sched/fair: Move init_numa_balancing() below task_numa_work()
[linux-block.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb
PZ
24
25#include <trace/events/sched.h>
26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 */
2b4d5b25 40unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 41static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 42
1983a922
CE
43/*
44 * The initial- and re-scaling of tunables is configurable
1983a922
CE
45 *
46 * Options are:
2b4d5b25
IM
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 53 */
2b4d5b25 54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 55
2bd8e6d4 56/*
b2be5e96 57 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 58 *
864616ee 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 60 */
ed8885a1
MS
61unsigned int sysctl_sched_min_granularity = 750000ULL;
62static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
63
64/*
2b4d5b25 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 66 */
0bf377bb 67static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
68
69/*
2bba22c5 70 * After fork, child runs first. If set to 0 (default) then
b2be5e96 71 * parent will (try to) run first.
21805085 72 */
2bba22c5 73unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 74
bf0f6f24
IM
75/*
76 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 83 */
ed8885a1
MS
84unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 86
2b4d5b25 87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 88
afe06efd
TC
89#ifdef CONFIG_SMP
90/*
97fb7a0a 91 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
92 */
93int __weak arch_asym_cpu_priority(int cpu)
94{
95 return -cpu;
96}
6d101ba6
OJ
97
98/*
99 * The margin used when comparing utilization with CPU capacity:
100 * util * margin < capacity * 1024
101 *
102 * (default: ~20%)
103 */
104static unsigned int capacity_margin = 1280;
afe06efd
TC
105#endif
106
ec12cb7f
PT
107#ifdef CONFIG_CFS_BANDWIDTH
108/*
109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110 * each time a cfs_rq requests quota.
111 *
112 * Note: in the case that the slice exceeds the runtime remaining (either due
113 * to consumption or the quota being specified to be smaller than the slice)
114 * we will always only issue the remaining available time.
115 *
2b4d5b25
IM
116 * (default: 5 msec, units: microseconds)
117 */
118unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
119#endif
120
8527632d
PG
121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122{
123 lw->weight += inc;
124 lw->inv_weight = 0;
125}
126
127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128{
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131}
132
133static inline void update_load_set(struct load_weight *lw, unsigned long w)
134{
135 lw->weight = w;
136 lw->inv_weight = 0;
137}
138
029632fb
PZ
139/*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
58ac93e4 148static unsigned int get_update_sysctl_factor(void)
029632fb 149{
58ac93e4 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167}
168
169static void update_sysctl(void)
170{
171 unsigned int factor = get_update_sysctl_factor();
172
173#define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178#undef SET_SYSCTL
179}
180
181void sched_init_granularity(void)
182{
183 update_sysctl();
184}
185
9dbdb155 186#define WMULT_CONST (~0U)
029632fb
PZ
187#define WMULT_SHIFT 32
188
9dbdb155
PZ
189static void __update_inv_weight(struct load_weight *lw)
190{
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204}
029632fb
PZ
205
206/*
9dbdb155
PZ
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
1c3de5e1 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 217 */
9dbdb155 218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 219{
9dbdb155
PZ
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
029632fb 222
9dbdb155 223 __update_inv_weight(lw);
029632fb 224
9dbdb155
PZ
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
029632fb
PZ
230 }
231
9dbdb155
PZ
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 234
9dbdb155
PZ
235 while (fact >> 32) {
236 fact >>= 1;
237 shift--;
238 }
029632fb 239
9dbdb155 240 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
241}
242
243
244const struct sched_class fair_sched_class;
a4c2f00f 245
bf0f6f24
IM
246/**************************************************************
247 * CFS operations on generic schedulable entities:
248 */
249
62160e3f 250#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
251static inline struct task_struct *task_of(struct sched_entity *se)
252{
9148a3a1 253 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
254 return container_of(se, struct task_struct, se);
255}
256
b758149c
PZ
257/* Walk up scheduling entities hierarchy */
258#define for_each_sched_entity(se) \
259 for (; se; se = se->parent)
260
261static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262{
263 return p->se.cfs_rq;
264}
265
266/* runqueue on which this entity is (to be) queued */
267static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268{
269 return se->cfs_rq;
270}
271
272/* runqueue "owned" by this group */
273static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274{
275 return grp->my_q;
276}
277
3c93a0c0
QY
278static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
279{
280 if (!path)
281 return;
282
283 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
284 autogroup_path(cfs_rq->tg, path, len);
285 else if (cfs_rq && cfs_rq->tg->css.cgroup)
286 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
287 else
288 strlcpy(path, "(null)", len);
289}
290
f6783319 291static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 292{
5d299eab
PZ
293 struct rq *rq = rq_of(cfs_rq);
294 int cpu = cpu_of(rq);
295
296 if (cfs_rq->on_list)
f6783319 297 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
298
299 cfs_rq->on_list = 1;
300
301 /*
302 * Ensure we either appear before our parent (if already
303 * enqueued) or force our parent to appear after us when it is
304 * enqueued. The fact that we always enqueue bottom-up
305 * reduces this to two cases and a special case for the root
306 * cfs_rq. Furthermore, it also means that we will always reset
307 * tmp_alone_branch either when the branch is connected
308 * to a tree or when we reach the top of the tree
309 */
310 if (cfs_rq->tg->parent &&
311 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 312 /*
5d299eab
PZ
313 * If parent is already on the list, we add the child
314 * just before. Thanks to circular linked property of
315 * the list, this means to put the child at the tail
316 * of the list that starts by parent.
67e86250 317 */
5d299eab
PZ
318 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
319 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
320 /*
321 * The branch is now connected to its tree so we can
322 * reset tmp_alone_branch to the beginning of the
323 * list.
324 */
325 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 326 return true;
5d299eab 327 }
3d4b47b4 328
5d299eab
PZ
329 if (!cfs_rq->tg->parent) {
330 /*
331 * cfs rq without parent should be put
332 * at the tail of the list.
333 */
334 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
335 &rq->leaf_cfs_rq_list);
336 /*
337 * We have reach the top of a tree so we can reset
338 * tmp_alone_branch to the beginning of the list.
339 */
340 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 341 return true;
3d4b47b4 342 }
5d299eab
PZ
343
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the begin of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
351 /*
352 * update tmp_alone_branch to points to the new begin
353 * of the branch
354 */
355 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 356 return false;
3d4b47b4
PZ
357}
358
359static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
360{
361 if (cfs_rq->on_list) {
31bc6aea
VG
362 struct rq *rq = rq_of(cfs_rq);
363
364 /*
365 * With cfs_rq being unthrottled/throttled during an enqueue,
366 * it can happen the tmp_alone_branch points the a leaf that
367 * we finally want to del. In this case, tmp_alone_branch moves
368 * to the prev element but it will point to rq->leaf_cfs_rq_list
369 * at the end of the enqueue.
370 */
371 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
372 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
373
3d4b47b4
PZ
374 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
375 cfs_rq->on_list = 0;
376 }
377}
378
5d299eab
PZ
379static inline void assert_list_leaf_cfs_rq(struct rq *rq)
380{
381 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
382}
383
039ae8bc
VG
384/* Iterate thr' all leaf cfs_rq's on a runqueue */
385#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
386 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
387 leaf_cfs_rq_list)
b758149c
PZ
388
389/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 390static inline struct cfs_rq *
b758149c
PZ
391is_same_group(struct sched_entity *se, struct sched_entity *pse)
392{
393 if (se->cfs_rq == pse->cfs_rq)
fed14d45 394 return se->cfs_rq;
b758149c 395
fed14d45 396 return NULL;
b758149c
PZ
397}
398
399static inline struct sched_entity *parent_entity(struct sched_entity *se)
400{
401 return se->parent;
402}
403
464b7527
PZ
404static void
405find_matching_se(struct sched_entity **se, struct sched_entity **pse)
406{
407 int se_depth, pse_depth;
408
409 /*
410 * preemption test can be made between sibling entities who are in the
411 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
412 * both tasks until we find their ancestors who are siblings of common
413 * parent.
414 */
415
416 /* First walk up until both entities are at same depth */
fed14d45
PZ
417 se_depth = (*se)->depth;
418 pse_depth = (*pse)->depth;
464b7527
PZ
419
420 while (se_depth > pse_depth) {
421 se_depth--;
422 *se = parent_entity(*se);
423 }
424
425 while (pse_depth > se_depth) {
426 pse_depth--;
427 *pse = parent_entity(*pse);
428 }
429
430 while (!is_same_group(*se, *pse)) {
431 *se = parent_entity(*se);
432 *pse = parent_entity(*pse);
433 }
434}
435
8f48894f
PZ
436#else /* !CONFIG_FAIR_GROUP_SCHED */
437
438static inline struct task_struct *task_of(struct sched_entity *se)
439{
440 return container_of(se, struct task_struct, se);
441}
bf0f6f24 442
b758149c
PZ
443#define for_each_sched_entity(se) \
444 for (; se; se = NULL)
bf0f6f24 445
b758149c 446static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 447{
b758149c 448 return &task_rq(p)->cfs;
bf0f6f24
IM
449}
450
b758149c
PZ
451static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
452{
453 struct task_struct *p = task_of(se);
454 struct rq *rq = task_rq(p);
455
456 return &rq->cfs;
457}
458
459/* runqueue "owned" by this group */
460static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
461{
462 return NULL;
463}
464
3c93a0c0
QY
465static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
466{
467 if (path)
468 strlcpy(path, "(null)", len);
469}
470
f6783319 471static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 472{
f6783319 473 return true;
3d4b47b4
PZ
474}
475
476static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477{
478}
479
5d299eab
PZ
480static inline void assert_list_leaf_cfs_rq(struct rq *rq)
481{
482}
483
039ae8bc
VG
484#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
485 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 486
b758149c
PZ
487static inline struct sched_entity *parent_entity(struct sched_entity *se)
488{
489 return NULL;
490}
491
464b7527
PZ
492static inline void
493find_matching_se(struct sched_entity **se, struct sched_entity **pse)
494{
495}
496
b758149c
PZ
497#endif /* CONFIG_FAIR_GROUP_SCHED */
498
6c16a6dc 499static __always_inline
9dbdb155 500void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
501
502/**************************************************************
503 * Scheduling class tree data structure manipulation methods:
504 */
505
1bf08230 506static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 507{
1bf08230 508 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 509 if (delta > 0)
1bf08230 510 max_vruntime = vruntime;
02e0431a 511
1bf08230 512 return max_vruntime;
02e0431a
PZ
513}
514
0702e3eb 515static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
516{
517 s64 delta = (s64)(vruntime - min_vruntime);
518 if (delta < 0)
519 min_vruntime = vruntime;
520
521 return min_vruntime;
522}
523
54fdc581
FC
524static inline int entity_before(struct sched_entity *a,
525 struct sched_entity *b)
526{
527 return (s64)(a->vruntime - b->vruntime) < 0;
528}
529
1af5f730
PZ
530static void update_min_vruntime(struct cfs_rq *cfs_rq)
531{
b60205c7 532 struct sched_entity *curr = cfs_rq->curr;
bfb06889 533 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 534
1af5f730
PZ
535 u64 vruntime = cfs_rq->min_vruntime;
536
b60205c7
PZ
537 if (curr) {
538 if (curr->on_rq)
539 vruntime = curr->vruntime;
540 else
541 curr = NULL;
542 }
1af5f730 543
bfb06889
DB
544 if (leftmost) { /* non-empty tree */
545 struct sched_entity *se;
546 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 547
b60205c7 548 if (!curr)
1af5f730
PZ
549 vruntime = se->vruntime;
550 else
551 vruntime = min_vruntime(vruntime, se->vruntime);
552 }
553
1bf08230 554 /* ensure we never gain time by being placed backwards. */
1af5f730 555 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
556#ifndef CONFIG_64BIT
557 smp_wmb();
558 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
559#endif
1af5f730
PZ
560}
561
bf0f6f24
IM
562/*
563 * Enqueue an entity into the rb-tree:
564 */
0702e3eb 565static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 566{
bfb06889 567 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
568 struct rb_node *parent = NULL;
569 struct sched_entity *entry;
bfb06889 570 bool leftmost = true;
bf0f6f24
IM
571
572 /*
573 * Find the right place in the rbtree:
574 */
575 while (*link) {
576 parent = *link;
577 entry = rb_entry(parent, struct sched_entity, run_node);
578 /*
579 * We dont care about collisions. Nodes with
580 * the same key stay together.
581 */
2bd2d6f2 582 if (entity_before(se, entry)) {
bf0f6f24
IM
583 link = &parent->rb_left;
584 } else {
585 link = &parent->rb_right;
bfb06889 586 leftmost = false;
bf0f6f24
IM
587 }
588 }
589
bf0f6f24 590 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
591 rb_insert_color_cached(&se->run_node,
592 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
593}
594
0702e3eb 595static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 596{
bfb06889 597 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
598}
599
029632fb 600struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 601{
bfb06889 602 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
603
604 if (!left)
605 return NULL;
606
607 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
608}
609
ac53db59
RR
610static struct sched_entity *__pick_next_entity(struct sched_entity *se)
611{
612 struct rb_node *next = rb_next(&se->run_node);
613
614 if (!next)
615 return NULL;
616
617 return rb_entry(next, struct sched_entity, run_node);
618}
619
620#ifdef CONFIG_SCHED_DEBUG
029632fb 621struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 622{
bfb06889 623 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 624
70eee74b
BS
625 if (!last)
626 return NULL;
7eee3e67
IM
627
628 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
629}
630
bf0f6f24
IM
631/**************************************************************
632 * Scheduling class statistics methods:
633 */
634
acb4a848 635int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 636 void __user *buffer, size_t *lenp,
b2be5e96
PZ
637 loff_t *ppos)
638{
8d65af78 639 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 640 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
641
642 if (ret || !write)
643 return ret;
644
645 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
646 sysctl_sched_min_granularity);
647
acb4a848
CE
648#define WRT_SYSCTL(name) \
649 (normalized_sysctl_##name = sysctl_##name / (factor))
650 WRT_SYSCTL(sched_min_granularity);
651 WRT_SYSCTL(sched_latency);
652 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
653#undef WRT_SYSCTL
654
b2be5e96
PZ
655 return 0;
656}
657#endif
647e7cac 658
a7be37ac 659/*
f9c0b095 660 * delta /= w
a7be37ac 661 */
9dbdb155 662static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 663{
f9c0b095 664 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 665 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
666
667 return delta;
668}
669
647e7cac
IM
670/*
671 * The idea is to set a period in which each task runs once.
672 *
532b1858 673 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
674 * this period because otherwise the slices get too small.
675 *
676 * p = (nr <= nl) ? l : l*nr/nl
677 */
4d78e7b6
PZ
678static u64 __sched_period(unsigned long nr_running)
679{
8e2b0bf3
BF
680 if (unlikely(nr_running > sched_nr_latency))
681 return nr_running * sysctl_sched_min_granularity;
682 else
683 return sysctl_sched_latency;
4d78e7b6
PZ
684}
685
647e7cac
IM
686/*
687 * We calculate the wall-time slice from the period by taking a part
688 * proportional to the weight.
689 *
f9c0b095 690 * s = p*P[w/rw]
647e7cac 691 */
6d0f0ebd 692static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 693{
0a582440 694 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 695
0a582440 696 for_each_sched_entity(se) {
6272d68c 697 struct load_weight *load;
3104bf03 698 struct load_weight lw;
6272d68c
LM
699
700 cfs_rq = cfs_rq_of(se);
701 load = &cfs_rq->load;
f9c0b095 702
0a582440 703 if (unlikely(!se->on_rq)) {
3104bf03 704 lw = cfs_rq->load;
0a582440
MG
705
706 update_load_add(&lw, se->load.weight);
707 load = &lw;
708 }
9dbdb155 709 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
710 }
711 return slice;
bf0f6f24
IM
712}
713
647e7cac 714/*
660cc00f 715 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 716 *
f9c0b095 717 * vs = s/w
647e7cac 718 */
f9c0b095 719static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 720{
f9c0b095 721 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
722}
723
c0796298 724#include "pelt.h"
23127296 725#ifdef CONFIG_SMP
283e2ed3 726
772bd008 727static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 728static unsigned long task_h_load(struct task_struct *p);
3b1baa64 729static unsigned long capacity_of(int cpu);
fb13c7ee 730
540247fb
YD
731/* Give new sched_entity start runnable values to heavy its load in infant time */
732void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 733{
540247fb 734 struct sched_avg *sa = &se->avg;
a75cdaa9 735
f207934f
PZ
736 memset(sa, 0, sizeof(*sa));
737
b5a9b340 738 /*
dfcb245e 739 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 740 * they get a chance to stabilize to their real load level.
dfcb245e 741 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
742 * nothing has been attached to the task group yet.
743 */
744 if (entity_is_task(se))
1ea6c46a 745 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
1ea6c46a 746
f207934f
PZ
747 se->runnable_weight = se->load.weight;
748
9d89c257 749 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 750}
7ea241af 751
7dc603c9 752static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 753static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 754
2b8c41da
YD
755/*
756 * With new tasks being created, their initial util_avgs are extrapolated
757 * based on the cfs_rq's current util_avg:
758 *
759 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
760 *
761 * However, in many cases, the above util_avg does not give a desired
762 * value. Moreover, the sum of the util_avgs may be divergent, such
763 * as when the series is a harmonic series.
764 *
765 * To solve this problem, we also cap the util_avg of successive tasks to
766 * only 1/2 of the left utilization budget:
767 *
8fe5c5a9 768 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 769 *
8fe5c5a9 770 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 771 *
8fe5c5a9
QP
772 * For example, for a CPU with 1024 of capacity, a simplest series from
773 * the beginning would be like:
2b8c41da
YD
774 *
775 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
776 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
777 *
778 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
779 * if util_avg > util_avg_cap.
780 */
d0fe0b9c 781void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 782{
d0fe0b9c 783 struct sched_entity *se = &p->se;
2b8c41da
YD
784 struct cfs_rq *cfs_rq = cfs_rq_of(se);
785 struct sched_avg *sa = &se->avg;
8ec59c0f 786 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 787 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
788
789 if (cap > 0) {
790 if (cfs_rq->avg.util_avg != 0) {
791 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
792 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
793
794 if (sa->util_avg > cap)
795 sa->util_avg = cap;
796 } else {
797 sa->util_avg = cap;
798 }
2b8c41da 799 }
7dc603c9 800
d0fe0b9c
DE
801 if (p->sched_class != &fair_sched_class) {
802 /*
803 * For !fair tasks do:
804 *
805 update_cfs_rq_load_avg(now, cfs_rq);
806 attach_entity_load_avg(cfs_rq, se, 0);
807 switched_from_fair(rq, p);
808 *
809 * such that the next switched_to_fair() has the
810 * expected state.
811 */
812 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
813 return;
7dc603c9
PZ
814 }
815
df217913 816 attach_entity_cfs_rq(se);
2b8c41da
YD
817}
818
7dc603c9 819#else /* !CONFIG_SMP */
540247fb 820void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
821{
822}
d0fe0b9c 823void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
824{
825}
3d30544f
PZ
826static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
827{
828}
7dc603c9 829#endif /* CONFIG_SMP */
a75cdaa9 830
bf0f6f24 831/*
9dbdb155 832 * Update the current task's runtime statistics.
bf0f6f24 833 */
b7cc0896 834static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 835{
429d43bc 836 struct sched_entity *curr = cfs_rq->curr;
78becc27 837 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 838 u64 delta_exec;
bf0f6f24
IM
839
840 if (unlikely(!curr))
841 return;
842
9dbdb155
PZ
843 delta_exec = now - curr->exec_start;
844 if (unlikely((s64)delta_exec <= 0))
34f28ecd 845 return;
bf0f6f24 846
8ebc91d9 847 curr->exec_start = now;
d842de87 848
9dbdb155
PZ
849 schedstat_set(curr->statistics.exec_max,
850 max(delta_exec, curr->statistics.exec_max));
851
852 curr->sum_exec_runtime += delta_exec;
ae92882e 853 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
854
855 curr->vruntime += calc_delta_fair(delta_exec, curr);
856 update_min_vruntime(cfs_rq);
857
d842de87
SV
858 if (entity_is_task(curr)) {
859 struct task_struct *curtask = task_of(curr);
860
f977bb49 861 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 862 cgroup_account_cputime(curtask, delta_exec);
f06febc9 863 account_group_exec_runtime(curtask, delta_exec);
d842de87 864 }
ec12cb7f
PT
865
866 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
867}
868
6e998916
SG
869static void update_curr_fair(struct rq *rq)
870{
871 update_curr(cfs_rq_of(&rq->curr->se));
872}
873
bf0f6f24 874static inline void
5870db5b 875update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 876{
4fa8d299
JP
877 u64 wait_start, prev_wait_start;
878
879 if (!schedstat_enabled())
880 return;
881
882 wait_start = rq_clock(rq_of(cfs_rq));
883 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
884
885 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
886 likely(wait_start > prev_wait_start))
887 wait_start -= prev_wait_start;
3ea94de1 888
2ed41a55 889 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
890}
891
4fa8d299 892static inline void
3ea94de1
JP
893update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
894{
895 struct task_struct *p;
cb251765
MG
896 u64 delta;
897
4fa8d299
JP
898 if (!schedstat_enabled())
899 return;
900
901 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
902
903 if (entity_is_task(se)) {
904 p = task_of(se);
905 if (task_on_rq_migrating(p)) {
906 /*
907 * Preserve migrating task's wait time so wait_start
908 * time stamp can be adjusted to accumulate wait time
909 * prior to migration.
910 */
2ed41a55 911 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
912 return;
913 }
914 trace_sched_stat_wait(p, delta);
915 }
916
2ed41a55 917 __schedstat_set(se->statistics.wait_max,
4fa8d299 918 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
919 __schedstat_inc(se->statistics.wait_count);
920 __schedstat_add(se->statistics.wait_sum, delta);
921 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 922}
3ea94de1 923
4fa8d299 924static inline void
1a3d027c
JP
925update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
926{
927 struct task_struct *tsk = NULL;
4fa8d299
JP
928 u64 sleep_start, block_start;
929
930 if (!schedstat_enabled())
931 return;
932
933 sleep_start = schedstat_val(se->statistics.sleep_start);
934 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
935
936 if (entity_is_task(se))
937 tsk = task_of(se);
938
4fa8d299
JP
939 if (sleep_start) {
940 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
941
942 if ((s64)delta < 0)
943 delta = 0;
944
4fa8d299 945 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 946 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 947
2ed41a55
PZ
948 __schedstat_set(se->statistics.sleep_start, 0);
949 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
950
951 if (tsk) {
952 account_scheduler_latency(tsk, delta >> 10, 1);
953 trace_sched_stat_sleep(tsk, delta);
954 }
955 }
4fa8d299
JP
956 if (block_start) {
957 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
958
959 if ((s64)delta < 0)
960 delta = 0;
961
4fa8d299 962 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 963 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 964
2ed41a55
PZ
965 __schedstat_set(se->statistics.block_start, 0);
966 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
967
968 if (tsk) {
969 if (tsk->in_iowait) {
2ed41a55
PZ
970 __schedstat_add(se->statistics.iowait_sum, delta);
971 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
972 trace_sched_stat_iowait(tsk, delta);
973 }
974
975 trace_sched_stat_blocked(tsk, delta);
976
977 /*
978 * Blocking time is in units of nanosecs, so shift by
979 * 20 to get a milliseconds-range estimation of the
980 * amount of time that the task spent sleeping:
981 */
982 if (unlikely(prof_on == SLEEP_PROFILING)) {
983 profile_hits(SLEEP_PROFILING,
984 (void *)get_wchan(tsk),
985 delta >> 20);
986 }
987 account_scheduler_latency(tsk, delta >> 10, 0);
988 }
989 }
3ea94de1 990}
3ea94de1 991
bf0f6f24
IM
992/*
993 * Task is being enqueued - update stats:
994 */
cb251765 995static inline void
1a3d027c 996update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 997{
4fa8d299
JP
998 if (!schedstat_enabled())
999 return;
1000
bf0f6f24
IM
1001 /*
1002 * Are we enqueueing a waiting task? (for current tasks
1003 * a dequeue/enqueue event is a NOP)
1004 */
429d43bc 1005 if (se != cfs_rq->curr)
5870db5b 1006 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1007
1008 if (flags & ENQUEUE_WAKEUP)
1009 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1010}
1011
bf0f6f24 1012static inline void
cb251765 1013update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1014{
4fa8d299
JP
1015
1016 if (!schedstat_enabled())
1017 return;
1018
bf0f6f24
IM
1019 /*
1020 * Mark the end of the wait period if dequeueing a
1021 * waiting task:
1022 */
429d43bc 1023 if (se != cfs_rq->curr)
9ef0a961 1024 update_stats_wait_end(cfs_rq, se);
cb251765 1025
4fa8d299
JP
1026 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1027 struct task_struct *tsk = task_of(se);
cb251765 1028
4fa8d299 1029 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1030 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1031 rq_clock(rq_of(cfs_rq)));
1032 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1033 __schedstat_set(se->statistics.block_start,
4fa8d299 1034 rq_clock(rq_of(cfs_rq)));
cb251765 1035 }
cb251765
MG
1036}
1037
bf0f6f24
IM
1038/*
1039 * We are picking a new current task - update its stats:
1040 */
1041static inline void
79303e9e 1042update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1043{
1044 /*
1045 * We are starting a new run period:
1046 */
78becc27 1047 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1048}
1049
bf0f6f24
IM
1050/**************************************************
1051 * Scheduling class queueing methods:
1052 */
1053
cbee9f88
PZ
1054#ifdef CONFIG_NUMA_BALANCING
1055/*
598f0ec0
MG
1056 * Approximate time to scan a full NUMA task in ms. The task scan period is
1057 * calculated based on the tasks virtual memory size and
1058 * numa_balancing_scan_size.
cbee9f88 1059 */
598f0ec0
MG
1060unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1061unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1062
1063/* Portion of address space to scan in MB */
1064unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1065
4b96a29b
PZ
1066/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1067unsigned int sysctl_numa_balancing_scan_delay = 1000;
1068
b5dd77c8 1069struct numa_group {
c45a7795 1070 refcount_t refcount;
b5dd77c8
RR
1071
1072 spinlock_t lock; /* nr_tasks, tasks */
1073 int nr_tasks;
1074 pid_t gid;
1075 int active_nodes;
1076
1077 struct rcu_head rcu;
1078 unsigned long total_faults;
1079 unsigned long max_faults_cpu;
1080 /*
1081 * Faults_cpu is used to decide whether memory should move
1082 * towards the CPU. As a consequence, these stats are weighted
1083 * more by CPU use than by memory faults.
1084 */
1085 unsigned long *faults_cpu;
1086 unsigned long faults[0];
1087};
1088
cb361d8c
JH
1089/*
1090 * For functions that can be called in multiple contexts that permit reading
1091 * ->numa_group (see struct task_struct for locking rules).
1092 */
1093static struct numa_group *deref_task_numa_group(struct task_struct *p)
1094{
1095 return rcu_dereference_check(p->numa_group, p == current ||
1096 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1097}
1098
1099static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1100{
1101 return rcu_dereference_protected(p->numa_group, p == current);
1102}
1103
b5dd77c8
RR
1104static inline unsigned long group_faults_priv(struct numa_group *ng);
1105static inline unsigned long group_faults_shared(struct numa_group *ng);
1106
598f0ec0
MG
1107static unsigned int task_nr_scan_windows(struct task_struct *p)
1108{
1109 unsigned long rss = 0;
1110 unsigned long nr_scan_pages;
1111
1112 /*
1113 * Calculations based on RSS as non-present and empty pages are skipped
1114 * by the PTE scanner and NUMA hinting faults should be trapped based
1115 * on resident pages
1116 */
1117 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1118 rss = get_mm_rss(p->mm);
1119 if (!rss)
1120 rss = nr_scan_pages;
1121
1122 rss = round_up(rss, nr_scan_pages);
1123 return rss / nr_scan_pages;
1124}
1125
1126/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1127#define MAX_SCAN_WINDOW 2560
1128
1129static unsigned int task_scan_min(struct task_struct *p)
1130{
316c1608 1131 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1132 unsigned int scan, floor;
1133 unsigned int windows = 1;
1134
64192658
KT
1135 if (scan_size < MAX_SCAN_WINDOW)
1136 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1137 floor = 1000 / windows;
1138
1139 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1140 return max_t(unsigned int, floor, scan);
1141}
1142
b5dd77c8
RR
1143static unsigned int task_scan_start(struct task_struct *p)
1144{
1145 unsigned long smin = task_scan_min(p);
1146 unsigned long period = smin;
cb361d8c 1147 struct numa_group *ng;
b5dd77c8
RR
1148
1149 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1150 rcu_read_lock();
1151 ng = rcu_dereference(p->numa_group);
1152 if (ng) {
b5dd77c8
RR
1153 unsigned long shared = group_faults_shared(ng);
1154 unsigned long private = group_faults_priv(ng);
1155
c45a7795 1156 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1157 period *= shared + 1;
1158 period /= private + shared + 1;
1159 }
cb361d8c 1160 rcu_read_unlock();
b5dd77c8
RR
1161
1162 return max(smin, period);
1163}
1164
598f0ec0
MG
1165static unsigned int task_scan_max(struct task_struct *p)
1166{
b5dd77c8
RR
1167 unsigned long smin = task_scan_min(p);
1168 unsigned long smax;
cb361d8c 1169 struct numa_group *ng;
598f0ec0
MG
1170
1171 /* Watch for min being lower than max due to floor calculations */
1172 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1173
1174 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1175 ng = deref_curr_numa_group(p);
1176 if (ng) {
b5dd77c8
RR
1177 unsigned long shared = group_faults_shared(ng);
1178 unsigned long private = group_faults_priv(ng);
1179 unsigned long period = smax;
1180
c45a7795 1181 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1182 period *= shared + 1;
1183 period /= private + shared + 1;
1184
1185 smax = max(smax, period);
1186 }
1187
598f0ec0
MG
1188 return max(smin, smax);
1189}
1190
0ec8aa00
PZ
1191static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1192{
98fa15f3 1193 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1194 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1195}
1196
1197static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1198{
98fa15f3 1199 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1200 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1201}
1202
be1e4e76
RR
1203/* Shared or private faults. */
1204#define NR_NUMA_HINT_FAULT_TYPES 2
1205
1206/* Memory and CPU locality */
1207#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1208
1209/* Averaged statistics, and temporary buffers. */
1210#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1211
e29cf08b
MG
1212pid_t task_numa_group_id(struct task_struct *p)
1213{
cb361d8c
JH
1214 struct numa_group *ng;
1215 pid_t gid = 0;
1216
1217 rcu_read_lock();
1218 ng = rcu_dereference(p->numa_group);
1219 if (ng)
1220 gid = ng->gid;
1221 rcu_read_unlock();
1222
1223 return gid;
e29cf08b
MG
1224}
1225
44dba3d5 1226/*
97fb7a0a 1227 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1228 * occupy the first half of the array. The second half of the
1229 * array is for current counters, which are averaged into the
1230 * first set by task_numa_placement.
1231 */
1232static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1233{
44dba3d5 1234 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1235}
1236
1237static inline unsigned long task_faults(struct task_struct *p, int nid)
1238{
44dba3d5 1239 if (!p->numa_faults)
ac8e895b
MG
1240 return 0;
1241
44dba3d5
IM
1242 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1243 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1244}
1245
83e1d2cd
MG
1246static inline unsigned long group_faults(struct task_struct *p, int nid)
1247{
cb361d8c
JH
1248 struct numa_group *ng = deref_task_numa_group(p);
1249
1250 if (!ng)
83e1d2cd
MG
1251 return 0;
1252
cb361d8c
JH
1253 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1254 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1255}
1256
20e07dea
RR
1257static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1258{
44dba3d5
IM
1259 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1260 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1261}
1262
b5dd77c8
RR
1263static inline unsigned long group_faults_priv(struct numa_group *ng)
1264{
1265 unsigned long faults = 0;
1266 int node;
1267
1268 for_each_online_node(node) {
1269 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1270 }
1271
1272 return faults;
1273}
1274
1275static inline unsigned long group_faults_shared(struct numa_group *ng)
1276{
1277 unsigned long faults = 0;
1278 int node;
1279
1280 for_each_online_node(node) {
1281 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1282 }
1283
1284 return faults;
1285}
1286
4142c3eb
RR
1287/*
1288 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1289 * considered part of a numa group's pseudo-interleaving set. Migrations
1290 * between these nodes are slowed down, to allow things to settle down.
1291 */
1292#define ACTIVE_NODE_FRACTION 3
1293
1294static bool numa_is_active_node(int nid, struct numa_group *ng)
1295{
1296 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1297}
1298
6c6b1193
RR
1299/* Handle placement on systems where not all nodes are directly connected. */
1300static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1301 int maxdist, bool task)
1302{
1303 unsigned long score = 0;
1304 int node;
1305
1306 /*
1307 * All nodes are directly connected, and the same distance
1308 * from each other. No need for fancy placement algorithms.
1309 */
1310 if (sched_numa_topology_type == NUMA_DIRECT)
1311 return 0;
1312
1313 /*
1314 * This code is called for each node, introducing N^2 complexity,
1315 * which should be ok given the number of nodes rarely exceeds 8.
1316 */
1317 for_each_online_node(node) {
1318 unsigned long faults;
1319 int dist = node_distance(nid, node);
1320
1321 /*
1322 * The furthest away nodes in the system are not interesting
1323 * for placement; nid was already counted.
1324 */
1325 if (dist == sched_max_numa_distance || node == nid)
1326 continue;
1327
1328 /*
1329 * On systems with a backplane NUMA topology, compare groups
1330 * of nodes, and move tasks towards the group with the most
1331 * memory accesses. When comparing two nodes at distance
1332 * "hoplimit", only nodes closer by than "hoplimit" are part
1333 * of each group. Skip other nodes.
1334 */
1335 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1336 dist >= maxdist)
6c6b1193
RR
1337 continue;
1338
1339 /* Add up the faults from nearby nodes. */
1340 if (task)
1341 faults = task_faults(p, node);
1342 else
1343 faults = group_faults(p, node);
1344
1345 /*
1346 * On systems with a glueless mesh NUMA topology, there are
1347 * no fixed "groups of nodes". Instead, nodes that are not
1348 * directly connected bounce traffic through intermediate
1349 * nodes; a numa_group can occupy any set of nodes.
1350 * The further away a node is, the less the faults count.
1351 * This seems to result in good task placement.
1352 */
1353 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1354 faults *= (sched_max_numa_distance - dist);
1355 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1356 }
1357
1358 score += faults;
1359 }
1360
1361 return score;
1362}
1363
83e1d2cd
MG
1364/*
1365 * These return the fraction of accesses done by a particular task, or
1366 * task group, on a particular numa node. The group weight is given a
1367 * larger multiplier, in order to group tasks together that are almost
1368 * evenly spread out between numa nodes.
1369 */
7bd95320
RR
1370static inline unsigned long task_weight(struct task_struct *p, int nid,
1371 int dist)
83e1d2cd 1372{
7bd95320 1373 unsigned long faults, total_faults;
83e1d2cd 1374
44dba3d5 1375 if (!p->numa_faults)
83e1d2cd
MG
1376 return 0;
1377
1378 total_faults = p->total_numa_faults;
1379
1380 if (!total_faults)
1381 return 0;
1382
7bd95320 1383 faults = task_faults(p, nid);
6c6b1193
RR
1384 faults += score_nearby_nodes(p, nid, dist, true);
1385
7bd95320 1386 return 1000 * faults / total_faults;
83e1d2cd
MG
1387}
1388
7bd95320
RR
1389static inline unsigned long group_weight(struct task_struct *p, int nid,
1390 int dist)
83e1d2cd 1391{
cb361d8c 1392 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1393 unsigned long faults, total_faults;
1394
cb361d8c 1395 if (!ng)
7bd95320
RR
1396 return 0;
1397
cb361d8c 1398 total_faults = ng->total_faults;
7bd95320
RR
1399
1400 if (!total_faults)
83e1d2cd
MG
1401 return 0;
1402
7bd95320 1403 faults = group_faults(p, nid);
6c6b1193
RR
1404 faults += score_nearby_nodes(p, nid, dist, false);
1405
7bd95320 1406 return 1000 * faults / total_faults;
83e1d2cd
MG
1407}
1408
10f39042
RR
1409bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1410 int src_nid, int dst_cpu)
1411{
cb361d8c 1412 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1413 int dst_nid = cpu_to_node(dst_cpu);
1414 int last_cpupid, this_cpupid;
1415
1416 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1417 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1418
1419 /*
1420 * Allow first faults or private faults to migrate immediately early in
1421 * the lifetime of a task. The magic number 4 is based on waiting for
1422 * two full passes of the "multi-stage node selection" test that is
1423 * executed below.
1424 */
98fa15f3 1425 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1426 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1427 return true;
10f39042
RR
1428
1429 /*
1430 * Multi-stage node selection is used in conjunction with a periodic
1431 * migration fault to build a temporal task<->page relation. By using
1432 * a two-stage filter we remove short/unlikely relations.
1433 *
1434 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1435 * a task's usage of a particular page (n_p) per total usage of this
1436 * page (n_t) (in a given time-span) to a probability.
1437 *
1438 * Our periodic faults will sample this probability and getting the
1439 * same result twice in a row, given these samples are fully
1440 * independent, is then given by P(n)^2, provided our sample period
1441 * is sufficiently short compared to the usage pattern.
1442 *
1443 * This quadric squishes small probabilities, making it less likely we
1444 * act on an unlikely task<->page relation.
1445 */
10f39042
RR
1446 if (!cpupid_pid_unset(last_cpupid) &&
1447 cpupid_to_nid(last_cpupid) != dst_nid)
1448 return false;
1449
1450 /* Always allow migrate on private faults */
1451 if (cpupid_match_pid(p, last_cpupid))
1452 return true;
1453
1454 /* A shared fault, but p->numa_group has not been set up yet. */
1455 if (!ng)
1456 return true;
1457
1458 /*
4142c3eb
RR
1459 * Destination node is much more heavily used than the source
1460 * node? Allow migration.
10f39042 1461 */
4142c3eb
RR
1462 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1463 ACTIVE_NODE_FRACTION)
10f39042
RR
1464 return true;
1465
1466 /*
4142c3eb
RR
1467 * Distribute memory according to CPU & memory use on each node,
1468 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1469 *
1470 * faults_cpu(dst) 3 faults_cpu(src)
1471 * --------------- * - > ---------------
1472 * faults_mem(dst) 4 faults_mem(src)
10f39042 1473 */
4142c3eb
RR
1474 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1475 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1476}
1477
a3df0679 1478static unsigned long cpu_runnable_load(struct rq *rq);
58d081b5 1479
fb13c7ee 1480/* Cached statistics for all CPUs within a node */
58d081b5
MG
1481struct numa_stats {
1482 unsigned long load;
fb13c7ee
MG
1483
1484 /* Total compute capacity of CPUs on a node */
5ef20ca1 1485 unsigned long compute_capacity;
58d081b5 1486};
e6628d5b 1487
fb13c7ee
MG
1488/*
1489 * XXX borrowed from update_sg_lb_stats
1490 */
1491static void update_numa_stats(struct numa_stats *ns, int nid)
1492{
d90707eb 1493 int cpu;
fb13c7ee
MG
1494
1495 memset(ns, 0, sizeof(*ns));
1496 for_each_cpu(cpu, cpumask_of_node(nid)) {
1497 struct rq *rq = cpu_rq(cpu);
1498
a3df0679 1499 ns->load += cpu_runnable_load(rq);
ced549fa 1500 ns->compute_capacity += capacity_of(cpu);
fb13c7ee
MG
1501 }
1502
fb13c7ee
MG
1503}
1504
58d081b5
MG
1505struct task_numa_env {
1506 struct task_struct *p;
e6628d5b 1507
58d081b5
MG
1508 int src_cpu, src_nid;
1509 int dst_cpu, dst_nid;
e6628d5b 1510
58d081b5 1511 struct numa_stats src_stats, dst_stats;
e6628d5b 1512
40ea2b42 1513 int imbalance_pct;
7bd95320 1514 int dist;
fb13c7ee
MG
1515
1516 struct task_struct *best_task;
1517 long best_imp;
58d081b5
MG
1518 int best_cpu;
1519};
1520
fb13c7ee
MG
1521static void task_numa_assign(struct task_numa_env *env,
1522 struct task_struct *p, long imp)
1523{
a4739eca
SD
1524 struct rq *rq = cpu_rq(env->dst_cpu);
1525
1526 /* Bail out if run-queue part of active NUMA balance. */
1527 if (xchg(&rq->numa_migrate_on, 1))
1528 return;
1529
1530 /*
1531 * Clear previous best_cpu/rq numa-migrate flag, since task now
1532 * found a better CPU to move/swap.
1533 */
1534 if (env->best_cpu != -1) {
1535 rq = cpu_rq(env->best_cpu);
1536 WRITE_ONCE(rq->numa_migrate_on, 0);
1537 }
1538
fb13c7ee
MG
1539 if (env->best_task)
1540 put_task_struct(env->best_task);
bac78573
ON
1541 if (p)
1542 get_task_struct(p);
fb13c7ee
MG
1543
1544 env->best_task = p;
1545 env->best_imp = imp;
1546 env->best_cpu = env->dst_cpu;
1547}
1548
28a21745 1549static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1550 struct task_numa_env *env)
1551{
e4991b24
RR
1552 long imb, old_imb;
1553 long orig_src_load, orig_dst_load;
28a21745
RR
1554 long src_capacity, dst_capacity;
1555
1556 /*
1557 * The load is corrected for the CPU capacity available on each node.
