stop_machine: Remove cpu_stop_work's from list in cpu_stop_park()
[linux-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 579 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
8e2b0bf3
BF
619 if (unlikely(nr_running > sched_nr_latency))
620 return nr_running * sysctl_sched_min_granularity;
621 else
622 return sysctl_sched_latency;
4d78e7b6
PZ
623}
624
647e7cac
IM
625/*
626 * We calculate the wall-time slice from the period by taking a part
627 * proportional to the weight.
628 *
f9c0b095 629 * s = p*P[w/rw]
647e7cac 630 */
6d0f0ebd 631static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 632{
0a582440 633 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 634
0a582440 635 for_each_sched_entity(se) {
6272d68c 636 struct load_weight *load;
3104bf03 637 struct load_weight lw;
6272d68c
LM
638
639 cfs_rq = cfs_rq_of(se);
640 load = &cfs_rq->load;
f9c0b095 641
0a582440 642 if (unlikely(!se->on_rq)) {
3104bf03 643 lw = cfs_rq->load;
0a582440
MG
644
645 update_load_add(&lw, se->load.weight);
646 load = &lw;
647 }
9dbdb155 648 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
649 }
650 return slice;
bf0f6f24
IM
651}
652
647e7cac 653/*
660cc00f 654 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 655 *
f9c0b095 656 * vs = s/w
647e7cac 657 */
f9c0b095 658static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 659{
f9c0b095 660 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
661}
662
a75cdaa9 663#ifdef CONFIG_SMP
ba7e5a27 664static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
665static unsigned long task_h_load(struct task_struct *p);
666
a75cdaa9 667static inline void __update_task_entity_contrib(struct sched_entity *se);
36ee28e4 668static inline void __update_task_entity_utilization(struct sched_entity *se);
a75cdaa9
AS
669
670/* Give new task start runnable values to heavy its load in infant time */
671void init_task_runnable_average(struct task_struct *p)
672{
673 u32 slice;
674
a75cdaa9 675 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
36ee28e4
VG
676 p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
677 p->se.avg.avg_period = slice;
a75cdaa9 678 __update_task_entity_contrib(&p->se);
36ee28e4 679 __update_task_entity_utilization(&p->se);
a75cdaa9
AS
680}
681#else
682void init_task_runnable_average(struct task_struct *p)
683{
684}
685#endif
686
bf0f6f24 687/*
9dbdb155 688 * Update the current task's runtime statistics.
bf0f6f24 689 */
b7cc0896 690static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 691{
429d43bc 692 struct sched_entity *curr = cfs_rq->curr;
78becc27 693 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 694 u64 delta_exec;
bf0f6f24
IM
695
696 if (unlikely(!curr))
697 return;
698
9dbdb155
PZ
699 delta_exec = now - curr->exec_start;
700 if (unlikely((s64)delta_exec <= 0))
34f28ecd 701 return;
bf0f6f24 702
8ebc91d9 703 curr->exec_start = now;
d842de87 704
9dbdb155
PZ
705 schedstat_set(curr->statistics.exec_max,
706 max(delta_exec, curr->statistics.exec_max));
707
708 curr->sum_exec_runtime += delta_exec;
709 schedstat_add(cfs_rq, exec_clock, delta_exec);
710
711 curr->vruntime += calc_delta_fair(delta_exec, curr);
712 update_min_vruntime(cfs_rq);
713
d842de87
SV
714 if (entity_is_task(curr)) {
715 struct task_struct *curtask = task_of(curr);
716
f977bb49 717 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 718 cpuacct_charge(curtask, delta_exec);
f06febc9 719 account_group_exec_runtime(curtask, delta_exec);
d842de87 720 }
ec12cb7f
PT
721
722 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
723}
724
6e998916
SG
725static void update_curr_fair(struct rq *rq)
726{
727 update_curr(cfs_rq_of(&rq->curr->se));
728}
729
bf0f6f24 730static inline void
5870db5b 731update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 732{
78becc27 733 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
734}
735
bf0f6f24
IM
736/*
737 * Task is being enqueued - update stats:
738 */
d2417e5a 739static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 740{
bf0f6f24
IM
741 /*
742 * Are we enqueueing a waiting task? (for current tasks
743 * a dequeue/enqueue event is a NOP)
744 */
429d43bc 745 if (se != cfs_rq->curr)
5870db5b 746 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
747}
748
bf0f6f24 749static void
9ef0a961 750update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 751{
41acab88 752 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
754 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
755 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 756 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
757#ifdef CONFIG_SCHEDSTATS
758 if (entity_is_task(se)) {
759 trace_sched_stat_wait(task_of(se),
78becc27 760 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
761 }
762#endif
41acab88 763 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
764}
765
766static inline void
19b6a2e3 767update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 768{
bf0f6f24
IM
769 /*
770 * Mark the end of the wait period if dequeueing a
771 * waiting task:
772 */
429d43bc 773 if (se != cfs_rq->curr)
9ef0a961 774 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
775}
776
777/*
778 * We are picking a new current task - update its stats:
779 */
780static inline void
79303e9e 781update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
782{
783 /*
784 * We are starting a new run period:
785 */
78becc27 786 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
787}
788
bf0f6f24
IM
789/**************************************************
790 * Scheduling class queueing methods:
791 */
792
cbee9f88
PZ
793#ifdef CONFIG_NUMA_BALANCING
794/*
598f0ec0
MG
795 * Approximate time to scan a full NUMA task in ms. The task scan period is
796 * calculated based on the tasks virtual memory size and
797 * numa_balancing_scan_size.
cbee9f88 798 */
598f0ec0
MG
799unsigned int sysctl_numa_balancing_scan_period_min = 1000;
800unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
801
802/* Portion of address space to scan in MB */
803unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 804
4b96a29b
PZ
805/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
806unsigned int sysctl_numa_balancing_scan_delay = 1000;
807
598f0ec0
MG
808static unsigned int task_nr_scan_windows(struct task_struct *p)
809{
810 unsigned long rss = 0;
811 unsigned long nr_scan_pages;
812
813 /*
814 * Calculations based on RSS as non-present and empty pages are skipped
815 * by the PTE scanner and NUMA hinting faults should be trapped based
816 * on resident pages
817 */
818 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
819 rss = get_mm_rss(p->mm);
820 if (!rss)
821 rss = nr_scan_pages;
822
823 rss = round_up(rss, nr_scan_pages);
824 return rss / nr_scan_pages;
825}
826
827/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
828#define MAX_SCAN_WINDOW 2560
829
830static unsigned int task_scan_min(struct task_struct *p)
831{
316c1608 832 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
833 unsigned int scan, floor;
834 unsigned int windows = 1;
835
64192658
KT
836 if (scan_size < MAX_SCAN_WINDOW)
837 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
838 floor = 1000 / windows;
839
840 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
841 return max_t(unsigned int, floor, scan);
842}
843
844static unsigned int task_scan_max(struct task_struct *p)
845{
846 unsigned int smin = task_scan_min(p);
847 unsigned int smax;
848
849 /* Watch for min being lower than max due to floor calculations */
850 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
851 return max(smin, smax);
852}
853
0ec8aa00
PZ
854static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
855{
856 rq->nr_numa_running += (p->numa_preferred_nid != -1);
857 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
858}
859
860static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
861{
862 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
863 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
864}
865
8c8a743c
PZ
866struct numa_group {
867 atomic_t refcount;
868
869 spinlock_t lock; /* nr_tasks, tasks */
870 int nr_tasks;
e29cf08b 871 pid_t gid;
8c8a743c
PZ
872
873 struct rcu_head rcu;
20e07dea 874 nodemask_t active_nodes;
989348b5 875 unsigned long total_faults;
7e2703e6
RR
876 /*
877 * Faults_cpu is used to decide whether memory should move
878 * towards the CPU. As a consequence, these stats are weighted
879 * more by CPU use than by memory faults.
