
4719 | * @se: sched_entity to detach | |
4720 | * | |
4721 | * Must call update_cfs_rq_load_avg() before this, since we rely on | |
4722 | * cfs_rq->avg.last_update_time being current. | |
4723 | */ | |
a05e8c51 BP |
4724 | static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
4725 | { | |
8d5b9025 | 4726 | dequeue_load_avg(cfs_rq, se); |
89741892 | 4727 | sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); |
7ceb7710 VG |
4728 | sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); |
4729 | /* See update_cfs_rq_load_avg() */ | |
4730 | cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, | |
4731 | cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); | |
4732 | ||
9f683953 | 4733 | sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); |
95246d1e VG |
4734 | sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); |
4735 | /* See update_cfs_rq_load_avg() */ | |
4736 | cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, | |
4737 | cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); | |
0e2d2aaa PZ |
4738 | |
4739 | add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); | |
a2c6c91f | 4740 | |
ea14b57e | 4741 | cfs_rq_util_change(cfs_rq, 0); |
ba19f51f QY |
4742 | |
4743 | trace_pelt_cfs_tp(cfs_rq); | |
a05e8c51 BP |
4744 | } |
4745 | ||
b382a531 PZ |
4746 | /* |
4747 | * Optional action to be done while updating the load average | |
4748 | */ | |
4749 | #define UPDATE_TG 0x1 | |
4750 | #define SKIP_AGE_LOAD 0x2 | |
4751 | #define DO_ATTACH 0x4 | |
e1f078f5 | 4752 | #define DO_DETACH 0x8 |
b382a531 PZ |
4753 | |
4754 | /* Update task and its cfs_rq load average */ | |
4755 | static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | |
4756 | { | |
23127296 | 4757 | u64 now = cfs_rq_clock_pelt(cfs_rq); |
b382a531 PZ |
4758 | int decayed; |
4759 | ||
4760 | /* | |
4761 | * Track task load average for carrying it to new CPU after migrated, and | |
b9e6e286 | 4762 | * track group sched_entity load average for task_h_load calculation in migration |
b382a531 PZ |
4763 | */ |
4764 | if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) | |
23127296 | 4765 | __update_load_avg_se(now, cfs_rq, se); |
b382a531 PZ |
4766 | |
4767 | decayed = update_cfs_rq_load_avg(now, cfs_rq); | |
4768 | decayed |= propagate_entity_load_avg(se); | |
4769 | ||
4770 | if (!se->avg.last_update_time && (flags & DO_ATTACH)) { | |
4771 | ||
ea14b57e PZ |
4772 | /* |
4773 | * DO_ATTACH means we're here from enqueue_entity(). | |
4774 | * !last_update_time means we've passed through | |
4775 | * migrate_task_rq_fair() indicating we migrated. | |
4776 | * | |
4777 | * IOW we're enqueueing a task on a new CPU. | |
4778 | */ | |
a4f9a0e5 | 4779 | attach_entity_load_avg(cfs_rq, se); |
fe749158 | 4780 | update_tg_load_avg(cfs_rq); |
b382a531 | 4781 | |
e1f078f5 CZ |
4782 | } else if (flags & DO_DETACH) { |
4783 | /* | |
4784 | * DO_DETACH means we're here from dequeue_entity() | |
4785 | * and we are migrating task out of the CPU. | |
4786 | */ | |
4787 | detach_entity_load_avg(cfs_rq, se); | |
4788 | update_tg_load_avg(cfs_rq); | |
bef69dd8 VG |
4789 | } else if (decayed) { |
4790 | cfs_rq_util_change(cfs_rq, 0); | |
4791 | ||
4792 | if (flags & UPDATE_TG) | |
fe749158 | 4793 | update_tg_load_avg(cfs_rq); |
bef69dd8 | 4794 | } |
b382a531 PZ |
4795 | } |
4796 | ||
104cb16d MR |
4797 | /* |
4798 | * Synchronize entity load avg of dequeued entity without locking | |
4799 | * the previous rq. | |
4800 | */ | |
71b47eaf | 4801 | static void sync_entity_load_avg(struct sched_entity *se) |
104cb16d MR |
4802 | { |
4803 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
4804 | u64 last_update_time; | |
4805 | ||
4806 | last_update_time = cfs_rq_last_update_time(cfs_rq); | |
23127296 | 4807 | __update_load_avg_blocked_se(last_update_time, se); |
104cb16d MR |
4808 | } |
4809 | ||
0905f04e YD |
4810 | /* |
4811 | * Task first catches up with cfs_rq, and then subtract | |
4812 | * itself from the cfs_rq (task must be off the queue now). | |
4813 | */ | |
71b47eaf | 4814 | static void remove_entity_load_avg(struct sched_entity *se) |
0905f04e YD |
4815 | { |
4816 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
2a2f5d4e | 4817 | unsigned long flags; |
0905f04e YD |
4818 | |
4819 | /* | |
7dc603c9 | 4820 | * tasks cannot exit without having gone through wake_up_new_task() -> |
d6531ab6 CZ |
4821 | * enqueue_task_fair() which will have added things to the cfs_rq, |
4822 | * so we can remove unconditionally. | |
0905f04e | 4823 | */ |
0905f04e | 4824 | |
104cb16d | 4825 | sync_entity_load_avg(se); |
2a2f5d4e PZ |
4826 | |
4827 | raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); | |
4828 | ++cfs_rq->removed.nr; | |
4829 | cfs_rq->removed.util_avg += se->avg.util_avg; | |
4830 | cfs_rq->removed.load_avg += se->avg.load_avg; | |
9f683953 | 4831 | cfs_rq->removed.runnable_avg += se->avg.runnable_avg; |
2a2f5d4e | 4832 | raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); |
2dac754e | 4833 | } |
642dbc39 | 4834 | |
9f683953 VG |
4835 | static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) |
4836 | { | |
4837 | return cfs_rq->avg.runnable_avg; | |
4838 | } | |
4839 | ||
7ea241af YD |
4840 | static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) |
4841 | { | |
4842 | return cfs_rq->avg.load_avg; | |
4843 | } | |
4844 | ||
7d058285 | 4845 | static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); |
d91cecc1 | 4846 | |
7f65ea42 PB |
4847 | static inline unsigned long task_util(struct task_struct *p) |
4848 | { | |
4849 | return READ_ONCE(p->se.avg.util_avg); | |
4850 | } | |
4851 | ||
50181c0c VG |
4852 | static inline unsigned long task_runnable(struct task_struct *p) |
4853 | { | |
4854 | return READ_ONCE(p->se.avg.runnable_avg); | |
4855 | } | |
4856 | ||
7f65ea42 PB |
4857 | static inline unsigned long _task_util_est(struct task_struct *p) |
4858 | { | |
11137d38 | 4859 | return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; |
7f65ea42 PB |
4860 | } |
4861 | ||
4862 | static inline unsigned long task_util_est(struct task_struct *p) | |
4863 | { | |
4864 | return max(task_util(p), _task_util_est(p)); | |
4865 | } | |
4866 | ||
4867 | static inline void util_est_enqueue(struct cfs_rq *cfs_rq, | |
4868 | struct task_struct *p) | |
4869 | { | |
4870 | unsigned int enqueued; | |
4871 | ||
4872 | if (!sched_feat(UTIL_EST)) | |
4873 | return; | |
4874 | ||
4875 | /* Update root cfs_rq's estimated utilization */ | |
11137d38 | 4876 | enqueued = cfs_rq->avg.util_est; |
92a801e5 | 4877 | enqueued += _task_util_est(p); |
11137d38 | 4878 | WRITE_ONCE(cfs_rq->avg.util_est, enqueued); |
4581bea8 VD |
4879 | |
4880 | trace_sched_util_est_cfs_tp(cfs_rq); | |
7f65ea42 PB |
4881 | } |
4882 | ||
8c1f560c XY |
4883 | static inline void util_est_dequeue(struct cfs_rq *cfs_rq, |
4884 | struct task_struct *p) | |
4885 | { | |
4886 | unsigned int enqueued; | |
4887 | ||
4888 | if (!sched_feat(UTIL_EST)) | |
4889 | return; | |
4890 | ||
4891 | /* Update root cfs_rq's estimated utilization */ | |
11137d38 | 4892 | enqueued = cfs_rq->avg.util_est; |
8c1f560c | 4893 | enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); |
11137d38 | 4894 | WRITE_ONCE(cfs_rq->avg.util_est, enqueued); |
8c1f560c XY |
4895 | |
4896 | trace_sched_util_est_cfs_tp(cfs_rq); | |
4897 | } | |
4898 | ||
b89997aa VD |
4899 | #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) |
4900 | ||
8c1f560c XY |
4901 | static inline void util_est_update(struct cfs_rq *cfs_rq, |
4902 | struct task_struct *p, | |
4903 | bool task_sleep) | |
7f65ea42 | 4904 | { |
11137d38 | 4905 | unsigned int ewma, dequeued, last_ewma_diff; |
7f65ea42 PB |
4906 | |
4907 | if (!sched_feat(UTIL_EST)) | |
4908 | return; | |
4909 | ||
7f65ea42 PB |
4910 | /* |
4911 | * Skip update of task's estimated utilization when the task has not | |
4912 | * yet completed an activation, e.g. being migrated. | |
4913 | */ | |
4914 | if (!task_sleep) | |
4915 | return; | |
4916 | ||
11137d38 VG |
4917 | /* Get current estimate of utilization */ |
4918 | ewma = READ_ONCE(p->se.avg.util_est); | |
4919 | ||
d519329f PB |
4920 | /* |
4921 | * If the PELT values haven't changed since enqueue time, | |
4922 | * skip the util_est update. | |
4923 | */ | |
11137d38 | 4924 | if (ewma & UTIL_AVG_UNCHANGED) |
d519329f PB |
4925 | return; |
4926 | ||
11137d38 VG |
4927 | /* Get utilization at dequeue */ |
4928 | dequeued = task_util(p); | |
b89997aa | 4929 | |
b8c96361 PB |
4930 | /* |
4931 | * Reset EWMA on utilization increases, the moving average is used only | |
4932 | * to smooth utilization decreases. | |
4933 | */ | |
11137d38 VG |
4934 | if (ewma <= dequeued) { |
4935 | ewma = dequeued; | |
7736ae55 | 4936 | goto done; |
b8c96361 PB |
4937 | } |
4938 | ||
7f65ea42 | 4939 | /* |
b89997aa | 4940 | * Skip update of task's estimated utilization when its members are |
7f65ea42 PB |
4941 | * already ~1% close to its last activation value. |
4942 | */ | |
11137d38 VG |
4943 | last_ewma_diff = ewma - dequeued; |
4944 | if (last_ewma_diff < UTIL_EST_MARGIN) | |
4945 | goto done; | |
7f65ea42 | 4946 | |
50181c0c VG |
4947 | /* |
4948 | * To avoid underestimate of task utilization, skip updates of EWMA if | |
4949 | * we cannot grant that thread got all CPU time it wanted. | |
4950 | */ | |
11137d38 | 4951 | if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) |
50181c0c VG |
4952 | goto done; |
4953 | ||
4954 | ||
7f65ea42 PB |
4955 | /* |
4956 | * Update Task's estimated utilization | |
4957 | * | |
4958 | * When *p completes an activation we can consolidate another sample | |
11137d38 VG |
4959 | * of the task size. This is done by using this value to update the |
4960 | * Exponential Weighted Moving Average (EWMA): | |
7f65ea42 PB |
4961 | * |
4962 | * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) | |
4963 | * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) | |
4964 | * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) | |
11137d38 VG |
4965 | * = w * ( -last_ewma_diff ) + ewma(t-1) |
4966 | * = w * (-last_ewma_diff + ewma(t-1) / w) | |
7f65ea42 PB |
4967 | * |
4968 | * Where 'w' is the weight of new samples, which is configured to be | |
4969 | * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) | |
4970 | */ | |
11137d38 VG |
4971 | ewma <<= UTIL_EST_WEIGHT_SHIFT; |
4972 | ewma -= last_ewma_diff; | |
4973 | ewma >>= UTIL_EST_WEIGHT_SHIFT; | |
b8c96361 | 4974 | done: |
11137d38 VG |
4975 | ewma |= UTIL_AVG_UNCHANGED; |
4976 | WRITE_ONCE(p->se.avg.util_est, ewma); | |
4581bea8 VD |
4977 | |
4978 | trace_sched_util_est_se_tp(&p->se); | |
7f65ea42 PB |
4979 | } |
4980 | ||
f1f8d0a2 VG |
4981 | static inline unsigned long get_actual_cpu_capacity(int cpu) |
4982 | { | |
4983 | unsigned long capacity = arch_scale_cpu_capacity(cpu); | |
4984 | ||
d4dbc991 | 4985 | capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); |
f1f8d0a2 VG |
4986 | |
4987 | return capacity; | |
4988 | } | |
4989 | ||
48d5e9da QY |
4990 | static inline int util_fits_cpu(unsigned long util, |
4991 | unsigned long uclamp_min, | |
4992 | unsigned long uclamp_max, | |
4993 | int cpu) | |
4994 | { | |
48d5e9da | 4995 | unsigned long capacity = capacity_of(cpu); |
f1f8d0a2 | 4996 | unsigned long capacity_orig; |
48d5e9da QY |
4997 | bool fits, uclamp_max_fits; |
4998 | ||
4999 | /* | |
5000 | * Check if the real util fits without any uclamp boost/cap applied. | |
5001 | */ | |
5002 | fits = fits_capacity(util, capacity); | |
5003 | ||
5004 | if (!uclamp_is_used()) | |
5005 | return fits; | |
5006 | ||
5007 | /* | |
7bc26384 | 5008 | * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and |
48d5e9da QY |
5009 | * uclamp_max. We only care about capacity pressure (by using |
5010 | * capacity_of()) for comparing against the real util. | |
5011 | * | |
5012 | * If a task is boosted to 1024 for example, we don't want a tiny | |
5013 | * pressure to skew the check whether it fits a CPU or not. | |
5014 | * | |
7bc26384 | 5015 | * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it |
48d5e9da QY |
5016 | * should fit a little cpu even if there's some pressure. |
5017 | * | |
d4dbc991 | 5018 | * Only exception is for HW or cpufreq pressure since it has a direct impact |
48d5e9da QY |
5019 | * on available OPP of the system. |
5020 | * | |
5021 | * We honour it for uclamp_min only as a drop in performance level | |
5022 | * could result in not getting the requested minimum performance level. | |
5023 | * | |
5024 | * For uclamp_max, we can tolerate a drop in performance level as the | |
5025 | * goal is to cap the task. So it's okay if it's getting less. | |
48d5e9da | 5026 | */ |
7bc26384 | 5027 | capacity_orig = arch_scale_cpu_capacity(cpu); |
48d5e9da QY |
5028 | |
5029 | /* | |
5030 | * We want to force a task to fit a cpu as implied by uclamp_max. | |
5031 | * But we do have some corner cases to cater for.. | |
5032 | * | |
5033 | * | |
5034 | * C=z | |
5035 | * | ___ | |
5036 | * | C=y | | | |
5037 | * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max | |
5038 | * | C=x | | | | | |
5039 | * | ___ | | | | | |
5040 | * | | | | | | | (util somewhere in this region) | |
5041 | * | | | | | | | | |
5042 | * | | | | | | | | |
5043 | * +---------------------------------------- | |
b9e6e286 | 5044 | * CPU0 CPU1 CPU2 |
48d5e9da QY |
5045 | * |
5046 | * In the above example if a task is capped to a specific performance | |
5047 | * point, y, then when: | |
5048 | * | |
b9e6e286 IM |
5049 | * * util = 80% of x then it does not fit on CPU0 and should migrate |
5050 | * to CPU1 | |
5051 | * * util = 80% of y then it is forced to fit on CPU1 to honour | |
48d5e9da QY |
5052 | * uclamp_max request. |
5053 | * | |
5054 | * which is what we're enforcing here. A task always fits if | |
5055 | * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, | |
5056 | * the normal upmigration rules should withhold still. | |
5057 | * | |
5058 | * Only exception is when we are on max capacity, then we need to be | |
5059 | * careful not to block overutilized state. This is so because: | |
5060 | * | |
5061 | * 1. There's no concept of capping at max_capacity! We can't go | |
5062 | * beyond this performance level anyway. | |
5063 | * 2. The system is being saturated when we're operating near | |
5064 | * max capacity, it doesn't make sense to block overutilized. | |
5065 | */ | |
5066 | uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); | |
5067 | uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); | |
5068 | fits = fits || uclamp_max_fits; | |
5069 | ||
5070 | /* | |
5071 | * | |
5072 | * C=z | |
5073 | * | ___ (region a, capped, util >= uclamp_max) | |
5074 | * | C=y | | | |
5075 | * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max | |
5076 | * | C=x | | | | | |
5077 | * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) | |
5078 | * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min | |
5079 | * | | | | | | | | |
5080 | * | | | | | | | (region c, boosted, util < uclamp_min) | |
5081 | * +---------------------------------------- | |
b9e6e286 | 5082 | * CPU0 CPU1 CPU2 |
48d5e9da QY |
5083 | * |
5084 | * a) If util > uclamp_max, then we're capped, we don't care about | |
5085 | * actual fitness value here. We only care if uclamp_max fits | |
5086 | * capacity without taking margin/pressure into account. | |
5087 | * See comment above. | |
5088 | * | |
5089 | * b) If uclamp_min <= util <= uclamp_max, then the normal | |
5090 | * fits_capacity() rules apply. Except we need to ensure that we | |
5091 | * enforce we remain within uclamp_max, see comment above. | |
5092 | * | |
5093 | * c) If util < uclamp_min, then we are boosted. Same as (b) but we | |
5094 | * need to take into account the boosted value fits the CPU without | |
5095 | * taking margin/pressure into account. | |
5096 | * | |
5097 | * Cases (a) and (b) are handled in the 'fits' variable already. We | |
5098 | * just need to consider an extra check for case (c) after ensuring we | |
5099 | * handle the case uclamp_min > uclamp_max. | |
5100 | */ | |
5101 | uclamp_min = min(uclamp_min, uclamp_max); | |
f1f8d0a2 VG |
5102 | if (fits && (util < uclamp_min) && |
5103 | (uclamp_min > get_actual_cpu_capacity(cpu))) | |
e5ed0550 | 5104 | return -1; |
48d5e9da QY |
5105 | |
5106 | return fits; | |
5107 | } | |
5108 | ||
b48e16a6 | 5109 | static inline int task_fits_cpu(struct task_struct *p, int cpu) |
3b1baa64 | 5110 | { |
b48e16a6 QY |
5111 | unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); |
5112 | unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); | |
5113 | unsigned long util = task_util_est(p); | |
e5ed0550 VG |
5114 | /* |
5115 | * Return true only if the cpu fully fits the task requirements, which | |
5116 | * include the utilization but also the performance hints. | |
5117 | */ | |
5118 | return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); | |
3b1baa64 MR |
5119 | } |
5120 | ||
5121 | static inline void update_misfit_status(struct task_struct *p, struct rq *rq) | |
5122 | { | |
22d56074 QY |
5123 | int cpu = cpu_of(rq); |
5124 | ||
740cf8a7 | 5125 | if (!sched_asym_cpucap_active()) |
3b1baa64 MR |
5126 | return; |
5127 | ||
22d56074 QY |
5128 | /* |
5129 | * Affinity allows us to go somewhere higher? Or are we on biggest | |
5130 | * available CPU already? Or do we fit into this CPU ? | |
5131 | */ | |
5132 | if (!p || (p->nr_cpus_allowed == 1) || | |
5133 | (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || | |
5134 | task_fits_cpu(p, cpu)) { | |
3b1baa64 | 5135 | |
3b1baa64 MR |
5136 | rq->misfit_task_load = 0; |
5137 | return; | |
5138 | } | |
5139 | ||
01cfcde9 VG |
5140 | /* |
5141 | * Make sure that misfit_task_load will not be null even if | |
5142 | * task_h_load() returns 0. | |
5143 | */ | |
5144 | rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); | |
3b1baa64 MR |
5145 | } |
5146 | ||
38033c37 PZ |
5147 | #else /* CONFIG_SMP */ |
5148 | ||
a7b359fc OU |
5149 | static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) |
5150 | { | |
736c55a0 | 5151 | return !cfs_rq->nr_queued; |
a7b359fc OU |
5152 | } |
5153 | ||
d31b1a66 VG |
5154 | #define UPDATE_TG 0x0 |
5155 | #define SKIP_AGE_LOAD 0x0 | |
b382a531 | 5156 | #define DO_ATTACH 0x0 |
e1f078f5 | 5157 | #define DO_DETACH 0x0 |
d31b1a66 | 5158 | |
88c0616e | 5159 | static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) |
536bd00c | 5160 | { |
ea14b57e | 5161 | cfs_rq_util_change(cfs_rq, 0); |
536bd00c RW |
5162 | } |
5163 | ||
9d89c257 | 5164 | static inline void remove_entity_load_avg(struct sched_entity *se) {} |
6e83125c | 5165 | |
a05e8c51 | 5166 | static inline void |
a4f9a0e5 | 5167 | attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} |
a05e8c51 BP |
5168 | static inline void |
5169 | detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} | |
5170 | ||
7d058285 | 5171 | static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) |
6e83125c PZ |
5172 | { |
5173 | return 0; | |
5174 | } | |
5175 | ||
7f65ea42 PB |
5176 | static inline void |
5177 | util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} | |
5178 | ||
5179 | static inline void | |
8c1f560c XY |
5180 | util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} |
5181 | ||
5182 | static inline void | |
5183 | util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, | |
5184 | bool task_sleep) {} | |
3b1baa64 | 5185 | static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} |
7f65ea42 | 5186 | |
38033c37 | 5187 | #endif /* CONFIG_SMP */ |
9d85f21c | 5188 | |
2cf9ac40 VG |
5189 | void __setparam_fair(struct task_struct *p, const struct sched_attr *attr) |
5190 | { | |
5191 | struct sched_entity *se = &p->se; | |
5192 | ||
5193 | p->static_prio = NICE_TO_PRIO(attr->sched_nice); | |
5194 | if (attr->sched_runtime) { | |
5195 | se->custom_slice = 1; | |
5196 | se->slice = clamp_t(u64, attr->sched_runtime, | |
5197 | NSEC_PER_MSEC/10, /* HZ=1000 * 10 */ | |
5198 | NSEC_PER_MSEC*100); /* HZ=100 / 10 */ | |
5199 | } else { | |
5200 | se->custom_slice = 0; | |
5201 | se->slice = sysctl_sched_base_slice; | |
5202 | } | |
5203 | } | |
5204 | ||
aeb73b04 | 5205 | static void |
d07f09a1 | 5206 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
a53ce18c | 5207 | { |
2f2fc17b | 5208 | u64 vslice, vruntime = avg_vruntime(cfs_rq); |
86bfbb7c | 5209 | s64 lag = 0; |
a53ce18c | 5210 | |
857b158d PZ |
5211 | if (!se->custom_slice) |
5212 | se->slice = sysctl_sched_base_slice; | |
2f2fc17b PZ |
5213 | vslice = calc_delta_fair(se->slice, se); |
5214 | ||
86bfbb7c PZ |
5215 | /* |
5216 | * Due to how V is constructed as the weighted average of entities, | |
5217 | * adding tasks with positive lag, or removing tasks with negative lag | |
5218 | * will move 'time' backwards, this can screw around with the lag of | |
5219 | * other tasks. | |
5220 | * | |
5221 | * EEVDF: placement strategy #1 / #2 | |
5222 | */ | |
736c55a0 | 5223 | if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { |
86bfbb7c PZ |
5224 | struct sched_entity *curr = cfs_rq->curr; |
5225 | unsigned long load; | |
a53ce18c | 5226 | |
86bfbb7c | 5227 | lag = se->vlag; |
a53ce18c | 5228 | |
a2e7a7eb | 5229 | /* |
86bfbb7c PZ |
5230 | * If we want to place a task and preserve lag, we have to |
5231 | * consider the effect of the new entity on the weighted | |
5232 | * average and compensate for this, otherwise lag can quickly | |
5233 | * evaporate. | |
5234 | * | |
5235 | * Lag is defined as: | |
5236 | * | |
5237 | * lag_i = S - s_i = w_i * (V - v_i) | |
5238 | * | |
5239 | * To avoid the 'w_i' term all over the place, we only track | |
5240 | * the virtual lag: | |
5241 | * | |
5242 | * vl_i = V - v_i <=> v_i = V - vl_i | |
5243 | * | |
5244 | * And we take V to be the weighted average of all v: | |
5245 | * | |
5246 | * V = (\Sum w_j*v_j) / W | |
5247 | * | |
5248 | * Where W is: \Sum w_j | |
5249 | * | |
5250 | * Then, the weighted average after adding an entity with lag | |
5251 | * vl_i is given by: | |
5252 | * | |
5253 | * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) | |
5254 | * = (W*V + w_i*(V - vl_i)) / (W + w_i) | |
5255 | * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) | |
5256 | * = (V*(W + w_i) - w_i*l) / (W + w_i) | |
5257 | * = V - w_i*vl_i / (W + w_i) | |
5258 | * | |
5259 | * And the actual lag after adding an entity with vl_i is: | |
5260 | * | |
5261 | * vl'_i = V' - v_i | |
5262 | * = V - w_i*vl_i / (W + w_i) - (V - vl_i) | |
5263 | * = vl_i - w_i*vl_i / (W + w_i) | |
5264 | * | |
5265 | * Which is strictly less than vl_i. So in order to preserve lag | |
5266 | * we should inflate the lag before placement such that the | |
5267 | * effective lag after placement comes out right. | |
5268 | * | |
5269 | * As such, invert the above relation for vl'_i to get the vl_i | |
5270 | * we need to use such that the lag after placement is the lag | |
5271 | * we computed before dequeue. | |
5272 | * | |
5273 | * vl'_i = vl_i - w_i*vl_i / (W + w_i) | |
5274 | * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) | |
5275 | * | |
5276 | * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i | |
5277 | * = W*vl_i | |
5278 | * | |
5279 | * vl_i = (W + w_i)*vl'_i / W | |
a2e7a7eb | 5280 | */ |
86bfbb7c PZ |
5281 | load = cfs_rq->avg_load; |
5282 | if (curr && curr->on_rq) | |
147f3efa | 5283 | load += scale_load_down(curr->load.weight); |
a53ce18c | 5284 | |
147f3efa | 5285 | lag *= load + scale_load_down(se->load.weight); |
86bfbb7c PZ |
5286 | if (WARN_ON_ONCE(!load)) |
5287 | load = 1; | |
5288 | lag = div_s64(lag, load); | |
86bfbb7c | 5289 | } |
a53ce18c | 5290 | |
76cae9db | 5291 | se->vruntime = vruntime - lag; |
94dfb5e7 | 5292 | |
6d71a9c6 | 5293 | if (se->rel_deadline) { |
82e9d045 PZ |
5294 | se->deadline += se->vruntime; |
5295 | se->rel_deadline = 0; | |
5296 | return; | |
5297 | } | |
5298 | ||
2cb8600e | 5299 | /* |
b9e6e286 | 5300 | * When joining the competition; the existing tasks will be, |
147f3efa PZ |
5301 | * on average, halfway through their slice, as such start tasks |
5302 | * off with half a slice to ease into the competition. | |
2cb8600e | 5303 | */ |
d07f09a1 | 5304 | if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) |
147f3efa | 5305 | vslice /= 2; |
2cae3948 | 5306 | |
147f3efa PZ |
5307 | /* |
5308 | * EEVDF: vd_i = ve_i + r_i/w_i | |
5309 | */ | |
5310 | se->deadline = se->vruntime + vslice; | |
aeb73b04 PZ |
5311 | } |
5312 | ||
d3d9dc33 | 5313 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq); |
79462e8c | 5314 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); |
d3d9dc33 | 5315 | |
781773e3 PZ |
5316 | static void |
5317 | requeue_delayed_entity(struct sched_entity *se); | |
5318 | ||
bf0f6f24 | 5319 | static void |
88ec22d3 | 5320 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 5321 | { |
2f950354 PZ |
5322 | bool curr = cfs_rq->curr == se; |
5323 | ||
88ec22d3 | 5324 | /* |
2f950354 PZ |
5325 | * If we're the current task, we must renormalise before calling |
5326 | * update_curr(). | |
88ec22d3 | 5327 | */ |
e8f331bc | 5328 | if (curr) |
d07f09a1 | 5329 | place_entity(cfs_rq, se, flags); |
88ec22d3 | 5330 | |
2f950354 PZ |
5331 | update_curr(cfs_rq); |
5332 | ||
89ee048f VG |
5333 | /* |
5334 | * When enqueuing a sched_entity, we must: | |
5335 | * - Update loads to have both entity and cfs_rq synced with now. | |
859f2062 | 5336 | * - For group_entity, update its runnable_weight to reflect the new |
1a491044 | 5337 | * h_nr_runnable of its group cfs_rq. |
89ee048f VG |
5338 | * - For group_entity, update its weight to reflect the new share of |
5339 | * its group cfs_rq | |
5340 | * - Add its new weight to cfs_rq->load.weight | |
5341 | */ | |
b382a531 | 5342 | update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); |
9f683953 | 5343 | se_update_runnable(se); |
e8f331bc PZ |
5344 | /* |
5345 | * XXX update_load_avg() above will have attached us to the pelt sum; | |
5346 | * but update_cfs_group() here will re-adjust the weight and have to | |
5347 | * undo/redo all that. Seems wasteful. | |
5348 | */ | |
1ea6c46a | 5349 | update_cfs_group(se); |
bf0f6f24 | 5350 | |
e8f331bc PZ |
5351 | /* |
5352 | * XXX now that the entity has been re-weighted, and it's lag adjusted, | |
5353 | * we can place the entity. | |
5354 | */ | |
5355 | if (!curr) | |
d07f09a1 | 5356 | place_entity(cfs_rq, se, flags); |
e8f331bc | 5357 | |
17bc14b7 | 5358 | account_entity_enqueue(cfs_rq, se); |
bf0f6f24 | 5359 | |
a53ce18c VG |
5360 | /* Entity has migrated, no longer consider this task hot */ |
5361 | if (flags & ENQUEUE_MIGRATED) | |
5362 | se->exec_start = 0; | |
bf0f6f24 | 5363 | |
cb251765 | 5364 | check_schedstat_required(); |
60f2415e | 5365 | update_stats_enqueue_fair(cfs_rq, se, flags); |
2f950354 | 5366 | if (!curr) |
83b699ed | 5367 | __enqueue_entity(cfs_rq, se); |
2069dd75 | 5368 | se->on_rq = 1; |
3d4b47b4 | 5369 | |
736c55a0 | 5370 | if (cfs_rq->nr_queued == 1) { |
d3d9dc33 | 5371 | check_enqueue_throttle(cfs_rq); |
79462e8c | 5372 | if (!throttled_hierarchy(cfs_rq)) { |
51bf903b | 5373 | list_add_leaf_cfs_rq(cfs_rq); |
79462e8c JD |
5374 | } else { |
5375 | #ifdef CONFIG_CFS_BANDWIDTH | |
677ea015 | 5376 | struct rq *rq = rq_of(cfs_rq); |
f1044799 | 5377 | |
79462e8c | 5378 | if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) |
677ea015 JD |
5379 | cfs_rq->throttled_clock = rq_clock(rq); |
5380 | if (!cfs_rq->throttled_clock_self) | |
5381 | cfs_rq->throttled_clock_self = rq_clock(rq); | |
79462e8c JD |
5382 | #endif |
5383 | } | |
2c13c919 RR |
5384 | } |
5385 | } | |
2002c695 | 5386 | |
2c13c919 RR |
5387 | static void __clear_buddies_next(struct sched_entity *se) |
5388 | { | |
5389 | for_each_sched_entity(se) { | |
5390 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
f1044799 | 5391 | if (cfs_rq->next != se) |
2c13c919 | 5392 | break; |
f1044799 PZ |
5393 | |
5394 | cfs_rq->next = NULL; | |
2c13c919 | 5395 | } |
2002c695 PZ |
5396 | } |
5397 | ||
a571bbea PZ |
5398 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
5399 | { | |
2c13c919 RR |
5400 | if (cfs_rq->next == se) |
5401 | __clear_buddies_next(se); | |
a571bbea PZ |
5402 | } |
5403 | ||
6c16a6dc | 5404 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); |
d8b4986d | 5405 | |
76f2f783 PZ |
5406 | static void set_delayed(struct sched_entity *se) |
5407 | { | |
5408 | se->sched_delayed = 1; | |
3429dd57 PN |
5409 | |
5410 | /* | |
5411 | * Delayed se of cfs_rq have no tasks queued on them. | |
5412 | * Do not adjust h_nr_runnable since dequeue_entities() | |
5413 | * will account it for blocked tasks. | |
5414 | */ | |
5415 | if (!entity_is_task(se)) | |
5416 | return; | |
5417 | ||
76f2f783 PZ |
5418 | for_each_sched_entity(se) { |
5419 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
5420 | ||
c2a295bf | 5421 | cfs_rq->h_nr_runnable--; |
76f2f783 PZ |
5422 | if (cfs_rq_throttled(cfs_rq)) |
5423 | break; | |
5424 | } | |
5425 | } | |
5426 | ||
5427 | static void clear_delayed(struct sched_entity *se) | |
75b64990 VS |
5428 | { |
5429 | se->sched_delayed = 0; | |
3429dd57 PN |
5430 | |
5431 | /* | |
5432 | * Delayed se of cfs_rq have no tasks queued on them. | |
5433 | * Do not adjust h_nr_runnable since a dequeue has | |
5434 | * already accounted for it or an enqueue of a task | |
5435 | * below it will account for it in enqueue_task_fair(). | |
5436 | */ | |
5437 | if (!entity_is_task(se)) | |
5438 | return; | |
5439 | ||
76f2f783 PZ |
5440 | for_each_sched_entity(se) { |
5441 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
5442 | ||
c2a295bf | 5443 | cfs_rq->h_nr_runnable++; |
76f2f783 PZ |
5444 | if (cfs_rq_throttled(cfs_rq)) |
5445 | break; | |
5446 | } | |
5447 | } | |
5448 | ||
5449 | static inline void finish_delayed_dequeue_entity(struct sched_entity *se) | |
5450 | { | |
5451 | clear_delayed(se); | |
75b64990 VS |
5452 | if (sched_feat(DELAY_ZERO) && se->vlag > 0) |
5453 | se->vlag = 0; | |
5454 | } | |
5455 | ||
152e11f6 | 5456 | static bool |
371fd7e7 | 5457 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
bf0f6f24 | 5458 | { |
82e9d045 | 5459 | bool sleep = flags & DEQUEUE_SLEEP; |
0429489e | 5460 | int action = UPDATE_TG; |
e1f078f5 | 5461 | |
152e11f6 | 5462 | update_curr(cfs_rq); |
493afbd1 | 5463 | clear_buddies(cfs_rq, se); |
152e11f6 PZ |
5464 | |
5465 | if (flags & DEQUEUE_DELAYED) { | |
f7d2728c | 5466 | WARN_ON_ONCE(!se->sched_delayed); |
152e11f6 | 5467 | } else { |
82e9d045 | 5468 | bool delay = sleep; |
152e11f6 PZ |
5469 | /* |
5470 | * DELAY_DEQUEUE relies on spurious wakeups, special task | |
5471 | * states must not suffer spurious wakeups, excempt them. | |
5472 | */ | |
5473 | if (flags & DEQUEUE_SPECIAL) | |
82e9d045 | 5474 | delay = false; |
152e11f6 | 5475 | |
f7d2728c | 5476 | WARN_ON_ONCE(delay && se->sched_delayed); |
152e11f6 | 5477 | |
82e9d045 | 5478 | if (sched_feat(DELAY_DEQUEUE) && delay && |
152e11f6 | 5479 | !entity_eligible(cfs_rq, se)) { |
fc1892be | 5480 | update_load_avg(cfs_rq, se, 0); |
76f2f783 | 5481 | set_delayed(se); |
152e11f6 PZ |
5482 | return false; |
5483 | } | |
5484 | } | |
5485 | ||
e1f078f5 CZ |
5486 | if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) |
5487 | action |= DO_DETACH; | |
5488 | ||
89ee048f VG |
5489 | /* |
5490 | * When dequeuing a sched_entity, we must: | |
5491 | * - Update loads to have both entity and cfs_rq synced with now. | |
859f2062 | 5492 | * - For group_entity, update its runnable_weight to reflect the new |
1a491044 | 5493 | * h_nr_runnable of its group cfs_rq. |
dfcb245e | 5494 | * - Subtract its previous weight from cfs_rq->load.weight. |
89ee048f VG |
5495 | * - For group entity, update its weight to reflect the new share |
5496 | * of its group cfs_rq. | |
5497 | */ | |
e1f078f5 | 5498 | update_load_avg(cfs_rq, se, action); |
9f683953 | 5499 | se_update_runnable(se); |
a2a2d680 | 5500 | |
60f2415e | 5501 | update_stats_dequeue_fair(cfs_rq, se, flags); |
67e9fb2a | 5502 | |
e8f331bc | 5503 | update_entity_lag(cfs_rq, se); |
82e9d045 PZ |
5504 | if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { |
5505 | se->deadline -= se->vruntime; | |
5506 | se->rel_deadline = 1; | |
5507 | } | |
5508 | ||
83b699ed | 5509 | if (se != cfs_rq->curr) |
30cfdcfc | 5510 | __dequeue_entity(cfs_rq, se); |
17bc14b7 | 5511 | se->on_rq = 0; |
30cfdcfc | 5512 | account_entity_dequeue(cfs_rq, se); |
88ec22d3 | 5513 | |
d8b4986d PT |
5514 | /* return excess runtime on last dequeue */ |
5515 | return_cfs_rq_runtime(cfs_rq); | |
5516 | ||
1ea6c46a | 5517 | update_cfs_group(se); |
b60205c7 PZ |
5518 | |
5519 | /* | |
5520 | * Now advance min_vruntime if @se was the entity holding it back, | |
5521 | * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be | |
5522 | * put back on, and if we advance min_vruntime, we'll be placed back | |
b9e6e286 | 5523 | * further than we started -- i.e. we'll be penalized. |
b60205c7 | 5524 | */ |
9845c49c | 5525 | if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) |
b60205c7 | 5526 | update_min_vruntime(cfs_rq); |
e2f3e35f | 5527 | |
75b64990 VS |
5528 | if (flags & DEQUEUE_DELAYED) |
5529 | finish_delayed_dequeue_entity(se); | |
152e11f6 | 5530 | |
736c55a0 | 5531 | if (cfs_rq->nr_queued == 0) |
e2f3e35f | 5532 | update_idle_cfs_rq_clock_pelt(cfs_rq); |
152e11f6 PZ |
5533 | |
5534 | return true; | |
bf0f6f24 IM |
5535 | } |
5536 | ||
83b699ed | 5537 | static void |
8494f412 | 5538 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 5539 | { |
21f56ffe PZ |
5540 | clear_buddies(cfs_rq, se); |
5541 | ||
83b699ed SV |
5542 | /* 'current' is not kept within the tree. */ |
5543 | if (se->on_rq) { | |
5544 | /* | |
5545 | * Any task has to be enqueued before it get to execute on | |
5546 | * a CPU. So account for the time it spent waiting on the | |
5547 | * runqueue. | |
5548 | */ | |
60f2415e | 5549 | update_stats_wait_end_fair(cfs_rq, se); |
83b699ed | 5550 | __dequeue_entity(cfs_rq, se); |
88c0616e | 5551 | update_load_avg(cfs_rq, se, UPDATE_TG); |
f553741a | 5552 | |
5553 | set_protect_slice(se); | |
83b699ed SV |
5554 | } |
5555 | ||
79303e9e | 5556 | update_stats_curr_start(cfs_rq, se); |
f7d2728c | 5557 | WARN_ON_ONCE(cfs_rq->curr); |
429d43bc | 5558 | cfs_rq->curr = se; |
4fa8d299 | 5559 | |
eba1ed4b IM |
5560 | /* |
5561 | * Track our maximum slice length, if the CPU's load is at | |
b9e6e286 | 5562 | * least twice that of our own weight (i.e. don't track it |
eba1ed4b IM |
5563 | * when there are only lesser-weight tasks around): |
5564 | */ | |
f2bedc47 DE |
5565 | if (schedstat_enabled() && |
5566 | rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { | |
ceeadb83 YS |
5567 | struct sched_statistics *stats; |
5568 | ||
5569 | stats = __schedstats_from_se(se); | |
5570 | __schedstat_set(stats->slice_max, | |
5571 | max((u64)stats->slice_max, | |
a2dcb276 | 5572 | se->sum_exec_runtime - se->prev_sum_exec_runtime)); |
eba1ed4b | 5573 | } |
4fa8d299 | 5574 | |
4a55b450 | 5575 | se->prev_sum_exec_runtime = se->sum_exec_runtime; |
bf0f6f24 IM |
5576 | } |
5577 | ||
f12e1488 PZ |
5578 | static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); |
5579 | ||
ac53db59 RR |
5580 | /* |
5581 | * Pick the next process, keeping these things in mind, in this order: | |
5582 | * 1) keep things fair between processes/task groups | |
5583 | * 2) pick the "next" process, since someone really wants that to run | |
5584 | * 3) pick the "last" process, for cache locality | |
5585 | * 4) do not run the "skip" process, if something else is available | |
5586 | */ | |
678d5718 | 5587 | static struct sched_entity * |
f12e1488 | 5588 | pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) |
aa2ac252 | 5589 | { |
0429489e VG |
5590 | struct sched_entity *se; |
5591 | ||
ac53db59 | 5592 | /* |
2a77e4be | 5593 | * Picking the ->next buddy will affect latency but not fairness. |
ac53db59 | 5594 | */ |
2a77e4be | 5595 | if (sched_feat(PICK_BUDDY) && |
f12e1488 PZ |
5596 | cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { |
5597 | /* ->next will never be delayed */ | |
f7d2728c | 5598 | WARN_ON_ONCE(cfs_rq->next->sched_delayed); |
5e963f2b | 5599 | return cfs_rq->next; |
f12e1488 | 5600 | } |
ac53db59 | 5601 | |
0429489e | 5602 | se = pick_eevdf(cfs_rq); |
f12e1488 PZ |
5603 | if (se->sched_delayed) { |
5604 | dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); | |
b55945c5 PZ |
5605 | /* |
5606 | * Must not reference @se again, see __block_task(). | |
5607 | */ | |
f12e1488 PZ |
5608 | return NULL; |
5609 | } | |
5610 | return se; | |
aa2ac252 PZ |
5611 | } |
5612 | ||
678d5718 | 5613 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); |
d3d9dc33 | 5614 | |
ab6cde26 | 5615 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) |
bf0f6f24 IM |
5616 | { |
5617 | /* | |
5618 | * If still on the runqueue then deactivate_task() | |
5619 | * was not called and update_curr() has to be done: | |
5620 | */ | |
5621 | if (prev->on_rq) | |
b7cc0896 | 5622 | update_curr(cfs_rq); |
bf0f6f24 | 5623 | |
d3d9dc33 PT |
5624 | /* throttle cfs_rqs exceeding runtime */ |
5625 | check_cfs_rq_runtime(cfs_rq); | |
5626 | ||
30cfdcfc | 5627 | if (prev->on_rq) { |
60f2415e | 5628 | update_stats_wait_start_fair(cfs_rq, prev); |
30cfdcfc DA |
5629 | /* Put 'current' back into the tree. */ |
5630 | __enqueue_entity(cfs_rq, prev); | |
9d85f21c | 5631 | /* in !on_rq case, update occurred at dequeue */ |
88c0616e | 5632 | update_load_avg(cfs_rq, prev, 0); |
30cfdcfc | 5633 | } |
f7d2728c | 5634 | WARN_ON_ONCE(cfs_rq->curr != prev); |
429d43bc | 5635 | cfs_rq->curr = NULL; |
bf0f6f24 IM |
5636 | } |
5637 | ||
8f4d37ec PZ |
5638 | static void |
5639 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | |
bf0f6f24 | 5640 | { |
bf0f6f24 | 5641 | /* |
30cfdcfc | 5642 | * Update run-time statistics of the 'current'. |
bf0f6f24 | 5643 | */ |
30cfdcfc | 5644 | update_curr(cfs_rq); |
bf0f6f24 | 5645 | |
9d85f21c PT |
5646 | /* |
5647 | * Ensure that runnable average is periodically updated. | |
5648 | */ | |
88c0616e | 5649 | update_load_avg(cfs_rq, curr, UPDATE_TG); |
1ea6c46a | 5650 | update_cfs_group(curr); |
9d85f21c | 5651 | |
8f4d37ec PZ |
5652 | #ifdef CONFIG_SCHED_HRTICK |
5653 | /* | |
5654 | * queued ticks are scheduled to match the slice, so don't bother | |
5655 | * validating it and just reschedule. | |
5656 | */ | |
983ed7a6 | 5657 | if (queued) { |
7c70cb94 | 5658 | resched_curr_lazy(rq_of(cfs_rq)); |
983ed7a6 HH |
5659 | return; |
5660 | } | |
8f4d37ec | 5661 | #endif |
bf0f6f24 IM |
5662 | } |
5663 | ||
ab84d31e PT |
5664 | |
5665 | /************************************************** | |
5666 | * CFS bandwidth control machinery | |
5667 | */ | |
5668 | ||
5669 | #ifdef CONFIG_CFS_BANDWIDTH | |
029632fb | 5670 | |
e9666d10 | 5671 | #ifdef CONFIG_JUMP_LABEL |
c5905afb | 5672 | static struct static_key __cfs_bandwidth_used; |
029632fb PZ |
5673 | |
5674 | static inline bool cfs_bandwidth_used(void) | |
5675 | { | |
c5905afb | 5676 | return static_key_false(&__cfs_bandwidth_used); |
029632fb PZ |
5677 | } |
5678 | ||
1ee14e6c | 5679 | void cfs_bandwidth_usage_inc(void) |
029632fb | 5680 | { |
ce48c146 | 5681 | static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); |
1ee14e6c BS |
5682 | } |
5683 | ||
5684 | void cfs_bandwidth_usage_dec(void) | |
5685 | { | |
ce48c146 | 5686 | static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); |
029632fb | 5687 | } |
e9666d10 | 5688 | #else /* CONFIG_JUMP_LABEL */ |
029632fb PZ |
5689 | static bool cfs_bandwidth_used(void) |
5690 | { | |
5691 | return true; | |
5692 | } | |
5693 | ||
1ee14e6c BS |
5694 | void cfs_bandwidth_usage_inc(void) {} |
5695 | void cfs_bandwidth_usage_dec(void) {} | |
e9666d10 | 5696 | #endif /* CONFIG_JUMP_LABEL */ |
029632fb | 5697 | |
ab84d31e PT |
5698 | /* |
5699 | * default period for cfs group bandwidth. | |
5700 | * default: 0.1s, units: nanoseconds | |
5701 | */ | |
5702 | static inline u64 default_cfs_period(void) | |
5703 | { | |
5704 | return 100000000ULL; | |
5705 | } | |
ec12cb7f PT |
5706 | |
5707 | static inline u64 sched_cfs_bandwidth_slice(void) | |
5708 | { | |
5709 | return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; | |
5710 | } | |
5711 | ||
a9cf55b2 | 5712 | /* |
763a9ec0 QC |
5713 | * Replenish runtime according to assigned quota. We use sched_clock_cpu |
5714 | * directly instead of rq->clock to avoid adding additional synchronization | |
5715 | * around rq->lock. | |
a9cf55b2 PT |
5716 | * |
5717 | * requires cfs_b->lock | |
5718 | */ | |
029632fb | 5719 | void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) |
a9cf55b2 | 5720 | { |
bcb1704a HC |
5721 | s64 runtime; |
5722 | ||
f4183717 HC |
5723 | if (unlikely(cfs_b->quota == RUNTIME_INF)) |
5724 | return; | |
5725 | ||
5726 | cfs_b->runtime += cfs_b->quota; | |
bcb1704a HC |
5727 | runtime = cfs_b->runtime_snap - cfs_b->runtime; |
5728 | if (runtime > 0) { | |
5729 | cfs_b->burst_time += runtime; | |
5730 | cfs_b->nr_burst++; | |
5731 | } | |
5732 | ||
f4183717 | 5733 | cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); |
bcb1704a | 5734 | cfs_b->runtime_snap = cfs_b->runtime; |
a9cf55b2 PT |
5735 | } |
5736 | ||
029632fb PZ |
5737 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) |
5738 | { | |
5739 | return &tg->cfs_bandwidth; | |
5740 | } | |
5741 | ||
85dac906 | 5742 | /* returns 0 on failure to allocate runtime */ |
e98fa02c PT |
5743 | static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, |
5744 | struct cfs_rq *cfs_rq, u64 target_runtime) | |
ec12cb7f | 5745 | { |
e98fa02c PT |
5746 | u64 min_amount, amount = 0; |
5747 | ||
5748 | lockdep_assert_held(&cfs_b->lock); | |
ec12cb7f PT |
5749 | |
5750 | /* note: this is a positive sum as runtime_remaining <= 0 */ | |
e98fa02c | 5751 | min_amount = target_runtime - cfs_rq->runtime_remaining; |
ec12cb7f | 5752 | |
ec12cb7f PT |
5753 | if (cfs_b->quota == RUNTIME_INF) |
5754 | amount = min_amount; | |
58088ad0 | 5755 | else { |
77a4d1a1 | 5756 | start_cfs_bandwidth(cfs_b); |
58088ad0 PT |
5757 | |
5758 | if (cfs_b->runtime > 0) { | |
5759 | amount = min(cfs_b->runtime, min_amount); | |
5760 | cfs_b->runtime -= amount; | |
5761 | cfs_b->idle = 0; | |
5762 | } | |
ec12cb7f | 5763 | } |
ec12cb7f PT |
5764 | |
5765 | cfs_rq->runtime_remaining += amount; | |
85dac906 PT |
5766 | |
5767 | return cfs_rq->runtime_remaining > 0; | |
ec12cb7f PT |
5768 | } |
5769 | ||
e98fa02c PT |
5770 | /* returns 0 on failure to allocate runtime */ |
5771 | static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
5772 | { | |
5773 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
5774 | int ret; | |
5775 | ||
5776 | raw_spin_lock(&cfs_b->lock); | |
5777 | ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); | |
5778 | raw_spin_unlock(&cfs_b->lock); | |
5779 | ||
5780 | return ret; | |
5781 | } | |
5782 | ||
9dbdb155 | 5783 | static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) |
a9cf55b2 PT |
5784 | { |
5785 | /* dock delta_exec before expiring quota (as it could span periods) */ | |
ec12cb7f | 5786 | cfs_rq->runtime_remaining -= delta_exec; |
a9cf55b2 PT |
5787 | |
5788 | if (likely(cfs_rq->runtime_remaining > 0)) | |
ec12cb7f PT |
5789 | return; |
5790 | ||
5e2d2cc2 L |
5791 | if (cfs_rq->throttled) |
5792 | return; | |
85dac906 PT |
5793 | /* |
5794 | * if we're unable to extend our runtime we resched so that the active | |
5795 | * hierarchy can be throttled | |
5796 | */ | |
5797 | if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) | |
8875125e | 5798 | resched_curr(rq_of(cfs_rq)); |
ec12cb7f PT |
5799 | } |
5800 | ||
6c16a6dc | 5801 | static __always_inline |
9dbdb155 | 5802 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) |
ec12cb7f | 5803 | { |
56f570e5 | 5804 | if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) |
ec12cb7f PT |
5805 | return; |
5806 | ||
5807 | __account_cfs_rq_runtime(cfs_rq, delta_exec); | |
5808 | } | |
5809 | ||
85dac906 PT |
5810 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) |
5811 | { | |
56f570e5 | 5812 | return cfs_bandwidth_used() && cfs_rq->throttled; |
85dac906 PT |
5813 | } |
5814 | ||
64660c86 PT |
5815 | /* check whether cfs_rq, or any parent, is throttled */ |
5816 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | |
5817 | { | |
56f570e5 | 5818 | return cfs_bandwidth_used() && cfs_rq->throttle_count; |
64660c86 PT |
5819 | } |
5820 | ||
5821 | /* | |
5822 | * Ensure that neither of the group entities corresponding to src_cpu or | |
5823 | * dest_cpu are members of a throttled hierarchy when performing group | |
5824 | * load-balance operations. | |
5825 | */ | |
5826 | static inline int throttled_lb_pair(struct task_group *tg, | |
5827 | int src_cpu, int dest_cpu) | |
5828 | { | |
5829 | struct cfs_rq *src_cfs_rq, *dest_cfs_rq; | |
5830 | ||
5831 | src_cfs_rq = tg->cfs_rq[src_cpu]; | |
5832 | dest_cfs_rq = tg->cfs_rq[dest_cpu]; | |
5833 | ||
5834 | return throttled_hierarchy(src_cfs_rq) || | |
5835 | throttled_hierarchy(dest_cfs_rq); | |
5836 | } | |
5837 | ||
64660c86 PT |
5838 | static int tg_unthrottle_up(struct task_group *tg, void *data) |
5839 | { | |
5840 | struct rq *rq = data; | |
5841 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
5842 | ||
5843 | cfs_rq->throttle_count--; | |
64660c86 | 5844 | if (!cfs_rq->throttle_count) { |
64eaf507 CZ |
5845 | cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - |
5846 | cfs_rq->throttled_clock_pelt; | |
31bc6aea | 5847 | |
a7b359fc | 5848 | /* Add cfs_rq with load or one or more already running entities to the list */ |
0a00a354 | 5849 | if (!cfs_rq_is_decayed(cfs_rq)) |
31bc6aea | 5850 | list_add_leaf_cfs_rq(cfs_rq); |