1558 *
1559 * src_load dst_load
1560 * ------------ vs ---------
1561 * src_capacity dst_capacity
1562 */
1563 src_capacity = env->src_stats.compute_capacity;
1564 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1565
5f95ba7a 1566 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1567
28a21745 1568 orig_src_load = env->src_stats.load;
e4991b24 1569 orig_dst_load = env->dst_stats.load;
28a21745 1570
5f95ba7a 1571 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1572
1573 /* Would this change make things worse? */
1574 return (imb > old_imb);
e63da036
RR
1575}
1576
6fd98e77
SD
1577/*
1578 * Maximum NUMA importance can be 1998 (2*999);
1579 * SMALLIMP @ 30 would be close to 1998/64.
1580 * Used to deter task migration.
1581 */
1582#define SMALLIMP 30
1583
fb13c7ee
MG
1584/*
1585 * This checks if the overall compute and NUMA accesses of the system would
1586 * be improved if the source tasks was migrated to the target dst_cpu taking
1587 * into account that it might be best if task running on the dst_cpu should
1588 * be exchanged with the source task
1589 */
887c290e 1590static void task_numa_compare(struct task_numa_env *env,
305c1fac 1591 long taskimp, long groupimp, bool maymove)
fb13c7ee 1592{
cb361d8c 1593 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1594 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1595 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1596 struct task_struct *cur;
28a21745 1597 long src_load, dst_load;
7bd95320 1598 int dist = env->dist;
cb361d8c
JH
1599 long moveimp = imp;
1600 long load;
fb13c7ee 1601
a4739eca
SD
1602 if (READ_ONCE(dst_rq->numa_migrate_on))
1603 return;
1604
fb13c7ee 1605 rcu_read_lock();
bac78573
ON
1606 cur = task_rcu_dereference(&dst_rq->curr);
1607 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1608 cur = NULL;
1609
7af68335
PZ
1610 /*
1611 * Because we have preemption enabled we can get migrated around and
1612 * end try selecting ourselves (current == env->p) as a swap candidate.
1613 */
1614 if (cur == env->p)
1615 goto unlock;
1616
305c1fac 1617 if (!cur) {
6fd98e77 1618 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1619 goto assign;
1620 else
1621 goto unlock;
1622 }
1623
fb13c7ee
MG
1624 /*
1625 * "imp" is the fault differential for the source task between the
1626 * source and destination node. Calculate the total differential for
1627 * the source task and potential destination task. The more negative
305c1fac 1628 * the value is, the more remote accesses that would be expected to
fb13c7ee
MG
1629 * be incurred if the tasks were swapped.
1630 */
305c1fac 1631 /* Skip this swap candidate if cannot move to the source cpu */
3bd37062 1632 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
305c1fac 1633 goto unlock;
fb13c7ee 1634
305c1fac
SD
1635 /*
1636 * If dst and source tasks are in the same NUMA group, or not
1637 * in any group then look only at task weights.
1638 */
cb361d8c
JH
1639 cur_ng = rcu_dereference(cur->numa_group);
1640 if (cur_ng == p_ng) {
305c1fac
SD
1641 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1642 task_weight(cur, env->dst_nid, dist);
887c290e 1643 /*
305c1fac
SD
1644 * Add some hysteresis to prevent swapping the
1645 * tasks within a group over tiny differences.
887c290e 1646 */
cb361d8c 1647 if (cur_ng)
305c1fac
SD
1648 imp -= imp / 16;
1649 } else {
1650 /*
1651 * Compare the group weights. If a task is all by itself
1652 * (not part of a group), use the task weight instead.
1653 */
cb361d8c 1654 if (cur_ng && p_ng)
305c1fac
SD
1655 imp += group_weight(cur, env->src_nid, dist) -
1656 group_weight(cur, env->dst_nid, dist);
1657 else
1658 imp += task_weight(cur, env->src_nid, dist) -
1659 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1660 }
1661
305c1fac 1662 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1663 imp = moveimp;
305c1fac 1664 cur = NULL;
fb13c7ee 1665 goto assign;
305c1fac 1666 }
fb13c7ee 1667
6fd98e77
SD
1668 /*
1669 * If the NUMA importance is less than SMALLIMP,
1670 * task migration might only result in ping pong
1671 * of tasks and also hurt performance due to cache
1672 * misses.
1673 */
1674 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1675 goto unlock;
1676
fb13c7ee
MG
1677 /*
1678 * In the overloaded case, try and keep the load balanced.
1679 */
305c1fac
SD
1680 load = task_h_load(env->p) - task_h_load(cur);
1681 if (!load)
1682 goto assign;
1683
e720fff6
PZ
1684 dst_load = env->dst_stats.load + load;
1685 src_load = env->src_stats.load - load;
fb13c7ee 1686
28a21745 1687 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1688 goto unlock;
1689
305c1fac 1690assign:
ba7e5a27
RR
1691 /*
1692 * One idle CPU per node is evaluated for a task numa move.
1693 * Call select_idle_sibling to maybe find a better one.
1694 */
10e2f1ac
PZ
1695 if (!cur) {
1696 /*
97fb7a0a 1697 * select_idle_siblings() uses an per-CPU cpumask that
10e2f1ac
PZ
1698 * can be used from IRQ context.
1699 */
1700 local_irq_disable();
772bd008
MR
1701 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1702 env->dst_cpu);
10e2f1ac
PZ
1703 local_irq_enable();
1704 }
ba7e5a27 1705
fb13c7ee
MG
1706 task_numa_assign(env, cur, imp);
1707unlock:
1708 rcu_read_unlock();
1709}
1710
887c290e
RR
1711static void task_numa_find_cpu(struct task_numa_env *env,
1712 long taskimp, long groupimp)
2c8a50aa 1713{
305c1fac
SD
1714 long src_load, dst_load, load;
1715 bool maymove = false;
2c8a50aa
MG
1716 int cpu;
1717
305c1fac
SD
1718 load = task_h_load(env->p);
1719 dst_load = env->dst_stats.load + load;
1720 src_load = env->src_stats.load - load;
1721
1722 /*
1723 * If the improvement from just moving env->p direction is better
1724 * than swapping tasks around, check if a move is possible.
1725 */
1726 maymove = !load_too_imbalanced(src_load, dst_load, env);
1727
2c8a50aa
MG
1728 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1729 /* Skip this CPU if the source task cannot migrate */
3bd37062 1730 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1731 continue;
1732
1733 env->dst_cpu = cpu;
305c1fac 1734 task_numa_compare(env, taskimp, groupimp, maymove);
2c8a50aa
MG
1735 }
1736}
1737
58d081b5
MG
1738static int task_numa_migrate(struct task_struct *p)
1739{
58d081b5
MG
1740 struct task_numa_env env = {
1741 .p = p,
fb13c7ee 1742
58d081b5 1743 .src_cpu = task_cpu(p),
b32e86b4 1744 .src_nid = task_node(p),
fb13c7ee
MG
1745
1746 .imbalance_pct = 112,
1747
1748 .best_task = NULL,
1749 .best_imp = 0,
4142c3eb 1750 .best_cpu = -1,
58d081b5 1751 };
cb361d8c 1752 unsigned long taskweight, groupweight;
58d081b5 1753 struct sched_domain *sd;
cb361d8c
JH
1754 long taskimp, groupimp;
1755 struct numa_group *ng;
a4739eca 1756 struct rq *best_rq;
7bd95320 1757 int nid, ret, dist;
e6628d5b 1758
58d081b5 1759 /*
fb13c7ee
MG
1760 * Pick the lowest SD_NUMA domain, as that would have the smallest
1761 * imbalance and would be the first to start moving tasks about.
1762 *
1763 * And we want to avoid any moving of tasks about, as that would create
1764 * random movement of tasks -- counter the numa conditions we're trying
1765 * to satisfy here.
58d081b5
MG
1766 */
1767 rcu_read_lock();
fb13c7ee 1768 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1769 if (sd)
1770 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1771 rcu_read_unlock();
1772
46a73e8a
RR
1773 /*
1774 * Cpusets can break the scheduler domain tree into smaller
1775 * balance domains, some of which do not cross NUMA boundaries.
1776 * Tasks that are "trapped" in such domains cannot be migrated
1777 * elsewhere, so there is no point in (re)trying.
1778 */
1779 if (unlikely(!sd)) {
8cd45eee 1780 sched_setnuma(p, task_node(p));
46a73e8a
RR
1781 return -EINVAL;
1782 }
1783
2c8a50aa 1784 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1785 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1786 taskweight = task_weight(p, env.src_nid, dist);
1787 groupweight = group_weight(p, env.src_nid, dist);
1788 update_numa_stats(&env.src_stats, env.src_nid);
1789 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1790 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1791 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1792
a43455a1 1793 /* Try to find a spot on the preferred nid. */
2d4056fa 1794 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1795
9de05d48
RR
1796 /*
1797 * Look at other nodes in these cases:
1798 * - there is no space available on the preferred_nid
1799 * - the task is part of a numa_group that is interleaved across
1800 * multiple NUMA nodes; in order to better consolidate the group,
1801 * we need to check other locations.
1802 */
cb361d8c
JH
1803 ng = deref_curr_numa_group(p);
1804 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
1805 for_each_online_node(nid) {
1806 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1807 continue;
58d081b5 1808
7bd95320 1809 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1810 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1811 dist != env.dist) {
1812 taskweight = task_weight(p, env.src_nid, dist);
1813 groupweight = group_weight(p, env.src_nid, dist);
1814 }
7bd95320 1815
83e1d2cd 1816 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1817 taskimp = task_weight(p, nid, dist) - taskweight;
1818 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1819 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1820 continue;
1821
7bd95320 1822 env.dist = dist;
2c8a50aa
MG
1823 env.dst_nid = nid;
1824 update_numa_stats(&env.dst_stats, env.dst_nid);
2d4056fa 1825 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1826 }
1827 }
1828
68d1b02a
RR
1829 /*
1830 * If the task is part of a workload that spans multiple NUMA nodes,
1831 * and is migrating into one of the workload's active nodes, remember
1832 * this node as the task's preferred numa node, so the workload can
1833 * settle down.
1834 * A task that migrated to a second choice node will be better off
1835 * trying for a better one later. Do not set the preferred node here.
1836 */
cb361d8c 1837 if (ng) {
db015dae
RR
1838 if (env.best_cpu == -1)
1839 nid = env.src_nid;
1840 else
8cd45eee 1841 nid = cpu_to_node(env.best_cpu);
db015dae 1842
8cd45eee
SD
1843 if (nid != p->numa_preferred_nid)
1844 sched_setnuma(p, nid);
db015dae
RR
1845 }
1846
1847 /* No better CPU than the current one was found. */
1848 if (env.best_cpu == -1)
1849 return -EAGAIN;
0ec8aa00 1850
a4739eca 1851 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 1852 if (env.best_task == NULL) {
286549dc 1853 ret = migrate_task_to(p, env.best_cpu);
a4739eca 1854 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc
MG
1855 if (ret != 0)
1856 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1857 return ret;
1858 }
1859
0ad4e3df 1860 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 1861 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 1862
286549dc
MG
1863 if (ret != 0)
1864 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1865 put_task_struct(env.best_task);
1866 return ret;
e6628d5b
MG
1867}
1868
6b9a7460
MG
1869/* Attempt to migrate a task to a CPU on the preferred node. */
1870static void numa_migrate_preferred(struct task_struct *p)
1871{
5085e2a3
RR
1872 unsigned long interval = HZ;
1873
2739d3ee 1874 /* This task has no NUMA fault statistics yet */
98fa15f3 1875 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
1876 return;
1877
2739d3ee 1878 /* Periodically retry migrating the task to the preferred node */
5085e2a3 1879 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 1880 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1881
1882 /* Success if task is already running on preferred CPU */
de1b301a 1883 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1884 return;
1885
1886 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1887 task_numa_migrate(p);
6b9a7460
MG
1888}
1889
20e07dea 1890/*
4142c3eb 1891 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1892 * tracking the nodes from which NUMA hinting faults are triggered. This can
1893 * be different from the set of nodes where the workload's memory is currently
1894 * located.
20e07dea 1895 */
4142c3eb 1896static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1897{
1898 unsigned long faults, max_faults = 0;
4142c3eb 1899 int nid, active_nodes = 0;
20e07dea
RR
1900
1901 for_each_online_node(nid) {
1902 faults = group_faults_cpu(numa_group, nid);
1903 if (faults > max_faults)
1904 max_faults = faults;
1905 }
1906
1907 for_each_online_node(nid) {
1908 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1909 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1910 active_nodes++;
20e07dea 1911 }
4142c3eb
RR
1912
1913 numa_group->max_faults_cpu = max_faults;
1914 numa_group->active_nodes = active_nodes;
20e07dea
RR
1915}
1916
04bb2f94
RR
1917/*
1918 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1919 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1920 * period will be for the next scan window. If local/(local+remote) ratio is
1921 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1922 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1923 */
1924#define NUMA_PERIOD_SLOTS 10
a22b4b01 1925#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1926
1927/*
1928 * Increase the scan period (slow down scanning) if the majority of
1929 * our memory is already on our local node, or if the majority of
1930 * the page accesses are shared with other processes.
1931 * Otherwise, decrease the scan period.
1932 */
1933static void update_task_scan_period(struct task_struct *p,
1934 unsigned long shared, unsigned long private)
1935{
1936 unsigned int period_slot;
37ec97de 1937 int lr_ratio, ps_ratio;
04bb2f94
RR
1938 int diff;
1939
1940 unsigned long remote = p->numa_faults_locality[0];
1941 unsigned long local = p->numa_faults_locality[1];
1942
1943 /*
1944 * If there were no record hinting faults then either the task is
1945 * completely idle or all activity is areas that are not of interest
074c2381
MG
1946 * to automatic numa balancing. Related to that, if there were failed
1947 * migration then it implies we are migrating too quickly or the local
1948 * node is overloaded. In either case, scan slower
04bb2f94 1949 */
074c2381 1950 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1951 p->numa_scan_period = min(p->numa_scan_period_max,
1952 p->numa_scan_period << 1);
1953
1954 p->mm->numa_next_scan = jiffies +
1955 msecs_to_jiffies(p->numa_scan_period);
1956
1957 return;
1958 }
1959
1960 /*
1961 * Prepare to scale scan period relative to the current period.
1962 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1963 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1964 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1965 */
1966 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1967 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1968 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1969
1970 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1971 /*
1972 * Most memory accesses are local. There is no need to
1973 * do fast NUMA scanning, since memory is already local.
1974 */
1975 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1976 if (!slot)
1977 slot = 1;
1978 diff = slot * period_slot;
1979 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1980 /*
1981 * Most memory accesses are shared with other tasks.
1982 * There is no point in continuing fast NUMA scanning,
1983 * since other tasks may just move the memory elsewhere.
1984 */
1985 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1986 if (!slot)
1987 slot = 1;
1988 diff = slot * period_slot;
1989 } else {
04bb2f94 1990 /*
37ec97de
RR
1991 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1992 * yet they are not on the local NUMA node. Speed up
1993 * NUMA scanning to get the memory moved over.
04bb2f94 1994 */
37ec97de
RR
1995 int ratio = max(lr_ratio, ps_ratio);
1996 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
1997 }
1998
1999 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2000 task_scan_min(p), task_scan_max(p));
2001 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2002}
2003
7e2703e6
RR
2004/*
2005 * Get the fraction of time the task has been running since the last
2006 * NUMA placement cycle. The scheduler keeps similar statistics, but
2007 * decays those on a 32ms period, which is orders of magnitude off
2008 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2009 * stats only if the task is so new there are no NUMA statistics yet.
2010 */
2011static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2012{
2013 u64 runtime, delta, now;
2014 /* Use the start of this time slice to avoid calculations. */
2015 now = p->se.exec_start;
2016 runtime = p->se.sum_exec_runtime;
2017
2018 if (p->last_task_numa_placement) {
2019 delta = runtime - p->last_sum_exec_runtime;
2020 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2021
2022 /* Avoid time going backwards, prevent potential divide error: */
2023 if (unlikely((s64)*period < 0))
2024 *period = 0;
7e2703e6 2025 } else {
c7b50216 2026 delta = p->se.avg.load_sum;
9d89c257 2027 *period = LOAD_AVG_MAX;
7e2703e6
RR
2028 }
2029
2030 p->last_sum_exec_runtime = runtime;
2031 p->last_task_numa_placement = now;
2032
2033 return delta;
2034}
2035
54009416
RR
2036/*
2037 * Determine the preferred nid for a task in a numa_group. This needs to
2038 * be done in a way that produces consistent results with group_weight,
2039 * otherwise workloads might not converge.
2040 */
2041static int preferred_group_nid(struct task_struct *p, int nid)
2042{
2043 nodemask_t nodes;
2044 int dist;
2045
2046 /* Direct connections between all NUMA nodes. */
2047 if (sched_numa_topology_type == NUMA_DIRECT)
2048 return nid;
2049
2050 /*
2051 * On a system with glueless mesh NUMA topology, group_weight
2052 * scores nodes according to the number of NUMA hinting faults on
2053 * both the node itself, and on nearby nodes.
2054 */
2055 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2056 unsigned long score, max_score = 0;
2057 int node, max_node = nid;
2058
2059 dist = sched_max_numa_distance;
2060
2061 for_each_online_node(node) {
2062 score = group_weight(p, node, dist);
2063 if (score > max_score) {
2064 max_score = score;
2065 max_node = node;
2066 }
2067 }
2068 return max_node;
2069 }
2070
2071 /*
2072 * Finding the preferred nid in a system with NUMA backplane
2073 * interconnect topology is more involved. The goal is to locate
2074 * tasks from numa_groups near each other in the system, and
2075 * untangle workloads from different sides of the system. This requires
2076 * searching down the hierarchy of node groups, recursively searching
2077 * inside the highest scoring group of nodes. The nodemask tricks
2078 * keep the complexity of the search down.
2079 */
2080 nodes = node_online_map;
2081 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2082 unsigned long max_faults = 0;
81907478 2083 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2084 int a, b;
2085
2086 /* Are there nodes at this distance from each other? */
2087 if (!find_numa_distance(dist))
2088 continue;
2089
2090 for_each_node_mask(a, nodes) {
2091 unsigned long faults = 0;
2092 nodemask_t this_group;
2093 nodes_clear(this_group);
2094
2095 /* Sum group's NUMA faults; includes a==b case. */
2096 for_each_node_mask(b, nodes) {
2097 if (node_distance(a, b) < dist) {
2098 faults += group_faults(p, b);
2099 node_set(b, this_group);
2100 node_clear(b, nodes);
2101 }
2102 }
2103
2104 /* Remember the top group. */
2105 if (faults > max_faults) {
2106 max_faults = faults;
2107 max_group = this_group;
2108 /*
2109 * subtle: at the smallest distance there is
2110 * just one node left in each "group", the
2111 * winner is the preferred nid.
2112 */
2113 nid = a;
2114 }
2115 }
2116 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2117 if (!max_faults)
2118 break;
54009416
RR
2119 nodes = max_group;
2120 }
2121 return nid;
2122}
2123
cbee9f88
PZ
2124static void task_numa_placement(struct task_struct *p)
2125{
98fa15f3 2126 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2127 unsigned long max_faults = 0;
04bb2f94 2128 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2129 unsigned long total_faults;
2130 u64 runtime, period;
7dbd13ed 2131 spinlock_t *group_lock = NULL;
cb361d8c 2132 struct numa_group *ng;
cbee9f88 2133
7e5a2c17
JL
2134 /*
2135 * The p->mm->numa_scan_seq field gets updated without
2136 * exclusive access. Use READ_ONCE() here to ensure
2137 * that the field is read in a single access:
2138 */
316c1608 2139 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2140 if (p->numa_scan_seq == seq)
2141 return;
2142 p->numa_scan_seq = seq;
598f0ec0 2143 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2144
7e2703e6
RR
2145 total_faults = p->numa_faults_locality[0] +
2146 p->numa_faults_locality[1];
2147 runtime = numa_get_avg_runtime(p, &period);
2148
7dbd13ed 2149 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2150 ng = deref_curr_numa_group(p);
2151 if (ng) {
2152 group_lock = &ng->lock;
60e69eed 2153 spin_lock_irq(group_lock);
7dbd13ed
MG
2154 }
2155
688b7585
MG
2156 /* Find the node with the highest number of faults */
2157 for_each_online_node(nid) {
44dba3d5
IM
2158 /* Keep track of the offsets in numa_faults array */
2159 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2160 unsigned long faults = 0, group_faults = 0;
44dba3d5 2161 int priv;
745d6147 2162
be1e4e76 2163 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2164 long diff, f_diff, f_weight;
8c8a743c 2165
44dba3d5
IM
2166 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2167 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2168 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2169 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2170
ac8e895b 2171 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2172 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2173 fault_types[priv] += p->numa_faults[membuf_idx];
2174 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2175
7e2703e6
RR
2176 /*
2177 * Normalize the faults_from, so all tasks in a group
2178 * count according to CPU use, instead of by the raw
2179 * number of faults. Tasks with little runtime have
2180 * little over-all impact on throughput, and thus their
2181 * faults are less important.
2182 */
2183 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2184 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2185 (total_faults + 1);
44dba3d5
IM
2186 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2187 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2188
44dba3d5
IM
2189 p->numa_faults[mem_idx] += diff;
2190 p->numa_faults[cpu_idx] += f_diff;
2191 faults += p->numa_faults[mem_idx];
83e1d2cd 2192 p->total_numa_faults += diff;
cb361d8c 2193 if (ng) {
44dba3d5
IM
2194 /*
2195 * safe because we can only change our own group
2196 *
2197 * mem_idx represents the offset for a given
2198 * nid and priv in a specific region because it
2199 * is at the beginning of the numa_faults array.
2200 */
cb361d8c
JH
2201 ng->faults[mem_idx] += diff;
2202 ng->faults_cpu[mem_idx] += f_diff;
2203 ng->total_faults += diff;
2204 group_faults += ng->faults[mem_idx];
8c8a743c 2205 }
ac8e895b
MG
2206 }
2207
cb361d8c 2208 if (!ng) {
f03bb676
SD
2209 if (faults > max_faults) {
2210 max_faults = faults;
2211 max_nid = nid;
2212 }
2213 } else if (group_faults > max_faults) {
2214 max_faults = group_faults;
688b7585
MG
2215 max_nid = nid;
2216 }
83e1d2cd
MG
2217 }
2218
cb361d8c
JH
2219 if (ng) {
2220 numa_group_count_active_nodes(ng);
60e69eed 2221 spin_unlock_irq(group_lock);
f03bb676 2222 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2223 }
2224
bb97fc31
RR
2225 if (max_faults) {
2226 /* Set the new preferred node */
2227 if (max_nid != p->numa_preferred_nid)
2228 sched_setnuma(p, max_nid);
3a7053b3 2229 }
30619c89
SD
2230
2231 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2232}
2233
8c8a743c
PZ
2234static inline int get_numa_group(struct numa_group *grp)
2235{
c45a7795 2236 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2237}
2238
2239static inline void put_numa_group(struct numa_group *grp)
2240{
c45a7795 2241 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2242 kfree_rcu(grp, rcu);
2243}
2244
3e6a9418
MG
2245static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2246 int *priv)
8c8a743c
PZ
2247{
2248 struct numa_group *grp, *my_grp;
2249 struct task_struct *tsk;
2250 bool join = false;
2251 int cpu = cpupid_to_cpu(cpupid);
2252 int i;
2253
cb361d8c 2254 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2255 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2256 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2257
2258 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2259 if (!grp)
2260 return;
2261
c45a7795 2262 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2263 grp->active_nodes = 1;
2264 grp->max_faults_cpu = 0;
8c8a743c 2265 spin_lock_init(&grp->lock);
e29cf08b 2266 grp->gid = p->pid;
50ec8a40 2267 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2268 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2269 nr_node_ids;
8c8a743c 2270
be1e4e76 2271 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2272 grp->faults[i] = p->numa_faults[i];
8c8a743c 2273
989348b5 2274 grp->total_faults = p->total_numa_faults;
83e1d2cd 2275
8c8a743c
PZ
2276 grp->nr_tasks++;
2277 rcu_assign_pointer(p->numa_group, grp);
2278 }
2279
2280 rcu_read_lock();
316c1608 2281 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2282
2283 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2284 goto no_join;
8c8a743c
PZ
2285
2286 grp = rcu_dereference(tsk->numa_group);
2287 if (!grp)
3354781a 2288 goto no_join;
8c8a743c 2289
cb361d8c 2290 my_grp = deref_curr_numa_group(p);
8c8a743c 2291 if (grp == my_grp)
3354781a 2292 goto no_join;
8c8a743c
PZ
2293
2294 /*
2295 * Only join the other group if its bigger; if we're the bigger group,
2296 * the other task will join us.
2297 */
2298 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2299 goto no_join;
8c8a743c
PZ
2300
2301 /*
2302 * Tie-break on the grp address.
2303 */
2304 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2305 goto no_join;
8c8a743c 2306
dabe1d99
RR
2307 /* Always join threads in the same process. */
2308 if (tsk->mm == current->mm)
2309 join = true;
2310
2311 /* Simple filter to avoid false positives due to PID collisions */
2312 if (flags & TNF_SHARED)
2313 join = true;
8c8a743c 2314
3e6a9418
MG
2315 /* Update priv based on whether false sharing was detected */
2316 *priv = !join;
2317
dabe1d99 2318 if (join && !get_numa_group(grp))
3354781a 2319 goto no_join;
8c8a743c 2320
8c8a743c
PZ
2321 rcu_read_unlock();
2322
2323 if (!join)
2324 return;
2325
60e69eed
MG
2326 BUG_ON(irqs_disabled());
2327 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2328
be1e4e76 2329 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2330 my_grp->faults[i] -= p->numa_faults[i];
2331 grp->faults[i] += p->numa_faults[i];
8c8a743c 2332 }
989348b5
MG
2333 my_grp->total_faults -= p->total_numa_faults;
2334 grp->total_faults += p->total_numa_faults;
8c8a743c 2335
8c8a743c
PZ
2336 my_grp->nr_tasks--;
2337 grp->nr_tasks++;
2338
2339 spin_unlock(&my_grp->lock);
60e69eed 2340 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2341
2342 rcu_assign_pointer(p->numa_group, grp);
2343
2344 put_numa_group(my_grp);
3354781a
PZ
2345 return;
2346
2347no_join:
2348 rcu_read_unlock();
2349 return;
8c8a743c
PZ
2350}
2351
16d51a59
JH
2352/*
2353 * Get rid of NUMA staticstics associated with a task (either current or dead).
2354 * If @final is set, the task is dead and has reached refcount zero, so we can
2355 * safely free all relevant data structures. Otherwise, there might be
2356 * concurrent reads from places like load balancing and procfs, and we should
2357 * reset the data back to default state without freeing ->numa_faults.
2358 */
2359void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2360{
cb361d8c
JH
2361 /* safe: p either is current or is being freed by current */
2362 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2363 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2364 unsigned long flags;
2365 int i;
8c8a743c 2366
16d51a59
JH
2367 if (!numa_faults)
2368 return;
2369
8c8a743c 2370 if (grp) {
e9dd685c 2371 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2372 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2373 grp->faults[i] -= p->numa_faults[i];
989348b5 2374 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2375
8c8a743c 2376 grp->nr_tasks--;
e9dd685c 2377 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2378 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2379 put_numa_group(grp);
2380 }
2381
16d51a59
JH
2382 if (final) {
2383 p->numa_faults = NULL;
2384 kfree(numa_faults);
2385 } else {
2386 p->total_numa_faults = 0;
2387 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2388 numa_faults[i] = 0;
2389 }
8c8a743c
PZ
2390}
2391
cbee9f88
PZ
2392/*
2393 * Got a PROT_NONE fault for a page on @node.
2394 */
58b46da3 2395void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2396{
2397 struct task_struct *p = current;
6688cc05 2398 bool migrated = flags & TNF_MIGRATED;
58b46da3 2399 int cpu_node = task_node(current);
792568ec 2400 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2401 struct numa_group *ng;
ac8e895b 2402 int priv;
cbee9f88 2403
2a595721 2404 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2405 return;
2406
9ff1d9ff
MG
2407 /* for example, ksmd faulting in a user's mm */
2408 if (!p->mm)
2409 return;
2410
f809ca9a 2411 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2412 if (unlikely(!p->numa_faults)) {
2413 int size = sizeof(*p->numa_faults) *
be1e4e76 2414 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2415
44dba3d5
IM
2416 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2417 if (!p->numa_faults)
f809ca9a 2418 return;
745d6147 2419
83e1d2cd 2420 p->total_numa_faults = 0;
04bb2f94 2421 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2422 }
cbee9f88 2423
8c8a743c
PZ
2424 /*
2425 * First accesses are treated as private, otherwise consider accesses
2426 * to be private if the accessing pid has not changed
2427 */
2428 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2429 priv = 1;
2430 } else {
2431 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2432 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2433 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2434 }
2435
792568ec
RR
2436 /*
2437 * If a workload spans multiple NUMA nodes, a shared fault that
2438 * occurs wholly within the set of nodes that the workload is
2439 * actively using should be counted as local. This allows the
2440 * scan rate to slow down when a workload has settled down.
2441 */
cb361d8c 2442 ng = deref_curr_numa_group(p);
4142c3eb
RR
2443 if (!priv && !local && ng && ng->active_nodes > 1 &&
2444 numa_is_active_node(cpu_node, ng) &&
2445 numa_is_active_node(mem_node, ng))
792568ec
RR
2446 local = 1;
2447
2739d3ee 2448 /*
e1ff516a
YW
2449 * Retry to migrate task to preferred node periodically, in case it
2450 * previously failed, or the scheduler moved us.
2739d3ee 2451 */
b6a60cf3
SD
2452 if (time_after(jiffies, p->numa_migrate_retry)) {
2453 task_numa_placement(p);
6b9a7460 2454 numa_migrate_preferred(p);
b6a60cf3 2455 }
6b9a7460 2456
b32e86b4
IM
2457 if (migrated)
2458 p->numa_pages_migrated += pages;
074c2381
MG
2459 if (flags & TNF_MIGRATE_FAIL)
2460 p->numa_faults_locality[2] += pages;
b32e86b4 2461
44dba3d5
IM
2462 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2463 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2464 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2465}
2466
6e5fb223
PZ
2467static void reset_ptenuma_scan(struct task_struct *p)
2468{
7e5a2c17
JL
2469 /*
2470 * We only did a read acquisition of the mmap sem, so
2471 * p->mm->numa_scan_seq is written to without exclusive access
2472 * and the update is not guaranteed to be atomic. That's not
2473 * much of an issue though, since this is just used for
2474 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2475 * expensive, to avoid any form of compiler optimizations:
2476 */
316c1608 2477 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2478 p->mm->numa_scan_offset = 0;
2479}
2480
cbee9f88
PZ
2481/*
2482 * The expensive part of numa migration is done from task_work context.
2483 * Triggered from task_tick_numa().
2484 */
2485void task_numa_work(struct callback_head *work)
2486{
2487 unsigned long migrate, next_scan, now = jiffies;
2488 struct task_struct *p = current;
2489 struct mm_struct *mm = p->mm;
51170840 2490 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2491 struct vm_area_struct *vma;
9f40604c 2492 unsigned long start, end;
598f0ec0 2493 unsigned long nr_pte_updates = 0;
4620f8c1 2494 long pages, virtpages;
cbee9f88 2495
9148a3a1 2496 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2497
2498 work->next = work; /* protect against double add */
2499 /*
2500 * Who cares about NUMA placement when they're dying.
2501 *
2502 * NOTE: make sure not to dereference p->mm before this check,
2503 * exit_task_work() happens _after_ exit_mm() so we could be called
2504 * without p->mm even though we still had it when we enqueued this
2505 * work.
2506 */
2507 if (p->flags & PF_EXITING)
2508 return;
2509
930aa174 2510 if (!mm->numa_next_scan) {
7e8d16b6
MG
2511 mm->numa_next_scan = now +
2512 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2513 }
2514
cbee9f88
PZ
2515 /*
2516 * Enforce maximal scan/migration frequency..
2517 */
2518 migrate = mm->numa_next_scan;
2519 if (time_before(now, migrate))
2520 return;
2521
598f0ec0
MG
2522 if (p->numa_scan_period == 0) {
2523 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2524 p->numa_scan_period = task_scan_start(p);
598f0ec0 2525 }
cbee9f88 2526
fb003b80 2527 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2528 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2529 return;
2530
19a78d11
PZ
2531 /*
2532 * Delay this task enough that another task of this mm will likely win
2533 * the next time around.
2534 */
2535 p->node_stamp += 2 * TICK_NSEC;
2536
9f40604c
MG
2537 start = mm->numa_scan_offset;
2538 pages = sysctl_numa_balancing_scan_size;
2539 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2540 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2541 if (!pages)
2542 return;
cbee9f88 2543
4620f8c1 2544
8655d549
VB
2545 if (!down_read_trylock(&mm->mmap_sem))
2546 return;
9f40604c 2547 vma = find_vma(mm, start);
6e5fb223
PZ
2548 if (!vma) {
2549 reset_ptenuma_scan(p);
9f40604c 2550 start = 0;
6e5fb223
PZ
2551 vma = mm->mmap;
2552 }
9f40604c 2553 for (; vma; vma = vma->vm_next) {
6b79c57b 2554 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2555 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2556 continue;
6b79c57b 2557 }
6e5fb223 2558
4591ce4f
MG
2559 /*
2560 * Shared library pages mapped by multiple processes are not
2561 * migrated as it is expected they are cache replicated. Avoid
2562 * hinting faults in read-only file-backed mappings or the vdso
2563 * as migrating the pages will be of marginal benefit.
2564 */
2565 if (!vma->vm_mm ||
2566 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2567 continue;
2568
3c67f474
MG
2569 /*
2570 * Skip inaccessible VMAs to avoid any confusion between
2571 * PROT_NONE and NUMA hinting ptes
2572 */
2573 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2574 continue;
4591ce4f 2575
9f40604c
MG
2576 do {
2577 start = max(start, vma->vm_start);
2578 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2579 end = min(end, vma->vm_end);
4620f8c1 2580 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2581
2582 /*
4620f8c1
RR
2583 * Try to scan sysctl_numa_balancing_size worth of
2584 * hpages that have at least one present PTE that
2585 * is not already pte-numa. If the VMA contains
2586 * areas that are unused or already full of prot_numa
2587 * PTEs, scan up to virtpages, to skip through those
2588 * areas faster.
598f0ec0
MG
2589 */
2590 if (nr_pte_updates)
2591 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2592 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2593
9f40604c 2594 start = end;
4620f8c1 2595 if (pages <= 0 || virtpages <= 0)
9f40604c 2596 goto out;
3cf1962c
RR
2597
2598 cond_resched();
9f40604c 2599 } while (end != vma->vm_end);
cbee9f88 2600 }
6e5fb223 2601
9f40604c 2602out:
6e5fb223 2603 /*
c69307d5
PZ
2604 * It is possible to reach the end of the VMA list but the last few
2605 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2606 * would find the !migratable VMA on the next scan but not reset the
2607 * scanner to the start so check it now.
6e5fb223
PZ
2608 */
2609 if (vma)
9f40604c 2610 mm->numa_scan_offset = start;
6e5fb223
PZ
2611 else
2612 reset_ptenuma_scan(p);
2613 up_read(&mm->mmap_sem);
51170840
RR
2614
2615 /*
2616 * Make sure tasks use at least 32x as much time to run other code
2617 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2618 * Usually update_task_scan_period slows down scanning enough; on an
2619 * overloaded system we need to limit overhead on a per task basis.
2620 */
2621 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2622 u64 diff = p->se.sum_exec_runtime - runtime;
2623 p->node_stamp += 32 * diff;
2624 }
cbee9f88
PZ
2625}
2626
d35927a1
VS
2627void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2628{
2629 int mm_users = 0;
2630 struct mm_struct *mm = p->mm;
2631
2632 if (mm) {
2633 mm_users = atomic_read(&mm->mm_users);
2634 if (mm_users == 1) {
2635 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2636 mm->numa_scan_seq = 0;
2637 }
2638 }
2639 p->node_stamp = 0;
2640 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2641 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2642 p->numa_work.next = &p->numa_work;
2643 p->numa_faults = NULL;
2644 RCU_INIT_POINTER(p->numa_group, NULL);
2645 p->last_task_numa_placement = 0;
2646 p->last_sum_exec_runtime = 0;
2647
2648 /* New address space, reset the preferred nid */
2649 if (!(clone_flags & CLONE_VM)) {
2650 p->numa_preferred_nid = NUMA_NO_NODE;
2651 return;
2652 }
2653
2654 /*
2655 * New thread, keep existing numa_preferred_nid which should be copied
2656 * already by arch_dup_task_struct but stagger when scans start.
2657 */
2658 if (mm) {
2659 unsigned int delay;
2660
2661 delay = min_t(unsigned int, task_scan_max(current),
2662 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2663 delay += 2 * TICK_NSEC;
2664 p->node_stamp = delay;
2665 }
2666}
2667
cbee9f88
PZ
2668/*
2669 * Drive the periodic memory faults..
2670 */
b1546edc 2671static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2672{
2673 struct callback_head *work = &curr->numa_work;
2674 u64 period, now;
2675
2676 /*
2677 * We don't care about NUMA placement if we don't have memory.
2678 */
2679 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2680 return;
2681
2682 /*
2683 * Using runtime rather than walltime has the dual advantage that
2684 * we (mostly) drive the selection from busy threads and that the
2685 * task needs to have done some actual work before we bother with
2686 * NUMA placement.
2687 */
2688 now = curr->se.sum_exec_runtime;
2689 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2690
25b3e5a3 2691 if (now > curr->node_stamp + period) {
4b96a29b 2692 if (!curr->node_stamp)
b5dd77c8 2693 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2694 curr->node_stamp += period;
cbee9f88
PZ
2695
2696 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2697 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2698 task_work_add(curr, work, true);
2699 }
2700 }
2701}
3fed382b 2702
3f9672ba
SD
2703static void update_scan_period(struct task_struct *p, int new_cpu)
2704{
2705 int src_nid = cpu_to_node(task_cpu(p));
2706 int dst_nid = cpu_to_node(new_cpu);
2707
05cbdf4f
MG
2708 if (!static_branch_likely(&sched_numa_balancing))
2709 return;
2710
3f9672ba
SD
2711 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2712 return;
2713
05cbdf4f
MG
2714 if (src_nid == dst_nid)
2715 return;
2716
2717 /*
2718 * Allow resets if faults have been trapped before one scan
2719 * has completed. This is most likely due to a new task that
2720 * is pulled cross-node due to wakeups or load balancing.
2721 */
2722 if (p->numa_scan_seq) {
2723 /*
2724 * Avoid scan adjustments if moving to the preferred
2725 * node or if the task was not previously running on
2726 * the preferred node.
2727 */
2728 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2729 (p->numa_preferred_nid != NUMA_NO_NODE &&
2730 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2731 return;
2732 }
2733
2734 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2735}
2736
cbee9f88
PZ
2737#else
2738static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2739{
2740}
0ec8aa00
PZ
2741
2742static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2743{
2744}
2745
2746static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2747{
2748}
3fed382b 2749
3f9672ba
SD
2750static inline void update_scan_period(struct task_struct *p, int new_cpu)
2751{
2752}
2753
cbee9f88
PZ
2754#endif /* CONFIG_NUMA_BALANCING */
2755
30cfdcfc
DA
2756static void
2757account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2758{
2759 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 2760#ifdef CONFIG_SMP
0ec8aa00
PZ
2761 if (entity_is_task(se)) {
2762 struct rq *rq = rq_of(cfs_rq);
2763
2764 account_numa_enqueue(rq, task_of(se));
2765 list_add(&se->group_node, &rq->cfs_tasks);
2766 }
367456c7 2767#endif
30cfdcfc 2768 cfs_rq->nr_running++;
30cfdcfc
DA
2769}
2770
2771static void
2772account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2773{
2774 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 2775#ifdef CONFIG_SMP
0ec8aa00
PZ
2776 if (entity_is_task(se)) {
2777 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2778 list_del_init(&se->group_node);
0ec8aa00 2779 }
bfdb198c 2780#endif
30cfdcfc 2781 cfs_rq->nr_running--;
30cfdcfc
DA
2782}
2783
8d5b9025
PZ
2784/*
2785 * Signed add and clamp on underflow.
2786 *
2787 * Explicitly do a load-store to ensure the intermediate value never hits
2788 * memory. This allows lockless observations without ever seeing the negative
2789 * values.
2790 */
2791#define add_positive(_ptr, _val) do { \
2792 typeof(_ptr) ptr = (_ptr); \
2793 typeof(_val) val = (_val); \
2794 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2795 \
2796 res = var + val; \
2797 \
2798 if (val < 0 && res > var) \
2799 res = 0; \
2800 \
2801 WRITE_ONCE(*ptr, res); \
2802} while (0)
2803
2804/*
2805 * Unsigned subtract and clamp on underflow.
2806 *
2807 * Explicitly do a load-store to ensure the intermediate value never hits
2808 * memory. This allows lockless observations without ever seeing the negative
2809 * values.
2810 */
2811#define sub_positive(_ptr, _val) do { \
2812 typeof(_ptr) ptr = (_ptr); \
2813 typeof(*ptr) val = (_val); \
2814 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2815 res = var - val; \
2816 if (res > var) \
2817 res = 0; \
2818 WRITE_ONCE(*ptr, res); \
2819} while (0)
2820
b5c0ce7b
PB
2821/*
2822 * Remove and clamp on negative, from a local variable.
2823 *
2824 * A variant of sub_positive(), which does not use explicit load-store
2825 * and is thus optimized for local variable updates.