880 */
50ec8a40 881 unsigned long *faults_cpu;
989348b5 882 unsigned long faults[0];
8c8a743c
PZ
883};
884
be1e4e76
RR
885/* Shared or private faults. */
886#define NR_NUMA_HINT_FAULT_TYPES 2
887
888/* Memory and CPU locality */
889#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
890
891/* Averaged statistics, and temporary buffers. */
892#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
893
e29cf08b
MG
894pid_t task_numa_group_id(struct task_struct *p)
895{
896 return p->numa_group ? p->numa_group->gid : 0;
897}
898
44dba3d5
IM
899/*
900 * The averaged statistics, shared & private, memory & cpu,
901 * occupy the first half of the array. The second half of the
902 * array is for current counters, which are averaged into the
903 * first set by task_numa_placement.
904 */
905static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 906{
44dba3d5 907 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
908}
909
910static inline unsigned long task_faults(struct task_struct *p, int nid)
911{
44dba3d5 912 if (!p->numa_faults)
ac8e895b
MG
913 return 0;
914
44dba3d5
IM
915 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
916 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
917}
918
83e1d2cd
MG
919static inline unsigned long group_faults(struct task_struct *p, int nid)
920{
921 if (!p->numa_group)
922 return 0;
923
44dba3d5
IM
924 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
925 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
926}
927
20e07dea
RR
928static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
929{
44dba3d5
IM
930 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
931 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
932}
933
6c6b1193
RR
934/* Handle placement on systems where not all nodes are directly connected. */
935static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
936 int maxdist, bool task)
937{
938 unsigned long score = 0;
939 int node;
940
941 /*
942 * All nodes are directly connected, and the same distance
943 * from each other. No need for fancy placement algorithms.
944 */
945 if (sched_numa_topology_type == NUMA_DIRECT)
946 return 0;
947
948 /*
949 * This code is called for each node, introducing N^2 complexity,
950 * which should be ok given the number of nodes rarely exceeds 8.
951 */
952 for_each_online_node(node) {
953 unsigned long faults;
954 int dist = node_distance(nid, node);
955
956 /*
957 * The furthest away nodes in the system are not interesting
958 * for placement; nid was already counted.
959 */
960 if (dist == sched_max_numa_distance || node == nid)
961 continue;
962
963 /*
964 * On systems with a backplane NUMA topology, compare groups
965 * of nodes, and move tasks towards the group with the most
966 * memory accesses. When comparing two nodes at distance
967 * "hoplimit", only nodes closer by than "hoplimit" are part
968 * of each group. Skip other nodes.
969 */
970 if (sched_numa_topology_type == NUMA_BACKPLANE &&
971 dist > maxdist)
972 continue;
973
974 /* Add up the faults from nearby nodes. */
975 if (task)
976 faults = task_faults(p, node);
977 else
978 faults = group_faults(p, node);
979
980 /*
981 * On systems with a glueless mesh NUMA topology, there are
982 * no fixed "groups of nodes". Instead, nodes that are not
983 * directly connected bounce traffic through intermediate
984 * nodes; a numa_group can occupy any set of nodes.
985 * The further away a node is, the less the faults count.
986 * This seems to result in good task placement.
987 */
988 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
989 faults *= (sched_max_numa_distance - dist);
990 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
991 }
992
993 score += faults;
994 }
995
996 return score;
997}
998
83e1d2cd
MG
999/*
1000 * These return the fraction of accesses done by a particular task, or
1001 * task group, on a particular numa node. The group weight is given a
1002 * larger multiplier, in order to group tasks together that are almost
1003 * evenly spread out between numa nodes.
1004 */
7bd95320
RR
1005static inline unsigned long task_weight(struct task_struct *p, int nid,
1006 int dist)
83e1d2cd 1007{
7bd95320 1008 unsigned long faults, total_faults;
83e1d2cd 1009
44dba3d5 1010 if (!p->numa_faults)
83e1d2cd
MG
1011 return 0;
1012
1013 total_faults = p->total_numa_faults;
1014
1015 if (!total_faults)
1016 return 0;
1017
7bd95320 1018 faults = task_faults(p, nid);
6c6b1193
RR
1019 faults += score_nearby_nodes(p, nid, dist, true);
1020
7bd95320 1021 return 1000 * faults / total_faults;
83e1d2cd
MG
1022}
1023
7bd95320
RR
1024static inline unsigned long group_weight(struct task_struct *p, int nid,
1025 int dist)
83e1d2cd 1026{
7bd95320
RR
1027 unsigned long faults, total_faults;
1028
1029 if (!p->numa_group)
1030 return 0;
1031
1032 total_faults = p->numa_group->total_faults;
1033
1034 if (!total_faults)
83e1d2cd
MG
1035 return 0;
1036
7bd95320 1037 faults = group_faults(p, nid);
6c6b1193
RR
1038 faults += score_nearby_nodes(p, nid, dist, false);
1039
7bd95320 1040 return 1000 * faults / total_faults;
83e1d2cd
MG
1041}
1042
10f39042
RR
1043bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1044 int src_nid, int dst_cpu)
1045{
1046 struct numa_group *ng = p->numa_group;
1047 int dst_nid = cpu_to_node(dst_cpu);
1048 int last_cpupid, this_cpupid;
1049
1050 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1051
1052 /*
1053 * Multi-stage node selection is used in conjunction with a periodic
1054 * migration fault to build a temporal task<->page relation. By using
1055 * a two-stage filter we remove short/unlikely relations.
1056 *
1057 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1058 * a task's usage of a particular page (n_p) per total usage of this
1059 * page (n_t) (in a given time-span) to a probability.
1060 *
1061 * Our periodic faults will sample this probability and getting the
1062 * same result twice in a row, given these samples are fully
1063 * independent, is then given by P(n)^2, provided our sample period
1064 * is sufficiently short compared to the usage pattern.
1065 *
1066 * This quadric squishes small probabilities, making it less likely we
1067 * act on an unlikely task<->page relation.
1068 */
1069 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1070 if (!cpupid_pid_unset(last_cpupid) &&
1071 cpupid_to_nid(last_cpupid) != dst_nid)
1072 return false;
1073
1074 /* Always allow migrate on private faults */
1075 if (cpupid_match_pid(p, last_cpupid))
1076 return true;
1077
1078 /* A shared fault, but p->numa_group has not been set up yet. */
1079 if (!ng)
1080 return true;
1081
1082 /*
1083 * Do not migrate if the destination is not a node that
1084 * is actively used by this numa group.
1085 */
1086 if (!node_isset(dst_nid, ng->active_nodes))
1087 return false;
1088
1089 /*
1090 * Source is a node that is not actively used by this
1091 * numa group, while the destination is. Migrate.
1092 */
1093 if (!node_isset(src_nid, ng->active_nodes))
1094 return true;
1095
1096 /*
1097 * Both source and destination are nodes in active
1098 * use by this numa group. Maximize memory bandwidth
1099 * by migrating from more heavily used groups, to less
1100 * heavily used ones, spreading the load around.
1101 * Use a 1/4 hysteresis to avoid spurious page movement.