677ea015 JD |
5851 | |
5852 | if (cfs_rq->throttled_clock_self) { | |
5853 | u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; | |
5854 | ||
5855 | cfs_rq->throttled_clock_self = 0; | |
5856 | ||
f7d2728c | 5857 | if (WARN_ON_ONCE((s64)delta < 0)) |
677ea015 JD |
5858 | delta = 0; |
5859 | ||
5860 | cfs_rq->throttled_clock_self_time += delta; | |
5861 | } | |
64660c86 | 5862 | } |
64660c86 PT |
5863 | |
5864 | return 0; | |
5865 | } | |
5866 | ||
5867 | static int tg_throttle_down(struct task_group *tg, void *data) | |
5868 | { | |
5869 | struct rq *rq = data; | |
5870 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
5871 | ||
82958366 | 5872 | /* group is entering throttled state, stop time */ |
31bc6aea | 5873 | if (!cfs_rq->throttle_count) { |
64eaf507 | 5874 | cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); |
31bc6aea | 5875 | list_del_leaf_cfs_rq(cfs_rq); |
677ea015 | 5876 | |
f7d2728c | 5877 | WARN_ON_ONCE(cfs_rq->throttled_clock_self); |
736c55a0 | 5878 | if (cfs_rq->nr_queued) |
677ea015 | 5879 | cfs_rq->throttled_clock_self = rq_clock(rq); |
31bc6aea | 5880 | } |
64660c86 PT |
5881 | cfs_rq->throttle_count++; |
5882 | ||
5883 | return 0; | |
5884 | } | |
5885 | ||
e98fa02c | 5886 | static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) |
85dac906 PT |
5887 | { |
5888 | struct rq *rq = rq_of(cfs_rq); | |
5889 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
5890 | struct sched_entity *se; | |
31898e7b | 5891 | long queued_delta, runnable_delta, idle_delta, dequeue = 1; |
7b8a702d | 5892 | long rq_h_nr_queued = rq->cfs.h_nr_queued; |
e98fa02c PT |
5893 | |
5894 | raw_spin_lock(&cfs_b->lock); | |
5895 | /* This will start the period timer if necessary */ | |
5896 | if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { | |
5897 | /* | |
5898 | * We have raced with bandwidth becoming available, and if we | |
5899 | * actually throttled the timer might not unthrottle us for an | |
5900 | * entire period. We additionally needed to make sure that any | |
5901 | * subsequent check_cfs_rq_runtime calls agree not to throttle | |
5902 | * us, as we may commit to do cfs put_prev+pick_next, so we ask | |
5903 | * for 1ns of runtime rather than just check cfs_b. | |
5904 | */ | |
5905 | dequeue = 0; | |
5906 | } else { | |
5907 | list_add_tail_rcu(&cfs_rq->throttled_list, | |
5908 | &cfs_b->throttled_cfs_rq); | |
5909 | } | |
5910 | raw_spin_unlock(&cfs_b->lock); | |
5911 | ||
5912 | if (!dequeue) | |
5913 | return false; /* Throttle no longer required. */ | |
85dac906 PT |
5914 | |
5915 | se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; | |
5916 | ||
f1b17280 | 5917 | /* freeze hierarchy runnable averages while throttled */ |
64660c86 PT |
5918 | rcu_read_lock(); |
5919 | walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); | |
5920 | rcu_read_unlock(); | |
85dac906 | 5921 | |
7b8a702d | 5922 | queued_delta = cfs_rq->h_nr_queued; |
c2a295bf | 5923 | runnable_delta = cfs_rq->h_nr_runnable; |
31898e7b | 5924 | idle_delta = cfs_rq->h_nr_idle; |
85dac906 PT |
5925 | for_each_sched_entity(se) { |
5926 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); | |
152e11f6 PZ |
5927 | int flags; |
5928 | ||
85dac906 PT |
5929 | /* throttled entity or throttle-on-deactivate */ |
5930 | if (!se->on_rq) | |
b6d37a76 | 5931 | goto done; |
85dac906 | 5932 | |
152e11f6 PZ |
5933 | /* |
5934 | * Abuse SPECIAL to avoid delayed dequeue in this instance. | |
5935 | * This avoids teaching dequeue_entities() about throttled | |
5936 | * entities and keeps things relatively simple. | |
5937 | */ | |
5938 | flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; | |
5939 | if (se->sched_delayed) | |
5940 | flags |= DEQUEUE_DELAYED; | |
5941 | dequeue_entity(qcfs_rq, se, flags); | |
6212437f | 5942 | |
30400039 | 5943 | if (cfs_rq_is_idle(group_cfs_rq(se))) |
31898e7b | 5944 | idle_delta = cfs_rq->h_nr_queued; |
30400039 | 5945 | |
7b8a702d | 5946 | qcfs_rq->h_nr_queued -= queued_delta; |
c2a295bf | 5947 | qcfs_rq->h_nr_runnable -= runnable_delta; |
31898e7b | 5948 | qcfs_rq->h_nr_idle -= idle_delta; |
85dac906 | 5949 | |
b6d37a76 PW |
5950 | if (qcfs_rq->load.weight) { |
5951 | /* Avoid re-evaluating load for this entity: */ | |
5952 | se = parent_entity(se); | |
5953 | break; | |
5954 | } | |
5955 | } | |
5956 | ||
5957 | for_each_sched_entity(se) { | |
5958 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); | |
5959 | /* throttled entity or throttle-on-deactivate */ | |
5960 | if (!se->on_rq) | |
5961 | goto done; | |
5962 | ||
5963 | update_load_avg(qcfs_rq, se, 0); | |
5964 | se_update_runnable(se); | |
5965 | ||
30400039 | 5966 | if (cfs_rq_is_idle(group_cfs_rq(se))) |
31898e7b | 5967 | idle_delta = cfs_rq->h_nr_queued; |
30400039 | 5968 | |
7b8a702d | 5969 | qcfs_rq->h_nr_queued -= queued_delta; |
c2a295bf | 5970 | qcfs_rq->h_nr_runnable -= runnable_delta; |
31898e7b | 5971 | qcfs_rq->h_nr_idle -= idle_delta; |
85dac906 PT |
5972 | } |
5973 | ||
b6d37a76 | 5974 | /* At this point se is NULL and we are at root level*/ |
7b8a702d | 5975 | sub_nr_running(rq, queued_delta); |
85dac906 | 5976 | |
557a6bfc | 5977 | /* Stop the fair server if throttling resulted in no runnable tasks */ |
7b8a702d | 5978 | if (rq_h_nr_queued && !rq->cfs.h_nr_queued) |
557a6bfc | 5979 | dl_server_stop(&rq->fair_server); |
b6d37a76 | 5980 | done: |
c06f04c7 | 5981 | /* |
e98fa02c PT |
5982 | * Note: distribution will already see us throttled via the |
5983 | * throttled-list. rq->lock protects completion. | |
c06f04c7 | 5984 | */ |
e98fa02c | 5985 | cfs_rq->throttled = 1; |
f7d2728c | 5986 | WARN_ON_ONCE(cfs_rq->throttled_clock); |
736c55a0 | 5987 | if (cfs_rq->nr_queued) |
79462e8c | 5988 | cfs_rq->throttled_clock = rq_clock(rq); |
e98fa02c | 5989 | return true; |
85dac906 PT |
5990 | } |
5991 | ||
029632fb | 5992 | void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) |
671fd9da PT |
5993 | { |
5994 | struct rq *rq = rq_of(cfs_rq); | |
5995 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
5996 | struct sched_entity *se; | |
31898e7b | 5997 | long queued_delta, runnable_delta, idle_delta; |
7b8a702d | 5998 | long rq_h_nr_queued = rq->cfs.h_nr_queued; |
671fd9da | 5999 | |
22b958d8 | 6000 | se = cfs_rq->tg->se[cpu_of(rq)]; |
671fd9da PT |
6001 | |
6002 | cfs_rq->throttled = 0; | |
1a55af2e FW |
6003 | |
6004 | update_rq_clock(rq); | |
6005 | ||
671fd9da | 6006 | raw_spin_lock(&cfs_b->lock); |
79462e8c JD |
6007 | if (cfs_rq->throttled_clock) { |
6008 | cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; | |
6009 | cfs_rq->throttled_clock = 0; | |
6010 | } | |
671fd9da PT |
6011 | list_del_rcu(&cfs_rq->throttled_list); |
6012 | raw_spin_unlock(&cfs_b->lock); | |
6013 | ||
64660c86 PT |
6014 | /* update hierarchical throttle state */ |
6015 | walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); | |
6016 | ||
2630cde2 | 6017 | if (!cfs_rq->load.weight) { |
51bf903b CZ |
6018 | if (!cfs_rq->on_list) |
6019 | return; | |
6020 | /* | |
6021 | * Nothing to run but something to decay (on_list)? | |
6022 | * Complete the branch. | |
6023 | */ | |
6024 | for_each_sched_entity(se) { | |
6025 | if (list_add_leaf_cfs_rq(cfs_rq_of(se))) | |
6026 | break; | |
6027 | } | |
6028 | goto unthrottle_throttle; | |
2630cde2 | 6029 | } |
671fd9da | 6030 | |
7b8a702d | 6031 | queued_delta = cfs_rq->h_nr_queued; |
c2a295bf | 6032 | runnable_delta = cfs_rq->h_nr_runnable; |
31898e7b | 6033 | idle_delta = cfs_rq->h_nr_idle; |
671fd9da | 6034 | for_each_sched_entity(se) { |
30400039 JD |
6035 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); |
6036 | ||
9b5ce1a3 MG |
6037 | /* Handle any unfinished DELAY_DEQUEUE business first. */ |
6038 | if (se->sched_delayed) { | |
6039 | int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED; | |
6040 | ||
6041 | dequeue_entity(qcfs_rq, se, flags); | |
6042 | } else if (se->on_rq) | |
39f23ce0 | 6043 | break; |
30400039 JD |
6044 | enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); |
6045 | ||
6046 | if (cfs_rq_is_idle(group_cfs_rq(se))) | |
31898e7b | 6047 | idle_delta = cfs_rq->h_nr_queued; |
39f23ce0 | 6048 | |
7b8a702d | 6049 | qcfs_rq->h_nr_queued += queued_delta; |
c2a295bf | 6050 | qcfs_rq->h_nr_runnable += runnable_delta; |
31898e7b | 6051 | qcfs_rq->h_nr_idle += idle_delta; |
39f23ce0 VG |
6052 | |
6053 | /* end evaluation on encountering a throttled cfs_rq */ | |
30400039 | 6054 | if (cfs_rq_throttled(qcfs_rq)) |
39f23ce0 VG |
6055 | goto unthrottle_throttle; |
6056 | } | |
671fd9da | 6057 | |
39f23ce0 | 6058 | for_each_sched_entity(se) { |
30400039 | 6059 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); |
39f23ce0 | 6060 | |
30400039 | 6061 | update_load_avg(qcfs_rq, se, UPDATE_TG); |
39f23ce0 | 6062 | se_update_runnable(se); |
6212437f | 6063 | |
30400039 | 6064 | if (cfs_rq_is_idle(group_cfs_rq(se))) |
31898e7b | 6065 | idle_delta = cfs_rq->h_nr_queued; |
671fd9da | 6066 | |
7b8a702d | 6067 | qcfs_rq->h_nr_queued += queued_delta; |
c2a295bf | 6068 | qcfs_rq->h_nr_runnable += runnable_delta; |
31898e7b | 6069 | qcfs_rq->h_nr_idle += idle_delta; |
39f23ce0 VG |
6070 | |
6071 | /* end evaluation on encountering a throttled cfs_rq */ | |
30400039 | 6072 | if (cfs_rq_throttled(qcfs_rq)) |
39f23ce0 | 6073 | goto unthrottle_throttle; |
671fd9da PT |
6074 | } |
6075 | ||
cea5a347 | 6076 | /* Start the fair server if un-throttling resulted in new runnable tasks */ |
7b8a702d | 6077 | if (!rq_h_nr_queued && rq->cfs.h_nr_queued) |
cea5a347 PZ |
6078 | dl_server_start(&rq->fair_server); |
6079 | ||
39f23ce0 | 6080 | /* At this point se is NULL and we are at root level*/ |
7b8a702d | 6081 | add_nr_running(rq, queued_delta); |
671fd9da | 6082 | |
39f23ce0 | 6083 | unthrottle_throttle: |
fe61468b VG |
6084 | assert_list_leaf_cfs_rq(rq); |
6085 | ||
97fb7a0a | 6086 | /* Determine whether we need to wake up potentially idle CPU: */ |
736c55a0 | 6087 | if (rq->curr == rq->idle && rq->cfs.nr_queued) |
8875125e | 6088 | resched_curr(rq); |
671fd9da PT |
6089 | } |
6090 | ||
8ad075c2 JD |
6091 | #ifdef CONFIG_SMP |
6092 | static void __cfsb_csd_unthrottle(void *arg) | |
671fd9da | 6093 | { |
8ad075c2 JD |
6094 | struct cfs_rq *cursor, *tmp; |
6095 | struct rq *rq = arg; | |
6096 | struct rq_flags rf; | |
6097 | ||
6098 | rq_lock(rq, &rf); | |
6099 | ||
ebb83d84 HJ |
6100 | /* |
6101 | * Iterating over the list can trigger several call to | |
6102 | * update_rq_clock() in unthrottle_cfs_rq(). | |
6103 | * Do it once and skip the potential next ones. | |
6104 | */ | |
6105 | update_rq_clock(rq); | |
6106 | rq_clock_start_loop_update(rq); | |
6107 | ||
8ad075c2 JD |
6108 | /* |
6109 | * Since we hold rq lock we're safe from concurrent manipulation of | |
6110 | * the CSD list. However, this RCU critical section annotates the | |
6111 | * fact that we pair with sched_free_group_rcu(), so that we cannot | |
6112 | * race with group being freed in the window between removing it | |
6113 | * from the list and advancing to the next entry in the list. | |
6114 | */ | |
6115 | rcu_read_lock(); | |
6116 | ||
6117 | list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, | |
6118 | throttled_csd_list) { | |
6119 | list_del_init(&cursor->throttled_csd_list); | |
6120 | ||
6121 | if (cfs_rq_throttled(cursor)) | |
6122 | unthrottle_cfs_rq(cursor); | |
6123 | } | |
6124 | ||
6125 | rcu_read_unlock(); | |
6126 | ||
ebb83d84 | 6127 | rq_clock_stop_loop_update(rq); |
8ad075c2 JD |
6128 | rq_unlock(rq, &rf); |
6129 | } | |
6130 | ||
6131 | static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) | |
6132 | { | |
6133 | struct rq *rq = rq_of(cfs_rq); | |
6134 | bool first; | |
6135 | ||
6136 | if (rq == this_rq()) { | |
6137 | unthrottle_cfs_rq(cfs_rq); | |
6138 | return; | |
6139 | } | |
6140 | ||
6141 | /* Already enqueued */ | |
f7d2728c | 6142 | if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list))) |
8ad075c2 JD |
6143 | return; |
6144 | ||
6145 | first = list_empty(&rq->cfsb_csd_list); | |
6146 | list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); | |
6147 | if (first) | |
6148 | smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); | |
6149 | } | |
6150 | #else | |
6151 | static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) | |
6152 | { | |
6153 | unthrottle_cfs_rq(cfs_rq); | |
6154 | } | |
6155 | #endif | |
6156 | ||
6157 | static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) | |
6158 | { | |
6159 | lockdep_assert_rq_held(rq_of(cfs_rq)); | |
6160 | ||
f7d2728c | 6161 | if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) || |
8ad075c2 JD |
6162 | cfs_rq->runtime_remaining <= 0)) |
6163 | return; | |
6164 | ||
6165 | __unthrottle_cfs_rq_async(cfs_rq); | |
6166 | } | |
6167 | ||
6168 | static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) | |
6169 | { | |
8ad075c2 | 6170 | int this_cpu = smp_processor_id(); |
26a8b127 | 6171 | u64 runtime, remaining = 1; |
8ad075c2 | 6172 | bool throttled = false; |
2f8c6229 | 6173 | struct cfs_rq *cfs_rq, *tmp; |
8ad075c2 JD |
6174 | struct rq_flags rf; |
6175 | struct rq *rq; | |
2f8c6229 | 6176 | LIST_HEAD(local_unthrottle); |
671fd9da PT |
6177 | |
6178 | rcu_read_lock(); | |
6179 | list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, | |
6180 | throttled_list) { | |
8ad075c2 JD |
6181 | rq = rq_of(cfs_rq); |
6182 | ||
6183 | if (!remaining) { | |
6184 | throttled = true; | |
6185 | break; | |
6186 | } | |
671fd9da | 6187 | |
c0ad4aa4 | 6188 | rq_lock_irqsave(rq, &rf); |
671fd9da PT |
6189 | if (!cfs_rq_throttled(cfs_rq)) |
6190 | goto next; | |
6191 | ||
8ad075c2 JD |
6192 | /* Already queued for async unthrottle */ |
6193 | if (!list_empty(&cfs_rq->throttled_csd_list)) | |
6194 | goto next; | |
8ad075c2 JD |
6195 | |
6196 | /* By the above checks, this should never be true */ | |
f7d2728c | 6197 | WARN_ON_ONCE(cfs_rq->runtime_remaining > 0); |
5e2d2cc2 | 6198 | |
26a8b127 | 6199 | raw_spin_lock(&cfs_b->lock); |
671fd9da | 6200 | runtime = -cfs_rq->runtime_remaining + 1; |
26a8b127 HC |
6201 | if (runtime > cfs_b->runtime) |
6202 | runtime = cfs_b->runtime; | |
6203 | cfs_b->runtime -= runtime; | |
6204 | remaining = cfs_b->runtime; | |
6205 | raw_spin_unlock(&cfs_b->lock); | |
671fd9da PT |
6206 | |
6207 | cfs_rq->runtime_remaining += runtime; | |
671fd9da PT |
6208 | |
6209 | /* we check whether we're throttled above */ | |
8ad075c2 | 6210 | if (cfs_rq->runtime_remaining > 0) { |
2f8c6229 | 6211 | if (cpu_of(rq) != this_cpu) { |
8ad075c2 | 6212 | unthrottle_cfs_rq_async(cfs_rq); |
2f8c6229 JD |
6213 | } else { |
6214 | /* | |
6215 | * We currently only expect to be unthrottling | |
6216 | * a single cfs_rq locally. | |
6217 | */ | |
f7d2728c | 6218 | WARN_ON_ONCE(!list_empty(&local_unthrottle)); |
2f8c6229 JD |
6219 | list_add_tail(&cfs_rq->throttled_csd_list, |
6220 | &local_unthrottle); | |
6221 | } | |
8ad075c2 JD |
6222 | } else { |
6223 | throttled = true; | |
6224 | } | |
671fd9da PT |
6225 | |
6226 | next: | |
c0ad4aa4 | 6227 | rq_unlock_irqrestore(rq, &rf); |
671fd9da | 6228 | } |
8ad075c2 | 6229 | |
2f8c6229 JD |
6230 | list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, |
6231 | throttled_csd_list) { | |
6232 | struct rq *rq = rq_of(cfs_rq); | |
6233 | ||
8ad075c2 | 6234 | rq_lock_irqsave(rq, &rf); |
2f8c6229 JD |
6235 | |
6236 | list_del_init(&cfs_rq->throttled_csd_list); | |
6237 | ||
6238 | if (cfs_rq_throttled(cfs_rq)) | |
6239 | unthrottle_cfs_rq(cfs_rq); | |
6240 | ||
8ad075c2 JD |
6241 | rq_unlock_irqrestore(rq, &rf); |
6242 | } | |
f7d2728c | 6243 | WARN_ON_ONCE(!list_empty(&local_unthrottle)); |
2f8c6229 JD |
6244 | |
6245 | rcu_read_unlock(); | |
8ad075c2 JD |
6246 | |
6247 | return throttled; | |
671fd9da PT |
6248 | } |
6249 | ||
58088ad0 PT |
6250 | /* |
6251 | * Responsible for refilling a task_group's bandwidth and unthrottling its | |
6252 | * cfs_rqs as appropriate. If there has been no activity within the last | |
6253 | * period the timer is deactivated until scheduling resumes; cfs_b->idle is | |
6254 | * used to track this state. | |
6255 | */ | |
c0ad4aa4 | 6256 | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) |
58088ad0 | 6257 | { |
51f2176d | 6258 | int throttled; |
58088ad0 | 6259 | |
58088ad0 PT |
6260 | /* no need to continue the timer with no bandwidth constraint */ |
6261 | if (cfs_b->quota == RUNTIME_INF) | |
51f2176d | 6262 | goto out_deactivate; |
58088ad0 | 6263 | |
671fd9da | 6264 | throttled = !list_empty(&cfs_b->throttled_cfs_rq); |
e8da1b18 | 6265 | cfs_b->nr_periods += overrun; |
671fd9da | 6266 | |
f4183717 HC |
6267 | /* Refill extra burst quota even if cfs_b->idle */ |
6268 | __refill_cfs_bandwidth_runtime(cfs_b); | |
6269 | ||
51f2176d BS |
6270 | /* |
6271 | * idle depends on !throttled (for the case of a large deficit), and if | |
6272 | * we're going inactive then everything else can be deferred | |
6273 | */ | |
6274 | if (cfs_b->idle && !throttled) | |
6275 | goto out_deactivate; | |
a9cf55b2 | 6276 | |
671fd9da PT |
6277 | if (!throttled) { |
6278 | /* mark as potentially idle for the upcoming period */ | |
6279 | cfs_b->idle = 1; | |
51f2176d | 6280 | return 0; |
671fd9da PT |
6281 | } |
6282 | ||
e8da1b18 NR |
6283 | /* account preceding periods in which throttling occurred */ |
6284 | cfs_b->nr_throttled += overrun; | |
6285 | ||
671fd9da | 6286 | /* |
26a8b127 | 6287 | * This check is repeated as we release cfs_b->lock while we unthrottle. |
671fd9da | 6288 | */ |
ab93a4bc | 6289 | while (throttled && cfs_b->runtime > 0) { |
c0ad4aa4 | 6290 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
671fd9da | 6291 | /* we can't nest cfs_b->lock while distributing bandwidth */ |
8ad075c2 | 6292 | throttled = distribute_cfs_runtime(cfs_b); |
c0ad4aa4 | 6293 | raw_spin_lock_irqsave(&cfs_b->lock, flags); |
671fd9da | 6294 | } |
58088ad0 | 6295 | |
671fd9da PT |
6296 | /* |
6297 | * While we are ensured activity in the period following an | |
6298 | * unthrottle, this also covers the case in which the new bandwidth is | |
6299 | * insufficient to cover the existing bandwidth deficit. (Forcing the | |
6300 | * timer to remain active while there are any throttled entities.) | |
6301 | */ | |
6302 | cfs_b->idle = 0; | |
58088ad0 | 6303 | |
51f2176d BS |
6304 | return 0; |
6305 | ||
6306 | out_deactivate: | |
51f2176d | 6307 | return 1; |
58088ad0 | 6308 | } |
d3d9dc33 | 6309 | |
d8b4986d PT |
6310 | /* a cfs_rq won't donate quota below this amount */ |
6311 | static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; | |
6312 | /* minimum remaining period time to redistribute slack quota */ | |
6313 | static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; | |
6314 | /* how long we wait to gather additional slack before distributing */ | |
6315 | static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; | |
6316 | ||
db06e78c BS |
6317 | /* |
6318 | * Are we near the end of the current quota period? | |
6319 | * | |
6320 | * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the | |
4961b6e1 | 6321 | * hrtimer base being cleared by hrtimer_start. In the case of |
db06e78c BS |
6322 | * migrate_hrtimers, base is never cleared, so we are fine. |
6323 | */ | |
d8b4986d PT |
6324 | static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) |
6325 | { | |
6326 | struct hrtimer *refresh_timer = &cfs_b->period_timer; | |
72d0ad7c | 6327 | s64 remaining; |
d8b4986d PT |
6328 | |
6329 | /* if the call-back is running a quota refresh is already occurring */ | |
6330 | if (hrtimer_callback_running(refresh_timer)) | |
6331 | return 1; | |
6332 | ||
6333 | /* is a quota refresh about to occur? */ | |
6334 | remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); | |
72d0ad7c | 6335 | if (remaining < (s64)min_expire) |
d8b4986d PT |
6336 | return 1; |
6337 | ||
6338 | return 0; | |
6339 | } | |
6340 | ||
6341 | static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) | |
6342 | { | |
6343 | u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; | |
6344 | ||
6345 | /* if there's a quota refresh soon don't bother with slack */ | |
6346 | if (runtime_refresh_within(cfs_b, min_left)) | |
6347 | return; | |
6348 | ||
66567fcb | 6349 | /* don't push forwards an existing deferred unthrottle */ |
6350 | if (cfs_b->slack_started) | |
6351 | return; | |
6352 | cfs_b->slack_started = true; | |
6353 | ||
4cfafd30 PZ |
6354 | hrtimer_start(&cfs_b->slack_timer, |
6355 | ns_to_ktime(cfs_bandwidth_slack_period), | |
6356 | HRTIMER_MODE_REL); | |
d8b4986d PT |
6357 | } |
6358 | ||
6359 | /* we know any runtime found here is valid as update_curr() precedes return */ | |
6360 | static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
6361 | { | |
6362 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | |
6363 | s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; | |
6364 | ||
6365 | if (slack_runtime <= 0) | |
6366 | return; | |
6367 | ||
6368 | raw_spin_lock(&cfs_b->lock); | |
de53fd7a | 6369 | if (cfs_b->quota != RUNTIME_INF) { |
d8b4986d PT |
6370 | cfs_b->runtime += slack_runtime; |
6371 | ||
6372 | /* we are under rq->lock, defer unthrottling using a timer */ | |
6373 | if (cfs_b->runtime > sched_cfs_bandwidth_slice() && | |
6374 | !list_empty(&cfs_b->throttled_cfs_rq)) | |
6375 | start_cfs_slack_bandwidth(cfs_b); | |
6376 | } | |
6377 | raw_spin_unlock(&cfs_b->lock); | |
6378 | ||
6379 | /* even if it's not valid for return we don't want to try again */ | |
6380 | cfs_rq->runtime_remaining -= slack_runtime; | |
6381 | } | |
6382 | ||
6383 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
6384 | { | |
56f570e5 PT |
6385 | if (!cfs_bandwidth_used()) |
6386 | return; | |
6387 | ||
736c55a0 | 6388 | if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) |
d8b4986d PT |
6389 | return; |
6390 | ||
6391 | __return_cfs_rq_runtime(cfs_rq); | |
6392 | } | |
6393 | ||
6394 | /* | |
6395 | * This is done with a timer (instead of inline with bandwidth return) since | |
6396 | * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. | |
6397 | */ | |
6398 | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) | |
6399 | { | |
6400 | u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); | |
c0ad4aa4 | 6401 | unsigned long flags; |
d8b4986d PT |
6402 | |
6403 | /* confirm we're still not at a refresh boundary */ | |
c0ad4aa4 | 6404 | raw_spin_lock_irqsave(&cfs_b->lock, flags); |
66567fcb | 6405 | cfs_b->slack_started = false; |
baa9be4f | 6406 | |
db06e78c | 6407 | if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { |
c0ad4aa4 | 6408 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
d8b4986d | 6409 | return; |
db06e78c | 6410 | } |
d8b4986d | 6411 | |
c06f04c7 | 6412 | if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) |
d8b4986d | 6413 | runtime = cfs_b->runtime; |
c06f04c7 | 6414 | |
c0ad4aa4 | 6415 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
d8b4986d PT |
6416 | |
6417 | if (!runtime) | |
6418 | return; | |
6419 | ||
26a8b127 | 6420 | distribute_cfs_runtime(cfs_b); |
d8b4986d PT |
6421 | } |
6422 | ||
d3d9dc33 PT |
6423 | /* |
6424 | * When a group wakes up we want to make sure that its quota is not already | |
6425 | * expired/exceeded, otherwise it may be allowed to steal additional ticks of | |
c034f48e | 6426 | * runtime as update_curr() throttling can not trigger until it's on-rq. |
d3d9dc33 PT |
6427 | */ |
6428 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) | |
6429 | { | |
56f570e5 PT |
6430 | if (!cfs_bandwidth_used()) |
6431 | return; | |
6432 | ||
d3d9dc33 PT |
6433 | /* an active group must be handled by the update_curr()->put() path */ |
6434 | if (!cfs_rq->runtime_enabled || cfs_rq->curr) | |
6435 | return; | |
6436 | ||
6437 | /* ensure the group is not already throttled */ | |
6438 | if (cfs_rq_throttled(cfs_rq)) | |
6439 | return; | |
6440 | ||
6441 | /* update runtime allocation */ | |
6442 | account_cfs_rq_runtime(cfs_rq, 0); | |
6443 | if (cfs_rq->runtime_remaining <= 0) | |
6444 | throttle_cfs_rq(cfs_rq); | |
6445 | } | |
6446 | ||
55e16d30 PZ |
6447 | static void sync_throttle(struct task_group *tg, int cpu) |
6448 | { | |
6449 | struct cfs_rq *pcfs_rq, *cfs_rq; | |
6450 | ||
6451 | if (!cfs_bandwidth_used()) | |
6452 | return; | |
6453 | ||
6454 | if (!tg->parent) | |
6455 | return; | |
6456 | ||
6457 | cfs_rq = tg->cfs_rq[cpu]; | |
6458 | pcfs_rq = tg->parent->cfs_rq[cpu]; | |
6459 | ||
6460 | cfs_rq->throttle_count = pcfs_rq->throttle_count; | |
64eaf507 | 6461 | cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); |
55e16d30 PZ |
6462 | } |
6463 | ||
d3d9dc33 | 6464 | /* conditionally throttle active cfs_rq's from put_prev_entity() */ |
678d5718 | 6465 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
d3d9dc33 | 6466 | { |
56f570e5 | 6467 | if (!cfs_bandwidth_used()) |
678d5718 | 6468 | return false; |
56f570e5 | 6469 | |
d3d9dc33 | 6470 | if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) |
678d5718 | 6471 | return false; |
d3d9dc33 PT |
6472 | |
6473 | /* | |
6474 | * it's possible for a throttled entity to be forced into a running | |
6475 | * state (e.g. set_curr_task), in this case we're finished. | |
6476 | */ | |
6477 | if (cfs_rq_throttled(cfs_rq)) | |
678d5718 | 6478 | return true; |
d3d9dc33 | 6479 | |
e98fa02c | 6480 | return throttle_cfs_rq(cfs_rq); |
d3d9dc33 | 6481 | } |
029632fb | 6482 | |
029632fb PZ |
6483 | static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) |
6484 | { | |
6485 | struct cfs_bandwidth *cfs_b = | |
6486 | container_of(timer, struct cfs_bandwidth, slack_timer); | |
77a4d1a1 | 6487 | |
029632fb PZ |
6488 | do_sched_cfs_slack_timer(cfs_b); |
6489 | ||
6490 | return HRTIMER_NORESTART; | |
6491 | } | |
6492 | ||
2e8e1922 PA |
6493 | extern const u64 max_cfs_quota_period; |
6494 | ||
029632fb PZ |
6495 | static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) |
6496 | { | |
6497 | struct cfs_bandwidth *cfs_b = | |
6498 | container_of(timer, struct cfs_bandwidth, period_timer); | |
c0ad4aa4 | 6499 | unsigned long flags; |
029632fb PZ |
6500 | int overrun; |
6501 | int idle = 0; | |
2e8e1922 | 6502 | int count = 0; |
029632fb | 6503 | |
c0ad4aa4 | 6504 | raw_spin_lock_irqsave(&cfs_b->lock, flags); |
029632fb | 6505 | for (;;) { |
77a4d1a1 | 6506 | overrun = hrtimer_forward_now(timer, cfs_b->period); |
029632fb PZ |
6507 | if (!overrun) |
6508 | break; | |
6509 | ||
5a6d6a6c HC |
6510 | idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); |
6511 | ||
2e8e1922 PA |
6512 | if (++count > 3) { |
6513 | u64 new, old = ktime_to_ns(cfs_b->period); | |
6514 | ||
4929a4e6 XZ |
6515 | /* |
6516 | * Grow period by a factor of 2 to avoid losing precision. | |
6517 | * Precision loss in the quota/period ratio can cause __cfs_schedulable | |
6518 | * to fail. | |
6519 | */ | |
6520 | new = old * 2; | |
6521 | if (new < max_cfs_quota_period) { | |
6522 | cfs_b->period = ns_to_ktime(new); | |
6523 | cfs_b->quota *= 2; | |
f4183717 | 6524 | cfs_b->burst *= 2; |
4929a4e6 XZ |
6525 | |
6526 | pr_warn_ratelimited( | |
6527 | "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", | |
6528 | smp_processor_id(), | |
6529 | div_u64(new, NSEC_PER_USEC), | |
6530 | div_u64(cfs_b->quota, NSEC_PER_USEC)); | |
6531 | } else { | |
6532 | pr_warn_ratelimited( | |
6533 | "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", | |
6534 | smp_processor_id(), | |
6535 | div_u64(old, NSEC_PER_USEC), | |
6536 | div_u64(cfs_b->quota, NSEC_PER_USEC)); | |
6537 | } | |
2e8e1922 PA |
6538 | |
6539 | /* reset count so we don't come right back in here */ | |
6540 | count = 0; | |
6541 | } | |
029632fb | 6542 | } |
4cfafd30 PZ |
6543 | if (idle) |
6544 | cfs_b->period_active = 0; | |
c0ad4aa4 | 6545 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
029632fb PZ |
6546 | |
6547 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | |
6548 | } | |
6549 | ||
c98c1827 | 6550 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) |
029632fb PZ |
6551 | { |
6552 | raw_spin_lock_init(&cfs_b->lock); | |
6553 | cfs_b->runtime = 0; | |
6554 | cfs_b->quota = RUNTIME_INF; | |
6555 | cfs_b->period = ns_to_ktime(default_cfs_period()); | |
f4183717 | 6556 | cfs_b->burst = 0; |
c98c1827 | 6557 | cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; |
029632fb PZ |
6558 | |
6559 | INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); | |
ee13da87 NC |
6560 | hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC, |
6561 | HRTIMER_MODE_ABS_PINNED); | |
41abdba9 SH |
6562 | |
6563 | /* Add a random offset so that timers interleave */ | |
6564 | hrtimer_set_expires(&cfs_b->period_timer, | |
6565 | get_random_u32_below(cfs_b->period)); | |
ee13da87 NC |
6566 | hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC, |
6567 | HRTIMER_MODE_REL); | |
66567fcb | 6568 | cfs_b->slack_started = false; |
029632fb PZ |
6569 | } |
6570 | ||
6571 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) | |
6572 | { | |
6573 | cfs_rq->runtime_enabled = 0; | |
6574 | INIT_LIST_HEAD(&cfs_rq->throttled_list); | |
8ad075c2 | 6575 | INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); |
029632fb PZ |
6576 | } |
6577 | ||
77a4d1a1 | 6578 | void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) |
029632fb | 6579 | { |
4cfafd30 | 6580 | lockdep_assert_held(&cfs_b->lock); |
029632fb | 6581 | |
f1d1be8a XP |
6582 | if (cfs_b->period_active) |
6583 | return; | |
6584 | ||
6585 | cfs_b->period_active = 1; | |
763a9ec0 | 6586 | hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); |
f1d1be8a | 6587 | hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); |
029632fb PZ |
6588 | } |
6589 | ||
6590 | static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | |
6591 | { | |
8ad075c2 JD |
6592 | int __maybe_unused i; |
6593 | ||
7f1a169b TH |
6594 | /* init_cfs_bandwidth() was not called */ |
6595 | if (!cfs_b->throttled_cfs_rq.next) | |
6596 | return; | |
6597 | ||
029632fb PZ |
6598 | hrtimer_cancel(&cfs_b->period_timer); |
6599 | hrtimer_cancel(&cfs_b->slack_timer); | |
8ad075c2 JD |
6600 | |
6601 | /* | |
6602 | * It is possible that we still have some cfs_rq's pending on a CSD | |
6603 | * list, though this race is very rare. In order for this to occur, we | |
6604 | * must have raced with the last task leaving the group while there | |
6605 | * exist throttled cfs_rq(s), and the period_timer must have queued the | |
6606 | * CSD item but the remote cpu has not yet processed it. To handle this, | |
6607 | * we can simply flush all pending CSD work inline here. We're | |
6608 | * guaranteed at this point that no additional cfs_rq of this group can | |
6609 | * join a CSD list. | |
6610 | */ | |
6611 | #ifdef CONFIG_SMP | |
6612 | for_each_possible_cpu(i) { | |
6613 | struct rq *rq = cpu_rq(i); | |
6614 | unsigned long flags; | |
6615 | ||
6616 | if (list_empty(&rq->cfsb_csd_list)) | |
6617 | continue; | |
6618 | ||
6619 | local_irq_save(flags); | |
6620 | __cfsb_csd_unthrottle(rq); | |
6621 | local_irq_restore(flags); | |
6622 | } | |
6623 | #endif | |
029632fb PZ |
6624 | } |
6625 | ||
502ce005 | 6626 | /* |
97fb7a0a | 6627 | * Both these CPU hotplug callbacks race against unregister_fair_sched_group() |
502ce005 PZ |
6628 | * |
6629 | * The race is harmless, since modifying bandwidth settings of unhooked group | |
6630 | * bits doesn't do much. | |
6631 | */ | |
6632 | ||
3b03706f | 6633 | /* cpu online callback */ |
0e59bdae KT |
6634 | static void __maybe_unused update_runtime_enabled(struct rq *rq) |
6635 | { | |
502ce005 | 6636 | struct task_group *tg; |
0e59bdae | 6637 | |
5cb9eaa3 | 6638 | lockdep_assert_rq_held(rq); |
502ce005 PZ |
6639 | |
6640 | rcu_read_lock(); | |
6641 | list_for_each_entry_rcu(tg, &task_groups, list) { | |
6642 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; | |
6643 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
0e59bdae KT |
6644 | |
6645 | raw_spin_lock(&cfs_b->lock); | |
6646 | cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; | |
6647 | raw_spin_unlock(&cfs_b->lock); | |
6648 | } | |
502ce005 | 6649 | rcu_read_unlock(); |
0e59bdae KT |
6650 | } |
6651 | ||
502ce005 | 6652 | /* cpu offline callback */ |
38dc3348 | 6653 | static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) |
029632fb | 6654 | { |
502ce005 PZ |
6655 | struct task_group *tg; |
6656 | ||
5cb9eaa3 | 6657 | lockdep_assert_rq_held(rq); |
502ce005 | 6658 | |
af98d8a3 VC |
6659 | // Do not unthrottle for an active CPU |
6660 | if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask)) | |
6661 | return; | |
6662 | ||
ebb83d84 HJ |
6663 | /* |
6664 | * The rq clock has already been updated in the | |
6665 | * set_rq_offline(), so we should skip updating | |
6666 | * the rq clock again in unthrottle_cfs_rq(). | |
6667 | */ | |
6668 | rq_clock_start_loop_update(rq); | |
6669 | ||
502ce005 PZ |
6670 | rcu_read_lock(); |
6671 | list_for_each_entry_rcu(tg, &task_groups, list) { | |
6672 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | |
029632fb | 6673 | |
029632fb PZ |
6674 | if (!cfs_rq->runtime_enabled) |
6675 | continue; | |
6676 | ||
0e59bdae | 6677 | /* |
97fb7a0a | 6678 | * Offline rq is schedulable till CPU is completely disabled |
0e59bdae KT |
6679 | * in take_cpu_down(), so we prevent new cfs throttling here. |
6680 | */ | |
6681 | cfs_rq->runtime_enabled = 0; | |
6682 | ||
af98d8a3 VC |
6683 | if (!cfs_rq_throttled(cfs_rq)) |
6684 | continue; | |
6685 | ||
6686 | /* | |
6687 | * clock_task is not advancing so we just need to make sure | |
6688 | * there's some valid quota amount | |
6689 | */ | |
6690 | cfs_rq->runtime_remaining = 1; | |
6691 | unthrottle_cfs_rq(cfs_rq); | |
029632fb | 6692 | } |
502ce005 | 6693 | rcu_read_unlock(); |
ebb83d84 HJ |
6694 | |
6695 | rq_clock_stop_loop_update(rq); | |
029632fb PZ |
6696 | } |
6697 | ||
88c56cfe PA |
6698 | bool cfs_task_bw_constrained(struct task_struct *p) |
6699 | { | |
6700 | struct cfs_rq *cfs_rq = task_cfs_rq(p); | |
6701 | ||
6702 | if (!cfs_bandwidth_used()) | |
6703 | return false; | |
6704 | ||
6705 | if (cfs_rq->runtime_enabled || | |
6706 | tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) | |
6707 | return true; | |
6708 | ||
6709 | return false; | |
6710 | } | |
6711 | ||
6712 | #ifdef CONFIG_NO_HZ_FULL | |
6713 | /* called from pick_next_task_fair() */ | |
6714 | static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) | |
6715 | { | |
6716 | int cpu = cpu_of(rq); | |
6717 | ||
a58501fb | 6718 | if (!cfs_bandwidth_used()) |
88c56cfe PA |
6719 | return; |
6720 | ||
6721 | if (!tick_nohz_full_cpu(cpu)) | |
6722 | return; | |
6723 | ||
6724 | if (rq->nr_running != 1) | |
6725 | return; | |
6726 | ||
6727 | /* | |
6728 | * We know there is only one task runnable and we've just picked it. The | |
6729 | * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will | |
6730 | * be otherwise able to stop the tick. Just need to check if we are using | |
6731 | * bandwidth control. | |
6732 | */ | |
6733 | if (cfs_task_bw_constrained(p)) | |
6734 | tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); | |
6735 | } | |
6736 | #endif | |
6737 | ||
029632fb | 6738 | #else /* CONFIG_CFS_BANDWIDTH */ |
f6783319 | 6739 | |
9dbdb155 | 6740 | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} |
678d5718 | 6741 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } |
d3d9dc33 | 6742 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} |
55e16d30 | 6743 | static inline void sync_throttle(struct task_group *tg, int cpu) {} |
6c16a6dc | 6744 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} |
85dac906 PT |
6745 | |
6746 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | |
6747 | { | |
6748 | return 0; | |
6749 | } | |
64660c86 PT |
6750 | |
6751 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | |
6752 | { | |
6753 | return 0; | |
6754 | } | |
6755 | ||
6756 | static inline int throttled_lb_pair(struct task_group *tg, | |
6757 | int src_cpu, int dest_cpu) | |
6758 | { | |
6759 | return 0; | |
6760 | } | |
029632fb | 6761 | |
7aa55f2a | 6762 | #ifdef CONFIG_FAIR_GROUP_SCHED |
97efd283 | 6763 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} |
029632fb | 6764 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} |
ab84d31e PT |
6765 | #endif |
6766 | ||
029632fb PZ |
6767 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) |
6768 | { | |
6769 | return NULL; | |
6770 | } | |
6771 | static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | |
0e59bdae | 6772 | static inline void update_runtime_enabled(struct rq *rq) {} |
a4c96ae3 | 6773 | static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} |
88c56cfe PA |
6774 | #ifdef CONFIG_CGROUP_SCHED |
6775 | bool cfs_task_bw_constrained(struct task_struct *p) | |
6776 | { | |
6777 | return false; | |
6778 | } | |
6779 | #endif | |
029632fb PZ |
6780 | #endif /* CONFIG_CFS_BANDWIDTH */ |
6781 | ||
88c56cfe PA |
6782 | #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) |
6783 | static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} | |
6784 | #endif | |
6785 | ||
bf0f6f24 IM |
6786 | /************************************************** |
6787 | * CFS operations on tasks: | |
6788 | */ | |
6789 | ||
8f4d37ec PZ |
6790 | #ifdef CONFIG_SCHED_HRTICK |
6791 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | |
6792 | { | |
8f4d37ec | 6793 | struct sched_entity *se = &p->se; |
8f4d37ec | 6794 | |
f7d2728c | 6795 | WARN_ON_ONCE(task_rq(p) != rq); |
8f4d37ec | 6796 | |
7b8a702d | 6797 | if (rq->cfs.h_nr_queued > 1) { |
8f4d37ec | 6798 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; |
147f3efa | 6799 | u64 slice = se->slice; |
8f4d37ec PZ |
6800 | s64 delta = slice - ran; |
6801 | ||
6802 | if (delta < 0) { | |
af0c8b2b | 6803 | if (task_current_donor(rq, p)) |
8875125e | 6804 | resched_curr(rq); |
8f4d37ec PZ |
6805 | return; |
6806 | } | |
31656519 | 6807 | hrtick_start(rq, delta); |
8f4d37ec PZ |
6808 | } |
6809 | } | |
a4c2f00f PZ |
6810 | |
6811 | /* | |
6812 | * called from enqueue/dequeue and updates the hrtick when the | |
6813 | * current task is from our class and nr_running is low enough | |
6814 | * to matter. | |
6815 | */ | |
6816 | static void hrtick_update(struct rq *rq) | |
6817 | { | |
af0c8b2b | 6818 | struct task_struct *donor = rq->donor; |
a4c2f00f | 6819 | |
af0c8b2b | 6820 | if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) |
a4c2f00f PZ |
6821 | return; |
6822 | ||
af0c8b2b | 6823 | hrtick_start_fair(rq, donor); |
a4c2f00f | 6824 | } |
55e12e5e | 6825 | #else /* !CONFIG_SCHED_HRTICK */ |
8f4d37ec PZ |
6826 | static inline void |
6827 | hrtick_start_fair(struct rq *rq, struct task_struct *p) | |
6828 | { | |
6829 | } | |
a4c2f00f PZ |
6830 | |
6831 | static inline void hrtick_update(struct rq *rq) | |
6832 | { | |
6833 | } | |
8f4d37ec PZ |
6834 | #endif |
6835 | ||
2802bf3c | 6836 | #ifdef CONFIG_SMP |
2802bf3c MR |
6837 | static inline bool cpu_overutilized(int cpu) |
6838 | { | |
be3a51e6 SH |
6839 | unsigned long rq_util_min, rq_util_max; |
6840 | ||
6841 | if (!sched_energy_enabled()) | |
6842 | return false; | |
6843 | ||
6844 | rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); | |
6845 | rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); | |
c56ab1b3 | 6846 | |
e5ed0550 | 6847 | /* Return true only if the utilization doesn't fit CPU's capacity */ |
c56ab1b3 | 6848 | return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); |
2802bf3c MR |
6849 | } |
6850 | ||
d0f5d3ce | 6851 | /* |
902e786c | 6852 | * overutilized value make sense only if EAS is enabled |
d0f5d3ce | 6853 | */ |
4475cd8b | 6854 | static inline bool is_rd_overutilized(struct root_domain *rd) |
d0f5d3ce | 6855 | { |
902e786c | 6856 | return !sched_energy_enabled() || READ_ONCE(rd->overutilized); |
d0f5d3ce SH |
6857 | } |
6858 | ||
4475cd8b | 6859 | static inline void set_rd_overutilized(struct root_domain *rd, bool flag) |
2802bf3c | 6860 | { |
be3a51e6 SH |
6861 | if (!sched_energy_enabled()) |
6862 | return; | |
6863 | ||
4475cd8b IM |
6864 | WRITE_ONCE(rd->overutilized, flag); |
6865 | trace_sched_overutilized_tp(rd, flag); | |
be3a51e6 SH |
6866 | } |
6867 | ||
6868 | static inline void check_update_overutilized_status(struct rq *rq) | |
6869 | { | |
6870 | /* | |
6871 | * overutilized field is used for load balancing decisions only | |
6872 | * if energy aware scheduler is being used | |
6873 | */ | |
be3a51e6 | 6874 | |
d0f5d3ce | 6875 | if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) |
4475cd8b | 6876 | set_rd_overutilized(rq->rd, 1); |
2802bf3c MR |
6877 | } |
6878 | #else | |
be3a51e6 | 6879 | static inline void check_update_overutilized_status(struct rq *rq) { } |
2802bf3c MR |
6880 | #endif |
6881 | ||
323af6de VK |
6882 | /* Runqueue only has SCHED_IDLE tasks enqueued */ |
6883 | static int sched_idle_rq(struct rq *rq) | |
6884 | { | |
31898e7b | 6885 | return unlikely(rq->nr_running == rq->cfs.h_nr_idle && |
323af6de VK |
6886 | rq->nr_running); |
6887 | } | |
6888 | ||
afa70d94 | 6889 | #ifdef CONFIG_SMP |
323af6de VK |
6890 | static int sched_idle_cpu(int cpu) |
6891 | { | |
6892 | return sched_idle_rq(cpu_rq(cpu)); | |
6893 | } | |
afa70d94 | 6894 | #endif |
323af6de | 6895 | |
781773e3 PZ |
6896 | static void |
6897 | requeue_delayed_entity(struct sched_entity *se) | |
6898 | { | |
6899 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
6900 | ||
6901 | /* | |
6902 | * se->sched_delayed should imply: se->on_rq == 1. | |
6903 | * Because a delayed entity is one that is still on | |
6904 | * the runqueue competing until elegibility. | |
6905 | */ | |
f7d2728c IM |
6906 | WARN_ON_ONCE(!se->sched_delayed); |
6907 | WARN_ON_ONCE(!se->on_rq); | |
781773e3 | 6908 | |
54a58a78 PZ |
6909 | if (sched_feat(DELAY_ZERO)) { |
6910 | update_entity_lag(cfs_rq, se); | |
6911 | if (se->vlag > 0) { | |
736c55a0 | 6912 | cfs_rq->nr_queued--; |
54a58a78 PZ |
6913 | if (se != cfs_rq->curr) |
6914 | __dequeue_entity(cfs_rq, se); | |
6915 | se->vlag = 0; | |
6916 | place_entity(cfs_rq, se, 0); | |
6917 | if (se != cfs_rq->curr) | |
6918 | __enqueue_entity(cfs_rq, se); | |
736c55a0 | 6919 | cfs_rq->nr_queued++; |
54a58a78 PZ |
6920 | } |
6921 | } | |
6922 | ||
fc1892be | 6923 | update_load_avg(cfs_rq, se, 0); |
76f2f783 | 6924 | clear_delayed(se); |
781773e3 PZ |
6925 | } |
6926 | ||
bf0f6f24 IM |
6927 | /* |
6928 | * The enqueue_task method is called before nr_running is | |
6929 | * increased. Here we update the fair scheduling stats and | |
6930 | * then put the task into the rbtree: | |
6931 | */ | |
ea87bb78 | 6932 | static void |
371fd7e7 | 6933 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
bf0f6f24 IM |
6934 | { |
6935 | struct cfs_rq *cfs_rq; | |
62fb1851 | 6936 | struct sched_entity *se = &p->se; |
31898e7b | 6937 | int h_nr_idle = task_has_idle_policy(p); |
9216582b | 6938 | int h_nr_runnable = 1; |
8e1ac429 | 6939 | int task_new = !(flags & ENQUEUE_WAKEUP); |
7b8a702d | 6940 | int rq_h_nr_queued = rq->cfs.h_nr_queued; |
aef6987d | 6941 | u64 slice = 0; |
bf0f6f24 | 6942 | |
2539fc82 PB |
6943 | /* |
6944 | * The code below (indirectly) updates schedutil which looks at | |
6945 | * the cfs_rq utilization to select a frequency. | |
6946 | * Let's add the task's estimated utilization to the cfs_rq's | |
6947 | * estimated utilization, before we update schedutil. | |
6948 | */ | |
0212696a | 6949 | if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED)) |
729288bc DE |
6950 | util_est_enqueue(&rq->cfs, p); |
6951 | ||
6952 | if (flags & ENQUEUE_DELAYED) { | |
6953 | requeue_delayed_entity(se); | |
6954 | return; | |
6955 | } | |
2539fc82 | 6956 | |
8c34ab19 RW |
6957 | /* |
6958 | * If in_iowait is set, the code below may not trigger any cpufreq | |
6959 | * utilization updates, so do it here explicitly with the IOWAIT flag | |
6960 | * passed. | |
6961 | */ | |
6962 | if (p->in_iowait) | |
674e7541 | 6963 | cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); |
8c34ab19 | 6964 | |
9216582b VG |
6965 | if (task_new && se->sched_delayed) |
6966 | h_nr_runnable = 0; | |
76f2f783 | 6967 | |
bf0f6f24 | 6968 | for_each_sched_entity(se) { |
781773e3 PZ |
6969 | if (se->on_rq) { |
6970 | if (se->sched_delayed) | |
6971 | requeue_delayed_entity(se); | |
bf0f6f24 | 6972 | break; |
781773e3 | 6973 | } |
bf0f6f24 | 6974 | cfs_rq = cfs_rq_of(se); |
aef6987d PZ |
6975 | |
6976 | /* | |
6977 | * Basically set the slice of group entries to the min_slice of | |
6978 | * their respective cfs_rq. This ensures the group can service | |
6979 | * its entities in the desired time-frame. | |
6980 | */ | |
6981 | if (slice) { | |
6982 | se->slice = slice; | |
6983 | se->custom_slice = 1; | |
6984 | } | |
88ec22d3 | 6985 | enqueue_entity(cfs_rq, se, flags); |
aef6987d | 6986 | slice = cfs_rq_min_slice(cfs_rq); |
85dac906 | 6987 | |
9216582b | 6988 | cfs_rq->h_nr_runnable += h_nr_runnable; |
7b8a702d | 6989 | cfs_rq->h_nr_queued++; |
31898e7b | 6990 | cfs_rq->h_nr_idle += h_nr_idle; |
85dac906 | 6991 | |
30400039 | 6992 | if (cfs_rq_is_idle(cfs_rq)) |
31898e7b | 6993 | h_nr_idle = 1; |
30400039 | 6994 | |
6d4d2246 VG |
6995 | /* end evaluation on encountering a throttled cfs_rq */ |
6996 | if (cfs_rq_throttled(cfs_rq)) | |
6997 | goto enqueue_throttle; | |
6998 | ||
88ec22d3 | 6999 | flags = ENQUEUE_WAKEUP; |
bf0f6f24 | 7000 | } |
8f4d37ec | 7001 | |
2069dd75 | 7002 | for_each_sched_entity(se) { |
0f317143 | 7003 | cfs_rq = cfs_rq_of(se); |
2069dd75 | 7004 | |
88c0616e | 7005 | update_load_avg(cfs_rq, se, UPDATE_TG); |
9f683953 | 7006 | se_update_runnable(se); |
1ea6c46a | 7007 | update_cfs_group(se); |
6d4d2246 | 7008 | |
aef6987d | 7009 | se->slice = slice; |
563bc216 TD |
7010 | if (se != cfs_rq->curr) |