2826 */
2827#define lsub_positive(_ptr, _val) do { \
2828 typeof(_ptr) ptr = (_ptr); \
2829 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2830} while (0)
2831
8d5b9025 2832#ifdef CONFIG_SMP
8d5b9025
PZ
2833static inline void
2834enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2835{
1ea6c46a
PZ
2836 cfs_rq->runnable_weight += se->runnable_weight;
2837
2838 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2839 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
8d5b9025
PZ
2840}
2841
2842static inline void
2843dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2844{
1ea6c46a
PZ
2845 cfs_rq->runnable_weight -= se->runnable_weight;
2846
2847 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2848 sub_positive(&cfs_rq->avg.runnable_load_sum,
2849 se_runnable(se) * se->avg.runnable_load_sum);
8d5b9025
PZ
2850}
2851
2852static inline void
2853enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2854{
2855 cfs_rq->avg.load_avg += se->avg.load_avg;
2856 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2857}
2858
2859static inline void
2860dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2861{
2862 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2863 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2864}
2865#else
2866static inline void
2867enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2868static inline void
2869dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2870static inline void
2871enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2872static inline void
2873dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2874#endif
2875
9059393e 2876static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1ea6c46a 2877 unsigned long weight, unsigned long runnable)
9059393e
VG
2878{
2879 if (se->on_rq) {
2880 /* commit outstanding execution time */
2881 if (cfs_rq->curr == se)
2882 update_curr(cfs_rq);
2883 account_entity_dequeue(cfs_rq, se);
2884 dequeue_runnable_load_avg(cfs_rq, se);
2885 }
2886 dequeue_load_avg(cfs_rq, se);
2887
1ea6c46a 2888 se->runnable_weight = runnable;
9059393e
VG
2889 update_load_set(&se->load, weight);
2890
2891#ifdef CONFIG_SMP
1ea6c46a
PZ
2892 do {
2893 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2894
2895 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2896 se->avg.runnable_load_avg =
2897 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2898 } while (0);
9059393e
VG
2899#endif
2900
2901 enqueue_load_avg(cfs_rq, se);
2902 if (se->on_rq) {
2903 account_entity_enqueue(cfs_rq, se);
2904 enqueue_runnable_load_avg(cfs_rq, se);
2905 }
2906}
2907
2908void reweight_task(struct task_struct *p, int prio)
2909{
2910 struct sched_entity *se = &p->se;
2911 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2912 struct load_weight *load = &se->load;
2913 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2914
1ea6c46a 2915 reweight_entity(cfs_rq, se, weight, weight);
9059393e
VG
2916 load->inv_weight = sched_prio_to_wmult[prio];
2917}
2918
3ff6dcac 2919#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 2920#ifdef CONFIG_SMP
cef27403
PZ
2921/*
2922 * All this does is approximate the hierarchical proportion which includes that
2923 * global sum we all love to hate.
2924 *
2925 * That is, the weight of a group entity, is the proportional share of the
2926 * group weight based on the group runqueue weights. That is:
2927 *
2928 * tg->weight * grq->load.weight
2929 * ge->load.weight = ----------------------------- (1)
2930 * \Sum grq->load.weight
2931 *
2932 * Now, because computing that sum is prohibitively expensive to compute (been
2933 * there, done that) we approximate it with this average stuff. The average
2934 * moves slower and therefore the approximation is cheaper and more stable.
2935 *
2936 * So instead of the above, we substitute:
2937 *
2938 * grq->load.weight -> grq->avg.load_avg (2)
2939 *
2940 * which yields the following:
2941 *
2942 * tg->weight * grq->avg.load_avg
2943 * ge->load.weight = ------------------------------ (3)
2944 * tg->load_avg
2945 *
2946 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2947 *
2948 * That is shares_avg, and it is right (given the approximation (2)).
2949 *
2950 * The problem with it is that because the average is slow -- it was designed
2951 * to be exactly that of course -- this leads to transients in boundary
2952 * conditions. In specific, the case where the group was idle and we start the
2953 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2954 * yielding bad latency etc..
2955 *
2956 * Now, in that special case (1) reduces to:
2957 *
2958 * tg->weight * grq->load.weight
17de4ee0 2959 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
2960 * grp->load.weight
2961 *
2962 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2963 *
2964 * So what we do is modify our approximation (3) to approach (4) in the (near)
2965 * UP case, like:
2966 *
2967 * ge->load.weight =
2968 *
2969 * tg->weight * grq->load.weight
2970 * --------------------------------------------------- (5)
2971 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2972 *
17de4ee0
PZ
2973 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2974 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2975 *
2976 *
2977 * tg->weight * grq->load.weight
2978 * ge->load.weight = ----------------------------- (6)
2979 * tg_load_avg'
2980 *
2981 * Where:
2982 *
2983 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2984 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
2985 *
2986 * And that is shares_weight and is icky. In the (near) UP case it approaches
2987 * (4) while in the normal case it approaches (3). It consistently
2988 * overestimates the ge->load.weight and therefore:
2989 *
2990 * \Sum ge->load.weight >= tg->weight
2991 *
2992 * hence icky!
2993 */
2c8e4dce 2994static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2995{
7c80cfc9
PZ
2996 long tg_weight, tg_shares, load, shares;
2997 struct task_group *tg = cfs_rq->tg;
2998
2999 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3000
3d4b60d3 3001 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3002
ea1dc6fc 3003 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3004
ea1dc6fc
PZ
3005 /* Ensure tg_weight >= load */
3006 tg_weight -= cfs_rq->tg_load_avg_contrib;
3007 tg_weight += load;
3ff6dcac 3008
7c80cfc9 3009 shares = (tg_shares * load);
cf5f0acf
PZ
3010 if (tg_weight)
3011 shares /= tg_weight;
3ff6dcac 3012
b8fd8423
DE
3013 /*
3014 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3015 * of a group with small tg->shares value. It is a floor value which is
3016 * assigned as a minimum load.weight to the sched_entity representing
3017 * the group on a CPU.
3018 *
3019 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3020 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3021 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3022 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3023 * instead of 0.
3024 */
7c80cfc9 3025 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3026}
2c8e4dce
JB
3027
3028/*
17de4ee0
PZ
3029 * This calculates the effective runnable weight for a group entity based on
3030 * the group entity weight calculated above.
3031 *
3032 * Because of the above approximation (2), our group entity weight is
3033 * an load_avg based ratio (3). This means that it includes blocked load and
3034 * does not represent the runnable weight.
3035 *
3036 * Approximate the group entity's runnable weight per ratio from the group
3037 * runqueue:
3038 *
3039 * grq->avg.runnable_load_avg
3040 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
3041 * grq->avg.load_avg
3042 *
3043 * However, analogous to above, since the avg numbers are slow, this leads to
3044 * transients in the from-idle case. Instead we use:
3045 *
3046 * ge->runnable_weight = ge->load.weight *
3047 *
3048 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
3049 * ----------------------------------------------------- (8)
3050 * max(grq->avg.load_avg, grq->load.weight)
3051 *
3052 * Where these max() serve both to use the 'instant' values to fix the slow
3053 * from-idle and avoid the /0 on to-idle, similar to (6).
2c8e4dce
JB
3054 */
3055static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3056{
17de4ee0
PZ
3057 long runnable, load_avg;
3058
3059 load_avg = max(cfs_rq->avg.load_avg,
3060 scale_load_down(cfs_rq->load.weight));
3061
3062 runnable = max(cfs_rq->avg.runnable_load_avg,
3063 scale_load_down(cfs_rq->runnable_weight));
2c8e4dce
JB
3064
3065 runnable *= shares;
3066 if (load_avg)
3067 runnable /= load_avg;
17de4ee0 3068
2c8e4dce
JB
3069 return clamp_t(long, runnable, MIN_SHARES, shares);
3070}
387f77cc 3071#endif /* CONFIG_SMP */
ea1dc6fc 3072
82958366
PT
3073static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3074
1ea6c46a
PZ
3075/*
3076 * Recomputes the group entity based on the current state of its group
3077 * runqueue.
3078 */
3079static void update_cfs_group(struct sched_entity *se)
2069dd75 3080{
1ea6c46a
PZ
3081 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3082 long shares, runnable;
2069dd75 3083
1ea6c46a 3084 if (!gcfs_rq)
89ee048f
VG
3085 return;
3086
1ea6c46a 3087 if (throttled_hierarchy(gcfs_rq))
2069dd75 3088 return;
89ee048f 3089
3ff6dcac 3090#ifndef CONFIG_SMP
1ea6c46a 3091 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3092
3093 if (likely(se->load.weight == shares))
3ff6dcac 3094 return;
7c80cfc9 3095#else
2c8e4dce
JB
3096 shares = calc_group_shares(gcfs_rq);
3097 runnable = calc_group_runnable(gcfs_rq, shares);
3ff6dcac 3098#endif
2069dd75 3099
1ea6c46a 3100 reweight_entity(cfs_rq_of(se), se, shares, runnable);
2069dd75 3101}
89ee048f 3102
2069dd75 3103#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3104static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3105{
3106}
3107#endif /* CONFIG_FAIR_GROUP_SCHED */
3108
ea14b57e 3109static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3110{
43964409
LT
3111 struct rq *rq = rq_of(cfs_rq);
3112
ea14b57e 3113 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
a030d738
VK
3114 /*
3115 * There are a few boundary cases this might miss but it should
3116 * get called often enough that that should (hopefully) not be
9783be2c 3117 * a real problem.
a030d738
VK
3118 *
3119 * It will not get called when we go idle, because the idle
3120 * thread is a different class (!fair), nor will the utilization
3121 * number include things like RT tasks.
3122 *
3123 * As is, the util number is not freq-invariant (we'd have to
3124 * implement arch_scale_freq_capacity() for that).
3125 *
3126 * See cpu_util().
3127 */
ea14b57e 3128 cpufreq_update_util(rq, flags);
a030d738
VK
3129 }
3130}
3131
141965c7 3132#ifdef CONFIG_SMP
c566e8e9 3133#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3134/**
3135 * update_tg_load_avg - update the tg's load avg
3136 * @cfs_rq: the cfs_rq whose avg changed
3137 * @force: update regardless of how small the difference
3138 *
3139 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3140 * However, because tg->load_avg is a global value there are performance
3141 * considerations.
3142 *
3143 * In order to avoid having to look at the other cfs_rq's, we use a
3144 * differential update where we store the last value we propagated. This in
3145 * turn allows skipping updates if the differential is 'small'.
3146 *
815abf5a 3147 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3148 */
9d89c257 3149static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3150{
9d89c257 3151 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3152
aa0b7ae0
WL
3153 /*
3154 * No need to update load_avg for root_task_group as it is not used.
3155 */
3156 if (cfs_rq->tg == &root_task_group)
3157 return;
3158
9d89c257
YD
3159 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3160 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3161 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3162 }
8165e145 3163}
f5f9739d 3164
ad936d86 3165/*
97fb7a0a 3166 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3167 * caller only guarantees p->pi_lock is held; no other assumptions,
3168 * including the state of rq->lock, should be made.
3169 */
3170void set_task_rq_fair(struct sched_entity *se,
3171 struct cfs_rq *prev, struct cfs_rq *next)
3172{
0ccb977f
PZ
3173 u64 p_last_update_time;
3174 u64 n_last_update_time;
3175
ad936d86
BP
3176 if (!sched_feat(ATTACH_AGE_LOAD))
3177 return;
3178
3179 /*
3180 * We are supposed to update the task to "current" time, then its up to
3181 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3182 * getting what current time is, so simply throw away the out-of-date
3183 * time. This will result in the wakee task is less decayed, but giving
3184 * the wakee more load sounds not bad.
3185 */
0ccb977f
PZ
3186 if (!(se->avg.last_update_time && prev))
3187 return;
ad936d86
BP
3188
3189#ifndef CONFIG_64BIT
0ccb977f 3190 {
ad936d86
BP
3191 u64 p_last_update_time_copy;
3192 u64 n_last_update_time_copy;
3193
3194 do {
3195 p_last_update_time_copy = prev->load_last_update_time_copy;
3196 n_last_update_time_copy = next->load_last_update_time_copy;
3197
3198 smp_rmb();
3199
3200 p_last_update_time = prev->avg.last_update_time;
3201 n_last_update_time = next->avg.last_update_time;
3202
3203 } while (p_last_update_time != p_last_update_time_copy ||
3204 n_last_update_time != n_last_update_time_copy);
0ccb977f 3205 }
ad936d86 3206#else
0ccb977f
PZ
3207 p_last_update_time = prev->avg.last_update_time;
3208 n_last_update_time = next->avg.last_update_time;
ad936d86 3209#endif
23127296 3210 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3211 se->avg.last_update_time = n_last_update_time;
ad936d86 3212}
09a43ace 3213
0e2d2aaa
PZ
3214
3215/*
3216 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3217 * propagate its contribution. The key to this propagation is the invariant
3218 * that for each group:
3219 *
3220 * ge->avg == grq->avg (1)
3221 *
3222 * _IFF_ we look at the pure running and runnable sums. Because they
3223 * represent the very same entity, just at different points in the hierarchy.
3224 *
a4c3c049
VG
3225 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3226 * sum over (but still wrong, because the group entity and group rq do not have
3227 * their PELT windows aligned).
0e2d2aaa
PZ
3228 *
3229 * However, update_tg_cfs_runnable() is more complex. So we have:
3230 *
3231 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3232 *
3233 * And since, like util, the runnable part should be directly transferable,
3234 * the following would _appear_ to be the straight forward approach:
3235 *
a4c3c049 3236 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3237 *
3238 * And per (1) we have:
3239 *
a4c3c049 3240 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3241 *
3242 * Which gives:
3243 *
3244 * ge->load.weight * grq->avg.load_avg
3245 * ge->avg.load_avg = ----------------------------------- (4)
3246 * grq->load.weight
3247 *
3248 * Except that is wrong!
3249 *
3250 * Because while for entities historical weight is not important and we
3251 * really only care about our future and therefore can consider a pure
3252 * runnable sum, runqueues can NOT do this.
3253 *
3254 * We specifically want runqueues to have a load_avg that includes
3255 * historical weights. Those represent the blocked load, the load we expect
3256 * to (shortly) return to us. This only works by keeping the weights as
3257 * integral part of the sum. We therefore cannot decompose as per (3).
3258 *
a4c3c049
VG
3259 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3260 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3261 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3262 * runnable section of these tasks overlap (or not). If they were to perfectly
3263 * align the rq as a whole would be runnable 2/3 of the time. If however we
3264 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3265 *
a4c3c049 3266 * So we'll have to approximate.. :/
0e2d2aaa 3267 *
a4c3c049 3268 * Given the constraint:
0e2d2aaa 3269 *
a4c3c049 3270 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3271 *
a4c3c049
VG
3272 * We can construct a rule that adds runnable to a rq by assuming minimal
3273 * overlap.
0e2d2aaa 3274 *
a4c3c049 3275 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3276 *
a4c3c049 3277 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3278 *
a4c3c049 3279 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3280 *
0e2d2aaa
PZ
3281 */
3282
09a43ace 3283static inline void
0e2d2aaa 3284update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3285{
09a43ace
VG
3286 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3287
3288 /* Nothing to update */
3289 if (!delta)
3290 return;
3291
a4c3c049
VG
3292 /*
3293 * The relation between sum and avg is:
3294 *
3295 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3296 *
3297 * however, the PELT windows are not aligned between grq and gse.
3298 */
3299
09a43ace
VG
3300 /* Set new sched_entity's utilization */
3301 se->avg.util_avg = gcfs_rq->avg.util_avg;
3302 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3303
3304 /* Update parent cfs_rq utilization */
3305 add_positive(&cfs_rq->avg.util_avg, delta);
3306 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3307}
3308
09a43ace 3309static inline void
0e2d2aaa 3310update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3311{
a4c3c049
VG
3312 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3313 unsigned long runnable_load_avg, load_avg;
3314 u64 runnable_load_sum, load_sum = 0;
3315 s64 delta_sum;
09a43ace 3316
0e2d2aaa
PZ
3317 if (!runnable_sum)
3318 return;
09a43ace 3319
0e2d2aaa 3320 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3321
a4c3c049
VG
3322 if (runnable_sum >= 0) {
3323 /*
3324 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3325 * the CPU is saturated running == runnable.
3326 */
3327 runnable_sum += se->avg.load_sum;
3328 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3329 } else {
3330 /*
3331 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3332 * assuming all tasks are equally runnable.
3333 */
3334 if (scale_load_down(gcfs_rq->load.weight)) {
3335 load_sum = div_s64(gcfs_rq->avg.load_sum,
3336 scale_load_down(gcfs_rq->load.weight));
3337 }
3338
3339 /* But make sure to not inflate se's runnable */
3340 runnable_sum = min(se->avg.load_sum, load_sum);
3341 }
3342
3343 /*
3344 * runnable_sum can't be lower than running_sum
23127296
VG
3345 * Rescale running sum to be in the same range as runnable sum
3346 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3347 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3348 */
23127296 3349 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3350 runnable_sum = max(runnable_sum, running_sum);
3351
0e2d2aaa
PZ
3352 load_sum = (s64)se_weight(se) * runnable_sum;
3353 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3354
a4c3c049
VG
3355 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3356 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3357
a4c3c049
VG
3358 se->avg.load_sum = runnable_sum;
3359 se->avg.load_avg = load_avg;
3360 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3361 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace 3362
1ea6c46a
PZ
3363 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3364 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
a4c3c049
VG
3365 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3366 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
1ea6c46a 3367
a4c3c049
VG
3368 se->avg.runnable_load_sum = runnable_sum;
3369 se->avg.runnable_load_avg = runnable_load_avg;
1ea6c46a 3370
09a43ace 3371 if (se->on_rq) {
a4c3c049
VG
3372 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3373 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
09a43ace
VG
3374 }
3375}
3376
0e2d2aaa 3377static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3378{
0e2d2aaa
PZ
3379 cfs_rq->propagate = 1;
3380 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3381}
3382
3383/* Update task and its cfs_rq load average */
3384static inline int propagate_entity_load_avg(struct sched_entity *se)
3385{
0e2d2aaa 3386 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3387
3388 if (entity_is_task(se))
3389 return 0;
3390
0e2d2aaa
PZ
3391 gcfs_rq = group_cfs_rq(se);
3392 if (!gcfs_rq->propagate)
09a43ace
VG
3393 return 0;
3394
0e2d2aaa
PZ
3395 gcfs_rq->propagate = 0;
3396
09a43ace
VG
3397 cfs_rq = cfs_rq_of(se);
3398
0e2d2aaa 3399 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3400
0e2d2aaa
PZ
3401 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3402 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
09a43ace 3403
ba19f51f 3404 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3405 trace_pelt_se_tp(se);
ba19f51f 3406
09a43ace
VG
3407 return 1;
3408}
3409
bc427898
VG
3410/*
3411 * Check if we need to update the load and the utilization of a blocked
3412 * group_entity:
3413 */
3414static inline bool skip_blocked_update(struct sched_entity *se)
3415{
3416 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3417
3418 /*
3419 * If sched_entity still have not zero load or utilization, we have to
3420 * decay it:
3421 */
3422 if (se->avg.load_avg || se->avg.util_avg)
3423 return false;
3424
3425 /*
3426 * If there is a pending propagation, we have to update the load and
3427 * the utilization of the sched_entity:
3428 */
0e2d2aaa 3429 if (gcfs_rq->propagate)
bc427898
VG
3430 return false;
3431
3432 /*
3433 * Otherwise, the load and the utilization of the sched_entity is
3434 * already zero and there is no pending propagation, so it will be a
3435 * waste of time to try to decay it:
3436 */
3437 return true;
3438}
3439
6e83125c 3440#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3441
9d89c257 3442static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3443
3444static inline int propagate_entity_load_avg(struct sched_entity *se)
3445{
3446 return 0;
3447}
3448
0e2d2aaa 3449static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3450
6e83125c 3451#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3452
3d30544f
PZ
3453/**
3454 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3455 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3456 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3457 *
3458 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3459 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3460 * post_init_entity_util_avg().
3461 *
3462 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3463 *
7c3edd2c
PZ
3464 * Returns true if the load decayed or we removed load.
3465 *
3466 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3467 * call update_tg_load_avg() when this function returns true.
3d30544f 3468 */
a2c6c91f 3469static inline int
3a123bbb 3470update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3471{
0e2d2aaa 3472 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
9d89c257 3473 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3474 int decayed = 0;
2dac754e 3475
2a2f5d4e
PZ
3476 if (cfs_rq->removed.nr) {
3477 unsigned long r;
9a2dd585 3478 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3479
3480 raw_spin_lock(&cfs_rq->removed.lock);
3481 swap(cfs_rq->removed.util_avg, removed_util);
3482 swap(cfs_rq->removed.load_avg, removed_load);
0e2d2aaa 3483 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
2a2f5d4e
PZ
3484 cfs_rq->removed.nr = 0;
3485 raw_spin_unlock(&cfs_rq->removed.lock);
3486
2a2f5d4e 3487 r = removed_load;
89741892 3488 sub_positive(&sa->load_avg, r);
9a2dd585 3489 sub_positive(&sa->load_sum, r * divider);
2dac754e 3490
2a2f5d4e 3491 r = removed_util;
89741892 3492 sub_positive(&sa->util_avg, r);
9a2dd585 3493 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3494
0e2d2aaa 3495 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
2a2f5d4e
PZ
3496
3497 decayed = 1;
9d89c257 3498 }
36ee28e4 3499
23127296 3500 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3501
9d89c257
YD
3502#ifndef CONFIG_64BIT
3503 smp_wmb();
3504 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3505#endif
36ee28e4 3506
2a2f5d4e 3507 if (decayed)
ea14b57e 3508 cfs_rq_util_change(cfs_rq, 0);
21e96f88 3509
2a2f5d4e 3510 return decayed;
21e96f88
SM
3511}
3512
3d30544f
PZ
3513/**
3514 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3515 * @cfs_rq: cfs_rq to attach to
3516 * @se: sched_entity to attach
882a78a9 3517 * @flags: migration hints
3d30544f
PZ
3518 *
3519 * Must call update_cfs_rq_load_avg() before this, since we rely on
3520 * cfs_rq->avg.last_update_time being current.
3521 */
ea14b57e 3522static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
a05e8c51 3523{
f207934f
PZ
3524 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3525
3526 /*
3527 * When we attach the @se to the @cfs_rq, we must align the decay
3528 * window because without that, really weird and wonderful things can
3529 * happen.
3530 *
3531 * XXX illustrate
3532 */
a05e8c51 3533 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3534 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3535
3536 /*
3537 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3538 * period_contrib. This isn't strictly correct, but since we're
3539 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3540 * _sum a little.
3541 */
3542 se->avg.util_sum = se->avg.util_avg * divider;
3543
3544 se->avg.load_sum = divider;
3545 if (se_weight(se)) {
3546 se->avg.load_sum =
3547 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3548 }
3549
3550 se->avg.runnable_load_sum = se->avg.load_sum;
3551
8d5b9025 3552 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3553 cfs_rq->avg.util_avg += se->avg.util_avg;
3554 cfs_rq->avg.util_sum += se->avg.util_sum;
0e2d2aaa
PZ
3555
3556 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3557
ea14b57e 3558 cfs_rq_util_change(cfs_rq, flags);
ba19f51f
QY
3559
3560 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3561}
3562
3d30544f
PZ
3563/**
3564 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3565 * @cfs_rq: cfs_rq to detach from
3566 * @se: sched_entity to detach
3567 *
3568 * Must call update_cfs_rq_load_avg() before this, since we rely on
3569 * cfs_rq->avg.last_update_time being current.
3570 */
a05e8c51
BP
3571static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3572{
8d5b9025 3573 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3574 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3575 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
0e2d2aaa
PZ
3576
3577 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3578
ea14b57e 3579 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3580
3581 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3582}
3583
b382a531
PZ
3584/*
3585 * Optional action to be done while updating the load average
3586 */
3587#define UPDATE_TG 0x1
3588#define SKIP_AGE_LOAD 0x2
3589#define DO_ATTACH 0x4
3590
3591/* Update task and its cfs_rq load average */
3592static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3593{
23127296 3594 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3595 int decayed;
3596
3597 /*
3598 * Track task load average for carrying it to new CPU after migrated, and
3599 * track group sched_entity load average for task_h_load calc in migration
3600 */
3601 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3602 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3603
3604 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3605 decayed |= propagate_entity_load_avg(se);
3606
3607 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3608
ea14b57e
PZ
3609 /*
3610 * DO_ATTACH means we're here from enqueue_entity().
3611 * !last_update_time means we've passed through
3612 * migrate_task_rq_fair() indicating we migrated.
3613 *
3614 * IOW we're enqueueing a task on a new CPU.
3615 */
3616 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
b382a531
PZ
3617 update_tg_load_avg(cfs_rq, 0);
3618
3619 } else if (decayed && (flags & UPDATE_TG))
3620 update_tg_load_avg(cfs_rq, 0);
3621}
3622
9d89c257 3623#ifndef CONFIG_64BIT
0905f04e
YD
3624static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3625{
9d89c257 3626 u64 last_update_time_copy;
0905f04e 3627 u64 last_update_time;
9ee474f5 3628
9d89c257
YD
3629 do {
3630 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3631 smp_rmb();
3632 last_update_time = cfs_rq->avg.last_update_time;
3633 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3634
3635 return last_update_time;
3636}
9d89c257 3637#else
0905f04e
YD
3638static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3639{
3640 return cfs_rq->avg.last_update_time;
3641}
9d89c257
YD
3642#endif
3643
104cb16d
MR
3644/*
3645 * Synchronize entity load avg of dequeued entity without locking
3646 * the previous rq.
3647 */
71b47eaf 3648static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3649{
3650 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3651 u64 last_update_time;
3652
3653 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3654 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3655}
3656
0905f04e
YD
3657/*
3658 * Task first catches up with cfs_rq, and then subtract
3659 * itself from the cfs_rq (task must be off the queue now).
3660 */
71b47eaf 3661static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3662{
3663 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3664 unsigned long flags;
0905f04e
YD
3665
3666 /*
7dc603c9
PZ
3667 * tasks cannot exit without having gone through wake_up_new_task() ->
3668 * post_init_entity_util_avg() which will have added things to the
3669 * cfs_rq, so we can remove unconditionally.
0905f04e 3670 */
0905f04e 3671
104cb16d 3672 sync_entity_load_avg(se);
2a2f5d4e
PZ
3673
3674 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3675 ++cfs_rq->removed.nr;
3676 cfs_rq->removed.util_avg += se->avg.util_avg;
3677 cfs_rq->removed.load_avg += se->avg.load_avg;
0e2d2aaa 3678 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
2a2f5d4e 3679 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3680}
642dbc39 3681
7ea241af
YD
3682static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3683{
1ea6c46a 3684 return cfs_rq->avg.runnable_load_avg;
7ea241af
YD
3685}
3686
3687static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3688{
3689 return cfs_rq->avg.load_avg;
3690}
3691
46f69fa3 3692static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3693
7f65ea42
PB
3694static inline unsigned long task_util(struct task_struct *p)
3695{
3696 return READ_ONCE(p->se.avg.util_avg);
3697}
3698
3699static inline unsigned long _task_util_est(struct task_struct *p)
3700{
3701 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3702
92a801e5 3703 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3704}
3705
3706static inline unsigned long task_util_est(struct task_struct *p)
3707{
3708 return max(task_util(p), _task_util_est(p));
3709}
3710
3711static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3712 struct task_struct *p)
3713{
3714 unsigned int enqueued;
3715
3716 if (!sched_feat(UTIL_EST))
3717 return;
3718
3719 /* Update root cfs_rq's estimated utilization */
3720 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3721 enqueued += _task_util_est(p);
7f65ea42
PB
3722 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3723}
3724
3725/*
3726 * Check if a (signed) value is within a specified (unsigned) margin,
3727 * based on the observation that:
3728 *
3729 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3730 *
3731 * NOTE: this only works when value + maring < INT_MAX.
3732 */
3733static inline bool within_margin(int value, int margin)
3734{
3735 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3736}
3737
3738static void
3739util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3740{
3741 long last_ewma_diff;
3742 struct util_est ue;
10a35e68 3743 int cpu;
7f65ea42
PB
3744
3745 if (!sched_feat(UTIL_EST))
3746 return;
3747
3482d98b
VG
3748 /* Update root cfs_rq's estimated utilization */
3749 ue.enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3750 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
7f65ea42
PB
3751 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3752
3753 /*
3754 * Skip update of task's estimated utilization when the task has not
3755 * yet completed an activation, e.g. being migrated.
3756 */
3757 if (!task_sleep)
3758 return;
3759
d519329f
PB
3760 /*
3761 * If the PELT values haven't changed since enqueue time,
3762 * skip the util_est update.
3763 */
3764 ue = p->se.avg.util_est;
3765 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3766 return;
3767
7f65ea42
PB
3768 /*
3769 * Skip update of task's estimated utilization when its EWMA is
3770 * already ~1% close to its last activation value.
3771 */
d519329f 3772 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3773 last_ewma_diff = ue.enqueued - ue.ewma;
3774 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3775 return;
3776
10a35e68
VG
3777 /*
3778 * To avoid overestimation of actual task utilization, skip updates if
3779 * we cannot grant there is idle time in this CPU.
3780 */
3781 cpu = cpu_of(rq_of(cfs_rq));
3782 if (task_util(p) > capacity_orig_of(cpu))
3783 return;
3784
7f65ea42
PB
3785 /*
3786 * Update Task's estimated utilization
3787 *
3788 * When *p completes an activation we can consolidate another sample
3789 * of the task size. This is done by storing the current PELT value
3790 * as ue.enqueued and by using this value to update the Exponential
3791 * Weighted Moving Average (EWMA):
3792 *
3793 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3794 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3795 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3796 * = w * ( last_ewma_diff ) + ewma(t-1)
3797 * = w * (last_ewma_diff + ewma(t-1) / w)
3798 *
3799 * Where 'w' is the weight of new samples, which is configured to be
3800 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3801 */
3802 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3803 ue.ewma += last_ewma_diff;
3804 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3805 WRITE_ONCE(p->se.avg.util_est, ue);
3806}
3807
3b1baa64
MR
3808static inline int task_fits_capacity(struct task_struct *p, long capacity)
3809{
3810 return capacity * 1024 > task_util_est(p) * capacity_margin;
3811}
3812
3813static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3814{
3815 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3816 return;
3817
3818 if (!p) {
3819 rq->misfit_task_load = 0;
3820 return;
3821 }
3822
3823 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3824 rq->misfit_task_load = 0;
3825 return;
3826 }
3827
3828 rq->misfit_task_load = task_h_load(p);
3829}
3830
38033c37
PZ
3831#else /* CONFIG_SMP */
3832
d31b1a66
VG
3833#define UPDATE_TG 0x0
3834#define SKIP_AGE_LOAD 0x0
b382a531 3835#define DO_ATTACH 0x0
d31b1a66 3836
88c0616e 3837static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3838{
ea14b57e 3839 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
3840}
3841
9d89c257 3842static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3843
a05e8c51 3844static inline void
ea14b57e 3845attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
a05e8c51
BP
3846static inline void
3847detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3848
46f69fa3 3849static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3850{
3851 return 0;
3852}
3853
7f65ea42
PB
3854static inline void
3855util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3856
3857static inline void
3858util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3859 bool task_sleep) {}
3b1baa64 3860static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 3861
38033c37 3862#endif /* CONFIG_SMP */
9d85f21c 3863
ddc97297
PZ
3864static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3865{
3866#ifdef CONFIG_SCHED_DEBUG
3867 s64 d = se->vruntime - cfs_rq->min_vruntime;
3868
3869 if (d < 0)
3870 d = -d;
3871
3872 if (d > 3*sysctl_sched_latency)
ae92882e 3873 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3874#endif
3875}
3876
aeb73b04
PZ
3877static void
3878place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3879{
1af5f730 3880 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3881
2cb8600e
PZ
3882 /*
3883 * The 'current' period is already promised to the current tasks,
3884 * however the extra weight of the new task will slow them down a
3885 * little, place the new task so that it fits in the slot that
3886 * stays open at the end.
3887 */
94dfb5e7 3888 if (initial && sched_feat(START_DEBIT))
f9c0b095 3889 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3890
a2e7a7eb 3891 /* sleeps up to a single latency don't count. */
5ca9880c 3892 if (!initial) {
a2e7a7eb 3893 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3894
a2e7a7eb
MG
3895 /*
3896 * Halve their sleep time's effect, to allow
3897 * for a gentler effect of sleepers:
3898 */
3899 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3900 thresh >>= 1;
51e0304c 3901
a2e7a7eb 3902 vruntime -= thresh;
aeb73b04
PZ
3903 }
3904
b5d9d734 3905 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3906 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3907}
3908
d3d9dc33
PT
3909static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3910
cb251765
MG
3911static inline void check_schedstat_required(void)
3912{
3913#ifdef CONFIG_SCHEDSTATS
3914 if (schedstat_enabled())
3915 return;
3916
3917 /* Force schedstat enabled if a dependent tracepoint is active */
3918 if (trace_sched_stat_wait_enabled() ||
3919 trace_sched_stat_sleep_enabled() ||
3920 trace_sched_stat_iowait_enabled() ||
3921 trace_sched_stat_blocked_enabled() ||
3922 trace_sched_stat_runtime_enabled()) {
eda8dca5 3923 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3924 "stat_blocked and stat_runtime require the "
f67abed5 3925 "kernel parameter schedstats=enable or "
cb251765
MG
3926 "kernel.sched_schedstats=1\n");
3927 }
3928#endif
3929}
3930
b5179ac7
PZ
3931
3932/*
3933 * MIGRATION
3934 *
3935 * dequeue
3936 * update_curr()
3937 * update_min_vruntime()
3938 * vruntime -= min_vruntime
3939 *
3940 * enqueue
3941 * update_curr()
3942 * update_min_vruntime()
3943 * vruntime += min_vruntime
3944 *
3945 * this way the vruntime transition between RQs is done when both
3946 * min_vruntime are up-to-date.
3947 *
3948 * WAKEUP (remote)
3949 *
59efa0ba 3950 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3951 * vruntime -= min_vruntime
3952 *
3953 * enqueue
3954 * update_curr()
3955 * update_min_vruntime()
3956 * vruntime += min_vruntime
3957 *
3958 * this way we don't have the most up-to-date min_vruntime on the originating
3959 * CPU and an up-to-date min_vruntime on the destination CPU.
3960 */
3961
bf0f6f24 3962static void
88ec22d3 3963enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3964{
2f950354
PZ
3965 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3966 bool curr = cfs_rq->curr == se;
3967
88ec22d3 3968 /*
2f950354
PZ
3969 * If we're the current task, we must renormalise before calling
3970 * update_curr().
88ec22d3 3971 */
2f950354 3972 if (renorm && curr)
88ec22d3
PZ
3973 se->vruntime += cfs_rq->min_vruntime;
3974
2f950354
PZ
3975 update_curr(cfs_rq);
3976
bf0f6f24 3977 /*
2f950354
PZ
3978 * Otherwise, renormalise after, such that we're placed at the current
3979 * moment in time, instead of some random moment in the past. Being
3980 * placed in the past could significantly boost this task to the
3981 * fairness detriment of existing tasks.
bf0f6f24 3982 */
2f950354
PZ
3983 if (renorm && !curr)
3984 se->vruntime += cfs_rq->min_vruntime;
3985
89ee048f
VG
3986 /*
3987 * When enqueuing a sched_entity, we must:
3988 * - Update loads to have both entity and cfs_rq synced with now.
3989 * - Add its load to cfs_rq->runnable_avg
3990 * - For group_entity, update its weight to reflect the new share of
3991 * its group cfs_rq
3992 * - Add its new weight to cfs_rq->load.weight
3993 */
b382a531 3994 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
1ea6c46a 3995 update_cfs_group(se);
b5b3e35f 3996 enqueue_runnable_load_avg(cfs_rq, se);
17bc14b7 3997 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3998
1a3d027c 3999 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4000 place_entity(cfs_rq, se, 0);
bf0f6f24 4001
cb251765 4002 check_schedstat_required();
4fa8d299
JP
4003 update_stats_enqueue(cfs_rq, se, flags);
4004 check_spread(cfs_rq, se);
2f950354 4005 if (!curr)
83b699ed 4006 __enqueue_entity(cfs_rq, se);
2069dd75 4007 se->on_rq = 1;
3d4b47b4 4008
d3d9dc33 4009 if (cfs_rq->nr_running == 1) {
3d4b47b4 4010 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
4011 check_enqueue_throttle(cfs_rq);
4012 }
bf0f6f24
IM
4013}
4014
2c13c919 4015static void __clear_buddies_last(struct sched_entity *se)
2002c695 4016{
2c13c919
RR
4017 for_each_sched_entity(se) {
4018 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4019 if (cfs_rq->last != se)
2c13c919 4020 break;
f1044799
PZ
4021
4022 cfs_rq->last = NULL;
2c13c919
RR
4023 }
4024}
2002c695 4025
2c13c919
RR
4026static void __clear_buddies_next(struct sched_entity *se)
4027{
4028 for_each_sched_entity(se) {
4029 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4030 if (cfs_rq->next != se)
2c13c919 4031 break;
f1044799
PZ
4032
4033 cfs_rq->next = NULL;
2c13c919 4034 }
2002c695
PZ
4035}
4036
ac53db59
RR
4037static void __clear_buddies_skip(struct sched_entity *se)
4038{
4039 for_each_sched_entity(se) {
4040 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4041 if (cfs_rq->skip != se)
ac53db59 4042 break;
f1044799
PZ
4043
4044 cfs_rq->skip = NULL;
ac53db59
RR
4045 }
4046}
4047
a571bbea
PZ
4048static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4049{
2c13c919
RR
4050 if (cfs_rq->last == se)
4051 __clear_buddies_last(se);
4052
4053 if (cfs_rq->next == se)
4054 __clear_buddies_next(se);
ac53db59
RR
4055
4056 if (cfs_rq->skip == se)
4057 __clear_buddies_skip(se);
a571bbea
PZ
4058}
4059
6c16a6dc 4060static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4061
bf0f6f24 4062static void
371fd7e7 4063dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4064{
a2a2d680
DA
4065 /*
4066 * Update run-time statistics of the 'current'.
4067 */
4068 update_curr(cfs_rq);
89ee048f
VG
4069
4070 /*
4071 * When dequeuing a sched_entity, we must:
4072 * - Update loads to have both entity and cfs_rq synced with now.
dfcb245e
IM
4073 * - Subtract its load from the cfs_rq->runnable_avg.
4074 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4075 * - For group entity, update its weight to reflect the new share
4076 * of its group cfs_rq.
4077 */
88c0616e 4078 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 4079 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 4080
4fa8d299 4081 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4082
2002c695 4083 clear_buddies(cfs_rq, se);
4793241b 4084
83b699ed 4085 if (se != cfs_rq->curr)
30cfdcfc 4086 __dequeue_entity(cfs_rq, se);
17bc14b7 4087 se->on_rq = 0;
30cfdcfc 4088 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4089
4090 /*
b60205c7
PZ
4091 * Normalize after update_curr(); which will also have moved
4092 * min_vruntime if @se is the one holding it back. But before doing
4093 * update_min_vruntime() again, which will discount @se's position and
4094 * can move min_vruntime forward still more.
88ec22d3 4095 */
371fd7e7 4096 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4097 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4098
d8b4986d
PT
4099 /* return excess runtime on last dequeue */
4100 return_cfs_rq_runtime(cfs_rq);
4101
1ea6c46a 4102 update_cfs_group(se);
b60205c7
PZ
4103
4104 /*
4105 * Now advance min_vruntime if @se was the entity holding it back,
4106 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4107 * put back on, and if we advance min_vruntime, we'll be placed back
4108 * further than we started -- ie. we'll be penalized.
4109 */
9845c49c 4110 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4111 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4112}
4113
4114/*
4115 * Preempt the current task with a newly woken task if needed:
4116 */
7c92e54f 4117static void
2e09bf55 4118check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4119{
11697830 4120 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4121 struct sched_entity *se;
4122 s64 delta;
11697830 4123
6d0f0ebd 4124 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4125 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4126 if (delta_exec > ideal_runtime) {
8875125e 4127 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4128 /*
4129 * The current task ran long enough, ensure it doesn't get
4130 * re-elected due to buddy favours.
4131 */
4132 clear_buddies(cfs_rq, curr);
f685ceac
MG
4133 return;
4134 }
4135
4136 /*
4137 * Ensure that a task that missed wakeup preemption by a
4138 * narrow margin doesn't have to wait for a full slice.
4139 * This also mitigates buddy induced latencies under load.
4140 */
f685ceac
MG
4141 if (delta_exec < sysctl_sched_min_granularity)
4142 return;
4143
f4cfb33e
WX
4144 se = __pick_first_entity(cfs_rq);
4145 delta = curr->vruntime - se->vruntime;
f685ceac 4146
f4cfb33e
WX
4147 if (delta < 0)
4148 return;
d7d82944 4149
f4cfb33e 4150 if (delta > ideal_runtime)
8875125e 4151 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4152}
4153
83b699ed 4154static void
8494f412 4155set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4156{
83b699ed
SV
4157 /* 'current' is not kept within the tree. */
4158 if (se->on_rq) {
4159 /*
4160 * Any task has to be enqueued before it get to execute on
4161 * a CPU. So account for the time it spent waiting on the
4162 * runqueue.