1102 */
1103 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1104}
1105
e6628d5b 1106static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1107static unsigned long source_load(int cpu, int type);
1108static unsigned long target_load(int cpu, int type);
ced549fa 1109static unsigned long capacity_of(int cpu);
58d081b5
MG
1110static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1111
fb13c7ee 1112/* Cached statistics for all CPUs within a node */
58d081b5 1113struct numa_stats {
fb13c7ee 1114 unsigned long nr_running;
58d081b5 1115 unsigned long load;
fb13c7ee
MG
1116
1117 /* Total compute capacity of CPUs on a node */
5ef20ca1 1118 unsigned long compute_capacity;
fb13c7ee
MG
1119
1120 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1121 unsigned long task_capacity;
1b6a7495 1122 int has_free_capacity;
58d081b5 1123};
e6628d5b 1124
fb13c7ee
MG
1125/*
1126 * XXX borrowed from update_sg_lb_stats
1127 */
1128static void update_numa_stats(struct numa_stats *ns, int nid)
1129{
83d7f242
RR
1130 int smt, cpu, cpus = 0;
1131 unsigned long capacity;
fb13c7ee
MG
1132
1133 memset(ns, 0, sizeof(*ns));
1134 for_each_cpu(cpu, cpumask_of_node(nid)) {
1135 struct rq *rq = cpu_rq(cpu);
1136
1137 ns->nr_running += rq->nr_running;
1138 ns->load += weighted_cpuload(cpu);
ced549fa 1139 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1140
1141 cpus++;
fb13c7ee
MG
1142 }
1143
5eca82a9
PZ
1144 /*
1145 * If we raced with hotplug and there are no CPUs left in our mask
1146 * the @ns structure is NULL'ed and task_numa_compare() will
1147 * not find this node attractive.
1148 *
1b6a7495
NP
1149 * We'll either bail at !has_free_capacity, or we'll detect a huge
1150 * imbalance and bail there.
5eca82a9
PZ
1151 */
1152 if (!cpus)
1153 return;
1154
83d7f242
RR
1155 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1156 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1157 capacity = cpus / smt; /* cores */
1158
1159 ns->task_capacity = min_t(unsigned, capacity,
1160 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1161 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1162}
1163
58d081b5
MG
1164struct task_numa_env {
1165 struct task_struct *p;
e6628d5b 1166
58d081b5
MG
1167 int src_cpu, src_nid;
1168 int dst_cpu, dst_nid;
e6628d5b 1169
58d081b5 1170 struct numa_stats src_stats, dst_stats;
e6628d5b 1171
40ea2b42 1172 int imbalance_pct;
7bd95320 1173 int dist;
fb13c7ee
MG
1174
1175 struct task_struct *best_task;
1176 long best_imp;
58d081b5
MG
1177 int best_cpu;
1178};
1179
fb13c7ee
MG
1180static void task_numa_assign(struct task_numa_env *env,
1181 struct task_struct *p, long imp)
1182{
1183 if (env->best_task)
1184 put_task_struct(env->best_task);
1185 if (p)
1186 get_task_struct(p);
1187
1188 env->best_task = p;
1189 env->best_imp = imp;
1190 env->best_cpu = env->dst_cpu;
1191}
1192
28a21745 1193static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1194 struct task_numa_env *env)
1195{
e4991b24
RR
1196 long imb, old_imb;
1197 long orig_src_load, orig_dst_load;
28a21745
RR
1198 long src_capacity, dst_capacity;
1199
1200 /*
1201 * The load is corrected for the CPU capacity available on each node.
1202 *
1203 * src_load dst_load
1204 * ------------ vs ---------
1205 * src_capacity dst_capacity
1206 */
1207 src_capacity = env->src_stats.compute_capacity;
1208 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1209
1210 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1211 if (dst_load < src_load)
1212 swap(dst_load, src_load);
e63da036
RR
1213
1214 /* Is the difference below the threshold? */
e4991b24
RR
1215 imb = dst_load * src_capacity * 100 -
1216 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1217 if (imb <= 0)
1218 return false;
1219
1220 /*
1221 * The imbalance is above the allowed threshold.
e4991b24 1222 * Compare it with the old imbalance.
e63da036 1223 */
28a21745 1224 orig_src_load = env->src_stats.load;
e4991b24 1225 orig_dst_load = env->dst_stats.load;
28a21745 1226
e4991b24
RR
1227 if (orig_dst_load < orig_src_load)
1228 swap(orig_dst_load, orig_src_load);
e63da036 1229
e4991b24
RR
1230 old_imb = orig_dst_load * src_capacity * 100 -
1231 orig_src_load * dst_capacity * env->imbalance_pct;
1232
1233 /* Would this change make things worse? */
1234 return (imb > old_imb);
e63da036
RR
1235}
1236
fb13c7ee
MG
1237/*
1238 * This checks if the overall compute and NUMA accesses of the system would
1239 * be improved if the source tasks was migrated to the target dst_cpu taking
1240 * into account that it might be best if task running on the dst_cpu should
1241 * be exchanged with the source task
1242 */
887c290e
RR
1243static void task_numa_compare(struct task_numa_env *env,
1244 long taskimp, long groupimp)
fb13c7ee
MG
1245{
1246 struct rq *src_rq = cpu_rq(env->src_cpu);
1247 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1248 struct task_struct *cur;
28a21745 1249 long src_load, dst_load;
fb13c7ee 1250 long load;
1c5d3eb3 1251 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1252 long moveimp = imp;
7bd95320 1253 int dist = env->dist;
fb13c7ee
MG
1254
1255 rcu_read_lock();
1effd9f1
KT
1256
1257 raw_spin_lock_irq(&dst_rq->lock);
1258 cur = dst_rq->curr;
1259 /*
1260 * No need to move the exiting task, and this ensures that ->curr
1261 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1262 * is safe under RCU read lock.
1263 * Note that rcu_read_lock() itself can't protect from the final
1264 * put_task_struct() after the last schedule().
1265 */
1266 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1267 cur = NULL;
1effd9f1 1268 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1269
7af68335
PZ
1270 /*
1271 * Because we have preemption enabled we can get migrated around and
1272 * end try selecting ourselves (current == env->p) as a swap candidate.
1273 */
1274 if (cur == env->p)
1275 goto unlock;
1276
fb13c7ee
MG
1277 /*
1278 * "imp" is the fault differential for the source task between the
1279 * source and destination node. Calculate the total differential for
1280 * the source task and potential destination task. The more negative
1281 * the value is, the more rmeote accesses that would be expected to
1282 * be incurred if the tasks were swapped.
1283 */
1284 if (cur) {
1285 /* Skip this swap candidate if cannot move to the source cpu */
1286 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1287 goto unlock;
1288
887c290e
RR
1289 /*
1290 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1291 * in any group then look only at task weights.
887c290e 1292 */
ca28aa53 1293 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1294 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1295 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1296 /*
1297 * Add some hysteresis to prevent swapping the
1298 * tasks within a group over tiny differences.
1299 */
1300 if (cur->numa_group)
1301 imp -= imp/16;
887c290e 1302 } else {
ca28aa53
RR
1303 /*
1304 * Compare the group weights. If a task is all by
1305 * itself (not part of a group), use the task weight
1306 * instead.
1307 */
ca28aa53 1308 if (cur->numa_group)
7bd95320
RR
1309 imp += group_weight(cur, env->src_nid, dist) -
1310 group_weight(cur, env->dst_nid, dist);
ca28aa53 1311 else
7bd95320
RR
1312 imp += task_weight(cur, env->src_nid, dist) -
1313 task_weight(cur, env->dst_nid, dist);
887c290e 1314 }
fb13c7ee
MG
1315 }
1316
0132c3e1 1317 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1318 goto unlock;
1319
1320 if (!cur) {
1321 /* Is there capacity at our destination? */
b932c03c 1322 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1323 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1324 goto unlock;
1325
1326 goto balance;
1327 }
1328
1329 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1330 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1331 dst_rq->nr_running == 1)
fb13c7ee
MG
1332 goto assign;
1333
1334 /*
1335 * In the overloaded case, try and keep the load balanced.
1336 */
1337balance:
e720fff6
PZ
1338 load = task_h_load(env->p);
1339 dst_load = env->dst_stats.load + load;
1340 src_load = env->src_stats.load - load;
fb13c7ee 1341
0132c3e1
RR
1342 if (moveimp > imp && moveimp > env->best_imp) {
1343 /*
1344 * If the improvement from just moving env->p direction is
1345 * better than swapping tasks around, check if a move is
1346 * possible. Store a slightly smaller score than moveimp,
1347 * so an actually idle CPU will win.