7011 | min_vruntime_cb_propagate(&se->run_node, NULL); | |
aef6987d PZ |
7012 | slice = cfs_rq_min_slice(cfs_rq); |
7013 | ||
9216582b | 7014 | cfs_rq->h_nr_runnable += h_nr_runnable; |
7b8a702d | 7015 | cfs_rq->h_nr_queued++; |
31898e7b | 7016 | cfs_rq->h_nr_idle += h_nr_idle; |
5ab297ba | 7017 | |
30400039 | 7018 | if (cfs_rq_is_idle(cfs_rq)) |
31898e7b | 7019 | h_nr_idle = 1; |
30400039 | 7020 | |
5ab297ba VG |
7021 | /* end evaluation on encountering a throttled cfs_rq */ |
7022 | if (cfs_rq_throttled(cfs_rq)) | |
7023 | goto enqueue_throttle; | |
2069dd75 PZ |
7024 | } |
7025 | ||
7b8a702d | 7026 | if (!rq_h_nr_queued && rq->cfs.h_nr_queued) { |
cea5a347 PZ |
7027 | /* Account for idle runtime */ |
7028 | if (!rq->nr_running) | |
7029 | dl_server_update_idle_time(rq, rq->curr); | |
7030 | dl_server_start(&rq->fair_server); | |
7031 | } | |
7032 | ||
7d148be6 VG |
7033 | /* At this point se is NULL and we are at root level*/ |
7034 | add_nr_running(rq, 1); | |
2802bf3c | 7035 | |
7d148be6 VG |
7036 | /* |
7037 | * Since new tasks are assigned an initial util_avg equal to | |
7038 | * half of the spare capacity of their CPU, tiny tasks have the | |
7039 | * ability to cross the overutilized threshold, which will | |
7040 | * result in the load balancer ruining all the task placement | |
7041 | * done by EAS. As a way to mitigate that effect, do not account | |
7042 | * for the first enqueue operation of new tasks during the | |
7043 | * overutilized flag detection. | |
7044 | * | |
7045 | * A better way of solving this problem would be to wait for | |
7046 | * the PELT signals of tasks to converge before taking them | |
7047 | * into account, but that is not straightforward to implement, | |
7048 | * and the following generally works well enough in practice. | |
7049 | */ | |
8e1ac429 | 7050 | if (!task_new) |
be3a51e6 | 7051 | check_update_overutilized_status(rq); |
cd126afe | 7052 | |
7d148be6 | 7053 | enqueue_throttle: |
5d299eab PZ |
7054 | assert_list_leaf_cfs_rq(rq); |
7055 | ||
a4c2f00f | 7056 | hrtick_update(rq); |
bf0f6f24 IM |
7057 | } |
7058 | ||
2f36825b VP |
7059 | static void set_next_buddy(struct sched_entity *se); |
7060 | ||
bf0f6f24 | 7061 | /* |
fab4a808 PZ |
7062 | * Basically dequeue_task_fair(), except it can deal with dequeue_entity() |
7063 | * failing half-way through and resume the dequeue later. | |
7064 | * | |
7065 | * Returns: | |
7066 | * -1 - dequeue delayed | |
7067 | * 0 - dequeue throttled | |
7068 | * 1 - dequeue complete | |
bf0f6f24 | 7069 | */ |
fab4a808 | 7070 | static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) |
bf0f6f24 | 7071 | { |
323af6de | 7072 | bool was_sched_idle = sched_idle_rq(rq); |
7b8a702d | 7073 | int rq_h_nr_queued = rq->cfs.h_nr_queued; |
fab4a808 | 7074 | bool task_sleep = flags & DEQUEUE_SLEEP; |
152e11f6 | 7075 | bool task_delayed = flags & DEQUEUE_DELAYED; |
fab4a808 | 7076 | struct task_struct *p = NULL; |
31898e7b | 7077 | int h_nr_idle = 0; |
7b8a702d | 7078 | int h_nr_queued = 0; |
9216582b | 7079 | int h_nr_runnable = 0; |
fab4a808 | 7080 | struct cfs_rq *cfs_rq; |
aef6987d | 7081 | u64 slice = 0; |
bf0f6f24 | 7082 | |
fab4a808 PZ |
7083 | if (entity_is_task(se)) { |
7084 | p = task_of(se); | |
7b8a702d | 7085 | h_nr_queued = 1; |
31898e7b | 7086 | h_nr_idle = task_has_idle_policy(p); |
9216582b VG |
7087 | if (task_sleep || task_delayed || !se->sched_delayed) |
7088 | h_nr_runnable = 1; | |
fab4a808 | 7089 | } |
8c1f560c | 7090 | |
bf0f6f24 IM |
7091 | for_each_sched_entity(se) { |
7092 | cfs_rq = cfs_rq_of(se); | |
85dac906 | 7093 | |
152e11f6 PZ |
7094 | if (!dequeue_entity(cfs_rq, se, flags)) { |
7095 | if (p && &p->se == se) | |
7096 | return -1; | |
7097 | ||
bbce3de7 | 7098 | slice = cfs_rq_min_slice(cfs_rq); |
152e11f6 PZ |
7099 | break; |
7100 | } | |
85dac906 | 7101 | |
9216582b | 7102 | cfs_rq->h_nr_runnable -= h_nr_runnable; |
7b8a702d | 7103 | cfs_rq->h_nr_queued -= h_nr_queued; |
31898e7b | 7104 | cfs_rq->h_nr_idle -= h_nr_idle; |
2069dd75 | 7105 | |
30400039 | 7106 | if (cfs_rq_is_idle(cfs_rq)) |
31898e7b | 7107 | h_nr_idle = h_nr_queued; |
30400039 | 7108 | |
6d4d2246 VG |
7109 | /* end evaluation on encountering a throttled cfs_rq */ |
7110 | if (cfs_rq_throttled(cfs_rq)) | |
fab4a808 | 7111 | return 0; |
6d4d2246 | 7112 | |
bf0f6f24 | 7113 | /* Don't dequeue parent if it has other entities besides us */ |
2f36825b | 7114 | if (cfs_rq->load.weight) { |
aef6987d PZ |
7115 | slice = cfs_rq_min_slice(cfs_rq); |
7116 | ||
754bd598 KK |
7117 | /* Avoid re-evaluating load for this entity: */ |
7118 | se = parent_entity(se); | |
2f36825b VP |
7119 | /* |
7120 | * Bias pick_next to pick a task from this cfs_rq, as | |
7121 | * p is sleeping when it is within its sched_slice. | |
7122 | */ | |
754bd598 KK |
7123 | if (task_sleep && se && !throttled_hierarchy(cfs_rq)) |
7124 | set_next_buddy(se); | |
bf0f6f24 | 7125 | break; |
2f36825b | 7126 | } |
371fd7e7 | 7127 | flags |= DEQUEUE_SLEEP; |
152e11f6 | 7128 | flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); |
bf0f6f24 | 7129 | } |
8f4d37ec | 7130 | |
2069dd75 | 7131 | for_each_sched_entity(se) { |
0f317143 | 7132 | cfs_rq = cfs_rq_of(se); |
2069dd75 | 7133 | |
88c0616e | 7134 | update_load_avg(cfs_rq, se, UPDATE_TG); |
9f683953 | 7135 | se_update_runnable(se); |
1ea6c46a | 7136 | update_cfs_group(se); |
6d4d2246 | 7137 | |
aef6987d | 7138 | se->slice = slice; |
563bc216 TD |
7139 | if (se != cfs_rq->curr) |
7140 | min_vruntime_cb_propagate(&se->run_node, NULL); | |
aef6987d PZ |
7141 | slice = cfs_rq_min_slice(cfs_rq); |
7142 | ||
9216582b | 7143 | cfs_rq->h_nr_runnable -= h_nr_runnable; |
7b8a702d | 7144 | cfs_rq->h_nr_queued -= h_nr_queued; |
31898e7b | 7145 | cfs_rq->h_nr_idle -= h_nr_idle; |
5ab297ba | 7146 | |
30400039 | 7147 | if (cfs_rq_is_idle(cfs_rq)) |
31898e7b | 7148 | h_nr_idle = h_nr_queued; |
30400039 | 7149 | |
5ab297ba VG |
7150 | /* end evaluation on encountering a throttled cfs_rq */ |
7151 | if (cfs_rq_throttled(cfs_rq)) | |
fab4a808 | 7152 | return 0; |
2069dd75 PZ |
7153 | } |
7154 | ||
7b8a702d | 7155 | sub_nr_running(rq, h_nr_queued); |
cd126afe | 7156 | |
7b8a702d | 7157 | if (rq_h_nr_queued && !rq->cfs.h_nr_queued) |
cea5a347 | 7158 | dl_server_stop(&rq->fair_server); |
cd126afe | 7159 | |
323af6de VK |
7160 | /* balance early to pull high priority tasks */ |
7161 | if (unlikely(!was_sched_idle && sched_idle_rq(rq))) | |
7162 | rq->next_balance = jiffies; | |
7163 | ||
152e11f6 | 7164 | if (p && task_delayed) { |
f7d2728c IM |
7165 | WARN_ON_ONCE(!task_sleep); |
7166 | WARN_ON_ONCE(p->on_rq != 1); | |
152e11f6 PZ |
7167 | |
7168 | /* Fix-up what dequeue_task_fair() skipped */ | |
7169 | hrtick_update(rq); | |
7170 | ||
b55945c5 PZ |
7171 | /* |
7172 | * Fix-up what block_task() skipped. | |
7173 | * | |
7174 | * Must be last, @p might not be valid after this. | |
7175 | */ | |
152e11f6 PZ |
7176 | __block_task(rq, p); |
7177 | } | |
7178 | ||
fab4a808 PZ |
7179 | return 1; |
7180 | } | |
7181 | ||
7182 | /* | |
7183 | * The dequeue_task method is called before nr_running is | |
7184 | * decreased. We remove the task from the rbtree and | |
7185 | * update the fair scheduling stats: | |
7186 | */ | |
7187 | static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) | |
7188 | { | |
0212696a | 7189 | if (!p->se.sched_delayed) |
729288bc | 7190 | util_est_dequeue(&rq->cfs, p); |
fab4a808 | 7191 | |
b55945c5 PZ |
7192 | util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); |
7193 | if (dequeue_entities(rq, &p->se, flags) < 0) | |
fab4a808 | 7194 | return false; |
863ccdbb | 7195 | |
b55945c5 PZ |
7196 | /* |
7197 | * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). | |
7198 | */ | |
7199 | ||
a4c2f00f | 7200 | hrtick_update(rq); |
863ccdbb | 7201 | return true; |
bf0f6f24 IM |
7202 | } |
7203 | ||
aa3ee4f0 XY |
7204 | static inline unsigned int cfs_h_nr_delayed(struct rq *rq) |
7205 | { | |
7206 | return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable); | |
7207 | } | |
7208 | ||
e7693a36 | 7209 | #ifdef CONFIG_SMP |
10e2f1ac | 7210 | |
d72cf624 | 7211 | /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ |
18c31c97 BH |
7212 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); |
7213 | static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); | |
f8858d96 | 7214 | static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); |
10e2f1ac | 7215 | |
9fd81dd5 | 7216 | #ifdef CONFIG_NO_HZ_COMMON |
e022e0d3 PZ |
7217 | |
7218 | static struct { | |
7219 | cpumask_var_t idle_cpus_mask; | |
7220 | atomic_t nr_cpus; | |
f643ea22 | 7221 | int has_blocked; /* Idle CPUS has blocked load */ |
7fd7a9e0 | 7222 | int needs_update; /* Newly idle CPUs need their next_balance collated */ |
e022e0d3 | 7223 | unsigned long next_balance; /* in jiffy units */ |
f643ea22 | 7224 | unsigned long next_blocked; /* Next update of blocked load in jiffies */ |
e022e0d3 PZ |
7225 | } nohz ____cacheline_aligned; |
7226 | ||
9fd81dd5 | 7227 | #endif /* CONFIG_NO_HZ_COMMON */ |
3289bdb4 | 7228 | |
b0fb1eb4 VG |
7229 | static unsigned long cpu_load(struct rq *rq) |
7230 | { | |
7231 | return cfs_rq_load_avg(&rq->cfs); | |
7232 | } | |
7233 | ||
3318544b VG |
7234 | /* |
7235 | * cpu_load_without - compute CPU load without any contributions from *p | |
7236 | * @cpu: the CPU which load is requested | |
7237 | * @p: the task which load should be discounted | |
7238 | * | |
7239 | * The load of a CPU is defined by the load of tasks currently enqueued on that | |
7240 | * CPU as well as tasks which are currently sleeping after an execution on that | |
7241 | * CPU. | |
7242 | * | |
7243 | * This method returns the load of the specified CPU by discounting the load of | |
7244 | * the specified task, whenever the task is currently contributing to the CPU | |
7245 | * load. | |
7246 | */ | |
7247 | static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) | |
7248 | { | |
7249 | struct cfs_rq *cfs_rq; | |
7250 | unsigned int load; | |
7251 | ||
7252 | /* Task has no contribution or is new */ | |
7253 | if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | |
7254 | return cpu_load(rq); | |
7255 | ||
7256 | cfs_rq = &rq->cfs; | |
7257 | load = READ_ONCE(cfs_rq->avg.load_avg); | |
7258 | ||
7259 | /* Discount task's util from CPU's util */ | |
7260 | lsub_positive(&load, task_h_load(p)); | |
7261 | ||
7262 | return load; | |
7263 | } | |
7264 | ||
9f683953 VG |
7265 | static unsigned long cpu_runnable(struct rq *rq) |
7266 | { | |
7267 | return cfs_rq_runnable_avg(&rq->cfs); | |
7268 | } | |
7269 | ||
070f5e86 VG |
7270 | static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) |
7271 | { | |
7272 | struct cfs_rq *cfs_rq; | |
7273 | unsigned int runnable; | |
7274 | ||
7275 | /* Task has no contribution or is new */ | |
7276 | if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | |
7277 | return cpu_runnable(rq); | |
7278 | ||
7279 | cfs_rq = &rq->cfs; | |
7280 | runnable = READ_ONCE(cfs_rq->avg.runnable_avg); | |
7281 | ||
7282 | /* Discount task's runnable from CPU's runnable */ | |
7283 | lsub_positive(&runnable, p->se.avg.runnable_avg); | |
7284 | ||
7285 | return runnable; | |
7286 | } | |
7287 | ||
ced549fa | 7288 | static unsigned long capacity_of(int cpu) |
029632fb | 7289 | { |
ced549fa | 7290 | return cpu_rq(cpu)->cpu_capacity; |
029632fb PZ |
7291 | } |
7292 | ||
c58d25f3 PZ |
7293 | static void record_wakee(struct task_struct *p) |
7294 | { | |
7295 | /* | |
7296 | * Only decay a single time; tasks that have less then 1 wakeup per | |
7297 | * jiffy will not have built up many flips. | |
7298 | */ | |
7299 | if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { | |
7300 | current->wakee_flips >>= 1; | |
7301 | current->wakee_flip_decay_ts = jiffies; | |
7302 | } | |
7303 | ||
7304 | if (current->last_wakee != p) { | |
7305 | current->last_wakee = p; | |
7306 | current->wakee_flips++; | |
7307 | } | |
7308 | } | |
7309 | ||
63b0e9ed MG |
7310 | /* |
7311 | * Detect M:N waker/wakee relationships via a switching-frequency heuristic. | |
c58d25f3 | 7312 | * |
63b0e9ed | 7313 | * A waker of many should wake a different task than the one last awakened |
c58d25f3 PZ |
7314 | * at a frequency roughly N times higher than one of its wakees. |
7315 | * | |
7316 | * In order to determine whether we should let the load spread vs consolidating | |
7317 | * to shared cache, we look for a minimum 'flip' frequency of llc_size in one | |
7318 | * partner, and a factor of lls_size higher frequency in the other. | |
7319 | * | |
7320 | * With both conditions met, we can be relatively sure that the relationship is | |
7321 | * non-monogamous, with partner count exceeding socket size. | |
7322 | * | |
7323 | * Waker/wakee being client/server, worker/dispatcher, interrupt source or | |
7324 | * whatever is irrelevant, spread criteria is apparent partner count exceeds | |
7325 | * socket size. | |
63b0e9ed | 7326 | */ |
62470419 MW |
7327 | static int wake_wide(struct task_struct *p) |
7328 | { | |
63b0e9ed MG |
7329 | unsigned int master = current->wakee_flips; |
7330 | unsigned int slave = p->wakee_flips; | |
17c891ab | 7331 | int factor = __this_cpu_read(sd_llc_size); |
62470419 | 7332 | |
63b0e9ed MG |
7333 | if (master < slave) |
7334 | swap(master, slave); | |
7335 | if (slave < factor || master < slave * factor) | |
7336 | return 0; | |
7337 | return 1; | |
62470419 MW |
7338 | } |
7339 | ||
90001d67 | 7340 | /* |
d153b153 PZ |
7341 | * The purpose of wake_affine() is to quickly determine on which CPU we can run |
7342 | * soonest. For the purpose of speed we only consider the waking and previous | |
7343 | * CPU. | |
90001d67 | 7344 | * |
7332dec0 MG |
7345 | * wake_affine_idle() - only considers 'now', it check if the waking CPU is |
7346 | * cache-affine and is (or will be) idle. | |
f2cdd9cc PZ |
7347 | * |
7348 | * wake_affine_weight() - considers the weight to reflect the average | |
7349 | * scheduling latency of the CPUs. This seems to work | |
7350 | * for the overloaded case. | |
90001d67 | 7351 | */ |
3b76c4a3 | 7352 | static int |
89a55f56 | 7353 | wake_affine_idle(int this_cpu, int prev_cpu, int sync) |
90001d67 | 7354 | { |
7332dec0 MG |
7355 | /* |
7356 | * If this_cpu is idle, it implies the wakeup is from interrupt | |
7357 | * context. Only allow the move if cache is shared. Otherwise an | |
7358 | * interrupt intensive workload could force all tasks onto one | |
7359 | * node depending on the IO topology or IRQ affinity settings. | |
806486c3 MG |
7360 | * |
7361 | * If the prev_cpu is idle and cache affine then avoid a migration. | |
7362 | * There is no guarantee that the cache hot data from an interrupt | |
7363 | * is more important than cache hot data on the prev_cpu and from | |
7364 | * a cpufreq perspective, it's better to have higher utilisation | |
7365 | * on one CPU. | |
7332dec0 | 7366 | */ |
943d355d RJ |
7367 | if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) |
7368 | return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; | |
90001d67 | 7369 | |
aa3ee4f0 XY |
7370 | if (sync) { |
7371 | struct rq *rq = cpu_rq(this_cpu); | |
7372 | ||
7373 | if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1) | |
7374 | return this_cpu; | |
7375 | } | |
90001d67 | 7376 | |
d8fcb81f JL |
7377 | if (available_idle_cpu(prev_cpu)) |
7378 | return prev_cpu; | |
7379 | ||
3b76c4a3 | 7380 | return nr_cpumask_bits; |
90001d67 PZ |
7381 | } |
7382 | ||
3b76c4a3 | 7383 | static int |
f2cdd9cc PZ |
7384 | wake_affine_weight(struct sched_domain *sd, struct task_struct *p, |
7385 | int this_cpu, int prev_cpu, int sync) | |
90001d67 | 7386 | { |
90001d67 PZ |
7387 | s64 this_eff_load, prev_eff_load; |
7388 | unsigned long task_load; | |
7389 | ||
11f10e54 | 7390 | this_eff_load = cpu_load(cpu_rq(this_cpu)); |
90001d67 | 7391 | |
90001d67 PZ |
7392 | if (sync) { |
7393 | unsigned long current_load = task_h_load(current); | |
7394 | ||
f2cdd9cc | 7395 | if (current_load > this_eff_load) |
3b76c4a3 | 7396 | return this_cpu; |
90001d67 | 7397 | |
f2cdd9cc | 7398 | this_eff_load -= current_load; |
90001d67 PZ |
7399 | } |
7400 | ||
90001d67 PZ |
7401 | task_load = task_h_load(p); |
7402 | ||
f2cdd9cc PZ |
7403 | this_eff_load += task_load; |
7404 | if (sched_feat(WA_BIAS)) | |
7405 | this_eff_load *= 100; | |
7406 | this_eff_load *= capacity_of(prev_cpu); | |
90001d67 | 7407 | |
11f10e54 | 7408 | prev_eff_load = cpu_load(cpu_rq(prev_cpu)); |
f2cdd9cc PZ |
7409 | prev_eff_load -= task_load; |
7410 | if (sched_feat(WA_BIAS)) | |
7411 | prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; | |
7412 | prev_eff_load *= capacity_of(this_cpu); | |
90001d67 | 7413 | |
082f764a MG |
7414 | /* |
7415 | * If sync, adjust the weight of prev_eff_load such that if | |
7416 | * prev_eff == this_eff that select_idle_sibling() will consider | |
7417 | * stacking the wakee on top of the waker if no other CPU is | |
7418 | * idle. | |
7419 | */ | |
7420 | if (sync) | |
7421 | prev_eff_load += 1; | |
7422 | ||
7423 | return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; | |
90001d67 PZ |
7424 | } |
7425 | ||
772bd008 | 7426 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, |
7ebb66a1 | 7427 | int this_cpu, int prev_cpu, int sync) |
098fb9db | 7428 | { |
3b76c4a3 | 7429 | int target = nr_cpumask_bits; |
098fb9db | 7430 | |
89a55f56 | 7431 | if (sched_feat(WA_IDLE)) |
3b76c4a3 | 7432 | target = wake_affine_idle(this_cpu, prev_cpu, sync); |
90001d67 | 7433 | |
3b76c4a3 MG |
7434 | if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) |
7435 | target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); | |
098fb9db | 7436 | |
ceeadb83 | 7437 | schedstat_inc(p->stats.nr_wakeups_affine_attempts); |
39afe5d6 | 7438 | if (target != this_cpu) |
3b76c4a3 | 7439 | return prev_cpu; |
098fb9db | 7440 | |
3b76c4a3 | 7441 | schedstat_inc(sd->ttwu_move_affine); |
ceeadb83 | 7442 | schedstat_inc(p->stats.nr_wakeups_affine); |
3b76c4a3 | 7443 | return target; |
098fb9db IM |
7444 | } |
7445 | ||
aaee1203 | 7446 | static struct sched_group * |
a88b1708 | 7447 | sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); |
aaee1203 PZ |
7448 | |
7449 | /* | |
646ebaf5 | 7450 | * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. |
aaee1203 PZ |
7451 | */ |
7452 | static int | |
646ebaf5 | 7453 | sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) |
aaee1203 PZ |
7454 | { |
7455 | unsigned long load, min_load = ULONG_MAX; | |
83a0a96a NP |
7456 | unsigned int min_exit_latency = UINT_MAX; |
7457 | u64 latest_idle_timestamp = 0; | |
7458 | int least_loaded_cpu = this_cpu; | |
17346452 | 7459 | int shallowest_idle_cpu = -1; |
aaee1203 PZ |
7460 | int i; |
7461 | ||
eaecf41f MR |
7462 | /* Check if we have any choice: */ |
7463 | if (group->group_weight == 1) | |
ae4df9d6 | 7464 | return cpumask_first(sched_group_span(group)); |
eaecf41f | 7465 | |
aaee1203 | 7466 | /* Traverse only the allowed CPUs */ |
3bd37062 | 7467 | for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { |
97886d9d AL |
7468 | struct rq *rq = cpu_rq(i); |
7469 | ||
7470 | if (!sched_core_cookie_match(rq, p)) | |
7471 | continue; | |
7472 | ||
17346452 VK |
7473 | if (sched_idle_cpu(i)) |
7474 | return i; | |
7475 | ||
943d355d | 7476 | if (available_idle_cpu(i)) { |
83a0a96a NP |
7477 | struct cpuidle_state *idle = idle_get_state(rq); |
7478 | if (idle && idle->exit_latency < min_exit_latency) { | |
7479 | /* | |
7480 | * We give priority to a CPU whose idle state | |
7481 | * has the smallest exit latency irrespective | |
7482 | * of any idle timestamp. | |
7483 | */ | |
7484 | min_exit_latency = idle->exit_latency; | |
7485 | latest_idle_timestamp = rq->idle_stamp; | |
7486 | shallowest_idle_cpu = i; | |
7487 | } else if ((!idle || idle->exit_latency == min_exit_latency) && | |
7488 | rq->idle_stamp > latest_idle_timestamp) { | |
7489 | /* | |
7490 | * If equal or no active idle state, then | |
7491 | * the most recently idled CPU might have | |
7492 | * a warmer cache. | |
7493 | */ | |
7494 | latest_idle_timestamp = rq->idle_stamp; | |
7495 | shallowest_idle_cpu = i; | |
7496 | } | |
17346452 | 7497 | } else if (shallowest_idle_cpu == -1) { |
11f10e54 | 7498 | load = cpu_load(cpu_rq(i)); |
18cec7e0 | 7499 | if (load < min_load) { |
83a0a96a NP |
7500 | min_load = load; |
7501 | least_loaded_cpu = i; | |
7502 | } | |
e7693a36 GH |
7503 | } |
7504 | } | |
7505 | ||
17346452 | 7506 | return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; |
aaee1203 | 7507 | } |
e7693a36 | 7508 | |
686d148c | 7509 | static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, |
18bd1b4b BJ |
7510 | int cpu, int prev_cpu, int sd_flag) |
7511 | { | |
93f50f90 | 7512 | int new_cpu = cpu; |
18bd1b4b | 7513 | |
3bd37062 | 7514 | if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) |
6fee85cc BJ |
7515 | return prev_cpu; |
7516 | ||
c976a862 | 7517 | /* |
57abff06 | 7518 | * We need task's util for cpu_util_without, sync it up to |
c469933e | 7519 | * prev_cpu's last_update_time. |
c976a862 VK |
7520 | */ |
7521 | if (!(sd_flag & SD_BALANCE_FORK)) | |
7522 | sync_entity_load_avg(&p->se); | |
7523 | ||
18bd1b4b BJ |
7524 | while (sd) { |
7525 | struct sched_group *group; | |
7526 | struct sched_domain *tmp; | |
7527 | int weight; | |
7528 | ||
7529 | if (!(sd->flags & sd_flag)) { | |
7530 | sd = sd->child; | |
7531 | continue; | |
7532 | } | |
7533 | ||
a88b1708 | 7534 | group = sched_balance_find_dst_group(sd, p, cpu); |
18bd1b4b BJ |
7535 | if (!group) { |
7536 | sd = sd->child; | |
7537 | continue; | |
7538 | } | |
7539 | ||
646ebaf5 | 7540 | new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); |
e90381ea | 7541 | if (new_cpu == cpu) { |
97fb7a0a | 7542 | /* Now try balancing at a lower domain level of 'cpu': */ |
18bd1b4b BJ |
7543 | sd = sd->child; |
7544 | continue; | |
7545 | } | |
7546 | ||
97fb7a0a | 7547 | /* Now try balancing at a lower domain level of 'new_cpu': */ |
18bd1b4b BJ |
7548 | cpu = new_cpu; |
7549 | weight = sd->span_weight; | |
7550 | sd = NULL; | |
7551 | for_each_domain(cpu, tmp) { | |
7552 | if (weight <= tmp->span_weight) | |
7553 | break; | |
7554 | if (tmp->flags & sd_flag) | |
7555 | sd = tmp; | |
7556 | } | |
18bd1b4b BJ |
7557 | } |
7558 | ||
7559 | return new_cpu; | |
7560 | } | |
7561 | ||
97886d9d | 7562 | static inline int __select_idle_cpu(int cpu, struct task_struct *p) |
9fe1f127 | 7563 | { |
97886d9d AL |
7564 | if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && |
7565 | sched_cpu_cookie_match(cpu_rq(cpu), p)) | |
9fe1f127 MG |
7566 | return cpu; |
7567 | ||
7568 | return -1; | |
7569 | } | |
7570 | ||
10e2f1ac | 7571 | #ifdef CONFIG_SCHED_SMT |
ba2591a5 | 7572 | DEFINE_STATIC_KEY_FALSE(sched_smt_present); |
b284909a | 7573 | EXPORT_SYMBOL_GPL(sched_smt_present); |
10e2f1ac PZ |
7574 | |
7575 | static inline void set_idle_cores(int cpu, int val) | |
7576 | { | |
7577 | struct sched_domain_shared *sds; | |
7578 | ||
7579 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); | |
7580 | if (sds) | |
7581 | WRITE_ONCE(sds->has_idle_cores, val); | |
7582 | } | |
7583 | ||
398ba2b0 | 7584 | static inline bool test_idle_cores(int cpu) |
10e2f1ac PZ |
7585 | { |
7586 | struct sched_domain_shared *sds; | |
7587 | ||
c722f35b RR |
7588 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); |
7589 | if (sds) | |
7590 | return READ_ONCE(sds->has_idle_cores); | |
10e2f1ac | 7591 | |
398ba2b0 | 7592 | return false; |
10e2f1ac PZ |
7593 | } |
7594 | ||
7595 | /* | |
7596 | * Scans the local SMT mask to see if the entire core is idle, and records this | |
7597 | * information in sd_llc_shared->has_idle_cores. | |
7598 | * | |
7599 | * Since SMT siblings share all cache levels, inspecting this limited remote | |
7600 | * state should be fairly cheap. | |
7601 | */ | |
1b568f0a | 7602 | void __update_idle_core(struct rq *rq) |
10e2f1ac PZ |
7603 | { |
7604 | int core = cpu_of(rq); | |
7605 | int cpu; | |
7606 | ||
7607 | rcu_read_lock(); | |
398ba2b0 | 7608 | if (test_idle_cores(core)) |
10e2f1ac PZ |
7609 | goto unlock; |
7610 | ||
7611 | for_each_cpu(cpu, cpu_smt_mask(core)) { | |
7612 | if (cpu == core) | |
7613 | continue; | |
7614 | ||
943d355d | 7615 | if (!available_idle_cpu(cpu)) |
10e2f1ac PZ |
7616 | goto unlock; |
7617 | } | |
7618 | ||
7619 | set_idle_cores(core, 1); | |
7620 | unlock: | |
7621 | rcu_read_unlock(); | |
7622 | } | |
7623 | ||
7624 | /* | |
7625 | * Scan the entire LLC domain for idle cores; this dynamically switches off if | |
7626 | * there are no idle cores left in the system; tracked through | |
7627 | * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. | |
7628 | */ | |
9fe1f127 | 7629 | static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) |
10e2f1ac | 7630 | { |
9fe1f127 MG |
7631 | bool idle = true; |
7632 | int cpu; | |
10e2f1ac | 7633 | |
9fe1f127 MG |
7634 | for_each_cpu(cpu, cpu_smt_mask(core)) { |
7635 | if (!available_idle_cpu(cpu)) { | |
7636 | idle = false; | |
7637 | if (*idle_cpu == -1) { | |
23d04d8c | 7638 | if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { |
9fe1f127 MG |
7639 | *idle_cpu = cpu; |
7640 | break; | |
7641 | } | |
7642 | continue; | |
bec2860a | 7643 | } |
9fe1f127 | 7644 | break; |
10e2f1ac | 7645 | } |
23d04d8c | 7646 | if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) |
9fe1f127 | 7647 | *idle_cpu = cpu; |
10e2f1ac PZ |
7648 | } |
7649 | ||
9fe1f127 MG |
7650 | if (idle) |
7651 | return core; | |
10e2f1ac | 7652 | |
9fe1f127 | 7653 | cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); |
10e2f1ac PZ |
7654 | return -1; |
7655 | } | |
7656 | ||
c722f35b RR |
7657 | /* |
7658 | * Scan the local SMT mask for idle CPUs. | |
7659 | */ | |
8aeaffef | 7660 | static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) |
c722f35b RR |
7661 | { |
7662 | int cpu; | |
7663 | ||
3e6efe87 | 7664 | for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { |
b9bae704 AW |
7665 | if (cpu == target) |
7666 | continue; | |
8aeaffef KN |
7667 | /* |
7668 | * Check if the CPU is in the LLC scheduling domain of @target. | |
7669 | * Due to isolcpus, there is no guarantee that all the siblings are in the domain. | |
7670 | */ | |
7671 | if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) | |
7672 | continue; | |
c722f35b RR |
7673 | if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) |
7674 | return cpu; | |
7675 | } | |
7676 | ||
7677 | return -1; | |
7678 | } | |
7679 | ||
10e2f1ac PZ |
7680 | #else /* CONFIG_SCHED_SMT */ |
7681 | ||
9fe1f127 | 7682 | static inline void set_idle_cores(int cpu, int val) |
10e2f1ac | 7683 | { |
9fe1f127 MG |
7684 | } |
7685 | ||
398ba2b0 | 7686 | static inline bool test_idle_cores(int cpu) |
9fe1f127 | 7687 | { |
398ba2b0 | 7688 | return false; |
9fe1f127 MG |
7689 | } |
7690 | ||
7691 | static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) | |
7692 | { | |
97886d9d | 7693 | return __select_idle_cpu(core, p); |
10e2f1ac PZ |
7694 | } |
7695 | ||
8aeaffef | 7696 | static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) |
c722f35b RR |
7697 | { |
7698 | return -1; | |
7699 | } | |
7700 | ||
10e2f1ac PZ |
7701 | #endif /* CONFIG_SCHED_SMT */ |
7702 | ||
7703 | /* | |
7704 | * Scan the LLC domain for idle CPUs; this is dynamically regulated by | |
7705 | * comparing the average scan cost (tracked in sd->avg_scan_cost) against the | |
7706 | * average idle time for this rq (as found in rq->avg_idle). | |
a50bde51 | 7707 | */ |
c722f35b | 7708 | static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) |
10e2f1ac | 7709 | { |
ec4fc801 | 7710 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); |
9fe1f127 | 7711 | int i, cpu, idle_cpu = -1, nr = INT_MAX; |
70fb5ccf | 7712 | struct sched_domain_shared *sd_share; |
10e2f1ac | 7713 | |
bae4ec13 MG |
7714 | cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); |
7715 | ||
70fb5ccf CY |
7716 | if (sched_feat(SIS_UTIL)) { |
7717 | sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); | |
7718 | if (sd_share) { | |
7719 | /* because !--nr is the condition to stop scan */ | |
7720 | nr = READ_ONCE(sd_share->nr_idle_scan) + 1; | |
7721 | /* overloaded LLC is unlikely to have idle cpu/core */ | |
7722 | if (nr == 1) | |
7723 | return -1; | |
7724 | } | |
7725 | } | |
7726 | ||
8881e163 BS |
7727 | if (static_branch_unlikely(&sched_cluster_active)) { |
7728 | struct sched_group *sg = sd->groups; | |
7729 | ||
7730 | if (sg->flags & SD_CLUSTER) { | |
7731 | for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { | |
7732 | if (!cpumask_test_cpu(cpu, cpus)) | |
7733 | continue; | |
7734 | ||
7735 | if (has_idle_core) { | |
7736 | i = select_idle_core(p, cpu, cpus, &idle_cpu); | |
7737 | if ((unsigned int)i < nr_cpumask_bits) | |
7738 | return i; | |
7739 | } else { | |
7740 | if (--nr <= 0) | |
7741 | return -1; | |
7742 | idle_cpu = __select_idle_cpu(cpu, p); | |
7743 | if ((unsigned int)idle_cpu < nr_cpumask_bits) | |
7744 | return idle_cpu; | |
7745 | } | |
7746 | } | |
7747 | cpumask_andnot(cpus, cpus, sched_group_span(sg)); | |
7748 | } | |
7749 | } | |
7750 | ||
56498cfb | 7751 | for_each_cpu_wrap(cpu, cpus, target + 1) { |
c722f35b | 7752 | if (has_idle_core) { |
9fe1f127 MG |
7753 | i = select_idle_core(p, cpu, cpus, &idle_cpu); |
7754 | if ((unsigned int)i < nr_cpumask_bits) | |
7755 | return i; | |
7756 | ||
7757 | } else { | |
8881e163 | 7758 | if (--nr <= 0) |
9fe1f127 | 7759 | return -1; |
97886d9d | 7760 | idle_cpu = __select_idle_cpu(cpu, p); |
9fe1f127 MG |
7761 | if ((unsigned int)idle_cpu < nr_cpumask_bits) |
7762 | break; | |
7763 | } | |
10e2f1ac PZ |
7764 | } |
7765 | ||
c722f35b | 7766 | if (has_idle_core) |
02dbb724 | 7767 | set_idle_cores(target, false); |
9fe1f127 | 7768 | |
9fe1f127 | 7769 | return idle_cpu; |
10e2f1ac PZ |
7770 | } |
7771 | ||
b7a33161 MR |
7772 | /* |
7773 | * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which | |
7774 | * the task fits. If no CPU is big enough, but there are idle ones, try to | |
7775 | * maximize capacity. | |
7776 | */ | |
7777 | static int | |
7778 | select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) | |
7779 | { | |
b759caa1 | 7780 | unsigned long task_util, util_min, util_max, best_cap = 0; |
e5ed0550 | 7781 | int fits, best_fits = 0; |
b7a33161 MR |
7782 | int cpu, best_cpu = -1; |
7783 | struct cpumask *cpus; | |
7784 | ||
ec4fc801 | 7785 | cpus = this_cpu_cpumask_var_ptr(select_rq_mask); |
b7a33161 MR |
7786 | cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); |
7787 | ||
b759caa1 QY |
7788 | task_util = task_util_est(p); |
7789 | util_min = uclamp_eff_value(p, UCLAMP_MIN); | |
7790 | util_max = uclamp_eff_value(p, UCLAMP_MAX); | |
b4c9c9f1 | 7791 | |
7ee7642c | 7792 | for_each_cpu_wrap(cpu, cpus, target) { |
b7a33161 MR |
7793 | unsigned long cpu_cap = capacity_of(cpu); |
7794 | ||
7795 | if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) | |
7796 | continue; | |
e5ed0550 VG |
7797 | |
7798 | fits = util_fits_cpu(task_util, util_min, util_max, cpu); | |
7799 | ||
7800 | /* This CPU fits with all requirements */ | |
7801 | if (fits > 0) | |
b7a33161 | 7802 | return cpu; |
e5ed0550 VG |
7803 | /* |
7804 | * Only the min performance hint (i.e. uclamp_min) doesn't fit. | |
7805 | * Look for the CPU with best capacity. | |
7806 | */ | |
7807 | else if (fits < 0) | |
f1f8d0a2 | 7808 | cpu_cap = get_actual_cpu_capacity(cpu); |
b7a33161 | 7809 | |
e5ed0550 VG |
7810 | /* |
7811 | * First, select CPU which fits better (-1 being better than 0). | |
7812 | * Then, select the one with best capacity at same level. | |
7813 | */ | |
7814 | if ((fits < best_fits) || | |
7815 | ((fits == best_fits) && (cpu_cap > best_cap))) { | |
b7a33161 MR |
7816 | best_cap = cpu_cap; |
7817 | best_cpu = cpu; | |
e5ed0550 | 7818 | best_fits = fits; |
b7a33161 MR |
7819 | } |
7820 | } | |
7821 | ||
7822 | return best_cpu; | |
7823 | } | |
7824 | ||
a2e7f03e QY |
7825 | static inline bool asym_fits_cpu(unsigned long util, |
7826 | unsigned long util_min, | |
7827 | unsigned long util_max, | |
7828 | int cpu) | |
b4c9c9f1 | 7829 | { |
740cf8a7 | 7830 | if (sched_asym_cpucap_active()) |
e5ed0550 VG |
7831 | /* |
7832 | * Return true only if the cpu fully fits the task requirements | |
7833 | * which include the utilization and the performance hints. | |
7834 | */ | |
7835 | return (util_fits_cpu(util, util_min, util_max, cpu) > 0); | |
b4c9c9f1 VG |
7836 | |
7837 | return true; | |
7838 | } | |
7839 | ||
10e2f1ac PZ |
7840 | /* |
7841 | * Try and locate an idle core/thread in the LLC cache domain. | |
a50bde51 | 7842 | */ |
772bd008 | 7843 | static int select_idle_sibling(struct task_struct *p, int prev, int target) |
a50bde51 | 7844 | { |
c722f35b | 7845 | bool has_idle_core = false; |
99bd5e2f | 7846 | struct sched_domain *sd; |
a2e7f03e | 7847 | unsigned long task_util, util_min, util_max; |
22165f61 | 7848 | int i, recent_used_cpu, prev_aff = -1; |
a50bde51 | 7849 | |
b7a33161 | 7850 | /* |
b4c9c9f1 | 7851 | * On asymmetric system, update task utilization because we will check |
b9e6e286 | 7852 | * that the task fits with CPU's capacity. |
b7a33161 | 7853 | */ |
740cf8a7 | 7854 | if (sched_asym_cpucap_active()) { |
b4c9c9f1 | 7855 | sync_entity_load_avg(&p->se); |
a2e7f03e QY |
7856 | task_util = task_util_est(p); |
7857 | util_min = uclamp_eff_value(p, UCLAMP_MIN); | |
7858 | util_max = uclamp_eff_value(p, UCLAMP_MAX); | |
b7a33161 MR |
7859 | } |
7860 | ||
9099a147 | 7861 | /* |
ec4fc801 | 7862 | * per-cpu select_rq_mask usage |
9099a147 PZ |
7863 | */ |
7864 | lockdep_assert_irqs_disabled(); | |
7865 | ||
b4c9c9f1 | 7866 | if ((available_idle_cpu(target) || sched_idle_cpu(target)) && |
a2e7f03e | 7867 | asym_fits_cpu(task_util, util_min, util_max, target)) |
e0a79f52 | 7868 | return target; |
99bd5e2f SS |
7869 | |
7870 | /* | |
97fb7a0a | 7871 | * If the previous CPU is cache affine and idle, don't be stupid: |
99bd5e2f | 7872 | */ |
3c29e651 | 7873 | if (prev != target && cpus_share_cache(prev, target) && |
b4c9c9f1 | 7874 | (available_idle_cpu(prev) || sched_idle_cpu(prev)) && |
8881e163 BS |
7875 | asym_fits_cpu(task_util, util_min, util_max, prev)) { |
7876 | ||
7877 | if (!static_branch_unlikely(&sched_cluster_active) || | |
7878 | cpus_share_resources(prev, target)) | |
7879 | return prev; | |
22165f61 YY |
7880 | |
7881 | prev_aff = prev; | |
8881e163 | 7882 | } |
a50bde51 | 7883 | |
52262ee5 MG |
7884 | /* |
7885 | * Allow a per-cpu kthread to stack with the wakee if the | |
7886 | * kworker thread and the tasks previous CPUs are the same. | |
7887 | * The assumption is that the wakee queued work for the | |
7888 | * per-cpu kthread that is now complete and the wakeup is | |
7889 | * essentially a sync wakeup. An obvious example of this | |
7890 | * pattern is IO completions. | |
7891 | */ | |
7892 | if (is_per_cpu_kthread(current) && | |
8b4e74cc | 7893 | in_task() && |
52262ee5 | 7894 | prev == smp_processor_id() && |
014ba44e | 7895 | this_rq()->nr_running <= 1 && |
a2e7f03e | 7896 | asym_fits_cpu(task_util, util_min, util_max, prev)) { |
52262ee5 MG |
7897 | return prev; |
7898 | } | |
7899 | ||
97fb7a0a | 7900 | /* Check a recently used CPU as a potential idle candidate: */ |
32e839dd | 7901 | recent_used_cpu = p->recent_used_cpu; |
89aafd67 | 7902 | p->recent_used_cpu = prev; |
32e839dd MG |
7903 | if (recent_used_cpu != prev && |
7904 | recent_used_cpu != target && | |
7905 | cpus_share_cache(recent_used_cpu, target) && | |
3c29e651 | 7906 | (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && |
ae2ad293 | 7907 | cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && |
a2e7f03e | 7908 | asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { |
8881e163 BS |
7909 | |
7910 | if (!static_branch_unlikely(&sched_cluster_active) || | |
7911 | cpus_share_resources(recent_used_cpu, target)) | |
7912 | return recent_used_cpu; | |
7913 | ||
22165f61 YY |
7914 | } else { |
7915 | recent_used_cpu = -1; | |
32e839dd MG |
7916 | } |
7917 | ||
b4c9c9f1 VG |
7918 | /* |
7919 | * For asymmetric CPU capacity systems, our domain of interest is | |
7920 | * sd_asym_cpucapacity rather than sd_llc. | |
7921 | */ | |
740cf8a7 | 7922 | if (sched_asym_cpucap_active()) { |
b4c9c9f1 VG |
7923 | sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); |
7924 | /* | |
7925 | * On an asymmetric CPU capacity system where an exclusive | |
7926 | * cpuset defines a symmetric island (i.e. one unique | |
7927 | * capacity_orig value through the cpuset), the key will be set | |
7928 | * but the CPUs within that cpuset will not have a domain with | |
7929 | * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric | |
7930 | * capacity path. | |
7931 | */ | |
7932 | if (sd) { | |
7933 | i = select_idle_capacity(p, sd, target); | |
7934 | return ((unsigned)i < nr_cpumask_bits) ? i : target; | |
7935 | } | |
7936 | } | |
7937 | ||
518cd623 | 7938 | sd = rcu_dereference(per_cpu(sd_llc, target)); |
10e2f1ac PZ |
7939 | if (!sd) |
7940 | return target; | |
772bd008 | 7941 | |
c722f35b | 7942 | if (sched_smt_active()) { |
398ba2b0 | 7943 | has_idle_core = test_idle_cores(target); |
c722f35b RR |
7944 | |
7945 | if (!has_idle_core && cpus_share_cache(prev, target)) { | |
8aeaffef | 7946 | i = select_idle_smt(p, sd, prev); |
c722f35b RR |
7947 | if ((unsigned int)i < nr_cpumask_bits) |
7948 | return i; | |
7949 | } | |
7950 | } | |
7951 | ||
7952 | i = select_idle_cpu(p, sd, has_idle_core, target); | |
10e2f1ac PZ |
7953 | if ((unsigned)i < nr_cpumask_bits) |
7954 | return i; | |
7955 | ||
22165f61 YY |
7956 | /* |
7957 | * For cluster machines which have lower sharing cache like L2 or | |
7958 | * LLC Tag, we tend to find an idle CPU in the target's cluster | |
7959 | * first. But prev_cpu or recent_used_cpu may also be a good candidate, | |
7960 | * use them if possible when no idle CPU found in select_idle_cpu(). | |
7961 | */ | |
7962 | if ((unsigned int)prev_aff < nr_cpumask_bits) | |
7963 | return prev_aff; | |
7964 | if ((unsigned int)recent_used_cpu < nr_cpumask_bits) | |
7965 | return recent_used_cpu; | |
7966 | ||
a50bde51 PZ |
7967 | return target; |
7968 | } | |
231678b7 | 7969 | |
3eb6d6ec DE |
7970 | /** |
7971 | * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. | |
7972 | * @cpu: the CPU to get the utilization for | |
7973 | * @p: task for which the CPU utilization should be predicted or NULL | |
7974 | * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL | |
7d0583cf | 7975 | * @boost: 1 to enable boosting, otherwise 0 |
3eb6d6ec DE |
7976 | * |
7977 | * The unit of the return value must be the same as the one of CPU capacity | |
7978 | * so that CPU utilization can be compared with CPU capacity. | |
7979 | * | |
7980 | * CPU utilization is the sum of running time of runnable tasks plus the | |
7981 | * recent utilization of currently non-runnable tasks on that CPU. | |
7982 | * It represents the amount of CPU capacity currently used by CFS tasks in | |
7983 | * the range [0..max CPU capacity] with max CPU capacity being the CPU | |
7984 | * capacity at f_max. | |
7985 | * | |
7986 | * The estimated CPU utilization is defined as the maximum between CPU | |
7987 | * utilization and sum of the estimated utilization of the currently | |
7988 | * runnable tasks on that CPU. It preserves a utilization "snapshot" of | |
7989 | * previously-executed tasks, which helps better deduce how busy a CPU will | |
7990 | * be when a long-sleeping task wakes up. The contribution to CPU utilization | |
7991 | * of such a task would be significantly decayed at this point of time. | |
7992 | * | |
7d0583cf DE |
7993 | * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). |
7994 | * CPU contention for CFS tasks can be detected by CPU runnable > CPU | |
7995 | * utilization. Boosting is implemented in cpu_util() so that internal | |
7996 | * users (e.g. EAS) can use it next to external users (e.g. schedutil), | |
7997 | * latter via cpu_util_cfs_boost(). | |
7998 | * | |
3eb6d6ec DE |
7999 | * CPU utilization can be higher than the current CPU capacity |
8000 | * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because | |
8001 | * of rounding errors as well as task migrations or wakeups of new tasks. | |
8002 | * CPU utilization has to be capped to fit into the [0..max CPU capacity] | |
8003 | * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) | |
8004 | * could be seen as over-utilized even though CPU1 has 20% of spare CPU | |
8005 | * capacity. CPU utilization is allowed to overshoot current CPU capacity | |
8006 | * though since this is useful for predicting the CPU capacity required | |
8007 | * after task migrations (scheduler-driven DVFS). | |
8008 | * | |
7d0583cf | 8009 | * Return: (Boosted) (estimated) utilization for the specified CPU. |
390031e4 | 8010 | */ |
7d0583cf DE |
8011 | static unsigned long |
8012 | cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) | |
390031e4 QP |
8013 | { |
8014 | struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; | |
4e3c7d33 | 8015 | unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); |
7d0583cf DE |
8016 | unsigned long runnable; |
8017 | ||
8018 | if (boost) { | |
8019 | runnable = READ_ONCE(cfs_rq->avg.runnable_avg); | |
8020 | util = max(util, runnable); | |
8021 | } | |
390031e4 QP |
8022 | |
8023 | /* | |
4e3c7d33 DE |
8024 | * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its |
8025 | * contribution. If @p migrates from another CPU to @cpu add its | |
8026 | * contribution. In all the other cases @cpu is not impacted by the | |
8027 | * migration so its util_avg is already correct. | |
390031e4 | 8028 | */ |
3eb6d6ec | 8029 | if (p && task_cpu(p) == cpu && dst_cpu != cpu) |
736cc6b3 | 8030 | lsub_positive(&util, task_util(p)); |
3eb6d6ec | 8031 | else if (p && task_cpu(p) != cpu && dst_cpu == cpu) |
390031e4 QP |
8032 | util += task_util(p); |
8033 | ||
8034 | if (sched_feat(UTIL_EST)) { | |
4e3c7d33 DE |
8035 | unsigned long util_est; |
8036 | ||
11137d38 | 8037 | util_est = READ_ONCE(cfs_rq->avg.util_est); |
390031e4 QP |
8038 | |
8039 | /* | |
4e3c7d33 | 8040 | * During wake-up @p isn't enqueued yet and doesn't contribute |
11137d38 | 8041 | * to any cpu_rq(cpu)->cfs.avg.util_est. |
4e3c7d33 DE |
8042 | * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p |
8043 | * has been enqueued. | |
8044 | * | |
8045 | * During exec (@dst_cpu = -1) @p is enqueued and does | |
11137d38 | 8046 | * contribute to cpu_rq(cpu)->cfs.util_est. |
4e3c7d33 DE |
8047 | * Remove it to "simulate" cpu_util without @p's contribution. |
8048 | * | |
8049 | * Despite the task_on_rq_queued(@p) check there is still a | |
8050 | * small window for a possible race when an exec | |
8051 | * select_task_rq_fair() races with LB's detach_task(). | |
8052 | * | |
8053 | * detach_task() | |
8054 | * deactivate_task() | |
8055 | * p->on_rq = TASK_ON_RQ_MIGRATING; | |
8056 | * -------------------------------- A | |
8057 | * dequeue_task() \ | |
8058 | * dequeue_task_fair() + Race Time | |
8059 | * util_est_dequeue() / | |
8060 | * -------------------------------- B | |
8061 | * | |
8062 | * The additional check "current == p" is required to further | |
8063 | * reduce the race window. | |
390031e4 QP |
8064 | */ |
8065 | if (dst_cpu == cpu) | |
8066 | util_est += _task_util_est(p); | |
3eb6d6ec | 8067 | else if (p && unlikely(task_on_rq_queued(p) || current == p)) |
4e3c7d33 | 8068 | lsub_positive(&util_est, _task_util_est(p)); |
390031e4 QP |
8069 | |
8070 | util = max(util, util_est); | |
8071 | } | |
8072 | ||
7bc26384 | 8073 | return min(util, arch_scale_cpu_capacity(cpu)); |
390031e4 QP |
8074 | } |
8075 | ||
3eb6d6ec DE |
8076 | unsigned long cpu_util_cfs(int cpu) |
8077 | { | |
7d0583cf DE |
8078 | return cpu_util(cpu, NULL, -1, 0); |
8079 | } | |
8080 | ||
8081 | unsigned long cpu_util_cfs_boost(int cpu) | |
8082 | { | |
8083 | return cpu_util(cpu, NULL, -1, 1); | |
3eb6d6ec DE |
8084 | } |
8085 | ||
4e3c7d33 DE |
8086 | /* |
8087 | * cpu_util_without: compute cpu utilization without any contributions from *p | |
8088 | * @cpu: the CPU which utilization is requested | |
8089 | * @p: the task which utilization should be discounted | |
8090 | * | |
8091 | * The utilization of a CPU is defined by the utilization of tasks currently | |
8092 | * enqueued on that CPU as well as tasks which are currently sleeping after an | |
8093 | * execution on that CPU. | |
8094 | * | |
8095 | * This method returns the utilization of the specified CPU by discounting the | |
8096 | * utilization of the specified task, whenever the task is currently | |
8097 | * contributing to the CPU utilization. | |
8098 | */ | |
8099 | static unsigned long cpu_util_without(int cpu, struct task_struct *p) | |
8100 | { | |
8101 | /* Task has no contribution or is new */ | |
8102 | if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | |
3eb6d6ec | 8103 | p = NULL; |
4e3c7d33 | 8104 | |
7d0583cf | 8105 | return cpu_util(cpu, p, -1, 0); |
4e3c7d33 DE |
8106 | } |
8107 | ||
5d871a63 VG |
8108 | /* |
8109 | * This function computes an effective utilization for the given CPU, to be | |
8110 | * used for frequency selection given the linear relation: f = u * f_max. | |
8111 | * | |
8112 | * The scheduler tracks the following metrics: | |
8113 | * | |
8114 | * cpu_util_{cfs,rt,dl,irq}() | |
8115 | * cpu_bw_dl() | |
8116 | * | |
8117 | * Where the cfs,rt and dl util numbers are tracked with the same metric and | |
8118 | * synchronized windows and are thus directly comparable. | |
8119 | * | |
8120 | * The cfs,rt,dl utilization are the running times measured with rq->clock_task | |