4163 */
4fa8d299 4164 update_stats_wait_end(cfs_rq, se);
83b699ed 4165 __dequeue_entity(cfs_rq, se);
88c0616e 4166 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4167 }
4168
79303e9e 4169 update_stats_curr_start(cfs_rq, se);
429d43bc 4170 cfs_rq->curr = se;
4fa8d299 4171
eba1ed4b
IM
4172 /*
4173 * Track our maximum slice length, if the CPU's load is at
4174 * least twice that of our own weight (i.e. dont track it
4175 * when there are only lesser-weight tasks around):
4176 */
f2bedc47
DE
4177 if (schedstat_enabled() &&
4178 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4179 schedstat_set(se->statistics.slice_max,
4180 max((u64)schedstat_val(se->statistics.slice_max),
4181 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4182 }
4fa8d299 4183
4a55b450 4184 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4185}
4186
3f3a4904
PZ
4187static int
4188wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4189
ac53db59
RR
4190/*
4191 * Pick the next process, keeping these things in mind, in this order:
4192 * 1) keep things fair between processes/task groups
4193 * 2) pick the "next" process, since someone really wants that to run
4194 * 3) pick the "last" process, for cache locality
4195 * 4) do not run the "skip" process, if something else is available
4196 */
678d5718
PZ
4197static struct sched_entity *
4198pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4199{
678d5718
PZ
4200 struct sched_entity *left = __pick_first_entity(cfs_rq);
4201 struct sched_entity *se;
4202
4203 /*
4204 * If curr is set we have to see if its left of the leftmost entity
4205 * still in the tree, provided there was anything in the tree at all.
4206 */
4207 if (!left || (curr && entity_before(curr, left)))
4208 left = curr;
4209
4210 se = left; /* ideally we run the leftmost entity */
f4b6755f 4211
ac53db59
RR
4212 /*
4213 * Avoid running the skip buddy, if running something else can
4214 * be done without getting too unfair.
4215 */
4216 if (cfs_rq->skip == se) {
678d5718
PZ
4217 struct sched_entity *second;
4218
4219 if (se == curr) {
4220 second = __pick_first_entity(cfs_rq);
4221 } else {
4222 second = __pick_next_entity(se);
4223 if (!second || (curr && entity_before(curr, second)))
4224 second = curr;
4225 }
4226
ac53db59
RR
4227 if (second && wakeup_preempt_entity(second, left) < 1)
4228 se = second;
4229 }
aa2ac252 4230
f685ceac
MG
4231 /*
4232 * Prefer last buddy, try to return the CPU to a preempted task.
4233 */
4234 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4235 se = cfs_rq->last;
4236
ac53db59
RR
4237 /*
4238 * Someone really wants this to run. If it's not unfair, run it.
4239 */
4240 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4241 se = cfs_rq->next;
4242
f685ceac 4243 clear_buddies(cfs_rq, se);
4793241b
PZ
4244
4245 return se;
aa2ac252
PZ
4246}
4247
678d5718 4248static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4249
ab6cde26 4250static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4251{
4252 /*
4253 * If still on the runqueue then deactivate_task()
4254 * was not called and update_curr() has to be done:
4255 */
4256 if (prev->on_rq)
b7cc0896 4257 update_curr(cfs_rq);
bf0f6f24 4258
d3d9dc33
PT
4259 /* throttle cfs_rqs exceeding runtime */
4260 check_cfs_rq_runtime(cfs_rq);
4261
4fa8d299 4262 check_spread(cfs_rq, prev);
cb251765 4263
30cfdcfc 4264 if (prev->on_rq) {
4fa8d299 4265 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4266 /* Put 'current' back into the tree. */
4267 __enqueue_entity(cfs_rq, prev);
9d85f21c 4268 /* in !on_rq case, update occurred at dequeue */
88c0616e 4269 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4270 }
429d43bc 4271 cfs_rq->curr = NULL;
bf0f6f24
IM
4272}
4273
8f4d37ec
PZ
4274static void
4275entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4276{
bf0f6f24 4277 /*
30cfdcfc 4278 * Update run-time statistics of the 'current'.
bf0f6f24 4279 */
30cfdcfc 4280 update_curr(cfs_rq);
bf0f6f24 4281
9d85f21c
PT
4282 /*
4283 * Ensure that runnable average is periodically updated.
4284 */
88c0616e 4285 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4286 update_cfs_group(curr);
9d85f21c 4287
8f4d37ec
PZ
4288#ifdef CONFIG_SCHED_HRTICK
4289 /*
4290 * queued ticks are scheduled to match the slice, so don't bother
4291 * validating it and just reschedule.
4292 */
983ed7a6 4293 if (queued) {
8875125e 4294 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4295 return;
4296 }
8f4d37ec
PZ
4297 /*
4298 * don't let the period tick interfere with the hrtick preemption
4299 */
4300 if (!sched_feat(DOUBLE_TICK) &&
4301 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4302 return;
4303#endif
4304
2c2efaed 4305 if (cfs_rq->nr_running > 1)
2e09bf55 4306 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4307}
4308
ab84d31e
PT
4309
4310/**************************************************
4311 * CFS bandwidth control machinery
4312 */
4313
4314#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4315
e9666d10 4316#ifdef CONFIG_JUMP_LABEL
c5905afb 4317static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4318
4319static inline bool cfs_bandwidth_used(void)
4320{
c5905afb 4321 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4322}
4323
1ee14e6c 4324void cfs_bandwidth_usage_inc(void)
029632fb 4325{
ce48c146 4326 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4327}
4328
4329void cfs_bandwidth_usage_dec(void)
4330{
ce48c146 4331 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4332}
e9666d10 4333#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4334static bool cfs_bandwidth_used(void)
4335{
4336 return true;
4337}
4338
1ee14e6c
BS
4339void cfs_bandwidth_usage_inc(void) {}
4340void cfs_bandwidth_usage_dec(void) {}
e9666d10 4341#endif /* CONFIG_JUMP_LABEL */
029632fb 4342
ab84d31e
PT
4343/*
4344 * default period for cfs group bandwidth.
4345 * default: 0.1s, units: nanoseconds
4346 */
4347static inline u64 default_cfs_period(void)
4348{
4349 return 100000000ULL;
4350}
ec12cb7f
PT
4351
4352static inline u64 sched_cfs_bandwidth_slice(void)
4353{
4354 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4355}
4356
a9cf55b2
PT
4357/*
4358 * Replenish runtime according to assigned quota and update expiration time.
4359 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4360 * additional synchronization around rq->lock.
4361 *
4362 * requires cfs_b->lock
4363 */
029632fb 4364void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4365{
4366 u64 now;
4367
4368 if (cfs_b->quota == RUNTIME_INF)
4369 return;
4370
4371 now = sched_clock_cpu(smp_processor_id());
4372 cfs_b->runtime = cfs_b->quota;
4373 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
512ac999 4374 cfs_b->expires_seq++;
a9cf55b2
PT
4375}
4376
029632fb
PZ
4377static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4378{
4379 return &tg->cfs_bandwidth;
4380}
4381
f1b17280
PT
4382/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4383static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4384{
4385 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4386 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4387
78becc27 4388 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4389}
4390
85dac906
PT
4391/* returns 0 on failure to allocate runtime */
4392static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4393{
4394 struct task_group *tg = cfs_rq->tg;
4395 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4396 u64 amount = 0, min_amount, expires;
512ac999 4397 int expires_seq;
ec12cb7f
PT
4398
4399 /* note: this is a positive sum as runtime_remaining <= 0 */
4400 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4401
4402 raw_spin_lock(&cfs_b->lock);
4403 if (cfs_b->quota == RUNTIME_INF)
4404 amount = min_amount;
58088ad0 4405 else {
77a4d1a1 4406 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4407
4408 if (cfs_b->runtime > 0) {
4409 amount = min(cfs_b->runtime, min_amount);
4410 cfs_b->runtime -= amount;
4411 cfs_b->idle = 0;
4412 }
ec12cb7f 4413 }
512ac999 4414 expires_seq = cfs_b->expires_seq;
a9cf55b2 4415 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4416 raw_spin_unlock(&cfs_b->lock);
4417
4418 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4419 /*
4420 * we may have advanced our local expiration to account for allowed
4421 * spread between our sched_clock and the one on which runtime was
4422 * issued.
4423 */
512ac999
XP
4424 if (cfs_rq->expires_seq != expires_seq) {
4425 cfs_rq->expires_seq = expires_seq;
a9cf55b2 4426 cfs_rq->runtime_expires = expires;
512ac999 4427 }
85dac906
PT
4428
4429 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4430}
4431
a9cf55b2
PT
4432/*
4433 * Note: This depends on the synchronization provided by sched_clock and the
4434 * fact that rq->clock snapshots this value.
4435 */
4436static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4437{
a9cf55b2 4438 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4439
4440 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4441 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4442 return;
4443
a9cf55b2
PT
4444 if (cfs_rq->runtime_remaining < 0)
4445 return;
4446
4447 /*
4448 * If the local deadline has passed we have to consider the
4449 * possibility that our sched_clock is 'fast' and the global deadline
4450 * has not truly expired.
4451 *
4452 * Fortunately we can check determine whether this the case by checking
512ac999 4453 * whether the global deadline(cfs_b->expires_seq) has advanced.
a9cf55b2 4454 */
512ac999 4455 if (cfs_rq->expires_seq == cfs_b->expires_seq) {
a9cf55b2
PT
4456 /* extend local deadline, drift is bounded above by 2 ticks */
4457 cfs_rq->runtime_expires += TICK_NSEC;
4458 } else {
4459 /* global deadline is ahead, expiration has passed */
4460 cfs_rq->runtime_remaining = 0;
4461 }
4462}
4463
9dbdb155 4464static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4465{
4466 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4467 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4468 expire_cfs_rq_runtime(cfs_rq);
4469
4470 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4471 return;
4472
85dac906
PT
4473 /*
4474 * if we're unable to extend our runtime we resched so that the active
4475 * hierarchy can be throttled
4476 */
4477 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4478 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4479}
4480
6c16a6dc 4481static __always_inline
9dbdb155 4482void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4483{
56f570e5 4484 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4485 return;
4486
4487 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4488}
4489
85dac906
PT
4490static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4491{
56f570e5 4492 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4493}
4494
64660c86
PT
4495/* check whether cfs_rq, or any parent, is throttled */
4496static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4497{
56f570e5 4498 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4499}
4500
4501/*
4502 * Ensure that neither of the group entities corresponding to src_cpu or
4503 * dest_cpu are members of a throttled hierarchy when performing group
4504 * load-balance operations.
4505 */
4506static inline int throttled_lb_pair(struct task_group *tg,
4507 int src_cpu, int dest_cpu)
4508{
4509 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4510
4511 src_cfs_rq = tg->cfs_rq[src_cpu];
4512 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4513
4514 return throttled_hierarchy(src_cfs_rq) ||
4515 throttled_hierarchy(dest_cfs_rq);
4516}
4517
64660c86
PT
4518static int tg_unthrottle_up(struct task_group *tg, void *data)
4519{
4520 struct rq *rq = data;
4521 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4522
4523 cfs_rq->throttle_count--;
64660c86 4524 if (!cfs_rq->throttle_count) {
f1b17280 4525 /* adjust cfs_rq_clock_task() */
78becc27 4526 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4527 cfs_rq->throttled_clock_task;
31bc6aea
VG
4528
4529 /* Add cfs_rq with already running entity in the list */
4530 if (cfs_rq->nr_running >= 1)
4531 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4532 }
64660c86
PT
4533
4534 return 0;
4535}
4536
4537static int tg_throttle_down(struct task_group *tg, void *data)
4538{
4539 struct rq *rq = data;
4540 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4541
82958366 4542 /* group is entering throttled state, stop time */
31bc6aea 4543 if (!cfs_rq->throttle_count) {
78becc27 4544 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4545 list_del_leaf_cfs_rq(cfs_rq);
4546 }
64660c86
PT
4547 cfs_rq->throttle_count++;
4548
4549 return 0;
4550}
4551
d3d9dc33 4552static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4553{
4554 struct rq *rq = rq_of(cfs_rq);
4555 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4556 struct sched_entity *se;
4557 long task_delta, dequeue = 1;
77a4d1a1 4558 bool empty;
85dac906
PT
4559
4560 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4561
f1b17280 4562 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4563 rcu_read_lock();
4564 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4565 rcu_read_unlock();
85dac906
PT
4566
4567 task_delta = cfs_rq->h_nr_running;
4568 for_each_sched_entity(se) {
4569 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4570 /* throttled entity or throttle-on-deactivate */
4571 if (!se->on_rq)
4572 break;
4573
4574 if (dequeue)
4575 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4576 qcfs_rq->h_nr_running -= task_delta;
4577
4578 if (qcfs_rq->load.weight)
4579 dequeue = 0;
4580 }
4581
4582 if (!se)
72465447 4583 sub_nr_running(rq, task_delta);
85dac906
PT
4584
4585 cfs_rq->throttled = 1;
78becc27 4586 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4587 raw_spin_lock(&cfs_b->lock);
d49db342 4588 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4589
c06f04c7
BS
4590 /*
4591 * Add to the _head_ of the list, so that an already-started
baa9be4f
PA
4592 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4593 * not running add to the tail so that later runqueues don't get starved.
c06f04c7 4594 */
baa9be4f
PA
4595 if (cfs_b->distribute_running)
4596 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4597 else
4598 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4599
4600 /*
4601 * If we're the first throttled task, make sure the bandwidth
4602 * timer is running.
4603 */
4604 if (empty)
4605 start_cfs_bandwidth(cfs_b);
4606
85dac906
PT
4607 raw_spin_unlock(&cfs_b->lock);
4608}
4609
029632fb 4610void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4611{
4612 struct rq *rq = rq_of(cfs_rq);
4613 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4614 struct sched_entity *se;
4615 int enqueue = 1;
4616 long task_delta;
4617
22b958d8 4618 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4619
4620 cfs_rq->throttled = 0;
1a55af2e
FW
4621
4622 update_rq_clock(rq);
4623
671fd9da 4624 raw_spin_lock(&cfs_b->lock);
78becc27 4625 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4626 list_del_rcu(&cfs_rq->throttled_list);
4627 raw_spin_unlock(&cfs_b->lock);
4628
64660c86
PT
4629 /* update hierarchical throttle state */
4630 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4631
671fd9da
PT
4632 if (!cfs_rq->load.weight)
4633 return;
4634
4635 task_delta = cfs_rq->h_nr_running;
4636 for_each_sched_entity(se) {
4637 if (se->on_rq)
4638 enqueue = 0;
4639
4640 cfs_rq = cfs_rq_of(se);
4641 if (enqueue)
4642 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4643 cfs_rq->h_nr_running += task_delta;
4644
4645 if (cfs_rq_throttled(cfs_rq))
4646 break;
4647 }
4648
31bc6aea
VG
4649 assert_list_leaf_cfs_rq(rq);
4650
671fd9da 4651 if (!se)
72465447 4652 add_nr_running(rq, task_delta);
671fd9da 4653
97fb7a0a 4654 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4655 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4656 resched_curr(rq);
671fd9da
PT
4657}
4658
4659static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4660 u64 remaining, u64 expires)
4661{
4662 struct cfs_rq *cfs_rq;
c06f04c7
BS
4663 u64 runtime;
4664 u64 starting_runtime = remaining;
671fd9da
PT
4665
4666 rcu_read_lock();
4667 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4668 throttled_list) {
4669 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4670 struct rq_flags rf;
671fd9da 4671
c0ad4aa4 4672 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4673 if (!cfs_rq_throttled(cfs_rq))
4674 goto next;
4675
4676 runtime = -cfs_rq->runtime_remaining + 1;
4677 if (runtime > remaining)
4678 runtime = remaining;
4679 remaining -= runtime;
4680
4681 cfs_rq->runtime_remaining += runtime;
4682 cfs_rq->runtime_expires = expires;
4683
4684 /* we check whether we're throttled above */
4685 if (cfs_rq->runtime_remaining > 0)
4686 unthrottle_cfs_rq(cfs_rq);
4687
4688next:
c0ad4aa4 4689 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4690
4691 if (!remaining)
4692 break;
4693 }
4694 rcu_read_unlock();
4695
c06f04c7 4696 return starting_runtime - remaining;
671fd9da
PT
4697}
4698
58088ad0
PT
4699/*
4700 * Responsible for refilling a task_group's bandwidth and unthrottling its
4701 * cfs_rqs as appropriate. If there has been no activity within the last
4702 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4703 * used to track this state.
4704 */
c0ad4aa4 4705static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4706{
671fd9da 4707 u64 runtime, runtime_expires;
51f2176d 4708 int throttled;
58088ad0 4709
58088ad0
PT
4710 /* no need to continue the timer with no bandwidth constraint */
4711 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4712 goto out_deactivate;
58088ad0 4713
671fd9da 4714 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4715 cfs_b->nr_periods += overrun;
671fd9da 4716
51f2176d
BS
4717 /*
4718 * idle depends on !throttled (for the case of a large deficit), and if
4719 * we're going inactive then everything else can be deferred
4720 */
4721 if (cfs_b->idle && !throttled)
4722 goto out_deactivate;
a9cf55b2
PT
4723
4724 __refill_cfs_bandwidth_runtime(cfs_b);
4725
671fd9da
PT
4726 if (!throttled) {
4727 /* mark as potentially idle for the upcoming period */
4728 cfs_b->idle = 1;
51f2176d 4729 return 0;
671fd9da
PT
4730 }
4731
e8da1b18
NR
4732 /* account preceding periods in which throttling occurred */
4733 cfs_b->nr_throttled += overrun;
4734
671fd9da 4735 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4736
4737 /*
c06f04c7
BS
4738 * This check is repeated as we are holding onto the new bandwidth while
4739 * we unthrottle. This can potentially race with an unthrottled group
4740 * trying to acquire new bandwidth from the global pool. This can result
4741 * in us over-using our runtime if it is all used during this loop, but
4742 * only by limited amounts in that extreme case.
671fd9da 4743 */
baa9be4f 4744 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
c06f04c7 4745 runtime = cfs_b->runtime;
baa9be4f 4746 cfs_b->distribute_running = 1;
c0ad4aa4 4747 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da
PT
4748 /* we can't nest cfs_b->lock while distributing bandwidth */
4749 runtime = distribute_cfs_runtime(cfs_b, runtime,
4750 runtime_expires);
c0ad4aa4 4751 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da 4752
baa9be4f 4753 cfs_b->distribute_running = 0;
671fd9da 4754 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7 4755
b5c0ce7b 4756 lsub_positive(&cfs_b->runtime, runtime);
671fd9da 4757 }
58088ad0 4758
671fd9da
PT
4759 /*
4760 * While we are ensured activity in the period following an
4761 * unthrottle, this also covers the case in which the new bandwidth is
4762 * insufficient to cover the existing bandwidth deficit. (Forcing the
4763 * timer to remain active while there are any throttled entities.)
4764 */
4765 cfs_b->idle = 0;
58088ad0 4766
51f2176d
BS
4767 return 0;
4768
4769out_deactivate:
51f2176d 4770 return 1;
58088ad0 4771}
d3d9dc33 4772
d8b4986d
PT
4773/* a cfs_rq won't donate quota below this amount */
4774static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4775/* minimum remaining period time to redistribute slack quota */
4776static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4777/* how long we wait to gather additional slack before distributing */
4778static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4779
db06e78c
BS
4780/*
4781 * Are we near the end of the current quota period?
4782 *
4783 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4784 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4785 * migrate_hrtimers, base is never cleared, so we are fine.
4786 */
d8b4986d
PT
4787static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4788{
4789 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4790 u64 remaining;
4791
4792 /* if the call-back is running a quota refresh is already occurring */
4793 if (hrtimer_callback_running(refresh_timer))
4794 return 1;
4795
4796 /* is a quota refresh about to occur? */
4797 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4798 if (remaining < min_expire)
4799 return 1;
4800
4801 return 0;
4802}
4803
4804static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4805{
4806 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4807
4808 /* if there's a quota refresh soon don't bother with slack */
4809 if (runtime_refresh_within(cfs_b, min_left))
4810 return;
4811
66567fcb 4812 /* don't push forwards an existing deferred unthrottle */
4813 if (cfs_b->slack_started)
4814 return;
4815 cfs_b->slack_started = true;
4816
4cfafd30
PZ
4817 hrtimer_start(&cfs_b->slack_timer,
4818 ns_to_ktime(cfs_bandwidth_slack_period),
4819 HRTIMER_MODE_REL);
d8b4986d
PT
4820}
4821
4822/* we know any runtime found here is valid as update_curr() precedes return */
4823static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4824{
4825 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4826 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4827
4828 if (slack_runtime <= 0)
4829 return;
4830
4831 raw_spin_lock(&cfs_b->lock);
4832 if (cfs_b->quota != RUNTIME_INF &&
4833 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4834 cfs_b->runtime += slack_runtime;
4835
4836 /* we are under rq->lock, defer unthrottling using a timer */
4837 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4838 !list_empty(&cfs_b->throttled_cfs_rq))
4839 start_cfs_slack_bandwidth(cfs_b);
4840 }
4841 raw_spin_unlock(&cfs_b->lock);
4842
4843 /* even if it's not valid for return we don't want to try again */
4844 cfs_rq->runtime_remaining -= slack_runtime;
4845}
4846
4847static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4848{
56f570e5
PT
4849 if (!cfs_bandwidth_used())
4850 return;
4851
fccfdc6f 4852 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4853 return;
4854
4855 __return_cfs_rq_runtime(cfs_rq);
4856}
4857
4858/*
4859 * This is done with a timer (instead of inline with bandwidth return) since
4860 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4861 */
4862static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4863{
4864 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 4865 unsigned long flags;
d8b4986d
PT
4866 u64 expires;
4867
4868 /* confirm we're still not at a refresh boundary */
c0ad4aa4 4869 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 4870 cfs_b->slack_started = false;
baa9be4f 4871 if (cfs_b->distribute_running) {
c0ad4aa4 4872 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
baa9be4f
PA
4873 return;
4874 }
4875
db06e78c 4876 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 4877 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 4878 return;
db06e78c 4879 }
d8b4986d 4880
c06f04c7 4881 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4882 runtime = cfs_b->runtime;
c06f04c7 4883
d8b4986d 4884 expires = cfs_b->runtime_expires;
baa9be4f
PA
4885 if (runtime)
4886 cfs_b->distribute_running = 1;
4887
c0ad4aa4 4888 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4889
4890 if (!runtime)
4891 return;
4892
4893 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4894
c0ad4aa4 4895 raw_spin_lock_irqsave(&cfs_b->lock, flags);
d8b4986d 4896 if (expires == cfs_b->runtime_expires)
b5c0ce7b 4897 lsub_positive(&cfs_b->runtime, runtime);
baa9be4f 4898 cfs_b->distribute_running = 0;
c0ad4aa4 4899 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4900}
4901
d3d9dc33
PT
4902/*
4903 * When a group wakes up we want to make sure that its quota is not already
4904 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4905 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4906 */
4907static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4908{
56f570e5
PT
4909 if (!cfs_bandwidth_used())
4910 return;
4911
d3d9dc33
PT
4912 /* an active group must be handled by the update_curr()->put() path */
4913 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4914 return;
4915
4916 /* ensure the group is not already throttled */
4917 if (cfs_rq_throttled(cfs_rq))
4918 return;
4919
4920 /* update runtime allocation */
4921 account_cfs_rq_runtime(cfs_rq, 0);
4922 if (cfs_rq->runtime_remaining <= 0)
4923 throttle_cfs_rq(cfs_rq);
4924}
4925
55e16d30
PZ
4926static void sync_throttle(struct task_group *tg, int cpu)
4927{
4928 struct cfs_rq *pcfs_rq, *cfs_rq;
4929
4930 if (!cfs_bandwidth_used())
4931 return;
4932
4933 if (!tg->parent)
4934 return;
4935
4936 cfs_rq = tg->cfs_rq[cpu];
4937 pcfs_rq = tg->parent->cfs_rq[cpu];
4938
4939 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4940 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4941}
4942
d3d9dc33 4943/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4944static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4945{
56f570e5 4946 if (!cfs_bandwidth_used())
678d5718 4947 return false;
56f570e5 4948
d3d9dc33 4949 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4950 return false;
d3d9dc33
PT
4951
4952 /*
4953 * it's possible for a throttled entity to be forced into a running
4954 * state (e.g. set_curr_task), in this case we're finished.
4955 */
4956 if (cfs_rq_throttled(cfs_rq))
678d5718 4957 return true;
d3d9dc33
PT
4958
4959 throttle_cfs_rq(cfs_rq);
678d5718 4960 return true;
d3d9dc33 4961}
029632fb 4962
029632fb
PZ
4963static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4964{
4965 struct cfs_bandwidth *cfs_b =
4966 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4967
029632fb
PZ
4968 do_sched_cfs_slack_timer(cfs_b);
4969
4970 return HRTIMER_NORESTART;
4971}
4972
2e8e1922
PA
4973extern const u64 max_cfs_quota_period;
4974
029632fb
PZ
4975static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4976{
4977 struct cfs_bandwidth *cfs_b =
4978 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 4979 unsigned long flags;
029632fb
PZ
4980 int overrun;
4981 int idle = 0;
2e8e1922 4982 int count = 0;
029632fb 4983
c0ad4aa4 4984 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 4985 for (;;) {
77a4d1a1 4986 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4987 if (!overrun)
4988 break;
4989
2e8e1922
PA
4990 if (++count > 3) {
4991 u64 new, old = ktime_to_ns(cfs_b->period);
4992
4993 new = (old * 147) / 128; /* ~115% */
4994 new = min(new, max_cfs_quota_period);
4995
4996 cfs_b->period = ns_to_ktime(new);
4997
4998 /* since max is 1s, this is limited to 1e9^2, which fits in u64 */
4999 cfs_b->quota *= new;
5000 cfs_b->quota = div64_u64(cfs_b->quota, old);
5001
5002 pr_warn_ratelimited(
5003 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n",
5004 smp_processor_id(),
5005 div_u64(new, NSEC_PER_USEC),
5006 div_u64(cfs_b->quota, NSEC_PER_USEC));
5007
5008 /* reset count so we don't come right back in here */
5009 count = 0;
5010 }
5011
c0ad4aa4 5012 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
029632fb 5013 }
4cfafd30
PZ
5014 if (idle)
5015 cfs_b->period_active = 0;
c0ad4aa4 5016 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
5017
5018 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5019}
5020
5021void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5022{
5023 raw_spin_lock_init(&cfs_b->lock);
5024 cfs_b->runtime = 0;
5025 cfs_b->quota = RUNTIME_INF;
5026 cfs_b->period = ns_to_ktime(default_cfs_period());
5027
5028 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 5029 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5030 cfs_b->period_timer.function = sched_cfs_period_timer;
5031 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5032 cfs_b->slack_timer.function = sched_cfs_slack_timer;
baa9be4f 5033 cfs_b->distribute_running = 0;
66567fcb 5034 cfs_b->slack_started = false;
029632fb
PZ
5035}
5036
5037static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5038{
5039 cfs_rq->runtime_enabled = 0;
5040 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5041}
5042
77a4d1a1 5043void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5044{
f1d1be8a
XP
5045 u64 overrun;
5046
4cfafd30 5047 lockdep_assert_held(&cfs_b->lock);
029632fb 5048
f1d1be8a
XP
5049 if (cfs_b->period_active)
5050 return;
5051
5052 cfs_b->period_active = 1;
5053 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5054 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
5055 cfs_b->expires_seq++;
5056 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5057}
5058
5059static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5060{
7f1a169b
TH
5061 /* init_cfs_bandwidth() was not called */
5062 if (!cfs_b->throttled_cfs_rq.next)
5063 return;
5064
029632fb
PZ
5065 hrtimer_cancel(&cfs_b->period_timer);
5066 hrtimer_cancel(&cfs_b->slack_timer);
5067}
5068
502ce005 5069/*
97fb7a0a 5070 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5071 *
5072 * The race is harmless, since modifying bandwidth settings of unhooked group
5073 * bits doesn't do much.
5074 */
5075
5076/* cpu online calback */
0e59bdae
KT
5077static void __maybe_unused update_runtime_enabled(struct rq *rq)
5078{
502ce005 5079 struct task_group *tg;
0e59bdae 5080
502ce005
PZ
5081 lockdep_assert_held(&rq->lock);
5082
5083 rcu_read_lock();
5084 list_for_each_entry_rcu(tg, &task_groups, list) {
5085 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5086 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5087
5088 raw_spin_lock(&cfs_b->lock);
5089 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5090 raw_spin_unlock(&cfs_b->lock);
5091 }
502ce005 5092 rcu_read_unlock();
0e59bdae
KT
5093}
5094
502ce005 5095/* cpu offline callback */
38dc3348 5096static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5097{
502ce005
PZ
5098 struct task_group *tg;
5099
5100 lockdep_assert_held(&rq->lock);
5101
5102 rcu_read_lock();
5103 list_for_each_entry_rcu(tg, &task_groups, list) {
5104 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5105
029632fb
PZ
5106 if (!cfs_rq->runtime_enabled)
5107 continue;
5108
5109 /*
5110 * clock_task is not advancing so we just need to make sure
5111 * there's some valid quota amount
5112 */
51f2176d 5113 cfs_rq->runtime_remaining = 1;
0e59bdae 5114 /*
97fb7a0a 5115 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5116 * in take_cpu_down(), so we prevent new cfs throttling here.
5117 */
5118 cfs_rq->runtime_enabled = 0;
5119
029632fb
PZ
5120 if (cfs_rq_throttled(cfs_rq))
5121 unthrottle_cfs_rq(cfs_rq);
5122 }
502ce005 5123 rcu_read_unlock();
029632fb
PZ
5124}
5125
5126#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5127
5128static inline bool cfs_bandwidth_used(void)
5129{
5130 return false;
5131}
5132
f1b17280
PT
5133static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5134{
78becc27 5135 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
5136}
5137
9dbdb155 5138static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5139static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5140static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5141static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5142static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5143
5144static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5145{
5146 return 0;
5147}
64660c86
PT
5148
5149static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5150{
5151 return 0;
5152}
5153
5154static inline int throttled_lb_pair(struct task_group *tg,
5155 int src_cpu, int dest_cpu)
5156{
5157 return 0;
5158}
029632fb
PZ
5159
5160void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5161
5162#ifdef CONFIG_FAIR_GROUP_SCHED
5163static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5164#endif
5165
029632fb
PZ
5166static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5167{
5168 return NULL;
5169}
5170static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5171static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5172static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5173
5174#endif /* CONFIG_CFS_BANDWIDTH */
5175
bf0f6f24
IM
5176/**************************************************
5177 * CFS operations on tasks:
5178 */
5179
8f4d37ec
PZ
5180#ifdef CONFIG_SCHED_HRTICK
5181static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5182{
8f4d37ec
PZ
5183 struct sched_entity *se = &p->se;
5184 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5185
9148a3a1 5186 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5187
8bf46a39 5188 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5189 u64 slice = sched_slice(cfs_rq, se);
5190 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5191 s64 delta = slice - ran;
5192
5193 if (delta < 0) {
5194 if (rq->curr == p)
8875125e 5195 resched_curr(rq);
8f4d37ec
PZ
5196 return;
5197 }
31656519 5198 hrtick_start(rq, delta);
8f4d37ec
PZ
5199 }
5200}
a4c2f00f
PZ
5201
5202/*
5203 * called from enqueue/dequeue and updates the hrtick when the
5204 * current task is from our class and nr_running is low enough
5205 * to matter.
5206 */
5207static void hrtick_update(struct rq *rq)
5208{
5209 struct task_struct *curr = rq->curr;
5210
b39e66ea 5211 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5212 return;
5213
5214 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5215 hrtick_start_fair(rq, curr);
5216}
55e12e5e 5217#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5218static inline void
5219hrtick_start_fair(struct rq *rq, struct task_struct *p)
5220{
5221}
a4c2f00f
PZ
5222
5223static inline void hrtick_update(struct rq *rq)
5224{
5225}
8f4d37ec
PZ
5226#endif
5227
2802bf3c
MR
5228#ifdef CONFIG_SMP
5229static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5230
5231static inline bool cpu_overutilized(int cpu)
5232{
5233 return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
5234}
5235
5236static inline void update_overutilized_status(struct rq *rq)
5237{
f9f240f9 5238 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5239 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5240 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5241 }
2802bf3c
MR
5242}
5243#else
5244static inline void update_overutilized_status(struct rq *rq) { }
5245#endif
5246
bf0f6f24
IM
5247/*
5248 * The enqueue_task method is called before nr_running is
5249 * increased. Here we update the fair scheduling stats and
5250 * then put the task into the rbtree:
5251 */
ea87bb78 5252static void
371fd7e7 5253enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5254{
5255 struct cfs_rq *cfs_rq;
62fb1851 5256 struct sched_entity *se = &p->se;
bf0f6f24 5257
2539fc82
PB
5258 /*
5259 * The code below (indirectly) updates schedutil which looks at
5260 * the cfs_rq utilization to select a frequency.
5261 * Let's add the task's estimated utilization to the cfs_rq's
5262 * estimated utilization, before we update schedutil.
5263 */
5264 util_est_enqueue(&rq->cfs, p);
5265
8c34ab19
RW
5266 /*
5267 * If in_iowait is set, the code below may not trigger any cpufreq
5268 * utilization updates, so do it here explicitly with the IOWAIT flag
5269 * passed.
5270 */
5271 if (p->in_iowait)
674e7541 5272 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5273
bf0f6f24 5274 for_each_sched_entity(se) {
62fb1851 5275 if (se->on_rq)
bf0f6f24
IM
5276 break;
5277 cfs_rq = cfs_rq_of(se);
88ec22d3 5278 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5279
5280 /*
5281 * end evaluation on encountering a throttled cfs_rq
5282 *
5283 * note: in the case of encountering a throttled cfs_rq we will
5284 * post the final h_nr_running increment below.
e210bffd 5285 */
85dac906
PT
5286 if (cfs_rq_throttled(cfs_rq))
5287 break;
953bfcd1 5288 cfs_rq->h_nr_running++;
85dac906 5289
88ec22d3 5290 flags = ENQUEUE_WAKEUP;
bf0f6f24 5291 }
8f4d37ec 5292
2069dd75 5293 for_each_sched_entity(se) {
0f317143 5294 cfs_rq = cfs_rq_of(se);
953bfcd1 5295 cfs_rq->h_nr_running++;
2069dd75 5296
85dac906
PT
5297 if (cfs_rq_throttled(cfs_rq))
5298 break;
5299
88c0616e 5300 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5301 update_cfs_group(se);
2069dd75
PZ
5302 }
5303
2802bf3c 5304 if (!se) {
72465447 5305 add_nr_running(rq, 1);
2802bf3c
MR
5306 /*
5307 * Since new tasks are assigned an initial util_avg equal to
5308 * half of the spare capacity of their CPU, tiny tasks have the
5309 * ability to cross the overutilized threshold, which will
5310 * result in the load balancer ruining all the task placement
5311 * done by EAS. As a way to mitigate that effect, do not account
5312 * for the first enqueue operation of new tasks during the
5313 * overutilized flag detection.
5314 *
5315 * A better way of solving this problem would be to wait for
5316 * the PELT signals of tasks to converge before taking them
5317 * into account, but that is not straightforward to implement,
5318 * and the following generally works well enough in practice.
5319 */
5320 if (flags & ENQUEUE_WAKEUP)
5321 update_overutilized_status(rq);
5322
5323 }
cd126afe 5324
f6783319
VG
5325 if (cfs_bandwidth_used()) {
5326 /*
5327 * When bandwidth control is enabled; the cfs_rq_throttled()
5328 * breaks in the above iteration can result in incomplete
5329 * leaf list maintenance, resulting in triggering the assertion
5330 * below.
5331 */
5332 for_each_sched_entity(se) {
5333 cfs_rq = cfs_rq_of(se);
5334
5335 if (list_add_leaf_cfs_rq(cfs_rq))
5336 break;
5337 }
5338 }
5339
5d299eab
PZ
5340 assert_list_leaf_cfs_rq(rq);
5341
a4c2f00f 5342 hrtick_update(rq);
bf0f6f24
IM
5343}
5344
2f36825b
VP
5345static void set_next_buddy(struct sched_entity *se);
5346
bf0f6f24
IM
5347/*
5348 * The dequeue_task method is called before nr_running is
5349 * decreased. We remove the task from the rbtree and
5350 * update the fair scheduling stats:
5351 */
371fd7e7 5352static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5353{
5354 struct cfs_rq *cfs_rq;
62fb1851 5355 struct sched_entity *se = &p->se;
2f36825b 5356 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
5357
5358 for_each_sched_entity(se) {
5359 cfs_rq = cfs_rq_of(se);
371fd7e7 5360 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5361
5362 /*
5363 * end evaluation on encountering a throttled cfs_rq
5364 *
5365 * note: in the case of encountering a throttled cfs_rq we will
5366 * post the final h_nr_running decrement below.
5367 */
5368 if (cfs_rq_throttled(cfs_rq))
5369 break;
953bfcd1 5370 cfs_rq->h_nr_running--;
2069dd75 5371
bf0f6f24 5372 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5373 if (cfs_rq->load.weight) {
754bd598
KK
5374 /* Avoid re-evaluating load for this entity: */
5375 se = parent_entity(se);
2f36825b
VP
5376 /*
5377 * Bias pick_next to pick a task from this cfs_rq, as
5378 * p is sleeping when it is within its sched_slice.
5379 */
754bd598
KK
5380 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5381 set_next_buddy(se);
bf0f6f24 5382 break;
2f36825b 5383 }
371fd7e7 5384 flags |= DEQUEUE_SLEEP;
bf0f6f24 5385 }
8f4d37ec 5386
2069dd75 5387 for_each_sched_entity(se) {
0f317143 5388 cfs_rq = cfs_rq_of(se);
953bfcd1 5389 cfs_rq->h_nr_running--;
2069dd75 5390
85dac906
PT
5391 if (cfs_rq_throttled(cfs_rq))
5392 break;
5393
88c0616e 5394 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5395 update_cfs_group(se);
2069dd75
PZ
5396 }
5397
cd126afe 5398 if (!se)
72465447 5399 sub_nr_running(rq, 1);
cd126afe 5400
7f65ea42 5401 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5402 hrtick_update(rq);
bf0f6f24
IM
5403}
5404
e7693a36 5405#ifdef CONFIG_SMP
10e2f1ac
PZ
5406
5407/* Working cpumask for: load_balance, load_balance_newidle. */
5408DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5409DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5410
9fd81dd5 5411#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5412
5413static struct {
5414 cpumask_var_t idle_cpus_mask;
5415 atomic_t nr_cpus;
f643ea22 5416 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5417 unsigned long next_balance; /* in jiffy units */
f643ea22 5418 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5419} nohz ____cacheline_aligned;
5420
9fd81dd5 5421#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5422
a3df0679 5423static unsigned long cpu_runnable_load(struct rq *rq)
7ea241af 5424{
c7132dd6 5425 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5426}
5427
ced549fa 5428static unsigned long capacity_of(int cpu)
029632fb 5429{
ced549fa 5430 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5431}
5432
5433static unsigned long cpu_avg_load_per_task(int cpu)
5434{
5435 struct rq *rq = cpu_rq(cpu);
316c1608 5436 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
a3df0679 5437 unsigned long load_avg = cpu_runnable_load(rq);
029632fb
PZ
5438
5439 if (nr_running)
b92486cb 5440 return load_avg / nr_running;
029632fb
PZ
5441
5442 return 0;
5443}
5444
c58d25f3
PZ
5445static void record_wakee(struct task_struct *p)
5446{
5447 /*
5448 * Only decay a single time; tasks that have less then 1 wakeup per
5449 * jiffy will not have built up many flips.
5450 */
5451 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5452 current->wakee_flips >>= 1;
5453 current->wakee_flip_decay_ts = jiffies;
5454 }
5455
5456 if (current->last_wakee != p) {
5457 current->last_wakee = p;
5458 current->wakee_flips++;
5459 }
5460}
5461
63b0e9ed
MG
5462/*
5463 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5464 *
63b0e9ed 5465 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5466 * at a frequency roughly N times higher than one of its wakees.
5467 *
5468 * In order to determine whether we should let the load spread vs consolidating
5469 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5470 * partner, and a factor of lls_size higher frequency in the other.
5471 *
5472 * With both conditions met, we can be relatively sure that the relationship is
5473 * non-monogamous, with partner count exceeding socket size.
5474 *
5475 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5476 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5477 * socket size.
63b0e9ed 5478 */
62470419
MW
5479static int wake_wide(struct task_struct *p)
5480{
63b0e9ed
MG
5481 unsigned int master = current->wakee_flips;
5482 unsigned int slave = p->wakee_flips;
7d9ffa89 5483 int factor = this_cpu_read(sd_llc_size);
62470419 5484
63b0e9ed
MG
5485 if (master < slave)
5486 swap(master, slave);
5487 if (slave < factor || master < slave * factor)
5488 return 0;
5489 return 1;
62470419
MW
5490}
5491
90001d67 5492/*
d153b153
PZ
5493 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5494 * soonest. For the purpose of speed we only consider the waking and previous
5495 * CPU.
90001d67 5496 *
7332dec0
MG
5497 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5498 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5499 *
5500 * wake_affine_weight() - considers the weight to reflect the average
5501 * scheduling latency of the CPUs. This seems to work
5502 * for the overloaded case.
90001d67 5503 */
3b76c4a3 5504static int
89a55f56 5505wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5506{
7332dec0
MG
5507 /*
5508 * If this_cpu is idle, it implies the wakeup is from interrupt
5509 * context. Only allow the move if cache is shared. Otherwise an
5510 * interrupt intensive workload could force all tasks onto one
5511 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5512 *
5513 * If the prev_cpu is idle and cache affine then avoid a migration.
5514 * There is no guarantee that the cache hot data from an interrupt
5515 * is more important than cache hot data on the prev_cpu and from
5516 * a cpufreq perspective, it's better to have higher utilisation
5517 * on one CPU.