1348 */
1349 if (!load_too_imbalanced(src_load, dst_load, env)) {
1350 imp = moveimp - 1;
1351 cur = NULL;
1352 goto assign;
1353 }
1354 }
1355
1356 if (imp <= env->best_imp)
1357 goto unlock;
1358
fb13c7ee 1359 if (cur) {
e720fff6
PZ
1360 load = task_h_load(cur);
1361 dst_load -= load;
1362 src_load += load;
fb13c7ee
MG
1363 }
1364
28a21745 1365 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1366 goto unlock;
1367
ba7e5a27
RR
1368 /*
1369 * One idle CPU per node is evaluated for a task numa move.
1370 * Call select_idle_sibling to maybe find a better one.
1371 */
1372 if (!cur)
1373 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1374
fb13c7ee
MG
1375assign:
1376 task_numa_assign(env, cur, imp);
1377unlock:
1378 rcu_read_unlock();
1379}
1380
887c290e
RR
1381static void task_numa_find_cpu(struct task_numa_env *env,
1382 long taskimp, long groupimp)
2c8a50aa
MG
1383{
1384 int cpu;
1385
1386 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1387 /* Skip this CPU if the source task cannot migrate */
1388 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1389 continue;
1390
1391 env->dst_cpu = cpu;
887c290e 1392 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1393 }
1394}
1395
6f9aad0b
RR
1396/* Only move tasks to a NUMA node less busy than the current node. */
1397static bool numa_has_capacity(struct task_numa_env *env)
1398{
1399 struct numa_stats *src = &env->src_stats;
1400 struct numa_stats *dst = &env->dst_stats;
1401
1402 if (src->has_free_capacity && !dst->has_free_capacity)
1403 return false;
1404
1405 /*
1406 * Only consider a task move if the source has a higher load
1407 * than the destination, corrected for CPU capacity on each node.
1408 *
1409 * src->load dst->load
1410 * --------------------- vs ---------------------
1411 * src->compute_capacity dst->compute_capacity
1412 */
44dcb04f
SD
1413 if (src->load * dst->compute_capacity * env->imbalance_pct >
1414
1415 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1416 return true;
1417
1418 return false;
1419}
1420
58d081b5
MG
1421static int task_numa_migrate(struct task_struct *p)
1422{
58d081b5
MG
1423 struct task_numa_env env = {
1424 .p = p,
fb13c7ee 1425
58d081b5 1426 .src_cpu = task_cpu(p),
b32e86b4 1427 .src_nid = task_node(p),
fb13c7ee
MG
1428
1429 .imbalance_pct = 112,
1430
1431 .best_task = NULL,
1432 .best_imp = 0,
1433 .best_cpu = -1
58d081b5
MG
1434 };
1435 struct sched_domain *sd;
887c290e 1436 unsigned long taskweight, groupweight;
7bd95320 1437 int nid, ret, dist;
887c290e 1438 long taskimp, groupimp;
e6628d5b 1439
58d081b5 1440 /*
fb13c7ee
MG
1441 * Pick the lowest SD_NUMA domain, as that would have the smallest
1442 * imbalance and would be the first to start moving tasks about.
1443 *
1444 * And we want to avoid any moving of tasks about, as that would create
1445 * random movement of tasks -- counter the numa conditions we're trying
1446 * to satisfy here.
58d081b5
MG
1447 */
1448 rcu_read_lock();
fb13c7ee 1449 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1450 if (sd)
1451 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1452 rcu_read_unlock();
1453
46a73e8a
RR
1454 /*
1455 * Cpusets can break the scheduler domain tree into smaller
1456 * balance domains, some of which do not cross NUMA boundaries.
1457 * Tasks that are "trapped" in such domains cannot be migrated
1458 * elsewhere, so there is no point in (re)trying.
1459 */
1460 if (unlikely(!sd)) {
de1b301a 1461 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1462 return -EINVAL;
1463 }
1464
2c8a50aa 1465 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1466 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1467 taskweight = task_weight(p, env.src_nid, dist);
1468 groupweight = group_weight(p, env.src_nid, dist);
1469 update_numa_stats(&env.src_stats, env.src_nid);
1470 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1471 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1472 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1473
a43455a1 1474 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1475 if (numa_has_capacity(&env))
1476 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1477
9de05d48
RR
1478 /*
1479 * Look at other nodes in these cases:
1480 * - there is no space available on the preferred_nid
1481 * - the task is part of a numa_group that is interleaved across
1482 * multiple NUMA nodes; in order to better consolidate the group,
1483 * we need to check other locations.
1484 */
1485 if (env.best_cpu == -1 || (p->numa_group &&
1486 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1487 for_each_online_node(nid) {
1488 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1489 continue;
58d081b5 1490
7bd95320 1491 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1492 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1493 dist != env.dist) {
1494 taskweight = task_weight(p, env.src_nid, dist);
1495 groupweight = group_weight(p, env.src_nid, dist);
1496 }
7bd95320 1497
83e1d2cd 1498 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1499 taskimp = task_weight(p, nid, dist) - taskweight;
1500 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1501 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1502 continue;
1503
7bd95320 1504 env.dist = dist;
2c8a50aa
MG
1505 env.dst_nid = nid;
1506 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1507 if (numa_has_capacity(&env))
1508 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1509 }
1510 }
1511
68d1b02a
RR
1512 /*
1513 * If the task is part of a workload that spans multiple NUMA nodes,
1514 * and is migrating into one of the workload's active nodes, remember
1515 * this node as the task's preferred numa node, so the workload can
1516 * settle down.
1517 * A task that migrated to a second choice node will be better off
1518 * trying for a better one later. Do not set the preferred node here.
1519 */
db015dae
RR
1520 if (p->numa_group) {
1521 if (env.best_cpu == -1)
1522 nid = env.src_nid;
1523 else
1524 nid = env.dst_nid;
1525
1526 if (node_isset(nid, p->numa_group->active_nodes))
1527 sched_setnuma(p, env.dst_nid);
1528 }
1529
1530 /* No better CPU than the current one was found. */
1531 if (env.best_cpu == -1)
1532 return -EAGAIN;
0ec8aa00 1533
04bb2f94
RR
1534 /*
1535 * Reset the scan period if the task is being rescheduled on an
1536 * alternative node to recheck if the tasks is now properly placed.
1537 */
1538 p->numa_scan_period = task_scan_min(p);
1539
fb13c7ee 1540 if (env.best_task == NULL) {
286549dc
MG
1541 ret = migrate_task_to(p, env.best_cpu);
1542 if (ret != 0)
1543 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1544 return ret;
1545 }
1546
1547 ret = migrate_swap(p, env.best_task);
286549dc
MG
1548 if (ret != 0)
1549 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1550 put_task_struct(env.best_task);
1551 return ret;
e6628d5b
MG
1552}
1553
6b9a7460
MG
1554/* Attempt to migrate a task to a CPU on the preferred node. */
1555static void numa_migrate_preferred(struct task_struct *p)
1556{
5085e2a3
RR
1557 unsigned long interval = HZ;
1558
2739d3ee 1559 /* This task has no NUMA fault statistics yet */
44dba3d5 1560 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1561 return;
1562
2739d3ee 1563 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1564 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1565 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1566
1567 /* Success if task is already running on preferred CPU */
de1b301a 1568 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1569 return;
1570
1571 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1572 task_numa_migrate(p);
6b9a7460
MG
1573}
1574
20e07dea
RR
1575/*
1576 * Find the nodes on which the workload is actively running. We do this by
1577 * tracking the nodes from which NUMA hinting faults are triggered. This can
1578 * be different from the set of nodes where the workload's memory is currently
1579 * located.