8121 | * which excludes things like IRQ and steal-time. These latter are then accrued | |
8122 | * in the IRQ utilization. | |
8123 | * | |
8124 | * The DL bandwidth number OTOH is not a measured metric but a value computed | |
8125 | * based on the task model parameters and gives the minimal utilization | |
8126 | * required to meet deadlines. | |
8127 | */ | |
8128 | unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, | |
8129 | unsigned long *min, | |
8130 | unsigned long *max) | |
8131 | { | |
8132 | unsigned long util, irq, scale; | |
8133 | struct rq *rq = cpu_rq(cpu); | |
8134 | ||
8135 | scale = arch_scale_cpu_capacity(cpu); | |
8136 | ||
8137 | /* | |
8138 | * Early check to see if IRQ/steal time saturates the CPU, can be | |
8139 | * because of inaccuracies in how we track these -- see | |
8140 | * update_irq_load_avg(). | |
8141 | */ | |
8142 | irq = cpu_util_irq(rq); | |
8143 | if (unlikely(irq >= scale)) { | |
8144 | if (min) | |
8145 | *min = scale; | |
8146 | if (max) | |
8147 | *max = scale; | |
8148 | return scale; | |
8149 | } | |
8150 | ||
8151 | if (min) { | |
8152 | /* | |
8153 | * The minimum utilization returns the highest level between: | |
8154 | * - the computed DL bandwidth needed with the IRQ pressure which | |
8155 | * steals time to the deadline task. | |
8156 | * - The minimum performance requirement for CFS and/or RT. | |
8157 | */ | |
8158 | *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); | |
8159 | ||
8160 | /* | |
8161 | * When an RT task is runnable and uclamp is not used, we must | |
8162 | * ensure that the task will run at maximum compute capacity. | |
8163 | */ | |
8164 | if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) | |
8165 | *min = max(*min, scale); | |
8166 | } | |
8167 | ||
8168 | /* | |
8169 | * Because the time spend on RT/DL tasks is visible as 'lost' time to | |
8170 | * CFS tasks and we use the same metric to track the effective | |
8171 | * utilization (PELT windows are synchronized) we can directly add them | |
8172 | * to obtain the CPU's actual utilization. | |
8173 | */ | |
8174 | util = util_cfs + cpu_util_rt(rq); | |
8175 | util += cpu_util_dl(rq); | |
8176 | ||
8177 | /* | |
8178 | * The maximum hint is a soft bandwidth requirement, which can be lower | |
8179 | * than the actual utilization because of uclamp_max requirements. | |
8180 | */ | |
8181 | if (max) | |
8182 | *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); | |
8183 | ||
8184 | if (util >= scale) | |
8185 | return scale; | |
8186 | ||
8187 | /* | |
8188 | * There is still idle time; further improve the number by using the | |
8189 | * IRQ metric. Because IRQ/steal time is hidden from the task clock we | |
8190 | * need to scale the task numbers: | |
8191 | * | |
8192 | * max - irq | |
8193 | * U' = irq + --------- * U | |
8194 | * max | |
8195 | */ | |
8196 | util = scale_irq_capacity(util, irq, scale); | |
8197 | util += irq; | |
8198 | ||
8199 | return min(scale, util); | |
8200 | } | |
8201 | ||
8202 | unsigned long sched_cpu_util(int cpu) | |
8203 | { | |
8204 | return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); | |
8205 | } | |
8206 | ||
390031e4 | 8207 | /* |
3e8c6c9a VD |
8208 | * energy_env - Utilization landscape for energy estimation. |
8209 | * @task_busy_time: Utilization contribution by the task for which we test the | |
8210 | * placement. Given by eenv_task_busy_time(). | |
8211 | * @pd_busy_time: Utilization of the whole perf domain without the task | |
8212 | * contribution. Given by eenv_pd_busy_time(). | |
8213 | * @cpu_cap: Maximum CPU capacity for the perf domain. | |
8214 | * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). | |
390031e4 | 8215 | */ |
3e8c6c9a VD |
8216 | struct energy_env { |
8217 | unsigned long task_busy_time; | |
8218 | unsigned long pd_busy_time; | |
8219 | unsigned long cpu_cap; | |
8220 | unsigned long pd_cap; | |
8221 | }; | |
8222 | ||
8223 | /* | |
8224 | * Compute the task busy time for compute_energy(). This time cannot be | |
8225 | * injected directly into effective_cpu_util() because of the IRQ scaling. | |
8226 | * The latter only makes sense with the most recent CPUs where the task has | |
8227 | * run. | |
8228 | */ | |
8229 | static inline void eenv_task_busy_time(struct energy_env *eenv, | |
8230 | struct task_struct *p, int prev_cpu) | |
390031e4 | 8231 | { |
3e8c6c9a VD |
8232 | unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); |
8233 | unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); | |
8234 | ||
8235 | if (unlikely(irq >= max_cap)) | |
8236 | busy_time = max_cap; | |
8237 | else | |
8238 | busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); | |
8239 | ||
8240 | eenv->task_busy_time = busy_time; | |
8241 | } | |
8242 | ||
8243 | /* | |
8244 | * Compute the perf_domain (PD) busy time for compute_energy(). Based on the | |
8245 | * utilization for each @pd_cpus, it however doesn't take into account | |
8246 | * clamping since the ratio (utilization / cpu_capacity) is already enough to | |
8247 | * scale the EM reported power consumption at the (eventually clamped) | |
8248 | * cpu_capacity. | |
8249 | * | |
8250 | * The contribution of the task @p for which we want to estimate the | |
3eb6d6ec | 8251 | * energy cost is removed (by cpu_util()) and must be calculated |
3e8c6c9a VD |
8252 | * separately (see eenv_task_busy_time). This ensures: |
8253 | * | |
8254 | * - A stable PD utilization, no matter which CPU of that PD we want to place | |
8255 | * the task on. | |
8256 | * | |
8257 | * - A fair comparison between CPUs as the task contribution (task_util()) | |
8258 | * will always be the same no matter which CPU utilization we rely on | |
8259 | * (util_avg or util_est). | |
8260 | * | |
8261 | * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't | |
8262 | * exceed @eenv->pd_cap. | |
8263 | */ | |
8264 | static inline void eenv_pd_busy_time(struct energy_env *eenv, | |
8265 | struct cpumask *pd_cpus, | |
8266 | struct task_struct *p) | |
8267 | { | |
8268 | unsigned long busy_time = 0; | |
390031e4 QP |
8269 | int cpu; |
8270 | ||
3e8c6c9a | 8271 | for_each_cpu(cpu, pd_cpus) { |
7d0583cf | 8272 | unsigned long util = cpu_util(cpu, p, -1, 0); |
489f1645 | 8273 | |
9c0b4bb7 | 8274 | busy_time += effective_cpu_util(cpu, util, NULL, NULL); |
3e8c6c9a | 8275 | } |
0372e1cf | 8276 | |
3e8c6c9a VD |
8277 | eenv->pd_busy_time = min(eenv->pd_cap, busy_time); |
8278 | } | |
af24bde8 | 8279 | |
3e8c6c9a VD |
8280 | /* |
8281 | * Compute the maximum utilization for compute_energy() when the task @p | |
8282 | * is placed on the cpu @dst_cpu. | |
8283 | * | |
8284 | * Returns the maximum utilization among @eenv->cpus. This utilization can't | |
8285 | * exceed @eenv->cpu_cap. | |
8286 | */ | |
8287 | static inline unsigned long | |
8288 | eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, | |
8289 | struct task_struct *p, int dst_cpu) | |
8290 | { | |
8291 | unsigned long max_util = 0; | |
8292 | int cpu; | |
489f1645 | 8293 | |
3e8c6c9a VD |
8294 | for_each_cpu(cpu, pd_cpus) { |
8295 | struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; | |
7d0583cf | 8296 | unsigned long util = cpu_util(cpu, p, dst_cpu, 1); |
9c0b4bb7 | 8297 | unsigned long eff_util, min, max; |
af24bde8 | 8298 | |
390031e4 | 8299 | /* |
eb92692b QP |
8300 | * Performance domain frequency: utilization clamping |
8301 | * must be considered since it affects the selection | |
8302 | * of the performance domain frequency. | |
7cb7fb5b CL |
8303 | * NOTE: in case RT tasks are running, by default the min |
8304 | * utilization can be max OPP. | |
390031e4 | 8305 | */ |
9c0b4bb7 VG |
8306 | eff_util = effective_cpu_util(cpu, util, &min, &max); |
8307 | ||
8308 | /* Task's uclamp can modify min and max value */ | |
8309 | if (tsk && uclamp_is_used()) { | |
8310 | min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); | |
8311 | ||
8312 | /* | |
8313 | * If there is no active max uclamp constraint, | |
8314 | * directly use task's one, otherwise keep max. | |
8315 | */ | |
8316 | if (uclamp_rq_is_idle(cpu_rq(cpu))) | |
8317 | max = uclamp_eff_value(p, UCLAMP_MAX); | |
8318 | else | |
8319 | max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); | |
8320 | } | |
8321 | ||
8322 | eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); | |
a707df30 | 8323 | max_util = max(max_util, eff_util); |
390031e4 QP |
8324 | } |
8325 | ||
3e8c6c9a VD |
8326 | return min(max_util, eenv->cpu_cap); |
8327 | } | |
8328 | ||
8329 | /* | |
8330 | * compute_energy(): Use the Energy Model to estimate the energy that @pd would | |
8331 | * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task | |
8332 | * contribution is ignored. | |
8333 | */ | |
8334 | static inline unsigned long | |
8335 | compute_energy(struct energy_env *eenv, struct perf_domain *pd, | |
8336 | struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) | |
8337 | { | |
8338 | unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); | |
8339 | unsigned long busy_time = eenv->pd_busy_time; | |
15874a3d | 8340 | unsigned long energy; |
3e8c6c9a VD |
8341 | |
8342 | if (dst_cpu >= 0) | |
8343 | busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); | |
8344 | ||
15874a3d QY |
8345 | energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); |
8346 | ||
8347 | trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); | |
8348 | ||
8349 | return energy; | |
390031e4 QP |
8350 | } |
8351 | ||
732cd75b QP |
8352 | /* |
8353 | * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the | |
8354 | * waking task. find_energy_efficient_cpu() looks for the CPU with maximum | |
8355 | * spare capacity in each performance domain and uses it as a potential | |
8356 | * candidate to execute the task. Then, it uses the Energy Model to figure | |
8357 | * out which of the CPU candidates is the most energy-efficient. | |
8358 | * | |
8359 | * The rationale for this heuristic is as follows. In a performance domain, | |
8360 | * all the most energy efficient CPU candidates (according to the Energy | |
8361 | * Model) are those for which we'll request a low frequency. When there are | |
8362 | * several CPUs for which the frequency request will be the same, we don't | |
8363 | * have enough data to break the tie between them, because the Energy Model | |
8364 | * only includes active power costs. With this model, if we assume that | |
8365 | * frequency requests follow utilization (e.g. using schedutil), the CPU with | |
8366 | * the maximum spare capacity in a performance domain is guaranteed to be among | |
8367 | * the best candidates of the performance domain. | |
8368 | * | |
8369 | * In practice, it could be preferable from an energy standpoint to pack | |
8370 | * small tasks on a CPU in order to let other CPUs go in deeper idle states, | |
8371 | * but that could also hurt our chances to go cluster idle, and we have no | |
8372 | * ways to tell with the current Energy Model if this is actually a good | |
8373 | * idea or not. So, find_energy_efficient_cpu() basically favors | |
8374 | * cluster-packing, and spreading inside a cluster. That should at least be | |
8375 | * a good thing for latency, and this is consistent with the idea that most | |
8376 | * of the energy savings of EAS come from the asymmetry of the system, and | |
8377 | * not so much from breaking the tie between identical CPUs. That's also the | |
8378 | * reason why EAS is enabled in the topology code only for systems where | |
8379 | * SD_ASYM_CPUCAPACITY is set. | |
8380 | * | |
8381 | * NOTE: Forkees are not accepted in the energy-aware wake-up path because | |
8382 | * they don't have any useful utilization data yet and it's not possible to | |
8383 | * forecast their impact on energy consumption. Consequently, they will be | |
686d148c | 8384 | * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out |
732cd75b QP |
8385 | * to be energy-inefficient in some use-cases. The alternative would be to |
8386 | * bias new tasks towards specific types of CPUs first, or to try to infer | |
8387 | * their util_avg from the parent task, but those heuristics could hurt | |
8388 | * other use-cases too. So, until someone finds a better way to solve this, | |
8389 | * let's keep things simple by re-using the existing slow path. | |
8390 | */ | |
732cd75b QP |
8391 | static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) |
8392 | { | |
9b340131 | 8393 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); |
eb92692b | 8394 | unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; |
24422603 QY |
8395 | unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; |
8396 | unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; | |
3e8c6c9a | 8397 | struct root_domain *rd = this_rq()->rd; |
b812fc97 | 8398 | int cpu, best_energy_cpu, target = -1; |
e5ed0550 | 8399 | int prev_fits = -1, best_fits = -1; |
f1f8d0a2 VG |
8400 | unsigned long best_actual_cap = 0; |
8401 | unsigned long prev_actual_cap = 0; | |
732cd75b | 8402 | struct sched_domain *sd; |
eb92692b | 8403 | struct perf_domain *pd; |
3e8c6c9a | 8404 | struct energy_env eenv; |
732cd75b QP |
8405 | |
8406 | rcu_read_lock(); | |
8407 | pd = rcu_dereference(rd->pd); | |
902e786c | 8408 | if (!pd) |
619e090c | 8409 | goto unlock; |
732cd75b QP |
8410 | |
8411 | /* | |
8412 | * Energy-aware wake-up happens on the lowest sched_domain starting | |
8413 | * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. | |
8414 | */ | |
8415 | sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); | |
8416 | while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) | |
8417 | sd = sd->parent; | |
8418 | if (!sd) | |
619e090c PG |
8419 | goto unlock; |
8420 | ||
8421 | target = prev_cpu; | |
732cd75b QP |
8422 | |
8423 | sync_entity_load_avg(&p->se); | |
23c9519d | 8424 | if (!task_util_est(p) && p_util_min == 0) |
732cd75b QP |
8425 | goto unlock; |
8426 | ||
3e8c6c9a VD |
8427 | eenv_task_busy_time(&eenv, p, prev_cpu); |
8428 | ||
732cd75b | 8429 | for (; pd; pd = pd->next) { |
e26fd28d | 8430 | unsigned long util_min = p_util_min, util_max = p_util_max; |
f1f8d0a2 | 8431 | unsigned long cpu_cap, cpu_actual_cap, util; |
6b00a401 | 8432 | long prev_spare_cap = -1, max_spare_cap = -1; |
24422603 | 8433 | unsigned long rq_util_min, rq_util_max; |
6b00a401 | 8434 | unsigned long cur_delta, base_energy; |
732cd75b | 8435 | int max_spare_cap_cpu = -1; |
e5ed0550 | 8436 | int fits, max_fits = -1; |
732cd75b | 8437 | |
9b340131 DE |
8438 | cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); |
8439 | ||
3e8c6c9a VD |
8440 | if (cpumask_empty(cpus)) |
8441 | continue; | |
8442 | ||
f1f8d0a2 | 8443 | /* Account external pressure for the energy estimation */ |
3e8c6c9a | 8444 | cpu = cpumask_first(cpus); |
f1f8d0a2 | 8445 | cpu_actual_cap = get_actual_cpu_capacity(cpu); |
3e8c6c9a | 8446 | |
f1f8d0a2 | 8447 | eenv.cpu_cap = cpu_actual_cap; |
3e8c6c9a VD |
8448 | eenv.pd_cap = 0; |
8449 | ||
8450 | for_each_cpu(cpu, cpus) { | |
e26fd28d QY |
8451 | struct rq *rq = cpu_rq(cpu); |
8452 | ||
f1f8d0a2 | 8453 | eenv.pd_cap += cpu_actual_cap; |
3e8c6c9a VD |
8454 | |
8455 | if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) | |
8456 | continue; | |
8457 | ||
3bd37062 | 8458 | if (!cpumask_test_cpu(cpu, p->cpus_ptr)) |
732cd75b QP |
8459 | continue; |
8460 | ||
7d0583cf | 8461 | util = cpu_util(cpu, p, cpu, 0); |
732cd75b | 8462 | cpu_cap = capacity_of(cpu); |
1d42509e VS |
8463 | |
8464 | /* | |
8465 | * Skip CPUs that cannot satisfy the capacity request. | |
8466 | * IOW, placing the task there would make the CPU | |
8467 | * overutilized. Take uclamp into account to see how | |
8468 | * much capacity we can get out of the CPU; this is | |
a5418be9 | 8469 | * aligned with sched_cpu_util(). |
1d42509e | 8470 | */ |
e26fd28d QY |
8471 | if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { |
8472 | /* | |
8473 | * Open code uclamp_rq_util_with() except for | |
b9e6e286 | 8474 | * the clamp() part. I.e.: apply max aggregation |
e26fd28d QY |
8475 | * only. util_fits_cpu() logic requires to |
8476 | * operate on non clamped util but must use the | |
8477 | * max-aggregated uclamp_{min, max}. | |
8478 | */ | |
8479 | rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); | |
8480 | rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); | |
8481 | ||
8482 | util_min = max(rq_util_min, p_util_min); | |
8483 | util_max = max(rq_util_max, p_util_max); | |
24422603 | 8484 | } |
e5ed0550 VG |
8485 | |
8486 | fits = util_fits_cpu(util, util_min, util_max, cpu); | |
8487 | if (!fits) | |
732cd75b QP |
8488 | continue; |
8489 | ||
3e8c6c9a VD |
8490 | lsub_positive(&cpu_cap, util); |
8491 | ||
732cd75b | 8492 | if (cpu == prev_cpu) { |
8d4c97c1 | 8493 | /* Always use prev_cpu as a candidate. */ |
ad841e56 | 8494 | prev_spare_cap = cpu_cap; |
e5ed0550 VG |
8495 | prev_fits = fits; |
8496 | } else if ((fits > max_fits) || | |
6b00a401 | 8497 | ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { |
8d4c97c1 PG |
8498 | /* |
8499 | * Find the CPU with the maximum spare capacity | |
ad841e56 PG |
8500 | * among the remaining CPUs in the performance |
8501 | * domain. | |
8d4c97c1 | 8502 | */ |
3e8c6c9a | 8503 | max_spare_cap = cpu_cap; |
732cd75b | 8504 | max_spare_cap_cpu = cpu; |
e5ed0550 | 8505 | max_fits = fits; |
732cd75b QP |
8506 | } |
8507 | } | |
8508 | ||
6b00a401 | 8509 | if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) |
8d4c97c1 PG |
8510 | continue; |
8511 | ||
3e8c6c9a | 8512 | eenv_pd_busy_time(&eenv, cpus, p); |
8d4c97c1 | 8513 | /* Compute the 'base' energy of the pd, without @p */ |
b812fc97 | 8514 | base_energy = compute_energy(&eenv, pd, cpus, p, -1); |
8d4c97c1 PG |
8515 | |
8516 | /* Evaluate the energy impact of using prev_cpu. */ | |
6b00a401 | 8517 | if (prev_spare_cap > -1) { |
3e8c6c9a VD |
8518 | prev_delta = compute_energy(&eenv, pd, cpus, p, |
8519 | prev_cpu); | |
8520 | /* CPU utilization has changed */ | |
b812fc97 | 8521 | if (prev_delta < base_energy) |
619e090c | 8522 | goto unlock; |
b812fc97 | 8523 | prev_delta -= base_energy; |
f1f8d0a2 | 8524 | prev_actual_cap = cpu_actual_cap; |
8d4c97c1 PG |
8525 | best_delta = min(best_delta, prev_delta); |
8526 | } | |
8527 | ||
8528 | /* Evaluate the energy impact of using max_spare_cap_cpu. */ | |
ad841e56 | 8529 | if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { |
e5ed0550 VG |
8530 | /* Current best energy cpu fits better */ |
8531 | if (max_fits < best_fits) | |
8532 | continue; | |
8533 | ||
8534 | /* | |
8535 | * Both don't fit performance hint (i.e. uclamp_min) | |
8536 | * but best energy cpu has better capacity. | |
8537 | */ | |
8538 | if ((max_fits < 0) && | |
f1f8d0a2 | 8539 | (cpu_actual_cap <= best_actual_cap)) |
e5ed0550 VG |
8540 | continue; |
8541 | ||
3e8c6c9a VD |
8542 | cur_delta = compute_energy(&eenv, pd, cpus, p, |
8543 | max_spare_cap_cpu); | |
8544 | /* CPU utilization has changed */ | |
b812fc97 | 8545 | if (cur_delta < base_energy) |
619e090c | 8546 | goto unlock; |
b812fc97 | 8547 | cur_delta -= base_energy; |
e5ed0550 VG |
8548 | |
8549 | /* | |
8550 | * Both fit for the task but best energy cpu has lower | |
8551 | * energy impact. | |
8552 | */ | |
8553 | if ((max_fits > 0) && (best_fits > 0) && | |
8554 | (cur_delta >= best_delta)) | |
8555 | continue; | |
8556 | ||
8557 | best_delta = cur_delta; | |
8558 | best_energy_cpu = max_spare_cap_cpu; | |
8559 | best_fits = max_fits; | |
f1f8d0a2 | 8560 | best_actual_cap = cpu_actual_cap; |
732cd75b QP |
8561 | } |
8562 | } | |
732cd75b QP |
8563 | rcu_read_unlock(); |
8564 | ||
e5ed0550 VG |
8565 | if ((best_fits > prev_fits) || |
8566 | ((best_fits > 0) && (best_delta < prev_delta)) || | |
f1f8d0a2 | 8567 | ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) |
619e090c | 8568 | target = best_energy_cpu; |
732cd75b | 8569 | |
619e090c | 8570 | return target; |
732cd75b | 8571 | |
619e090c | 8572 | unlock: |
732cd75b QP |
8573 | rcu_read_unlock(); |
8574 | ||
619e090c | 8575 | return target; |
732cd75b QP |
8576 | } |
8577 | ||
aaee1203 | 8578 | /* |
de91b9cb | 8579 | * select_task_rq_fair: Select target runqueue for the waking task in domains |
3aef1551 | 8580 | * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, |
de91b9cb | 8581 | * SD_BALANCE_FORK, or SD_BALANCE_EXEC. |
aaee1203 | 8582 | * |
97fb7a0a IM |
8583 | * Balances load by selecting the idlest CPU in the idlest group, or under |
8584 | * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. | |
aaee1203 | 8585 | * |
97fb7a0a | 8586 | * Returns the target CPU number. |
aaee1203 | 8587 | */ |
0017d735 | 8588 | static int |
3aef1551 | 8589 | select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) |
aaee1203 | 8590 | { |
3aef1551 | 8591 | int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); |
f1d88b44 | 8592 | struct sched_domain *tmp, *sd = NULL; |
c88d5910 | 8593 | int cpu = smp_processor_id(); |
63b0e9ed | 8594 | int new_cpu = prev_cpu; |
99bd5e2f | 8595 | int want_affine = 0; |
3aef1551 VS |
8596 | /* SD_flags and WF_flags share the first nibble */ |
8597 | int sd_flag = wake_flags & 0xF; | |
c88d5910 | 8598 | |
9099a147 PZ |
8599 | /* |
8600 | * required for stable ->cpus_allowed | |
8601 | */ | |
8602 | lockdep_assert_held(&p->pi_lock); | |
dc824eb8 | 8603 | if (wake_flags & WF_TTWU) { |
c58d25f3 | 8604 | record_wakee(p); |
732cd75b | 8605 | |
ab83f455 PO |
8606 | if ((wake_flags & WF_CURRENT_CPU) && |
8607 | cpumask_test_cpu(cpu, p->cpus_ptr)) | |
8608 | return cpu; | |
8609 | ||
902e786c | 8610 | if (!is_rd_overutilized(this_rq()->rd)) { |
732cd75b QP |
8611 | new_cpu = find_energy_efficient_cpu(p, prev_cpu); |
8612 | if (new_cpu >= 0) | |
8613 | return new_cpu; | |
8614 | new_cpu = prev_cpu; | |
8615 | } | |
8616 | ||
00061968 | 8617 | want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); |
c58d25f3 | 8618 | } |
aaee1203 | 8619 | |
dce840a0 | 8620 | rcu_read_lock(); |
aaee1203 | 8621 | for_each_domain(cpu, tmp) { |
fe3bcfe1 | 8622 | /* |
97fb7a0a | 8623 | * If both 'cpu' and 'prev_cpu' are part of this domain, |
99bd5e2f | 8624 | * cpu is a valid SD_WAKE_AFFINE target. |
fe3bcfe1 | 8625 | */ |
99bd5e2f SS |
8626 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && |
8627 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | |
f1d88b44 VK |
8628 | if (cpu != prev_cpu) |
8629 | new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); | |
8630 | ||
8631 | sd = NULL; /* Prefer wake_affine over balance flags */ | |
29cd8bae | 8632 | break; |
f03542a7 | 8633 | } |
29cd8bae | 8634 | |
2917406c BS |
8635 | /* |
8636 | * Usually only true for WF_EXEC and WF_FORK, as sched_domains | |
8637 | * usually do not have SD_BALANCE_WAKE set. That means wakeup | |
8638 | * will usually go to the fast path. | |
8639 | */ | |
f03542a7 | 8640 | if (tmp->flags & sd_flag) |
29cd8bae | 8641 | sd = tmp; |
63b0e9ed MG |
8642 | else if (!want_affine) |
8643 | break; | |
29cd8bae PZ |
8644 | } |
8645 | ||
f1d88b44 VK |
8646 | if (unlikely(sd)) { |
8647 | /* Slow path */ | |
686d148c | 8648 | new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); |
dc824eb8 | 8649 | } else if (wake_flags & WF_TTWU) { /* XXX always ? */ |
f1d88b44 | 8650 | /* Fast path */ |
f1d88b44 | 8651 | new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); |
e7693a36 | 8652 | } |
dce840a0 | 8653 | rcu_read_unlock(); |
e7693a36 | 8654 | |
c88d5910 | 8655 | return new_cpu; |
e7693a36 | 8656 | } |
0a74bef8 PT |
8657 | |
8658 | /* | |
97fb7a0a | 8659 | * Called immediately before a task is migrated to a new CPU; task_cpu(p) and |
0a74bef8 | 8660 | * cfs_rq_of(p) references at time of call are still valid and identify the |
97fb7a0a | 8661 | * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. |
0a74bef8 | 8662 | */ |
3f9672ba | 8663 | static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) |
0a74bef8 | 8664 | { |
e2f3e35f VD |
8665 | struct sched_entity *se = &p->se; |
8666 | ||
e1f078f5 | 8667 | if (!task_on_rq_migrating(p)) { |
e2f3e35f VD |
8668 | remove_entity_load_avg(se); |
8669 | ||
144d8487 | 8670 | /* |
e2f3e35f VD |
8671 | * Here, the task's PELT values have been updated according to |
8672 | * the current rq's clock. But if that clock hasn't been | |
8673 | * updated in a while, a substantial idle time will be missed, | |
8674 | * leading to an inflation after wake-up on the new rq. | |
8675 | * | |
8676 | * Estimate the missing time from the cfs_rq last_update_time | |
8677 | * and update sched_avg to improve the PELT continuity after | |
8678 | * migration. | |
144d8487 | 8679 | */ |
e2f3e35f | 8680 | migrate_se_pelt_lag(se); |
144d8487 | 8681 | } |
9d89c257 YD |
8682 | |
8683 | /* Tell new CPU we are migrated */ | |
e2f3e35f | 8684 | se->avg.last_update_time = 0; |
3944a927 | 8685 | |
3f9672ba | 8686 | update_scan_period(p, new_cpu); |
0a74bef8 | 8687 | } |
12695578 YD |
8688 | |
8689 | static void task_dead_fair(struct task_struct *p) | |
8690 | { | |
2e0199df PZ |
8691 | struct sched_entity *se = &p->se; |
8692 | ||
8693 | if (se->sched_delayed) { | |
8694 | struct rq_flags rf; | |
8695 | struct rq *rq; | |
8696 | ||
8697 | rq = task_rq_lock(p, &rf); | |
8698 | if (se->sched_delayed) { | |
8699 | update_rq_clock(rq); | |
8700 | dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); | |
8701 | } | |
8702 | task_rq_unlock(rq, p, &rf); | |
8703 | } | |
8704 | ||
8705 | remove_entity_load_avg(se); | |
12695578 | 8706 | } |
6e2df058 | 8707 | |
22d56074 QY |
8708 | /* |
8709 | * Set the max capacity the task is allowed to run at for misfit detection. | |
8710 | */ | |
8711 | static void set_task_max_allowed_capacity(struct task_struct *p) | |
8712 | { | |
8713 | struct asym_cap_data *entry; | |
8714 | ||
8715 | if (!sched_asym_cpucap_active()) | |
8716 | return; | |
8717 | ||
8718 | rcu_read_lock(); | |
8719 | list_for_each_entry_rcu(entry, &asym_cap_list, link) { | |
8720 | cpumask_t *cpumask; | |
8721 | ||
8722 | cpumask = cpu_capacity_span(entry); | |
8723 | if (!cpumask_intersects(p->cpus_ptr, cpumask)) | |
8724 | continue; | |
8725 | ||
8726 | p->max_allowed_capacity = entry->capacity; | |
8727 | break; | |
8728 | } | |
8729 | rcu_read_unlock(); | |
8730 | } | |
8731 | ||
8732 | static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) | |
8733 | { | |
8734 | set_cpus_allowed_common(p, ctx); | |
8735 | set_task_max_allowed_capacity(p); | |
8736 | } | |
8737 | ||
6e2df058 PZ |
8738 | static int |
8739 | balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) | |
8740 | { | |
924e2904 | 8741 | if (sched_fair_runnable(rq)) |
6e2df058 PZ |
8742 | return 1; |
8743 | ||
7d058285 | 8744 | return sched_balance_newidle(rq, rf) != 0; |
6e2df058 | 8745 | } |
22d56074 QY |
8746 | #else |
8747 | static inline void set_task_max_allowed_capacity(struct task_struct *p) {} | |
e7693a36 GH |
8748 | #endif /* CONFIG_SMP */ |
8749 | ||
02479099 PZ |
8750 | static void set_next_buddy(struct sched_entity *se) |
8751 | { | |
c5ae366e | 8752 | for_each_sched_entity(se) { |
f7d2728c | 8753 | if (WARN_ON_ONCE(!se->on_rq)) |
c5ae366e | 8754 | return; |
30400039 JD |
8755 | if (se_is_idle(se)) |
8756 | return; | |
69c80f3e | 8757 | cfs_rq_of(se)->next = se; |
c5ae366e | 8758 | } |
02479099 PZ |
8759 | } |
8760 | ||
bf0f6f24 IM |
8761 | /* |
8762 | * Preempt the current task with a newly woken task if needed: | |
8763 | */ | |
82845683 | 8764 | static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) |
bf0f6f24 | 8765 | { |
af0c8b2b PZ |
8766 | struct task_struct *donor = rq->donor; |
8767 | struct sched_entity *se = &donor->se, *pse = &p->se; | |
8768 | struct cfs_rq *cfs_rq = task_cfs_rq(donor); | |
30400039 | 8769 | int cse_is_idle, pse_is_idle; |
bf0f6f24 | 8770 | |
4ae7d5ce IM |
8771 | if (unlikely(se == pse)) |
8772 | return; | |
8773 | ||
5238cdd3 | 8774 | /* |
163122b7 | 8775 | * This is possible from callers such as attach_tasks(), in which we |
e23edc86 | 8776 | * unconditionally wakeup_preempt() after an enqueue (which may have |
5238cdd3 PT |
8777 | * lead to a throttle). This both saves work and prevents false |
8778 | * next-buddy nomination below. | |
8779 | */ | |
8780 | if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) | |
8781 | return; | |
8782 | ||
493afbd1 | 8783 | if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) { |
3cb63d52 | 8784 | set_next_buddy(pse); |
2f36825b | 8785 | } |
57fdc26d | 8786 | |
aec0a514 BR |
8787 | /* |
8788 | * We can come here with TIF_NEED_RESCHED already set from new task | |
8789 | * wake up path. | |
5238cdd3 PT |
8790 | * |
8791 | * Note: this also catches the edge-case of curr being in a throttled | |
8792 | * group (e.g. via set_curr_task), since update_curr() (in the | |
8793 | * enqueue of curr) will have resulted in resched being set. This | |
8794 | * prevents us from potentially nominating it as a false LAST_BUDDY | |
8795 | * below. | |
aec0a514 | 8796 | */ |
af0c8b2b | 8797 | if (test_tsk_need_resched(rq->curr)) |
aec0a514 BR |
8798 | return; |
8799 | ||
faa42d29 | 8800 | if (!sched_feat(WAKEUP_PREEMPTION)) |
91c234b4 | 8801 | return; |
bf0f6f24 | 8802 | |
464b7527 | 8803 | find_matching_se(&se, &pse); |
09348d75 | 8804 | WARN_ON_ONCE(!pse); |
30400039 JD |
8805 | |
8806 | cse_is_idle = se_is_idle(se); | |
8807 | pse_is_idle = se_is_idle(pse); | |
8808 | ||
8809 | /* | |
faa42d29 | 8810 | * Preempt an idle entity in favor of a non-idle entity (and don't preempt |
30400039 JD |
8811 | * in the inverse case). |
8812 | */ | |
f553741a | 8813 | if (cse_is_idle && !pse_is_idle) { |
8814 | /* | |
8815 | * When non-idle entity preempt an idle entity, | |
8816 | * don't give idle entity slice protection. | |
8817 | */ | |
8818 | cancel_protect_slice(se); | |
30400039 | 8819 | goto preempt; |
f553741a | 8820 | } |
8821 | ||
30400039 JD |
8822 | if (cse_is_idle != pse_is_idle) |
8823 | return; | |
8824 | ||
faa42d29 TD |
8825 | /* |
8826 | * BATCH and IDLE tasks do not preempt others. | |
8827 | */ | |
0df340ce | 8828 | if (unlikely(!normal_policy(p->policy))) |
faa42d29 TD |
8829 | return; |
8830 | ||
147f3efa PZ |
8831 | cfs_rq = cfs_rq_of(se); |
8832 | update_curr(cfs_rq); | |
5e963f2b | 8833 | /* |
85e511df PZ |
8834 | * If @p has a shorter slice than current and @p is eligible, override |
8835 | * current's slice protection in order to allow preemption. | |
8836 | * | |
8837 | * Note that even if @p does not turn out to be the most eligible | |
8838 | * task at this moment, current's slice protection will be lost. | |
8839 | */ | |
f553741a | 8840 | if (do_preempt_short(cfs_rq, pse, se)) |
8841 | cancel_protect_slice(se); | |
147f3efa | 8842 | |
5e963f2b | 8843 | /* |
85e511df | 8844 | * If @p has become the most eligible task, force preemption. |
5e963f2b PZ |
8845 | */ |
8846 | if (pick_eevdf(cfs_rq) == pse) | |
3a7e73a2 | 8847 | goto preempt; |
464b7527 | 8848 | |
3a7e73a2 | 8849 | return; |
a65ac745 | 8850 | |
3a7e73a2 | 8851 | preempt: |
7c70cb94 | 8852 | resched_curr_lazy(rq); |
bf0f6f24 IM |
8853 | } |
8854 | ||
21f56ffe PZ |
8855 | static struct task_struct *pick_task_fair(struct rq *rq) |
8856 | { | |
8857 | struct sched_entity *se; | |
8858 | struct cfs_rq *cfs_rq; | |
8859 | ||
8860 | again: | |
8861 | cfs_rq = &rq->cfs; | |
736c55a0 | 8862 | if (!cfs_rq->nr_queued) |
21f56ffe PZ |
8863 | return NULL; |
8864 | ||
8865 | do { | |
3b3dd89b | 8866 | /* Might not have done put_prev_entity() */ |
c97f54fe PZ |
8867 | if (cfs_rq->curr && cfs_rq->curr->on_rq) |
8868 | update_curr(cfs_rq); | |
21f56ffe | 8869 | |
8e2e13ac PZ |
8870 | if (unlikely(check_cfs_rq_runtime(cfs_rq))) |
8871 | goto again; | |
21f56ffe | 8872 | |
f12e1488 PZ |
8873 | se = pick_next_entity(rq, cfs_rq); |
8874 | if (!se) | |
8875 | goto again; | |
21f56ffe PZ |
8876 | cfs_rq = group_cfs_rq(se); |
8877 | } while (cfs_rq); | |
8878 | ||
8879 | return task_of(se); | |
8880 | } | |
21f56ffe | 8881 | |
dae4320b PZ |
8882 | static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); |
8883 | static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); | |
21f56ffe | 8884 | |
5d7d6056 | 8885 | struct task_struct * |
d8ac8971 | 8886 | pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) |
bf0f6f24 | 8887 | { |
bf0f6f24 | 8888 | struct sched_entity *se; |
678d5718 | 8889 | struct task_struct *p; |
37e117c0 | 8890 | int new_tasks; |
678d5718 | 8891 | |
6e83125c | 8892 | again: |
3b3dd89b PZ |
8893 | p = pick_task_fair(rq); |
8894 | if (!p) | |
38033c37 | 8895 | goto idle; |
3b3dd89b | 8896 | se = &p->se; |
678d5718 | 8897 | |
9674f5ca | 8898 | #ifdef CONFIG_FAIR_GROUP_SCHED |
fd03c5b8 | 8899 | if (prev->sched_class != &fair_sched_class) |
678d5718 PZ |
8900 | goto simple; |
8901 | ||
bd9bbc96 PZ |
8902 | __put_prev_set_next_dl_server(rq, prev, p); |
8903 | ||
678d5718 PZ |
8904 | /* |
8905 | * Because of the set_next_buddy() in dequeue_task_fair() it is rather | |
8906 | * likely that a next task is from the same cgroup as the current. | |
8907 | * | |
8908 | * Therefore attempt to avoid putting and setting the entire cgroup | |
8909 | * hierarchy, only change the part that actually changes. | |
3b3dd89b | 8910 | * |
678d5718 PZ |
8911 | * Since we haven't yet done put_prev_entity and if the selected task |
8912 | * is a different task than we started out with, try and touch the | |
8913 | * least amount of cfs_rqs. | |
8914 | */ | |
8915 | if (prev != p) { | |
8916 | struct sched_entity *pse = &prev->se; | |
3b3dd89b | 8917 | struct cfs_rq *cfs_rq; |
678d5718 PZ |
8918 | |
8919 | while (!(cfs_rq = is_same_group(se, pse))) { | |
8920 | int se_depth = se->depth; | |
8921 | int pse_depth = pse->depth; | |
8922 | ||
8923 | if (se_depth <= pse_depth) { | |
8924 | put_prev_entity(cfs_rq_of(pse), pse); | |
8925 | pse = parent_entity(pse); | |
8926 | } | |
8927 | if (se_depth >= pse_depth) { | |
8928 | set_next_entity(cfs_rq_of(se), se); | |
8929 | se = parent_entity(se); | |
8930 | } | |
8931 | } | |
8932 | ||
8933 | put_prev_entity(cfs_rq, pse); | |
8934 | set_next_entity(cfs_rq, se); | |
606dba2e | 8935 | |
dae4320b | 8936 | __set_next_task_fair(rq, p, true); |
678d5718 | 8937 | } |
bf0f6f24 | 8938 | |
dae4320b | 8939 | return p; |
678d5718 | 8940 | |
678d5718 | 8941 | simple: |
93824900 | 8942 | #endif |
436f3eed | 8943 | put_prev_set_next_task(rq, prev, p); |
8f4d37ec | 8944 | return p; |
38033c37 PZ |
8945 | |
8946 | idle: | |
67692435 PZ |
8947 | if (!rf) |
8948 | return NULL; | |
8949 | ||
7d058285 | 8950 | new_tasks = sched_balance_newidle(rq, rf); |
46f69fa3 | 8951 | |
37e117c0 | 8952 | /* |
7d058285 | 8953 | * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is |
37e117c0 PZ |
8954 | * possible for any higher priority task to appear. In that case we |
8955 | * must re-start the pick_next_entity() loop. | |
8956 | */ | |
e4aa358b | 8957 | if (new_tasks < 0) |
37e117c0 PZ |
8958 | return RETRY_TASK; |
8959 | ||
e4aa358b | 8960 | if (new_tasks > 0) |
38033c37 | 8961 | goto again; |
38033c37 | 8962 | |
23127296 VG |
8963 | /* |
8964 | * rq is about to be idle, check if we need to update the | |
8965 | * lost_idle_time of clock_pelt | |
8966 | */ | |
8967 | update_idle_rq_clock_pelt(rq); | |
8968 | ||
38033c37 | 8969 | return NULL; |
bf0f6f24 IM |
8970 | } |
8971 | ||
fd03c5b8 | 8972 | static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) |
98c2f700 | 8973 | { |
fd03c5b8 | 8974 | return pick_next_task_fair(rq, prev, NULL); |
98c2f700 PZ |
8975 | } |
8976 | ||
557a6bfc PZ |
8977 | static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) |
8978 | { | |
736c55a0 | 8979 | return !!dl_se->rq->cfs.nr_queued; |
557a6bfc PZ |
8980 | } |
8981 | ||
c8a85394 JFG |
8982 | static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) |
8983 | { | |
c8a85394 | 8984 | return pick_task_fair(dl_se->rq); |
557a6bfc PZ |
8985 | } |
8986 | ||
8987 | void fair_server_init(struct rq *rq) | |
8988 | { | |
8989 | struct sched_dl_entity *dl_se = &rq->fair_server; | |
8990 | ||
8991 | init_dl_entity(dl_se); | |
8992 | ||
4686cc59 | 8993 | dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); |
98c2f700 PZ |
8994 | } |
8995 | ||
bf0f6f24 IM |
8996 | /* |
8997 | * Account for a descheduled task: | |
8998 | */ | |
b2d70222 | 8999 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) |
bf0f6f24 IM |
9000 | { |
9001 | struct sched_entity *se = &prev->se; | |
9002 | struct cfs_rq *cfs_rq; | |
9003 | ||
9004 | for_each_sched_entity(se) { | |
9005 | cfs_rq = cfs_rq_of(se); | |
ab6cde26 | 9006 | put_prev_entity(cfs_rq, se); |
bf0f6f24 IM |
9007 | } |
9008 | } | |
9009 | ||
ac53db59 RR |
9010 | /* |
9011 | * sched_yield() is very simple | |
ac53db59 RR |
9012 | */ |
9013 | static void yield_task_fair(struct rq *rq) | |
9014 | { | |
9015 | struct task_struct *curr = rq->curr; | |
9016 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | |
9017 | struct sched_entity *se = &curr->se; | |
9018 | ||
9019 | /* | |
9020 | * Are we the only task in the tree? | |
9021 | */ | |
9022 | if (unlikely(rq->nr_running == 1)) | |
9023 | return; | |
9024 | ||
9025 | clear_buddies(cfs_rq, se); | |
9026 | ||
5e963f2b PZ |
9027 | update_rq_clock(rq); |
9028 | /* | |
9029 | * Update run-time statistics of the 'current'. | |
9030 | */ | |
9031 | update_curr(cfs_rq); | |
9032 | /* | |
9033 | * Tell update_rq_clock() that we've just updated, | |
9034 | * so we don't do microscopic update in schedule() | |
9035 | * and double the fastpath cost. | |
9036 | */ | |
9037 | rq_clock_skip_update(rq); | |
ac53db59 | 9038 | |
5e963f2b | 9039 | se->deadline += calc_delta_fair(se->slice, se); |
ac53db59 RR |
9040 | } |
9041 | ||
0900acf2 | 9042 | static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) |
d95f4122 MG |
9043 | { |
9044 | struct sched_entity *se = &p->se; | |
9045 | ||
5238cdd3 PT |
9046 | /* throttled hierarchies are not runnable */ |
9047 | if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) | |
d95f4122 MG |
9048 | return false; |
9049 | ||
b9e6e286 | 9050 | /* Tell the scheduler that we'd really like se to run next. */ |
d95f4122 MG |
9051 | set_next_buddy(se); |
9052 | ||
d95f4122 MG |
9053 | yield_task_fair(rq); |
9054 | ||
9055 | return true; | |
9056 | } | |
9057 | ||
681f3e68 | 9058 | #ifdef CONFIG_SMP |
bf0f6f24 | 9059 | /************************************************** |
e9c84cb8 PZ |
9060 | * Fair scheduling class load-balancing methods. |
9061 | * | |
9062 | * BASICS | |
9063 | * | |
9064 | * The purpose of load-balancing is to achieve the same basic fairness the | |
97fb7a0a | 9065 | * per-CPU scheduler provides, namely provide a proportional amount of compute |
e9c84cb8 PZ |
9066 | * time to each task. This is expressed in the following equation: |
9067 | * | |
9068 | * W_i,n/P_i == W_j,n/P_j for all i,j (1) | |
9069 | * | |
97fb7a0a | 9070 | * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight |
e9c84cb8 PZ |
9071 | * W_i,0 is defined as: |
9072 | * | |
9073 | * W_i,0 = \Sum_j w_i,j (2) | |
9074 | * | |
97fb7a0a | 9075 | * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight |
1c3de5e1 | 9076 | * is derived from the nice value as per sched_prio_to_weight[]. |
e9c84cb8 PZ |
9077 | * |
9078 | * The weight average is an exponential decay average of the instantaneous | |
9079 | * weight: | |
9080 | * | |
9081 | * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) | |
9082 | * | |
97fb7a0a | 9083 | * C_i is the compute capacity of CPU i, typically it is the |
e9c84cb8 PZ |
9084 | * fraction of 'recent' time available for SCHED_OTHER task execution. But it |
9085 | * can also include other factors [XXX]. | |
9086 | * | |
9087 | * To achieve this balance we define a measure of imbalance which follows | |
9088 | * directly from (1): | |
9089 | * | |
ced549fa | 9090 | * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) |
e9c84cb8 PZ |
9091 | * |
9092 | * We them move tasks around to minimize the imbalance. In the continuous | |
9093 | * function space it is obvious this converges, in the discrete case we get | |
9094 | * a few fun cases generally called infeasible weight scenarios. | |
9095 | * | |
9096 | * [XXX expand on: | |
9097 | * - infeasible weights; | |
9098 | * - local vs global optima in the discrete case. ] | |
9099 | * | |
9100 | * | |
9101 | * SCHED DOMAINS | |
9102 | * | |
9103 | * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) | |
97fb7a0a | 9104 | * for all i,j solution, we create a tree of CPUs that follows the hardware |
e9c84cb8 | 9105 | * topology where each level pairs two lower groups (or better). This results |
97fb7a0a | 9106 | * in O(log n) layers. Furthermore we reduce the number of CPUs going up the |
e9c84cb8 | 9107 | * tree to only the first of the previous level and we decrease the frequency |
402de7fc | 9108 | * of load-balance at each level inversely proportional to the number of CPUs in |
e9c84cb8 PZ |
9109 | * the groups. |
9110 | * | |
9111 | * This yields: | |
9112 | * | |
9113 | * log_2 n 1 n | |
9114 | * \Sum { --- * --- * 2^i } = O(n) (5) | |
9115 | * i = 0 2^i 2^i | |
9116 | * `- size of each group | |
97fb7a0a | 9117 | * | | `- number of CPUs doing load-balance |
e9c84cb8 PZ |
9118 | * | `- freq |
9119 | * `- sum over all levels | |
9120 | * | |
9121 | * Coupled with a limit on how many tasks we can migrate every balance pass, | |
9122 | * this makes (5) the runtime complexity of the balancer. | |
9123 | * | |
9124 | * An important property here is that each CPU is still (indirectly) connected | |
97fb7a0a | 9125 | * to every other CPU in at most O(log n) steps: |
e9c84cb8 PZ |
9126 | * |
9127 | * The adjacency matrix of the resulting graph is given by: | |
9128 | * | |
97a7142f | 9129 | * log_2 n |
e9c84cb8 PZ |
9130 | * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) |
9131 | * k = 0 | |
9132 | * | |
9133 | * And you'll find that: | |
9134 | * | |
9135 | * A^(log_2 n)_i,j != 0 for all i,j (7) | |
9136 | * | |
97fb7a0a | 9137 | * Showing there's indeed a path between every CPU in at most O(log n) steps. |
e9c84cb8 PZ |
9138 | * The task movement gives a factor of O(m), giving a convergence complexity |
9139 | * of: | |
9140 | * | |
9141 | * O(nm log n), n := nr_cpus, m := nr_tasks (8) | |
9142 | * | |
9143 | * | |
9144 | * WORK CONSERVING | |
9145 | * | |
9146 | * In order to avoid CPUs going idle while there's still work to do, new idle | |
97fb7a0a | 9147 | * balancing is more aggressive and has the newly idle CPU iterate up the domain |
e9c84cb8 PZ |
9148 | * tree itself instead of relying on other CPUs to bring it work. |
9149 | * | |
9150 | * This adds some complexity to both (5) and (8) but it reduces the total idle | |
9151 | * time. | |
9152 | * | |
9153 | * [XXX more?] | |
9154 | * | |
9155 | * | |
9156 | * CGROUPS | |
9157 | * | |
9158 | * Cgroups make a horror show out of (2), instead of a simple sum we get: | |
9159 | * | |
9160 | * s_k,i | |
9161 | * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) | |
9162 | * S_k | |
9163 | * | |
9164 | * Where | |
9165 | * | |
9166 | * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) | |
9167 | * | |
97fb7a0a | 9168 | * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. |
e9c84cb8 PZ |
9169 | * |
9170 | * The big problem is S_k, its a global sum needed to compute a local (W_i) | |
9171 | * property. | |
9172 | * | |
9173 | * [XXX write more on how we solve this.. _after_ merging pjt's patches that | |
9174 | * rewrite all of this once again.] | |
97a7142f | 9175 | */ |
bf0f6f24 | 9176 | |
ed387b78 HS |
9177 | static unsigned long __read_mostly max_load_balance_interval = HZ/10; |
9178 | ||
0ec8aa00 PZ |
9179 | enum fbq_type { regular, remote, all }; |
9180 | ||
0b0695f2 | 9181 | /* |
a9723389 VG |
9182 | * 'group_type' describes the group of CPUs at the moment of load balancing. |
9183 | * | |
0b0695f2 | 9184 | * The enum is ordered by pulling priority, with the group with lowest priority |
a9723389 VG |
9185 | * first so the group_type can simply be compared when selecting the busiest |
9186 | * group. See update_sd_pick_busiest(). | |
0b0695f2 | 9187 | */ |
3b1baa64 | 9188 | enum group_type { |
a9723389 | 9189 | /* The group has spare capacity that can be used to run more tasks. */ |
0b0695f2 | 9190 | group_has_spare = 0, |
a9723389 VG |
9191 | /* |
9192 | * The group is fully used and the tasks don't compete for more CPU | |
9193 | * cycles. Nevertheless, some tasks might wait before running. | |
9194 | */ | |
0b0695f2 | 9195 | group_fully_busy, |
a9723389 | 9196 | /* |
c82a6962 VG |
9197 | * One task doesn't fit with CPU's capacity and must be migrated to a |
9198 | * more powerful CPU. | |
a9723389 | 9199 | */ |
3b1baa64 | 9200 | group_misfit_task, |
fee1759e TC |
9201 | /* |
9202 | * Balance SMT group that's fully busy. Can benefit from migration | |
9203 | * a task on SMT with busy sibling to another CPU on idle core. | |
9204 | */ | |
9205 | group_smt_balance, | |
a9723389 VG |
9206 | /* |
9207 | * SD_ASYM_PACKING only: One local CPU with higher capacity is available, | |
9208 | * and the task should be migrated to it instead of running on the | |
9209 | * current CPU. | |
9210 | */ | |
0b0695f2 | 9211 | group_asym_packing, |
a9723389 VG |
9212 | /* |
9213 | * The tasks' affinity constraints previously prevented the scheduler | |
9214 | * from balancing the load across the system. | |
9215 | */ | |
3b1baa64 | 9216 | group_imbalanced, |
a9723389 VG |
9217 | /* |
9218 | * The CPU is overloaded and can't provide expected CPU cycles to all | |
9219 | * tasks. | |
9220 | */ | |
0b0695f2 VG |
9221 | group_overloaded |
9222 | }; | |
9223 | ||
9224 | enum migration_type { | |
9225 | migrate_load = 0, | |
9226 | migrate_util, | |
9227 | migrate_task, | |