7332dec0 5518 */
943d355d
RJ
5519 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5520 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5521
d153b153 5522 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5523 return this_cpu;
90001d67 5524
3b76c4a3 5525 return nr_cpumask_bits;
90001d67
PZ
5526}
5527
3b76c4a3 5528static int
f2cdd9cc
PZ
5529wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5530 int this_cpu, int prev_cpu, int sync)
90001d67 5531{
90001d67
PZ
5532 s64 this_eff_load, prev_eff_load;
5533 unsigned long task_load;
5534
a3df0679 5535 this_eff_load = cpu_runnable_load(cpu_rq(this_cpu));
90001d67 5536
90001d67
PZ
5537 if (sync) {
5538 unsigned long current_load = task_h_load(current);
5539
f2cdd9cc 5540 if (current_load > this_eff_load)
3b76c4a3 5541 return this_cpu;
90001d67 5542
f2cdd9cc 5543 this_eff_load -= current_load;
90001d67
PZ
5544 }
5545
90001d67
PZ
5546 task_load = task_h_load(p);
5547
f2cdd9cc
PZ
5548 this_eff_load += task_load;
5549 if (sched_feat(WA_BIAS))
5550 this_eff_load *= 100;
5551 this_eff_load *= capacity_of(prev_cpu);
90001d67 5552
a3df0679 5553 prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5554 prev_eff_load -= task_load;
5555 if (sched_feat(WA_BIAS))
5556 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5557 prev_eff_load *= capacity_of(this_cpu);
90001d67 5558
082f764a
MG
5559 /*
5560 * If sync, adjust the weight of prev_eff_load such that if
5561 * prev_eff == this_eff that select_idle_sibling() will consider
5562 * stacking the wakee on top of the waker if no other CPU is
5563 * idle.
5564 */
5565 if (sync)
5566 prev_eff_load += 1;
5567
5568 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5569}
5570
772bd008 5571static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5572 int this_cpu, int prev_cpu, int sync)
098fb9db 5573{
3b76c4a3 5574 int target = nr_cpumask_bits;
098fb9db 5575
89a55f56 5576 if (sched_feat(WA_IDLE))
3b76c4a3 5577 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5578
3b76c4a3
MG
5579 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5580 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5581
ae92882e 5582 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5583 if (target == nr_cpumask_bits)
5584 return prev_cpu;
098fb9db 5585
3b76c4a3
MG
5586 schedstat_inc(sd->ttwu_move_affine);
5587 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5588 return target;
098fb9db
IM
5589}
5590
c469933e 5591static unsigned long cpu_util_without(int cpu, struct task_struct *p);
6a0b19c0 5592
c469933e 5593static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
6a0b19c0 5594{
c469933e 5595 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
6a0b19c0
MR
5596}
5597
aaee1203
PZ
5598/*
5599 * find_idlest_group finds and returns the least busy CPU group within the
5600 * domain.
6fee85cc
BJ
5601 *
5602 * Assumes p is allowed on at least one CPU in sd.
aaee1203
PZ
5603 */
5604static struct sched_group *
78e7ed53 5605find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5606 int this_cpu, int sd_flag)
e7693a36 5607{
b3bd3de6 5608 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5609 struct sched_group *most_spare_sg = NULL;
0d10ab95
BJ
5610 unsigned long min_runnable_load = ULONG_MAX;
5611 unsigned long this_runnable_load = ULONG_MAX;
5612 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6a0b19c0 5613 unsigned long most_spare = 0, this_spare = 0;
6b94780e
VG
5614 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5615 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5616 (sd->imbalance_pct-100) / 100;
e7693a36 5617
aaee1203 5618 do {
6b94780e
VG
5619 unsigned long load, avg_load, runnable_load;
5620 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5621 int local_group;
5622 int i;
e7693a36 5623
aaee1203 5624 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5625 if (!cpumask_intersects(sched_group_span(group),
3bd37062 5626 p->cpus_ptr))
aaee1203
PZ
5627 continue;
5628
5629 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5630 sched_group_span(group));
aaee1203 5631
6a0b19c0
MR
5632 /*
5633 * Tally up the load of all CPUs in the group and find
5634 * the group containing the CPU with most spare capacity.
5635 */
aaee1203 5636 avg_load = 0;
6b94780e 5637 runnable_load = 0;
6a0b19c0 5638 max_spare_cap = 0;
aaee1203 5639
ae4df9d6 5640 for_each_cpu(i, sched_group_span(group)) {
a3df0679 5641 load = cpu_runnable_load(cpu_rq(i));
6b94780e
VG
5642 runnable_load += load;
5643
5644 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0 5645
c469933e 5646 spare_cap = capacity_spare_without(i, p);
6a0b19c0
MR
5647
5648 if (spare_cap > max_spare_cap)
5649 max_spare_cap = spare_cap;
aaee1203
PZ
5650 }
5651
63b2ca30 5652 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5653 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5654 group->sgc->capacity;
5655 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5656 group->sgc->capacity;
aaee1203
PZ
5657
5658 if (local_group) {
6b94780e
VG
5659 this_runnable_load = runnable_load;
5660 this_avg_load = avg_load;
6a0b19c0
MR
5661 this_spare = max_spare_cap;
5662 } else {
6b94780e
VG
5663 if (min_runnable_load > (runnable_load + imbalance)) {
5664 /*
5665 * The runnable load is significantly smaller
97fb7a0a 5666 * so we can pick this new CPU:
6b94780e
VG
5667 */
5668 min_runnable_load = runnable_load;
5669 min_avg_load = avg_load;
5670 idlest = group;
5671 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5672 (100*min_avg_load > imbalance_scale*avg_load)) {
5673 /*
5674 * The runnable loads are close so take the
97fb7a0a 5675 * blocked load into account through avg_load:
6b94780e
VG
5676 */
5677 min_avg_load = avg_load;
6a0b19c0
MR
5678 idlest = group;
5679 }
5680
5681 if (most_spare < max_spare_cap) {
5682 most_spare = max_spare_cap;
5683 most_spare_sg = group;
5684 }
aaee1203
PZ
5685 }
5686 } while (group = group->next, group != sd->groups);
5687
6a0b19c0
MR
5688 /*
5689 * The cross-over point between using spare capacity or least load
5690 * is too conservative for high utilization tasks on partially
5691 * utilized systems if we require spare_capacity > task_util(p),
5692 * so we allow for some task stuffing by using
5693 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5694 *
5695 * Spare capacity can't be used for fork because the utilization has
5696 * not been set yet, we must first select a rq to compute the initial
5697 * utilization.
6a0b19c0 5698 */
f519a3f1
VG
5699 if (sd_flag & SD_BALANCE_FORK)
5700 goto skip_spare;
5701
6a0b19c0 5702 if (this_spare > task_util(p) / 2 &&
6b94780e 5703 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5704 return NULL;
6b94780e
VG
5705
5706 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5707 return most_spare_sg;
5708
f519a3f1 5709skip_spare:
6b94780e
VG
5710 if (!idlest)
5711 return NULL;
5712
2c833627
MG
5713 /*
5714 * When comparing groups across NUMA domains, it's possible for the
5715 * local domain to be very lightly loaded relative to the remote
5716 * domains but "imbalance" skews the comparison making remote CPUs
5717 * look much more favourable. When considering cross-domain, add
5718 * imbalance to the runnable load on the remote node and consider
5719 * staying local.
5720 */
5721 if ((sd->flags & SD_NUMA) &&
5722 min_runnable_load + imbalance >= this_runnable_load)
5723 return NULL;
5724
6b94780e 5725 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5726 return NULL;
6b94780e
VG
5727
5728 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5729 (100*this_avg_load < imbalance_scale*min_avg_load))
5730 return NULL;
5731
aaee1203
PZ
5732 return idlest;
5733}
5734
5735/*
97fb7a0a 5736 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5737 */
5738static int
18bd1b4b 5739find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5740{
5741 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5742 unsigned int min_exit_latency = UINT_MAX;
5743 u64 latest_idle_timestamp = 0;
5744 int least_loaded_cpu = this_cpu;
5745 int shallowest_idle_cpu = -1;
aaee1203
PZ
5746 int i;
5747
eaecf41f
MR
5748 /* Check if we have any choice: */
5749 if (group->group_weight == 1)
ae4df9d6 5750 return cpumask_first(sched_group_span(group));
eaecf41f 5751
aaee1203 5752 /* Traverse only the allowed CPUs */
3bd37062 5753 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
943d355d 5754 if (available_idle_cpu(i)) {
83a0a96a
NP
5755 struct rq *rq = cpu_rq(i);
5756 struct cpuidle_state *idle = idle_get_state(rq);
5757 if (idle && idle->exit_latency < min_exit_latency) {
5758 /*
5759 * We give priority to a CPU whose idle state
5760 * has the smallest exit latency irrespective
5761 * of any idle timestamp.
5762 */
5763 min_exit_latency = idle->exit_latency;
5764 latest_idle_timestamp = rq->idle_stamp;
5765 shallowest_idle_cpu = i;
5766 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5767 rq->idle_stamp > latest_idle_timestamp) {
5768 /*
5769 * If equal or no active idle state, then
5770 * the most recently idled CPU might have
5771 * a warmer cache.
5772 */
5773 latest_idle_timestamp = rq->idle_stamp;
5774 shallowest_idle_cpu = i;
5775 }
9f96742a 5776 } else if (shallowest_idle_cpu == -1) {
a3df0679 5777 load = cpu_runnable_load(cpu_rq(i));
18cec7e0 5778 if (load < min_load) {
83a0a96a
NP
5779 min_load = load;
5780 least_loaded_cpu = i;
5781 }
e7693a36
GH
5782 }
5783 }
5784
83a0a96a 5785 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5786}
e7693a36 5787
18bd1b4b
BJ
5788static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5789 int cpu, int prev_cpu, int sd_flag)
5790{
93f50f90 5791 int new_cpu = cpu;
18bd1b4b 5792
3bd37062 5793 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
5794 return prev_cpu;
5795
c976a862 5796 /*
c469933e
PB
5797 * We need task's util for capacity_spare_without, sync it up to
5798 * prev_cpu's last_update_time.
c976a862
VK
5799 */
5800 if (!(sd_flag & SD_BALANCE_FORK))
5801 sync_entity_load_avg(&p->se);
5802
18bd1b4b
BJ
5803 while (sd) {
5804 struct sched_group *group;
5805 struct sched_domain *tmp;
5806 int weight;
5807
5808 if (!(sd->flags & sd_flag)) {
5809 sd = sd->child;
5810 continue;
5811 }
5812
5813 group = find_idlest_group(sd, p, cpu, sd_flag);
5814 if (!group) {
5815 sd = sd->child;
5816 continue;
5817 }
5818
5819 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5820 if (new_cpu == cpu) {
97fb7a0a 5821 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5822 sd = sd->child;
5823 continue;
5824 }
5825
97fb7a0a 5826 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5827 cpu = new_cpu;
5828 weight = sd->span_weight;
5829 sd = NULL;
5830 for_each_domain(cpu, tmp) {
5831 if (weight <= tmp->span_weight)
5832 break;
5833 if (tmp->flags & sd_flag)
5834 sd = tmp;
5835 }
18bd1b4b
BJ
5836 }
5837
5838 return new_cpu;
5839}
5840
10e2f1ac 5841#ifdef CONFIG_SCHED_SMT
ba2591a5 5842DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 5843EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
5844
5845static inline void set_idle_cores(int cpu, int val)
5846{
5847 struct sched_domain_shared *sds;
5848
5849 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5850 if (sds)
5851 WRITE_ONCE(sds->has_idle_cores, val);
5852}
5853
5854static inline bool test_idle_cores(int cpu, bool def)
5855{
5856 struct sched_domain_shared *sds;
5857
5858 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5859 if (sds)
5860 return READ_ONCE(sds->has_idle_cores);
5861
5862 return def;
5863}
5864
5865/*
5866 * Scans the local SMT mask to see if the entire core is idle, and records this
5867 * information in sd_llc_shared->has_idle_cores.
5868 *
5869 * Since SMT siblings share all cache levels, inspecting this limited remote
5870 * state should be fairly cheap.
5871 */
1b568f0a 5872void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
5873{
5874 int core = cpu_of(rq);
5875 int cpu;
5876
5877 rcu_read_lock();
5878 if (test_idle_cores(core, true))
5879 goto unlock;
5880
5881 for_each_cpu(cpu, cpu_smt_mask(core)) {
5882 if (cpu == core)
5883 continue;
5884
943d355d 5885 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5886 goto unlock;
5887 }
5888
5889 set_idle_cores(core, 1);
5890unlock:
5891 rcu_read_unlock();
5892}
5893
5894/*
5895 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5896 * there are no idle cores left in the system; tracked through
5897 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5898 */
5899static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5900{
5901 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 5902 int core, cpu;
10e2f1ac 5903
1b568f0a
PZ
5904 if (!static_branch_likely(&sched_smt_present))
5905 return -1;
5906
10e2f1ac
PZ
5907 if (!test_idle_cores(target, false))
5908 return -1;
5909
3bd37062 5910 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
10e2f1ac 5911
c743f0a5 5912 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
5913 bool idle = true;
5914
5915 for_each_cpu(cpu, cpu_smt_mask(core)) {
c89d92ed 5916 __cpumask_clear_cpu(cpu, cpus);
943d355d 5917 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
5918 idle = false;
5919 }
5920
5921 if (idle)
5922 return core;
5923 }
5924
5925 /*
5926 * Failed to find an idle core; stop looking for one.
5927 */
5928 set_idle_cores(target, 0);
5929
5930 return -1;
5931}
5932
5933/*
5934 * Scan the local SMT mask for idle CPUs.
5935 */
1b5500d7 5936static int select_idle_smt(struct task_struct *p, int target)
10e2f1ac
PZ
5937{
5938 int cpu;
5939
1b568f0a
PZ
5940 if (!static_branch_likely(&sched_smt_present))
5941 return -1;
5942
10e2f1ac 5943 for_each_cpu(cpu, cpu_smt_mask(target)) {
3bd37062 5944 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
10e2f1ac 5945 continue;
943d355d 5946 if (available_idle_cpu(cpu))
10e2f1ac
PZ
5947 return cpu;
5948 }
5949
5950 return -1;
5951}
5952
5953#else /* CONFIG_SCHED_SMT */
5954
5955static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5956{
5957 return -1;
5958}
5959
1b5500d7 5960static inline int select_idle_smt(struct task_struct *p, int target)
10e2f1ac
PZ
5961{
5962 return -1;
5963}
5964
5965#endif /* CONFIG_SCHED_SMT */
5966
5967/*
5968 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5969 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5970 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 5971 */
10e2f1ac
PZ
5972static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5973{
9cfb38a7 5974 struct sched_domain *this_sd;
1ad3aaf3 5975 u64 avg_cost, avg_idle;
10e2f1ac
PZ
5976 u64 time, cost;
5977 s64 delta;
1ad3aaf3 5978 int cpu, nr = INT_MAX;
8dc2d993 5979 int this = smp_processor_id();
10e2f1ac 5980
9cfb38a7
WL
5981 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5982 if (!this_sd)
5983 return -1;
5984
10e2f1ac
PZ
5985 /*
5986 * Due to large variance we need a large fuzz factor; hackbench in
5987 * particularly is sensitive here.
5988 */
1ad3aaf3
PZ
5989 avg_idle = this_rq()->avg_idle / 512;
5990 avg_cost = this_sd->avg_scan_cost + 1;
5991
5992 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
5993 return -1;
5994
1ad3aaf3
PZ
5995 if (sched_feat(SIS_PROP)) {
5996 u64 span_avg = sd->span_weight * avg_idle;
5997 if (span_avg > 4*avg_cost)
5998 nr = div_u64(span_avg, avg_cost);
5999 else
6000 nr = 4;
6001 }
6002
8dc2d993 6003 time = cpu_clock(this);
10e2f1ac 6004
c743f0a5 6005 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
6006 if (!--nr)
6007 return -1;
3bd37062 6008 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
10e2f1ac 6009 continue;
943d355d 6010 if (available_idle_cpu(cpu))
10e2f1ac
PZ
6011 break;
6012 }
6013
8dc2d993 6014 time = cpu_clock(this) - time;
10e2f1ac
PZ
6015 cost = this_sd->avg_scan_cost;
6016 delta = (s64)(time - cost) / 8;
6017 this_sd->avg_scan_cost += delta;
6018
6019 return cpu;
6020}
6021
6022/*
6023 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6024 */
772bd008 6025static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6026{
99bd5e2f 6027 struct sched_domain *sd;
32e839dd 6028 int i, recent_used_cpu;
a50bde51 6029
943d355d 6030 if (available_idle_cpu(target))
e0a79f52 6031 return target;
99bd5e2f
SS
6032
6033 /*
97fb7a0a 6034 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6035 */
943d355d 6036 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
772bd008 6037 return prev;
a50bde51 6038
97fb7a0a 6039 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6040 recent_used_cpu = p->recent_used_cpu;
6041 if (recent_used_cpu != prev &&
6042 recent_used_cpu != target &&
6043 cpus_share_cache(recent_used_cpu, target) &&
943d355d 6044 available_idle_cpu(recent_used_cpu) &&
3bd37062 6045 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
32e839dd
MG
6046 /*
6047 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6048 * candidate for the next wake:
32e839dd
MG
6049 */
6050 p->recent_used_cpu = prev;
6051 return recent_used_cpu;
6052 }
6053
518cd623 6054 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6055 if (!sd)
6056 return target;
772bd008 6057
10e2f1ac
PZ
6058 i = select_idle_core(p, sd, target);
6059 if ((unsigned)i < nr_cpumask_bits)
6060 return i;
37407ea7 6061
10e2f1ac
PZ
6062 i = select_idle_cpu(p, sd, target);
6063 if ((unsigned)i < nr_cpumask_bits)
6064 return i;
6065
1b5500d7 6066 i = select_idle_smt(p, target);
10e2f1ac
PZ
6067 if ((unsigned)i < nr_cpumask_bits)
6068 return i;
970e1789 6069
a50bde51
PZ
6070 return target;
6071}
231678b7 6072
f9be3e59
PB
6073/**
6074 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6075 * @cpu: the CPU to get the utilization of
6076 *
6077 * The unit of the return value must be the one of capacity so we can compare
6078 * the utilization with the capacity of the CPU that is available for CFS task
6079 * (ie cpu_capacity).
231678b7
DE
6080 *
6081 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6082 * recent utilization of currently non-runnable tasks on a CPU. It represents
6083 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6084 * capacity_orig is the cpu_capacity available at the highest frequency
6085 * (arch_scale_freq_capacity()).
6086 * The utilization of a CPU converges towards a sum equal to or less than the
6087 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6088 * the running time on this CPU scaled by capacity_curr.
6089 *
f9be3e59
PB
6090 * The estimated utilization of a CPU is defined to be the maximum between its
6091 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6092 * currently RUNNABLE on that CPU.
6093 * This allows to properly represent the expected utilization of a CPU which
6094 * has just got a big task running since a long sleep period. At the same time
6095 * however it preserves the benefits of the "blocked utilization" in
6096 * describing the potential for other tasks waking up on the same CPU.
6097 *
231678b7
DE
6098 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6099 * higher than capacity_orig because of unfortunate rounding in
6100 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6101 * the average stabilizes with the new running time. We need to check that the
6102 * utilization stays within the range of [0..capacity_orig] and cap it if
6103 * necessary. Without utilization capping, a group could be seen as overloaded
6104 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6105 * available capacity. We allow utilization to overshoot capacity_curr (but not
6106 * capacity_orig) as it useful for predicting the capacity required after task
6107 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6108 *
6109 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6110 */
f9be3e59 6111static inline unsigned long cpu_util(int cpu)
8bb5b00c 6112{
f9be3e59
PB
6113 struct cfs_rq *cfs_rq;
6114 unsigned int util;
6115
6116 cfs_rq = &cpu_rq(cpu)->cfs;
6117 util = READ_ONCE(cfs_rq->avg.util_avg);
6118
6119 if (sched_feat(UTIL_EST))
6120 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6121
f9be3e59 6122 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6123}
a50bde51 6124
104cb16d 6125/*
c469933e
PB
6126 * cpu_util_without: compute cpu utilization without any contributions from *p
6127 * @cpu: the CPU which utilization is requested
6128 * @p: the task which utilization should be discounted
6129 *
6130 * The utilization of a CPU is defined by the utilization of tasks currently
6131 * enqueued on that CPU as well as tasks which are currently sleeping after an
6132 * execution on that CPU.
6133 *
6134 * This method returns the utilization of the specified CPU by discounting the
6135 * utilization of the specified task, whenever the task is currently
6136 * contributing to the CPU utilization.
104cb16d 6137 */
c469933e 6138static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6139{
f9be3e59
PB
6140 struct cfs_rq *cfs_rq;
6141 unsigned int util;
104cb16d
MR
6142
6143 /* Task has no contribution or is new */
f9be3e59 6144 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6145 return cpu_util(cpu);
6146
f9be3e59
PB
6147 cfs_rq = &cpu_rq(cpu)->cfs;
6148 util = READ_ONCE(cfs_rq->avg.util_avg);
6149
c469933e 6150 /* Discount task's util from CPU's util */
b5c0ce7b 6151 lsub_positive(&util, task_util(p));
104cb16d 6152
f9be3e59
PB
6153 /*
6154 * Covered cases:
6155 *
6156 * a) if *p is the only task sleeping on this CPU, then:
6157 * cpu_util (== task_util) > util_est (== 0)
6158 * and thus we return:
c469933e 6159 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6160 *
6161 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6162 * IDLE, then:
6163 * cpu_util >= task_util
6164 * cpu_util > util_est (== 0)
6165 * and thus we discount *p's blocked utilization to return:
c469933e 6166 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6167 *
6168 * c) if other tasks are RUNNABLE on that CPU and
6169 * util_est > cpu_util
6170 * then we use util_est since it returns a more restrictive
6171 * estimation of the spare capacity on that CPU, by just
6172 * considering the expected utilization of tasks already
6173 * runnable on that CPU.
6174 *
6175 * Cases a) and b) are covered by the above code, while case c) is
6176 * covered by the following code when estimated utilization is
6177 * enabled.
6178 */
c469933e
PB
6179 if (sched_feat(UTIL_EST)) {
6180 unsigned int estimated =
6181 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6182
6183 /*
6184 * Despite the following checks we still have a small window
6185 * for a possible race, when an execl's select_task_rq_fair()
6186 * races with LB's detach_task():
6187 *
6188 * detach_task()
6189 * p->on_rq = TASK_ON_RQ_MIGRATING;
6190 * ---------------------------------- A
6191 * deactivate_task() \
6192 * dequeue_task() + RaceTime
6193 * util_est_dequeue() /
6194 * ---------------------------------- B
6195 *
6196 * The additional check on "current == p" it's required to
6197 * properly fix the execl regression and it helps in further
6198 * reducing the chances for the above race.
6199 */
b5c0ce7b
PB
6200 if (unlikely(task_on_rq_queued(p) || current == p))
6201 lsub_positive(&estimated, _task_util_est(p));
6202
c469933e
PB
6203 util = max(util, estimated);
6204 }
f9be3e59
PB
6205
6206 /*
6207 * Utilization (estimated) can exceed the CPU capacity, thus let's
6208 * clamp to the maximum CPU capacity to ensure consistency with
6209 * the cpu_util call.
6210 */
6211 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6212}
6213
3273163c
MR
6214/*
6215 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6216 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6217 *
6218 * In that case WAKE_AFFINE doesn't make sense and we'll let
6219 * BALANCE_WAKE sort things out.
6220 */
6221static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6222{
6223 long min_cap, max_cap;
6224
df054e84
MR
6225 if (!static_branch_unlikely(&sched_asym_cpucapacity))
6226 return 0;
6227
3273163c
MR
6228 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6229 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6230
6231 /* Minimum capacity is close to max, no need to abort wake_affine */
6232 if (max_cap - min_cap < max_cap >> 3)
6233 return 0;
6234
104cb16d
MR
6235 /* Bring task utilization in sync with prev_cpu */
6236 sync_entity_load_avg(&p->se);
6237
3b1baa64 6238 return !task_fits_capacity(p, min_cap);
3273163c
MR
6239}
6240
390031e4
QP
6241/*
6242 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6243 * to @dst_cpu.
6244 */
6245static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6246{
6247 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6248 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6249
6250 /*
6251 * If @p migrates from @cpu to another, remove its contribution. Or,
6252 * if @p migrates from another CPU to @cpu, add its contribution. In
6253 * the other cases, @cpu is not impacted by the migration, so the
6254 * util_avg should already be correct.
6255 */
6256 if (task_cpu(p) == cpu && dst_cpu != cpu)
6257 sub_positive(&util, task_util(p));
6258 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6259 util += task_util(p);
6260
6261 if (sched_feat(UTIL_EST)) {
6262 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6263
6264 /*
6265 * During wake-up, the task isn't enqueued yet and doesn't
6266 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6267 * so just add it (if needed) to "simulate" what will be
6268 * cpu_util() after the task has been enqueued.
6269 */
6270 if (dst_cpu == cpu)
6271 util_est += _task_util_est(p);
6272
6273 util = max(util, util_est);
6274 }
6275
6276 return min(util, capacity_orig_of(cpu));
6277}
6278
6279/*
6280 * compute_energy(): Estimates the energy that would be consumed if @p was
6281 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6282 * landscape of the * CPUs after the task migration, and uses the Energy Model
6283 * to compute what would be the energy if we decided to actually migrate that
6284 * task.
6285 */
6286static long
6287compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6288{
af24bde8
PB
6289 unsigned int max_util, util_cfs, cpu_util, cpu_cap;
6290 unsigned long sum_util, energy = 0;
6291 struct task_struct *tsk;
390031e4
QP
6292 int cpu;
6293
6294 for (; pd; pd = pd->next) {
af24bde8
PB
6295 struct cpumask *pd_mask = perf_domain_span(pd);
6296
6297 /*
6298 * The energy model mandates all the CPUs of a performance
6299 * domain have the same capacity.
6300 */
6301 cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
390031e4 6302 max_util = sum_util = 0;
af24bde8 6303
390031e4
QP
6304 /*
6305 * The capacity state of CPUs of the current rd can be driven by
6306 * CPUs of another rd if they belong to the same performance
6307 * domain. So, account for the utilization of these CPUs too
6308 * by masking pd with cpu_online_mask instead of the rd span.
6309 *
6310 * If an entire performance domain is outside of the current rd,
6311 * it will not appear in its pd list and will not be accounted
6312 * by compute_energy().
6313 */
af24bde8
PB
6314 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6315 util_cfs = cpu_util_next(cpu, p, dst_cpu);
6316
6317 /*
6318 * Busy time computation: utilization clamping is not
6319 * required since the ratio (sum_util / cpu_capacity)
6320 * is already enough to scale the EM reported power
6321 * consumption at the (eventually clamped) cpu_capacity.
6322 */
6323 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6324 ENERGY_UTIL, NULL);
6325
6326 /*
6327 * Performance domain frequency: utilization clamping
6328 * must be considered since it affects the selection
6329 * of the performance domain frequency.
6330 * NOTE: in case RT tasks are running, by default the
6331 * FREQUENCY_UTIL's utilization can be max OPP.
6332 */
6333 tsk = cpu == dst_cpu ? p : NULL;
6334 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6335 FREQUENCY_UTIL, tsk);
6336 max_util = max(max_util, cpu_util);
390031e4
QP
6337 }
6338
6339 energy += em_pd_energy(pd->em_pd, max_util, sum_util);
6340 }
6341
6342 return energy;
6343}
6344
732cd75b
QP
6345/*
6346 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6347 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6348 * spare capacity in each performance domain and uses it as a potential
6349 * candidate to execute the task. Then, it uses the Energy Model to figure
6350 * out which of the CPU candidates is the most energy-efficient.
6351 *
6352 * The rationale for this heuristic is as follows. In a performance domain,
6353 * all the most energy efficient CPU candidates (according to the Energy
6354 * Model) are those for which we'll request a low frequency. When there are
6355 * several CPUs for which the frequency request will be the same, we don't
6356 * have enough data to break the tie between them, because the Energy Model
6357 * only includes active power costs. With this model, if we assume that
6358 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6359 * the maximum spare capacity in a performance domain is guaranteed to be among
6360 * the best candidates of the performance domain.
6361 *
6362 * In practice, it could be preferable from an energy standpoint to pack
6363 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6364 * but that could also hurt our chances to go cluster idle, and we have no
6365 * ways to tell with the current Energy Model if this is actually a good
6366 * idea or not. So, find_energy_efficient_cpu() basically favors
6367 * cluster-packing, and spreading inside a cluster. That should at least be
6368 * a good thing for latency, and this is consistent with the idea that most
6369 * of the energy savings of EAS come from the asymmetry of the system, and
6370 * not so much from breaking the tie between identical CPUs. That's also the
6371 * reason why EAS is enabled in the topology code only for systems where
6372 * SD_ASYM_CPUCAPACITY is set.
6373 *
6374 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6375 * they don't have any useful utilization data yet and it's not possible to
6376 * forecast their impact on energy consumption. Consequently, they will be
6377 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6378 * to be energy-inefficient in some use-cases. The alternative would be to
6379 * bias new tasks towards specific types of CPUs first, or to try to infer
6380 * their util_avg from the parent task, but those heuristics could hurt
6381 * other use-cases too. So, until someone finds a better way to solve this,
6382 * let's keep things simple by re-using the existing slow path.
6383 */
6384
6385static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6386{
6387 unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
6388 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6389 int cpu, best_energy_cpu = prev_cpu;
6390 struct perf_domain *head, *pd;
6391 unsigned long cpu_cap, util;
6392 struct sched_domain *sd;
6393
6394 rcu_read_lock();
6395 pd = rcu_dereference(rd->pd);
6396 if (!pd || READ_ONCE(rd->overutilized))
6397 goto fail;
6398 head = pd;
6399
6400 /*
6401 * Energy-aware wake-up happens on the lowest sched_domain starting
6402 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6403 */
6404 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6405 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6406 sd = sd->parent;
6407 if (!sd)
6408 goto fail;
6409
6410 sync_entity_load_avg(&p->se);
6411 if (!task_util_est(p))
6412 goto unlock;
6413
6414 for (; pd; pd = pd->next) {
6415 unsigned long cur_energy, spare_cap, max_spare_cap = 0;
6416 int max_spare_cap_cpu = -1;
6417
6418 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6419 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6420 continue;
6421
6422 /* Skip CPUs that will be overutilized. */
6423 util = cpu_util_next(cpu, p, cpu);
6424 cpu_cap = capacity_of(cpu);
6425 if (cpu_cap * 1024 < util * capacity_margin)
6426 continue;
6427
6428 /* Always use prev_cpu as a candidate. */
6429 if (cpu == prev_cpu) {
6430 prev_energy = compute_energy(p, prev_cpu, head);
6431 best_energy = min(best_energy, prev_energy);
6432 continue;
6433 }
6434
6435 /*
6436 * Find the CPU with the maximum spare capacity in
6437 * the performance domain
6438 */
6439 spare_cap = cpu_cap - util;
6440 if (spare_cap > max_spare_cap) {
6441 max_spare_cap = spare_cap;
6442 max_spare_cap_cpu = cpu;
6443 }
6444 }
6445
6446 /* Evaluate the energy impact of using this CPU. */
6447 if (max_spare_cap_cpu >= 0) {
6448 cur_energy = compute_energy(p, max_spare_cap_cpu, head);
6449 if (cur_energy < best_energy) {
6450 best_energy = cur_energy;
6451 best_energy_cpu = max_spare_cap_cpu;
6452 }
6453 }
6454 }
6455unlock:
6456 rcu_read_unlock();
6457
6458 /*
6459 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6460 * least 6% of the energy used by prev_cpu.
6461 */
6462 if (prev_energy == ULONG_MAX)
6463 return best_energy_cpu;
6464
6465 if ((prev_energy - best_energy) > (prev_energy >> 4))
6466 return best_energy_cpu;
6467
6468 return prev_cpu;
6469
6470fail:
6471 rcu_read_unlock();
6472
6473 return -1;
6474}
6475
aaee1203 6476/*
de91b9cb
MR
6477 * select_task_rq_fair: Select target runqueue for the waking task in domains
6478 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6479 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6480 *
97fb7a0a
IM
6481 * Balances load by selecting the idlest CPU in the idlest group, or under
6482 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6483 *
97fb7a0a 6484 * Returns the target CPU number.
aaee1203
PZ
6485 *
6486 * preempt must be disabled.
6487 */
0017d735 6488static int
ac66f547 6489select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6490{
f1d88b44 6491 struct sched_domain *tmp, *sd = NULL;
c88d5910 6492 int cpu = smp_processor_id();
63b0e9ed 6493 int new_cpu = prev_cpu;
99bd5e2f 6494 int want_affine = 0;
24d0c1d6 6495 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6496
c58d25f3
PZ
6497 if (sd_flag & SD_BALANCE_WAKE) {
6498 record_wakee(p);
732cd75b 6499
f8a696f2 6500 if (sched_energy_enabled()) {
732cd75b
QP
6501 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6502 if (new_cpu >= 0)
6503 return new_cpu;
6504 new_cpu = prev_cpu;
6505 }
6506
6507 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
3bd37062 6508 cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6509 }
aaee1203 6510
dce840a0 6511 rcu_read_lock();
aaee1203 6512 for_each_domain(cpu, tmp) {
e4f42888 6513 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6514 break;
e4f42888 6515
fe3bcfe1 6516 /*
97fb7a0a 6517 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6518 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6519 */
99bd5e2f
SS
6520 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6521 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6522 if (cpu != prev_cpu)
6523 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6524
6525 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6526 break;
f03542a7 6527 }
29cd8bae 6528
f03542a7 6529 if (tmp->flags & sd_flag)
29cd8bae 6530 sd = tmp;
63b0e9ed
MG
6531 else if (!want_affine)
6532 break;
29cd8bae
PZ
6533 }
6534
f1d88b44
VK
6535 if (unlikely(sd)) {
6536 /* Slow path */
18bd1b4b 6537 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6538 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6539 /* Fast path */
6540
6541 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6542
6543 if (want_affine)
6544 current->recent_used_cpu = cpu;
e7693a36 6545 }
dce840a0 6546 rcu_read_unlock();
e7693a36 6547
c88d5910 6548 return new_cpu;
e7693a36 6549}
0a74bef8 6550
144d8487
PZ
6551static void detach_entity_cfs_rq(struct sched_entity *se);
6552
0a74bef8 6553/*
97fb7a0a 6554 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6555 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6556 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6557 */
3f9672ba 6558static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6559{
59efa0ba
PZ
6560 /*
6561 * As blocked tasks retain absolute vruntime the migration needs to
6562 * deal with this by subtracting the old and adding the new
6563 * min_vruntime -- the latter is done by enqueue_entity() when placing
6564 * the task on the new runqueue.
6565 */
6566 if (p->state == TASK_WAKING) {
6567 struct sched_entity *se = &p->se;
6568 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6569 u64 min_vruntime;
6570
6571#ifndef CONFIG_64BIT
6572 u64 min_vruntime_copy;
6573
6574 do {
6575 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6576 smp_rmb();
6577 min_vruntime = cfs_rq->min_vruntime;
6578 } while (min_vruntime != min_vruntime_copy);
6579#else
6580 min_vruntime = cfs_rq->min_vruntime;
6581#endif
6582
6583 se->vruntime -= min_vruntime;
6584 }
6585
144d8487
PZ
6586 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6587 /*
6588 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6589 * rq->lock and can modify state directly.
6590 */
6591 lockdep_assert_held(&task_rq(p)->lock);
6592 detach_entity_cfs_rq(&p->se);
6593
6594 } else {
6595 /*
6596 * We are supposed to update the task to "current" time, then
6597 * its up to date and ready to go to new CPU/cfs_rq. But we
6598 * have difficulty in getting what current time is, so simply
6599 * throw away the out-of-date time. This will result in the
6600 * wakee task is less decayed, but giving the wakee more load
6601 * sounds not bad.
6602 */
6603 remove_entity_load_avg(&p->se);
6604 }
9d89c257
YD
6605
6606 /* Tell new CPU we are migrated */
6607 p->se.avg.last_update_time = 0;
3944a927
BS
6608
6609 /* We have migrated, no longer consider this task hot */
9d89c257 6610 p->se.exec_start = 0;
3f9672ba
SD
6611
6612 update_scan_period(p, new_cpu);
0a74bef8 6613}
12695578
YD
6614
6615static void task_dead_fair(struct task_struct *p)
6616{
6617 remove_entity_load_avg(&p->se);
6618}
e7693a36
GH
6619#endif /* CONFIG_SMP */
6620
a555e9d8 6621static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6622{
6623 unsigned long gran = sysctl_sched_wakeup_granularity;
6624
6625 /*
e52fb7c0
PZ
6626 * Since its curr running now, convert the gran from real-time
6627 * to virtual-time in his units.
13814d42
MG
6628 *
6629 * By using 'se' instead of 'curr' we penalize light tasks, so
6630 * they get preempted easier. That is, if 'se' < 'curr' then
6631 * the resulting gran will be larger, therefore penalizing the
6632 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6633 * be smaller, again penalizing the lighter task.
6634 *
6635 * This is especially important for buddies when the leftmost
6636 * task is higher priority than the buddy.
0bbd3336 6637 */
f4ad9bd2 6638 return calc_delta_fair(gran, se);
0bbd3336
PZ
6639}
6640
464b7527
PZ
6641/*
6642 * Should 'se' preempt 'curr'.
6643 *
6644 * |s1
6645 * |s2
6646 * |s3
6647 * g
6648 * |<--->|c
6649 *
6650 * w(c, s1) = -1
6651 * w(c, s2) = 0
6652 * w(c, s3) = 1
6653 *
6654 */
6655static int
6656wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6657{
6658 s64 gran, vdiff = curr->vruntime - se->vruntime;
6659
6660 if (vdiff <= 0)
6661 return -1;
6662
a555e9d8 6663 gran = wakeup_gran(se);
464b7527
PZ
6664 if (vdiff > gran)
6665 return 1;
6666
6667 return 0;
6668}
6669
02479099
PZ
6670static void set_last_buddy(struct sched_entity *se)
6671{
1da1843f 6672 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6673 return;
6674
c5ae366e
DA
6675 for_each_sched_entity(se) {
6676 if (SCHED_WARN_ON(!se->on_rq))
6677 return;
69c80f3e 6678 cfs_rq_of(se)->last = se;
c5ae366e 6679 }
02479099
PZ
6680}
6681
6682static void set_next_buddy(struct sched_entity *se)
6683{
1da1843f 6684 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6685 return;
6686
c5ae366e
DA
6687 for_each_sched_entity(se) {
6688 if (SCHED_WARN_ON(!se->on_rq))
6689 return;
69c80f3e 6690 cfs_rq_of(se)->next = se;
c5ae366e 6691 }
02479099
PZ
6692}
6693
ac53db59
RR
6694static void set_skip_buddy(struct sched_entity *se)
6695{
69c80f3e
VP
6696 for_each_sched_entity(se)
6697 cfs_rq_of(se)->skip = se;
ac53db59
RR
6698}
6699
bf0f6f24
IM
6700/*
6701 * Preempt the current task with a newly woken task if needed:
6702 */
5a9b86f6 6703static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6704{
6705 struct task_struct *curr = rq->curr;
8651a86c 6706 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6707 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6708 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6709 int next_buddy_marked = 0;
bf0f6f24 6710
4ae7d5ce
IM
6711 if (unlikely(se == pse))
6712 return;
6713
5238cdd3 6714 /*
163122b7 6715 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6716 * unconditionally check_prempt_curr() after an enqueue (which may have
6717 * lead to a throttle). This both saves work and prevents false
6718 * next-buddy nomination below.
6719 */
6720 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6721 return;
6722
2f36825b 6723 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6724 set_next_buddy(pse);
2f36825b
VP
6725 next_buddy_marked = 1;
6726 }
57fdc26d 6727
aec0a514
BR
6728 /*
6729 * We can come here with TIF_NEED_RESCHED already set from new task
6730 * wake up path.
5238cdd3
PT
6731 *
6732 * Note: this also catches the edge-case of curr being in a throttled
6733 * group (e.g. via set_curr_task), since update_curr() (in the
6734 * enqueue of curr) will have resulted in resched being set. This
6735 * prevents us from potentially nominating it as a false LAST_BUDDY
6736 * below.
aec0a514
BR
6737 */
6738 if (test_tsk_need_resched(curr))
6739 return;
6740
a2f5c9ab 6741 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6742 if (unlikely(task_has_idle_policy(curr)) &&
6743 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6744 goto preempt;
6745
91c234b4 6746 /*
a2f5c9ab
DH
6747 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6748 * is driven by the tick):
91c234b4 6749 */
8ed92e51 6750 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6751 return;
bf0f6f24 6752
464b7527 6753 find_matching_se(&se, &pse);
9bbd7374 6754 update_curr(cfs_rq_of(se));
002f128b 6755 BUG_ON(!pse);
2f36825b
VP
6756 if (wakeup_preempt_entity(se, pse) == 1) {
6757 /*
6758 * Bias pick_next to pick the sched entity that is
6759 * triggering this preemption.
6760 */
6761 if (!next_buddy_marked)
6762 set_next_buddy(pse);
3a7e73a2 6763 goto preempt;
2f36825b 6764 }
464b7527 6765
3a7e73a2 6766 return;
a65ac745 6767
3a7e73a2 6768preempt:
8875125e 6769 resched_curr(rq);
3a7e73a2
PZ
6770 /*
6771 * Only set the backward buddy when the current task is still
6772 * on the rq. This can happen when a wakeup gets interleaved
6773 * with schedule on the ->pre_schedule() or idle_balance()
6774 * point, either of which can * drop the rq lock.
6775 *
6776 * Also, during early boot the idle thread is in the fair class,
6777 * for obvious reasons its a bad idea to schedule back to it.