1580 *
1581 * The bitmask is used to make smarter decisions on when to do NUMA page
1582 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1583 * are added when they cause over 6/16 of the maximum number of faults, but
1584 * only removed when they drop below 3/16.
1585 */
1586static void update_numa_active_node_mask(struct numa_group *numa_group)
1587{
1588 unsigned long faults, max_faults = 0;
1589 int nid;
1590
1591 for_each_online_node(nid) {
1592 faults = group_faults_cpu(numa_group, nid);
1593 if (faults > max_faults)
1594 max_faults = faults;
1595 }
1596
1597 for_each_online_node(nid) {
1598 faults = group_faults_cpu(numa_group, nid);
1599 if (!node_isset(nid, numa_group->active_nodes)) {
1600 if (faults > max_faults * 6 / 16)
1601 node_set(nid, numa_group->active_nodes);
1602 } else if (faults < max_faults * 3 / 16)
1603 node_clear(nid, numa_group->active_nodes);
1604 }
1605}
1606
04bb2f94
RR
1607/*
1608 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1609 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1610 * period will be for the next scan window. If local/(local+remote) ratio is
1611 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1612 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1613 */
1614#define NUMA_PERIOD_SLOTS 10
a22b4b01 1615#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1616
1617/*
1618 * Increase the scan period (slow down scanning) if the majority of
1619 * our memory is already on our local node, or if the majority of
1620 * the page accesses are shared with other processes.
1621 * Otherwise, decrease the scan period.
1622 */
1623static void update_task_scan_period(struct task_struct *p,
1624 unsigned long shared, unsigned long private)
1625{
1626 unsigned int period_slot;
1627 int ratio;
1628 int diff;
1629
1630 unsigned long remote = p->numa_faults_locality[0];
1631 unsigned long local = p->numa_faults_locality[1];
1632
1633 /*
1634 * If there were no record hinting faults then either the task is
1635 * completely idle or all activity is areas that are not of interest
074c2381
MG
1636 * to automatic numa balancing. Related to that, if there were failed
1637 * migration then it implies we are migrating too quickly or the local
1638 * node is overloaded. In either case, scan slower
04bb2f94 1639 */
074c2381 1640 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1641 p->numa_scan_period = min(p->numa_scan_period_max,
1642 p->numa_scan_period << 1);
1643
1644 p->mm->numa_next_scan = jiffies +
1645 msecs_to_jiffies(p->numa_scan_period);
1646
1647 return;
1648 }
1649
1650 /*
1651 * Prepare to scale scan period relative to the current period.
1652 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1653 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1654 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1655 */
1656 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1657 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1658 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1659 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1660 if (!slot)
1661 slot = 1;
1662 diff = slot * period_slot;
1663 } else {
1664 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1665
1666 /*
1667 * Scale scan rate increases based on sharing. There is an
1668 * inverse relationship between the degree of sharing and
1669 * the adjustment made to the scanning period. Broadly
1670 * speaking the intent is that there is little point
1671 * scanning faster if shared accesses dominate as it may
1672 * simply bounce migrations uselessly
1673 */
2847c90e 1674 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1675 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1676 }
1677
1678 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1679 task_scan_min(p), task_scan_max(p));
1680 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1681}
1682
7e2703e6
RR
1683/*
1684 * Get the fraction of time the task has been running since the last
1685 * NUMA placement cycle. The scheduler keeps similar statistics, but
1686 * decays those on a 32ms period, which is orders of magnitude off
1687 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1688 * stats only if the task is so new there are no NUMA statistics yet.
1689 */
1690static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1691{
1692 u64 runtime, delta, now;
1693 /* Use the start of this time slice to avoid calculations. */
1694 now = p->se.exec_start;
1695 runtime = p->se.sum_exec_runtime;
1696
1697 if (p->last_task_numa_placement) {
1698 delta = runtime - p->last_sum_exec_runtime;
1699 *period = now - p->last_task_numa_placement;
1700 } else {
1701 delta = p->se.avg.runnable_avg_sum;
36ee28e4 1702 *period = p->se.avg.avg_period;
7e2703e6
RR
1703 }
1704
1705 p->last_sum_exec_runtime = runtime;
1706 p->last_task_numa_placement = now;
1707
1708 return delta;
1709}
1710
54009416
RR
1711/*
1712 * Determine the preferred nid for a task in a numa_group. This needs to
1713 * be done in a way that produces consistent results with group_weight,
1714 * otherwise workloads might not converge.
1715 */
1716static int preferred_group_nid(struct task_struct *p, int nid)
1717{
1718 nodemask_t nodes;
1719 int dist;
1720
1721 /* Direct connections between all NUMA nodes. */
1722 if (sched_numa_topology_type == NUMA_DIRECT)
1723 return nid;
1724
1725 /*
1726 * On a system with glueless mesh NUMA topology, group_weight
1727 * scores nodes according to the number of NUMA hinting faults on
1728 * both the node itself, and on nearby nodes.
1729 */
1730 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1731 unsigned long score, max_score = 0;
1732 int node, max_node = nid;
1733
1734 dist = sched_max_numa_distance;
1735
1736 for_each_online_node(node) {
1737 score = group_weight(p, node, dist);
1738 if (score > max_score) {
1739 max_score = score;
1740 max_node = node;
1741 }
1742 }
1743 return max_node;
1744 }
1745
1746 /*
1747 * Finding the preferred nid in a system with NUMA backplane
1748 * interconnect topology is more involved. The goal is to locate
1749 * tasks from numa_groups near each other in the system, and
1750 * untangle workloads from different sides of the system. This requires
1751 * searching down the hierarchy of node groups, recursively searching
1752 * inside the highest scoring group of nodes. The nodemask tricks
1753 * keep the complexity of the search down.
1754 */
1755 nodes = node_online_map;
1756 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1757 unsigned long max_faults = 0;
81907478 1758 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1759 int a, b;
1760
1761 /* Are there nodes at this distance from each other? */
1762 if (!find_numa_distance(dist))
1763 continue;
1764
1765 for_each_node_mask(a, nodes) {
1766 unsigned long faults = 0;
1767 nodemask_t this_group;
1768 nodes_clear(this_group);
1769
1770 /* Sum group's NUMA faults; includes a==b case. */
1771 for_each_node_mask(b, nodes) {
1772 if (node_distance(a, b) < dist) {
1773 faults += group_faults(p, b);
1774 node_set(b, this_group);
1775 node_clear(b, nodes);
1776 }
1777 }
1778
1779 /* Remember the top group. */
1780 if (faults > max_faults) {
1781 max_faults = faults;
1782 max_group = this_group;
1783 /*
1784 * subtle: at the smallest distance there is
1785 * just one node left in each "group", the
1786 * winner is the preferred nid.