9228 | migrate_misfit | |
3b1baa64 MR |
9229 | }; |
9230 | ||
ddcdf6e7 | 9231 | #define LBF_ALL_PINNED 0x01 |
367456c7 | 9232 | #define LBF_NEED_BREAK 0x02 |
6263322c PZ |
9233 | #define LBF_DST_PINNED 0x04 |
9234 | #define LBF_SOME_PINNED 0x08 | |
23fb06d9 | 9235 | #define LBF_ACTIVE_LB 0x10 |
ddcdf6e7 PZ |
9236 | |
9237 | struct lb_env { | |
9238 | struct sched_domain *sd; | |
9239 | ||
ddcdf6e7 | 9240 | struct rq *src_rq; |
85c1e7da | 9241 | int src_cpu; |
ddcdf6e7 PZ |
9242 | |
9243 | int dst_cpu; | |
9244 | struct rq *dst_rq; | |
9245 | ||
88b8dac0 SV |
9246 | struct cpumask *dst_grpmask; |
9247 | int new_dst_cpu; | |
ddcdf6e7 | 9248 | enum cpu_idle_type idle; |
bd939f45 | 9249 | long imbalance; |
b9403130 MW |
9250 | /* The set of CPUs under consideration for load-balancing */ |
9251 | struct cpumask *cpus; | |
9252 | ||
ddcdf6e7 | 9253 | unsigned int flags; |
367456c7 PZ |
9254 | |
9255 | unsigned int loop; | |
9256 | unsigned int loop_break; | |
9257 | unsigned int loop_max; | |
0ec8aa00 PZ |
9258 | |
9259 | enum fbq_type fbq_type; | |
0b0695f2 | 9260 | enum migration_type migration_type; |
163122b7 | 9261 | struct list_head tasks; |
ddcdf6e7 PZ |
9262 | }; |
9263 | ||
029632fb PZ |
9264 | /* |
9265 | * Is this task likely cache-hot: | |
9266 | */ | |
5d5e2b1b | 9267 | static int task_hot(struct task_struct *p, struct lb_env *env) |
029632fb PZ |
9268 | { |
9269 | s64 delta; | |
9270 | ||
5cb9eaa3 | 9271 | lockdep_assert_rq_held(env->src_rq); |
e5673f28 | 9272 | |
029632fb PZ |
9273 | if (p->sched_class != &fair_sched_class) |
9274 | return 0; | |
9275 | ||
1da1843f | 9276 | if (unlikely(task_has_idle_policy(p))) |
029632fb PZ |
9277 | return 0; |
9278 | ||
ec73240b JD |
9279 | /* SMT siblings share cache */ |
9280 | if (env->sd->flags & SD_SHARE_CPUCAPACITY) | |
9281 | return 0; | |
9282 | ||
029632fb PZ |
9283 | /* |
9284 | * Buddy candidates are cache hot: | |
9285 | */ | |
5d5e2b1b | 9286 | if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && |
5e963f2b | 9287 | (&p->se == cfs_rq_of(&p->se)->next)) |
029632fb PZ |
9288 | return 1; |
9289 | ||
9290 | if (sysctl_sched_migration_cost == -1) | |
9291 | return 1; | |
97886d9d AL |
9292 | |
9293 | /* | |
9294 | * Don't migrate task if the task's cookie does not match | |
9295 | * with the destination CPU's core cookie. | |
9296 | */ | |
9297 | if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) | |
9298 | return 1; | |
9299 | ||
029632fb PZ |
9300 | if (sysctl_sched_migration_cost == 0) |
9301 | return 0; | |
9302 | ||
5d5e2b1b | 9303 | delta = rq_clock_task(env->src_rq) - p->se.exec_start; |
029632fb PZ |
9304 | |
9305 | return delta < (s64)sysctl_sched_migration_cost; | |
9306 | } | |
9307 | ||
3a7053b3 | 9308 | #ifdef CONFIG_NUMA_BALANCING |
c1ceac62 | 9309 | /* |
c3856c9c PZ |
9310 | * Returns a positive value, if task migration degrades locality. |
9311 | * Returns 0, if task migration is not affected by locality. | |
9312 | * Returns a negative value, if task migration improves locality i.e migration preferred. | |
c1ceac62 | 9313 | */ |
c3856c9c | 9314 | static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env) |
3a7053b3 | 9315 | { |
b1ad065e | 9316 | struct numa_group *numa_group = rcu_dereference(p->numa_group); |
f35678b6 SD |
9317 | unsigned long src_weight, dst_weight; |
9318 | int src_nid, dst_nid, dist; | |
3a7053b3 | 9319 | |
2a595721 | 9320 | if (!static_branch_likely(&sched_numa_balancing)) |
c3856c9c | 9321 | return 0; |
2a1ed24c | 9322 | |
c3b9bc5b | 9323 | if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) |
c3856c9c | 9324 | return 0; |
7a0f3083 MG |
9325 | |
9326 | src_nid = cpu_to_node(env->src_cpu); | |
9327 | dst_nid = cpu_to_node(env->dst_cpu); | |
9328 | ||
83e1d2cd | 9329 | if (src_nid == dst_nid) |
c3856c9c | 9330 | return 0; |
7a0f3083 | 9331 | |
2a1ed24c SD |
9332 | /* Migrating away from the preferred node is always bad. */ |
9333 | if (src_nid == p->numa_preferred_nid) { | |
9334 | if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) | |
9335 | return 1; | |
9336 | else | |
c3856c9c | 9337 | return 0; |
2a1ed24c | 9338 | } |
b1ad065e | 9339 | |
c1ceac62 RR |
9340 | /* Encourage migration to the preferred node. */ |
9341 | if (dst_nid == p->numa_preferred_nid) | |
c3856c9c | 9342 | return -1; |
b1ad065e | 9343 | |
739294fb | 9344 | /* Leaving a core idle is often worse than degrading locality. */ |
f35678b6 | 9345 | if (env->idle == CPU_IDLE) |
c3856c9c | 9346 | return 0; |
739294fb | 9347 | |
f35678b6 | 9348 | dist = node_distance(src_nid, dst_nid); |
c1ceac62 | 9349 | if (numa_group) { |
f35678b6 SD |
9350 | src_weight = group_weight(p, src_nid, dist); |
9351 | dst_weight = group_weight(p, dst_nid, dist); | |
c1ceac62 | 9352 | } else { |
f35678b6 SD |
9353 | src_weight = task_weight(p, src_nid, dist); |
9354 | dst_weight = task_weight(p, dst_nid, dist); | |
b1ad065e RR |
9355 | } |
9356 | ||
c3856c9c | 9357 | return src_weight - dst_weight; |
7a0f3083 MG |
9358 | } |
9359 | ||
3a7053b3 | 9360 | #else |
c3856c9c | 9361 | static inline long migrate_degrades_locality(struct task_struct *p, |
3a7053b3 MG |
9362 | struct lb_env *env) |
9363 | { | |
c3856c9c | 9364 | return 0; |
7a0f3083 | 9365 | } |
3a7053b3 MG |
9366 | #endif |
9367 | ||
873199d2 HJ |
9368 | /* |
9369 | * Check whether the task is ineligible on the destination cpu | |
9370 | * | |
9371 | * When the PLACE_LAG scheduling feature is enabled and | |
9372 | * dst_cfs_rq->nr_queued is greater than 1, if the task | |
9373 | * is ineligible, it will also be ineligible when | |
9374 | * it is migrated to the destination cpu. | |
9375 | */ | |
9376 | static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu) | |
9377 | { | |
9378 | struct cfs_rq *dst_cfs_rq; | |
9379 | ||
9380 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
9381 | dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; | |
9382 | #else | |
9383 | dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; | |
9384 | #endif | |
9385 | if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && | |
9386 | !entity_eligible(task_cfs_rq(p), &p->se)) | |
9387 | return 1; | |
9388 | ||
9389 | return 0; | |
9390 | } | |
9391 | ||
1e3c88bd PZ |
9392 | /* |
9393 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | |
9394 | */ | |
9395 | static | |
8e45cb54 | 9396 | int can_migrate_task(struct task_struct *p, struct lb_env *env) |
1e3c88bd | 9397 | { |
c3856c9c | 9398 | long degrades, hot; |
e5673f28 | 9399 | |
5cb9eaa3 | 9400 | lockdep_assert_rq_held(env->src_rq); |
a430d99e PZ |
9401 | if (p->sched_task_hot) |
9402 | p->sched_task_hot = 0; | |
e5673f28 | 9403 | |
1e3c88bd PZ |
9404 | /* |
9405 | * We do not migrate tasks that are: | |
61b82dfb VG |
9406 | * 1) delayed dequeued unless we migrate load, or |
9407 | * 2) throttled_lb_pair, or | |
9408 | * 3) cannot be migrated to this CPU due to cpus_ptr, or | |
9409 | * 4) running (obviously), or | |
9410 | * 5) are cache-hot on their current CPU. | |
1e3c88bd | 9411 | */ |
61b82dfb VG |
9412 | if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) |
9413 | return 0; | |
9414 | ||
d3198084 JK |
9415 | if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) |
9416 | return 0; | |
9417 | ||
873199d2 HJ |
9418 | /* |
9419 | * We want to prioritize the migration of eligible tasks. | |
9420 | * For ineligible tasks we soft-limit them and only allow | |
9421 | * them to migrate when nr_balance_failed is non-zero to | |
9422 | * avoid load-balancing trying very hard to balance the load. | |
9423 | */ | |
9424 | if (!env->sd->nr_balance_failed && | |
9425 | task_is_ineligible_on_dst_cpu(p, env->dst_cpu)) | |
9426 | return 0; | |
9427 | ||
b9e6e286 | 9428 | /* Disregard percpu kthreads; they are where they need to be. */ |
3a7956e2 | 9429 | if (kthread_is_per_cpu(p)) |
9bcb959d LC |
9430 | return 0; |
9431 | ||
3bd37062 | 9432 | if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { |
e02e60c1 | 9433 | int cpu; |
88b8dac0 | 9434 | |
ceeadb83 | 9435 | schedstat_inc(p->stats.nr_failed_migrations_affine); |
88b8dac0 | 9436 | |
6263322c PZ |
9437 | env->flags |= LBF_SOME_PINNED; |
9438 | ||
88b8dac0 | 9439 | /* |
97fb7a0a | 9440 | * Remember if this task can be migrated to any other CPU in |
88b8dac0 SV |
9441 | * our sched_group. We may want to revisit it if we couldn't |
9442 | * meet load balance goals by pulling other tasks on src_cpu. | |
9443 | * | |
23fb06d9 VS |
9444 | * Avoid computing new_dst_cpu |
9445 | * - for NEWLY_IDLE | |
9446 | * - if we have already computed one in current iteration | |
9447 | * - if it's an active balance | |
88b8dac0 | 9448 | */ |
23fb06d9 VS |
9449 | if (env->idle == CPU_NEWLY_IDLE || |
9450 | env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) | |
88b8dac0 SV |
9451 | return 0; |
9452 | ||
97fb7a0a | 9453 | /* Prevent to re-select dst_cpu via env's CPUs: */ |
d34e7980 HC |
9454 | cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr); |
9455 | ||
9456 | if (cpu < nr_cpu_ids) { | |
9457 | env->flags |= LBF_DST_PINNED; | |
9458 | env->new_dst_cpu = cpu; | |
88b8dac0 | 9459 | } |
e02e60c1 | 9460 | |
1e3c88bd PZ |
9461 | return 0; |
9462 | } | |
88b8dac0 | 9463 | |
3b03706f | 9464 | /* Record that we found at least one task that could run on dst_cpu */ |
8e45cb54 | 9465 | env->flags &= ~LBF_ALL_PINNED; |
1e3c88bd | 9466 | |
0b9d46fc | 9467 | if (task_on_cpu(env->src_rq, p)) { |
ceeadb83 | 9468 | schedstat_inc(p->stats.nr_failed_migrations_running); |
1e3c88bd PZ |
9469 | return 0; |
9470 | } | |
9471 | ||
9472 | /* | |
9473 | * Aggressive migration if: | |
23fb06d9 VS |
9474 | * 1) active balance |
9475 | * 2) destination numa is preferred | |
9476 | * 3) task is cache cold, or | |
9477 | * 4) too many balance attempts have failed. | |
1e3c88bd | 9478 | */ |
23fb06d9 VS |
9479 | if (env->flags & LBF_ACTIVE_LB) |
9480 | return 1; | |
9481 | ||
c3856c9c PZ |
9482 | degrades = migrate_degrades_locality(p, env); |
9483 | if (!degrades) | |
9484 | hot = task_hot(p, env); | |
9485 | else | |
9486 | hot = degrades > 0; | |
3a7053b3 | 9487 | |
c3856c9c PZ |
9488 | if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { |
9489 | if (hot) | |
a430d99e | 9490 | p->sched_task_hot = 1; |
1e3c88bd PZ |
9491 | return 1; |
9492 | } | |
9493 | ||
ceeadb83 | 9494 | schedstat_inc(p->stats.nr_failed_migrations_hot); |
4e2dcb73 | 9495 | return 0; |
1e3c88bd PZ |
9496 | } |
9497 | ||
897c395f | 9498 | /* |
163122b7 KT |
9499 | * detach_task() -- detach the task for the migration specified in env |
9500 | */ | |
9501 | static void detach_task(struct task_struct *p, struct lb_env *env) | |
9502 | { | |
5cb9eaa3 | 9503 | lockdep_assert_rq_held(env->src_rq); |
163122b7 | 9504 | |
a430d99e PZ |
9505 | if (p->sched_task_hot) { |
9506 | p->sched_task_hot = 0; | |
9507 | schedstat_inc(env->sd->lb_hot_gained[env->idle]); | |
9508 | schedstat_inc(p->stats.nr_forced_migrations); | |
9509 | } | |
9510 | ||
5704ac0a | 9511 | deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); |
163122b7 KT |
9512 | set_task_cpu(p, env->dst_cpu); |
9513 | } | |
9514 | ||
897c395f | 9515 | /* |
e5673f28 | 9516 | * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as |
897c395f | 9517 | * part of active balancing operations within "domain". |
897c395f | 9518 | * |
e5673f28 | 9519 | * Returns a task if successful and NULL otherwise. |
897c395f | 9520 | */ |
e5673f28 | 9521 | static struct task_struct *detach_one_task(struct lb_env *env) |
897c395f | 9522 | { |
93824900 | 9523 | struct task_struct *p; |
897c395f | 9524 | |
5cb9eaa3 | 9525 | lockdep_assert_rq_held(env->src_rq); |
e5673f28 | 9526 | |
93824900 UR |
9527 | list_for_each_entry_reverse(p, |
9528 | &env->src_rq->cfs_tasks, se.group_node) { | |
367456c7 PZ |
9529 | if (!can_migrate_task(p, env)) |
9530 | continue; | |
897c395f | 9531 | |
163122b7 | 9532 | detach_task(p, env); |
e5673f28 | 9533 | |
367456c7 | 9534 | /* |
e5673f28 | 9535 | * Right now, this is only the second place where |
163122b7 | 9536 | * lb_gained[env->idle] is updated (other is detach_tasks) |
e5673f28 | 9537 | * so we can safely collect stats here rather than |
163122b7 | 9538 | * inside detach_tasks(). |
367456c7 | 9539 | */ |
ae92882e | 9540 | schedstat_inc(env->sd->lb_gained[env->idle]); |
e5673f28 | 9541 | return p; |
897c395f | 9542 | } |
e5673f28 | 9543 | return NULL; |
897c395f PZ |
9544 | } |
9545 | ||
5d6523eb | 9546 | /* |
0b0695f2 | 9547 | * detach_tasks() -- tries to detach up to imbalance load/util/tasks from |
163122b7 | 9548 | * busiest_rq, as part of a balancing operation within domain "sd". |
5d6523eb | 9549 | * |
163122b7 | 9550 | * Returns number of detached tasks if successful and 0 otherwise. |
5d6523eb | 9551 | */ |
163122b7 | 9552 | static int detach_tasks(struct lb_env *env) |
1e3c88bd | 9553 | { |
5d6523eb | 9554 | struct list_head *tasks = &env->src_rq->cfs_tasks; |
0b0695f2 | 9555 | unsigned long util, load; |
5d6523eb | 9556 | struct task_struct *p; |
163122b7 KT |
9557 | int detached = 0; |
9558 | ||
5cb9eaa3 | 9559 | lockdep_assert_rq_held(env->src_rq); |
1e3c88bd | 9560 | |
acb4decc AL |
9561 | /* |
9562 | * Source run queue has been emptied by another CPU, clear | |
9563 | * LBF_ALL_PINNED flag as we will not test any task. | |
9564 | */ | |
9565 | if (env->src_rq->nr_running <= 1) { | |
9566 | env->flags &= ~LBF_ALL_PINNED; | |
9567 | return 0; | |
9568 | } | |
9569 | ||
bd939f45 | 9570 | if (env->imbalance <= 0) |
5d6523eb | 9571 | return 0; |
1e3c88bd | 9572 | |
5d6523eb | 9573 | while (!list_empty(tasks)) { |
985d3a4c YD |
9574 | /* |
9575 | * We don't want to steal all, otherwise we may be treated likewise, | |
9576 | * which could at worst lead to a livelock crash. | |
9577 | */ | |
38d707c5 | 9578 | if (env->idle && env->src_rq->nr_running <= 1) |
985d3a4c YD |
9579 | break; |
9580 | ||
367456c7 | 9581 | env->loop++; |
2feab249 JD |
9582 | /* We've more or less seen every task there is, call it quits */ |
9583 | if (env->loop > env->loop_max) | |
367456c7 | 9584 | break; |
5d6523eb PZ |
9585 | |
9586 | /* take a breather every nr_migrate tasks */ | |
367456c7 | 9587 | if (env->loop > env->loop_break) { |
c59862f8 | 9588 | env->loop_break += SCHED_NR_MIGRATE_BREAK; |
8e45cb54 | 9589 | env->flags |= LBF_NEED_BREAK; |
ee00e66f | 9590 | break; |
a195f004 | 9591 | } |
1e3c88bd | 9592 | |
7e9518ba VG |
9593 | p = list_last_entry(tasks, struct task_struct, se.group_node); |
9594 | ||
d3198084 | 9595 | if (!can_migrate_task(p, env)) |
367456c7 PZ |
9596 | goto next; |
9597 | ||
0b0695f2 VG |
9598 | switch (env->migration_type) { |
9599 | case migrate_load: | |
01cfcde9 VG |
9600 | /* |
9601 | * Depending of the number of CPUs and tasks and the | |
9602 | * cgroup hierarchy, task_h_load() can return a null | |
9603 | * value. Make sure that env->imbalance decreases | |
9604 | * otherwise detach_tasks() will stop only after | |
9605 | * detaching up to loop_max tasks. | |
9606 | */ | |
9607 | load = max_t(unsigned long, task_h_load(p), 1); | |
5d6523eb | 9608 | |
0b0695f2 VG |
9609 | if (sched_feat(LB_MIN) && |
9610 | load < 16 && !env->sd->nr_balance_failed) | |
9611 | goto next; | |
367456c7 | 9612 | |
6cf82d55 VG |
9613 | /* |
9614 | * Make sure that we don't migrate too much load. | |
9615 | * Nevertheless, let relax the constraint if | |
9616 | * scheduler fails to find a good waiting task to | |
9617 | * migrate. | |
9618 | */ | |
39a2a6eb | 9619 | if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) |
0b0695f2 VG |
9620 | goto next; |
9621 | ||
9622 | env->imbalance -= load; | |
9623 | break; | |
9624 | ||
9625 | case migrate_util: | |
9626 | util = task_util_est(p); | |
9627 | ||
3af7524b | 9628 | if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) |
0b0695f2 VG |
9629 | goto next; |
9630 | ||
9631 | env->imbalance -= util; | |
9632 | break; | |
9633 | ||
9634 | case migrate_task: | |
9635 | env->imbalance--; | |
9636 | break; | |
9637 | ||
9638 | case migrate_misfit: | |
c63be7be | 9639 | /* This is not a misfit task */ |
b48e16a6 | 9640 | if (task_fits_cpu(p, env->src_cpu)) |
0b0695f2 VG |
9641 | goto next; |
9642 | ||
9643 | env->imbalance = 0; | |
9644 | break; | |
9645 | } | |
1e3c88bd | 9646 | |
163122b7 KT |
9647 | detach_task(p, env); |
9648 | list_add(&p->se.group_node, &env->tasks); | |
9649 | ||
9650 | detached++; | |
1e3c88bd | 9651 | |
c1a280b6 | 9652 | #ifdef CONFIG_PREEMPTION |
ee00e66f PZ |
9653 | /* |
9654 | * NEWIDLE balancing is a source of latency, so preemptible | |
163122b7 | 9655 | * kernels will stop after the first task is detached to minimize |
ee00e66f PZ |
9656 | * the critical section. |
9657 | */ | |
5d6523eb | 9658 | if (env->idle == CPU_NEWLY_IDLE) |
ee00e66f | 9659 | break; |
1e3c88bd PZ |
9660 | #endif |
9661 | ||
ee00e66f PZ |
9662 | /* |
9663 | * We only want to steal up to the prescribed amount of | |
0b0695f2 | 9664 | * load/util/tasks. |
ee00e66f | 9665 | */ |
bd939f45 | 9666 | if (env->imbalance <= 0) |
ee00e66f | 9667 | break; |
367456c7 PZ |
9668 | |
9669 | continue; | |
9670 | next: | |
a430d99e PZ |
9671 | if (p->sched_task_hot) |
9672 | schedstat_inc(p->stats.nr_failed_migrations_hot); | |
9673 | ||
93824900 | 9674 | list_move(&p->se.group_node, tasks); |
1e3c88bd | 9675 | } |
5d6523eb | 9676 | |
1e3c88bd | 9677 | /* |
163122b7 KT |
9678 | * Right now, this is one of only two places we collect this stat |
9679 | * so we can safely collect detach_one_task() stats here rather | |
9680 | * than inside detach_one_task(). | |
1e3c88bd | 9681 | */ |
ae92882e | 9682 | schedstat_add(env->sd->lb_gained[env->idle], detached); |
1e3c88bd | 9683 | |
163122b7 KT |
9684 | return detached; |
9685 | } | |
9686 | ||
9687 | /* | |
9688 | * attach_task() -- attach the task detached by detach_task() to its new rq. | |
9689 | */ | |
9690 | static void attach_task(struct rq *rq, struct task_struct *p) | |
9691 | { | |
5cb9eaa3 | 9692 | lockdep_assert_rq_held(rq); |
163122b7 | 9693 | |
09348d75 | 9694 | WARN_ON_ONCE(task_rq(p) != rq); |
5704ac0a | 9695 | activate_task(rq, p, ENQUEUE_NOCLOCK); |
e23edc86 | 9696 | wakeup_preempt(rq, p, 0); |
163122b7 KT |
9697 | } |
9698 | ||
9699 | /* | |
9700 | * attach_one_task() -- attaches the task returned from detach_one_task() to | |
9701 | * its new rq. | |
9702 | */ | |
9703 | static void attach_one_task(struct rq *rq, struct task_struct *p) | |
9704 | { | |
8a8c69c3 PZ |
9705 | struct rq_flags rf; |
9706 | ||
9707 | rq_lock(rq, &rf); | |
5704ac0a | 9708 | update_rq_clock(rq); |
163122b7 | 9709 | attach_task(rq, p); |
8a8c69c3 | 9710 | rq_unlock(rq, &rf); |
163122b7 KT |
9711 | } |
9712 | ||
9713 | /* | |
9714 | * attach_tasks() -- attaches all tasks detached by detach_tasks() to their | |
9715 | * new rq. | |
9716 | */ | |
9717 | static void attach_tasks(struct lb_env *env) | |
9718 | { | |
9719 | struct list_head *tasks = &env->tasks; | |
9720 | struct task_struct *p; | |
8a8c69c3 | 9721 | struct rq_flags rf; |
163122b7 | 9722 | |
8a8c69c3 | 9723 | rq_lock(env->dst_rq, &rf); |
5704ac0a | 9724 | update_rq_clock(env->dst_rq); |
163122b7 KT |
9725 | |
9726 | while (!list_empty(tasks)) { | |
9727 | p = list_first_entry(tasks, struct task_struct, se.group_node); | |
9728 | list_del_init(&p->se.group_node); | |
1e3c88bd | 9729 | |
163122b7 KT |
9730 | attach_task(env->dst_rq, p); |
9731 | } | |
9732 | ||
8a8c69c3 | 9733 | rq_unlock(env->dst_rq, &rf); |
1e3c88bd PZ |
9734 | } |
9735 | ||
b0c79224 | 9736 | #ifdef CONFIG_NO_HZ_COMMON |
1936c53c VG |
9737 | static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) |
9738 | { | |
9739 | if (cfs_rq->avg.load_avg) | |
9740 | return true; | |
9741 | ||
9742 | if (cfs_rq->avg.util_avg) | |
9743 | return true; | |
9744 | ||
9745 | return false; | |
9746 | } | |
9747 | ||
91c27493 | 9748 | static inline bool others_have_blocked(struct rq *rq) |
371bf427 | 9749 | { |
8b936fc1 | 9750 | if (cpu_util_rt(rq)) |
371bf427 VG |
9751 | return true; |
9752 | ||
8b936fc1 | 9753 | if (cpu_util_dl(rq)) |
3727e0e1 VG |
9754 | return true; |
9755 | ||
d4dbc991 | 9756 | if (hw_load_avg(rq)) |
b4eccf5f TG |
9757 | return true; |
9758 | ||
a6965b31 | 9759 | if (cpu_util_irq(rq)) |
91c27493 | 9760 | return true; |
91c27493 | 9761 | |
371bf427 VG |
9762 | return false; |
9763 | } | |
9764 | ||
39b6a429 | 9765 | static inline void update_blocked_load_tick(struct rq *rq) |
b0c79224 | 9766 | { |
39b6a429 VG |
9767 | WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); |
9768 | } | |
b0c79224 | 9769 | |
39b6a429 VG |
9770 | static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) |
9771 | { | |
b0c79224 VS |
9772 | if (!has_blocked) |
9773 | rq->has_blocked_load = 0; | |
9774 | } | |
9775 | #else | |
9776 | static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } | |
9777 | static inline bool others_have_blocked(struct rq *rq) { return false; } | |
39b6a429 | 9778 | static inline void update_blocked_load_tick(struct rq *rq) {} |
b0c79224 VS |
9779 | static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} |
9780 | #endif | |
9781 | ||
bef69dd8 VG |
9782 | static bool __update_blocked_others(struct rq *rq, bool *done) |
9783 | { | |
96fd6c65 | 9784 | bool updated; |
bef69dd8 VG |
9785 | |
9786 | /* | |
9787 | * update_load_avg() can call cpufreq_update_util(). Make sure that RT, | |
9788 | * DL and IRQ signals have been updated before updating CFS. | |
9789 | */ | |
96fd6c65 | 9790 | updated = update_other_load_avgs(rq); |
bef69dd8 VG |
9791 | |
9792 | if (others_have_blocked(rq)) | |
9793 | *done = false; | |
9794 | ||
96fd6c65 | 9795 | return updated; |
bef69dd8 VG |
9796 | } |
9797 | ||
1936c53c VG |
9798 | #ifdef CONFIG_FAIR_GROUP_SCHED |
9799 | ||
bef69dd8 | 9800 | static bool __update_blocked_fair(struct rq *rq, bool *done) |
9e3081ca | 9801 | { |
039ae8bc | 9802 | struct cfs_rq *cfs_rq, *pos; |
bef69dd8 VG |
9803 | bool decayed = false; |
9804 | int cpu = cpu_of(rq); | |
b90f7c9d | 9805 | |
9763b67f PZ |
9806 | /* |
9807 | * Iterates the task_group tree in a bottom up fashion, see | |
9808 | * list_add_leaf_cfs_rq() for details. | |
9809 | */ | |
039ae8bc | 9810 | for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { |
bc427898 VG |
9811 | struct sched_entity *se; |
9812 | ||
bef69dd8 | 9813 | if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { |
fe749158 | 9814 | update_tg_load_avg(cfs_rq); |
4e516076 | 9815 | |
736c55a0 | 9816 | if (cfs_rq->nr_queued == 0) |
e2f3e35f VD |
9817 | update_idle_cfs_rq_clock_pelt(cfs_rq); |
9818 | ||
bef69dd8 VG |
9819 | if (cfs_rq == &rq->cfs) |
9820 | decayed = true; | |
9821 | } | |
9822 | ||
bc427898 VG |
9823 | /* Propagate pending load changes to the parent, if any: */ |
9824 | se = cfs_rq->tg->se[cpu]; | |
9825 | if (se && !skip_blocked_update(se)) | |
02da26ad | 9826 | update_load_avg(cfs_rq_of(se), se, UPDATE_TG); |
a9e7f654 | 9827 | |
039ae8bc VG |
9828 | /* |
9829 | * There can be a lot of idle CPU cgroups. Don't let fully | |
9830 | * decayed cfs_rqs linger on the list. | |
9831 | */ | |
9832 | if (cfs_rq_is_decayed(cfs_rq)) | |
9833 | list_del_leaf_cfs_rq(cfs_rq); | |
9834 | ||
1936c53c VG |
9835 | /* Don't need periodic decay once load/util_avg are null */ |
9836 | if (cfs_rq_has_blocked(cfs_rq)) | |
bef69dd8 | 9837 | *done = false; |
9d89c257 | 9838 | } |
12b04875 | 9839 | |
bef69dd8 | 9840 | return decayed; |
9e3081ca PZ |
9841 | } |
9842 | ||
9763b67f | 9843 | /* |
68520796 | 9844 | * Compute the hierarchical load factor for cfs_rq and all its ascendants. |
9763b67f PZ |
9845 | * This needs to be done in a top-down fashion because the load of a child |
9846 | * group is a fraction of its parents load. | |
9847 | */ | |
68520796 | 9848 | static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) |
9763b67f | 9849 | { |
68520796 VD |
9850 | struct rq *rq = rq_of(cfs_rq); |
9851 | struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; | |
a35b6466 | 9852 | unsigned long now = jiffies; |
68520796 | 9853 | unsigned long load; |
a35b6466 | 9854 | |
68520796 | 9855 | if (cfs_rq->last_h_load_update == now) |
a35b6466 PZ |
9856 | return; |
9857 | ||
0e9f0245 | 9858 | WRITE_ONCE(cfs_rq->h_load_next, NULL); |
68520796 VD |
9859 | for_each_sched_entity(se) { |
9860 | cfs_rq = cfs_rq_of(se); | |
0e9f0245 | 9861 | WRITE_ONCE(cfs_rq->h_load_next, se); |
68520796 VD |
9862 | if (cfs_rq->last_h_load_update == now) |
9863 | break; | |
9864 | } | |
a35b6466 | 9865 | |
68520796 | 9866 | if (!se) { |
7ea241af | 9867 | cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); |
68520796 VD |
9868 | cfs_rq->last_h_load_update = now; |
9869 | } | |
9870 | ||
0e9f0245 | 9871 | while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { |
68520796 | 9872 | load = cfs_rq->h_load; |
7ea241af YD |
9873 | load = div64_ul(load * se->avg.load_avg, |
9874 | cfs_rq_load_avg(cfs_rq) + 1); | |
68520796 VD |
9875 | cfs_rq = group_cfs_rq(se); |
9876 | cfs_rq->h_load = load; | |
9877 | cfs_rq->last_h_load_update = now; | |
9878 | } | |
9763b67f PZ |
9879 | } |
9880 | ||
367456c7 | 9881 | static unsigned long task_h_load(struct task_struct *p) |
230059de | 9882 | { |
367456c7 | 9883 | struct cfs_rq *cfs_rq = task_cfs_rq(p); |
230059de | 9884 | |
68520796 | 9885 | update_cfs_rq_h_load(cfs_rq); |
9d89c257 | 9886 | return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, |
7ea241af | 9887 | cfs_rq_load_avg(cfs_rq) + 1); |
230059de PZ |
9888 | } |
9889 | #else | |
bef69dd8 | 9890 | static bool __update_blocked_fair(struct rq *rq, bool *done) |
9e3081ca | 9891 | { |
6c1d47c0 | 9892 | struct cfs_rq *cfs_rq = &rq->cfs; |
bef69dd8 | 9893 | bool decayed; |
b90f7c9d | 9894 | |
bef69dd8 VG |
9895 | decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); |
9896 | if (cfs_rq_has_blocked(cfs_rq)) | |
9897 | *done = false; | |
b90f7c9d | 9898 | |
bef69dd8 | 9899 | return decayed; |
9e3081ca PZ |
9900 | } |
9901 | ||
367456c7 | 9902 | static unsigned long task_h_load(struct task_struct *p) |
1e3c88bd | 9903 | { |
9d89c257 | 9904 | return p->se.avg.load_avg; |
1e3c88bd | 9905 | } |
230059de | 9906 | #endif |
1e3c88bd | 9907 | |
391b7a53 | 9908 | static void sched_balance_update_blocked_averages(int cpu) |
bef69dd8 VG |
9909 | { |
9910 | bool decayed = false, done = true; | |
9911 | struct rq *rq = cpu_rq(cpu); | |
9912 | struct rq_flags rf; | |
9913 | ||
9914 | rq_lock_irqsave(rq, &rf); | |
39b6a429 | 9915 | update_blocked_load_tick(rq); |
bef69dd8 VG |
9916 | update_rq_clock(rq); |
9917 | ||
9918 | decayed |= __update_blocked_others(rq, &done); | |
9919 | decayed |= __update_blocked_fair(rq, &done); | |
9920 | ||
9921 | update_blocked_load_status(rq, !done); | |
9922 | if (decayed) | |
9923 | cpufreq_update_util(rq, 0); | |
9924 | rq_unlock_irqrestore(rq, &rf); | |
9925 | } | |
9926 | ||
82cf9214 | 9927 | /********** Helpers for sched_balance_find_src_group ************************/ |
caeb178c | 9928 | |
1e3c88bd | 9929 | /* |
33928ed8 | 9930 | * sg_lb_stats - stats of a sched_group required for load-balancing: |
1e3c88bd PZ |
9931 | */ |
9932 | struct sg_lb_stats { | |
33928ed8 IM |
9933 | unsigned long avg_load; /* Avg load over the CPUs of the group */ |
9934 | unsigned long group_load; /* Total load over the CPUs of the group */ | |
9935 | unsigned long group_capacity; /* Capacity over the CPUs of the group */ | |
9936 | unsigned long group_util; /* Total utilization over the CPUs of the group */ | |
e492e1b0 | 9937 | unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ |
33928ed8 | 9938 | unsigned int sum_nr_running; /* Nr of all tasks running in the group */ |
e492e1b0 | 9939 | unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ |
33928ed8 | 9940 | unsigned int idle_cpus; /* Nr of idle CPUs in the group */ |
147c5fc2 | 9941 | unsigned int group_weight; |
caeb178c | 9942 | enum group_type group_type; |
e492e1b0 IM |
9943 | unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ |
9944 | unsigned int group_smt_balance; /* Task on busy SMT be moved */ | |
9945 | unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ | |
0ec8aa00 PZ |
9946 | #ifdef CONFIG_NUMA_BALANCING |
9947 | unsigned int nr_numa_running; | |
9948 | unsigned int nr_preferred_running; | |
9949 | #endif | |
1e3c88bd PZ |
9950 | }; |
9951 | ||
56cf515b | 9952 | /* |
33928ed8 | 9953 | * sd_lb_stats - stats of a sched_domain required for load-balancing: |
56cf515b JK |
9954 | */ |
9955 | struct sd_lb_stats { | |
e492e1b0 IM |
9956 | struct sched_group *busiest; /* Busiest group in this sd */ |
9957 | struct sched_group *local; /* Local group in this sd */ | |
9958 | unsigned long total_load; /* Total load of all groups in sd */ | |
9959 | unsigned long total_capacity; /* Total capacity of all groups in sd */ | |
9960 | unsigned long avg_load; /* Average load across all groups in sd */ | |
33928ed8 | 9961 | unsigned int prefer_sibling; /* Tasks should go to sibling first */ |
e492e1b0 IM |
9962 | |
9963 | struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ | |
9964 | struct sg_lb_stats local_stat; /* Statistics of the local group */ | |
56cf515b JK |
9965 | }; |
9966 | ||
147c5fc2 PZ |
9967 | static inline void init_sd_lb_stats(struct sd_lb_stats *sds) |
9968 | { | |
9969 | /* | |
9970 | * Skimp on the clearing to avoid duplicate work. We can avoid clearing | |
9971 | * local_stat because update_sg_lb_stats() does a full clear/assignment. | |
0b0695f2 VG |
9972 | * We must however set busiest_stat::group_type and |
9973 | * busiest_stat::idle_cpus to the worst busiest group because | |
9974 | * update_sd_pick_busiest() reads these before assignment. | |
147c5fc2 PZ |
9975 | */ |
9976 | *sds = (struct sd_lb_stats){ | |
9977 | .busiest = NULL, | |
9978 | .local = NULL, | |
9979 | .total_load = 0UL, | |
63b2ca30 | 9980 | .total_capacity = 0UL, |
147c5fc2 | 9981 | .busiest_stat = { |
0b0695f2 VG |
9982 | .idle_cpus = UINT_MAX, |
9983 | .group_type = group_has_spare, | |
147c5fc2 PZ |
9984 | }, |
9985 | }; | |
9986 | } | |
9987 | ||
1ca2034e | 9988 | static unsigned long scale_rt_capacity(int cpu) |
1e3c88bd | 9989 | { |
f1f8d0a2 | 9990 | unsigned long max = get_actual_cpu_capacity(cpu); |
1e3c88bd | 9991 | struct rq *rq = cpu_rq(cpu); |
523e979d | 9992 | unsigned long used, free; |
523e979d | 9993 | unsigned long irq; |
b654f7de | 9994 | |
2e62c474 | 9995 | irq = cpu_util_irq(rq); |
cadefd3d | 9996 | |
523e979d VG |
9997 | if (unlikely(irq >= max)) |
9998 | return 1; | |
aa483808 | 9999 | |
467b7d01 TG |
10000 | /* |
10001 | * avg_rt.util_avg and avg_dl.util_avg track binary signals | |
10002 | * (running and not running) with weights 0 and 1024 respectively. | |
467b7d01 | 10003 | */ |
8b936fc1 SH |
10004 | used = cpu_util_rt(rq); |
10005 | used += cpu_util_dl(rq); | |
1e3c88bd | 10006 | |
523e979d VG |
10007 | if (unlikely(used >= max)) |
10008 | return 1; | |
1e3c88bd | 10009 | |
523e979d | 10010 | free = max - used; |
2e62c474 VG |
10011 | |
10012 | return scale_irq_capacity(free, irq, max); | |
1e3c88bd PZ |
10013 | } |
10014 | ||
ced549fa | 10015 | static void update_cpu_capacity(struct sched_domain *sd, int cpu) |
1e3c88bd | 10016 | { |
1ca2034e | 10017 | unsigned long capacity = scale_rt_capacity(cpu); |
1e3c88bd PZ |
10018 | struct sched_group *sdg = sd->groups; |
10019 | ||
ced549fa NP |
10020 | if (!capacity) |
10021 | capacity = 1; | |
1e3c88bd | 10022 | |
a2e90611 VG |
10023 | cpu_rq(cpu)->cpu_capacity = capacity; |
10024 | trace_sched_cpu_capacity_tp(cpu_rq(cpu)); | |
51cf18c9 | 10025 | |
ced549fa | 10026 | sdg->sgc->capacity = capacity; |
bf475ce0 | 10027 | sdg->sgc->min_capacity = capacity; |
e3d6d0cb | 10028 | sdg->sgc->max_capacity = capacity; |
1e3c88bd PZ |
10029 | } |
10030 | ||
63b2ca30 | 10031 | void update_group_capacity(struct sched_domain *sd, int cpu) |
1e3c88bd PZ |
10032 | { |
10033 | struct sched_domain *child = sd->child; | |
10034 | struct sched_group *group, *sdg = sd->groups; | |
e3d6d0cb | 10035 | unsigned long capacity, min_capacity, max_capacity; |
4ec4412e VG |
10036 | unsigned long interval; |
10037 | ||
10038 | interval = msecs_to_jiffies(sd->balance_interval); | |
10039 | interval = clamp(interval, 1UL, max_load_balance_interval); | |
63b2ca30 | 10040 | sdg->sgc->next_update = jiffies + interval; |
1e3c88bd PZ |
10041 | |
10042 | if (!child) { | |
ced549fa | 10043 | update_cpu_capacity(sd, cpu); |
1e3c88bd PZ |
10044 | return; |
10045 | } | |
10046 | ||
dc7ff76e | 10047 | capacity = 0; |
bf475ce0 | 10048 | min_capacity = ULONG_MAX; |
e3d6d0cb | 10049 | max_capacity = 0; |
1e3c88bd | 10050 | |
74a5ce20 PZ |
10051 | if (child->flags & SD_OVERLAP) { |
10052 | /* | |
10053 | * SD_OVERLAP domains cannot assume that child groups | |
10054 | * span the current group. | |
10055 | */ | |
10056 | ||
ae4df9d6 | 10057 | for_each_cpu(cpu, sched_group_span(sdg)) { |
4c58f57f | 10058 | unsigned long cpu_cap = capacity_of(cpu); |
863bffc8 | 10059 | |
4c58f57f PL |
10060 | capacity += cpu_cap; |
10061 | min_capacity = min(cpu_cap, min_capacity); | |
10062 | max_capacity = max(cpu_cap, max_capacity); | |
863bffc8 | 10063 | } |
74a5ce20 PZ |
10064 | } else { |
10065 | /* | |
10066 | * !SD_OVERLAP domains can assume that child groups | |
10067 | * span the current group. | |
97a7142f | 10068 | */ |
74a5ce20 PZ |
10069 | |
10070 | group = child->groups; | |
10071 | do { | |
bf475ce0 MR |
10072 | struct sched_group_capacity *sgc = group->sgc; |
10073 | ||
10074 | capacity += sgc->capacity; | |
10075 | min_capacity = min(sgc->min_capacity, min_capacity); | |
e3d6d0cb | 10076 | max_capacity = max(sgc->max_capacity, max_capacity); |
74a5ce20 PZ |
10077 | group = group->next; |
10078 | } while (group != child->groups); | |
10079 | } | |
1e3c88bd | 10080 | |
63b2ca30 | 10081 | sdg->sgc->capacity = capacity; |
bf475ce0 | 10082 | sdg->sgc->min_capacity = min_capacity; |
e3d6d0cb | 10083 | sdg->sgc->max_capacity = max_capacity; |
1e3c88bd PZ |
10084 | } |
10085 | ||
9d5efe05 | 10086 | /* |
ea67821b VG |
10087 | * Check whether the capacity of the rq has been noticeably reduced by side |
10088 | * activity. The imbalance_pct is used for the threshold. | |
10089 | * Return true is the capacity is reduced | |
9d5efe05 SV |
10090 | */ |
10091 | static inline int | |
ea67821b | 10092 | check_cpu_capacity(struct rq *rq, struct sched_domain *sd) |
9d5efe05 | 10093 | { |
ea67821b | 10094 | return ((rq->cpu_capacity * sd->imbalance_pct) < |
7bc26384 | 10095 | (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); |
9d5efe05 SV |
10096 | } |
10097 | ||
22d56074 QY |
10098 | /* Check if the rq has a misfit task */ |
10099 | static inline bool check_misfit_status(struct rq *rq) | |
a0fe2cf0 | 10100 | { |
22d56074 | 10101 | return rq->misfit_task_load; |
a0fe2cf0 VS |
10102 | } |
10103 | ||
30ce5dab PZ |
10104 | /* |
10105 | * Group imbalance indicates (and tries to solve) the problem where balancing | |
3bd37062 | 10106 | * groups is inadequate due to ->cpus_ptr constraints. |
30ce5dab | 10107 | * |
97fb7a0a IM |
10108 | * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a |
10109 | * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. | |
30ce5dab PZ |
10110 | * Something like: |
10111 | * | |
2b4d5b25 IM |
10112 | * { 0 1 2 3 } { 4 5 6 7 } |
10113 | * * * * * | |
30ce5dab PZ |
10114 | * |
10115 | * If we were to balance group-wise we'd place two tasks in the first group and | |
10116 | * two tasks in the second group. Clearly this is undesired as it will overload | |
97fb7a0a | 10117 | * cpu 3 and leave one of the CPUs in the second group unused. |
30ce5dab PZ |
10118 | * |
10119 | * The current solution to this issue is detecting the skew in the first group | |
6263322c PZ |
10120 | * by noticing the lower domain failed to reach balance and had difficulty |
10121 | * moving tasks due to affinity constraints. | |
30ce5dab PZ |
10122 | * |
10123 | * When this is so detected; this group becomes a candidate for busiest; see | |
ed1b7732 | 10124 | * update_sd_pick_busiest(). And calculate_imbalance() and |
82cf9214 | 10125 | * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it |
30ce5dab PZ |
10126 | * to create an effective group imbalance. |
10127 | * | |
10128 | * This is a somewhat tricky proposition since the next run might not find the | |
10129 | * group imbalance and decide the groups need to be balanced again. A most | |
10130 | * subtle and fragile situation. | |
10131 | */ | |
10132 | ||
6263322c | 10133 | static inline int sg_imbalanced(struct sched_group *group) |
30ce5dab | 10134 | { |
63b2ca30 | 10135 | return group->sgc->imbalance; |
30ce5dab PZ |
10136 | } |
10137 | ||
b37d9316 | 10138 | /* |
ea67821b VG |
10139 | * group_has_capacity returns true if the group has spare capacity that could |
10140 | * be used by some tasks. | |
fb95a5a0 | 10141 | * We consider that a group has spare capacity if the number of task is |
9e91d61d DE |
10142 | * smaller than the number of CPUs or if the utilization is lower than the |
10143 | * available capacity for CFS tasks. | |
ea67821b VG |
10144 | * For the latter, we use a threshold to stabilize the state, to take into |
10145 | * account the variance of the tasks' load and to return true if the available | |
10146 | * capacity in meaningful for the load balancer. | |
10147 | * As an example, an available capacity of 1% can appear but it doesn't make | |
10148 | * any benefit for the load balance. | |
b37d9316 | 10149 | */ |
ea67821b | 10150 | static inline bool |
57abff06 | 10151 | group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) |
b37d9316 | 10152 | { |
5e23e474 | 10153 | if (sgs->sum_nr_running < sgs->group_weight) |
ea67821b | 10154 | return true; |
c61037e9 | 10155 | |
070f5e86 VG |
10156 | if ((sgs->group_capacity * imbalance_pct) < |
10157 | (sgs->group_runnable * 100)) | |
10158 | return false; | |
10159 | ||
ea67821b | 10160 | if ((sgs->group_capacity * 100) > |
57abff06 | 10161 | (sgs->group_util * imbalance_pct)) |
ea67821b | 10162 | return true; |
b37d9316 | 10163 | |
ea67821b VG |
10164 | return false; |
10165 | } | |
10166 | ||
10167 | /* | |
10168 | * group_is_overloaded returns true if the group has more tasks than it can | |
10169 | * handle. | |
10170 | * group_is_overloaded is not equals to !group_has_capacity because a group | |
10171 | * with the exact right number of tasks, has no more spare capacity but is not | |
10172 | * overloaded so both group_has_capacity and group_is_overloaded return | |
10173 | * false. | |
10174 | */ | |
10175 | static inline bool | |
57abff06 | 10176 | group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) |
ea67821b | 10177 | { |
5e23e474 | 10178 | if (sgs->sum_nr_running <= sgs->group_weight) |
ea67821b | 10179 | return false; |
b37d9316 | 10180 | |
ea67821b | 10181 | if ((sgs->group_capacity * 100) < |
57abff06 | 10182 | (sgs->group_util * imbalance_pct)) |
ea67821b | 10183 | return true; |
b37d9316 | 10184 | |
070f5e86 VG |
10185 | if ((sgs->group_capacity * imbalance_pct) < |
10186 | (sgs->group_runnable * 100)) | |
10187 | return true; | |
10188 | ||
ea67821b | 10189 | return false; |
b37d9316 PZ |
10190 | } |
10191 | ||
79a89f92 | 10192 | static inline enum |
57abff06 | 10193 | group_type group_classify(unsigned int imbalance_pct, |
0b0695f2 | 10194 | struct sched_group *group, |
79a89f92 | 10195 | struct sg_lb_stats *sgs) |
caeb178c | 10196 | { |
57abff06 | 10197 | if (group_is_overloaded(imbalance_pct, sgs)) |
caeb178c RR |
10198 | return group_overloaded; |
10199 | ||
10200 | if (sg_imbalanced(group)) | |
10201 | return group_imbalanced; | |
10202 | ||
0b0695f2 VG |
10203 | if (sgs->group_asym_packing) |
10204 | return group_asym_packing; | |
10205 | ||
fee1759e TC |
10206 | if (sgs->group_smt_balance) |
10207 | return group_smt_balance; | |
10208 | ||
3b1baa64 MR |
10209 | if (sgs->group_misfit_task_load) |
10210 | return group_misfit_task; | |
10211 | ||
57abff06 | 10212 | if (!group_has_capacity(imbalance_pct, sgs)) |
0b0695f2 VG |
10213 | return group_fully_busy; |
10214 | ||
10215 | return group_has_spare; | |
caeb178c RR |
10216 | } |
10217 | ||
eefefa71 RN |
10218 | /** |
10219 | * sched_use_asym_prio - Check whether asym_packing priority must be used | |
10220 | * @sd: The scheduling domain of the load balancing | |
10221 | * @cpu: A CPU | |
10222 | * | |
10223 | * Always use CPU priority when balancing load between SMT siblings. When | |
10224 | * balancing load between cores, it is not sufficient that @cpu is idle. Only | |
10225 | * use CPU priority if the whole core is idle. | |
10226 | * | |
10227 | * Returns: True if the priority of @cpu must be followed. False otherwise. | |
10228 | */ | |
10229 | static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) | |
10230 | { | |
fbc44986 AS |
10231 | if (!(sd->flags & SD_ASYM_PACKING)) |
10232 | return false; | |
10233 | ||
eefefa71 RN |
10234 | if (!sched_smt_active()) |
10235 | return true; | |
10236 | ||
10237 | return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); | |
10238 | } | |
10239 | ||
45de2062 AS |
10240 | static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) |
10241 | { | |
10242 | /* | |
10243 | * First check if @dst_cpu can do asym_packing load balance. Only do it | |
10244 | * if it has higher priority than @src_cpu. | |
10245 | */ | |
10246 | return sched_use_asym_prio(sd, dst_cpu) && | |
10247 | sched_asym_prefer(dst_cpu, src_cpu); | |
10248 | } | |
10249 | ||
4006a72b | 10250 | /** |
45de2062 | 10251 | * sched_group_asym - Check if the destination CPU can do asym_packing balance |
c9ca0788 | 10252 | * @env: The load balancing environment |
4006a72b | 10253 | * @sgs: Load-balancing statistics of the candidate busiest group |
c9ca0788 | 10254 | * @group: The candidate busiest group |
4006a72b | 10255 | * |
c9ca0788 RN |
10256 | * @env::dst_cpu can do asym_packing if it has higher priority than the |
10257 | * preferred CPU of @group. | |
4006a72b | 10258 | * |
c9ca0788 RN |
10259 | * Return: true if @env::dst_cpu can do with asym_packing load balance. False |
10260 | * otherwise. | |
4006a72b | 10261 | */ |
aafc917a | 10262 | static inline bool |
45de2062 | 10263 | sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) |
aafc917a | 10264 | { |
c9ca0788 | 10265 | /* |
45de2062 | 10266 | * CPU priorities do not make sense for SMT cores with more than one |
c9ca0788 RN |
10267 | * busy sibling. |
10268 | */ | |
45de2062 AS |
10269 | if ((group->flags & SD_SHARE_CPUCAPACITY) && |
10270 | (sgs->group_weight - sgs->idle_cpus != 1)) | |
10271 | return false; | |
4006a72b | 10272 | |
872aa4de | 10273 | return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu)); |
aafc917a RN |
10274 | } |
10275 | ||
fee1759e TC |
10276 | /* One group has more than one SMT CPU while the other group does not */ |
10277 | static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, | |
10278 | struct sched_group *sg2) | |
10279 | { | |
10280 | if (!sg1 || !sg2) | |
10281 | return false; | |
10282 | ||
10283 | return (sg1->flags & SD_SHARE_CPUCAPACITY) != | |
10284 | (sg2->flags & SD_SHARE_CPUCAPACITY); | |
10285 | } | |
10286 | ||
10287 | static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, | |
10288 | struct sched_group *group) | |
10289 | { | |
38d707c5 | 10290 | if (!env->idle) |
fee1759e TC |
10291 | return false; |
10292 | ||
10293 | /* | |
10294 | * For SMT source group, it is better to move a task | |
10295 | * to a CPU that doesn't have multiple tasks sharing its CPU capacity. | |
10296 | * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY | |
10297 | * will not be on. | |
10298 | */ | |
10299 | if (group->flags & SD_SHARE_CPUCAPACITY && | |
10300 | sgs->sum_h_nr_running > 1) | |
10301 | return true; | |
10302 | ||
10303 | return false; | |
10304 | } | |
10305 | ||
7ff16932 TC |
10306 | static inline long sibling_imbalance(struct lb_env *env, |
10307 | struct sd_lb_stats *sds, | |
10308 | struct sg_lb_stats *busiest, | |
10309 | struct sg_lb_stats *local) | |
10310 | { | |
10311 | int ncores_busiest, ncores_local; | |
10312 | long imbalance; | |
10313 | ||
38d707c5 | 10314 | if (!env->idle || !busiest->sum_nr_running) |
7ff16932 TC |
10315 | return 0; |
10316 | ||
10317 | ncores_busiest = sds->busiest->cores; | |
10318 | ncores_local = sds->local->cores; | |
10319 | ||
10320 | if (ncores_busiest == ncores_local) { | |
10321 | imbalance = busiest->sum_nr_running; | |
10322 | lsub_positive(&imbalance, local->sum_nr_running); | |
10323 | return imbalance; | |
10324 | } | |
10325 | ||
10326 | /* Balance such that nr_running/ncores ratio are same on both groups */ | |
10327 | imbalance = ncores_local * busiest->sum_nr_running; | |
10328 | lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); | |
10329 | /* Normalize imbalance and do rounding on normalization */ | |
10330 | imbalance = 2 * imbalance + ncores_local + ncores_busiest; | |
10331 | imbalance /= ncores_local + ncores_busiest; | |
10332 | ||
10333 | /* Take advantage of resource in an empty sched group */ | |
450e7497 | 10334 | if (imbalance <= 1 && local->sum_nr_running == 0 && |
7ff16932 TC |
10335 | busiest->sum_nr_running > 1) |
10336 | imbalance = 2; | |
10337 | ||
10338 | return imbalance; | |
10339 | } | |
10340 | ||
c82a6962 VG |
10341 | static inline bool |
10342 | sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) | |
10343 | { | |
10344 | /* | |
10345 | * When there is more than 1 task, the group_overloaded case already | |
10346 | * takes care of cpu with reduced capacity | |
10347 | */ | |
1a491044 | 10348 | if (rq->cfs.h_nr_runnable != 1) |
c82a6962 VG |
10349 | return false; |
10350 | ||
10351 | return check_cpu_capacity(rq, sd); | |
10352 | } | |
10353 | ||
1e3c88bd PZ |
10354 | /** |
10355 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. | |