6778 */
6779 if (unlikely(!se->on_rq || curr == rq->idle))
6780 return;
6781
6782 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6783 set_last_buddy(se);
bf0f6f24
IM
6784}
6785
606dba2e 6786static struct task_struct *
d8ac8971 6787pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6788{
6789 struct cfs_rq *cfs_rq = &rq->cfs;
6790 struct sched_entity *se;
678d5718 6791 struct task_struct *p;
37e117c0 6792 int new_tasks;
678d5718 6793
6e83125c 6794again:
678d5718 6795 if (!cfs_rq->nr_running)
38033c37 6796 goto idle;
678d5718 6797
9674f5ca 6798#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6799 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6800 goto simple;
6801
6802 /*
6803 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6804 * likely that a next task is from the same cgroup as the current.
6805 *
6806 * Therefore attempt to avoid putting and setting the entire cgroup
6807 * hierarchy, only change the part that actually changes.
6808 */
6809
6810 do {
6811 struct sched_entity *curr = cfs_rq->curr;
6812
6813 /*
6814 * Since we got here without doing put_prev_entity() we also
6815 * have to consider cfs_rq->curr. If it is still a runnable
6816 * entity, update_curr() will update its vruntime, otherwise
6817 * forget we've ever seen it.
6818 */
54d27365
BS
6819 if (curr) {
6820 if (curr->on_rq)
6821 update_curr(cfs_rq);
6822 else
6823 curr = NULL;
678d5718 6824
54d27365
BS
6825 /*
6826 * This call to check_cfs_rq_runtime() will do the
6827 * throttle and dequeue its entity in the parent(s).
9674f5ca 6828 * Therefore the nr_running test will indeed
54d27365
BS
6829 * be correct.
6830 */
9674f5ca
VK
6831 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6832 cfs_rq = &rq->cfs;
6833
6834 if (!cfs_rq->nr_running)
6835 goto idle;
6836
54d27365 6837 goto simple;
9674f5ca 6838 }
54d27365 6839 }
678d5718
PZ
6840
6841 se = pick_next_entity(cfs_rq, curr);
6842 cfs_rq = group_cfs_rq(se);
6843 } while (cfs_rq);
6844
6845 p = task_of(se);
6846
6847 /*
6848 * Since we haven't yet done put_prev_entity and if the selected task
6849 * is a different task than we started out with, try and touch the
6850 * least amount of cfs_rqs.
6851 */
6852 if (prev != p) {
6853 struct sched_entity *pse = &prev->se;
6854
6855 while (!(cfs_rq = is_same_group(se, pse))) {
6856 int se_depth = se->depth;
6857 int pse_depth = pse->depth;
6858
6859 if (se_depth <= pse_depth) {
6860 put_prev_entity(cfs_rq_of(pse), pse);
6861 pse = parent_entity(pse);
6862 }
6863 if (se_depth >= pse_depth) {
6864 set_next_entity(cfs_rq_of(se), se);
6865 se = parent_entity(se);
6866 }
6867 }
6868
6869 put_prev_entity(cfs_rq, pse);
6870 set_next_entity(cfs_rq, se);
6871 }
6872
93824900 6873 goto done;
678d5718 6874simple:
678d5718 6875#endif
bf0f6f24 6876
3f1d2a31 6877 put_prev_task(rq, prev);
606dba2e 6878
bf0f6f24 6879 do {
678d5718 6880 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 6881 set_next_entity(cfs_rq, se);
bf0f6f24
IM
6882 cfs_rq = group_cfs_rq(se);
6883 } while (cfs_rq);
6884
8f4d37ec 6885 p = task_of(se);
678d5718 6886
13a453c2 6887done: __maybe_unused;
93824900
UR
6888#ifdef CONFIG_SMP
6889 /*
6890 * Move the next running task to the front of
6891 * the list, so our cfs_tasks list becomes MRU
6892 * one.
6893 */
6894 list_move(&p->se.group_node, &rq->cfs_tasks);
6895#endif
6896
b39e66ea
MG
6897 if (hrtick_enabled(rq))
6898 hrtick_start_fair(rq, p);
8f4d37ec 6899
3b1baa64
MR
6900 update_misfit_status(p, rq);
6901
8f4d37ec 6902 return p;
38033c37
PZ
6903
6904idle:
3b1baa64 6905 update_misfit_status(NULL, rq);
46f69fa3
MF
6906 new_tasks = idle_balance(rq, rf);
6907
37e117c0
PZ
6908 /*
6909 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6910 * possible for any higher priority task to appear. In that case we
6911 * must re-start the pick_next_entity() loop.
6912 */
e4aa358b 6913 if (new_tasks < 0)
37e117c0
PZ
6914 return RETRY_TASK;
6915
e4aa358b 6916 if (new_tasks > 0)
38033c37 6917 goto again;
38033c37 6918
23127296
VG
6919 /*
6920 * rq is about to be idle, check if we need to update the
6921 * lost_idle_time of clock_pelt
6922 */
6923 update_idle_rq_clock_pelt(rq);
6924
38033c37 6925 return NULL;
bf0f6f24
IM
6926}
6927
6928/*
6929 * Account for a descheduled task:
6930 */
31ee529c 6931static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
6932{
6933 struct sched_entity *se = &prev->se;
6934 struct cfs_rq *cfs_rq;
6935
6936 for_each_sched_entity(se) {
6937 cfs_rq = cfs_rq_of(se);
ab6cde26 6938 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
6939 }
6940}
6941
ac53db59
RR
6942/*
6943 * sched_yield() is very simple
6944 *
6945 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6946 */
6947static void yield_task_fair(struct rq *rq)
6948{
6949 struct task_struct *curr = rq->curr;
6950 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6951 struct sched_entity *se = &curr->se;
6952
6953 /*
6954 * Are we the only task in the tree?
6955 */
6956 if (unlikely(rq->nr_running == 1))
6957 return;
6958
6959 clear_buddies(cfs_rq, se);
6960
6961 if (curr->policy != SCHED_BATCH) {
6962 update_rq_clock(rq);
6963 /*
6964 * Update run-time statistics of the 'current'.
6965 */
6966 update_curr(cfs_rq);
916671c0
MG
6967 /*
6968 * Tell update_rq_clock() that we've just updated,
6969 * so we don't do microscopic update in schedule()
6970 * and double the fastpath cost.
6971 */
adcc8da8 6972 rq_clock_skip_update(rq);
ac53db59
RR
6973 }
6974
6975 set_skip_buddy(se);
6976}
6977
d95f4122
MG
6978static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6979{
6980 struct sched_entity *se = &p->se;
6981
5238cdd3
PT
6982 /* throttled hierarchies are not runnable */
6983 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
6984 return false;
6985
6986 /* Tell the scheduler that we'd really like pse to run next. */
6987 set_next_buddy(se);
6988
d95f4122
MG
6989 yield_task_fair(rq);
6990
6991 return true;
6992}
6993
681f3e68 6994#ifdef CONFIG_SMP
bf0f6f24 6995/**************************************************
e9c84cb8
PZ
6996 * Fair scheduling class load-balancing methods.
6997 *
6998 * BASICS
6999 *
7000 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7001 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7002 * time to each task. This is expressed in the following equation:
7003 *
7004 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7005 *
97fb7a0a 7006 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7007 * W_i,0 is defined as:
7008 *
7009 * W_i,0 = \Sum_j w_i,j (2)
7010 *
97fb7a0a 7011 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7012 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7013 *
7014 * The weight average is an exponential decay average of the instantaneous
7015 * weight:
7016 *
7017 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7018 *
97fb7a0a 7019 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7020 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7021 * can also include other factors [XXX].
7022 *
7023 * To achieve this balance we define a measure of imbalance which follows
7024 * directly from (1):
7025 *
ced549fa 7026 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7027 *
7028 * We them move tasks around to minimize the imbalance. In the continuous
7029 * function space it is obvious this converges, in the discrete case we get
7030 * a few fun cases generally called infeasible weight scenarios.
7031 *
7032 * [XXX expand on:
7033 * - infeasible weights;
7034 * - local vs global optima in the discrete case. ]
7035 *
7036 *
7037 * SCHED DOMAINS
7038 *
7039 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7040 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7041 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7042 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7043 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7044 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7045 * the groups.
7046 *
7047 * This yields:
7048 *
7049 * log_2 n 1 n
7050 * \Sum { --- * --- * 2^i } = O(n) (5)
7051 * i = 0 2^i 2^i
7052 * `- size of each group
97fb7a0a 7053 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7054 * | `- freq
7055 * `- sum over all levels
7056 *
7057 * Coupled with a limit on how many tasks we can migrate every balance pass,
7058 * this makes (5) the runtime complexity of the balancer.
7059 *
7060 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7061 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7062 *
7063 * The adjacency matrix of the resulting graph is given by:
7064 *
97a7142f 7065 * log_2 n
e9c84cb8
PZ
7066 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7067 * k = 0
7068 *
7069 * And you'll find that:
7070 *
7071 * A^(log_2 n)_i,j != 0 for all i,j (7)
7072 *
97fb7a0a 7073 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7074 * The task movement gives a factor of O(m), giving a convergence complexity
7075 * of:
7076 *
7077 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7078 *
7079 *
7080 * WORK CONSERVING
7081 *
7082 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7083 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7084 * tree itself instead of relying on other CPUs to bring it work.
7085 *
7086 * This adds some complexity to both (5) and (8) but it reduces the total idle
7087 * time.
7088 *
7089 * [XXX more?]
7090 *
7091 *
7092 * CGROUPS
7093 *
7094 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7095 *
7096 * s_k,i
7097 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7098 * S_k
7099 *
7100 * Where
7101 *
7102 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7103 *
97fb7a0a 7104 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7105 *
7106 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7107 * property.
7108 *
7109 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7110 * rewrite all of this once again.]
97a7142f 7111 */
bf0f6f24 7112
ed387b78
HS
7113static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7114
0ec8aa00
PZ
7115enum fbq_type { regular, remote, all };
7116
3b1baa64
MR
7117enum group_type {
7118 group_other = 0,
7119 group_misfit_task,
7120 group_imbalanced,
7121 group_overloaded,
7122};
7123
ddcdf6e7 7124#define LBF_ALL_PINNED 0x01
367456c7 7125#define LBF_NEED_BREAK 0x02
6263322c
PZ
7126#define LBF_DST_PINNED 0x04
7127#define LBF_SOME_PINNED 0x08
e022e0d3 7128#define LBF_NOHZ_STATS 0x10
f643ea22 7129#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7130
7131struct lb_env {
7132 struct sched_domain *sd;
7133
ddcdf6e7 7134 struct rq *src_rq;
85c1e7da 7135 int src_cpu;
ddcdf6e7
PZ
7136
7137 int dst_cpu;
7138 struct rq *dst_rq;
7139
88b8dac0
SV
7140 struct cpumask *dst_grpmask;
7141 int new_dst_cpu;
ddcdf6e7 7142 enum cpu_idle_type idle;
bd939f45 7143 long imbalance;
b9403130
MW
7144 /* The set of CPUs under consideration for load-balancing */
7145 struct cpumask *cpus;
7146
ddcdf6e7 7147 unsigned int flags;
367456c7
PZ
7148
7149 unsigned int loop;
7150 unsigned int loop_break;
7151 unsigned int loop_max;
0ec8aa00
PZ
7152
7153 enum fbq_type fbq_type;
cad68e55 7154 enum group_type src_grp_type;
163122b7 7155 struct list_head tasks;
ddcdf6e7
PZ
7156};
7157
029632fb
PZ
7158/*
7159 * Is this task likely cache-hot:
7160 */
5d5e2b1b 7161static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7162{
7163 s64 delta;
7164
e5673f28
KT
7165 lockdep_assert_held(&env->src_rq->lock);
7166
029632fb
PZ
7167 if (p->sched_class != &fair_sched_class)
7168 return 0;
7169
1da1843f 7170 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7171 return 0;
7172
7173 /*
7174 * Buddy candidates are cache hot:
7175 */
5d5e2b1b 7176 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7177 (&p->se == cfs_rq_of(&p->se)->next ||
7178 &p->se == cfs_rq_of(&p->se)->last))
7179 return 1;
7180
7181 if (sysctl_sched_migration_cost == -1)
7182 return 1;
7183 if (sysctl_sched_migration_cost == 0)
7184 return 0;
7185
5d5e2b1b 7186 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7187
7188 return delta < (s64)sysctl_sched_migration_cost;
7189}
7190
3a7053b3 7191#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7192/*
2a1ed24c
SD
7193 * Returns 1, if task migration degrades locality
7194 * Returns 0, if task migration improves locality i.e migration preferred.
7195 * Returns -1, if task migration is not affected by locality.
c1ceac62 7196 */
2a1ed24c 7197static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7198{
b1ad065e 7199 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7200 unsigned long src_weight, dst_weight;
7201 int src_nid, dst_nid, dist;
3a7053b3 7202
2a595721 7203 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7204 return -1;
7205
c3b9bc5b 7206 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7207 return -1;
7a0f3083
MG
7208
7209 src_nid = cpu_to_node(env->src_cpu);
7210 dst_nid = cpu_to_node(env->dst_cpu);
7211
83e1d2cd 7212 if (src_nid == dst_nid)
2a1ed24c 7213 return -1;
7a0f3083 7214
2a1ed24c
SD
7215 /* Migrating away from the preferred node is always bad. */
7216 if (src_nid == p->numa_preferred_nid) {
7217 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7218 return 1;
7219 else
7220 return -1;
7221 }
b1ad065e 7222
c1ceac62
RR
7223 /* Encourage migration to the preferred node. */
7224 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7225 return 0;
b1ad065e 7226
739294fb 7227 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7228 if (env->idle == CPU_IDLE)
739294fb
RR
7229 return -1;
7230
f35678b6 7231 dist = node_distance(src_nid, dst_nid);
c1ceac62 7232 if (numa_group) {
f35678b6
SD
7233 src_weight = group_weight(p, src_nid, dist);
7234 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7235 } else {
f35678b6
SD
7236 src_weight = task_weight(p, src_nid, dist);
7237 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7238 }
7239
f35678b6 7240 return dst_weight < src_weight;
7a0f3083
MG
7241}
7242
3a7053b3 7243#else
2a1ed24c 7244static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7245 struct lb_env *env)
7246{
2a1ed24c 7247 return -1;
7a0f3083 7248}
3a7053b3
MG
7249#endif
7250
1e3c88bd
PZ
7251/*
7252 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7253 */
7254static
8e45cb54 7255int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7256{
2a1ed24c 7257 int tsk_cache_hot;
e5673f28
KT
7258
7259 lockdep_assert_held(&env->src_rq->lock);
7260
1e3c88bd
PZ
7261 /*
7262 * We do not migrate tasks that are:
d3198084 7263 * 1) throttled_lb_pair, or
3bd37062 7264 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7265 * 3) running (obviously), or
7266 * 4) are cache-hot on their current CPU.
1e3c88bd 7267 */
d3198084
JK
7268 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7269 return 0;
7270
3bd37062 7271 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7272 int cpu;
88b8dac0 7273
ae92882e 7274 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7275
6263322c
PZ
7276 env->flags |= LBF_SOME_PINNED;
7277
88b8dac0 7278 /*
97fb7a0a 7279 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7280 * our sched_group. We may want to revisit it if we couldn't
7281 * meet load balance goals by pulling other tasks on src_cpu.
7282 *
65a4433a
JH
7283 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7284 * already computed one in current iteration.
88b8dac0 7285 */
65a4433a 7286 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7287 return 0;
7288
97fb7a0a 7289 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7290 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7291 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7292 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7293 env->new_dst_cpu = cpu;
7294 break;
7295 }
88b8dac0 7296 }
e02e60c1 7297
1e3c88bd
PZ
7298 return 0;
7299 }
88b8dac0
SV
7300
7301 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7302 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7303
ddcdf6e7 7304 if (task_running(env->src_rq, p)) {
ae92882e 7305 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7306 return 0;
7307 }
7308
7309 /*
7310 * Aggressive migration if:
3a7053b3
MG
7311 * 1) destination numa is preferred
7312 * 2) task is cache cold, or
7313 * 3) too many balance attempts have failed.
1e3c88bd 7314 */
2a1ed24c
SD
7315 tsk_cache_hot = migrate_degrades_locality(p, env);
7316 if (tsk_cache_hot == -1)
7317 tsk_cache_hot = task_hot(p, env);
3a7053b3 7318
2a1ed24c 7319 if (tsk_cache_hot <= 0 ||
7a96c231 7320 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7321 if (tsk_cache_hot == 1) {
ae92882e
JP
7322 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7323 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7324 }
1e3c88bd
PZ
7325 return 1;
7326 }
7327
ae92882e 7328 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7329 return 0;
1e3c88bd
PZ
7330}
7331
897c395f 7332/*
163122b7
KT
7333 * detach_task() -- detach the task for the migration specified in env
7334 */
7335static void detach_task(struct task_struct *p, struct lb_env *env)
7336{
7337 lockdep_assert_held(&env->src_rq->lock);
7338
5704ac0a 7339 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7340 set_task_cpu(p, env->dst_cpu);
7341}
7342
897c395f 7343/*
e5673f28 7344 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7345 * part of active balancing operations within "domain".
897c395f 7346 *
e5673f28 7347 * Returns a task if successful and NULL otherwise.
897c395f 7348 */
e5673f28 7349static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7350{
93824900 7351 struct task_struct *p;
897c395f 7352
e5673f28
KT
7353 lockdep_assert_held(&env->src_rq->lock);
7354
93824900
UR
7355 list_for_each_entry_reverse(p,
7356 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7357 if (!can_migrate_task(p, env))
7358 continue;
897c395f 7359
163122b7 7360 detach_task(p, env);
e5673f28 7361
367456c7 7362 /*
e5673f28 7363 * Right now, this is only the second place where
163122b7 7364 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7365 * so we can safely collect stats here rather than
163122b7 7366 * inside detach_tasks().
367456c7 7367 */
ae92882e 7368 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7369 return p;
897c395f 7370 }
e5673f28 7371 return NULL;
897c395f
PZ
7372}
7373
eb95308e
PZ
7374static const unsigned int sched_nr_migrate_break = 32;
7375
5d6523eb 7376/*
a3df0679 7377 * detach_tasks() -- tries to detach up to imbalance runnable load from
163122b7 7378 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7379 *
163122b7 7380 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7381 */
163122b7 7382static int detach_tasks(struct lb_env *env)
1e3c88bd 7383{
5d6523eb
PZ
7384 struct list_head *tasks = &env->src_rq->cfs_tasks;
7385 struct task_struct *p;
367456c7 7386 unsigned long load;
163122b7
KT
7387 int detached = 0;
7388
7389 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7390
bd939f45 7391 if (env->imbalance <= 0)
5d6523eb 7392 return 0;
1e3c88bd 7393
5d6523eb 7394 while (!list_empty(tasks)) {
985d3a4c
YD
7395 /*
7396 * We don't want to steal all, otherwise we may be treated likewise,
7397 * which could at worst lead to a livelock crash.
7398 */
7399 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7400 break;
7401
93824900 7402 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7403
367456c7
PZ
7404 env->loop++;
7405 /* We've more or less seen every task there is, call it quits */
5d6523eb 7406 if (env->loop > env->loop_max)
367456c7 7407 break;
5d6523eb
PZ
7408
7409 /* take a breather every nr_migrate tasks */
367456c7 7410 if (env->loop > env->loop_break) {
eb95308e 7411 env->loop_break += sched_nr_migrate_break;
8e45cb54 7412 env->flags |= LBF_NEED_BREAK;
ee00e66f 7413 break;
a195f004 7414 }
1e3c88bd 7415
d3198084 7416 if (!can_migrate_task(p, env))
367456c7
PZ
7417 goto next;
7418
7419 load = task_h_load(p);
5d6523eb 7420
eb95308e 7421 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
7422 goto next;
7423
bd939f45 7424 if ((load / 2) > env->imbalance)
367456c7 7425 goto next;
1e3c88bd 7426
163122b7
KT
7427 detach_task(p, env);
7428 list_add(&p->se.group_node, &env->tasks);
7429
7430 detached++;
bd939f45 7431 env->imbalance -= load;
1e3c88bd
PZ
7432
7433#ifdef CONFIG_PREEMPT
ee00e66f
PZ
7434 /*
7435 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7436 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7437 * the critical section.
7438 */
5d6523eb 7439 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7440 break;
1e3c88bd
PZ
7441#endif
7442
ee00e66f
PZ
7443 /*
7444 * We only want to steal up to the prescribed amount of
a3df0679 7445 * runnable load.
ee00e66f 7446 */
bd939f45 7447 if (env->imbalance <= 0)
ee00e66f 7448 break;
367456c7
PZ
7449
7450 continue;
7451next:
93824900 7452 list_move(&p->se.group_node, tasks);
1e3c88bd 7453 }
5d6523eb 7454
1e3c88bd 7455 /*
163122b7
KT
7456 * Right now, this is one of only two places we collect this stat
7457 * so we can safely collect detach_one_task() stats here rather
7458 * than inside detach_one_task().
1e3c88bd 7459 */
ae92882e 7460 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7461
163122b7
KT
7462 return detached;
7463}
7464
7465/*
7466 * attach_task() -- attach the task detached by detach_task() to its new rq.
7467 */
7468static void attach_task(struct rq *rq, struct task_struct *p)
7469{
7470 lockdep_assert_held(&rq->lock);
7471
7472 BUG_ON(task_rq(p) != rq);
5704ac0a 7473 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7474 check_preempt_curr(rq, p, 0);
7475}
7476
7477/*
7478 * attach_one_task() -- attaches the task returned from detach_one_task() to
7479 * its new rq.
7480 */
7481static void attach_one_task(struct rq *rq, struct task_struct *p)
7482{
8a8c69c3
PZ
7483 struct rq_flags rf;
7484
7485 rq_lock(rq, &rf);
5704ac0a 7486 update_rq_clock(rq);
163122b7 7487 attach_task(rq, p);
8a8c69c3 7488 rq_unlock(rq, &rf);
163122b7
KT
7489}
7490
7491/*
7492 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7493 * new rq.
7494 */
7495static void attach_tasks(struct lb_env *env)
7496{
7497 struct list_head *tasks = &env->tasks;
7498 struct task_struct *p;
8a8c69c3 7499 struct rq_flags rf;
163122b7 7500
8a8c69c3 7501 rq_lock(env->dst_rq, &rf);
5704ac0a 7502 update_rq_clock(env->dst_rq);
163122b7
KT
7503
7504 while (!list_empty(tasks)) {
7505 p = list_first_entry(tasks, struct task_struct, se.group_node);
7506 list_del_init(&p->se.group_node);
1e3c88bd 7507
163122b7
KT
7508 attach_task(env->dst_rq, p);
7509 }
7510
8a8c69c3 7511 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7512}
7513
b0c79224 7514#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
7515static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7516{
7517 if (cfs_rq->avg.load_avg)
7518 return true;
7519
7520 if (cfs_rq->avg.util_avg)
7521 return true;
7522
7523 return false;
7524}
7525
91c27493 7526static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7527{
7528 if (READ_ONCE(rq->avg_rt.util_avg))
7529 return true;
7530
3727e0e1
VG
7531 if (READ_ONCE(rq->avg_dl.util_avg))
7532 return true;
7533
11d4afd4 7534#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7535 if (READ_ONCE(rq->avg_irq.util_avg))
7536 return true;
7537#endif
7538
371bf427
VG
7539 return false;
7540}
7541
b0c79224
VS
7542static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7543{
7544 rq->last_blocked_load_update_tick = jiffies;
7545
7546 if (!has_blocked)
7547 rq->has_blocked_load = 0;
7548}
7549#else
7550static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7551static inline bool others_have_blocked(struct rq *rq) { return false; }
7552static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7553#endif
7554
1936c53c
VG
7555#ifdef CONFIG_FAIR_GROUP_SCHED
7556
039ae8bc
VG
7557static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7558{
7559 if (cfs_rq->load.weight)
7560 return false;
7561
7562 if (cfs_rq->avg.load_sum)
7563 return false;
7564
7565 if (cfs_rq->avg.util_sum)
7566 return false;
7567
7568 if (cfs_rq->avg.runnable_load_sum)
7569 return false;
7570
7571 return true;
7572}
7573
48a16753 7574static void update_blocked_averages(int cpu)
9e3081ca 7575{
9e3081ca 7576 struct rq *rq = cpu_rq(cpu);
039ae8bc 7577 struct cfs_rq *cfs_rq, *pos;
12b04875 7578 const struct sched_class *curr_class;
8a8c69c3 7579 struct rq_flags rf;
f643ea22 7580 bool done = true;
9e3081ca 7581
8a8c69c3 7582 rq_lock_irqsave(rq, &rf);
48a16753 7583 update_rq_clock(rq);
9d89c257 7584
9763b67f
PZ
7585 /*
7586 * Iterates the task_group tree in a bottom up fashion, see
7587 * list_add_leaf_cfs_rq() for details.
7588 */
039ae8bc 7589 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7590 struct sched_entity *se;
7591
23127296 7592 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
9d89c257 7593 update_tg_load_avg(cfs_rq, 0);
4e516076 7594
bc427898
VG
7595 /* Propagate pending load changes to the parent, if any: */
7596 se = cfs_rq->tg->se[cpu];
7597 if (se && !skip_blocked_update(se))
88c0616e 7598 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7599
039ae8bc
VG
7600 /*
7601 * There can be a lot of idle CPU cgroups. Don't let fully
7602 * decayed cfs_rqs linger on the list.
7603 */
7604 if (cfs_rq_is_decayed(cfs_rq))
7605 list_del_leaf_cfs_rq(cfs_rq);
7606
1936c53c
VG
7607 /* Don't need periodic decay once load/util_avg are null */
7608 if (cfs_rq_has_blocked(cfs_rq))
f643ea22 7609 done = false;
9d89c257 7610 }
12b04875
VG
7611
7612 curr_class = rq->curr->sched_class;
23127296
VG
7613 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7614 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
91c27493 7615 update_irq_load_avg(rq, 0);
371bf427 7616 /* Don't need periodic decay once load/util_avg are null */
91c27493 7617 if (others_have_blocked(rq))
371bf427 7618 done = false;
e022e0d3 7619
b0c79224 7620 update_blocked_load_status(rq, !done);
8a8c69c3 7621 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7622}
7623
9763b67f 7624/*
68520796 7625 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7626 * This needs to be done in a top-down fashion because the load of a child
7627 * group is a fraction of its parents load.
7628 */
68520796 7629static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7630{
68520796
VD
7631 struct rq *rq = rq_of(cfs_rq);
7632 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7633 unsigned long now = jiffies;
68520796 7634 unsigned long load;
a35b6466 7635
68520796 7636 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7637 return;
7638
0e9f0245 7639 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
7640 for_each_sched_entity(se) {
7641 cfs_rq = cfs_rq_of(se);
0e9f0245 7642 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
7643 if (cfs_rq->last_h_load_update == now)
7644 break;
7645 }
a35b6466 7646
68520796 7647 if (!se) {
7ea241af 7648 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7649 cfs_rq->last_h_load_update = now;
7650 }
7651
0e9f0245 7652 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 7653 load = cfs_rq->h_load;
7ea241af
YD
7654 load = div64_ul(load * se->avg.load_avg,
7655 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7656 cfs_rq = group_cfs_rq(se);
7657 cfs_rq->h_load = load;
7658 cfs_rq->last_h_load_update = now;
7659 }
9763b67f
PZ
7660}
7661
367456c7 7662static unsigned long task_h_load(struct task_struct *p)
230059de 7663{
367456c7 7664 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7665
68520796 7666 update_cfs_rq_h_load(cfs_rq);
9d89c257 7667 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7668 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7669}
7670#else
48a16753 7671static inline void update_blocked_averages(int cpu)
9e3081ca 7672{
6c1d47c0
VG
7673 struct rq *rq = cpu_rq(cpu);
7674 struct cfs_rq *cfs_rq = &rq->cfs;
12b04875 7675 const struct sched_class *curr_class;
8a8c69c3 7676 struct rq_flags rf;
6c1d47c0 7677
8a8c69c3 7678 rq_lock_irqsave(rq, &rf);
6c1d47c0 7679 update_rq_clock(rq);
23127296 7680 update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
12b04875
VG
7681
7682 curr_class = rq->curr->sched_class;
23127296
VG
7683 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7684 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
91c27493 7685 update_irq_load_avg(rq, 0);
b0c79224 7686 update_blocked_load_status(rq, cfs_rq_has_blocked(cfs_rq) || others_have_blocked(rq));
8a8c69c3 7687 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7688}
7689
367456c7 7690static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7691{
9d89c257 7692 return p->se.avg.load_avg;
1e3c88bd 7693}
230059de 7694#endif
1e3c88bd 7695
1e3c88bd 7696/********** Helpers for find_busiest_group ************************/
caeb178c 7697
1e3c88bd
PZ
7698/*
7699 * sg_lb_stats - stats of a sched_group required for load_balancing
7700 */
7701struct sg_lb_stats {
7702 unsigned long avg_load; /*Avg load across the CPUs of the group */
7703 unsigned long group_load; /* Total load over the CPUs of the group */
56cf515b 7704 unsigned long load_per_task;
63b2ca30 7705 unsigned long group_capacity;
9e91d61d 7706 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7707 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7708 unsigned int idle_cpus;
7709 unsigned int group_weight;
caeb178c 7710 enum group_type group_type;
ea67821b 7711 int group_no_capacity;
3b1baa64 7712 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
7713#ifdef CONFIG_NUMA_BALANCING
7714 unsigned int nr_numa_running;
7715 unsigned int nr_preferred_running;
7716#endif
1e3c88bd
PZ
7717};
7718
56cf515b
JK
7719/*
7720 * sd_lb_stats - Structure to store the statistics of a sched_domain
7721 * during load balancing.
7722 */
7723struct sd_lb_stats {
7724 struct sched_group *busiest; /* Busiest group in this sd */
7725 struct sched_group *local; /* Local group in this sd */
90001d67 7726 unsigned long total_running;
56cf515b 7727 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7728 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7729 unsigned long avg_load; /* Average load across all groups in sd */
7730
56cf515b 7731 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7732 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7733};
7734
147c5fc2
PZ
7735static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7736{
7737 /*
7738 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7739 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7740 * We must however clear busiest_stat::avg_load because
7741 * update_sd_pick_busiest() reads this before assignment.
7742 */
7743 *sds = (struct sd_lb_stats){
7744 .busiest = NULL,
7745 .local = NULL,
90001d67 7746 .total_running = 0UL,
147c5fc2 7747 .total_load = 0UL,
63b2ca30 7748 .total_capacity = 0UL,
147c5fc2
PZ
7749 .busiest_stat = {
7750 .avg_load = 0UL,
caeb178c
RR
7751 .sum_nr_running = 0,
7752 .group_type = group_other,
147c5fc2
PZ
7753 },
7754 };
7755}
7756
287cdaac 7757static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7758{
7759 struct rq *rq = cpu_rq(cpu);
8ec59c0f 7760 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 7761 unsigned long used, free;
523e979d 7762 unsigned long irq;
b654f7de 7763
2e62c474 7764 irq = cpu_util_irq(rq);
cadefd3d 7765
523e979d
VG
7766 if (unlikely(irq >= max))
7767 return 1;
aa483808 7768
523e979d
VG
7769 used = READ_ONCE(rq->avg_rt.util_avg);
7770 used += READ_ONCE(rq->avg_dl.util_avg);
1e3c88bd 7771
523e979d
VG
7772 if (unlikely(used >= max))
7773 return 1;
1e3c88bd 7774
523e979d 7775 free = max - used;
2e62c474
VG
7776
7777 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
7778}
7779
ced549fa 7780static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7781{
287cdaac 7782 unsigned long capacity = scale_rt_capacity(sd, cpu);
1e3c88bd
PZ
7783 struct sched_group *sdg = sd->groups;
7784
8ec59c0f 7785 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 7786
ced549fa
NP
7787 if (!capacity)
7788 capacity = 1;
1e3c88bd 7789
ced549fa
NP
7790 cpu_rq(cpu)->cpu_capacity = capacity;
7791 sdg->sgc->capacity = capacity;
bf475ce0 7792 sdg->sgc->min_capacity = capacity;
e3d6d0cb 7793 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
7794}
7795
63b2ca30 7796void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7797{
7798 struct sched_domain *child = sd->child;
7799 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 7800 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
7801 unsigned long interval;
7802
7803 interval = msecs_to_jiffies(sd->balance_interval);
7804 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7805 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7806
7807 if (!child) {
ced549fa 7808 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7809 return;
7810 }
7811
dc7ff76e 7812 capacity = 0;
bf475ce0 7813 min_capacity = ULONG_MAX;
e3d6d0cb 7814 max_capacity = 0;
1e3c88bd 7815
74a5ce20
PZ
7816 if (child->flags & SD_OVERLAP) {
7817 /*
7818 * SD_OVERLAP domains cannot assume that child groups
7819 * span the current group.
7820 */
7821
ae4df9d6 7822 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 7823 struct sched_group_capacity *sgc;
9abf24d4 7824 struct rq *rq = cpu_rq(cpu);
863bffc8 7825
9abf24d4 7826 /*
63b2ca30 7827 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
7828 * gets here before we've attached the domains to the
7829 * runqueues.
7830 *
ced549fa
NP
7831 * Use capacity_of(), which is set irrespective of domains
7832 * in update_cpu_capacity().
9abf24d4 7833 *
dc7ff76e 7834 * This avoids capacity from being 0 and
9abf24d4 7835 * causing divide-by-zero issues on boot.
9abf24d4
SD
7836 */
7837 if (unlikely(!rq->sd)) {
ced549fa 7838 capacity += capacity_of(cpu);
bf475ce0
MR
7839 } else {
7840 sgc = rq->sd->groups->sgc;
7841 capacity += sgc->capacity;
9abf24d4 7842 }
863bffc8 7843
bf475ce0 7844 min_capacity = min(capacity, min_capacity);
e3d6d0cb 7845 max_capacity = max(capacity, max_capacity);
863bffc8 7846 }
74a5ce20
PZ
7847 } else {
7848 /*
7849 * !SD_OVERLAP domains can assume that child groups
7850 * span the current group.
97a7142f 7851 */
74a5ce20
PZ
7852
7853 group = child->groups;
7854 do {
bf475ce0
MR
7855 struct sched_group_capacity *sgc = group->sgc;
7856
7857 capacity += sgc->capacity;
7858 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 7859 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
7860 group = group->next;
7861 } while (group != child->groups);
7862 }
1e3c88bd 7863
63b2ca30 7864 sdg->sgc->capacity = capacity;
bf475ce0 7865 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 7866 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
7867}
7868
9d5efe05 7869/*
ea67821b
VG
7870 * Check whether the capacity of the rq has been noticeably reduced by side
7871 * activity. The imbalance_pct is used for the threshold.
7872 * Return true is the capacity is reduced
9d5efe05
SV
7873 */
7874static inline int
ea67821b 7875check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 7876{
ea67821b
VG
7877 return ((rq->cpu_capacity * sd->imbalance_pct) <
7878 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
7879}
7880
a0fe2cf0
VS
7881/*
7882 * Check whether a rq has a misfit task and if it looks like we can actually
7883 * help that task: we can migrate the task to a CPU of higher capacity, or
7884 * the task's current CPU is heavily pressured.
7885 */
7886static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
7887{
7888 return rq->misfit_task_load &&
7889 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
7890 check_cpu_capacity(rq, sd));
7891}
7892
30ce5dab
PZ
7893/*
7894 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 7895 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 7896 *
97fb7a0a
IM
7897 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7898 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
7899 * Something like:
7900 *
2b4d5b25
IM
7901 * { 0 1 2 3 } { 4 5 6 7 }
7902 * * * * *
30ce5dab
PZ
7903 *
7904 * If we were to balance group-wise we'd place two tasks in the first group and
7905 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 7906 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
7907 *
7908 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
7909 * by noticing the lower domain failed to reach balance and had difficulty
7910 * moving tasks due to affinity constraints.
30ce5dab
PZ
7911 *
7912 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 7913 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 7914 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
7915 * to create an effective group imbalance.
7916 *
7917 * This is a somewhat tricky proposition since the next run might not find the
7918 * group imbalance and decide the groups need to be balanced again. A most
7919 * subtle and fragile situation.
7920 */
7921
6263322c 7922static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 7923{
63b2ca30 7924 return group->sgc->imbalance;
30ce5dab
PZ
7925}
7926
b37d9316 7927/*
ea67821b
VG
7928 * group_has_capacity returns true if the group has spare capacity that could
7929 * be used by some tasks.
7930 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
7931 * smaller than the number of CPUs or if the utilization is lower than the
7932 * available capacity for CFS tasks.
ea67821b
VG
7933 * For the latter, we use a threshold to stabilize the state, to take into
7934 * account the variance of the tasks' load and to return true if the available
7935 * capacity in meaningful for the load balancer.
7936 * As an example, an available capacity of 1% can appear but it doesn't make
7937 * any benefit for the load balance.
b37d9316 7938 */
ea67821b
VG
7939static inline bool
7940group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 7941{
ea67821b
VG
7942 if (sgs->sum_nr_running < sgs->group_weight)
7943 return true;
c61037e9 7944
ea67821b 7945 if ((sgs->group_capacity * 100) >
9e91d61d 7946 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7947 return true;
b37d9316 7948
ea67821b
VG
7949 return false;
7950}
7951
7952/*
7953 * group_is_overloaded returns true if the group has more tasks than it can
7954 * handle.
7955 * group_is_overloaded is not equals to !group_has_capacity because a group
7956 * with the exact right number of tasks, has no more spare capacity but is not
7957 * overloaded so both group_has_capacity and group_is_overloaded return
7958 * false.
7959 */
7960static inline bool
7961group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7962{
7963 if (sgs->sum_nr_running <= sgs->group_weight)
7964 return false;
b37d9316 7965
ea67821b 7966 if ((sgs->group_capacity * 100) <
9e91d61d 7967 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 7968 return true;
b37d9316 7969
ea67821b 7970 return false;
b37d9316
PZ
7971}
7972
9e0994c0 7973/*
e3d6d0cb 7974 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
7975 * per-CPU capacity than sched_group ref.
7976 */
7977static inline bool
e3d6d0cb 7978group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0
MR
7979{
7980 return sg->sgc->min_capacity * capacity_margin <
7981 ref->sgc->min_capacity * 1024;
7982}
7983
e3d6d0cb
MR
7984/*
7985 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7986 * per-CPU capacity_orig than sched_group ref.
7987 */
7988static inline bool
7989group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7990{
7991 return sg->sgc->max_capacity * capacity_margin <
7992 ref->sgc->max_capacity * 1024;
7993}
7994
79a89f92
LY
7995static inline enum
7996group_type group_classify(struct sched_group *group,
7997 struct sg_lb_stats *sgs)
caeb178c 7998{
ea67821b 7999 if (sgs->group_no_capacity)
caeb178c
RR
8000 return group_overloaded;
8001
8002 if (sg_imbalanced(group))
8003 return group_imbalanced;
8004
3b1baa64
MR
8005 if (sgs->group_misfit_task_load)
8006 return group_misfit_task;
8007
caeb178c
RR
8008 return group_other;
8009}
8010
63928384 8011static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
8012{
8013#ifdef CONFIG_NO_HZ_COMMON
8014 unsigned int cpu = rq->cpu;
8015
f643ea22
VG
8016 if (!rq->has_blocked_load)
8017 return false;
8018
e022e0d3 8019 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 8020 return false;
e022e0d3 8021
63928384 8022 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 8023 return true;
e022e0d3
PZ
8024
8025 update_blocked_averages(cpu);
f643ea22
VG
8026
8027 return rq->has_blocked_load;
8028#else
8029 return false;
e022e0d3
PZ
8030#endif
8031}
8032
1e3c88bd
PZ
8033/**
8034 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8035 * @env: The load balancing environment.
1e3c88bd 8036 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8037 * @sgs: variable to hold the statistics for this group.
630246a0 8038 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8039 */
bd939f45 8040static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8041 struct sched_group *group,
8042 struct sg_lb_stats *sgs,
8043 int *sg_status)
1e3c88bd 8044{
a426f99c 8045 int i, nr_running;
1e3c88bd 8046
b72ff13c
PZ
8047 memset(sgs, 0, sizeof(*sgs));
8048
ae4df9d6 8049 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8050 struct rq *rq = cpu_rq(i);
8051
63928384 8052 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8053 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8054
a3df0679 8055 sgs->group_load += cpu_runnable_load(rq);
9e91d61d 8056 sgs->group_util += cpu_util(i);
65fdac08 8057 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 8058
a426f99c
WL
8059 nr_running = rq->nr_running;
8060 if (nr_running > 1)
630246a0 8061 *sg_status |= SG_OVERLOAD;
4486edd1 8062
2802bf3c
MR
8063 if (cpu_overutilized(i))
8064 *sg_status |= SG_OVERUTILIZED;
4486edd1 8065
0ec8aa00
PZ
8066#ifdef CONFIG_NUMA_BALANCING
8067 sgs->nr_numa_running += rq->nr_numa_running;
8068 sgs->nr_preferred_running += rq->nr_preferred_running;
8069#endif
a426f99c
WL
8070 /*
8071 * No need to call idle_cpu() if nr_running is not 0
8072 */
8073 if (!nr_running && idle_cpu(i))
aae6d3dd 8074 sgs->idle_cpus++;
3b1baa64
MR
8075
8076 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8077 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8078 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8079 *sg_status |= SG_OVERLOAD;
757ffdd7 8080 }
1e3c88bd
PZ
8081 }
8082
63b2ca30
NP
8083 /* Adjust by relative CPU capacity of the group */
8084 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 8085 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 8086
dd5feea1 8087 if (sgs->sum_nr_running)
af75d1a9 8088 sgs->load_per_task = sgs->group_load / sgs->sum_nr_running;
1e3c88bd 8089
aae6d3dd 8090 sgs->group_weight = group->group_weight;
b37d9316 8091
ea67821b 8092 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 8093 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
8094}
8095
532cb4c4
MN
8096/**
8097 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8098 * @env: The load balancing environment.