1787 */
1788 nid = a;
1789 }
1790 }
1791 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1792 if (!max_faults)
1793 break;
54009416
RR
1794 nodes = max_group;
1795 }
1796 return nid;
1797}
1798
cbee9f88
PZ
1799static void task_numa_placement(struct task_struct *p)
1800{
83e1d2cd
MG
1801 int seq, nid, max_nid = -1, max_group_nid = -1;
1802 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1803 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1804 unsigned long total_faults;
1805 u64 runtime, period;
7dbd13ed 1806 spinlock_t *group_lock = NULL;
cbee9f88 1807
7e5a2c17
JL
1808 /*
1809 * The p->mm->numa_scan_seq field gets updated without
1810 * exclusive access. Use READ_ONCE() here to ensure
1811 * that the field is read in a single access:
1812 */
316c1608 1813 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1814 if (p->numa_scan_seq == seq)
1815 return;
1816 p->numa_scan_seq = seq;
598f0ec0 1817 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1818
7e2703e6
RR
1819 total_faults = p->numa_faults_locality[0] +
1820 p->numa_faults_locality[1];
1821 runtime = numa_get_avg_runtime(p, &period);
1822
7dbd13ed
MG
1823 /* If the task is part of a group prevent parallel updates to group stats */
1824 if (p->numa_group) {
1825 group_lock = &p->numa_group->lock;
60e69eed 1826 spin_lock_irq(group_lock);
7dbd13ed
MG
1827 }
1828
688b7585
MG
1829 /* Find the node with the highest number of faults */
1830 for_each_online_node(nid) {
44dba3d5
IM
1831 /* Keep track of the offsets in numa_faults array */
1832 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1833 unsigned long faults = 0, group_faults = 0;
44dba3d5 1834 int priv;
745d6147 1835
be1e4e76 1836 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1837 long diff, f_diff, f_weight;
8c8a743c 1838
44dba3d5
IM
1839 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1840 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1841 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1842 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1843
ac8e895b 1844 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1845 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1846 fault_types[priv] += p->numa_faults[membuf_idx];
1847 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1848
7e2703e6
RR
1849 /*
1850 * Normalize the faults_from, so all tasks in a group
1851 * count according to CPU use, instead of by the raw
1852 * number of faults. Tasks with little runtime have
1853 * little over-all impact on throughput, and thus their
1854 * faults are less important.
1855 */
1856 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1857 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1858 (total_faults + 1);
44dba3d5
IM
1859 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1860 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1861
44dba3d5
IM
1862 p->numa_faults[mem_idx] += diff;
1863 p->numa_faults[cpu_idx] += f_diff;
1864 faults += p->numa_faults[mem_idx];
83e1d2cd 1865 p->total_numa_faults += diff;
8c8a743c 1866 if (p->numa_group) {
44dba3d5
IM
1867 /*
1868 * safe because we can only change our own group
1869 *
1870 * mem_idx represents the offset for a given
1871 * nid and priv in a specific region because it
1872 * is at the beginning of the numa_faults array.
1873 */
1874 p->numa_group->faults[mem_idx] += diff;
1875 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1876 p->numa_group->total_faults += diff;
44dba3d5 1877 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1878 }
ac8e895b
MG
1879 }
1880
688b7585
MG
1881 if (faults > max_faults) {
1882 max_faults = faults;
1883 max_nid = nid;
1884 }
83e1d2cd
MG
1885
1886 if (group_faults > max_group_faults) {
1887 max_group_faults = group_faults;
1888 max_group_nid = nid;
1889 }
1890 }
1891
04bb2f94
RR
1892 update_task_scan_period(p, fault_types[0], fault_types[1]);
1893
7dbd13ed 1894 if (p->numa_group) {
20e07dea 1895 update_numa_active_node_mask(p->numa_group);
60e69eed 1896 spin_unlock_irq(group_lock);
54009416 1897 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1898 }
1899
bb97fc31
RR
1900 if (max_faults) {
1901 /* Set the new preferred node */
1902 if (max_nid != p->numa_preferred_nid)
1903 sched_setnuma(p, max_nid);
1904
1905 if (task_node(p) != p->numa_preferred_nid)
1906 numa_migrate_preferred(p);
3a7053b3 1907 }
cbee9f88
PZ
1908}
1909
8c8a743c
PZ
1910static inline int get_numa_group(struct numa_group *grp)
1911{
1912 return atomic_inc_not_zero(&grp->refcount);
1913}
1914
1915static inline void put_numa_group(struct numa_group *grp)
1916{
1917 if (atomic_dec_and_test(&grp->refcount))
1918 kfree_rcu(grp, rcu);
1919}
1920
3e6a9418
MG
1921static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1922 int *priv)
8c8a743c
PZ
1923{
1924 struct numa_group *grp, *my_grp;
1925 struct task_struct *tsk;
1926 bool join = false;
1927 int cpu = cpupid_to_cpu(cpupid);
1928 int i;
1929
1930 if (unlikely(!p->numa_group)) {
1931 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1932 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1933
1934 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1935 if (!grp)
1936 return;
1937
1938 atomic_set(&grp->refcount, 1);
1939 spin_lock_init(&grp->lock);
e29cf08b 1940 grp->gid = p->pid;
50ec8a40 1941 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1942 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1943 nr_node_ids;
8c8a743c 1944
20e07dea
RR
1945 node_set(task_node(current), grp->active_nodes);
1946
be1e4e76 1947 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1948 grp->faults[i] = p->numa_faults[i];
8c8a743c 1949
989348b5 1950 grp->total_faults = p->total_numa_faults;
83e1d2cd 1951
8c8a743c
PZ
1952 grp->nr_tasks++;
1953 rcu_assign_pointer(p->numa_group, grp);
1954 }
1955
1956 rcu_read_lock();
316c1608 1957 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1958
1959 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1960 goto no_join;
8c8a743c
PZ
1961
1962 grp = rcu_dereference(tsk->numa_group);
1963 if (!grp)
3354781a 1964 goto no_join;
8c8a743c
PZ
1965
1966 my_grp = p->numa_group;
1967 if (grp == my_grp)
3354781a 1968 goto no_join;
8c8a743c
PZ
1969
1970 /*
1971 * Only join the other group if its bigger; if we're the bigger group,
1972 * the other task will join us.
1973 */
1974 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1975 goto no_join;
8c8a743c
PZ
1976
1977 /*
1978 * Tie-break on the grp address.
1979 */
1980 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1981 goto no_join;
8c8a743c 1982
dabe1d99
RR
1983 /* Always join threads in the same process. */
1984 if (tsk->mm == current->mm)
1985 join = true;
1986
1987 /* Simple filter to avoid false positives due to PID collisions */
1988 if (flags & TNF_SHARED)
1989 join = true;
8c8a743c 1990
3e6a9418
MG
1991 /* Update priv based on whether false sharing was detected */
1992 *priv = !join;
1993
dabe1d99 1994 if (join && !get_numa_group(grp))
3354781a 1995 goto no_join;
8c8a743c 1996
8c8a743c
PZ
1997 rcu_read_unlock();
1998
1999 if (!join)
2000 return;
2001
60e69eed
MG
2002 BUG_ON(irqs_disabled());
2003 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2004
be1e4e76 2005 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2006 my_grp->faults[i] -= p->numa_faults[i];
2007 grp->faults[i] += p->numa_faults[i];
8c8a743c 2008 }
989348b5
MG
2009 my_grp->total_faults -= p->total_numa_faults;
2010 grp->total_faults += p->total_numa_faults;
8c8a743c 2011
8c8a743c
PZ
2012 my_grp->nr_tasks--;
2013 grp->nr_tasks++;
2014
2015 spin_unlock(&my_grp->lock);
60e69eed 2016 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2017
2018 rcu_assign_pointer(p->numa_group, grp);
2019
2020 put_numa_group(my_grp);
3354781a
PZ
2021 return;
2022
2023no_join:
2024 rcu_read_unlock();
2025 return;
8c8a743c
PZ
2026}
2027
2028void task_numa_free(struct task_struct *p)
2029{
2030 struct numa_group *grp = p->numa_group;
44dba3d5 2031 void *numa_faults = p->numa_faults;
e9dd685c
SR
2032 unsigned long flags;
2033 int i;
8c8a743c
PZ
2034
2035 if (grp) {
e9dd685c 2036 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2037 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2038 grp->faults[i] -= p->numa_faults[i];
989348b5 2039 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2040
8c8a743c 2041 grp->nr_tasks--;
e9dd685c 2042 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2043 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2044 put_numa_group(grp);
2045 }
2046
44dba3d5 2047 p->numa_faults = NULL;
82727018 2048 kfree(numa_faults);
8c8a743c
PZ
2049}
2050
cbee9f88
PZ
2051/*
2052 * Got a PROT_NONE fault for a page on @node.