cd96891d | 10356 | * @env: The load balancing environment. |
a315da5e | 10357 | * @sds: Load-balancing data with statistics of the local group. |
1e3c88bd | 10358 | * @group: sched_group whose statistics are to be updated. |
1e3c88bd | 10359 | * @sgs: variable to hold the statistics for this group. |
4475cd8b IM |
10360 | * @sg_overloaded: sched_group is overloaded |
10361 | * @sg_overutilized: sched_group is overutilized | |
1e3c88bd | 10362 | */ |
bd939f45 | 10363 | static inline void update_sg_lb_stats(struct lb_env *env, |
c0d14b57 | 10364 | struct sd_lb_stats *sds, |
630246a0 QP |
10365 | struct sched_group *group, |
10366 | struct sg_lb_stats *sgs, | |
4475cd8b IM |
10367 | bool *sg_overloaded, |
10368 | bool *sg_overutilized) | |
1e3c88bd | 10369 | { |
0ac1ee9e | 10370 | int i, nr_running, local_group, sd_flags = env->sd->flags; |
3229adbe | 10371 | bool balancing_at_rd = !env->sd->parent; |
1e3c88bd | 10372 | |
b72ff13c PZ |
10373 | memset(sgs, 0, sizeof(*sgs)); |
10374 | ||
c0d14b57 | 10375 | local_group = group == sds->local; |
0b0695f2 | 10376 | |
ae4df9d6 | 10377 | for_each_cpu_and(i, sched_group_span(group), env->cpus) { |
1e3c88bd | 10378 | struct rq *rq = cpu_rq(i); |
c82a6962 | 10379 | unsigned long load = cpu_load(rq); |
1e3c88bd | 10380 | |
c82a6962 | 10381 | sgs->group_load += load; |
82762d2a | 10382 | sgs->group_util += cpu_util_cfs(i); |
070f5e86 | 10383 | sgs->group_runnable += cpu_runnable(rq); |
1a491044 | 10384 | sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; |
4486edd1 | 10385 | |
a426f99c | 10386 | nr_running = rq->nr_running; |
5e23e474 VG |
10387 | sgs->sum_nr_running += nr_running; |
10388 | ||
2802bf3c | 10389 | if (cpu_overutilized(i)) |
4475cd8b | 10390 | *sg_overutilized = 1; |
4486edd1 | 10391 | |
a426f99c WL |
10392 | /* |
10393 | * No need to call idle_cpu() if nr_running is not 0 | |
10394 | */ | |
0b0695f2 | 10395 | if (!nr_running && idle_cpu(i)) { |
aae6d3dd | 10396 | sgs->idle_cpus++; |
0b0695f2 VG |
10397 | /* Idle cpu can't have misfit task */ |
10398 | continue; | |
10399 | } | |
10400 | ||
3229adbe PN |
10401 | /* Overload indicator is only updated at root domain */ |
10402 | if (balancing_at_rd && nr_running > 1) | |
10403 | *sg_overloaded = 1; | |
10404 | ||
0ac1ee9e PN |
10405 | #ifdef CONFIG_NUMA_BALANCING |
10406 | /* Only fbq_classify_group() uses this to classify NUMA groups */ | |
10407 | if (sd_flags & SD_NUMA) { | |
10408 | sgs->nr_numa_running += rq->nr_numa_running; | |
10409 | sgs->nr_preferred_running += rq->nr_preferred_running; | |
10410 | } | |
10411 | #endif | |
0b0695f2 VG |
10412 | if (local_group) |
10413 | continue; | |
3b1baa64 | 10414 | |
0ac1ee9e | 10415 | if (sd_flags & SD_ASYM_CPUCAPACITY) { |
c82a6962 VG |
10416 | /* Check for a misfit task on the cpu */ |
10417 | if (sgs->group_misfit_task_load < rq->misfit_task_load) { | |
10418 | sgs->group_misfit_task_load = rq->misfit_task_load; | |
4475cd8b | 10419 | *sg_overloaded = 1; |
c82a6962 | 10420 | } |
38d707c5 | 10421 | } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { |
c82a6962 VG |
10422 | /* Check for a task running on a CPU with reduced capacity */ |
10423 | if (sgs->group_misfit_task_load < load) | |
10424 | sgs->group_misfit_task_load = load; | |
757ffdd7 | 10425 | } |
1e3c88bd PZ |
10426 | } |
10427 | ||
aafc917a RN |
10428 | sgs->group_capacity = group->sgc->capacity; |
10429 | ||
10430 | sgs->group_weight = group->group_weight; | |
10431 | ||
0b0695f2 | 10432 | /* Check if dst CPU is idle and preferred to this group */ |
38d707c5 | 10433 | if (!local_group && env->idle && sgs->sum_h_nr_running && |
fbc44986 | 10434 | sched_group_asym(env, sgs, group)) |
0b0695f2 | 10435 | sgs->group_asym_packing = 1; |
0b0695f2 | 10436 | |
fee1759e TC |
10437 | /* Check for loaded SMT group to be balanced to dst CPU */ |
10438 | if (!local_group && smt_balance(env, sgs, group)) | |
10439 | sgs->group_smt_balance = 1; | |
10440 | ||
57abff06 | 10441 | sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); |
0b0695f2 VG |
10442 | |
10443 | /* Computing avg_load makes sense only when group is overloaded */ | |
10444 | if (sgs->group_type == group_overloaded) | |
10445 | sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / | |
10446 | sgs->group_capacity; | |
1e3c88bd PZ |
10447 | } |
10448 | ||
532cb4c4 MN |
10449 | /** |
10450 | * update_sd_pick_busiest - return 1 on busiest group | |
cd96891d | 10451 | * @env: The load balancing environment. |
532cb4c4 MN |
10452 | * @sds: sched_domain statistics |
10453 | * @sg: sched_group candidate to be checked for being the busiest | |
b6b12294 | 10454 | * @sgs: sched_group statistics |
532cb4c4 MN |
10455 | * |
10456 | * Determine if @sg is a busier group than the previously selected | |
10457 | * busiest group. | |
e69f6186 YB |
10458 | * |
10459 | * Return: %true if @sg is a busier group than the previously selected | |
10460 | * busiest group. %false otherwise. | |
532cb4c4 | 10461 | */ |
bd939f45 | 10462 | static bool update_sd_pick_busiest(struct lb_env *env, |
532cb4c4 MN |
10463 | struct sd_lb_stats *sds, |
10464 | struct sched_group *sg, | |
bd939f45 | 10465 | struct sg_lb_stats *sgs) |
532cb4c4 | 10466 | { |
caeb178c | 10467 | struct sg_lb_stats *busiest = &sds->busiest_stat; |
532cb4c4 | 10468 | |
0b0695f2 VG |
10469 | /* Make sure that there is at least one task to pull */ |
10470 | if (!sgs->sum_h_nr_running) | |
10471 | return false; | |
10472 | ||
cad68e55 MR |
10473 | /* |
10474 | * Don't try to pull misfit tasks we can't help. | |
10475 | * We can use max_capacity here as reduction in capacity on some | |
10476 | * CPUs in the group should either be possible to resolve | |
10477 | * internally or be covered by avg_load imbalance (eventually). | |
10478 | */ | |
c82a6962 VG |
10479 | if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && |
10480 | (sgs->group_type == group_misfit_task) && | |
4aed8aa4 | 10481 | (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || |
0b0695f2 | 10482 | sds->local_stat.group_type != group_has_spare)) |
cad68e55 MR |
10483 | return false; |
10484 | ||
caeb178c | 10485 | if (sgs->group_type > busiest->group_type) |
532cb4c4 MN |
10486 | return true; |
10487 | ||
caeb178c RR |
10488 | if (sgs->group_type < busiest->group_type) |
10489 | return false; | |
10490 | ||
9e0994c0 | 10491 | /* |
0b0695f2 VG |
10492 | * The candidate and the current busiest group are the same type of |
10493 | * group. Let check which one is the busiest according to the type. | |
9e0994c0 | 10494 | */ |
9e0994c0 | 10495 | |
0b0695f2 VG |
10496 | switch (sgs->group_type) { |
10497 | case group_overloaded: | |
10498 | /* Select the overloaded group with highest avg_load. */ | |
7e9f7d17 | 10499 | return sgs->avg_load > busiest->avg_load; |
0b0695f2 VG |
10500 | |
10501 | case group_imbalanced: | |
10502 | /* | |
10503 | * Select the 1st imbalanced group as we don't have any way to | |
10504 | * choose one more than another. | |
10505 | */ | |
9e0994c0 MR |
10506 | return false; |
10507 | ||
0b0695f2 VG |
10508 | case group_asym_packing: |
10509 | /* Prefer to move from lowest priority CPU's work */ | |
872aa4de PN |
10510 | return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu), |
10511 | READ_ONCE(sg->asym_prefer_cpu)); | |
532cb4c4 | 10512 | |
0b0695f2 VG |
10513 | case group_misfit_task: |
10514 | /* | |
10515 | * If we have more than one misfit sg go with the biggest | |
10516 | * misfit. | |
10517 | */ | |
7e9f7d17 | 10518 | return sgs->group_misfit_task_load > busiest->group_misfit_task_load; |
532cb4c4 | 10519 | |
fee1759e | 10520 | case group_smt_balance: |
450e7497 TC |
10521 | /* |
10522 | * Check if we have spare CPUs on either SMT group to | |
10523 | * choose has spare or fully busy handling. | |
10524 | */ | |
10525 | if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) | |
10526 | goto has_spare; | |
10527 | ||
10528 | fallthrough; | |
10529 | ||
0b0695f2 VG |
10530 | case group_fully_busy: |
10531 | /* | |
10532 | * Select the fully busy group with highest avg_load. In | |
10533 | * theory, there is no need to pull task from such kind of | |
10534 | * group because tasks have all compute capacity that they need | |
10535 | * but we can still improve the overall throughput by reducing | |
10536 | * contention when accessing shared HW resources. | |
10537 | * | |
10538 | * XXX for now avg_load is not computed and always 0 so we | |
5fd6d7f4 RN |
10539 | * select the 1st one, except if @sg is composed of SMT |
10540 | * siblings. | |
0b0695f2 | 10541 | */ |
5fd6d7f4 RN |
10542 | |
10543 | if (sgs->avg_load < busiest->avg_load) | |
0b0695f2 | 10544 | return false; |
5fd6d7f4 RN |
10545 | |
10546 | if (sgs->avg_load == busiest->avg_load) { | |
10547 | /* | |
10548 | * SMT sched groups need more help than non-SMT groups. | |
10549 | * If @sg happens to also be SMT, either choice is good. | |
10550 | */ | |
10551 | if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) | |
10552 | return false; | |
10553 | } | |
10554 | ||
0b0695f2 VG |
10555 | break; |
10556 | ||
10557 | case group_has_spare: | |
fee1759e TC |
10558 | /* |
10559 | * Do not pick sg with SMT CPUs over sg with pure CPUs, | |
10560 | * as we do not want to pull task off SMT core with one task | |
10561 | * and make the core idle. | |
10562 | */ | |
10563 | if (smt_vs_nonsmt_groups(sds->busiest, sg)) { | |
10564 | if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) | |
10565 | return false; | |
10566 | else | |
10567 | return true; | |
10568 | } | |
450e7497 | 10569 | has_spare: |
fee1759e | 10570 | |
0b0695f2 | 10571 | /* |
b9e6e286 | 10572 | * Select not overloaded group with lowest number of idle CPUs |
5f68eb19 VG |
10573 | * and highest number of running tasks. We could also compare |
10574 | * the spare capacity which is more stable but it can end up | |
10575 | * that the group has less spare capacity but finally more idle | |
0b0695f2 VG |
10576 | * CPUs which means less opportunity to pull tasks. |
10577 | */ | |
5f68eb19 | 10578 | if (sgs->idle_cpus > busiest->idle_cpus) |
0b0695f2 | 10579 | return false; |
5f68eb19 VG |
10580 | else if ((sgs->idle_cpus == busiest->idle_cpus) && |
10581 | (sgs->sum_nr_running <= busiest->sum_nr_running)) | |
10582 | return false; | |
10583 | ||
0b0695f2 | 10584 | break; |
532cb4c4 MN |
10585 | } |
10586 | ||
0b0695f2 VG |
10587 | /* |
10588 | * Candidate sg has no more than one task per CPU and has higher | |
10589 | * per-CPU capacity. Migrating tasks to less capable CPUs may harm | |
10590 | * throughput. Maximize throughput, power/energy consequences are not | |
10591 | * considered. | |
10592 | */ | |
10593 | if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && | |
10594 | (sgs->group_type <= group_fully_busy) && | |
4aed8aa4 | 10595 | (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) |
0b0695f2 VG |
10596 | return false; |
10597 | ||
10598 | return true; | |
532cb4c4 MN |
10599 | } |
10600 | ||
0ec8aa00 PZ |
10601 | #ifdef CONFIG_NUMA_BALANCING |
10602 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | |
10603 | { | |
a3498347 | 10604 | if (sgs->sum_h_nr_running > sgs->nr_numa_running) |
0ec8aa00 | 10605 | return regular; |
a3498347 | 10606 | if (sgs->sum_h_nr_running > sgs->nr_preferred_running) |
0ec8aa00 PZ |
10607 | return remote; |
10608 | return all; | |
10609 | } | |
10610 | ||
10611 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | |
10612 | { | |
10613 | if (rq->nr_running > rq->nr_numa_running) | |
10614 | return regular; | |
10615 | if (rq->nr_running > rq->nr_preferred_running) | |
10616 | return remote; | |
10617 | return all; | |
10618 | } | |
10619 | #else | |
10620 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | |
10621 | { | |
10622 | return all; | |
10623 | } | |
10624 | ||
10625 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | |
10626 | { | |
10627 | return regular; | |
10628 | } | |
10629 | #endif /* CONFIG_NUMA_BALANCING */ | |
10630 | ||
57abff06 VG |
10631 | |
10632 | struct sg_lb_stats; | |
10633 | ||
3318544b VG |
10634 | /* |
10635 | * task_running_on_cpu - return 1 if @p is running on @cpu. | |
10636 | */ | |
10637 | ||
10638 | static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) | |
10639 | { | |
10640 | /* Task has no contribution or is new */ | |
10641 | if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) | |
10642 | return 0; | |
10643 | ||
10644 | if (task_on_rq_queued(p)) | |
10645 | return 1; | |
10646 | ||
10647 | return 0; | |
10648 | } | |
10649 | ||
10650 | /** | |
10651 | * idle_cpu_without - would a given CPU be idle without p ? | |
10652 | * @cpu: the processor on which idleness is tested. | |
10653 | * @p: task which should be ignored. | |
10654 | * | |
10655 | * Return: 1 if the CPU would be idle. 0 otherwise. | |
10656 | */ | |
10657 | static int idle_cpu_without(int cpu, struct task_struct *p) | |
10658 | { | |
10659 | struct rq *rq = cpu_rq(cpu); | |
10660 | ||
10661 | if (rq->curr != rq->idle && rq->curr != p) | |
10662 | return 0; | |
10663 | ||
10664 | /* | |
10665 | * rq->nr_running can't be used but an updated version without the | |
10666 | * impact of p on cpu must be used instead. The updated nr_running | |
10667 | * be computed and tested before calling idle_cpu_without(). | |
10668 | */ | |
10669 | ||
126c2092 | 10670 | if (rq->ttwu_pending) |
3318544b | 10671 | return 0; |
3318544b VG |
10672 | |
10673 | return 1; | |
10674 | } | |
10675 | ||
57abff06 VG |
10676 | /* |
10677 | * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. | |
3318544b | 10678 | * @sd: The sched_domain level to look for idlest group. |
57abff06 VG |
10679 | * @group: sched_group whose statistics are to be updated. |
10680 | * @sgs: variable to hold the statistics for this group. | |
3318544b | 10681 | * @p: The task for which we look for the idlest group/CPU. |
57abff06 VG |
10682 | */ |
10683 | static inline void update_sg_wakeup_stats(struct sched_domain *sd, | |
10684 | struct sched_group *group, | |
10685 | struct sg_lb_stats *sgs, | |
10686 | struct task_struct *p) | |
10687 | { | |
10688 | int i, nr_running; | |
10689 | ||
10690 | memset(sgs, 0, sizeof(*sgs)); | |
10691 | ||
b48e16a6 QY |
10692 | /* Assume that task can't fit any CPU of the group */ |
10693 | if (sd->flags & SD_ASYM_CPUCAPACITY) | |
10694 | sgs->group_misfit_task_load = 1; | |
10695 | ||
57abff06 VG |
10696 | for_each_cpu(i, sched_group_span(group)) { |
10697 | struct rq *rq = cpu_rq(i); | |
3318544b | 10698 | unsigned int local; |
57abff06 | 10699 | |
3318544b | 10700 | sgs->group_load += cpu_load_without(rq, p); |
57abff06 | 10701 | sgs->group_util += cpu_util_without(i, p); |
070f5e86 | 10702 | sgs->group_runnable += cpu_runnable_without(rq, p); |
3318544b | 10703 | local = task_running_on_cpu(i, p); |
1a491044 | 10704 | sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; |
57abff06 | 10705 | |
3318544b | 10706 | nr_running = rq->nr_running - local; |
57abff06 VG |
10707 | sgs->sum_nr_running += nr_running; |
10708 | ||
10709 | /* | |
3318544b | 10710 | * No need to call idle_cpu_without() if nr_running is not 0 |
57abff06 | 10711 | */ |
3318544b | 10712 | if (!nr_running && idle_cpu_without(i, p)) |
57abff06 VG |
10713 | sgs->idle_cpus++; |
10714 | ||
b48e16a6 QY |
10715 | /* Check if task fits in the CPU */ |
10716 | if (sd->flags & SD_ASYM_CPUCAPACITY && | |
10717 | sgs->group_misfit_task_load && | |
10718 | task_fits_cpu(p, i)) | |
10719 | sgs->group_misfit_task_load = 0; | |
57abff06 | 10720 | |
57abff06 VG |
10721 | } |
10722 | ||
10723 | sgs->group_capacity = group->sgc->capacity; | |
10724 | ||
289de359 VG |
10725 | sgs->group_weight = group->group_weight; |
10726 | ||
57abff06 VG |
10727 | sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); |
10728 | ||
10729 | /* | |
10730 | * Computing avg_load makes sense only when group is fully busy or | |
10731 | * overloaded | |
10732 | */ | |
6c8116c9 TZ |
10733 | if (sgs->group_type == group_fully_busy || |
10734 | sgs->group_type == group_overloaded) | |
57abff06 VG |
10735 | sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / |
10736 | sgs->group_capacity; | |
10737 | } | |
10738 | ||
10739 | static bool update_pick_idlest(struct sched_group *idlest, | |
10740 | struct sg_lb_stats *idlest_sgs, | |
10741 | struct sched_group *group, | |
10742 | struct sg_lb_stats *sgs) | |
10743 | { | |
10744 | if (sgs->group_type < idlest_sgs->group_type) | |
10745 | return true; | |
10746 | ||
10747 | if (sgs->group_type > idlest_sgs->group_type) | |
10748 | return false; | |
10749 | ||
10750 | /* | |
10751 | * The candidate and the current idlest group are the same type of | |
10752 | * group. Let check which one is the idlest according to the type. | |
10753 | */ | |
10754 | ||
10755 | switch (sgs->group_type) { | |
10756 | case group_overloaded: | |
10757 | case group_fully_busy: | |
10758 | /* Select the group with lowest avg_load. */ | |
10759 | if (idlest_sgs->avg_load <= sgs->avg_load) | |
10760 | return false; | |
10761 | break; | |
10762 | ||
10763 | case group_imbalanced: | |
10764 | case group_asym_packing: | |
fee1759e | 10765 | case group_smt_balance: |
57abff06 VG |
10766 | /* Those types are not used in the slow wakeup path */ |
10767 | return false; | |
10768 | ||
10769 | case group_misfit_task: | |
10770 | /* Select group with the highest max capacity */ | |
10771 | if (idlest->sgc->max_capacity >= group->sgc->max_capacity) | |
10772 | return false; | |
10773 | break; | |
10774 | ||
10775 | case group_has_spare: | |
10776 | /* Select group with most idle CPUs */ | |
3edecfef | 10777 | if (idlest_sgs->idle_cpus > sgs->idle_cpus) |
57abff06 | 10778 | return false; |
3edecfef PP |
10779 | |
10780 | /* Select group with lowest group_util */ | |
10781 | if (idlest_sgs->idle_cpus == sgs->idle_cpus && | |
10782 | idlest_sgs->group_util <= sgs->group_util) | |
10783 | return false; | |
10784 | ||
57abff06 VG |
10785 | break; |
10786 | } | |
10787 | ||
10788 | return true; | |
10789 | } | |
10790 | ||
10791 | /* | |
a88b1708 | 10792 | * sched_balance_find_dst_group() finds and returns the least busy CPU group within the |
57abff06 VG |
10793 | * domain. |
10794 | * | |
10795 | * Assumes p is allowed on at least one CPU in sd. | |
10796 | */ | |
10797 | static struct sched_group * | |
a88b1708 | 10798 | sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) |
57abff06 VG |
10799 | { |
10800 | struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; | |
10801 | struct sg_lb_stats local_sgs, tmp_sgs; | |
10802 | struct sg_lb_stats *sgs; | |
10803 | unsigned long imbalance; | |
10804 | struct sg_lb_stats idlest_sgs = { | |
10805 | .avg_load = UINT_MAX, | |
10806 | .group_type = group_overloaded, | |
10807 | }; | |
10808 | ||
57abff06 VG |
10809 | do { |
10810 | int local_group; | |
10811 | ||
10812 | /* Skip over this group if it has no CPUs allowed */ | |
10813 | if (!cpumask_intersects(sched_group_span(group), | |
10814 | p->cpus_ptr)) | |
10815 | continue; | |
10816 | ||
97886d9d AL |
10817 | /* Skip over this group if no cookie matched */ |
10818 | if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) | |
10819 | continue; | |
10820 | ||
57abff06 VG |
10821 | local_group = cpumask_test_cpu(this_cpu, |
10822 | sched_group_span(group)); | |
10823 | ||
10824 | if (local_group) { | |
10825 | sgs = &local_sgs; | |
10826 | local = group; | |
10827 | } else { | |
10828 | sgs = &tmp_sgs; | |
10829 | } | |
10830 | ||
10831 | update_sg_wakeup_stats(sd, group, sgs, p); | |
10832 | ||
10833 | if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { | |
10834 | idlest = group; | |
10835 | idlest_sgs = *sgs; | |
10836 | } | |
10837 | ||
10838 | } while (group = group->next, group != sd->groups); | |
10839 | ||
10840 | ||
10841 | /* There is no idlest group to push tasks to */ | |
10842 | if (!idlest) | |
10843 | return NULL; | |
10844 | ||
7ed735c3 VG |
10845 | /* The local group has been skipped because of CPU affinity */ |
10846 | if (!local) | |
10847 | return idlest; | |
10848 | ||
57abff06 VG |
10849 | /* |
10850 | * If the local group is idler than the selected idlest group | |
10851 | * don't try and push the task. | |
10852 | */ | |
10853 | if (local_sgs.group_type < idlest_sgs.group_type) | |
10854 | return NULL; | |
10855 | ||
10856 | /* | |
10857 | * If the local group is busier than the selected idlest group | |
10858 | * try and push the task. | |
10859 | */ | |
10860 | if (local_sgs.group_type > idlest_sgs.group_type) | |
10861 | return idlest; | |
10862 | ||
10863 | switch (local_sgs.group_type) { | |
10864 | case group_overloaded: | |
10865 | case group_fully_busy: | |
5c339005 MG |
10866 | |
10867 | /* Calculate allowed imbalance based on load */ | |
10868 | imbalance = scale_load_down(NICE_0_LOAD) * | |
10869 | (sd->imbalance_pct-100) / 100; | |
10870 | ||
57abff06 VG |
10871 | /* |
10872 | * When comparing groups across NUMA domains, it's possible for | |
10873 | * the local domain to be very lightly loaded relative to the | |
10874 | * remote domains but "imbalance" skews the comparison making | |
10875 | * remote CPUs look much more favourable. When considering | |
10876 | * cross-domain, add imbalance to the load on the remote node | |
10877 | * and consider staying local. | |
10878 | */ | |
10879 | ||
10880 | if ((sd->flags & SD_NUMA) && | |
10881 | ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) | |
10882 | return NULL; | |
10883 | ||
10884 | /* | |
10885 | * If the local group is less loaded than the selected | |
10886 | * idlest group don't try and push any tasks. | |
10887 | */ | |
10888 | if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) | |
10889 | return NULL; | |
10890 | ||
10891 | if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) | |
10892 | return NULL; | |
10893 | break; | |
10894 | ||
10895 | case group_imbalanced: | |
10896 | case group_asym_packing: | |
fee1759e | 10897 | case group_smt_balance: |
57abff06 VG |
10898 | /* Those type are not used in the slow wakeup path */ |
10899 | return NULL; | |
10900 | ||
10901 | case group_misfit_task: | |
10902 | /* Select group with the highest max capacity */ | |
10903 | if (local->sgc->max_capacity >= idlest->sgc->max_capacity) | |
10904 | return NULL; | |
10905 | break; | |
10906 | ||
10907 | case group_has_spare: | |
cb29a5c1 | 10908 | #ifdef CONFIG_NUMA |
57abff06 | 10909 | if (sd->flags & SD_NUMA) { |
f5b2eeb4 | 10910 | int imb_numa_nr = sd->imb_numa_nr; |
57abff06 VG |
10911 | #ifdef CONFIG_NUMA_BALANCING |
10912 | int idlest_cpu; | |
10913 | /* | |
10914 | * If there is spare capacity at NUMA, try to select | |
10915 | * the preferred node | |
10916 | */ | |
10917 | if (cpu_to_node(this_cpu) == p->numa_preferred_nid) | |
10918 | return NULL; | |
10919 | ||
10920 | idlest_cpu = cpumask_first(sched_group_span(idlest)); | |
10921 | if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) | |
10922 | return idlest; | |
cb29a5c1 | 10923 | #endif /* CONFIG_NUMA_BALANCING */ |
57abff06 | 10924 | /* |
2cfb7a1b MG |
10925 | * Otherwise, keep the task close to the wakeup source |
10926 | * and improve locality if the number of running tasks | |
10927 | * would remain below threshold where an imbalance is | |
f5b2eeb4 PN |
10928 | * allowed while accounting for the possibility the |
10929 | * task is pinned to a subset of CPUs. If there is a | |
10930 | * real need of migration, periodic load balance will | |
10931 | * take care of it. | |
57abff06 | 10932 | */ |
f5b2eeb4 | 10933 | if (p->nr_cpus_allowed != NR_CPUS) { |
ec4fc801 | 10934 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); |
f5b2eeb4 PN |
10935 | |
10936 | cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); | |
10937 | imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); | |
10938 | } | |
10939 | ||
cb29a5c1 MG |
10940 | imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); |
10941 | if (!adjust_numa_imbalance(imbalance, | |
10942 | local_sgs.sum_nr_running + 1, | |
f5b2eeb4 | 10943 | imb_numa_nr)) { |
57abff06 | 10944 | return NULL; |
cb29a5c1 | 10945 | } |
57abff06 | 10946 | } |
cb29a5c1 | 10947 | #endif /* CONFIG_NUMA */ |
57abff06 VG |
10948 | |
10949 | /* | |
10950 | * Select group with highest number of idle CPUs. We could also | |
10951 | * compare the utilization which is more stable but it can end | |
10952 | * up that the group has less spare capacity but finally more | |
10953 | * idle CPUs which means more opportunity to run task. | |
10954 | */ | |
10955 | if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) | |
10956 | return NULL; | |
10957 | break; | |
10958 | } | |
10959 | ||
10960 | return idlest; | |
10961 | } | |
10962 | ||
70fb5ccf CY |
10963 | static void update_idle_cpu_scan(struct lb_env *env, |
10964 | unsigned long sum_util) | |
10965 | { | |
10966 | struct sched_domain_shared *sd_share; | |
10967 | int llc_weight, pct; | |
10968 | u64 x, y, tmp; | |
10969 | /* | |
10970 | * Update the number of CPUs to scan in LLC domain, which could | |
10971 | * be used as a hint in select_idle_cpu(). The update of sd_share | |
10972 | * could be expensive because it is within a shared cache line. | |
10973 | * So the write of this hint only occurs during periodic load | |
10974 | * balancing, rather than CPU_NEWLY_IDLE, because the latter | |
10975 | * can fire way more frequently than the former. | |
10976 | */ | |
10977 | if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) | |
10978 | return; | |
10979 | ||
10980 | llc_weight = per_cpu(sd_llc_size, env->dst_cpu); | |
10981 | if (env->sd->span_weight != llc_weight) | |
10982 | return; | |
10983 | ||
10984 | sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); | |
10985 | if (!sd_share) | |
10986 | return; | |
10987 | ||
10988 | /* | |
10989 | * The number of CPUs to search drops as sum_util increases, when | |
10990 | * sum_util hits 85% or above, the scan stops. | |
10991 | * The reason to choose 85% as the threshold is because this is the | |
10992 | * imbalance_pct(117) when a LLC sched group is overloaded. | |
10993 | * | |
10994 | * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] | |
10995 | * and y'= y / SCHED_CAPACITY_SCALE | |
10996 | * | |
10997 | * x is the ratio of sum_util compared to the CPU capacity: | |
10998 | * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) | |
10999 | * y' is the ratio of CPUs to be scanned in the LLC domain, | |
11000 | * and the number of CPUs to scan is calculated by: | |
11001 | * | |
11002 | * nr_scan = llc_weight * y' [2] | |
11003 | * | |
11004 | * When x hits the threshold of overloaded, AKA, when | |
11005 | * x = 100 / pct, y drops to 0. According to [1], | |
11006 | * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 | |
11007 | * | |
11008 | * Scale x by SCHED_CAPACITY_SCALE: | |
11009 | * x' = sum_util / llc_weight; [3] | |
11010 | * | |
11011 | * and finally [1] becomes: | |
11012 | * y = SCHED_CAPACITY_SCALE - | |
11013 | * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] | |
11014 | * | |
11015 | */ | |
11016 | /* equation [3] */ | |
11017 | x = sum_util; | |
11018 | do_div(x, llc_weight); | |
11019 | ||
11020 | /* equation [4] */ | |
11021 | pct = env->sd->imbalance_pct; | |
11022 | tmp = x * x * pct * pct; | |
11023 | do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); | |
11024 | tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); | |
11025 | y = SCHED_CAPACITY_SCALE - tmp; | |
11026 | ||
11027 | /* equation [2] */ | |
11028 | y *= llc_weight; | |
11029 | do_div(y, SCHED_CAPACITY_SCALE); | |
11030 | if ((int)y != sd_share->nr_idle_scan) | |
11031 | WRITE_ONCE(sd_share->nr_idle_scan, (int)y); | |
11032 | } | |
11033 | ||
1e3c88bd | 11034 | /** |
461819ac | 11035 | * update_sd_lb_stats - Update sched_domain's statistics for load balancing. |
cd96891d | 11036 | * @env: The load balancing environment. |
1e3c88bd PZ |
11037 | * @sds: variable to hold the statistics for this sched_domain. |
11038 | */ | |
0b0695f2 | 11039 | |
0ec8aa00 | 11040 | static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) |
1e3c88bd | 11041 | { |
bd939f45 | 11042 | struct sched_group *sg = env->sd->groups; |
05b40e05 | 11043 | struct sg_lb_stats *local = &sds->local_stat; |
56cf515b | 11044 | struct sg_lb_stats tmp_sgs; |
70fb5ccf | 11045 | unsigned long sum_util = 0; |
4475cd8b | 11046 | bool sg_overloaded = 0, sg_overutilized = 0; |
1e3c88bd | 11047 | |
1e3c88bd | 11048 | do { |
56cf515b | 11049 | struct sg_lb_stats *sgs = &tmp_sgs; |
1e3c88bd PZ |
11050 | int local_group; |
11051 | ||
ae4df9d6 | 11052 | local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); |
56cf515b JK |
11053 | if (local_group) { |
11054 | sds->local = sg; | |
05b40e05 | 11055 | sgs = local; |
b72ff13c PZ |
11056 | |
11057 | if (env->idle != CPU_NEWLY_IDLE || | |
63b2ca30 NP |
11058 | time_after_eq(jiffies, sg->sgc->next_update)) |
11059 | update_group_capacity(env->sd, env->dst_cpu); | |
56cf515b | 11060 | } |
1e3c88bd | 11061 | |
4475cd8b | 11062 | update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); |
1e3c88bd | 11063 | |
9dfbc26d | 11064 | if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { |
532cb4c4 | 11065 | sds->busiest = sg; |
56cf515b | 11066 | sds->busiest_stat = *sgs; |
1e3c88bd PZ |
11067 | } |
11068 | ||
b72ff13c PZ |
11069 | /* Now, start updating sd_lb_stats */ |
11070 | sds->total_load += sgs->group_load; | |
63b2ca30 | 11071 | sds->total_capacity += sgs->group_capacity; |
b72ff13c | 11072 | |
70fb5ccf | 11073 | sum_util += sgs->group_util; |
532cb4c4 | 11074 | sg = sg->next; |
bd939f45 | 11075 | } while (sg != env->sd->groups); |
0ec8aa00 | 11076 | |
43726bde RN |
11077 | /* |
11078 | * Indicate that the child domain of the busiest group prefers tasks | |
11079 | * go to a child's sibling domains first. NB the flags of a sched group | |
11080 | * are those of the child domain. | |
11081 | */ | |
11082 | if (sds->busiest) | |
11083 | sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); | |
0b0695f2 | 11084 | |
f643ea22 | 11085 | |
0ec8aa00 PZ |
11086 | if (env->sd->flags & SD_NUMA) |
11087 | env->fbq_type = fbq_classify_group(&sds->busiest_stat); | |
4486edd1 TC |
11088 | |
11089 | if (!env->sd->parent) { | |
11090 | /* update overload indicator if we are at root domain */ | |
4475cd8b | 11091 | set_rd_overloaded(env->dst_rq->rd, sg_overloaded); |
2802bf3c MR |
11092 | |
11093 | /* Update over-utilization (tipping point, U >= 0) indicator */ | |
cd18bec6 | 11094 | set_rd_overutilized(env->dst_rq->rd, sg_overutilized); |
4475cd8b IM |
11095 | } else if (sg_overutilized) { |
11096 | set_rd_overutilized(env->dst_rq->rd, sg_overutilized); | |
4486edd1 | 11097 | } |
70fb5ccf CY |
11098 | |
11099 | update_idle_cpu_scan(env, sum_util); | |
532cb4c4 MN |
11100 | } |
11101 | ||
1e3c88bd PZ |
11102 | /** |
11103 | * calculate_imbalance - Calculate the amount of imbalance present within the | |
11104 | * groups of a given sched_domain during load balance. | |
bd939f45 | 11105 | * @env: load balance environment |
1e3c88bd | 11106 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. |
1e3c88bd | 11107 | */ |
bd939f45 | 11108 | static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) |
1e3c88bd | 11109 | { |
56cf515b JK |
11110 | struct sg_lb_stats *local, *busiest; |
11111 | ||
11112 | local = &sds->local_stat; | |
56cf515b | 11113 | busiest = &sds->busiest_stat; |
dd5feea1 | 11114 | |
0b0695f2 | 11115 | if (busiest->group_type == group_misfit_task) { |
c82a6962 VG |
11116 | if (env->sd->flags & SD_ASYM_CPUCAPACITY) { |
11117 | /* Set imbalance to allow misfit tasks to be balanced. */ | |
11118 | env->migration_type = migrate_misfit; | |
11119 | env->imbalance = 1; | |
11120 | } else { | |
11121 | /* | |
11122 | * Set load imbalance to allow moving task from cpu | |
11123 | * with reduced capacity. | |
11124 | */ | |
11125 | env->migration_type = migrate_load; | |
11126 | env->imbalance = busiest->group_misfit_task_load; | |
11127 | } | |
0b0695f2 VG |
11128 | return; |
11129 | } | |
11130 | ||
11131 | if (busiest->group_type == group_asym_packing) { | |
11132 | /* | |
11133 | * In case of asym capacity, we will try to migrate all load to | |
11134 | * the preferred CPU. | |
11135 | */ | |
11136 | env->migration_type = migrate_task; | |
11137 | env->imbalance = busiest->sum_h_nr_running; | |
11138 | return; | |
11139 | } | |
11140 | ||
fee1759e TC |
11141 | if (busiest->group_type == group_smt_balance) { |
11142 | /* Reduce number of tasks sharing CPU capacity */ | |
11143 | env->migration_type = migrate_task; | |
11144 | env->imbalance = 1; | |
11145 | return; | |
11146 | } | |
11147 | ||
0b0695f2 VG |
11148 | if (busiest->group_type == group_imbalanced) { |
11149 | /* | |
11150 | * In the group_imb case we cannot rely on group-wide averages | |
11151 | * to ensure CPU-load equilibrium, try to move any task to fix | |
11152 | * the imbalance. The next load balance will take care of | |
11153 | * balancing back the system. | |
11154 | */ | |
11155 | env->migration_type = migrate_task; | |
11156 | env->imbalance = 1; | |
490ba971 VG |
11157 | return; |
11158 | } | |
11159 | ||
1e3c88bd | 11160 | /* |
0b0695f2 | 11161 | * Try to use spare capacity of local group without overloading it or |
a9723389 | 11162 | * emptying busiest. |
1e3c88bd | 11163 | */ |
0b0695f2 | 11164 | if (local->group_type == group_has_spare) { |
16b0a7a1 | 11165 | if ((busiest->group_type > group_fully_busy) && |
54de4427 | 11166 | !(env->sd->flags & SD_SHARE_LLC)) { |
0b0695f2 VG |
11167 | /* |
11168 | * If busiest is overloaded, try to fill spare | |
11169 | * capacity. This might end up creating spare capacity | |
11170 | * in busiest or busiest still being overloaded but | |
11171 | * there is no simple way to directly compute the | |
11172 | * amount of load to migrate in order to balance the | |
11173 | * system. | |
11174 | */ | |
11175 | env->migration_type = migrate_util; | |
11176 | env->imbalance = max(local->group_capacity, local->group_util) - | |
11177 | local->group_util; | |
11178 | ||
11179 | /* | |
11180 | * In some cases, the group's utilization is max or even | |
11181 | * higher than capacity because of migrations but the | |
11182 | * local CPU is (newly) idle. There is at least one | |
11183 | * waiting task in this overloaded busiest group. Let's | |
11184 | * try to pull it. | |
11185 | */ | |
38d707c5 | 11186 | if (env->idle && env->imbalance == 0) { |
0b0695f2 VG |
11187 | env->migration_type = migrate_task; |
11188 | env->imbalance = 1; | |
11189 | } | |
11190 | ||
11191 | return; | |
11192 | } | |
11193 | ||
11194 | if (busiest->group_weight == 1 || sds->prefer_sibling) { | |
0b0695f2 VG |
11195 | /* |
11196 | * When prefer sibling, evenly spread running tasks on | |
11197 | * groups. | |
11198 | */ | |
11199 | env->migration_type = migrate_task; | |
7ff16932 | 11200 | env->imbalance = sibling_imbalance(env, sds, busiest, local); |
b396f523 | 11201 | } else { |
0b0695f2 | 11202 | |
b396f523 MG |
11203 | /* |
11204 | * If there is no overload, we just want to even the number of | |
b9e6e286 | 11205 | * idle CPUs. |
b396f523 MG |
11206 | */ |
11207 | env->migration_type = migrate_task; | |
cb29a5c1 MG |
11208 | env->imbalance = max_t(long, 0, |
11209 | (local->idle_cpus - busiest->idle_cpus)); | |
b396f523 MG |
11210 | } |
11211 | ||
cb29a5c1 | 11212 | #ifdef CONFIG_NUMA |
b396f523 | 11213 | /* Consider allowing a small imbalance between NUMA groups */ |
7d2b5dd0 | 11214 | if (env->sd->flags & SD_NUMA) { |
fb86f5b2 | 11215 | env->imbalance = adjust_numa_imbalance(env->imbalance, |
cb29a5c1 MG |
11216 | local->sum_nr_running + 1, |
11217 | env->sd->imb_numa_nr); | |
7d2b5dd0 | 11218 | } |
cb29a5c1 MG |
11219 | #endif |
11220 | ||
11221 | /* Number of tasks to move to restore balance */ | |
11222 | env->imbalance >>= 1; | |
b396f523 | 11223 | |
fcf0553d | 11224 | return; |
1e3c88bd PZ |
11225 | } |
11226 | ||
9a5d9ba6 | 11227 | /* |
0b0695f2 VG |
11228 | * Local is fully busy but has to take more load to relieve the |
11229 | * busiest group | |
9a5d9ba6 | 11230 | */ |
0b0695f2 VG |
11231 | if (local->group_type < group_overloaded) { |
11232 | /* | |
11233 | * Local will become overloaded so the avg_load metrics are | |
11234 | * finally needed. | |
11235 | */ | |
11236 | ||
11237 | local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / | |
11238 | local->group_capacity; | |
11239 | ||
111688ca AL |
11240 | /* |
11241 | * If the local group is more loaded than the selected | |
11242 | * busiest group don't try to pull any tasks. | |
11243 | */ | |
11244 | if (local->avg_load >= busiest->avg_load) { | |
11245 | env->imbalance = 0; | |
11246 | return; | |
11247 | } | |
06354900 | 11248 | |
11249 | sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / | |
11250 | sds->total_capacity; | |
91dcf1e8 VG |
11251 | |
11252 | /* | |
11253 | * If the local group is more loaded than the average system | |
11254 | * load, don't try to pull any tasks. | |
11255 | */ | |
11256 | if (local->avg_load >= sds->avg_load) { | |
11257 | env->imbalance = 0; | |
11258 | return; | |
11259 | } | |
11260 | ||
dd5feea1 SS |
11261 | } |
11262 | ||
11263 | /* | |
0b0695f2 VG |
11264 | * Both group are or will become overloaded and we're trying to get all |
11265 | * the CPUs to the average_load, so we don't want to push ourselves | |
11266 | * above the average load, nor do we wish to reduce the max loaded CPU | |
11267 | * below the average load. At the same time, we also don't want to | |
11268 | * reduce the group load below the group capacity. Thus we look for | |
11269 | * the minimum possible imbalance. | |
dd5feea1 | 11270 | */ |
0b0695f2 | 11271 | env->migration_type = migrate_load; |
56cf515b | 11272 | env->imbalance = min( |
0b0695f2 | 11273 | (busiest->avg_load - sds->avg_load) * busiest->group_capacity, |
63b2ca30 | 11274 | (sds->avg_load - local->avg_load) * local->group_capacity |
ca8ce3d0 | 11275 | ) / SCHED_CAPACITY_SCALE; |
1e3c88bd | 11276 | } |
fab47622 | 11277 | |
82cf9214 | 11278 | /******* sched_balance_find_src_group() helpers end here *********************/ |
1e3c88bd | 11279 | |
0b0695f2 VG |
11280 | /* |
11281 | * Decision matrix according to the local and busiest group type: | |
11282 | * | |
11283 | * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded | |
11284 | * has_spare nr_idle balanced N/A N/A balanced balanced | |
11285 | * fully_busy nr_idle nr_idle N/A N/A balanced balanced | |
a6583531 | 11286 | * misfit_task force N/A N/A N/A N/A N/A |
0b0695f2 VG |
11287 | * asym_packing force force N/A N/A force force |
11288 | * imbalanced force force N/A N/A force force | |
11289 | * overloaded force force N/A N/A force avg_load | |
11290 | * | |
11291 | * N/A : Not Applicable because already filtered while updating | |
11292 | * statistics. | |
11293 | * balanced : The system is balanced for these 2 groups. | |
11294 | * force : Calculate the imbalance as load migration is probably needed. | |
11295 | * avg_load : Only if imbalance is significant enough. | |
11296 | * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite | |
11297 | * different in groups. | |
11298 | */ | |
11299 | ||
1e3c88bd | 11300 | /** |
82cf9214 | 11301 | * sched_balance_find_src_group - Returns the busiest group within the sched_domain |
0a9b23ce | 11302 | * if there is an imbalance. |
a315da5e | 11303 | * @env: The load balancing environment. |
1e3c88bd | 11304 | * |
a3df0679 | 11305 | * Also calculates the amount of runnable load which should be moved |
1e3c88bd PZ |
11306 | * to restore balance. |
11307 | * | |
e69f6186 | 11308 | * Return: - The busiest group if imbalance exists. |
1e3c88bd | 11309 | */ |
82cf9214 | 11310 | static struct sched_group *sched_balance_find_src_group(struct lb_env *env) |
1e3c88bd | 11311 | { |
56cf515b | 11312 | struct sg_lb_stats *local, *busiest; |
1e3c88bd PZ |
11313 | struct sd_lb_stats sds; |
11314 | ||
147c5fc2 | 11315 | init_sd_lb_stats(&sds); |
1e3c88bd PZ |
11316 | |
11317 | /* | |
b0fb1eb4 | 11318 | * Compute the various statistics relevant for load balancing at |
1e3c88bd PZ |
11319 | * this level. |
11320 | */ | |
23f0d209 | 11321 | update_sd_lb_stats(env, &sds); |
2802bf3c | 11322 | |
cc57aa8f | 11323 | /* There is no busy sibling group to pull tasks from */ |
0b0695f2 | 11324 | if (!sds.busiest) |
1e3c88bd PZ |
11325 | goto out_balanced; |
11326 | ||
e5ed0550 VG |
11327 | busiest = &sds.busiest_stat; |
11328 | ||
0b0695f2 VG |
11329 | /* Misfit tasks should be dealt with regardless of the avg load */ |
11330 | if (busiest->group_type == group_misfit_task) | |
11331 | goto force_balance; | |
11332 | ||
902e786c SH |
11333 | if (!is_rd_overutilized(env->dst_rq->rd) && |
11334 | rcu_dereference(env->dst_rq->rd->pd)) | |
11335 | goto out_balanced; | |
e5ed0550 | 11336 | |
0b0695f2 VG |
11337 | /* ASYM feature bypasses nice load balance check */ |
11338 | if (busiest->group_type == group_asym_packing) | |
11339 | goto force_balance; | |
b0432d8f | 11340 | |
866ab43e PZ |
11341 | /* |
11342 | * If the busiest group is imbalanced the below checks don't | |
30ce5dab | 11343 | * work because they assume all things are equal, which typically |
3bd37062 | 11344 | * isn't true due to cpus_ptr constraints and the like. |
866ab43e | 11345 | */ |
caeb178c | 11346 | if (busiest->group_type == group_imbalanced) |
866ab43e PZ |
11347 | goto force_balance; |
11348 | ||
e5ed0550 | 11349 | local = &sds.local_stat; |
cc57aa8f | 11350 | /* |
9c58c79a | 11351 | * If the local group is busier than the selected busiest group |
cc57aa8f PZ |
11352 | * don't try and pull any tasks. |
11353 | */ | |
0b0695f2 | 11354 | if (local->group_type > busiest->group_type) |
1e3c88bd PZ |
11355 | goto out_balanced; |
11356 | ||
cc57aa8f | 11357 | /* |
0b0695f2 VG |
11358 | * When groups are overloaded, use the avg_load to ensure fairness |
11359 | * between tasks. | |
cc57aa8f | 11360 | */ |
0b0695f2 VG |
11361 | if (local->group_type == group_overloaded) { |
11362 | /* | |
11363 | * If the local group is more loaded than the selected | |
11364 | * busiest group don't try to pull any tasks. | |
11365 | */ | |
11366 | if (local->avg_load >= busiest->avg_load) | |
11367 | goto out_balanced; | |
11368 | ||
11369 | /* XXX broken for overlapping NUMA groups */ | |
11370 | sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / | |
11371 | sds.total_capacity; | |
1e3c88bd | 11372 | |
aae6d3dd | 11373 | /* |
0b0695f2 VG |
11374 | * Don't pull any tasks if this group is already above the |
11375 | * domain average load. | |
aae6d3dd | 11376 | */ |
0b0695f2 | 11377 | if (local->avg_load >= sds.avg_load) |
aae6d3dd | 11378 | goto out_balanced; |
0b0695f2 | 11379 | |
c186fafe | 11380 | /* |
0b0695f2 VG |
11381 | * If the busiest group is more loaded, use imbalance_pct to be |
11382 | * conservative. | |
c186fafe | 11383 | */ |
56cf515b JK |
11384 | if (100 * busiest->avg_load <= |
11385 | env->sd->imbalance_pct * local->avg_load) | |
c186fafe | 11386 | goto out_balanced; |
aae6d3dd | 11387 | } |
1e3c88bd | 11388 | |
43726bde RN |
11389 | /* |
11390 | * Try to move all excess tasks to a sibling domain of the busiest | |
11391 | * group's child domain. | |
11392 | */ | |
0b0695f2 | 11393 | if (sds.prefer_sibling && local->group_type == group_has_spare && |
7ff16932 | 11394 | sibling_imbalance(env, &sds, busiest, local) > 1) |
0b0695f2 VG |
11395 | goto force_balance; |
11396 | ||
2ab4092f | 11397 | if (busiest->group_type != group_overloaded) { |
38d707c5 | 11398 | if (!env->idle) { |
2ab4092f VG |
11399 | /* |
11400 | * If the busiest group is not overloaded (and as a | |
11401 | * result the local one too) but this CPU is already | |
11402 | * busy, let another idle CPU try to pull task. | |
11403 | */ | |
11404 | goto out_balanced; | |
fee1759e TC |
11405 | } |
11406 | ||
11407 | if (busiest->group_type == group_smt_balance && | |
11408 | smt_vs_nonsmt_groups(sds.local, sds.busiest)) { | |
11409 | /* Let non SMT CPU pull from SMT CPU sharing with sibling */ | |
11410 | goto force_balance; | |
11411 | } | |
2ab4092f VG |
11412 | |
11413 | if (busiest->group_weight > 1 && | |
fee1759e | 11414 | local->idle_cpus <= (busiest->idle_cpus + 1)) { |
2ab4092f VG |
11415 | /* |
11416 | * If the busiest group is not overloaded | |
11417 | * and there is no imbalance between this and busiest | |
11418 | * group wrt idle CPUs, it is balanced. The imbalance | |
11419 | * becomes significant if the diff is greater than 1 | |
11420 | * otherwise we might end up to just move the imbalance | |
11421 | * on another group. Of course this applies only if | |
11422 | * there is more than 1 CPU per group. | |
11423 | */ | |
11424 | goto out_balanced; | |
fee1759e | 11425 | } |
2ab4092f | 11426 | |
fee1759e | 11427 | if (busiest->sum_h_nr_running == 1) { |
2ab4092f VG |
11428 | /* |
11429 | * busiest doesn't have any tasks waiting to run | |
11430 | */ | |
11431 | goto out_balanced; | |
fee1759e | 11432 | } |
2ab4092f | 11433 | } |
0b0695f2 | 11434 | |
fab47622 | 11435 | force_balance: |
1e3c88bd | 11436 | /* Looks like there is an imbalance. Compute it */ |
bd939f45 | 11437 | calculate_imbalance(env, &sds); |
bb3485c8 | 11438 | return env->imbalance ? sds.busiest : NULL; |
1e3c88bd PZ |
11439 | |
11440 | out_balanced: | |
bd939f45 | 11441 | env->imbalance = 0; |
1e3c88bd PZ |
11442 | return NULL; |
11443 | } | |
11444 | ||
11445 | /* | |
f1cd2e2e | 11446 | * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. |
1e3c88bd | 11447 | */ |
f1cd2e2e | 11448 | static struct rq *sched_balance_find_src_rq(struct lb_env *env, |