532cb4c4
MN
8099 * @sds: sched_domain statistics
8100 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8101 * @sgs: sched_group statistics
532cb4c4
MN
8102 *
8103 * Determine if @sg is a busier group than the previously selected
8104 * busiest group.
e69f6186
YB
8105 *
8106 * Return: %true if @sg is a busier group than the previously selected
8107 * busiest group. %false otherwise.
532cb4c4 8108 */
bd939f45 8109static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8110 struct sd_lb_stats *sds,
8111 struct sched_group *sg,
bd939f45 8112 struct sg_lb_stats *sgs)
532cb4c4 8113{
caeb178c 8114 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8115
cad68e55
MR
8116 /*
8117 * Don't try to pull misfit tasks we can't help.
8118 * We can use max_capacity here as reduction in capacity on some
8119 * CPUs in the group should either be possible to resolve
8120 * internally or be covered by avg_load imbalance (eventually).
8121 */
8122 if (sgs->group_type == group_misfit_task &&
8123 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8124 !group_has_capacity(env, &sds->local_stat)))
8125 return false;
8126
caeb178c 8127 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8128 return true;
8129
caeb178c
RR
8130 if (sgs->group_type < busiest->group_type)
8131 return false;
8132
8133 if (sgs->avg_load <= busiest->avg_load)
8134 return false;
8135
9e0994c0
MR
8136 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8137 goto asym_packing;
8138
8139 /*
8140 * Candidate sg has no more than one task per CPU and
8141 * has higher per-CPU capacity. Migrating tasks to less
8142 * capable CPUs may harm throughput. Maximize throughput,
8143 * power/energy consequences are not considered.
8144 */
8145 if (sgs->sum_nr_running <= sgs->group_weight &&
e3d6d0cb 8146 group_smaller_min_cpu_capacity(sds->local, sg))
9e0994c0
MR
8147 return false;
8148
cad68e55
MR
8149 /*
8150 * If we have more than one misfit sg go with the biggest misfit.
8151 */
8152 if (sgs->group_type == group_misfit_task &&
8153 sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9e0994c0
MR
8154 return false;
8155
8156asym_packing:
caeb178c
RR
8157 /* This is the busiest node in its class. */
8158 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8159 return true;
8160
97fb7a0a 8161 /* No ASYM_PACKING if target CPU is already busy */
1f621e02
SD
8162 if (env->idle == CPU_NOT_IDLE)
8163 return true;
532cb4c4 8164 /*
afe06efd
TC
8165 * ASYM_PACKING needs to move all the work to the highest
8166 * prority CPUs in the group, therefore mark all groups
8167 * of lower priority than ourself as busy.
532cb4c4 8168 */
afe06efd
TC
8169 if (sgs->sum_nr_running &&
8170 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
8171 if (!sds->busiest)
8172 return true;
8173
97fb7a0a 8174 /* Prefer to move from lowest priority CPU's work */
afe06efd
TC
8175 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8176 sg->asym_prefer_cpu))
532cb4c4
MN
8177 return true;
8178 }
8179
8180 return false;
8181}
8182
0ec8aa00
PZ
8183#ifdef CONFIG_NUMA_BALANCING
8184static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8185{
8186 if (sgs->sum_nr_running > sgs->nr_numa_running)
8187 return regular;
8188 if (sgs->sum_nr_running > sgs->nr_preferred_running)
8189 return remote;
8190 return all;
8191}
8192
8193static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8194{
8195 if (rq->nr_running > rq->nr_numa_running)
8196 return regular;
8197 if (rq->nr_running > rq->nr_preferred_running)
8198 return remote;
8199 return all;
8200}
8201#else
8202static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8203{
8204 return all;
8205}
8206
8207static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8208{
8209 return regular;
8210}
8211#endif /* CONFIG_NUMA_BALANCING */
8212
1e3c88bd 8213/**
461819ac 8214 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8215 * @env: The load balancing environment.
1e3c88bd
PZ
8216 * @sds: variable to hold the statistics for this sched_domain.
8217 */
0ec8aa00 8218static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8219{
bd939f45
PZ
8220 struct sched_domain *child = env->sd->child;
8221 struct sched_group *sg = env->sd->groups;
05b40e05 8222 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8223 struct sg_lb_stats tmp_sgs;
dbbad719 8224 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
630246a0 8225 int sg_status = 0;
1e3c88bd 8226
e022e0d3 8227#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8228 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8229 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8230#endif
8231
1e3c88bd 8232 do {
56cf515b 8233 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8234 int local_group;
8235
ae4df9d6 8236 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8237 if (local_group) {
8238 sds->local = sg;
05b40e05 8239 sgs = local;
b72ff13c
PZ
8240
8241 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8242 time_after_eq(jiffies, sg->sgc->next_update))
8243 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8244 }
1e3c88bd 8245
630246a0 8246 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8247
b72ff13c
PZ
8248 if (local_group)
8249 goto next_group;
8250
1e3c88bd
PZ
8251 /*
8252 * In case the child domain prefers tasks go to siblings
ea67821b 8253 * first, lower the sg capacity so that we'll try
75dd321d
NR
8254 * and move all the excess tasks away. We lower the capacity
8255 * of a group only if the local group has the capacity to fit
ea67821b
VG
8256 * these excess tasks. The extra check prevents the case where
8257 * you always pull from the heaviest group when it is already
8258 * under-utilized (possible with a large weight task outweighs
8259 * the tasks on the system).
1e3c88bd 8260 */
b72ff13c 8261 if (prefer_sibling && sds->local &&
05b40e05
SD
8262 group_has_capacity(env, local) &&
8263 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 8264 sgs->group_no_capacity = 1;
79a89f92 8265 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 8266 }
1e3c88bd 8267
b72ff13c 8268 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8269 sds->busiest = sg;
56cf515b 8270 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8271 }
8272
b72ff13c
PZ
8273next_group:
8274 /* Now, start updating sd_lb_stats */
90001d67 8275 sds->total_running += sgs->sum_nr_running;
b72ff13c 8276 sds->total_load += sgs->group_load;
63b2ca30 8277 sds->total_capacity += sgs->group_capacity;
b72ff13c 8278
532cb4c4 8279 sg = sg->next;
bd939f45 8280 } while (sg != env->sd->groups);
0ec8aa00 8281
f643ea22
VG
8282#ifdef CONFIG_NO_HZ_COMMON
8283 if ((env->flags & LBF_NOHZ_AGAIN) &&
8284 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8285
8286 WRITE_ONCE(nohz.next_blocked,
8287 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8288 }
8289#endif
8290
0ec8aa00
PZ
8291 if (env->sd->flags & SD_NUMA)
8292 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8293
8294 if (!env->sd->parent) {
2802bf3c
MR
8295 struct root_domain *rd = env->dst_rq->rd;
8296
4486edd1 8297 /* update overload indicator if we are at root domain */
2802bf3c
MR
8298 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8299
8300 /* Update over-utilization (tipping point, U >= 0) indicator */
8301 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 8302 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 8303 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
8304 struct root_domain *rd = env->dst_rq->rd;
8305
8306 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8307 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 8308 }
532cb4c4
MN
8309}
8310
532cb4c4
MN
8311/**
8312 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 8313 * sched domain.
532cb4c4
MN
8314 *
8315 * This is primarily intended to used at the sibling level. Some
8316 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8317 * case of POWER7, it can move to lower SMT modes only when higher
8318 * threads are idle. When in lower SMT modes, the threads will
8319 * perform better since they share less core resources. Hence when we
8320 * have idle threads, we want them to be the higher ones.
8321 *
8322 * This packing function is run on idle threads. It checks to see if
8323 * the busiest CPU in this domain (core in the P7 case) has a higher
8324 * CPU number than the packing function is being run on. Here we are
8325 * assuming lower CPU number will be equivalent to lower a SMT thread
8326 * number.
8327 *
e69f6186 8328 * Return: 1 when packing is required and a task should be moved to
46123355 8329 * this CPU. The amount of the imbalance is returned in env->imbalance.
b6b12294 8330 *
cd96891d 8331 * @env: The load balancing environment.
532cb4c4 8332 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 8333 */
bd939f45 8334static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
8335{
8336 int busiest_cpu;
8337
bd939f45 8338 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8339 return 0;
8340
1f621e02
SD
8341 if (env->idle == CPU_NOT_IDLE)
8342 return 0;
8343
532cb4c4
MN
8344 if (!sds->busiest)
8345 return 0;
8346
afe06efd
TC
8347 busiest_cpu = sds->busiest->asym_prefer_cpu;
8348 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
8349 return 0;
8350
4ad4e481 8351 env->imbalance = sds->busiest_stat.group_load;
bd939f45 8352
532cb4c4 8353 return 1;
1e3c88bd
PZ
8354}
8355
8356/**
8357 * fix_small_imbalance - Calculate the minor imbalance that exists
8358 * amongst the groups of a sched_domain, during
8359 * load balancing.
cd96891d 8360 * @env: The load balancing environment.
1e3c88bd 8361 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8362 */
bd939f45
PZ
8363static inline
8364void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8365{
63b2ca30 8366 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 8367 unsigned int imbn = 2;
dd5feea1 8368 unsigned long scaled_busy_load_per_task;
56cf515b 8369 struct sg_lb_stats *local, *busiest;
1e3c88bd 8370
56cf515b
JK
8371 local = &sds->local_stat;
8372 busiest = &sds->busiest_stat;
1e3c88bd 8373
56cf515b
JK
8374 if (!local->sum_nr_running)
8375 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8376 else if (busiest->load_per_task > local->load_per_task)
8377 imbn = 1;
dd5feea1 8378
56cf515b 8379 scaled_busy_load_per_task =
ca8ce3d0 8380 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8381 busiest->group_capacity;
56cf515b 8382
3029ede3
VD
8383 if (busiest->avg_load + scaled_busy_load_per_task >=
8384 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 8385 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8386 return;
8387 }
8388
8389 /*
8390 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 8391 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
8392 * moving them.
8393 */
8394
63b2ca30 8395 capa_now += busiest->group_capacity *
56cf515b 8396 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 8397 capa_now += local->group_capacity *
56cf515b 8398 min(local->load_per_task, local->avg_load);
ca8ce3d0 8399 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8400
8401 /* Amount of load we'd subtract */
a2cd4260 8402 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 8403 capa_move += busiest->group_capacity *
56cf515b 8404 min(busiest->load_per_task,
a2cd4260 8405 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 8406 }
1e3c88bd
PZ
8407
8408 /* Amount of load we'd add */
63b2ca30 8409 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 8410 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
8411 tmp = (busiest->avg_load * busiest->group_capacity) /
8412 local->group_capacity;
56cf515b 8413 } else {
ca8ce3d0 8414 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8415 local->group_capacity;
56cf515b 8416 }
63b2ca30 8417 capa_move += local->group_capacity *
3ae11c90 8418 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 8419 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8420
8421 /* Move if we gain throughput */
63b2ca30 8422 if (capa_move > capa_now)
56cf515b 8423 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8424}
8425
8426/**
8427 * calculate_imbalance - Calculate the amount of imbalance present within the
8428 * groups of a given sched_domain during load balance.
bd939f45 8429 * @env: load balance environment
1e3c88bd 8430 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8431 */
bd939f45 8432static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8433{
dd5feea1 8434 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
8435 struct sg_lb_stats *local, *busiest;
8436
8437 local = &sds->local_stat;
56cf515b 8438 busiest = &sds->busiest_stat;
dd5feea1 8439
caeb178c 8440 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
8441 /*
8442 * In the group_imb case we cannot rely on group-wide averages
97fb7a0a 8443 * to ensure CPU-load equilibrium, look at wider averages. XXX
30ce5dab 8444 */
56cf515b
JK
8445 busiest->load_per_task =
8446 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
8447 }
8448
1e3c88bd 8449 /*
885e542c
DE
8450 * Avg load of busiest sg can be less and avg load of local sg can
8451 * be greater than avg load across all sgs of sd because avg load
8452 * factors in sg capacity and sgs with smaller group_type are
8453 * skipped when updating the busiest sg:
1e3c88bd 8454 */
cad68e55
MR
8455 if (busiest->group_type != group_misfit_task &&
8456 (busiest->avg_load <= sds->avg_load ||
8457 local->avg_load >= sds->avg_load)) {
bd939f45
PZ
8458 env->imbalance = 0;
8459 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
8460 }
8461
9a5d9ba6 8462 /*
97fb7a0a 8463 * If there aren't any idle CPUs, avoid creating some.
9a5d9ba6
PZ
8464 */
8465 if (busiest->group_type == group_overloaded &&
8466 local->group_type == group_overloaded) {
1be0eb2a 8467 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 8468 if (load_above_capacity > busiest->group_capacity) {
ea67821b 8469 load_above_capacity -= busiest->group_capacity;
26656215 8470 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
8471 load_above_capacity /= busiest->group_capacity;
8472 } else
ea67821b 8473 load_above_capacity = ~0UL;
dd5feea1
SS
8474 }
8475
8476 /*
97fb7a0a 8477 * We're trying to get all the CPUs to the average_load, so we don't
dd5feea1 8478 * want to push ourselves above the average load, nor do we wish to
97fb7a0a 8479 * reduce the max loaded CPU below the average load. At the same time,
0a9b23ce
DE
8480 * we also don't want to reduce the group load below the group
8481 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 8482 */
30ce5dab 8483 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
8484
8485 /* How much load to actually move to equalise the imbalance */
56cf515b 8486 env->imbalance = min(
63b2ca30
NP
8487 max_pull * busiest->group_capacity,
8488 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8489 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 8490
cad68e55
MR
8491 /* Boost imbalance to allow misfit task to be balanced. */
8492 if (busiest->group_type == group_misfit_task) {
8493 env->imbalance = max_t(long, env->imbalance,
8494 busiest->group_misfit_task_load);
8495 }
8496
1e3c88bd
PZ
8497 /*
8498 * if *imbalance is less than the average load per runnable task
25985edc 8499 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
8500 * a think about bumping its value to force at least one task to be
8501 * moved
8502 */
56cf515b 8503 if (env->imbalance < busiest->load_per_task)
bd939f45 8504 return fix_small_imbalance(env, sds);
1e3c88bd 8505}
fab47622 8506
1e3c88bd
PZ
8507/******* find_busiest_group() helpers end here *********************/
8508
8509/**
8510 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8511 * if there is an imbalance.
1e3c88bd 8512 *
a3df0679 8513 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
8514 * to restore balance.
8515 *
cd96891d 8516 * @env: The load balancing environment.
1e3c88bd 8517 *
e69f6186 8518 * Return: - The busiest group if imbalance exists.
1e3c88bd 8519 */
56cf515b 8520static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8521{
56cf515b 8522 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8523 struct sd_lb_stats sds;
8524
147c5fc2 8525 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8526
8527 /*
8528 * Compute the various statistics relavent for load balancing at
8529 * this level.
8530 */
23f0d209 8531 update_sd_lb_stats(env, &sds);
2802bf3c 8532
f8a696f2 8533 if (sched_energy_enabled()) {
2802bf3c
MR
8534 struct root_domain *rd = env->dst_rq->rd;
8535
8536 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8537 goto out_balanced;
8538 }
8539
56cf515b
JK
8540 local = &sds.local_stat;
8541 busiest = &sds.busiest_stat;
1e3c88bd 8542
ea67821b 8543 /* ASYM feature bypasses nice load balance check */
1f621e02 8544 if (check_asym_packing(env, &sds))
532cb4c4
MN
8545 return sds.busiest;
8546
cc57aa8f 8547 /* There is no busy sibling group to pull tasks from */
56cf515b 8548 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
8549 goto out_balanced;
8550
90001d67 8551 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
8552 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8553 / sds.total_capacity;
b0432d8f 8554
866ab43e
PZ
8555 /*
8556 * If the busiest group is imbalanced the below checks don't
30ce5dab 8557 * work because they assume all things are equal, which typically
3bd37062 8558 * isn't true due to cpus_ptr constraints and the like.
866ab43e 8559 */
caeb178c 8560 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8561 goto force_balance;
8562
583ffd99
BJ
8563 /*
8564 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8565 * capacities from resulting in underutilization due to avg_load.
8566 */
8567 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
ea67821b 8568 busiest->group_no_capacity)
fab47622
NR
8569 goto force_balance;
8570
cad68e55
MR
8571 /* Misfit tasks should be dealt with regardless of the avg load */
8572 if (busiest->group_type == group_misfit_task)
8573 goto force_balance;
8574
cc57aa8f 8575 /*
9c58c79a 8576 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8577 * don't try and pull any tasks.
8578 */
56cf515b 8579 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
8580 goto out_balanced;
8581
cc57aa8f
PZ
8582 /*
8583 * Don't pull any tasks if this group is already above the domain
8584 * average load.
8585 */
56cf515b 8586 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
8587 goto out_balanced;
8588
bd939f45 8589 if (env->idle == CPU_IDLE) {
aae6d3dd 8590 /*
97fb7a0a 8591 * This CPU is idle. If the busiest group is not overloaded
43f4d666 8592 * and there is no imbalance between this and busiest group
97fb7a0a 8593 * wrt idle CPUs, it is balanced. The imbalance becomes
43f4d666
VG
8594 * significant if the diff is greater than 1 otherwise we
8595 * might end up to just move the imbalance on another group
aae6d3dd 8596 */
43f4d666
VG
8597 if ((busiest->group_type != group_overloaded) &&
8598 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 8599 goto out_balanced;
c186fafe
PZ
8600 } else {
8601 /*
8602 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8603 * imbalance_pct to be conservative.
8604 */
56cf515b
JK
8605 if (100 * busiest->avg_load <=
8606 env->sd->imbalance_pct * local->avg_load)
c186fafe 8607 goto out_balanced;
aae6d3dd 8608 }
1e3c88bd 8609
fab47622 8610force_balance:
1e3c88bd 8611 /* Looks like there is an imbalance. Compute it */
cad68e55 8612 env->src_grp_type = busiest->group_type;
bd939f45 8613 calculate_imbalance(env, &sds);
bb3485c8 8614 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
8615
8616out_balanced:
bd939f45 8617 env->imbalance = 0;
1e3c88bd
PZ
8618 return NULL;
8619}
8620
8621/*
97fb7a0a 8622 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 8623 */
bd939f45 8624static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8625 struct sched_group *group)
1e3c88bd
PZ
8626{
8627 struct rq *busiest = NULL, *rq;
ced549fa 8628 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8629 int i;
8630
ae4df9d6 8631 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
a3df0679 8632 unsigned long capacity, load;
0ec8aa00
PZ
8633 enum fbq_type rt;
8634
8635 rq = cpu_rq(i);
8636 rt = fbq_classify_rq(rq);
1e3c88bd 8637
0ec8aa00
PZ
8638 /*
8639 * We classify groups/runqueues into three groups:
8640 * - regular: there are !numa tasks
8641 * - remote: there are numa tasks that run on the 'wrong' node
8642 * - all: there is no distinction
8643 *
8644 * In order to avoid migrating ideally placed numa tasks,
8645 * ignore those when there's better options.
8646 *
8647 * If we ignore the actual busiest queue to migrate another
8648 * task, the next balance pass can still reduce the busiest
8649 * queue by moving tasks around inside the node.
8650 *
8651 * If we cannot move enough load due to this classification
8652 * the next pass will adjust the group classification and
8653 * allow migration of more tasks.
8654 *
8655 * Both cases only affect the total convergence complexity.
8656 */
8657 if (rt > env->fbq_type)
8658 continue;
8659
cad68e55
MR
8660 /*
8661 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8662 * seek the "biggest" misfit task.
8663 */
8664 if (env->src_grp_type == group_misfit_task) {
8665 if (rq->misfit_task_load > busiest_load) {
8666 busiest_load = rq->misfit_task_load;
8667 busiest = rq;
8668 }
8669
8670 continue;
8671 }
8672
ced549fa 8673 capacity = capacity_of(i);
9d5efe05 8674
4ad3831a
CR
8675 /*
8676 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8677 * eventually lead to active_balancing high->low capacity.
8678 * Higher per-CPU capacity is considered better than balancing
8679 * average load.
8680 */
8681 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8682 capacity_of(env->dst_cpu) < capacity &&
8683 rq->nr_running == 1)
8684 continue;
8685
a3df0679 8686 load = cpu_runnable_load(rq);
1e3c88bd 8687
6e40f5bb 8688 /*
a3df0679 8689 * When comparing with imbalance, use cpu_runnable_load()
97fb7a0a 8690 * which is not scaled with the CPU capacity.
6e40f5bb 8691 */
ea67821b 8692
a3df0679 8693 if (rq->nr_running == 1 && load > env->imbalance &&
ea67821b 8694 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8695 continue;
8696
6e40f5bb 8697 /*
97fb7a0a 8698 * For the load comparisons with the other CPU's, consider
a3df0679 8699 * the cpu_runnable_load() scaled with the CPU capacity, so
97fb7a0a 8700 * that the load can be moved away from the CPU that is
ced549fa 8701 * potentially running at a lower capacity.
95a79b80 8702 *
a3df0679 8703 * Thus we're looking for max(load_i / capacity_i), crosswise
95a79b80 8704 * multiplication to rid ourselves of the division works out
a3df0679 8705 * to: load_i * capacity_j > load_j * capacity_i; where j is
ced549fa 8706 * our previous maximum.
6e40f5bb 8707 */
a3df0679
DE
8708 if (load * busiest_capacity > busiest_load * capacity) {
8709 busiest_load = load;
ced549fa 8710 busiest_capacity = capacity;
1e3c88bd
PZ
8711 busiest = rq;
8712 }
8713 }
8714
8715 return busiest;
8716}
8717
8718/*
8719 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8720 * so long as it is large enough.
8721 */
8722#define MAX_PINNED_INTERVAL 512
8723
46a745d9
VG
8724static inline bool
8725asym_active_balance(struct lb_env *env)
1af3ed3d 8726{
46a745d9
VG
8727 /*
8728 * ASYM_PACKING needs to force migrate tasks from busy but
8729 * lower priority CPUs in order to pack all tasks in the
8730 * highest priority CPUs.
8731 */
8732 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8733 sched_asym_prefer(env->dst_cpu, env->src_cpu);
8734}
bd939f45 8735
46a745d9
VG
8736static inline bool
8737voluntary_active_balance(struct lb_env *env)
8738{
8739 struct sched_domain *sd = env->sd;
532cb4c4 8740
46a745d9
VG
8741 if (asym_active_balance(env))
8742 return 1;
1af3ed3d 8743
1aaf90a4
VG
8744 /*
8745 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8746 * It's worth migrating the task if the src_cpu's capacity is reduced
8747 * because of other sched_class or IRQs if more capacity stays
8748 * available on dst_cpu.
8749 */
8750 if ((env->idle != CPU_NOT_IDLE) &&
8751 (env->src_rq->cfs.h_nr_running == 1)) {
8752 if ((check_cpu_capacity(env->src_rq, sd)) &&
8753 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8754 return 1;
8755 }
8756
cad68e55
MR
8757 if (env->src_grp_type == group_misfit_task)
8758 return 1;
8759
46a745d9
VG
8760 return 0;
8761}
8762
8763static int need_active_balance(struct lb_env *env)
8764{
8765 struct sched_domain *sd = env->sd;
8766
8767 if (voluntary_active_balance(env))
8768 return 1;
8769
1af3ed3d
PZ
8770 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8771}
8772
969c7921
TH
8773static int active_load_balance_cpu_stop(void *data);
8774
23f0d209
JK
8775static int should_we_balance(struct lb_env *env)
8776{
8777 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8778 int cpu, balance_cpu = -1;
8779
024c9d2f
PZ
8780 /*
8781 * Ensure the balancing environment is consistent; can happen
8782 * when the softirq triggers 'during' hotplug.
8783 */
8784 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8785 return 0;
8786
23f0d209 8787 /*
97fb7a0a 8788 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
8789 * to do the newly idle load balance.
8790 */
8791 if (env->idle == CPU_NEWLY_IDLE)
8792 return 1;
8793
97fb7a0a 8794 /* Try to find first idle CPU */
e5c14b1f 8795 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8796 if (!idle_cpu(cpu))
23f0d209
JK
8797 continue;
8798
8799 balance_cpu = cpu;
8800 break;
8801 }
8802
8803 if (balance_cpu == -1)
8804 balance_cpu = group_balance_cpu(sg);
8805
8806 /*
97fb7a0a 8807 * First idle CPU or the first CPU(busiest) in this sched group
23f0d209
JK
8808 * is eligible for doing load balancing at this and above domains.
8809 */
b0cff9d8 8810 return balance_cpu == env->dst_cpu;
23f0d209
JK
8811}
8812
1e3c88bd
PZ
8813/*
8814 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8815 * tasks if there is an imbalance.
8816 */
8817static int load_balance(int this_cpu, struct rq *this_rq,
8818 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8819 int *continue_balancing)
1e3c88bd 8820{
88b8dac0 8821 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8822 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8823 struct sched_group *group;
1e3c88bd 8824 struct rq *busiest;
8a8c69c3 8825 struct rq_flags rf;
4ba29684 8826 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 8827
8e45cb54
PZ
8828 struct lb_env env = {
8829 .sd = sd,
ddcdf6e7
PZ
8830 .dst_cpu = this_cpu,
8831 .dst_rq = this_rq,
ae4df9d6 8832 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 8833 .idle = idle,
eb95308e 8834 .loop_break = sched_nr_migrate_break,
b9403130 8835 .cpus = cpus,
0ec8aa00 8836 .fbq_type = all,
163122b7 8837 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
8838 };
8839
65a4433a 8840 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 8841
ae92882e 8842 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
8843
8844redo:
23f0d209
JK
8845 if (!should_we_balance(&env)) {
8846 *continue_balancing = 0;
1e3c88bd 8847 goto out_balanced;
23f0d209 8848 }
1e3c88bd 8849
23f0d209 8850 group = find_busiest_group(&env);
1e3c88bd 8851 if (!group) {
ae92882e 8852 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
8853 goto out_balanced;
8854 }
8855
b9403130 8856 busiest = find_busiest_queue(&env, group);
1e3c88bd 8857 if (!busiest) {
ae92882e 8858 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
8859 goto out_balanced;
8860 }
8861
78feefc5 8862 BUG_ON(busiest == env.dst_rq);
1e3c88bd 8863
ae92882e 8864 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 8865
1aaf90a4
VG
8866 env.src_cpu = busiest->cpu;
8867 env.src_rq = busiest;
8868
1e3c88bd
PZ
8869 ld_moved = 0;
8870 if (busiest->nr_running > 1) {
8871 /*
8872 * Attempt to move tasks. If find_busiest_group has found
8873 * an imbalance but busiest->nr_running <= 1, the group is
8874 * still unbalanced. ld_moved simply stays zero, so it is
8875 * correctly treated as an imbalance.
8876 */
8e45cb54 8877 env.flags |= LBF_ALL_PINNED;
c82513e5 8878 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 8879
5d6523eb 8880more_balance:
8a8c69c3 8881 rq_lock_irqsave(busiest, &rf);
3bed5e21 8882 update_rq_clock(busiest);
88b8dac0
SV
8883
8884 /*
8885 * cur_ld_moved - load moved in current iteration
8886 * ld_moved - cumulative load moved across iterations
8887 */
163122b7 8888 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
8889
8890 /*
163122b7
KT
8891 * We've detached some tasks from busiest_rq. Every
8892 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8893 * unlock busiest->lock, and we are able to be sure
8894 * that nobody can manipulate the tasks in parallel.
8895 * See task_rq_lock() family for the details.
1e3c88bd 8896 */
163122b7 8897
8a8c69c3 8898 rq_unlock(busiest, &rf);
163122b7
KT
8899
8900 if (cur_ld_moved) {
8901 attach_tasks(&env);
8902 ld_moved += cur_ld_moved;
8903 }
8904
8a8c69c3 8905 local_irq_restore(rf.flags);
88b8dac0 8906
f1cd0858
JK
8907 if (env.flags & LBF_NEED_BREAK) {
8908 env.flags &= ~LBF_NEED_BREAK;
8909 goto more_balance;
8910 }
8911
88b8dac0
SV
8912 /*
8913 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8914 * us and move them to an alternate dst_cpu in our sched_group
8915 * where they can run. The upper limit on how many times we
97fb7a0a 8916 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
8917 * sched_group.
8918 *
8919 * This changes load balance semantics a bit on who can move
8920 * load to a given_cpu. In addition to the given_cpu itself
8921 * (or a ilb_cpu acting on its behalf where given_cpu is
8922 * nohz-idle), we now have balance_cpu in a position to move
8923 * load to given_cpu. In rare situations, this may cause
8924 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8925 * _independently_ and at _same_ time to move some load to
8926 * given_cpu) causing exceess load to be moved to given_cpu.
8927 * This however should not happen so much in practice and
8928 * moreover subsequent load balance cycles should correct the
8929 * excess load moved.
8930 */
6263322c 8931 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 8932
97fb7a0a 8933 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 8934 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 8935
78feefc5 8936 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 8937 env.dst_cpu = env.new_dst_cpu;
6263322c 8938 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
8939 env.loop = 0;
8940 env.loop_break = sched_nr_migrate_break;
e02e60c1 8941
88b8dac0
SV
8942 /*
8943 * Go back to "more_balance" rather than "redo" since we
8944 * need to continue with same src_cpu.
8945 */
8946 goto more_balance;
8947 }
1e3c88bd 8948
6263322c
PZ
8949 /*
8950 * We failed to reach balance because of affinity.
8951 */
8952 if (sd_parent) {
63b2ca30 8953 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 8954
afdeee05 8955 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 8956 *group_imbalance = 1;
6263322c
PZ
8957 }
8958
1e3c88bd 8959 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 8960 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 8961 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
8962 /*
8963 * Attempting to continue load balancing at the current
8964 * sched_domain level only makes sense if there are
8965 * active CPUs remaining as possible busiest CPUs to
8966 * pull load from which are not contained within the
8967 * destination group that is receiving any migrated
8968 * load.
8969 */
8970 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
8971 env.loop = 0;
8972 env.loop_break = sched_nr_migrate_break;
1e3c88bd 8973 goto redo;
bbf18b19 8974 }
afdeee05 8975 goto out_all_pinned;
1e3c88bd
PZ
8976 }
8977 }
8978
8979 if (!ld_moved) {
ae92882e 8980 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
8981 /*
8982 * Increment the failure counter only on periodic balance.
8983 * We do not want newidle balance, which can be very
8984 * frequent, pollute the failure counter causing
8985 * excessive cache_hot migrations and active balances.
8986 */
8987 if (idle != CPU_NEWLY_IDLE)
8988 sd->nr_balance_failed++;
1e3c88bd 8989
bd939f45 8990 if (need_active_balance(&env)) {
8a8c69c3
PZ
8991 unsigned long flags;
8992
1e3c88bd
PZ
8993 raw_spin_lock_irqsave(&busiest->lock, flags);
8994
97fb7a0a
IM
8995 /*
8996 * Don't kick the active_load_balance_cpu_stop,
8997 * if the curr task on busiest CPU can't be
8998 * moved to this_cpu:
1e3c88bd 8999 */
3bd37062 9000 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
1e3c88bd
PZ
9001 raw_spin_unlock_irqrestore(&busiest->lock,
9002 flags);
8e45cb54 9003 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9004 goto out_one_pinned;
9005 }
9006
969c7921
TH
9007 /*
9008 * ->active_balance synchronizes accesses to
9009 * ->active_balance_work. Once set, it's cleared
9010 * only after active load balance is finished.
9011 */
1e3c88bd
PZ
9012 if (!busiest->active_balance) {
9013 busiest->active_balance = 1;
9014 busiest->push_cpu = this_cpu;
9015 active_balance = 1;
9016 }
9017 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9018
bd939f45 9019 if (active_balance) {
969c7921
TH
9020 stop_one_cpu_nowait(cpu_of(busiest),
9021 active_load_balance_cpu_stop, busiest,
9022 &busiest->active_balance_work);
bd939f45 9023 }
1e3c88bd 9024
d02c0711 9025 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
9026 sd->nr_balance_failed = sd->cache_nice_tries+1;
9027 }
9028 } else
9029 sd->nr_balance_failed = 0;
9030
46a745d9 9031 if (likely(!active_balance) || voluntary_active_balance(&env)) {
1e3c88bd
PZ
9032 /* We were unbalanced, so reset the balancing interval */
9033 sd->balance_interval = sd->min_interval;
9034 } else {
9035 /*
9036 * If we've begun active balancing, start to back off. This
9037 * case may not be covered by the all_pinned logic if there
9038 * is only 1 task on the busy runqueue (because we don't call
163122b7 9039 * detach_tasks).
1e3c88bd
PZ
9040 */
9041 if (sd->balance_interval < sd->max_interval)
9042 sd->balance_interval *= 2;
9043 }
9044
1e3c88bd
PZ
9045 goto out;
9046
9047out_balanced:
afdeee05
VG
9048 /*
9049 * We reach balance although we may have faced some affinity
9050 * constraints. Clear the imbalance flag if it was set.
9051 */
9052 if (sd_parent) {
9053 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9054
9055 if (*group_imbalance)
9056 *group_imbalance = 0;
9057 }
9058
9059out_all_pinned:
9060 /*
9061 * We reach balance because all tasks are pinned at this level so
9062 * we can't migrate them. Let the imbalance flag set so parent level
9063 * can try to migrate them.
9064 */
ae92882e 9065 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9066
9067 sd->nr_balance_failed = 0;
9068
9069out_one_pinned:
3f130a37
VS
9070 ld_moved = 0;
9071
9072 /*
9073 * idle_balance() disregards balance intervals, so we could repeatedly
9074 * reach this code, which would lead to balance_interval skyrocketting
9075 * in a short amount of time. Skip the balance_interval increase logic
9076 * to avoid that.
9077 */
9078 if (env.idle == CPU_NEWLY_IDLE)
9079 goto out;
9080
1e3c88bd 9081 /* tune up the balancing interval */
47b7aee1
VS
9082 if ((env.flags & LBF_ALL_PINNED &&
9083 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9084 sd->balance_interval < sd->max_interval)
1e3c88bd 9085 sd->balance_interval *= 2;
1e3c88bd 9086out:
1e3c88bd
PZ
9087 return ld_moved;
9088}
9089
52a08ef1
JL
9090static inline unsigned long
9091get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9092{
9093 unsigned long interval = sd->balance_interval;
9094
9095 if (cpu_busy)
9096 interval *= sd->busy_factor;
9097
9098 /* scale ms to jiffies */
9099 interval = msecs_to_jiffies(interval);
9100 interval = clamp(interval, 1UL, max_load_balance_interval);
9101
9102 return interval;
9103}
9104
9105static inline void
31851a98 9106update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9107{
9108 unsigned long interval, next;
9109
31851a98
LY
9110 /* used by idle balance, so cpu_busy = 0 */
9111 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9112 next = sd->last_balance + interval;
9113
9114 if (time_after(*next_balance, next))
9115 *next_balance = next;
9116}
9117
1e3c88bd 9118/*
97fb7a0a 9119 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9120 * running tasks off the busiest CPU onto idle CPUs. It requires at
9121 * least 1 task to be running on each physical CPU where possible, and
9122 * avoids physical / logical imbalances.
1e3c88bd 9123 */
969c7921 9124static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9125{
969c7921
TH
9126 struct rq *busiest_rq = data;
9127 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9128 int target_cpu = busiest_rq->push_cpu;
969c7921 9129 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9130 struct sched_domain *sd;
e5673f28 9131 struct task_struct *p = NULL;
8a8c69c3 9132 struct rq_flags rf;
969c7921 9133
8a8c69c3 9134 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9135 /*
9136 * Between queueing the stop-work and running it is a hole in which
9137 * CPUs can become inactive. We should not move tasks from or to
9138 * inactive CPUs.
9139 */
9140 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9141 goto out_unlock;
969c7921 9142
97fb7a0a 9143 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9144 if (unlikely(busiest_cpu != smp_processor_id() ||
9145 !busiest_rq->active_balance))
9146 goto out_unlock;
1e3c88bd
PZ
9147
9148 /* Is there any task to move? */
9149 if (busiest_rq->nr_running <= 1)
969c7921 9150 goto out_unlock;
1e3c88bd
PZ
9151
9152 /*
9153 * This condition is "impossible", if it occurs
9154 * we need to fix it. Originally reported by
97fb7a0a 9155 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9156 */
9157 BUG_ON(busiest_rq == target_rq);
9158
1e3c88bd 9159 /* Search for an sd spanning us and the target CPU. */
dce840a0 9160 rcu_read_lock();
1e3c88bd
PZ
9161 for_each_domain(target_cpu, sd) {
9162 if ((sd->flags & SD_LOAD_BALANCE) &&
9163 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9164 break;
9165 }
9166
9167 if (likely(sd)) {
8e45cb54
PZ
9168 struct lb_env env = {
9169 .sd = sd,
ddcdf6e7
PZ
9170 .dst_cpu = target_cpu,
9171 .dst_rq = target_rq,
9172 .src_cpu = busiest_rq->cpu,
9173 .src_rq = busiest_rq,
8e45cb54 9174 .idle = CPU_IDLE,
65a4433a
JH
9175 /*
9176 * can_migrate_task() doesn't need to compute new_dst_cpu
9177 * for active balancing. Since we have CPU_IDLE, but no
9178 * @dst_grpmask we need to make that test go away with lying
9179 * about DST_PINNED.
9180 */
9181 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9182 };
9183
ae92882e 9184 schedstat_inc(sd->alb_count);
3bed5e21 9185 update_rq_clock(busiest_rq);
1e3c88bd 9186
e5673f28 9187 p = detach_one_task(&env);
d02c0711 9188 if (p) {
ae92882e 9189 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9190 /* Active balancing done, reset the failure counter. */
9191 sd->nr_balance_failed = 0;
9192 } else {
ae92882e 9193 schedstat_inc(sd->alb_failed);
d02c0711 9194 }
1e3c88bd 9195 }
dce840a0 9196 rcu_read_unlock();
969c7921
TH
9197out_unlock:
9198 busiest_rq->active_balance = 0;
8a8c69c3 9199 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9200
9201 if (p)
9202 attach_one_task(target_rq, p);
9203
9204 local_irq_enable();
9205
969c7921 9206 return 0;
1e3c88bd
PZ
9207}
9208
af3fe03c
PZ
9209static DEFINE_SPINLOCK(balancing);
9210
9211/*
9212 * Scale the max load_balance interval with the number of CPUs in the system.
9213 * This trades load-balance latency on larger machines for less cross talk.
9214 */
9215void update_max_interval(void)
9216{
9217 max_load_balance_interval = HZ*num_online_cpus()/10;
9218}
9219
9220/*
9221 * It checks each scheduling domain to see if it is due to be balanced,
9222 * and initiates a balancing operation if so.
9223 *
9224 * Balancing parameters are set up in init_sched_domains.
9225 */
9226static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9227{
9228 int continue_balancing = 1;
9229 int cpu = rq->cpu;
9230 unsigned long interval;
9231 struct sched_domain *sd;
9232 /* Earliest time when we have to do rebalance again */
9233 unsigned long next_balance = jiffies + 60*HZ;
9234 int update_next_balance = 0;
9235 int need_serialize, need_decay = 0;
9236 u64 max_cost = 0;
9237
9238 rcu_read_lock();
9239 for_each_domain(cpu, sd) {
9240 /*
9241 * Decay the newidle max times here because this is a regular
9242 * visit to all the domains. Decay ~1% per second.
9243 */
9244 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9245 sd->max_newidle_lb_cost =
9246 (sd->max_newidle_lb_cost * 253) / 256;
9247 sd->next_decay_max_lb_cost = jiffies + HZ;
9248 need_decay = 1;
9249 }
9250 max_cost += sd->max_newidle_lb_cost;
9251
9252 if (!(sd->flags & SD_LOAD_BALANCE))
9253 continue;
9254
9255 /*
9256 * Stop the load balance at this level. There is another
9257 * CPU in our sched group which is doing load balancing more
9258 * actively.
9259 */
9260 if (!continue_balancing) {
9261 if (need_decay)
9262 continue;
9263 break;
9264 }
9265
9266 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9267
9268 need_serialize = sd->flags & SD_SERIALIZE;
9269 if (need_serialize) {
9270 if (!spin_trylock(&balancing))
9271 goto out;
9272 }
9273
9274 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9275 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9276 /*
9277 * The LBF_DST_PINNED logic could have changed
9278 * env->dst_cpu, so we can't know our idle
9279 * state even if we migrated tasks. Update it.
9280 */
9281 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9282 }
9283 sd->last_balance = jiffies;
9284 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9285 }
9286 if (need_serialize)
9287 spin_unlock(&balancing);
9288out:
9289 if (time_after(next_balance, sd->last_balance + interval)) {
9290 next_balance = sd->last_balance + interval;
9291 update_next_balance = 1;
9292 }
9293 }
9294 if (need_decay) {
9295 /*
9296 * Ensure the rq-wide value also decays but keep it at a
9297 * reasonable floor to avoid funnies with rq->avg_idle.
9298 */
9299 rq->max_idle_balance_cost =
9300 max((u64)sysctl_sched_migration_cost, max_cost);
9301 }
9302 rcu_read_unlock();
9303
9304 /*
9305 * next_balance will be updated only when there is a need.
9306 * When the cpu is attached to null domain for ex, it will not be
9307 * updated.