2053 */
58b46da3 2054void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2055{
2056 struct task_struct *p = current;
6688cc05 2057 bool migrated = flags & TNF_MIGRATED;
58b46da3 2058 int cpu_node = task_node(current);
792568ec 2059 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2060 int priv;
cbee9f88 2061
10e84b97 2062 if (!numabalancing_enabled)
1a687c2e
MG
2063 return;
2064
9ff1d9ff
MG
2065 /* for example, ksmd faulting in a user's mm */
2066 if (!p->mm)
2067 return;
2068
f809ca9a 2069 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2070 if (unlikely(!p->numa_faults)) {
2071 int size = sizeof(*p->numa_faults) *
be1e4e76 2072 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2073
44dba3d5
IM
2074 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2075 if (!p->numa_faults)
f809ca9a 2076 return;
745d6147 2077
83e1d2cd 2078 p->total_numa_faults = 0;
04bb2f94 2079 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2080 }
cbee9f88 2081
8c8a743c
PZ
2082 /*
2083 * First accesses are treated as private, otherwise consider accesses
2084 * to be private if the accessing pid has not changed
2085 */
2086 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2087 priv = 1;
2088 } else {
2089 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2090 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2091 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2092 }
2093
792568ec
RR
2094 /*
2095 * If a workload spans multiple NUMA nodes, a shared fault that
2096 * occurs wholly within the set of nodes that the workload is
2097 * actively using should be counted as local. This allows the
2098 * scan rate to slow down when a workload has settled down.
2099 */
2100 if (!priv && !local && p->numa_group &&
2101 node_isset(cpu_node, p->numa_group->active_nodes) &&
2102 node_isset(mem_node, p->numa_group->active_nodes))
2103 local = 1;
2104
cbee9f88 2105 task_numa_placement(p);
f809ca9a 2106
2739d3ee
RR
2107 /*
2108 * Retry task to preferred node migration periodically, in case it
2109 * case it previously failed, or the scheduler moved us.
2110 */
2111 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2112 numa_migrate_preferred(p);
2113
b32e86b4
IM
2114 if (migrated)
2115 p->numa_pages_migrated += pages;
074c2381
MG
2116 if (flags & TNF_MIGRATE_FAIL)
2117 p->numa_faults_locality[2] += pages;
b32e86b4 2118
44dba3d5
IM
2119 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2120 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2121 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2122}
2123
6e5fb223
PZ
2124static void reset_ptenuma_scan(struct task_struct *p)
2125{
7e5a2c17
JL
2126 /*
2127 * We only did a read acquisition of the mmap sem, so
2128 * p->mm->numa_scan_seq is written to without exclusive access
2129 * and the update is not guaranteed to be atomic. That's not
2130 * much of an issue though, since this is just used for
2131 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2132 * expensive, to avoid any form of compiler optimizations:
2133 */
316c1608 2134 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2135 p->mm->numa_scan_offset = 0;
2136}
2137
cbee9f88
PZ
2138/*
2139 * The expensive part of numa migration is done from task_work context.
2140 * Triggered from task_tick_numa().
2141 */
2142void task_numa_work(struct callback_head *work)
2143{
2144 unsigned long migrate, next_scan, now = jiffies;
2145 struct task_struct *p = current;
2146 struct mm_struct *mm = p->mm;
6e5fb223 2147 struct vm_area_struct *vma;
9f40604c 2148 unsigned long start, end;
598f0ec0 2149 unsigned long nr_pte_updates = 0;
9f40604c 2150 long pages;
cbee9f88
PZ
2151
2152 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2153
2154 work->next = work; /* protect against double add */
2155 /*
2156 * Who cares about NUMA placement when they're dying.
2157 *
2158 * NOTE: make sure not to dereference p->mm before this check,
2159 * exit_task_work() happens _after_ exit_mm() so we could be called
2160 * without p->mm even though we still had it when we enqueued this
2161 * work.
2162 */
2163 if (p->flags & PF_EXITING)
2164 return;
2165
930aa174 2166 if (!mm->numa_next_scan) {
7e8d16b6
MG
2167 mm->numa_next_scan = now +
2168 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2169 }
2170
cbee9f88
PZ
2171 /*
2172 * Enforce maximal scan/migration frequency..
2173 */
2174 migrate = mm->numa_next_scan;
2175 if (time_before(now, migrate))
2176 return;
2177
598f0ec0
MG
2178 if (p->numa_scan_period == 0) {
2179 p->numa_scan_period_max = task_scan_max(p);
2180 p->numa_scan_period = task_scan_min(p);
2181 }
cbee9f88 2182
fb003b80 2183 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2184 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2185 return;
2186
19a78d11
PZ
2187 /*
2188 * Delay this task enough that another task of this mm will likely win
2189 * the next time around.
2190 */
2191 p->node_stamp += 2 * TICK_NSEC;
2192
9f40604c
MG
2193 start = mm->numa_scan_offset;
2194 pages = sysctl_numa_balancing_scan_size;
2195 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2196 if (!pages)
2197 return;
cbee9f88 2198
6e5fb223 2199 down_read(&mm->mmap_sem);
9f40604c 2200 vma = find_vma(mm, start);
6e5fb223
PZ
2201 if (!vma) {
2202 reset_ptenuma_scan(p);
9f40604c 2203 start = 0;
6e5fb223
PZ
2204 vma = mm->mmap;
2205 }
9f40604c 2206 for (; vma; vma = vma->vm_next) {
6b79c57b 2207 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2208 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2209 continue;
6b79c57b 2210 }
6e5fb223 2211
4591ce4f
MG
2212 /*
2213 * Shared library pages mapped by multiple processes are not
2214 * migrated as it is expected they are cache replicated. Avoid
2215 * hinting faults in read-only file-backed mappings or the vdso
2216 * as migrating the pages will be of marginal benefit.
2217 */
2218 if (!vma->vm_mm ||
2219 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2220 continue;
2221
3c67f474
MG
2222 /*
2223 * Skip inaccessible VMAs to avoid any confusion between
2224 * PROT_NONE and NUMA hinting ptes
2225 */
2226 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2227 continue;
4591ce4f 2228
9f40604c
MG
2229 do {
2230 start = max(start, vma->vm_start);
2231 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2232 end = min(end, vma->vm_end);
598f0ec0
MG
2233 nr_pte_updates += change_prot_numa(vma, start, end);
2234
2235 /*
2236 * Scan sysctl_numa_balancing_scan_size but ensure that
2237 * at least one PTE is updated so that unused virtual
2238 * address space is quickly skipped.
2239 */
2240 if (nr_pte_updates)
2241 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2242
9f40604c
MG
2243 start = end;
2244 if (pages <= 0)
2245 goto out;
3cf1962c
RR
2246
2247 cond_resched();
9f40604c 2248 } while (end != vma->vm_end);
cbee9f88 2249 }
6e5fb223 2250
9f40604c 2251out:
6e5fb223 2252 /*
c69307d5
PZ
2253 * It is possible to reach the end of the VMA list but the last few
2254 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2255 * would find the !migratable VMA on the next scan but not reset the
2256 * scanner to the start so check it now.
6e5fb223
PZ
2257 */
2258 if (vma)
9f40604c 2259 mm->numa_scan_offset = start;
6e5fb223
PZ
2260 else
2261 reset_ptenuma_scan(p);
2262 up_read(&mm->mmap_sem);
cbee9f88
PZ
2263}
2264
2265/*
2266 * Drive the periodic memory faults..
2267 */
2268void task_tick_numa(struct rq *rq, struct task_struct *curr)
2269{
2270 struct callback_head *work = &curr->numa_work;
2271 u64 period, now;
2272
2273 /*
2274 * We don't care about NUMA placement if we don't have memory.