b9403130 | 11449 | struct sched_group *group) |
1e3c88bd PZ |
11450 | { |
11451 | struct rq *busiest = NULL, *rq; | |
0b0695f2 VG |
11452 | unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; |
11453 | unsigned int busiest_nr = 0; | |
1e3c88bd PZ |
11454 | int i; |
11455 | ||
ae4df9d6 | 11456 | for_each_cpu_and(i, sched_group_span(group), env->cpus) { |
0b0695f2 VG |
11457 | unsigned long capacity, load, util; |
11458 | unsigned int nr_running; | |
0ec8aa00 PZ |
11459 | enum fbq_type rt; |
11460 | ||
11461 | rq = cpu_rq(i); | |
11462 | rt = fbq_classify_rq(rq); | |
1e3c88bd | 11463 | |
0ec8aa00 PZ |
11464 | /* |
11465 | * We classify groups/runqueues into three groups: | |
11466 | * - regular: there are !numa tasks | |
11467 | * - remote: there are numa tasks that run on the 'wrong' node | |
11468 | * - all: there is no distinction | |
11469 | * | |
11470 | * In order to avoid migrating ideally placed numa tasks, | |
11471 | * ignore those when there's better options. | |
11472 | * | |
11473 | * If we ignore the actual busiest queue to migrate another | |
11474 | * task, the next balance pass can still reduce the busiest | |
11475 | * queue by moving tasks around inside the node. | |
11476 | * | |
11477 | * If we cannot move enough load due to this classification | |
11478 | * the next pass will adjust the group classification and | |
11479 | * allow migration of more tasks. | |
11480 | * | |
11481 | * Both cases only affect the total convergence complexity. | |
11482 | */ | |
11483 | if (rt > env->fbq_type) | |
11484 | continue; | |
11485 | ||
1a491044 | 11486 | nr_running = rq->cfs.h_nr_runnable; |
fc488ffd VG |
11487 | if (!nr_running) |
11488 | continue; | |
11489 | ||
11490 | capacity = capacity_of(i); | |
9d5efe05 | 11491 | |
4ad3831a CR |
11492 | /* |
11493 | * For ASYM_CPUCAPACITY domains, don't pick a CPU that could | |
11494 | * eventually lead to active_balancing high->low capacity. | |
11495 | * Higher per-CPU capacity is considered better than balancing | |
11496 | * average load. | |
11497 | */ | |
11498 | if (env->sd->flags & SD_ASYM_CPUCAPACITY && | |
4aed8aa4 | 11499 | !capacity_greater(capacity_of(env->dst_cpu), capacity) && |
0b0695f2 | 11500 | nr_running == 1) |
4ad3831a CR |
11501 | continue; |
11502 | ||
18ad3453 RN |
11503 | /* |
11504 | * Make sure we only pull tasks from a CPU of lower priority | |
11505 | * when balancing between SMT siblings. | |
11506 | * | |
11507 | * If balancing between cores, let lower priority CPUs help | |
11508 | * SMT cores with more than one busy sibling. | |
11509 | */ | |
fbc44986 | 11510 | if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) |
4006a72b RN |
11511 | continue; |
11512 | ||
0b0695f2 VG |
11513 | switch (env->migration_type) { |
11514 | case migrate_load: | |
11515 | /* | |
b0fb1eb4 VG |
11516 | * When comparing with load imbalance, use cpu_load() |
11517 | * which is not scaled with the CPU capacity. | |
0b0695f2 | 11518 | */ |
b0fb1eb4 | 11519 | load = cpu_load(rq); |
1e3c88bd | 11520 | |
0b0695f2 VG |
11521 | if (nr_running == 1 && load > env->imbalance && |
11522 | !check_cpu_capacity(rq, env->sd)) | |
11523 | break; | |
ea67821b | 11524 | |
0b0695f2 VG |
11525 | /* |
11526 | * For the load comparisons with the other CPUs, | |
b0fb1eb4 VG |
11527 | * consider the cpu_load() scaled with the CPU |
11528 | * capacity, so that the load can be moved away | |
11529 | * from the CPU that is potentially running at a | |
11530 | * lower capacity. | |
0b0695f2 VG |
11531 | * |
11532 | * Thus we're looking for max(load_i / capacity_i), | |
11533 | * crosswise multiplication to rid ourselves of the | |
11534 | * division works out to: | |
11535 | * load_i * capacity_j > load_j * capacity_i; | |
11536 | * where j is our previous maximum. | |
11537 | */ | |
11538 | if (load * busiest_capacity > busiest_load * capacity) { | |
11539 | busiest_load = load; | |
11540 | busiest_capacity = capacity; | |
11541 | busiest = rq; | |
11542 | } | |
11543 | break; | |
11544 | ||
11545 | case migrate_util: | |
7d0583cf | 11546 | util = cpu_util_cfs_boost(i); |
0b0695f2 | 11547 | |
c32b4308 VG |
11548 | /* |
11549 | * Don't try to pull utilization from a CPU with one | |
11550 | * running task. Whatever its utilization, we will fail | |
11551 | * detach the task. | |
11552 | */ | |
11553 | if (nr_running <= 1) | |
11554 | continue; | |
11555 | ||
0b0695f2 VG |
11556 | if (busiest_util < util) { |
11557 | busiest_util = util; | |
11558 | busiest = rq; | |
11559 | } | |
11560 | break; | |
11561 | ||
11562 | case migrate_task: | |
11563 | if (busiest_nr < nr_running) { | |
11564 | busiest_nr = nr_running; | |
11565 | busiest = rq; | |
11566 | } | |
11567 | break; | |
11568 | ||
11569 | case migrate_misfit: | |
11570 | /* | |
11571 | * For ASYM_CPUCAPACITY domains with misfit tasks we | |
11572 | * simply seek the "biggest" misfit task. | |
11573 | */ | |
11574 | if (rq->misfit_task_load > busiest_load) { | |
11575 | busiest_load = rq->misfit_task_load; | |
11576 | busiest = rq; | |
11577 | } | |
11578 | ||
11579 | break; | |
1e3c88bd | 11580 | |
1e3c88bd PZ |
11581 | } |
11582 | } | |
11583 | ||
11584 | return busiest; | |
11585 | } | |
11586 | ||
11587 | /* | |
11588 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | |
11589 | * so long as it is large enough. | |
11590 | */ | |
11591 | #define MAX_PINNED_INTERVAL 512 | |
11592 | ||
46a745d9 VG |
11593 | static inline bool |
11594 | asym_active_balance(struct lb_env *env) | |
1af3ed3d | 11595 | { |
46a745d9 | 11596 | /* |
eefefa71 RN |
11597 | * ASYM_PACKING needs to force migrate tasks from busy but lower |
11598 | * priority CPUs in order to pack all tasks in the highest priority | |
11599 | * CPUs. When done between cores, do it only if the whole core if the | |
11600 | * whole core is idle. | |
18ad3453 RN |
11601 | * |
11602 | * If @env::src_cpu is an SMT core with busy siblings, let | |
11603 | * the lower priority @env::dst_cpu help it. Do not follow | |
11604 | * CPU priority. | |
46a745d9 | 11605 | */ |
38d707c5 | 11606 | return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && |
18ad3453 RN |
11607 | (sched_asym_prefer(env->dst_cpu, env->src_cpu) || |
11608 | !sched_use_asym_prio(env->sd, env->src_cpu)); | |
46a745d9 | 11609 | } |
bd939f45 | 11610 | |
46a745d9 | 11611 | static inline bool |
e9b9734b VG |
11612 | imbalanced_active_balance(struct lb_env *env) |
11613 | { | |
11614 | struct sched_domain *sd = env->sd; | |
11615 | ||
11616 | /* | |
11617 | * The imbalanced case includes the case of pinned tasks preventing a fair | |
11618 | * distribution of the load on the system but also the even distribution of the | |
11619 | * threads on a system with spare capacity | |
11620 | */ | |
11621 | if ((env->migration_type == migrate_task) && | |
11622 | (sd->nr_balance_failed > sd->cache_nice_tries+2)) | |
11623 | return 1; | |
11624 | ||
11625 | return 0; | |
11626 | } | |
11627 | ||
11628 | static int need_active_balance(struct lb_env *env) | |
46a745d9 VG |
11629 | { |
11630 | struct sched_domain *sd = env->sd; | |
532cb4c4 | 11631 | |
46a745d9 VG |
11632 | if (asym_active_balance(env)) |
11633 | return 1; | |
1af3ed3d | 11634 | |
e9b9734b VG |
11635 | if (imbalanced_active_balance(env)) |
11636 | return 1; | |
11637 | ||
1aaf90a4 VG |
11638 | /* |
11639 | * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. | |
11640 | * It's worth migrating the task if the src_cpu's capacity is reduced | |
11641 | * because of other sched_class or IRQs if more capacity stays | |
11642 | * available on dst_cpu. | |
11643 | */ | |
38d707c5 | 11644 | if (env->idle && |
1a491044 | 11645 | (env->src_rq->cfs.h_nr_runnable == 1)) { |
1aaf90a4 VG |
11646 | if ((check_cpu_capacity(env->src_rq, sd)) && |
11647 | (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) | |
11648 | return 1; | |
11649 | } | |
11650 | ||
0b0695f2 | 11651 | if (env->migration_type == migrate_misfit) |
cad68e55 MR |
11652 | return 1; |
11653 | ||
46a745d9 VG |
11654 | return 0; |
11655 | } | |
11656 | ||
969c7921 TH |
11657 | static int active_load_balance_cpu_stop(void *data); |
11658 | ||
23f0d209 JK |
11659 | static int should_we_balance(struct lb_env *env) |
11660 | { | |
f8858d96 | 11661 | struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); |
23f0d209 | 11662 | struct sched_group *sg = env->sd->groups; |
b1bfeab9 | 11663 | int cpu, idle_smt = -1; |
23f0d209 | 11664 | |
024c9d2f PZ |
11665 | /* |
11666 | * Ensure the balancing environment is consistent; can happen | |
11667 | * when the softirq triggers 'during' hotplug. | |
11668 | */ | |
11669 | if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) | |
11670 | return 0; | |
11671 | ||
23f0d209 | 11672 | /* |
97fb7a0a | 11673 | * In the newly idle case, we will allow all the CPUs |
23f0d209 | 11674 | * to do the newly idle load balance. |
792b9f65 JD |
11675 | * |
11676 | * However, we bail out if we already have tasks or a wakeup pending, | |
11677 | * to optimize wakeup latency. | |
23f0d209 | 11678 | */ |
792b9f65 JD |
11679 | if (env->idle == CPU_NEWLY_IDLE) { |
11680 | if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) | |
11681 | return 0; | |
23f0d209 | 11682 | return 1; |
792b9f65 | 11683 | } |
23f0d209 | 11684 | |
f8858d96 | 11685 | cpumask_copy(swb_cpus, group_balance_mask(sg)); |
97fb7a0a | 11686 | /* Try to find first idle CPU */ |
f8858d96 | 11687 | for_each_cpu_and(cpu, swb_cpus, env->cpus) { |
af218122 | 11688 | if (!idle_cpu(cpu)) |
23f0d209 JK |
11689 | continue; |
11690 | ||
b1bfeab9 RN |
11691 | /* |
11692 | * Don't balance to idle SMT in busy core right away when | |
11693 | * balancing cores, but remember the first idle SMT CPU for | |
11694 | * later consideration. Find CPU on an idle core first. | |
11695 | */ | |
11696 | if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { | |
11697 | if (idle_smt == -1) | |
11698 | idle_smt = cpu; | |
f8858d96 SH |
11699 | /* |
11700 | * If the core is not idle, and first SMT sibling which is | |
11701 | * idle has been found, then its not needed to check other | |
11702 | * SMT siblings for idleness: | |
11703 | */ | |
11704 | #ifdef CONFIG_SCHED_SMT | |
11705 | cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); | |
11706 | #endif | |
b1bfeab9 RN |
11707 | continue; |
11708 | } | |
11709 | ||
6d7e4782 KN |
11710 | /* |
11711 | * Are we the first idle core in a non-SMT domain or higher, | |
11712 | * or the first idle CPU in a SMT domain? | |
11713 | */ | |
64297f2b | 11714 | return cpu == env->dst_cpu; |
23f0d209 JK |
11715 | } |
11716 | ||
6d7e4782 KN |
11717 | /* Are we the first idle CPU with busy siblings? */ |
11718 | if (idle_smt != -1) | |
11719 | return idle_smt == env->dst_cpu; | |
b1bfeab9 | 11720 | |
64297f2b PW |
11721 | /* Are we the first CPU of this group ? */ |
11722 | return group_balance_cpu(sg) == env->dst_cpu; | |
23f0d209 JK |
11723 | } |
11724 | ||
3b2a793e SS |
11725 | static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd, |
11726 | enum cpu_idle_type idle) | |
11727 | { | |
11728 | if (!schedstat_enabled()) | |
11729 | return; | |
11730 | ||
11731 | switch (env->migration_type) { | |
11732 | case migrate_load: | |
11733 | __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); | |
11734 | break; | |
11735 | case migrate_util: | |
11736 | __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); | |
11737 | break; | |
11738 | case migrate_task: | |
11739 | __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); | |
11740 | break; | |
11741 | case migrate_misfit: | |
11742 | __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); | |
11743 | break; | |
11744 | } | |
11745 | } | |
11746 | ||
1e3c88bd PZ |
11747 | /* |
11748 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | |
11749 | * tasks if there is an imbalance. | |
11750 | */ | |
4c3e509e | 11751 | static int sched_balance_rq(int this_cpu, struct rq *this_rq, |
1e3c88bd | 11752 | struct sched_domain *sd, enum cpu_idle_type idle, |
23f0d209 | 11753 | int *continue_balancing) |
1e3c88bd | 11754 | { |
88b8dac0 | 11755 | int ld_moved, cur_ld_moved, active_balance = 0; |
6263322c | 11756 | struct sched_domain *sd_parent = sd->parent; |
1e3c88bd | 11757 | struct sched_group *group; |
1e3c88bd | 11758 | struct rq *busiest; |
8a8c69c3 | 11759 | struct rq_flags rf; |
4ba29684 | 11760 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); |
8e45cb54 PZ |
11761 | struct lb_env env = { |
11762 | .sd = sd, | |
ddcdf6e7 PZ |
11763 | .dst_cpu = this_cpu, |
11764 | .dst_rq = this_rq, | |
0dd37d6d | 11765 | .dst_grpmask = group_balance_mask(sd->groups), |
8e45cb54 | 11766 | .idle = idle, |
c59862f8 | 11767 | .loop_break = SCHED_NR_MIGRATE_BREAK, |
b9403130 | 11768 | .cpus = cpus, |
0ec8aa00 | 11769 | .fbq_type = all, |
163122b7 | 11770 | .tasks = LIST_HEAD_INIT(env.tasks), |
8e45cb54 PZ |
11771 | }; |
11772 | ||
65a4433a | 11773 | cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); |
1e3c88bd | 11774 | |
ae92882e | 11775 | schedstat_inc(sd->lb_count[idle]); |
1e3c88bd PZ |
11776 | |
11777 | redo: | |
23f0d209 JK |
11778 | if (!should_we_balance(&env)) { |
11779 | *continue_balancing = 0; | |
1e3c88bd | 11780 | goto out_balanced; |
23f0d209 | 11781 | } |
1e3c88bd | 11782 | |
82cf9214 | 11783 | group = sched_balance_find_src_group(&env); |
1e3c88bd | 11784 | if (!group) { |
ae92882e | 11785 | schedstat_inc(sd->lb_nobusyg[idle]); |
1e3c88bd PZ |
11786 | goto out_balanced; |
11787 | } | |
11788 | ||
f1cd2e2e | 11789 | busiest = sched_balance_find_src_rq(&env, group); |
1e3c88bd | 11790 | if (!busiest) { |
ae92882e | 11791 | schedstat_inc(sd->lb_nobusyq[idle]); |
1e3c88bd PZ |
11792 | goto out_balanced; |
11793 | } | |
11794 | ||
09348d75 | 11795 | WARN_ON_ONCE(busiest == env.dst_rq); |
1e3c88bd | 11796 | |
3b2a793e | 11797 | update_lb_imbalance_stat(&env, sd, idle); |
1e3c88bd | 11798 | |
1aaf90a4 VG |
11799 | env.src_cpu = busiest->cpu; |
11800 | env.src_rq = busiest; | |
11801 | ||
1e3c88bd | 11802 | ld_moved = 0; |
8a41dfcd VG |
11803 | /* Clear this flag as soon as we find a pullable task */ |
11804 | env.flags |= LBF_ALL_PINNED; | |
1e3c88bd PZ |
11805 | if (busiest->nr_running > 1) { |
11806 | /* | |
82cf9214 | 11807 | * Attempt to move tasks. If sched_balance_find_src_group has found |
1e3c88bd PZ |
11808 | * an imbalance but busiest->nr_running <= 1, the group is |
11809 | * still unbalanced. ld_moved simply stays zero, so it is | |
11810 | * correctly treated as an imbalance. | |
11811 | */ | |
c82513e5 | 11812 | env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); |
8e45cb54 | 11813 | |
5d6523eb | 11814 | more_balance: |
8a8c69c3 | 11815 | rq_lock_irqsave(busiest, &rf); |
3bed5e21 | 11816 | update_rq_clock(busiest); |
88b8dac0 SV |
11817 | |
11818 | /* | |
11819 | * cur_ld_moved - load moved in current iteration | |
11820 | * ld_moved - cumulative load moved across iterations | |
11821 | */ | |
163122b7 | 11822 | cur_ld_moved = detach_tasks(&env); |
1e3c88bd PZ |
11823 | |
11824 | /* | |
163122b7 KT |
11825 | * We've detached some tasks from busiest_rq. Every |
11826 | * task is masked "TASK_ON_RQ_MIGRATING", so we can safely | |
11827 | * unlock busiest->lock, and we are able to be sure | |
11828 | * that nobody can manipulate the tasks in parallel. | |
11829 | * See task_rq_lock() family for the details. | |
1e3c88bd | 11830 | */ |
163122b7 | 11831 | |
8a8c69c3 | 11832 | rq_unlock(busiest, &rf); |
163122b7 KT |
11833 | |
11834 | if (cur_ld_moved) { | |
11835 | attach_tasks(&env); | |
11836 | ld_moved += cur_ld_moved; | |
11837 | } | |
11838 | ||
8a8c69c3 | 11839 | local_irq_restore(rf.flags); |
88b8dac0 | 11840 | |
f1cd0858 JK |
11841 | if (env.flags & LBF_NEED_BREAK) { |
11842 | env.flags &= ~LBF_NEED_BREAK; | |
2feab249 | 11843 | goto more_balance; |
f1cd0858 JK |
11844 | } |
11845 | ||
88b8dac0 SV |
11846 | /* |
11847 | * Revisit (affine) tasks on src_cpu that couldn't be moved to | |
11848 | * us and move them to an alternate dst_cpu in our sched_group | |
11849 | * where they can run. The upper limit on how many times we | |
97fb7a0a | 11850 | * iterate on same src_cpu is dependent on number of CPUs in our |
88b8dac0 SV |
11851 | * sched_group. |
11852 | * | |
11853 | * This changes load balance semantics a bit on who can move | |
11854 | * load to a given_cpu. In addition to the given_cpu itself | |
11855 | * (or a ilb_cpu acting on its behalf where given_cpu is | |
11856 | * nohz-idle), we now have balance_cpu in a position to move | |
11857 | * load to given_cpu. In rare situations, this may cause | |
11858 | * conflicts (balance_cpu and given_cpu/ilb_cpu deciding | |
11859 | * _independently_ and at _same_ time to move some load to | |
3b03706f | 11860 | * given_cpu) causing excess load to be moved to given_cpu. |
88b8dac0 SV |
11861 | * This however should not happen so much in practice and |
11862 | * moreover subsequent load balance cycles should correct the | |
11863 | * excess load moved. | |
11864 | */ | |
6263322c | 11865 | if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { |
88b8dac0 | 11866 | |
97fb7a0a | 11867 | /* Prevent to re-select dst_cpu via env's CPUs */ |
c89d92ed | 11868 | __cpumask_clear_cpu(env.dst_cpu, env.cpus); |
7aff2e3a | 11869 | |
78feefc5 | 11870 | env.dst_rq = cpu_rq(env.new_dst_cpu); |
88b8dac0 | 11871 | env.dst_cpu = env.new_dst_cpu; |
6263322c | 11872 | env.flags &= ~LBF_DST_PINNED; |
88b8dac0 | 11873 | env.loop = 0; |
c59862f8 | 11874 | env.loop_break = SCHED_NR_MIGRATE_BREAK; |
e02e60c1 | 11875 | |
88b8dac0 SV |
11876 | /* |
11877 | * Go back to "more_balance" rather than "redo" since we | |
11878 | * need to continue with same src_cpu. | |
11879 | */ | |
11880 | goto more_balance; | |
11881 | } | |
1e3c88bd | 11882 | |
6263322c PZ |
11883 | /* |
11884 | * We failed to reach balance because of affinity. | |
11885 | */ | |
11886 | if (sd_parent) { | |
63b2ca30 | 11887 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; |
6263322c | 11888 | |
afdeee05 | 11889 | if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) |
6263322c | 11890 | *group_imbalance = 1; |
6263322c PZ |
11891 | } |
11892 | ||
1e3c88bd | 11893 | /* All tasks on this runqueue were pinned by CPU affinity */ |
8e45cb54 | 11894 | if (unlikely(env.flags & LBF_ALL_PINNED)) { |
c89d92ed | 11895 | __cpumask_clear_cpu(cpu_of(busiest), cpus); |
65a4433a JH |
11896 | /* |
11897 | * Attempting to continue load balancing at the current | |
11898 | * sched_domain level only makes sense if there are | |
11899 | * active CPUs remaining as possible busiest CPUs to | |
11900 | * pull load from which are not contained within the | |
11901 | * destination group that is receiving any migrated | |
11902 | * load. | |
11903 | */ | |
11904 | if (!cpumask_subset(cpus, env.dst_grpmask)) { | |
bbf18b19 | 11905 | env.loop = 0; |
c59862f8 | 11906 | env.loop_break = SCHED_NR_MIGRATE_BREAK; |
1e3c88bd | 11907 | goto redo; |
bbf18b19 | 11908 | } |
afdeee05 | 11909 | goto out_all_pinned; |
1e3c88bd PZ |
11910 | } |
11911 | } | |
11912 | ||
11913 | if (!ld_moved) { | |
ae92882e | 11914 | schedstat_inc(sd->lb_failed[idle]); |
58b26c4c VP |
11915 | /* |
11916 | * Increment the failure counter only on periodic balance. | |
11917 | * We do not want newidle balance, which can be very | |
11918 | * frequent, pollute the failure counter causing | |
11919 | * excessive cache_hot migrations and active balances. | |
58eeb2d7 QY |
11920 | * |
11921 | * Similarly for migration_misfit which is not related to | |
11922 | * load/util migration, don't pollute nr_balance_failed. | |
58b26c4c | 11923 | */ |
58eeb2d7 QY |
11924 | if (idle != CPU_NEWLY_IDLE && |
11925 | env.migration_type != migrate_misfit) | |
58b26c4c | 11926 | sd->nr_balance_failed++; |
1e3c88bd | 11927 | |
bd939f45 | 11928 | if (need_active_balance(&env)) { |
8a8c69c3 PZ |
11929 | unsigned long flags; |
11930 | ||
5cb9eaa3 | 11931 | raw_spin_rq_lock_irqsave(busiest, flags); |
1e3c88bd | 11932 | |
97fb7a0a IM |
11933 | /* |
11934 | * Don't kick the active_load_balance_cpu_stop, | |
11935 | * if the curr task on busiest CPU can't be | |
11936 | * moved to this_cpu: | |
1e3c88bd | 11937 | */ |
3bd37062 | 11938 | if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { |
5cb9eaa3 | 11939 | raw_spin_rq_unlock_irqrestore(busiest, flags); |
1e3c88bd PZ |
11940 | goto out_one_pinned; |
11941 | } | |
11942 | ||
8a41dfcd VG |
11943 | /* Record that we found at least one task that could run on this_cpu */ |
11944 | env.flags &= ~LBF_ALL_PINNED; | |
11945 | ||
969c7921 TH |
11946 | /* |
11947 | * ->active_balance synchronizes accesses to | |
11948 | * ->active_balance_work. Once set, it's cleared | |
11949 | * only after active load balance is finished. | |
11950 | */ | |
1e3c88bd PZ |
11951 | if (!busiest->active_balance) { |
11952 | busiest->active_balance = 1; | |
11953 | busiest->push_cpu = this_cpu; | |
11954 | active_balance = 1; | |
11955 | } | |
969c7921 | 11956 | |
f0498d2a PZ |
11957 | preempt_disable(); |
11958 | raw_spin_rq_unlock_irqrestore(busiest, flags); | |
bd939f45 | 11959 | if (active_balance) { |
969c7921 TH |
11960 | stop_one_cpu_nowait(cpu_of(busiest), |
11961 | active_load_balance_cpu_stop, busiest, | |
11962 | &busiest->active_balance_work); | |
bd939f45 | 11963 | } |
f0498d2a | 11964 | preempt_enable(); |
1e3c88bd | 11965 | } |
e9b9734b | 11966 | } else { |
1e3c88bd | 11967 | sd->nr_balance_failed = 0; |
e9b9734b | 11968 | } |
1e3c88bd | 11969 | |
e9b9734b | 11970 | if (likely(!active_balance) || need_active_balance(&env)) { |
1e3c88bd PZ |
11971 | /* We were unbalanced, so reset the balancing interval */ |
11972 | sd->balance_interval = sd->min_interval; | |
1e3c88bd PZ |
11973 | } |
11974 | ||
1e3c88bd PZ |
11975 | goto out; |
11976 | ||
11977 | out_balanced: | |
afdeee05 VG |
11978 | /* |
11979 | * We reach balance although we may have faced some affinity | |
f6cad8df VG |
11980 | * constraints. Clear the imbalance flag only if other tasks got |
11981 | * a chance to move and fix the imbalance. | |
afdeee05 | 11982 | */ |
f6cad8df | 11983 | if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { |
afdeee05 VG |
11984 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; |
11985 | ||
11986 | if (*group_imbalance) | |
11987 | *group_imbalance = 0; | |
11988 | } | |
11989 | ||
11990 | out_all_pinned: | |
11991 | /* | |
11992 | * We reach balance because all tasks are pinned at this level so | |
11993 | * we can't migrate them. Let the imbalance flag set so parent level | |
11994 | * can try to migrate them. | |
11995 | */ | |
ae92882e | 11996 | schedstat_inc(sd->lb_balanced[idle]); |
1e3c88bd PZ |
11997 | |
11998 | sd->nr_balance_failed = 0; | |
11999 | ||
12000 | out_one_pinned: | |
3f130a37 VS |
12001 | ld_moved = 0; |
12002 | ||
12003 | /* | |
7d058285 | 12004 | * sched_balance_newidle() disregards balance intervals, so we could |
5ba553ef | 12005 | * repeatedly reach this code, which would lead to balance_interval |
3b03706f | 12006 | * skyrocketing in a short amount of time. Skip the balance_interval |
5ba553ef | 12007 | * increase logic to avoid that. |
58eeb2d7 QY |
12008 | * |
12009 | * Similarly misfit migration which is not necessarily an indication of | |
12010 | * the system being busy and requires lb to backoff to let it settle | |
12011 | * down. | |
3f130a37 | 12012 | */ |
58eeb2d7 QY |
12013 | if (env.idle == CPU_NEWLY_IDLE || |
12014 | env.migration_type == migrate_misfit) | |
3f130a37 VS |
12015 | goto out; |
12016 | ||
1e3c88bd | 12017 | /* tune up the balancing interval */ |
47b7aee1 VS |
12018 | if ((env.flags & LBF_ALL_PINNED && |
12019 | sd->balance_interval < MAX_PINNED_INTERVAL) || | |
12020 | sd->balance_interval < sd->max_interval) | |
1e3c88bd | 12021 | sd->balance_interval *= 2; |
1e3c88bd | 12022 | out: |
1e3c88bd PZ |
12023 | return ld_moved; |
12024 | } | |
12025 | ||
52a08ef1 JL |
12026 | static inline unsigned long |
12027 | get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) | |
12028 | { | |
12029 | unsigned long interval = sd->balance_interval; | |
12030 | ||
12031 | if (cpu_busy) | |
12032 | interval *= sd->busy_factor; | |
12033 | ||
12034 | /* scale ms to jiffies */ | |
12035 | interval = msecs_to_jiffies(interval); | |
e4d32e4d VG |
12036 | |
12037 | /* | |
12038 | * Reduce likelihood of busy balancing at higher domains racing with | |
12039 | * balancing at lower domains by preventing their balancing periods | |
12040 | * from being multiples of each other. | |
12041 | */ | |
12042 | if (cpu_busy) | |
12043 | interval -= 1; | |
12044 | ||
52a08ef1 JL |
12045 | interval = clamp(interval, 1UL, max_load_balance_interval); |
12046 | ||
12047 | return interval; | |
12048 | } | |
12049 | ||
12050 | static inline void | |
31851a98 | 12051 | update_next_balance(struct sched_domain *sd, unsigned long *next_balance) |
52a08ef1 JL |
12052 | { |
12053 | unsigned long interval, next; | |
12054 | ||
31851a98 LY |
12055 | /* used by idle balance, so cpu_busy = 0 */ |
12056 | interval = get_sd_balance_interval(sd, 0); | |
52a08ef1 JL |
12057 | next = sd->last_balance + interval; |
12058 | ||
12059 | if (time_after(*next_balance, next)) | |
12060 | *next_balance = next; | |
12061 | } | |
12062 | ||
1e3c88bd | 12063 | /* |
97fb7a0a | 12064 | * active_load_balance_cpu_stop is run by the CPU stopper. It pushes |
969c7921 TH |
12065 | * running tasks off the busiest CPU onto idle CPUs. It requires at |
12066 | * least 1 task to be running on each physical CPU where possible, and | |
12067 | * avoids physical / logical imbalances. | |
1e3c88bd | 12068 | */ |
969c7921 | 12069 | static int active_load_balance_cpu_stop(void *data) |
1e3c88bd | 12070 | { |
969c7921 TH |
12071 | struct rq *busiest_rq = data; |
12072 | int busiest_cpu = cpu_of(busiest_rq); | |
1e3c88bd | 12073 | int target_cpu = busiest_rq->push_cpu; |
969c7921 | 12074 | struct rq *target_rq = cpu_rq(target_cpu); |
1e3c88bd | 12075 | struct sched_domain *sd; |
e5673f28 | 12076 | struct task_struct *p = NULL; |
8a8c69c3 | 12077 | struct rq_flags rf; |
969c7921 | 12078 | |
8a8c69c3 | 12079 | rq_lock_irq(busiest_rq, &rf); |
edd8e41d PZ |
12080 | /* |
12081 | * Between queueing the stop-work and running it is a hole in which | |
12082 | * CPUs can become inactive. We should not move tasks from or to | |
12083 | * inactive CPUs. | |
12084 | */ | |
12085 | if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) | |
12086 | goto out_unlock; | |
969c7921 | 12087 | |
97fb7a0a | 12088 | /* Make sure the requested CPU hasn't gone down in the meantime: */ |
969c7921 TH |
12089 | if (unlikely(busiest_cpu != smp_processor_id() || |
12090 | !busiest_rq->active_balance)) | |
12091 | goto out_unlock; | |
1e3c88bd PZ |
12092 | |
12093 | /* Is there any task to move? */ | |
12094 | if (busiest_rq->nr_running <= 1) | |
969c7921 | 12095 | goto out_unlock; |
1e3c88bd PZ |
12096 | |
12097 | /* | |
12098 | * This condition is "impossible", if it occurs | |
12099 | * we need to fix it. Originally reported by | |
97fb7a0a | 12100 | * Bjorn Helgaas on a 128-CPU setup. |
1e3c88bd | 12101 | */ |
09348d75 | 12102 | WARN_ON_ONCE(busiest_rq == target_rq); |
1e3c88bd | 12103 | |
1e3c88bd | 12104 | /* Search for an sd spanning us and the target CPU. */ |
dce840a0 | 12105 | rcu_read_lock(); |
1e3c88bd | 12106 | for_each_domain(target_cpu, sd) { |
e669ac8a VS |
12107 | if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) |
12108 | break; | |
1e3c88bd PZ |
12109 | } |
12110 | ||
12111 | if (likely(sd)) { | |
8e45cb54 PZ |
12112 | struct lb_env env = { |
12113 | .sd = sd, | |
ddcdf6e7 PZ |
12114 | .dst_cpu = target_cpu, |
12115 | .dst_rq = target_rq, | |
12116 | .src_cpu = busiest_rq->cpu, | |
12117 | .src_rq = busiest_rq, | |
8e45cb54 | 12118 | .idle = CPU_IDLE, |
23fb06d9 | 12119 | .flags = LBF_ACTIVE_LB, |
8e45cb54 PZ |
12120 | }; |
12121 | ||
ae92882e | 12122 | schedstat_inc(sd->alb_count); |
3bed5e21 | 12123 | update_rq_clock(busiest_rq); |
1e3c88bd | 12124 | |
e5673f28 | 12125 | p = detach_one_task(&env); |
d02c0711 | 12126 | if (p) { |
ae92882e | 12127 | schedstat_inc(sd->alb_pushed); |
d02c0711 SD |
12128 | /* Active balancing done, reset the failure counter. */ |
12129 | sd->nr_balance_failed = 0; | |
12130 | } else { | |
ae92882e | 12131 | schedstat_inc(sd->alb_failed); |
d02c0711 | 12132 | } |
1e3c88bd | 12133 | } |
dce840a0 | 12134 | rcu_read_unlock(); |
969c7921 TH |
12135 | out_unlock: |
12136 | busiest_rq->active_balance = 0; | |
8a8c69c3 | 12137 | rq_unlock(busiest_rq, &rf); |
e5673f28 KT |
12138 | |
12139 | if (p) | |
12140 | attach_one_task(target_rq, p); | |
12141 | ||
12142 | local_irq_enable(); | |
12143 | ||
969c7921 | 12144 | return 0; |
1e3c88bd PZ |
12145 | } |
12146 | ||
214c1b7f IM |
12147 | /* |
12148 | * This flag serializes load-balancing passes over large domains | |
12149 | * (above the NODE topology level) - only one load-balancing instance | |
12150 | * may run at a time, to reduce overhead on very large systems with | |
12151 | * lots of CPUs and large NUMA distances. | |
12152 | * | |
12153 | * - Note that load-balancing passes triggered while another one | |
12154 | * is executing are skipped and not re-tried. | |
12155 | * | |
12156 | * - Also note that this does not serialize rebalance_domains() | |
12157 | * execution, as non-SD_SERIALIZE domains will still be | |
12158 | * load-balanced in parallel. | |
12159 | */ | |
12160 | static atomic_t sched_balance_running = ATOMIC_INIT(0); | |
af3fe03c PZ |
12161 | |
12162 | /* | |
4c3e509e | 12163 | * Scale the max sched_balance_rq interval with the number of CPUs in the system. |
af3fe03c PZ |
12164 | * This trades load-balance latency on larger machines for less cross talk. |
12165 | */ | |
12166 | void update_max_interval(void) | |
12167 | { | |
12168 | max_load_balance_interval = HZ*num_online_cpus()/10; | |
12169 | } | |
12170 | ||
e60b56e4 VG |
12171 | static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) |
12172 | { | |
12173 | if (cost > sd->max_newidle_lb_cost) { | |
12174 | /* | |
12175 | * Track max cost of a domain to make sure to not delay the | |
12176 | * next wakeup on the CPU. | |
12177 | */ | |
12178 | sd->max_newidle_lb_cost = cost; | |
12179 | sd->last_decay_max_lb_cost = jiffies; | |
12180 | } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { | |
12181 | /* | |
12182 | * Decay the newidle max times by ~1% per second to ensure that | |
12183 | * it is not outdated and the current max cost is actually | |
12184 | * shorter. | |
12185 | */ | |
12186 | sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; | |
12187 | sd->last_decay_max_lb_cost = jiffies; | |
12188 | ||
12189 | return true; | |
12190 | } | |
12191 | ||
12192 | return false; | |
12193 | } | |
12194 | ||
af3fe03c PZ |
12195 | /* |
12196 | * It checks each scheduling domain to see if it is due to be balanced, | |
12197 | * and initiates a balancing operation if so. | |
12198 | * | |
12199 | * Balancing parameters are set up in init_sched_domains. | |
12200 | */ | |
14ff4dbd | 12201 | static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) |
af3fe03c PZ |
12202 | { |
12203 | int continue_balancing = 1; | |
12204 | int cpu = rq->cpu; | |
323af6de | 12205 | int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); |
af3fe03c PZ |
12206 | unsigned long interval; |
12207 | struct sched_domain *sd; | |
12208 | /* Earliest time when we have to do rebalance again */ | |
12209 | unsigned long next_balance = jiffies + 60*HZ; | |
12210 | int update_next_balance = 0; | |
12211 | int need_serialize, need_decay = 0; | |
12212 | u64 max_cost = 0; | |
12213 | ||
12214 | rcu_read_lock(); | |
12215 | for_each_domain(cpu, sd) { | |
12216 | /* | |
12217 | * Decay the newidle max times here because this is a regular | |
e60b56e4 | 12218 | * visit to all the domains. |
af3fe03c | 12219 | */ |
e60b56e4 | 12220 | need_decay = update_newidle_cost(sd, 0); |
af3fe03c PZ |
12221 | max_cost += sd->max_newidle_lb_cost; |
12222 | ||
af3fe03c PZ |
12223 | /* |
12224 | * Stop the load balance at this level. There is another | |
12225 | * CPU in our sched group which is doing load balancing more | |
12226 | * actively. | |
12227 | */ | |
12228 | if (!continue_balancing) { | |
12229 | if (need_decay) | |
12230 | continue; | |
12231 | break; | |
12232 | } | |
12233 | ||
323af6de | 12234 | interval = get_sd_balance_interval(sd, busy); |
af3fe03c PZ |
12235 | |
12236 | need_serialize = sd->flags & SD_SERIALIZE; | |
12237 | if (need_serialize) { | |
214c1b7f | 12238 | if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) |
af3fe03c PZ |
12239 | goto out; |
12240 | } | |
12241 | ||
12242 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | |
4c3e509e | 12243 | if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { |
af3fe03c PZ |
12244 | /* |
12245 | * The LBF_DST_PINNED logic could have changed | |
12246 | * env->dst_cpu, so we can't know our idle | |
12247 | * state even if we migrated tasks. Update it. | |
12248 | */ | |
38d707c5 IM |
12249 | idle = idle_cpu(cpu); |
12250 | busy = !idle && !sched_idle_cpu(cpu); | |
af3fe03c PZ |
12251 | } |
12252 | sd->last_balance = jiffies; | |
323af6de | 12253 | interval = get_sd_balance_interval(sd, busy); |
af3fe03c PZ |
12254 | } |
12255 | if (need_serialize) | |
214c1b7f | 12256 | atomic_set_release(&sched_balance_running, 0); |
af3fe03c PZ |
12257 | out: |
12258 | if (time_after(next_balance, sd->last_balance + interval)) { | |
12259 | next_balance = sd->last_balance + interval; | |
12260 | update_next_balance = 1; | |
12261 | } | |
12262 | } | |
12263 | if (need_decay) { | |
12264 | /* | |
12265 | * Ensure the rq-wide value also decays but keep it at a | |
12266 | * reasonable floor to avoid funnies with rq->avg_idle. | |
12267 | */ | |
12268 | rq->max_idle_balance_cost = | |
12269 | max((u64)sysctl_sched_migration_cost, max_cost); | |
12270 | } | |
12271 | rcu_read_unlock(); | |
12272 | ||
12273 | /* | |
12274 | * next_balance will be updated only when there is a need. | |
12275 | * When the cpu is attached to null domain for ex, it will not be | |
12276 | * updated. | |
12277 | */ | |
7a82e5f5 | 12278 | if (likely(update_next_balance)) |
af3fe03c PZ |
12279 | rq->next_balance = next_balance; |
12280 | ||
af3fe03c PZ |
12281 | } |
12282 | ||
d987fc7f MG |
12283 | static inline int on_null_domain(struct rq *rq) |
12284 | { | |
12285 | return unlikely(!rcu_dereference_sched(rq->sd)); | |
12286 | } | |
12287 | ||
3451d024 | 12288 | #ifdef CONFIG_NO_HZ_COMMON |
83cd4fe2 | 12289 | /* |
7ef7145a IM |
12290 | * NOHZ idle load balancing (ILB) details: |
12291 | * | |
12292 | * - When one of the busy CPUs notices that there may be an idle rebalancing | |
83cd4fe2 VP |
12293 | * needed, they will kick the idle load balancer, which then does idle |
12294 | * load balancing for all the idle CPUs. | |
12295 | */ | |
3dd0337d | 12296 | static inline int find_new_ilb(void) |
1e3c88bd | 12297 | { |
031e3bd8 | 12298 | const struct cpumask *hk_mask; |
b6dd6984 | 12299 | int ilb_cpu; |
1e3c88bd | 12300 | |
c907cd44 | 12301 | hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); |
1e3c88bd | 12302 | |
b6dd6984 | 12303 | for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { |
45da7a2b | 12304 | |
b6dd6984 | 12305 | if (ilb_cpu == smp_processor_id()) |
45da7a2b PZ |
12306 | continue; |
12307 | ||
b6dd6984 IM |
12308 | if (idle_cpu(ilb_cpu)) |
12309 | return ilb_cpu; | |
9b019acb | 12310 | } |
786d6dc7 | 12311 | |
f4bb5705 | 12312 | return -1; |
1e3c88bd | 12313 | } |
1e3c88bd | 12314 | |
83cd4fe2 | 12315 | /* |
7ef7145a IM |
12316 | * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU |
12317 | * SMP function call (IPI). | |
12318 | * | |
c907cd44 WL |
12319 | * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set |
12320 | * (if there is one). | |
83cd4fe2 | 12321 | */ |
a4064fb6 | 12322 | static void kick_ilb(unsigned int flags) |
83cd4fe2 VP |
12323 | { |
12324 | int ilb_cpu; | |
12325 | ||
3ea2f097 VG |
12326 | /* |
12327 | * Increase nohz.next_balance only when if full ilb is triggered but | |
12328 | * not if we only update stats. | |
12329 | */ | |
12330 | if (flags & NOHZ_BALANCE_KICK) | |
12331 | nohz.next_balance = jiffies+1; | |
83cd4fe2 | 12332 | |
3dd0337d | 12333 | ilb_cpu = find_new_ilb(); |
f4bb5705 | 12334 | if (ilb_cpu < 0) |
0b005cf5 | 12335 | return; |
83cd4fe2 | 12336 | |
f90cc919 TC |
12337 | /* |
12338 | * Don't bother if no new NOHZ balance work items for ilb_cpu, | |
12339 | * i.e. all bits in flags are already set in ilb_cpu. | |
12340 | */ | |
12341 | if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) | |
12342 | return; | |
12343 | ||
19a1f5ec PZ |
12344 | /* |
12345 | * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets | |
12346 | * the first flag owns it; cleared by nohz_csd_func(). | |
12347 | */ | |
a4064fb6 | 12348 | flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); |
b7031a02 | 12349 | if (flags & NOHZ_KICK_MASK) |
1c792db7 | 12350 | return; |
4550487a | 12351 | |
1c792db7 | 12352 | /* |
90b5363a | 12353 | * This way we generate an IPI on the target CPU which |
7ef7145a | 12354 | * is idle, and the softirq performing NOHZ idle load balancing |
1c792db7 SS |
12355 | * will be run before returning from the IPI. |
12356 | */ | |
90b5363a | 12357 | smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); |
4550487a PZ |
12358 | } |
12359 | ||
12360 | /* | |
9f132742 VS |
12361 | * Current decision point for kicking the idle load balancer in the presence |
12362 | * of idle CPUs in the system. | |
4550487a PZ |
12363 | */ |
12364 | static void nohz_balancer_kick(struct rq *rq) | |
12365 | { | |
12366 | unsigned long now = jiffies; | |
12367 | struct sched_domain_shared *sds; | |
12368 | struct sched_domain *sd; | |
12369 | int nr_busy, i, cpu = rq->cpu; | |
a4064fb6 | 12370 | unsigned int flags = 0; |
4550487a PZ |
12371 | |
12372 | if (unlikely(rq->idle_balance)) | |
12373 | return; | |
12374 | ||
12375 | /* | |
12376 | * We may be recently in ticked or tickless idle mode. At the first | |
12377 | * busy tick after returning from idle, we will update the busy stats. | |
12378 | */ | |
00357f5e | 12379 | nohz_balance_exit_idle(rq); |
4550487a PZ |
12380 | |
12381 | /* | |
12382 | * None are in tickless mode and hence no need for NOHZ idle load | |
7ef7145a | 12383 | * balancing: |
4550487a PZ |
12384 | */ |
12385 | if (likely(!atomic_read(&nohz.nr_cpus))) | |
12386 | return; | |
12387 | ||
f643ea22 VG |
12388 | if (READ_ONCE(nohz.has_blocked) && |
12389 | time_after(now, READ_ONCE(nohz.next_blocked))) | |
a4064fb6 PZ |
12390 | flags = NOHZ_STATS_KICK; |
12391 | ||
4550487a | 12392 | if (time_before(now, nohz.next_balance)) |
a4064fb6 | 12393 | goto out; |
4550487a | 12394 | |
a0fe2cf0 | 12395 | if (rq->nr_running >= 2) { |
efd984c4 | 12396 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; |
4550487a PZ |
12397 | goto out; |
12398 | } | |
12399 | ||
12400 | rcu_read_lock(); | |
4550487a PZ |
12401 | |
12402 | sd = rcu_dereference(rq->sd); | |
12403 | if (sd) { | |
e25a7a94 | 12404 | /* |
7ef7145a IM |
12405 | * If there's a runnable CFS task and the current CPU has reduced |
12406 | * capacity, kick the ILB to see if there's a better CPU to run on: | |
e25a7a94 | 12407 | */ |
1a491044 | 12408 | if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { |
efd984c4 | 12409 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; |
4550487a PZ |
12410 | goto unlock; |
12411 | } | |
12412 | } | |
12413 | ||
011b27bb | 12414 | sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); |
4550487a | 12415 | if (sd) { |
b9a7b883 VS |
12416 | /* |
12417 | * When ASYM_PACKING; see if there's a more preferred CPU | |
12418 | * currently idle; in which case, kick the ILB to move tasks | |
12419 | * around. | |
eefefa71 | 12420 | * |
b9e6e286 | 12421 | * When balancing between cores, all the SMT siblings of the |
eefefa71 | 12422 | * preferred CPU must be idle. |
b9a7b883 | 12423 | */ |
7edab78d | 12424 | for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { |
45de2062 | 12425 | if (sched_asym(sd, i, cpu)) { |
efd984c4 | 12426 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; |
4550487a PZ |
12427 | goto unlock; |
12428 | } | |
12429 | } | |
12430 | } | |
b9a7b883 | 12431 | |
a0fe2cf0 VS |
12432 | sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); |
12433 | if (sd) { | |
12434 | /* | |
12435 | * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU | |
12436 | * to run the misfit task on. | |
12437 | */ | |
22d56074 | 12438 | if (check_misfit_status(rq)) { |
efd984c4 | 12439 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; |
a0fe2cf0 VS |
12440 | goto unlock; |
12441 | } | |
b9a7b883 VS |
12442 | |
12443 | /* | |
12444 | * For asymmetric systems, we do not want to nicely balance | |
12445 | * cache use, instead we want to embrace asymmetry and only | |
12446 | * ensure tasks have enough CPU capacity. | |
12447 | * | |
12448 | * Skip the LLC logic because it's not relevant in that case. | |
12449 | */ | |
12450 | goto unlock; | |
a0fe2cf0 VS |
12451 | } |
12452 | ||
b9a7b883 VS |
12453 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); |
12454 | if (sds) { | |
e25a7a94 | 12455 | /* |
b9a7b883 | 12456 | * If there is an imbalance between LLC domains (IOW we could |
7ef7145a IM |
12457 | * increase the overall cache utilization), we need a less-loaded LLC |
12458 | * domain to pull some load from. Likewise, we may need to spread | |
b9a7b883 VS |
12459 | * load within the current LLC domain (e.g. packed SMT cores but |
12460 | * other CPUs are idle). We can't really know from here how busy | |
7ef7145a | 12461 | * the others are - so just get a NOHZ balance going if it looks |
b9a7b883 | 12462 | * like this LLC domain has tasks we could move. |
e25a7a94 | 12463 | */ |
b9a7b883 VS |
12464 | nr_busy = atomic_read(&sds->nr_busy_cpus); |
12465 | if (nr_busy > 1) { | |
efd984c4 | 12466 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; |
b9a7b883 | 12467 | goto unlock; |
4550487a PZ |
12468 | } |
12469 | } | |
12470 | unlock: | |
12471 | rcu_read_unlock(); | |
12472 | out: | |
7fd7a9e0 VS |
12473 | if (READ_ONCE(nohz.needs_update)) |
12474 | flags |= NOHZ_NEXT_KICK; | |
12475 | ||
a4064fb6 PZ |
12476 | if (flags) |
12477 | kick_ilb(flags); | |
83cd4fe2 VP |
12478 | } |
12479 | ||
00357f5e | 12480 | static void set_cpu_sd_state_busy(int cpu) |
71325960 | 12481 | { |
00357f5e | 12482 | struct sched_domain *sd; |
a22e47a4 | 12483 | |
00357f5e PZ |
12484 | rcu_read_lock(); |
12485 | sd = rcu_dereference(per_cpu(sd_llc, cpu)); | |
a22e47a4 | 12486 | |
00357f5e PZ |
12487 | if (!sd || !sd->nohz_idle) |
12488 | goto unlock; | |
12489 | sd->nohz_idle = 0; | |
12490 | ||
12491 | atomic_inc(&sd->shared->nr_busy_cpus); | |
12492 | unlock: | |
12493 | rcu_read_unlock(); | |
71325960 SS |
12494 | } |
12495 | ||
00357f5e PZ |
12496 | void nohz_balance_exit_idle(struct rq *rq) |
12497 | { | |
f7d2728c | 12498 | WARN_ON_ONCE(rq != this_rq()); |
00357f5e PZ |
12499 | |
12500 | if (likely(!rq->nohz_tick_stopped)) | |
12501 | return; | |
12502 | ||
12503 | rq->nohz_tick_stopped = 0; | |
12504 | cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); | |
12505 | atomic_dec(&nohz.nr_cpus); | |
12506 | ||
12507 | set_cpu_sd_state_busy(rq->cpu); | |
12508 | } | |
12509 | ||
12510 | static void set_cpu_sd_state_idle(int cpu) | |
69e1e811 SS |
12511 | { |
12512 | struct sched_domain *sd; | |
69e1e811 | 12513 | |
69e1e811 | 12514 | rcu_read_lock(); |
0e369d75 | 12515 | sd = rcu_dereference(per_cpu(sd_llc, cpu)); |
25f55d9d VG |
12516 | |
12517 | if (!sd || sd->nohz_idle) | |
12518 | goto unlock; | |
12519 | sd->nohz_idle = 1; | |
12520 | ||
0e369d75 | 12521 | atomic_dec(&sd->shared->nr_busy_cpus); |
25f55d9d | 12522 | unlock: |
69e1e811 SS |
12523 | rcu_read_unlock(); |
12524 | } | |
12525 | ||
1e3c88bd | 12526 | /* |
97fb7a0a | 12527 | * This routine will record that the CPU is going idle with tick stopped. |
0b005cf5 | 12528 | * This info will be used in performing idle load balancing in the future. |
1e3c88bd | 12529 | */ |
c1cc017c | 12530 | void nohz_balance_enter_idle(int cpu) |
1e3c88bd | 12531 | { |
00357f5e PZ |
12532 | struct rq *rq = cpu_rq(cpu); |
12533 | ||
f7d2728c | 12534 | WARN_ON_ONCE(cpu != smp_processor_id()); |
00357f5e | 12535 | |
97fb7a0a | 12536 | /* If this CPU is going down, then nothing needs to be done: */ |
71325960 SS |
12537 | if (!cpu_active(cpu)) |
12538 | return; | |
12539 | ||
f643ea22 VG |
12540 | /* |
12541 | * Can be set safely without rq->lock held | |
12542 | * If a clear happens, it will have evaluated last additions because | |
12543 | * rq->lock is held during the check and the clear | |
12544 | */ | |
12545 | rq->has_blocked_load = 1; | |
12546 | ||
12547 | /* | |
12548 | * The tick is still stopped but load could have been added in the | |
12549 | * meantime. We set the nohz.has_blocked flag to trig a check of the | |
12550 | * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear | |
12551 | * of nohz.has_blocked can only happen after checking the new load | |
12552 | */ | |
00357f5e | 12553 | if (rq->nohz_tick_stopped) |
f643ea22 | 12554 | goto out; |
1e3c88bd | 12555 | |
97fb7a0a | 12556 | /* If we're a completely isolated CPU, we don't play: */ |
00357f5e | 12557 | if (on_null_domain(rq)) |
d987fc7f MG |
12558 | return; |
12559 | ||
00357f5e PZ |
12560 | rq->nohz_tick_stopped = 1; |
12561 | ||
c1cc017c AS |
12562 | cpumask_set_cpu(cpu, nohz.idle_cpus_mask); |
12563 | atomic_inc(&nohz.nr_cpus); | |
00357f5e | 12564 | |
f643ea22 VG |
12565 | /* |
12566 | * Ensures that if nohz_idle_balance() fails to observe our | |