9308 */
9309 if (likely(update_next_balance)) {
9310 rq->next_balance = next_balance;
9311
9312#ifdef CONFIG_NO_HZ_COMMON
9313 /*
9314 * If this CPU has been elected to perform the nohz idle
9315 * balance. Other idle CPUs have already rebalanced with
9316 * nohz_idle_balance() and nohz.next_balance has been
9317 * updated accordingly. This CPU is now running the idle load
9318 * balance for itself and we need to update the
9319 * nohz.next_balance accordingly.
9320 */
9321 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9322 nohz.next_balance = rq->next_balance;
9323#endif
9324 }
9325}
9326
d987fc7f
MG
9327static inline int on_null_domain(struct rq *rq)
9328{
9329 return unlikely(!rcu_dereference_sched(rq->sd));
9330}
9331
3451d024 9332#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
9333/*
9334 * idle load balancing details
83cd4fe2
VP
9335 * - When one of the busy CPUs notice that there may be an idle rebalancing
9336 * needed, they will kick the idle load balancer, which then does idle
9337 * load balancing for all the idle CPUs.
9b019acb
NP
9338 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9339 * anywhere yet.
83cd4fe2 9340 */
1e3c88bd 9341
3dd0337d 9342static inline int find_new_ilb(void)
1e3c88bd 9343{
9b019acb 9344 int ilb;
1e3c88bd 9345
9b019acb
NP
9346 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9347 housekeeping_cpumask(HK_FLAG_MISC)) {
9348 if (idle_cpu(ilb))
9349 return ilb;
9350 }
786d6dc7
SS
9351
9352 return nr_cpu_ids;
1e3c88bd 9353}
1e3c88bd 9354
83cd4fe2 9355/*
9b019acb
NP
9356 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9357 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 9358 */
a4064fb6 9359static void kick_ilb(unsigned int flags)
83cd4fe2
VP
9360{
9361 int ilb_cpu;
9362
9363 nohz.next_balance++;
9364
3dd0337d 9365 ilb_cpu = find_new_ilb();
83cd4fe2 9366
0b005cf5
SS
9367 if (ilb_cpu >= nr_cpu_ids)
9368 return;
83cd4fe2 9369
a4064fb6 9370 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 9371 if (flags & NOHZ_KICK_MASK)
1c792db7 9372 return;
4550487a 9373
1c792db7
SS
9374 /*
9375 * Use smp_send_reschedule() instead of resched_cpu().
97fb7a0a 9376 * This way we generate a sched IPI on the target CPU which
1c792db7
SS
9377 * is idle. And the softirq performing nohz idle load balance
9378 * will be run before returning from the IPI.
9379 */
9380 smp_send_reschedule(ilb_cpu);
4550487a
PZ
9381}
9382
9383/*
9f132742
VS
9384 * Current decision point for kicking the idle load balancer in the presence
9385 * of idle CPUs in the system.
4550487a
PZ
9386 */
9387static void nohz_balancer_kick(struct rq *rq)
9388{
9389 unsigned long now = jiffies;
9390 struct sched_domain_shared *sds;
9391 struct sched_domain *sd;
9392 int nr_busy, i, cpu = rq->cpu;
a4064fb6 9393 unsigned int flags = 0;
4550487a
PZ
9394
9395 if (unlikely(rq->idle_balance))
9396 return;
9397
9398 /*
9399 * We may be recently in ticked or tickless idle mode. At the first
9400 * busy tick after returning from idle, we will update the busy stats.
9401 */
00357f5e 9402 nohz_balance_exit_idle(rq);
4550487a
PZ
9403
9404 /*
9405 * None are in tickless mode and hence no need for NOHZ idle load
9406 * balancing.
9407 */
9408 if (likely(!atomic_read(&nohz.nr_cpus)))
9409 return;
9410
f643ea22
VG
9411 if (READ_ONCE(nohz.has_blocked) &&
9412 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
9413 flags = NOHZ_STATS_KICK;
9414
4550487a 9415 if (time_before(now, nohz.next_balance))
a4064fb6 9416 goto out;
4550487a 9417
a0fe2cf0 9418 if (rq->nr_running >= 2) {
a4064fb6 9419 flags = NOHZ_KICK_MASK;
4550487a
PZ
9420 goto out;
9421 }
9422
9423 rcu_read_lock();
4550487a
PZ
9424
9425 sd = rcu_dereference(rq->sd);
9426 if (sd) {
e25a7a94
VS
9427 /*
9428 * If there's a CFS task and the current CPU has reduced
9429 * capacity; kick the ILB to see if there's a better CPU to run
9430 * on.
9431 */
9432 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 9433 flags = NOHZ_KICK_MASK;
4550487a
PZ
9434 goto unlock;
9435 }
9436 }
9437
011b27bb 9438 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 9439 if (sd) {
b9a7b883
VS
9440 /*
9441 * When ASYM_PACKING; see if there's a more preferred CPU
9442 * currently idle; in which case, kick the ILB to move tasks
9443 * around.
9444 */
7edab78d 9445 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 9446 if (sched_asym_prefer(i, cpu)) {
a4064fb6 9447 flags = NOHZ_KICK_MASK;
4550487a
PZ
9448 goto unlock;
9449 }
9450 }
9451 }
b9a7b883 9452
a0fe2cf0
VS
9453 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9454 if (sd) {
9455 /*
9456 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9457 * to run the misfit task on.
9458 */
9459 if (check_misfit_status(rq, sd)) {
9460 flags = NOHZ_KICK_MASK;
9461 goto unlock;
9462 }
b9a7b883
VS
9463
9464 /*
9465 * For asymmetric systems, we do not want to nicely balance
9466 * cache use, instead we want to embrace asymmetry and only
9467 * ensure tasks have enough CPU capacity.
9468 *
9469 * Skip the LLC logic because it's not relevant in that case.
9470 */
9471 goto unlock;
a0fe2cf0
VS
9472 }
9473
b9a7b883
VS
9474 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9475 if (sds) {
e25a7a94 9476 /*
b9a7b883
VS
9477 * If there is an imbalance between LLC domains (IOW we could
9478 * increase the overall cache use), we need some less-loaded LLC
9479 * domain to pull some load. Likewise, we may need to spread
9480 * load within the current LLC domain (e.g. packed SMT cores but
9481 * other CPUs are idle). We can't really know from here how busy
9482 * the others are - so just get a nohz balance going if it looks
9483 * like this LLC domain has tasks we could move.
e25a7a94 9484 */
b9a7b883
VS
9485 nr_busy = atomic_read(&sds->nr_busy_cpus);
9486 if (nr_busy > 1) {
9487 flags = NOHZ_KICK_MASK;
9488 goto unlock;
4550487a
PZ
9489 }
9490 }
9491unlock:
9492 rcu_read_unlock();
9493out:
a4064fb6
PZ
9494 if (flags)
9495 kick_ilb(flags);
83cd4fe2
VP
9496}
9497
00357f5e 9498static void set_cpu_sd_state_busy(int cpu)
71325960 9499{
00357f5e 9500 struct sched_domain *sd;
a22e47a4 9501
00357f5e
PZ
9502 rcu_read_lock();
9503 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 9504
00357f5e
PZ
9505 if (!sd || !sd->nohz_idle)
9506 goto unlock;
9507 sd->nohz_idle = 0;
9508
9509 atomic_inc(&sd->shared->nr_busy_cpus);
9510unlock:
9511 rcu_read_unlock();
71325960
SS
9512}
9513
00357f5e
PZ
9514void nohz_balance_exit_idle(struct rq *rq)
9515{
9516 SCHED_WARN_ON(rq != this_rq());
9517
9518 if (likely(!rq->nohz_tick_stopped))
9519 return;
9520
9521 rq->nohz_tick_stopped = 0;
9522 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9523 atomic_dec(&nohz.nr_cpus);
9524
9525 set_cpu_sd_state_busy(rq->cpu);
9526}
9527
9528static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
9529{
9530 struct sched_domain *sd;
69e1e811 9531
69e1e811 9532 rcu_read_lock();
0e369d75 9533 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
9534
9535 if (!sd || sd->nohz_idle)
9536 goto unlock;
9537 sd->nohz_idle = 1;
9538
0e369d75 9539 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 9540unlock:
69e1e811
SS
9541 rcu_read_unlock();
9542}
9543
1e3c88bd 9544/*
97fb7a0a 9545 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 9546 * This info will be used in performing idle load balancing in the future.
1e3c88bd 9547 */
c1cc017c 9548void nohz_balance_enter_idle(int cpu)
1e3c88bd 9549{
00357f5e
PZ
9550 struct rq *rq = cpu_rq(cpu);
9551
9552 SCHED_WARN_ON(cpu != smp_processor_id());
9553
97fb7a0a 9554 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
9555 if (!cpu_active(cpu))
9556 return;
9557
387bc8b5 9558 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 9559 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
9560 return;
9561
f643ea22
VG
9562 /*
9563 * Can be set safely without rq->lock held
9564 * If a clear happens, it will have evaluated last additions because
9565 * rq->lock is held during the check and the clear
9566 */
9567 rq->has_blocked_load = 1;
9568
9569 /*
9570 * The tick is still stopped but load could have been added in the
9571 * meantime. We set the nohz.has_blocked flag to trig a check of the
9572 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9573 * of nohz.has_blocked can only happen after checking the new load
9574 */
00357f5e 9575 if (rq->nohz_tick_stopped)
f643ea22 9576 goto out;
1e3c88bd 9577
97fb7a0a 9578 /* If we're a completely isolated CPU, we don't play: */
00357f5e 9579 if (on_null_domain(rq))
d987fc7f
MG
9580 return;
9581
00357f5e
PZ
9582 rq->nohz_tick_stopped = 1;
9583
c1cc017c
AS
9584 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9585 atomic_inc(&nohz.nr_cpus);
00357f5e 9586
f643ea22
VG
9587 /*
9588 * Ensures that if nohz_idle_balance() fails to observe our
9589 * @idle_cpus_mask store, it must observe the @has_blocked
9590 * store.
9591 */
9592 smp_mb__after_atomic();
9593
00357f5e 9594 set_cpu_sd_state_idle(cpu);
f643ea22
VG
9595
9596out:
9597 /*
9598 * Each time a cpu enter idle, we assume that it has blocked load and
9599 * enable the periodic update of the load of idle cpus
9600 */
9601 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 9602}
1e3c88bd 9603
1e3c88bd 9604/*
31e77c93
VG
9605 * Internal function that runs load balance for all idle cpus. The load balance
9606 * can be a simple update of blocked load or a complete load balance with
9607 * tasks movement depending of flags.
9608 * The function returns false if the loop has stopped before running
9609 * through all idle CPUs.
1e3c88bd 9610 */
31e77c93
VG
9611static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9612 enum cpu_idle_type idle)
83cd4fe2 9613{
c5afb6a8 9614 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
9615 unsigned long now = jiffies;
9616 unsigned long next_balance = now + 60*HZ;
f643ea22 9617 bool has_blocked_load = false;
c5afb6a8 9618 int update_next_balance = 0;
b7031a02 9619 int this_cpu = this_rq->cpu;
b7031a02 9620 int balance_cpu;
31e77c93 9621 int ret = false;
b7031a02 9622 struct rq *rq;
83cd4fe2 9623
b7031a02 9624 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 9625
f643ea22
VG
9626 /*
9627 * We assume there will be no idle load after this update and clear
9628 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9629 * set the has_blocked flag and trig another update of idle load.
9630 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9631 * setting the flag, we are sure to not clear the state and not
9632 * check the load of an idle cpu.
9633 */
9634 WRITE_ONCE(nohz.has_blocked, 0);
9635
9636 /*
9637 * Ensures that if we miss the CPU, we must see the has_blocked
9638 * store from nohz_balance_enter_idle().
9639 */
9640 smp_mb();
9641
83cd4fe2 9642 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9643 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9644 continue;
9645
9646 /*
97fb7a0a
IM
9647 * If this CPU gets work to do, stop the load balancing
9648 * work being done for other CPUs. Next load
83cd4fe2
VP
9649 * balancing owner will pick it up.
9650 */
f643ea22
VG
9651 if (need_resched()) {
9652 has_blocked_load = true;
9653 goto abort;
9654 }
83cd4fe2 9655
5ed4f1d9
VG
9656 rq = cpu_rq(balance_cpu);
9657
63928384 9658 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 9659
ed61bbc6
TC
9660 /*
9661 * If time for next balance is due,
9662 * do the balance.
9663 */
9664 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9665 struct rq_flags rf;
9666
31e77c93 9667 rq_lock_irqsave(rq, &rf);
ed61bbc6 9668 update_rq_clock(rq);
31e77c93 9669 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 9670
b7031a02
PZ
9671 if (flags & NOHZ_BALANCE_KICK)
9672 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 9673 }
83cd4fe2 9674
c5afb6a8
VG
9675 if (time_after(next_balance, rq->next_balance)) {
9676 next_balance = rq->next_balance;
9677 update_next_balance = 1;
9678 }
83cd4fe2 9679 }
c5afb6a8 9680
31e77c93
VG
9681 /* Newly idle CPU doesn't need an update */
9682 if (idle != CPU_NEWLY_IDLE) {
9683 update_blocked_averages(this_cpu);
9684 has_blocked_load |= this_rq->has_blocked_load;
9685 }
9686
b7031a02
PZ
9687 if (flags & NOHZ_BALANCE_KICK)
9688 rebalance_domains(this_rq, CPU_IDLE);
9689
f643ea22
VG
9690 WRITE_ONCE(nohz.next_blocked,
9691 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9692
31e77c93
VG
9693 /* The full idle balance loop has been done */
9694 ret = true;
9695
f643ea22
VG
9696abort:
9697 /* There is still blocked load, enable periodic update */
9698 if (has_blocked_load)
9699 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 9700
c5afb6a8
VG
9701 /*
9702 * next_balance will be updated only when there is a need.
9703 * When the CPU is attached to null domain for ex, it will not be
9704 * updated.
9705 */
9706 if (likely(update_next_balance))
9707 nohz.next_balance = next_balance;
b7031a02 9708
31e77c93
VG
9709 return ret;
9710}
9711
9712/*
9713 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9714 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9715 */
9716static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9717{
9718 int this_cpu = this_rq->cpu;
9719 unsigned int flags;
9720
9721 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9722 return false;
9723
9724 if (idle != CPU_IDLE) {
9725 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9726 return false;
9727 }
9728
80eb8657 9729 /* could be _relaxed() */
31e77c93
VG
9730 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9731 if (!(flags & NOHZ_KICK_MASK))
9732 return false;
9733
9734 _nohz_idle_balance(this_rq, flags, idle);
9735
b7031a02 9736 return true;
83cd4fe2 9737}
31e77c93
VG
9738
9739static void nohz_newidle_balance(struct rq *this_rq)
9740{
9741 int this_cpu = this_rq->cpu;
9742
9743 /*
9744 * This CPU doesn't want to be disturbed by scheduler
9745 * housekeeping
9746 */
9747 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9748 return;
9749
9750 /* Will wake up very soon. No time for doing anything else*/
9751 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9752 return;
9753
9754 /* Don't need to update blocked load of idle CPUs*/
9755 if (!READ_ONCE(nohz.has_blocked) ||
9756 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9757 return;
9758
9759 raw_spin_unlock(&this_rq->lock);
9760 /*
9761 * This CPU is going to be idle and blocked load of idle CPUs
9762 * need to be updated. Run the ilb locally as it is a good
9763 * candidate for ilb instead of waking up another idle CPU.
9764 * Kick an normal ilb if we failed to do the update.
9765 */
9766 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9767 kick_ilb(NOHZ_STATS_KICK);
9768 raw_spin_lock(&this_rq->lock);
9769}
9770
dd707247
PZ
9771#else /* !CONFIG_NO_HZ_COMMON */
9772static inline void nohz_balancer_kick(struct rq *rq) { }
9773
31e77c93 9774static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
9775{
9776 return false;
9777}
31e77c93
VG
9778
9779static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 9780#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 9781
47ea5412
PZ
9782/*
9783 * idle_balance is called by schedule() if this_cpu is about to become
9784 * idle. Attempts to pull tasks from other CPUs.
9785 */
9786static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9787{
9788 unsigned long next_balance = jiffies + HZ;
9789 int this_cpu = this_rq->cpu;
9790 struct sched_domain *sd;
9791 int pulled_task = 0;
9792 u64 curr_cost = 0;
9793
9794 /*
9795 * We must set idle_stamp _before_ calling idle_balance(), such that we
9796 * measure the duration of idle_balance() as idle time.
9797 */
9798 this_rq->idle_stamp = rq_clock(this_rq);
9799
9800 /*
9801 * Do not pull tasks towards !active CPUs...
9802 */
9803 if (!cpu_active(this_cpu))
9804 return 0;
9805
9806 /*
9807 * This is OK, because current is on_cpu, which avoids it being picked
9808 * for load-balance and preemption/IRQs are still disabled avoiding
9809 * further scheduler activity on it and we're being very careful to
9810 * re-start the picking loop.
9811 */
9812 rq_unpin_lock(this_rq, rf);
9813
9814 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 9815 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 9816
47ea5412
PZ
9817 rcu_read_lock();
9818 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9819 if (sd)
9820 update_next_balance(sd, &next_balance);
9821 rcu_read_unlock();
9822
31e77c93
VG
9823 nohz_newidle_balance(this_rq);
9824
47ea5412
PZ
9825 goto out;
9826 }
9827
9828 raw_spin_unlock(&this_rq->lock);
9829
9830 update_blocked_averages(this_cpu);
9831 rcu_read_lock();
9832 for_each_domain(this_cpu, sd) {
9833 int continue_balancing = 1;
9834 u64 t0, domain_cost;
9835
9836 if (!(sd->flags & SD_LOAD_BALANCE))
9837 continue;
9838
9839 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9840 update_next_balance(sd, &next_balance);
9841 break;
9842 }
9843
9844 if (sd->flags & SD_BALANCE_NEWIDLE) {
9845 t0 = sched_clock_cpu(this_cpu);
9846
9847 pulled_task = load_balance(this_cpu, this_rq,
9848 sd, CPU_NEWLY_IDLE,
9849 &continue_balancing);
9850
9851 domain_cost = sched_clock_cpu(this_cpu) - t0;
9852 if (domain_cost > sd->max_newidle_lb_cost)
9853 sd->max_newidle_lb_cost = domain_cost;
9854
9855 curr_cost += domain_cost;
9856 }
9857
9858 update_next_balance(sd, &next_balance);
9859
9860 /*
9861 * Stop searching for tasks to pull if there are
9862 * now runnable tasks on this rq.
9863 */
9864 if (pulled_task || this_rq->nr_running > 0)
9865 break;
9866 }
9867 rcu_read_unlock();
9868
9869 raw_spin_lock(&this_rq->lock);
9870
9871 if (curr_cost > this_rq->max_idle_balance_cost)
9872 this_rq->max_idle_balance_cost = curr_cost;
9873
457be908 9874out:
47ea5412
PZ
9875 /*
9876 * While browsing the domains, we released the rq lock, a task could
9877 * have been enqueued in the meantime. Since we're not going idle,
9878 * pretend we pulled a task.
9879 */
9880 if (this_rq->cfs.h_nr_running && !pulled_task)
9881 pulled_task = 1;
9882
47ea5412
PZ
9883 /* Move the next balance forward */
9884 if (time_after(this_rq->next_balance, next_balance))
9885 this_rq->next_balance = next_balance;
9886
9887 /* Is there a task of a high priority class? */
9888 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9889 pulled_task = -1;
9890
9891 if (pulled_task)
9892 this_rq->idle_stamp = 0;
9893
9894 rq_repin_lock(this_rq, rf);
9895
9896 return pulled_task;
9897}
9898
83cd4fe2
VP
9899/*
9900 * run_rebalance_domains is triggered when needed from the scheduler tick.
9901 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9902 */
0766f788 9903static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 9904{
208cb16b 9905 struct rq *this_rq = this_rq();
6eb57e0d 9906 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
9907 CPU_IDLE : CPU_NOT_IDLE;
9908
1e3c88bd 9909 /*
97fb7a0a
IM
9910 * If this CPU has a pending nohz_balance_kick, then do the
9911 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 9912 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 9913 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
9914 * load balance only within the local sched_domain hierarchy
9915 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 9916 */
b7031a02
PZ
9917 if (nohz_idle_balance(this_rq, idle))
9918 return;
9919
9920 /* normal load balance */
9921 update_blocked_averages(this_rq->cpu);
d4573c3e 9922 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
9923}
9924
1e3c88bd
PZ
9925/*
9926 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 9927 */
7caff66f 9928void trigger_load_balance(struct rq *rq)
1e3c88bd 9929{
1e3c88bd 9930 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
9931 if (unlikely(on_null_domain(rq)))
9932 return;
9933
9934 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 9935 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
9936
9937 nohz_balancer_kick(rq);
1e3c88bd
PZ
9938}
9939
0bcdcf28
CE
9940static void rq_online_fair(struct rq *rq)
9941{
9942 update_sysctl();
0e59bdae
KT
9943
9944 update_runtime_enabled(rq);
0bcdcf28
CE
9945}
9946
9947static void rq_offline_fair(struct rq *rq)
9948{
9949 update_sysctl();
a4c96ae3
PB
9950
9951 /* Ensure any throttled groups are reachable by pick_next_task */
9952 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
9953}
9954
55e12e5e 9955#endif /* CONFIG_SMP */
e1d1484f 9956
bf0f6f24 9957/*
d84b3131
FW
9958 * scheduler tick hitting a task of our scheduling class.
9959 *
9960 * NOTE: This function can be called remotely by the tick offload that
9961 * goes along full dynticks. Therefore no local assumption can be made
9962 * and everything must be accessed through the @rq and @curr passed in
9963 * parameters.
bf0f6f24 9964 */
8f4d37ec 9965static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
9966{
9967 struct cfs_rq *cfs_rq;
9968 struct sched_entity *se = &curr->se;
9969
9970 for_each_sched_entity(se) {
9971 cfs_rq = cfs_rq_of(se);
8f4d37ec 9972 entity_tick(cfs_rq, se, queued);
bf0f6f24 9973 }
18bf2805 9974
b52da86e 9975 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 9976 task_tick_numa(rq, curr);
3b1baa64
MR
9977
9978 update_misfit_status(curr, rq);
2802bf3c 9979 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
9980}
9981
9982/*
cd29fe6f
PZ
9983 * called on fork with the child task as argument from the parent's context
9984 * - child not yet on the tasklist
9985 * - preemption disabled
bf0f6f24 9986 */
cd29fe6f 9987static void task_fork_fair(struct task_struct *p)
bf0f6f24 9988{
4fc420c9
DN
9989 struct cfs_rq *cfs_rq;
9990 struct sched_entity *se = &p->se, *curr;
cd29fe6f 9991 struct rq *rq = this_rq();
8a8c69c3 9992 struct rq_flags rf;
bf0f6f24 9993
8a8c69c3 9994 rq_lock(rq, &rf);
861d034e
PZ
9995 update_rq_clock(rq);
9996
4fc420c9
DN
9997 cfs_rq = task_cfs_rq(current);
9998 curr = cfs_rq->curr;
e210bffd
PZ
9999 if (curr) {
10000 update_curr(cfs_rq);
b5d9d734 10001 se->vruntime = curr->vruntime;
e210bffd 10002 }
aeb73b04 10003 place_entity(cfs_rq, se, 1);
4d78e7b6 10004
cd29fe6f 10005 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 10006 /*
edcb60a3
IM
10007 * Upon rescheduling, sched_class::put_prev_task() will place
10008 * 'current' within the tree based on its new key value.
10009 */
4d78e7b6 10010 swap(curr->vruntime, se->vruntime);
8875125e 10011 resched_curr(rq);
4d78e7b6 10012 }
bf0f6f24 10013
88ec22d3 10014 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10015 rq_unlock(rq, &rf);
bf0f6f24
IM
10016}
10017
cb469845
SR
10018/*
10019 * Priority of the task has changed. Check to see if we preempt
10020 * the current task.
10021 */
da7a735e
PZ
10022static void
10023prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10024{
da0c1e65 10025 if (!task_on_rq_queued(p))
da7a735e
PZ
10026 return;
10027
cb469845
SR
10028 /*
10029 * Reschedule if we are currently running on this runqueue and
10030 * our priority decreased, or if we are not currently running on
10031 * this runqueue and our priority is higher than the current's
10032 */
da7a735e 10033 if (rq->curr == p) {
cb469845 10034 if (p->prio > oldprio)
8875125e 10035 resched_curr(rq);
cb469845 10036 } else
15afe09b 10037 check_preempt_curr(rq, p, 0);
cb469845
SR
10038}
10039
daa59407 10040static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10041{
10042 struct sched_entity *se = &p->se;
da7a735e
PZ
10043
10044 /*
daa59407
BP
10045 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10046 * the dequeue_entity(.flags=0) will already have normalized the
10047 * vruntime.
10048 */
10049 if (p->on_rq)
10050 return true;
10051
10052 /*
10053 * When !on_rq, vruntime of the task has usually NOT been normalized.
10054 * But there are some cases where it has already been normalized:
da7a735e 10055 *
daa59407
BP
10056 * - A forked child which is waiting for being woken up by
10057 * wake_up_new_task().
10058 * - A task which has been woken up by try_to_wake_up() and
10059 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10060 */
d0cdb3ce
SM
10061 if (!se->sum_exec_runtime ||
10062 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10063 return true;
10064
10065 return false;
10066}
10067
09a43ace
VG
10068#ifdef CONFIG_FAIR_GROUP_SCHED
10069/*
10070 * Propagate the changes of the sched_entity across the tg tree to make it
10071 * visible to the root
10072 */
10073static void propagate_entity_cfs_rq(struct sched_entity *se)
10074{
10075 struct cfs_rq *cfs_rq;
10076
10077 /* Start to propagate at parent */
10078 se = se->parent;
10079
10080 for_each_sched_entity(se) {
10081 cfs_rq = cfs_rq_of(se);
10082
10083 if (cfs_rq_throttled(cfs_rq))
10084 break;
10085
88c0616e 10086 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10087 }
10088}
10089#else
10090static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10091#endif
10092
df217913 10093static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10094{
daa59407
BP
10095 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10096
9d89c257 10097 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10098 update_load_avg(cfs_rq, se, 0);
a05e8c51 10099 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 10100 update_tg_load_avg(cfs_rq, false);
09a43ace 10101 propagate_entity_cfs_rq(se);
da7a735e
PZ
10102}
10103
df217913 10104static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10105{
daa59407 10106 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10107
10108#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10109 /*
10110 * Since the real-depth could have been changed (only FAIR
10111 * class maintain depth value), reset depth properly.
10112 */
10113 se->depth = se->parent ? se->parent->depth + 1 : 0;
10114#endif
7855a35a 10115
df217913 10116 /* Synchronize entity with its cfs_rq */
88c0616e 10117 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
ea14b57e 10118 attach_entity_load_avg(cfs_rq, se, 0);
7c3edd2c 10119 update_tg_load_avg(cfs_rq, false);
09a43ace 10120 propagate_entity_cfs_rq(se);
df217913
VG
10121}
10122
10123static void detach_task_cfs_rq(struct task_struct *p)
10124{
10125 struct sched_entity *se = &p->se;
10126 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10127
10128 if (!vruntime_normalized(p)) {
10129 /*
10130 * Fix up our vruntime so that the current sleep doesn't
10131 * cause 'unlimited' sleep bonus.
10132 */
10133 place_entity(cfs_rq, se, 0);
10134 se->vruntime -= cfs_rq->min_vruntime;
10135 }
10136
10137 detach_entity_cfs_rq(se);
10138}
10139
10140static void attach_task_cfs_rq(struct task_struct *p)
10141{
10142 struct sched_entity *se = &p->se;
10143 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10144
10145 attach_entity_cfs_rq(se);
daa59407
BP
10146
10147 if (!vruntime_normalized(p))
10148 se->vruntime += cfs_rq->min_vruntime;
10149}
6efdb105 10150
daa59407
BP
10151static void switched_from_fair(struct rq *rq, struct task_struct *p)
10152{
10153 detach_task_cfs_rq(p);
10154}
10155
10156static void switched_to_fair(struct rq *rq, struct task_struct *p)
10157{
10158 attach_task_cfs_rq(p);
7855a35a 10159
daa59407 10160 if (task_on_rq_queued(p)) {
7855a35a 10161 /*
daa59407
BP
10162 * We were most likely switched from sched_rt, so
10163 * kick off the schedule if running, otherwise just see
10164 * if we can still preempt the current task.
7855a35a 10165 */
daa59407
BP
10166 if (rq->curr == p)
10167 resched_curr(rq);
10168 else
10169 check_preempt_curr(rq, p, 0);
7855a35a 10170 }
cb469845
SR
10171}
10172
83b699ed
SV
10173/* Account for a task changing its policy or group.
10174 *
10175 * This routine is mostly called to set cfs_rq->curr field when a task
10176 * migrates between groups/classes.
10177 */
10178static void set_curr_task_fair(struct rq *rq)
10179{
10180 struct sched_entity *se = &rq->curr->se;
10181
ec12cb7f
PT
10182 for_each_sched_entity(se) {
10183 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10184
10185 set_next_entity(cfs_rq, se);
10186 /* ensure bandwidth has been allocated on our new cfs_rq */
10187 account_cfs_rq_runtime(cfs_rq, 0);
10188 }
83b699ed
SV
10189}
10190
029632fb
PZ
10191void init_cfs_rq(struct cfs_rq *cfs_rq)
10192{
bfb06889 10193 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10194 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10195#ifndef CONFIG_64BIT
10196 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10197#endif
141965c7 10198#ifdef CONFIG_SMP
2a2f5d4e 10199 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10200#endif
029632fb
PZ
10201}
10202
810b3817 10203#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10204static void task_set_group_fair(struct task_struct *p)
10205{
10206 struct sched_entity *se = &p->se;
10207
10208 set_task_rq(p, task_cpu(p));
10209 se->depth = se->parent ? se->parent->depth + 1 : 0;
10210}
10211
bc54da21 10212static void task_move_group_fair(struct task_struct *p)
810b3817 10213{
daa59407 10214 detach_task_cfs_rq(p);
b2b5ce02 10215 set_task_rq(p, task_cpu(p));
6efdb105
BP
10216
10217#ifdef CONFIG_SMP
10218 /* Tell se's cfs_rq has been changed -- migrated */
10219 p->se.avg.last_update_time = 0;
10220#endif
daa59407 10221 attach_task_cfs_rq(p);
810b3817 10222}
029632fb 10223
ea86cb4b
VG
10224static void task_change_group_fair(struct task_struct *p, int type)
10225{
10226 switch (type) {
10227 case TASK_SET_GROUP:
10228 task_set_group_fair(p);
10229 break;
10230
10231 case TASK_MOVE_GROUP:
10232 task_move_group_fair(p);
10233 break;
10234 }
10235}
10236
029632fb
PZ
10237void free_fair_sched_group(struct task_group *tg)
10238{
10239 int i;
10240
10241 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10242
10243 for_each_possible_cpu(i) {
10244 if (tg->cfs_rq)
10245 kfree(tg->cfs_rq[i]);
6fe1f348 10246 if (tg->se)
029632fb
PZ
10247 kfree(tg->se[i]);
10248 }
10249
10250 kfree(tg->cfs_rq);
10251 kfree(tg->se);
10252}
10253
10254int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10255{
029632fb 10256 struct sched_entity *se;
b7fa30c9 10257 struct cfs_rq *cfs_rq;
029632fb
PZ
10258 int i;
10259
6396bb22 10260 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
10261 if (!tg->cfs_rq)
10262 goto err;
6396bb22 10263 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
10264 if (!tg->se)
10265 goto err;
10266
10267 tg->shares = NICE_0_LOAD;
10268
10269 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10270
10271 for_each_possible_cpu(i) {
10272 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10273 GFP_KERNEL, cpu_to_node(i));
10274 if (!cfs_rq)
10275 goto err;
10276
10277 se = kzalloc_node(sizeof(struct sched_entity),
10278 GFP_KERNEL, cpu_to_node(i));
10279 if (!se)
10280 goto err_free_rq;
10281
10282 init_cfs_rq(cfs_rq);
10283 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 10284 init_entity_runnable_average(se);
029632fb
PZ
10285 }
10286
10287 return 1;
10288
10289err_free_rq:
10290 kfree(cfs_rq);
10291err:
10292 return 0;
10293}
10294
8663e24d
PZ
10295void online_fair_sched_group(struct task_group *tg)
10296{
10297 struct sched_entity *se;
10298 struct rq *rq;
10299 int i;
10300
10301 for_each_possible_cpu(i) {
10302 rq = cpu_rq(i);
10303 se = tg->se[i];
10304
10305 raw_spin_lock_irq(&rq->lock);
4126bad6 10306 update_rq_clock(rq);
d0326691 10307 attach_entity_cfs_rq(se);
55e16d30 10308 sync_throttle(tg, i);
8663e24d
PZ
10309 raw_spin_unlock_irq(&rq->lock);
10310 }
10311}
10312
6fe1f348 10313void unregister_fair_sched_group(struct task_group *tg)
029632fb 10314{
029632fb 10315 unsigned long flags;
6fe1f348
PZ
10316 struct rq *rq;
10317 int cpu;
029632fb 10318
6fe1f348
PZ
10319 for_each_possible_cpu(cpu) {
10320 if (tg->se[cpu])
10321 remove_entity_load_avg(tg->se[cpu]);
029632fb 10322
6fe1f348
PZ
10323 /*
10324 * Only empty task groups can be destroyed; so we can speculatively
10325 * check on_list without danger of it being re-added.
10326 */
10327 if (!tg->cfs_rq[cpu]->on_list)
10328 continue;
10329
10330 rq = cpu_rq(cpu);
10331
10332 raw_spin_lock_irqsave(&rq->lock, flags);
10333 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10334 raw_spin_unlock_irqrestore(&rq->lock, flags);
10335 }
029632fb
PZ
10336}
10337
10338void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10339 struct sched_entity *se, int cpu,
10340 struct sched_entity *parent)
10341{
10342 struct rq *rq = cpu_rq(cpu);
10343
10344 cfs_rq->tg = tg;
10345 cfs_rq->rq = rq;
029632fb
PZ
10346 init_cfs_rq_runtime(cfs_rq);
10347
10348 tg->cfs_rq[cpu] = cfs_rq;
10349 tg->se[cpu] = se;
10350
10351 /* se could be NULL for root_task_group */
10352 if (!se)
10353 return;
10354
fed14d45 10355 if (!parent) {
029632fb 10356 se->cfs_rq = &rq->cfs;
fed14d45
PZ
10357 se->depth = 0;
10358 } else {
029632fb 10359 se->cfs_rq = parent->my_q;
fed14d45
PZ
10360 se->depth = parent->depth + 1;
10361 }
029632fb
PZ
10362
10363 se->my_q = cfs_rq;
0ac9b1c2
PT
10364 /* guarantee group entities always have weight */
10365 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
10366 se->parent = parent;
10367}
10368
10369static DEFINE_MUTEX(shares_mutex);
10370
10371int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10372{
10373 int i;
029632fb
PZ
10374
10375 /*
10376 * We can't change the weight of the root cgroup.
10377 */
10378 if (!tg->se[0])
10379 return -EINVAL;
10380
10381 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10382
10383 mutex_lock(&shares_mutex);
10384 if (tg->shares == shares)
10385 goto done;
10386
10387 tg->shares = shares;
10388 for_each_possible_cpu(i) {
10389 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
10390 struct sched_entity *se = tg->se[i];
10391 struct rq_flags rf;
029632fb 10392
029632fb 10393 /* Propagate contribution to hierarchy */
8a8c69c3 10394 rq_lock_irqsave(rq, &rf);
71b1da46 10395 update_rq_clock(rq);
89ee048f 10396 for_each_sched_entity(se) {
88c0616e 10397 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 10398 update_cfs_group(se);
89ee048f 10399 }
8a8c69c3 10400 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
10401 }
10402
10403done:
10404 mutex_unlock(&shares_mutex);
10405 return 0;
10406}
10407#else /* CONFIG_FAIR_GROUP_SCHED */
10408
10409void free_fair_sched_group(struct task_group *tg) { }
10410
10411int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10412{
10413 return 1;
10414}
10415
8663e24d
PZ
10416void online_fair_sched_group(struct task_group *tg) { }
10417
6fe1f348 10418void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
10419
10420#endif /* CONFIG_FAIR_GROUP_SCHED */
10421
810b3817 10422
6d686f45 10423static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
10424{
10425 struct sched_entity *se = &task->se;
0d721cea
PW
10426 unsigned int rr_interval = 0;
10427
10428 /*
10429 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10430 * idle runqueue:
10431 */
0d721cea 10432 if (rq->cfs.load.weight)
a59f4e07 10433 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
10434
10435 return rr_interval;
10436}
10437
bf0f6f24
IM
10438/*
10439 * All the scheduling class methods:
10440 */
029632fb 10441const struct sched_class fair_sched_class = {
5522d5d5 10442 .next = &idle_sched_class,
bf0f6f24
IM
10443 .enqueue_task = enqueue_task_fair,
10444 .dequeue_task = dequeue_task_fair,
10445 .yield_task = yield_task_fair,
d95f4122 10446 .yield_to_task = yield_to_task_fair,
bf0f6f24 10447
2e09bf55 10448 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
10449
10450 .pick_next_task = pick_next_task_fair,
10451 .put_prev_task = put_prev_task_fair,
10452
681f3e68 10453#ifdef CONFIG_SMP
4ce72a2c 10454 .select_task_rq = select_task_rq_fair,
0a74bef8 10455 .migrate_task_rq = migrate_task_rq_fair,
141965c7 10456
0bcdcf28
CE
10457 .rq_online = rq_online_fair,
10458 .rq_offline = rq_offline_fair,
88ec22d3 10459
12695578 10460 .task_dead = task_dead_fair,
c5b28038 10461 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 10462#endif
bf0f6f24 10463
83b699ed 10464 .set_curr_task = set_curr_task_fair,
bf0f6f24 10465 .task_tick = task_tick_fair,
cd29fe6f 10466 .task_fork = task_fork_fair,
cb469845
SR
10467
10468 .prio_changed = prio_changed_fair,
da7a735e 10469 .switched_from = switched_from_fair,
cb469845 10470 .switched_to = switched_to_fair,
810b3817 10471
0d721cea
PW
10472 .get_rr_interval = get_rr_interval_fair,
10473
6e998916
SG
10474 .update_curr = update_curr_fair,
10475
810b3817 10476#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10477 .task_change_group = task_change_group_fair,
810b3817 10478#endif
982d9cdc
PB
10479
10480#ifdef CONFIG_UCLAMP_TASK
10481 .uclamp_enabled = 1,
10482#endif
bf0f6f24
IM
10483};
10484
10485#ifdef CONFIG_SCHED_DEBUG
029632fb 10486void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 10487{
039ae8bc 10488 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 10489
5973e5b9 10490 rcu_read_lock();
039ae8bc 10491 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 10492 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 10493 rcu_read_unlock();
bf0f6f24 10494}
397f2378
SD
10495
10496#ifdef CONFIG_NUMA_BALANCING
10497void show_numa_stats(struct task_struct *p, struct seq_file *m)
10498{
10499 int node;
10500 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 10501 struct numa_group *ng;
397f2378 10502
cb361d8c
JH
10503 rcu_read_lock();
10504 ng = rcu_dereference(p->numa_group);
397f2378
SD
10505 for_each_online_node(node) {
10506 if (p->numa_faults) {
10507 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10508 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10509 }
cb361d8c
JH
10510 if (ng) {
10511 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
10512 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
10513 }
10514 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10515 }
cb361d8c 10516 rcu_read_unlock();
397f2378
SD
10517}
10518#endif /* CONFIG_NUMA_BALANCING */
10519#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
10520
10521__init void init_sched_fair_class(void)
10522{
10523#ifdef CONFIG_SMP
10524 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10525
3451d024 10526#ifdef CONFIG_NO_HZ_COMMON
554cecaf 10527 nohz.next_balance = jiffies;
f643ea22 10528 nohz.next_blocked = jiffies;
029632fb 10529 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
10530#endif
10531#endif /* SMP */
10532
10533}
3c93a0c0
QY
10534
10535/*
10536 * Helper functions to facilitate extracting info from tracepoints.
10537 */
10538
10539const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
10540{
10541#ifdef CONFIG_SMP
10542 return cfs_rq ? &cfs_rq->avg : NULL;
10543#else
10544 return NULL;
10545#endif
10546}
10547EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
10548
10549char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
10550{
10551 if (!cfs_rq) {
10552 if (str)
10553 strlcpy(str, "(null)", len);
10554 else
10555 return NULL;
10556 }
10557
10558 cfs_rq_tg_path(cfs_rq, str, len);
10559 return str;
10560}
10561EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
10562
10563int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
10564{
10565 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
10566}
10567EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
10568
10569const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
10570{
10571#ifdef CONFIG_SMP
10572 return rq ? &rq->avg_rt : NULL;
10573#else
10574 return NULL;
10575#endif
10576}
10577EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
10578
10579const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
10580{
10581#ifdef CONFIG_SMP
10582 return rq ? &rq->avg_dl : NULL;
10583#else
10584 return NULL;
10585#endif
10586}
10587EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
10588
10589const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
10590{
10591#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10592 return rq ? &rq->avg_irq : NULL;
10593#else
10594 return NULL;
10595#endif
10596}
10597EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
10598
10599int sched_trace_rq_cpu(struct rq *rq)
10600{
10601 return rq ? cpu_of(rq) : -1;
10602}
10603EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
10604
10605const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
10606{
10607#ifdef CONFIG_SMP
10608 return rd ? rd->span : NULL;
10609#else
10610 return NULL;
10611#endif
10612}
10613EXPORT_SYMBOL_GPL(sched_trace_rd_span);