12567 | * @idle_cpus_mask store, it must observe the @has_blocked | |
7fd7a9e0 | 12568 | * and @needs_update stores. |
f643ea22 VG |
12569 | */ |
12570 | smp_mb__after_atomic(); | |
12571 | ||
00357f5e | 12572 | set_cpu_sd_state_idle(cpu); |
f643ea22 | 12573 | |
7fd7a9e0 | 12574 | WRITE_ONCE(nohz.needs_update, 1); |
f643ea22 VG |
12575 | out: |
12576 | /* | |
12577 | * Each time a cpu enter idle, we assume that it has blocked load and | |
b9e6e286 | 12578 | * enable the periodic update of the load of idle CPUs |
f643ea22 VG |
12579 | */ |
12580 | WRITE_ONCE(nohz.has_blocked, 1); | |
1e3c88bd | 12581 | } |
1e3c88bd | 12582 | |
3f5ad914 Y |
12583 | static bool update_nohz_stats(struct rq *rq) |
12584 | { | |
12585 | unsigned int cpu = rq->cpu; | |
12586 | ||
12587 | if (!rq->has_blocked_load) | |
12588 | return false; | |
12589 | ||
12590 | if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) | |
12591 | return false; | |
12592 | ||
12593 | if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) | |
12594 | return true; | |
12595 | ||
391b7a53 | 12596 | sched_balance_update_blocked_averages(cpu); |
3f5ad914 Y |
12597 | |
12598 | return rq->has_blocked_load; | |
12599 | } | |
12600 | ||
1e3c88bd | 12601 | /* |
b9e6e286 | 12602 | * Internal function that runs load balance for all idle CPUs. The load balance |
31e77c93 VG |
12603 | * can be a simple update of blocked load or a complete load balance with |
12604 | * tasks movement depending of flags. | |
1e3c88bd | 12605 | */ |
d985ee9f | 12606 | static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) |
83cd4fe2 | 12607 | { |
c5afb6a8 | 12608 | /* Earliest time when we have to do rebalance again */ |
a4064fb6 PZ |
12609 | unsigned long now = jiffies; |
12610 | unsigned long next_balance = now + 60*HZ; | |
f643ea22 | 12611 | bool has_blocked_load = false; |
c5afb6a8 | 12612 | int update_next_balance = 0; |
b7031a02 | 12613 | int this_cpu = this_rq->cpu; |
b7031a02 PZ |
12614 | int balance_cpu; |
12615 | struct rq *rq; | |
83cd4fe2 | 12616 | |
f7d2728c | 12617 | WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); |
83cd4fe2 | 12618 | |
f643ea22 VG |
12619 | /* |
12620 | * We assume there will be no idle load after this update and clear | |
12621 | * the has_blocked flag. If a cpu enters idle in the mean time, it will | |
7fd7a9e0 | 12622 | * set the has_blocked flag and trigger another update of idle load. |
f643ea22 VG |
12623 | * Because a cpu that becomes idle, is added to idle_cpus_mask before |
12624 | * setting the flag, we are sure to not clear the state and not | |
12625 | * check the load of an idle cpu. | |
7fd7a9e0 VS |
12626 | * |
12627 | * Same applies to idle_cpus_mask vs needs_update. | |
f643ea22 | 12628 | */ |
efd984c4 VS |
12629 | if (flags & NOHZ_STATS_KICK) |
12630 | WRITE_ONCE(nohz.has_blocked, 0); | |
7fd7a9e0 VS |
12631 | if (flags & NOHZ_NEXT_KICK) |
12632 | WRITE_ONCE(nohz.needs_update, 0); | |
f643ea22 VG |
12633 | |
12634 | /* | |
12635 | * Ensures that if we miss the CPU, we must see the has_blocked | |
12636 | * store from nohz_balance_enter_idle(). | |
12637 | */ | |
12638 | smp_mb(); | |
12639 | ||
7a82e5f5 VG |
12640 | /* |
12641 | * Start with the next CPU after this_cpu so we will end with this_cpu and let a | |
12642 | * chance for other idle cpu to pull load. | |
12643 | */ | |
12644 | for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { | |
12645 | if (!idle_cpu(balance_cpu)) | |
83cd4fe2 VP |
12646 | continue; |
12647 | ||
12648 | /* | |
97fb7a0a IM |
12649 | * If this CPU gets work to do, stop the load balancing |
12650 | * work being done for other CPUs. Next load | |
83cd4fe2 VP |
12651 | * balancing owner will pick it up. |
12652 | */ | |
ff47a0ac | 12653 | if (!idle_cpu(this_cpu) && need_resched()) { |
efd984c4 VS |
12654 | if (flags & NOHZ_STATS_KICK) |
12655 | has_blocked_load = true; | |
7fd7a9e0 VS |
12656 | if (flags & NOHZ_NEXT_KICK) |
12657 | WRITE_ONCE(nohz.needs_update, 1); | |
f643ea22 VG |
12658 | goto abort; |
12659 | } | |
83cd4fe2 | 12660 | |
5ed4f1d9 VG |
12661 | rq = cpu_rq(balance_cpu); |
12662 | ||
efd984c4 VS |
12663 | if (flags & NOHZ_STATS_KICK) |
12664 | has_blocked_load |= update_nohz_stats(rq); | |
f643ea22 | 12665 | |
ed61bbc6 TC |
12666 | /* |
12667 | * If time for next balance is due, | |
12668 | * do the balance. | |
12669 | */ | |
12670 | if (time_after_eq(jiffies, rq->next_balance)) { | |
8a8c69c3 PZ |
12671 | struct rq_flags rf; |
12672 | ||
31e77c93 | 12673 | rq_lock_irqsave(rq, &rf); |
ed61bbc6 | 12674 | update_rq_clock(rq); |
31e77c93 | 12675 | rq_unlock_irqrestore(rq, &rf); |
8a8c69c3 | 12676 | |
b7031a02 | 12677 | if (flags & NOHZ_BALANCE_KICK) |
14ff4dbd | 12678 | sched_balance_domains(rq, CPU_IDLE); |
ed61bbc6 | 12679 | } |
83cd4fe2 | 12680 | |
c5afb6a8 VG |
12681 | if (time_after(next_balance, rq->next_balance)) { |
12682 | next_balance = rq->next_balance; | |
12683 | update_next_balance = 1; | |
12684 | } | |
83cd4fe2 | 12685 | } |
c5afb6a8 | 12686 | |
3ea2f097 VG |
12687 | /* |
12688 | * next_balance will be updated only when there is a need. | |
12689 | * When the CPU is attached to null domain for ex, it will not be | |
12690 | * updated. | |
12691 | */ | |
12692 | if (likely(update_next_balance)) | |
12693 | nohz.next_balance = next_balance; | |
12694 | ||
efd984c4 VS |
12695 | if (flags & NOHZ_STATS_KICK) |
12696 | WRITE_ONCE(nohz.next_blocked, | |
12697 | now + msecs_to_jiffies(LOAD_AVG_PERIOD)); | |
f643ea22 VG |
12698 | |
12699 | abort: | |
12700 | /* There is still blocked load, enable periodic update */ | |
12701 | if (has_blocked_load) | |
12702 | WRITE_ONCE(nohz.has_blocked, 1); | |
31e77c93 VG |
12703 | } |
12704 | ||
12705 | /* | |
12706 | * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the | |
b9e6e286 | 12707 | * rebalancing for all the CPUs for whom scheduler ticks are stopped. |
31e77c93 VG |
12708 | */ |
12709 | static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) | |
12710 | { | |
19a1f5ec | 12711 | unsigned int flags = this_rq->nohz_idle_balance; |
31e77c93 | 12712 | |
19a1f5ec | 12713 | if (!flags) |
31e77c93 VG |
12714 | return false; |
12715 | ||
19a1f5ec | 12716 | this_rq->nohz_idle_balance = 0; |
31e77c93 | 12717 | |
19a1f5ec | 12718 | if (idle != CPU_IDLE) |
31e77c93 VG |
12719 | return false; |
12720 | ||
d985ee9f | 12721 | _nohz_idle_balance(this_rq, flags); |
31e77c93 | 12722 | |
b7031a02 | 12723 | return true; |
83cd4fe2 | 12724 | } |
31e77c93 | 12725 | |
c6f88654 | 12726 | /* |
fb064e5a JFG |
12727 | * Check if we need to directly run the ILB for updating blocked load before |
12728 | * entering idle state. Here we run ILB directly without issuing IPIs. | |
12729 | * | |
12730 | * Note that when this function is called, the tick may not yet be stopped on | |
12731 | * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and | |
12732 | * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates | |
12733 | * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle | |
12734 | * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is | |
12735 | * called from this function on (this) CPU that's not yet in the mask. That's | |
12736 | * OK because the goal of nohz_run_idle_balance() is to run ILB only for | |
12737 | * updating the blocked load of already idle CPUs without waking up one of | |
b9e6e286 | 12738 | * those idle CPUs and outside the preempt disable / IRQ off phase of the local |
fb064e5a | 12739 | * cpu about to enter idle, because it can take a long time. |
c6f88654 VG |
12740 | */ |
12741 | void nohz_run_idle_balance(int cpu) | |
12742 | { | |
12743 | unsigned int flags; | |
12744 | ||
12745 | flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); | |
12746 | ||
12747 | /* | |
12748 | * Update the blocked load only if no SCHED_SOFTIRQ is about to happen | |
b9e6e286 | 12749 | * (i.e. NOHZ_STATS_KICK set) and will do the same. |
c6f88654 VG |
12750 | */ |
12751 | if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) | |
d985ee9f | 12752 | _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); |
c6f88654 VG |
12753 | } |
12754 | ||
31e77c93 VG |
12755 | static void nohz_newidle_balance(struct rq *this_rq) |
12756 | { | |
12757 | int this_cpu = this_rq->cpu; | |
12758 | ||
31e77c93 VG |
12759 | /* Will wake up very soon. No time for doing anything else*/ |
12760 | if (this_rq->avg_idle < sysctl_sched_migration_cost) | |
12761 | return; | |
12762 | ||
12763 | /* Don't need to update blocked load of idle CPUs*/ | |
12764 | if (!READ_ONCE(nohz.has_blocked) || | |
12765 | time_before(jiffies, READ_ONCE(nohz.next_blocked))) | |
12766 | return; | |
12767 | ||
31e77c93 | 12768 | /* |
c6f88654 VG |
12769 | * Set the need to trigger ILB in order to update blocked load |
12770 | * before entering idle state. | |
31e77c93 | 12771 | */ |
c6f88654 | 12772 | atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); |
31e77c93 VG |
12773 | } |
12774 | ||
dd707247 PZ |
12775 | #else /* !CONFIG_NO_HZ_COMMON */ |
12776 | static inline void nohz_balancer_kick(struct rq *rq) { } | |
12777 | ||
31e77c93 | 12778 | static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) |
b7031a02 PZ |
12779 | { |
12780 | return false; | |
12781 | } | |
31e77c93 VG |
12782 | |
12783 | static inline void nohz_newidle_balance(struct rq *this_rq) { } | |
dd707247 | 12784 | #endif /* CONFIG_NO_HZ_COMMON */ |
83cd4fe2 | 12785 | |
47ea5412 | 12786 | /* |
7d058285 | 12787 | * sched_balance_newidle is called by schedule() if this_cpu is about to become |
47ea5412 | 12788 | * idle. Attempts to pull tasks from other CPUs. |
7277a34c PZ |
12789 | * |
12790 | * Returns: | |
12791 | * < 0 - we released the lock and there are !fair tasks present | |
12792 | * 0 - failed, no new tasks | |
12793 | * > 0 - success, new (fair) tasks present | |
47ea5412 | 12794 | */ |
7d058285 | 12795 | static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) |
47ea5412 PZ |
12796 | { |
12797 | unsigned long next_balance = jiffies + HZ; | |
12798 | int this_cpu = this_rq->cpu; | |
c829d681 | 12799 | int continue_balancing = 1; |
9e9af819 | 12800 | u64 t0, t1, curr_cost = 0; |
47ea5412 PZ |
12801 | struct sched_domain *sd; |
12802 | int pulled_task = 0; | |
47ea5412 | 12803 | |
5ba553ef | 12804 | update_misfit_status(NULL, this_rq); |
e5e678e4 RR |
12805 | |
12806 | /* | |
12807 | * There is a task waiting to run. No need to search for one. | |
12808 | * Return 0; the task will be enqueued when switching to idle. | |
12809 | */ | |
12810 | if (this_rq->ttwu_pending) | |
12811 | return 0; | |
12812 | ||
47ea5412 | 12813 | /* |
c829d681 SH |
12814 | * We must set idle_stamp _before_ calling sched_balance_rq() |
12815 | * for CPU_NEWLY_IDLE, such that we measure the this duration | |
12816 | * as idle time. | |
47ea5412 PZ |
12817 | */ |
12818 | this_rq->idle_stamp = rq_clock(this_rq); | |
12819 | ||
12820 | /* | |
12821 | * Do not pull tasks towards !active CPUs... | |
12822 | */ | |
12823 | if (!cpu_active(this_cpu)) | |
12824 | return 0; | |
12825 | ||
12826 | /* | |
12827 | * This is OK, because current is on_cpu, which avoids it being picked | |
12828 | * for load-balance and preemption/IRQs are still disabled avoiding | |
12829 | * further scheduler activity on it and we're being very careful to | |
12830 | * re-start the picking loop. | |
12831 | */ | |
12832 | rq_unpin_lock(this_rq, rf); | |
12833 | ||
9d783c8d VG |
12834 | rcu_read_lock(); |
12835 | sd = rcu_dereference_check_sched_domain(this_rq->sd); | |
12836 | ||
76cc4f91 | 12837 | if (!get_rd_overloaded(this_rq->rd) || |
9d783c8d | 12838 | (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { |
31e77c93 | 12839 | |
47ea5412 PZ |
12840 | if (sd) |
12841 | update_next_balance(sd, &next_balance); | |
12842 | rcu_read_unlock(); | |
12843 | ||
12844 | goto out; | |
12845 | } | |
9d783c8d | 12846 | rcu_read_unlock(); |
47ea5412 | 12847 | |
5cb9eaa3 | 12848 | raw_spin_rq_unlock(this_rq); |
47ea5412 | 12849 | |
9e9af819 | 12850 | t0 = sched_clock_cpu(this_cpu); |
391b7a53 | 12851 | sched_balance_update_blocked_averages(this_cpu); |
9e9af819 | 12852 | |
47ea5412 PZ |
12853 | rcu_read_lock(); |
12854 | for_each_domain(this_cpu, sd) { | |
9e9af819 | 12855 | u64 domain_cost; |
47ea5412 | 12856 | |
8ea9183d VG |
12857 | update_next_balance(sd, &next_balance); |
12858 | ||
12859 | if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) | |
47ea5412 | 12860 | break; |
47ea5412 PZ |
12861 | |
12862 | if (sd->flags & SD_BALANCE_NEWIDLE) { | |
47ea5412 | 12863 | |
4c3e509e | 12864 | pulled_task = sched_balance_rq(this_cpu, this_rq, |
47ea5412 PZ |
12865 | sd, CPU_NEWLY_IDLE, |
12866 | &continue_balancing); | |
12867 | ||
9e9af819 VG |
12868 | t1 = sched_clock_cpu(this_cpu); |
12869 | domain_cost = t1 - t0; | |
e60b56e4 | 12870 | update_newidle_cost(sd, domain_cost); |
47ea5412 PZ |
12871 | |
12872 | curr_cost += domain_cost; | |
9e9af819 | 12873 | t0 = t1; |
47ea5412 PZ |
12874 | } |
12875 | ||
47ea5412 PZ |
12876 | /* |
12877 | * Stop searching for tasks to pull if there are | |
12878 | * now runnable tasks on this rq. | |
12879 | */ | |
c829d681 | 12880 | if (pulled_task || !continue_balancing) |
47ea5412 PZ |
12881 | break; |
12882 | } | |
12883 | rcu_read_unlock(); | |
12884 | ||
5cb9eaa3 | 12885 | raw_spin_rq_lock(this_rq); |
47ea5412 PZ |
12886 | |
12887 | if (curr_cost > this_rq->max_idle_balance_cost) | |
12888 | this_rq->max_idle_balance_cost = curr_cost; | |
12889 | ||
12890 | /* | |
12891 | * While browsing the domains, we released the rq lock, a task could | |
12892 | * have been enqueued in the meantime. Since we're not going idle, | |
12893 | * pretend we pulled a task. | |
12894 | */ | |
7b8a702d | 12895 | if (this_rq->cfs.h_nr_queued && !pulled_task) |
47ea5412 PZ |
12896 | pulled_task = 1; |
12897 | ||
47ea5412 | 12898 | /* Is there a task of a high priority class? */ |
7b8a702d | 12899 | if (this_rq->nr_running != this_rq->cfs.h_nr_queued) |
47ea5412 PZ |
12900 | pulled_task = -1; |
12901 | ||
6553fc18 VG |
12902 | out: |
12903 | /* Move the next balance forward */ | |
12904 | if (time_after(this_rq->next_balance, next_balance)) | |
12905 | this_rq->next_balance = next_balance; | |
12906 | ||
47ea5412 PZ |
12907 | if (pulled_task) |
12908 | this_rq->idle_stamp = 0; | |
0826530d VG |
12909 | else |
12910 | nohz_newidle_balance(this_rq); | |
47ea5412 PZ |
12911 | |
12912 | rq_repin_lock(this_rq, rf); | |
12913 | ||
12914 | return pulled_task; | |
12915 | } | |
12916 | ||
83cd4fe2 | 12917 | /* |
3dc6f6c8 IM |
12918 | * This softirq handler is triggered via SCHED_SOFTIRQ from two places: |
12919 | * | |
ee8118c1 | 12920 | * - directly from the local sched_tick() for periodic load balancing |
3dc6f6c8 | 12921 | * |
ee8118c1 | 12922 | * - indirectly from a remote sched_tick() for NOHZ idle balancing |
3dc6f6c8 | 12923 | * through the SMP cross-call nohz_csd_func() |
83cd4fe2 | 12924 | */ |
e68ac2b4 | 12925 | static __latent_entropy void sched_balance_softirq(void) |
1e3c88bd | 12926 | { |
208cb16b | 12927 | struct rq *this_rq = this_rq(); |
38d707c5 | 12928 | enum cpu_idle_type idle = this_rq->idle_balance; |
1e3c88bd | 12929 | /* |
3a5fe930 | 12930 | * If this CPU has a pending NOHZ_BALANCE_KICK, then do the |
97fb7a0a | 12931 | * balancing on behalf of the other idle CPUs whose ticks are |
14ff4dbd | 12932 | * stopped. Do nohz_idle_balance *before* sched_balance_domains to |
97fb7a0a | 12933 | * give the idle CPUs a chance to load balance. Else we may |
d4573c3e PM |
12934 | * load balance only within the local sched_domain hierarchy |
12935 | * and abort nohz_idle_balance altogether if we pull some load. | |
1e3c88bd | 12936 | */ |
b7031a02 PZ |
12937 | if (nohz_idle_balance(this_rq, idle)) |
12938 | return; | |
12939 | ||
12940 | /* normal load balance */ | |
391b7a53 | 12941 | sched_balance_update_blocked_averages(this_rq->cpu); |
14ff4dbd | 12942 | sched_balance_domains(this_rq, idle); |
1e3c88bd PZ |
12943 | } |
12944 | ||
1e3c88bd PZ |
12945 | /* |
12946 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | |
1e3c88bd | 12947 | */ |
983be062 | 12948 | void sched_balance_trigger(struct rq *rq) |
1e3c88bd | 12949 | { |
e0b257c3 AMB |
12950 | /* |
12951 | * Don't need to rebalance while attached to NULL domain or | |
12952 | * runqueue CPU is not active | |
12953 | */ | |
12954 | if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) | |
c726099e DL |
12955 | return; |
12956 | ||
12957 | if (time_after_eq(jiffies, rq->next_balance)) | |
1e3c88bd | 12958 | raise_softirq(SCHED_SOFTIRQ); |
4550487a PZ |
12959 | |
12960 | nohz_balancer_kick(rq); | |
1e3c88bd PZ |
12961 | } |
12962 | ||
0bcdcf28 CE |
12963 | static void rq_online_fair(struct rq *rq) |
12964 | { | |
12965 | update_sysctl(); | |
0e59bdae KT |
12966 | |
12967 | update_runtime_enabled(rq); | |
0bcdcf28 CE |
12968 | } |
12969 | ||
12970 | static void rq_offline_fair(struct rq *rq) | |
12971 | { | |
12972 | update_sysctl(); | |
a4c96ae3 PB |
12973 | |
12974 | /* Ensure any throttled groups are reachable by pick_next_task */ | |
12975 | unthrottle_offline_cfs_rqs(rq); | |
f60a631a VG |
12976 | |
12977 | /* Ensure that we remove rq contribution to group share: */ | |
12978 | clear_tg_offline_cfs_rqs(rq); | |
0bcdcf28 CE |
12979 | } |
12980 | ||
55e12e5e | 12981 | #endif /* CONFIG_SMP */ |
e1d1484f | 12982 | |
8039e96f VP |
12983 | #ifdef CONFIG_SCHED_CORE |
12984 | static inline bool | |
12985 | __entity_slice_used(struct sched_entity *se, int min_nr_tasks) | |
12986 | { | |
8039e96f | 12987 | u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; |
147f3efa | 12988 | u64 slice = se->slice; |
8039e96f VP |
12989 | |
12990 | return (rtime * min_nr_tasks > slice); | |
12991 | } | |
12992 | ||
12993 | #define MIN_NR_TASKS_DURING_FORCEIDLE 2 | |
12994 | static inline void task_tick_core(struct rq *rq, struct task_struct *curr) | |
12995 | { | |
12996 | if (!sched_core_enabled(rq)) | |
12997 | return; | |
12998 | ||
12999 | /* | |
13000 | * If runqueue has only one task which used up its slice and | |
13001 | * if the sibling is forced idle, then trigger schedule to | |
13002 | * give forced idle task a chance. | |
13003 | * | |
13004 | * sched_slice() considers only this active rq and it gets the | |
13005 | * whole slice. But during force idle, we have siblings acting | |
13006 | * like a single runqueue and hence we need to consider runnable | |
cc00c198 | 13007 | * tasks on this CPU and the forced idle CPU. Ideally, we should |
8039e96f | 13008 | * go through the forced idle rq, but that would be a perf hit. |
cc00c198 | 13009 | * We can assume that the forced idle CPU has at least |
8039e96f | 13010 | * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check |
cc00c198 | 13011 | * if we need to give up the CPU. |
8039e96f | 13012 | */ |
736c55a0 | 13013 | if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && |
8039e96f VP |
13014 | __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) |
13015 | resched_curr(rq); | |
13016 | } | |
c6047c2e JFG |
13017 | |
13018 | /* | |
13019 | * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. | |
13020 | */ | |
904cbab7 MWO |
13021 | static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, |
13022 | bool forceidle) | |
c6047c2e JFG |
13023 | { |
13024 | for_each_sched_entity(se) { | |
13025 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
13026 | ||
13027 | if (forceidle) { | |
13028 | if (cfs_rq->forceidle_seq == fi_seq) | |
13029 | break; | |
13030 | cfs_rq->forceidle_seq = fi_seq; | |
13031 | } | |
13032 | ||
13033 | cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; | |
13034 | } | |
13035 | } | |
13036 | ||
13037 | void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) | |
13038 | { | |
13039 | struct sched_entity *se = &p->se; | |
13040 | ||
13041 | if (p->sched_class != &fair_sched_class) | |
13042 | return; | |
13043 | ||
13044 | se_fi_update(se, rq->core->core_forceidle_seq, in_fi); | |
13045 | } | |
13046 | ||
904cbab7 MWO |
13047 | bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, |
13048 | bool in_fi) | |
c6047c2e JFG |
13049 | { |
13050 | struct rq *rq = task_rq(a); | |
904cbab7 MWO |
13051 | const struct sched_entity *sea = &a->se; |
13052 | const struct sched_entity *seb = &b->se; | |
c6047c2e JFG |
13053 | struct cfs_rq *cfs_rqa; |
13054 | struct cfs_rq *cfs_rqb; | |
13055 | s64 delta; | |
13056 | ||
f7d2728c | 13057 | WARN_ON_ONCE(task_rq(b)->core != rq->core); |
c6047c2e JFG |
13058 | |
13059 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
13060 | /* | |
13061 | * Find an se in the hierarchy for tasks a and b, such that the se's | |
13062 | * are immediate siblings. | |
13063 | */ | |
13064 | while (sea->cfs_rq->tg != seb->cfs_rq->tg) { | |
13065 | int sea_depth = sea->depth; | |
13066 | int seb_depth = seb->depth; | |
13067 | ||
13068 | if (sea_depth >= seb_depth) | |
13069 | sea = parent_entity(sea); | |
13070 | if (sea_depth <= seb_depth) | |
13071 | seb = parent_entity(seb); | |
13072 | } | |
13073 | ||
13074 | se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); | |
13075 | se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); | |
13076 | ||
13077 | cfs_rqa = sea->cfs_rq; | |
13078 | cfs_rqb = seb->cfs_rq; | |
13079 | #else | |
13080 | cfs_rqa = &task_rq(a)->cfs; | |
13081 | cfs_rqb = &task_rq(b)->cfs; | |
13082 | #endif | |
13083 | ||
13084 | /* | |
13085 | * Find delta after normalizing se's vruntime with its cfs_rq's | |
13086 | * min_vruntime_fi, which would have been updated in prior calls | |
13087 | * to se_fi_update(). | |
13088 | */ | |
13089 | delta = (s64)(sea->vruntime - seb->vruntime) + | |
13090 | (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); | |
13091 | ||
13092 | return delta > 0; | |
13093 | } | |
530bfad1 HJ |
13094 | |
13095 | static int task_is_throttled_fair(struct task_struct *p, int cpu) | |
13096 | { | |
13097 | struct cfs_rq *cfs_rq; | |
13098 | ||
13099 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
13100 | cfs_rq = task_group(p)->cfs_rq[cpu]; | |
13101 | #else | |
13102 | cfs_rq = &cpu_rq(cpu)->cfs; | |
13103 | #endif | |
13104 | return throttled_hierarchy(cfs_rq); | |
13105 | } | |
8039e96f VP |
13106 | #else |
13107 | static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} | |
13108 | #endif | |
13109 | ||
bf0f6f24 | 13110 | /* |
d84b3131 FW |
13111 | * scheduler tick hitting a task of our scheduling class. |
13112 | * | |
13113 | * NOTE: This function can be called remotely by the tick offload that | |
13114 | * goes along full dynticks. Therefore no local assumption can be made | |
13115 | * and everything must be accessed through the @rq and @curr passed in | |
13116 | * parameters. | |
bf0f6f24 | 13117 | */ |
8f4d37ec | 13118 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) |
bf0f6f24 IM |
13119 | { |
13120 | struct cfs_rq *cfs_rq; | |
13121 | struct sched_entity *se = &curr->se; | |
13122 | ||
13123 | for_each_sched_entity(se) { | |
13124 | cfs_rq = cfs_rq_of(se); | |
8f4d37ec | 13125 | entity_tick(cfs_rq, se, queued); |
bf0f6f24 | 13126 | } |
18bf2805 | 13127 | |
b52da86e | 13128 | if (static_branch_unlikely(&sched_numa_balancing)) |
cbee9f88 | 13129 | task_tick_numa(rq, curr); |
3b1baa64 MR |
13130 | |
13131 | update_misfit_status(curr, rq); | |
be3a51e6 | 13132 | check_update_overutilized_status(task_rq(curr)); |
8039e96f VP |
13133 | |
13134 | task_tick_core(rq, curr); | |
bf0f6f24 IM |
13135 | } |
13136 | ||
13137 | /* | |
cd29fe6f PZ |
13138 | * called on fork with the child task as argument from the parent's context |
13139 | * - child not yet on the tasklist | |
13140 | * - preemption disabled | |
bf0f6f24 | 13141 | */ |
cd29fe6f | 13142 | static void task_fork_fair(struct task_struct *p) |
bf0f6f24 | 13143 | { |
22d56074 | 13144 | set_task_max_allowed_capacity(p); |
bf0f6f24 IM |
13145 | } |
13146 | ||
cb469845 SR |
13147 | /* |
13148 | * Priority of the task has changed. Check to see if we preempt | |
13149 | * the current task. | |
13150 | */ | |
da7a735e PZ |
13151 | static void |
13152 | prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) | |
cb469845 | 13153 | { |
da0c1e65 | 13154 | if (!task_on_rq_queued(p)) |
da7a735e PZ |
13155 | return; |
13156 | ||
736c55a0 | 13157 | if (rq->cfs.nr_queued == 1) |
7c2e8bbd FW |
13158 | return; |
13159 | ||
cb469845 SR |
13160 | /* |
13161 | * Reschedule if we are currently running on this runqueue and | |
13162 | * our priority decreased, or if we are not currently running on | |
13163 | * this runqueue and our priority is higher than the current's | |
13164 | */ | |
af0c8b2b | 13165 | if (task_current_donor(rq, p)) { |
cb469845 | 13166 | if (p->prio > oldprio) |
8875125e | 13167 | resched_curr(rq); |
cb469845 | 13168 | } else |
e23edc86 | 13169 | wakeup_preempt(rq, p, 0); |
cb469845 SR |
13170 | } |
13171 | ||
09a43ace VG |
13172 | #ifdef CONFIG_FAIR_GROUP_SCHED |
13173 | /* | |
13174 | * Propagate the changes of the sched_entity across the tg tree to make it | |
13175 | * visible to the root | |
13176 | */ | |
13177 | static void propagate_entity_cfs_rq(struct sched_entity *se) | |
13178 | { | |
51bf903b CZ |
13179 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
13180 | ||
13181 | if (cfs_rq_throttled(cfs_rq)) | |
13182 | return; | |
09a43ace | 13183 | |
51bf903b CZ |
13184 | if (!throttled_hierarchy(cfs_rq)) |
13185 | list_add_leaf_cfs_rq(cfs_rq); | |
0258bdfa | 13186 | |
09a43ace VG |
13187 | /* Start to propagate at parent */ |
13188 | se = se->parent; | |
13189 | ||
13190 | for_each_sched_entity(se) { | |
13191 | cfs_rq = cfs_rq_of(se); | |
13192 | ||
51bf903b | 13193 | update_load_avg(cfs_rq, se, UPDATE_TG); |
09a43ace | 13194 | |
51bf903b | 13195 | if (cfs_rq_throttled(cfs_rq)) |
0258bdfa | 13196 | break; |
51bf903b CZ |
13197 | |
13198 | if (!throttled_hierarchy(cfs_rq)) | |
13199 | list_add_leaf_cfs_rq(cfs_rq); | |
09a43ace VG |
13200 | } |
13201 | } | |
13202 | #else | |
13203 | static void propagate_entity_cfs_rq(struct sched_entity *se) { } | |
13204 | #endif | |
13205 | ||
df217913 | 13206 | static void detach_entity_cfs_rq(struct sched_entity *se) |
daa59407 | 13207 | { |
daa59407 BP |
13208 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
13209 | ||
7e2edaf6 CZ |
13210 | #ifdef CONFIG_SMP |
13211 | /* | |
13212 | * In case the task sched_avg hasn't been attached: | |
13213 | * - A forked task which hasn't been woken up by wake_up_new_task(). | |
13214 | * - A task which has been woken up by try_to_wake_up() but is | |
13215 | * waiting for actually being woken up by sched_ttwu_pending(). | |
13216 | */ | |
13217 | if (!se->avg.last_update_time) | |
13218 | return; | |
13219 | #endif | |
13220 | ||
9d89c257 | 13221 | /* Catch up with the cfs_rq and remove our load when we leave */ |
88c0616e | 13222 | update_load_avg(cfs_rq, se, 0); |
a05e8c51 | 13223 | detach_entity_load_avg(cfs_rq, se); |
fe749158 | 13224 | update_tg_load_avg(cfs_rq); |
09a43ace | 13225 | propagate_entity_cfs_rq(se); |
da7a735e PZ |
13226 | } |
13227 | ||
df217913 | 13228 | static void attach_entity_cfs_rq(struct sched_entity *se) |
cb469845 | 13229 | { |
daa59407 | 13230 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
7855a35a | 13231 | |
df217913 | 13232 | /* Synchronize entity with its cfs_rq */ |
88c0616e | 13233 | update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); |
a4f9a0e5 | 13234 | attach_entity_load_avg(cfs_rq, se); |
fe749158 | 13235 | update_tg_load_avg(cfs_rq); |
09a43ace | 13236 | propagate_entity_cfs_rq(se); |
df217913 VG |
13237 | } |
13238 | ||
13239 | static void detach_task_cfs_rq(struct task_struct *p) | |
13240 | { | |
13241 | struct sched_entity *se = &p->se; | |
df217913 VG |
13242 | |
13243 | detach_entity_cfs_rq(se); | |
13244 | } | |
13245 | ||
13246 | static void attach_task_cfs_rq(struct task_struct *p) | |
13247 | { | |
13248 | struct sched_entity *se = &p->se; | |
df217913 VG |
13249 | |
13250 | attach_entity_cfs_rq(se); | |
daa59407 | 13251 | } |
6efdb105 | 13252 | |
daa59407 BP |
13253 | static void switched_from_fair(struct rq *rq, struct task_struct *p) |
13254 | { | |
13255 | detach_task_cfs_rq(p); | |
13256 | } | |
13257 | ||
13258 | static void switched_to_fair(struct rq *rq, struct task_struct *p) | |
13259 | { | |
f7d2728c | 13260 | WARN_ON_ONCE(p->se.sched_delayed); |
2e0199df | 13261 | |
daa59407 | 13262 | attach_task_cfs_rq(p); |
7855a35a | 13263 | |
22d56074 QY |
13264 | set_task_max_allowed_capacity(p); |
13265 | ||
daa59407 | 13266 | if (task_on_rq_queued(p)) { |
7855a35a | 13267 | /* |
daa59407 BP |
13268 | * We were most likely switched from sched_rt, so |
13269 | * kick off the schedule if running, otherwise just see | |
13270 | * if we can still preempt the current task. | |
7855a35a | 13271 | */ |
af0c8b2b | 13272 | if (task_current_donor(rq, p)) |
daa59407 BP |
13273 | resched_curr(rq); |
13274 | else | |
e23edc86 | 13275 | wakeup_preempt(rq, p, 0); |
7855a35a | 13276 | } |
cb469845 SR |
13277 | } |
13278 | ||
dae4320b | 13279 | static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) |
83b699ed | 13280 | { |
03b7fad1 PZ |
13281 | struct sched_entity *se = &p->se; |
13282 | ||
13283 | #ifdef CONFIG_SMP | |
13284 | if (task_on_rq_queued(p)) { | |
13285 | /* | |
13286 | * Move the next running task to the front of the list, so our | |
13287 | * cfs_tasks list becomes MRU one. | |
13288 | */ | |
13289 | list_move(&se->group_node, &rq->cfs_tasks); | |
13290 | } | |
13291 | #endif | |
dae4320b PZ |
13292 | if (!first) |
13293 | return; | |
13294 | ||
f7d2728c | 13295 | WARN_ON_ONCE(se->sched_delayed); |
dae4320b PZ |
13296 | |
13297 | if (hrtick_enabled_fair(rq)) | |
13298 | hrtick_start_fair(rq, p); | |
13299 | ||
13300 | update_misfit_status(p, rq); | |
13301 | sched_fair_update_stop_tick(rq, p); | |
13302 | } | |
13303 | ||
13304 | /* | |
13305 | * Account for a task changing its policy or group. | |
13306 | * | |
13307 | * This routine is mostly called to set cfs_rq->curr field when a task | |
13308 | * migrates between groups/classes. | |
13309 | */ | |
13310 | static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) | |
13311 | { | |
13312 | struct sched_entity *se = &p->se; | |
83b699ed | 13313 | |
ec12cb7f PT |
13314 | for_each_sched_entity(se) { |
13315 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
13316 | ||
13317 | set_next_entity(cfs_rq, se); | |
13318 | /* ensure bandwidth has been allocated on our new cfs_rq */ | |
13319 | account_cfs_rq_runtime(cfs_rq, 0); | |
13320 | } | |
152e11f6 | 13321 | |
dae4320b | 13322 | __set_next_task_fair(rq, p, first); |
83b699ed SV |
13323 | } |
13324 | ||
029632fb PZ |
13325 | void init_cfs_rq(struct cfs_rq *cfs_rq) |
13326 | { | |
bfb06889 | 13327 | cfs_rq->tasks_timeline = RB_ROOT_CACHED; |
949090ea | 13328 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); |
141965c7 | 13329 | #ifdef CONFIG_SMP |
2a2f5d4e | 13330 | raw_spin_lock_init(&cfs_rq->removed.lock); |
9ee474f5 | 13331 | #endif |
029632fb PZ |
13332 | } |
13333 | ||
810b3817 | 13334 | #ifdef CONFIG_FAIR_GROUP_SCHED |
39c42611 | 13335 | static void task_change_group_fair(struct task_struct *p) |
810b3817 | 13336 | { |
df16b71c CZ |
13337 | /* |
13338 | * We couldn't detach or attach a forked task which | |
13339 | * hasn't been woken up by wake_up_new_task(). | |
13340 | */ | |
13341 | if (READ_ONCE(p->__state) == TASK_NEW) | |
13342 | return; | |
13343 | ||
daa59407 | 13344 | detach_task_cfs_rq(p); |
6efdb105 BP |
13345 | |
13346 | #ifdef CONFIG_SMP | |
13347 | /* Tell se's cfs_rq has been changed -- migrated */ | |
13348 | p->se.avg.last_update_time = 0; | |
13349 | #endif | |
5d6da83c | 13350 | set_task_rq(p, task_cpu(p)); |
daa59407 | 13351 | attach_task_cfs_rq(p); |
810b3817 | 13352 | } |
029632fb PZ |
13353 | |
13354 | void free_fair_sched_group(struct task_group *tg) | |
13355 | { | |
13356 | int i; | |
13357 | ||
029632fb PZ |
13358 | for_each_possible_cpu(i) { |
13359 | if (tg->cfs_rq) | |
13360 | kfree(tg->cfs_rq[i]); | |
6fe1f348 | 13361 | if (tg->se) |
029632fb PZ |
13362 | kfree(tg->se[i]); |
13363 | } | |
13364 | ||
13365 | kfree(tg->cfs_rq); | |
13366 | kfree(tg->se); | |
13367 | } | |
13368 | ||
13369 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | |
13370 | { | |
029632fb | 13371 | struct sched_entity *se; |
b7fa30c9 | 13372 | struct cfs_rq *cfs_rq; |
029632fb PZ |
13373 | int i; |
13374 | ||
6396bb22 | 13375 | tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); |
029632fb PZ |
13376 | if (!tg->cfs_rq) |
13377 | goto err; | |
6396bb22 | 13378 | tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); |
029632fb PZ |
13379 | if (!tg->se) |
13380 | goto err; | |
13381 | ||
13382 | tg->shares = NICE_0_LOAD; | |
13383 | ||
c98c1827 | 13384 | init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); |
029632fb PZ |
13385 | |
13386 | for_each_possible_cpu(i) { | |
13387 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), | |
13388 | GFP_KERNEL, cpu_to_node(i)); | |
13389 | if (!cfs_rq) | |
13390 | goto err; | |
13391 | ||
ceeadb83 | 13392 | se = kzalloc_node(sizeof(struct sched_entity_stats), |
029632fb PZ |
13393 | GFP_KERNEL, cpu_to_node(i)); |
13394 | if (!se) | |
13395 | goto err_free_rq; | |
13396 | ||
13397 | init_cfs_rq(cfs_rq); | |
13398 | init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); | |
540247fb | 13399 | init_entity_runnable_average(se); |
029632fb PZ |
13400 | } |
13401 | ||
13402 | return 1; | |
13403 | ||
13404 | err_free_rq: | |
13405 | kfree(cfs_rq); | |
13406 | err: | |
13407 | return 0; | |
13408 | } | |
13409 | ||
8663e24d PZ |
13410 | void online_fair_sched_group(struct task_group *tg) |
13411 | { | |
13412 | struct sched_entity *se; | |
a46d14ec | 13413 | struct rq_flags rf; |
8663e24d PZ |
13414 | struct rq *rq; |
13415 | int i; | |
13416 | ||
13417 | for_each_possible_cpu(i) { | |
13418 | rq = cpu_rq(i); | |
13419 | se = tg->se[i]; | |
a46d14ec | 13420 | rq_lock_irq(rq, &rf); |
4126bad6 | 13421 | update_rq_clock(rq); |
d0326691 | 13422 | attach_entity_cfs_rq(se); |
55e16d30 | 13423 | sync_throttle(tg, i); |
a46d14ec | 13424 | rq_unlock_irq(rq, &rf); |
8663e24d PZ |
13425 | } |
13426 | } | |
13427 | ||
6fe1f348 | 13428 | void unregister_fair_sched_group(struct task_group *tg) |
029632fb | 13429 | { |
6fe1f348 | 13430 | int cpu; |
029632fb | 13431 | |
b027789e MK |
13432 | destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); |
13433 | ||
6fe1f348 | 13434 | for_each_possible_cpu(cpu) { |
2e0199df PZ |
13435 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; |
13436 | struct sched_entity *se = tg->se[cpu]; | |
13437 | struct rq *rq = cpu_rq(cpu); | |
13438 | ||
13439 | if (se) { | |
13440 | if (se->sched_delayed) { | |
13441 | guard(rq_lock_irqsave)(rq); | |
13442 | if (se->sched_delayed) { | |
13443 | update_rq_clock(rq); | |
13444 | dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); | |
13445 | } | |
13446 | list_del_leaf_cfs_rq(cfs_rq); | |
13447 | } | |
13448 | remove_entity_load_avg(se); | |
13449 | } | |
029632fb | 13450 | |
6fe1f348 PZ |
13451 | /* |
13452 | * Only empty task groups can be destroyed; so we can speculatively | |
13453 | * check on_list without danger of it being re-added. | |
13454 | */ | |
2e0199df PZ |
13455 | if (cfs_rq->on_list) { |
13456 | guard(rq_lock_irqsave)(rq); | |
13457 | list_del_leaf_cfs_rq(cfs_rq); | |
13458 | } | |
6fe1f348 | 13459 | } |
029632fb PZ |
13460 | } |
13461 | ||
13462 | void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | |
13463 | struct sched_entity *se, int cpu, | |
13464 | struct sched_entity *parent) | |
13465 | { | |
13466 | struct rq *rq = cpu_rq(cpu); | |
13467 | ||
13468 | cfs_rq->tg = tg; | |
13469 | cfs_rq->rq = rq; | |
029632fb PZ |
13470 | init_cfs_rq_runtime(cfs_rq); |
13471 | ||
13472 | tg->cfs_rq[cpu] = cfs_rq; | |
13473 | tg->se[cpu] = se; | |
13474 | ||
13475 | /* se could be NULL for root_task_group */ | |
13476 | if (!se) | |
13477 | return; | |
13478 | ||
fed14d45 | 13479 | if (!parent) { |
029632fb | 13480 | se->cfs_rq = &rq->cfs; |
fed14d45 PZ |
13481 | se->depth = 0; |
13482 | } else { | |
029632fb | 13483 | se->cfs_rq = parent->my_q; |
fed14d45 PZ |
13484 | se->depth = parent->depth + 1; |
13485 | } | |
029632fb PZ |
13486 | |
13487 | se->my_q = cfs_rq; | |
0ac9b1c2 PT |
13488 | /* guarantee group entities always have weight */ |
13489 | update_load_set(&se->load, NICE_0_LOAD); | |
029632fb PZ |
13490 | se->parent = parent; |
13491 | } | |
13492 | ||
13493 | static DEFINE_MUTEX(shares_mutex); | |
13494 | ||
30400039 | 13495 | static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) |
029632fb PZ |
13496 | { |
13497 | int i; | |
029632fb | 13498 | |
30400039 JD |
13499 | lockdep_assert_held(&shares_mutex); |
13500 | ||
029632fb PZ |
13501 | /* |
13502 | * We can't change the weight of the root cgroup. | |
13503 | */ | |
13504 | if (!tg->se[0]) | |
13505 | return -EINVAL; | |
13506 | ||
13507 | shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); | |
13508 | ||
029632fb | 13509 | if (tg->shares == shares) |
30400039 | 13510 | return 0; |
029632fb PZ |
13511 | |
13512 | tg->shares = shares; | |
13513 | for_each_possible_cpu(i) { | |
13514 | struct rq *rq = cpu_rq(i); | |
8a8c69c3 PZ |
13515 | struct sched_entity *se = tg->se[i]; |
13516 | struct rq_flags rf; | |
029632fb | 13517 | |
029632fb | 13518 | /* Propagate contribution to hierarchy */ |
8a8c69c3 | 13519 | rq_lock_irqsave(rq, &rf); |
71b1da46 | 13520 | update_rq_clock(rq); |
89ee048f | 13521 | for_each_sched_entity(se) { |
88c0616e | 13522 | update_load_avg(cfs_rq_of(se), se, UPDATE_TG); |
1ea6c46a | 13523 | update_cfs_group(se); |
89ee048f | 13524 | } |
8a8c69c3 | 13525 | rq_unlock_irqrestore(rq, &rf); |
029632fb PZ |
13526 | } |
13527 | ||
30400039 JD |
13528 | return 0; |
13529 | } | |
13530 | ||
13531 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) | |
13532 | { | |
13533 | int ret; | |
13534 | ||
13535 | mutex_lock(&shares_mutex); | |
13536 | if (tg_is_idle(tg)) | |
13537 | ret = -EINVAL; | |
13538 | else | |
13539 | ret = __sched_group_set_shares(tg, shares); | |
13540 | mutex_unlock(&shares_mutex); | |
13541 | ||
13542 | return ret; | |
13543 | } | |
13544 | ||
13545 | int sched_group_set_idle(struct task_group *tg, long idle) | |
13546 | { | |
13547 | int i; | |
13548 | ||
13549 | if (tg == &root_task_group) | |
13550 | return -EINVAL; | |
13551 | ||
13552 | if (idle < 0 || idle > 1) | |
13553 | return -EINVAL; | |
13554 | ||
13555 | mutex_lock(&shares_mutex); | |
13556 | ||
13557 | if (tg->idle == idle) { | |
13558 | mutex_unlock(&shares_mutex); | |
13559 | return 0; | |
13560 | } | |
13561 | ||
13562 | tg->idle = idle; | |
13563 | ||
13564 | for_each_possible_cpu(i) { | |
13565 | struct rq *rq = cpu_rq(i); | |
13566 | struct sched_entity *se = tg->se[i]; | |
43eef7c3 | 13567 | struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; |
30400039 JD |
13568 | bool was_idle = cfs_rq_is_idle(grp_cfs_rq); |
13569 | long idle_task_delta; | |
13570 | struct rq_flags rf; | |
13571 | ||
13572 | rq_lock_irqsave(rq, &rf); | |
13573 | ||
13574 | grp_cfs_rq->idle = idle; | |
13575 | if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) | |
13576 | goto next_cpu; | |
13577 | ||
7b8a702d | 13578 | idle_task_delta = grp_cfs_rq->h_nr_queued - |
31898e7b | 13579 | grp_cfs_rq->h_nr_idle; |
30400039 JD |
13580 | if (!cfs_rq_is_idle(grp_cfs_rq)) |
13581 | idle_task_delta *= -1; | |
13582 | ||
13583 | for_each_sched_entity(se) { | |
13584 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
13585 | ||
13586 | if (!se->on_rq) | |
13587 | break; | |
13588 | ||
31898e7b | 13589 | cfs_rq->h_nr_idle += idle_task_delta; |
30400039 JD |
13590 | |
13591 | /* Already accounted at parent level and above. */ | |
13592 | if (cfs_rq_is_idle(cfs_rq)) | |
13593 | break; | |
13594 | } | |
13595 | ||
13596 | next_cpu: | |
13597 | rq_unlock_irqrestore(rq, &rf); | |
13598 | } | |
13599 | ||
13600 | /* Idle groups have minimum weight. */ | |
13601 | if (tg_is_idle(tg)) | |
13602 | __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); | |
13603 | else | |
13604 | __sched_group_set_shares(tg, NICE_0_LOAD); | |
13605 | ||
029632fb PZ |
13606 | mutex_unlock(&shares_mutex); |
13607 | return 0; | |
13608 | } | |
30400039 | 13609 | |
029632fb PZ |
13610 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
13611 | ||
810b3817 | 13612 | |
6d686f45 | 13613 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) |
0d721cea PW |
13614 | { |
13615 | struct sched_entity *se = &task->se; | |
0d721cea PW |
13616 | unsigned int rr_interval = 0; |
13617 | ||
13618 | /* | |
13619 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | |
13620 | * idle runqueue: | |
13621 | */ | |
0d721cea | 13622 | if (rq->cfs.load.weight) |
147f3efa | 13623 | rr_interval = NS_TO_JIFFIES(se->slice); |
0d721cea PW |
13624 | |
13625 | return rr_interval; | |
13626 | } | |
13627 | ||
bf0f6f24 IM |
13628 | /* |
13629 | * All the scheduling class methods: | |
13630 | */ | |
43c31ac0 PZ |
13631 | DEFINE_SCHED_CLASS(fair) = { |
13632 | ||
bf0f6f24 IM |
13633 | .enqueue_task = enqueue_task_fair, |
13634 | .dequeue_task = dequeue_task_fair, | |
13635 | .yield_task = yield_task_fair, | |
d95f4122 | 13636 | .yield_to_task = yield_to_task_fair, |
bf0f6f24 | 13637 | |
e23edc86 | 13638 | .wakeup_preempt = check_preempt_wakeup_fair, |
bf0f6f24 | 13639 | |
fd03c5b8 | 13640 | .pick_task = pick_task_fair, |
98c2f700 | 13641 | .pick_next_task = __pick_next_task_fair, |
bf0f6f24 | 13642 | .put_prev_task = put_prev_task_fair, |
03b7fad1 | 13643 | .set_next_task = set_next_task_fair, |
bf0f6f24 | 13644 | |
681f3e68 | 13645 | #ifdef CONFIG_SMP |
6e2df058 | 13646 | .balance = balance_fair, |
4ce72a2c | 13647 | .select_task_rq = select_task_rq_fair, |
0a74bef8 | 13648 | .migrate_task_rq = migrate_task_rq_fair, |
141965c7 | 13649 | |
0bcdcf28 CE |
13650 | .rq_online = rq_online_fair, |
13651 | .rq_offline = rq_offline_fair, | |
88ec22d3 | 13652 | |
12695578 | 13653 | .task_dead = task_dead_fair, |
22d56074 | 13654 | .set_cpus_allowed = set_cpus_allowed_fair, |
681f3e68 | 13655 | #endif |
bf0f6f24 | 13656 | |
bf0f6f24 | 13657 | .task_tick = task_tick_fair, |
cd29fe6f | 13658 | .task_fork = task_fork_fair, |
cb469845 | 13659 | |
e83edbf8 | 13660 | .reweight_task = reweight_task_fair, |
cb469845 | 13661 | .prio_changed = prio_changed_fair, |
da7a735e | 13662 | .switched_from = switched_from_fair, |
cb469845 | 13663 | .switched_to = switched_to_fair, |
810b3817 | 13664 | |
0d721cea PW |
13665 | .get_rr_interval = get_rr_interval_fair, |
13666 | ||
6e998916 SG |
13667 | .update_curr = update_curr_fair, |
13668 | ||
810b3817 | 13669 | #ifdef CONFIG_FAIR_GROUP_SCHED |
ea86cb4b | 13670 | .task_change_group = task_change_group_fair, |
810b3817 | 13671 | #endif |
982d9cdc | 13672 | |
530bfad1 HJ |
13673 | #ifdef CONFIG_SCHED_CORE |
13674 | .task_is_throttled = task_is_throttled_fair, | |
13675 | #endif | |
13676 | ||
982d9cdc PB |
13677 | #ifdef CONFIG_UCLAMP_TASK |
13678 | .uclamp_enabled = 1, | |
13679 | #endif | |
bf0f6f24 IM |
13680 | }; |
13681 | ||
029632fb | 13682 | void print_cfs_stats(struct seq_file *m, int cpu) |
bf0f6f24 | 13683 | { |
039ae8bc | 13684 | struct cfs_rq *cfs_rq, *pos; |
bf0f6f24 | 13685 | |
5973e5b9 | 13686 | rcu_read_lock(); |
039ae8bc | 13687 | for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) |
5cef9eca | 13688 | print_cfs_rq(m, cpu, cfs_rq); |
5973e5b9 | 13689 | rcu_read_unlock(); |
bf0f6f24 | 13690 | } |
397f2378 SD |
13691 | |
13692 | #ifdef CONFIG_NUMA_BALANCING | |
13693 | void show_numa_stats(struct task_struct *p, struct seq_file *m) | |
13694 | { | |
13695 | int node; | |
13696 | unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; | |
cb361d8c | 13697 | struct numa_group *ng; |
397f2378 | 13698 | |
cb361d8c JH |
13699 | rcu_read_lock(); |
13700 | ng = rcu_dereference(p->numa_group); | |
397f2378 SD |
13701 | for_each_online_node(node) { |
13702 | if (p->numa_faults) { | |
13703 | tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; | |
13704 | tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; | |
13705 | } | |
cb361d8c JH |
13706 | if (ng) { |
13707 | gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], | |
13708 | gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; | |
397f2378 SD |
13709 | } |
13710 | print_numa_stats(m, node, tsf, tpf, gsf, gpf); | |
13711 | } | |
cb361d8c | 13712 | rcu_read_unlock(); |
397f2378 SD |
13713 | } |
13714 | #endif /* CONFIG_NUMA_BALANCING */ | |
029632fb PZ |
13715 | |
13716 | __init void init_sched_fair_class(void) | |
13717 | { | |
13718 | #ifdef CONFIG_SMP | |
18c31c97 BH |
13719 | int i; |
13720 | ||
13721 | for_each_possible_cpu(i) { | |
13722 | zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); | |
13723 | zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); | |
f8858d96 SH |
13724 | zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), |
13725 | GFP_KERNEL, cpu_to_node(i)); | |
8ad075c2 JD |
13726 | |
13727 | #ifdef CONFIG_CFS_BANDWIDTH | |
13728 | INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); | |
13729 | INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); | |
13730 | #endif | |
18c31c97 BH |
13731 | } |
13732 | ||
70a27d6d | 13733 | open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); |
029632fb | 13734 | |
3451d024 | 13735 | #ifdef CONFIG_NO_HZ_COMMON |
554cecaf | 13736 | nohz.next_balance = jiffies; |
f643ea22 | 13737 | nohz.next_blocked = jiffies; |
029632fb | 13738 | zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); |
029632fb PZ |
13739 | #endif |
13740 | #endif /* SMP */ | |
13741 | ||
13742 | } |