2275 */
2276 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2277 return;
2278
2279 /*
2280 * Using runtime rather than walltime has the dual advantage that
2281 * we (mostly) drive the selection from busy threads and that the
2282 * task needs to have done some actual work before we bother with
2283 * NUMA placement.
2284 */
2285 now = curr->se.sum_exec_runtime;
2286 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2287
2288 if (now - curr->node_stamp > period) {
4b96a29b 2289 if (!curr->node_stamp)
598f0ec0 2290 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2291 curr->node_stamp += period;
cbee9f88
PZ
2292
2293 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2294 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2295 task_work_add(curr, work, true);
2296 }
2297 }
2298}
2299#else
2300static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2301{
2302}
0ec8aa00
PZ
2303
2304static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2305{
2306}
2307
2308static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2309{
2310}
cbee9f88
PZ
2311#endif /* CONFIG_NUMA_BALANCING */
2312
30cfdcfc
DA
2313static void
2314account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2315{
2316 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2317 if (!parent_entity(se))
029632fb 2318 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2319#ifdef CONFIG_SMP
0ec8aa00
PZ
2320 if (entity_is_task(se)) {
2321 struct rq *rq = rq_of(cfs_rq);
2322
2323 account_numa_enqueue(rq, task_of(se));
2324 list_add(&se->group_node, &rq->cfs_tasks);
2325 }
367456c7 2326#endif
30cfdcfc 2327 cfs_rq->nr_running++;
30cfdcfc
DA
2328}
2329
2330static void
2331account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2332{
2333 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2334 if (!parent_entity(se))
029632fb 2335 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2336 if (entity_is_task(se)) {
2337 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2338 list_del_init(&se->group_node);
0ec8aa00 2339 }
30cfdcfc 2340 cfs_rq->nr_running--;
30cfdcfc
DA
2341}
2342
3ff6dcac
YZ
2343#ifdef CONFIG_FAIR_GROUP_SCHED
2344# ifdef CONFIG_SMP
cf5f0acf
PZ
2345static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2346{
2347 long tg_weight;
2348
2349 /*
2350 * Use this CPU's actual weight instead of the last load_contribution
2351 * to gain a more accurate current total weight. See
399595f2 2352 * __update_cfs_rq_tg_load_contrib().
cf5f0acf 2353 */
bf5b986e 2354 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2355 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2356 tg_weight += cfs_rq->load.weight;
2357
2358 return tg_weight;
2359}
2360
6d5ab293 2361static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2362{
cf5f0acf 2363 long tg_weight, load, shares;
3ff6dcac 2364
cf5f0acf 2365 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2366 load = cfs_rq->load.weight;
3ff6dcac 2367
3ff6dcac 2368 shares = (tg->shares * load);
cf5f0acf
PZ
2369 if (tg_weight)
2370 shares /= tg_weight;
3ff6dcac
YZ
2371
2372 if (shares < MIN_SHARES)
2373 shares = MIN_SHARES;
2374 if (shares > tg->shares)
2375 shares = tg->shares;
2376
2377 return shares;
2378}
3ff6dcac 2379# else /* CONFIG_SMP */
6d5ab293 2380static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2381{
2382 return tg->shares;
2383}
3ff6dcac 2384# endif /* CONFIG_SMP */
2069dd75
PZ
2385static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2386 unsigned long weight)
2387{
19e5eebb
PT
2388 if (se->on_rq) {
2389 /* commit outstanding execution time */
2390 if (cfs_rq->curr == se)
2391 update_curr(cfs_rq);
2069dd75 2392 account_entity_dequeue(cfs_rq, se);
19e5eebb 2393 }
2069dd75
PZ
2394
2395 update_load_set(&se->load, weight);
2396
2397 if (se->on_rq)
2398 account_entity_enqueue(cfs_rq, se);
2399}
2400
82958366
PT
2401static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2402
6d5ab293 2403static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2404{
2405 struct task_group *tg;
2406 struct sched_entity *se;
3ff6dcac 2407 long shares;
2069dd75 2408
2069dd75
PZ
2409 tg = cfs_rq->tg;
2410 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2411 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2412 return;
3ff6dcac
YZ
2413#ifndef CONFIG_SMP
2414 if (likely(se->load.weight == tg->shares))
2415 return;
2416#endif
6d5ab293 2417 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2418
2419 reweight_entity(cfs_rq_of(se), se, shares);
2420}
2421#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2422static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2423{
2424}
2425#endif /* CONFIG_FAIR_GROUP_SCHED */
2426
141965c7 2427#ifdef CONFIG_SMP
5b51f2f8
PT
2428/*
2429 * We choose a half-life close to 1 scheduling period.
2430 * Note: The tables below are dependent on this value.
2431 */
2432#define LOAD_AVG_PERIOD 32
2433#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2434#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2435
2436/* Precomputed fixed inverse multiplies for multiplication by y^n */
2437static const u32 runnable_avg_yN_inv[] = {
2438 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2439 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2440 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2441 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2442 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2443 0x85aac367, 0x82cd8698,
2444};
2445
2446/*
2447 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2448 * over-estimates when re-combining.
2449 */
2450static const u32 runnable_avg_yN_sum[] = {
2451 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2452 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2453 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2454};
2455
9d85f21c
PT
2456/*
2457 * Approximate:
2458 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2459 */
2460static __always_inline u64 decay_load(u64 val, u64 n)
2461{
5b51f2f8
PT
2462 unsigned int local_n;
2463
2464 if (!n)
2465 return val;
2466 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2467 return 0;
2468
2469 /* after bounds checking we can collapse to 32-bit */
2470 local_n = n;
2471
2472 /*
2473 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2474 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2475 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2476 *
2477 * To achieve constant time decay_load.
2478 */
2479 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2480 val >>= local_n / LOAD_AVG_PERIOD;
2481 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2482 }
2483
5b51f2f8
PT
2484 val *= runnable_avg_yN_inv[local_n];
2485 /* We don't use SRR here since we always want to round down. */
2486 return val >> 32;
2487}
2488
2489/*
2490 * For updates fully spanning n periods, the contribution to runnable
2491 * average will be: \Sum 1024*y^n
2492 *
2493 * We can compute this reasonably efficiently by combining:
2494 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2495 */
2496static u32 __compute_runnable_contrib(u64 n)
2497{
2498 u32 contrib = 0;
2499
2500 if (likely(n <= LOAD_AVG_PERIOD))
2501 return runnable_avg_yN_sum[n];
2502 else if (unlikely(n >= LOAD_AVG_MAX_N))
2503 return LOAD_AVG_MAX;
2504
2505 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2506 do {
2507 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2508 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2509
2510 n -= LOAD_AVG_PERIOD;
2511 } while (n > LOAD_AVG_PERIOD);
2512
2513 contrib = decay_load(contrib, n);
2514 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2515}
2516
2517/*
2518 * We can represent the historical contribution to runnable average as the
2519 * coefficients of a geometric series. To do this we sub-divide our runnable
2520 * history into segments of approximately 1ms (1024us); label the segment that
2521 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2522 *
2523 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2524 * p0 p1 p2
2525 * (now) (~1ms ago) (~2ms ago)
2526 *
2527 * Let u_i denote the fraction of p_i that the entity was runnable.
2528 *
2529 * We then designate the fractions u_i as our co-efficients, yielding the
2530 * following representation of historical load:
2531 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2532 *
2533 * We choose y based on the with of a reasonably scheduling period, fixing:
2534 * y^32 = 0.5
2535 *
2536 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2537 * approximately half as much as the contribution to load within the last ms
2538 * (u_0).
2539 *
2540 * When a period "rolls over" and we have new u_0`, multiplying the previous
2541 * sum again by y is sufficient to update:
2542 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2543 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2544 */
0c1dc6b2 2545static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
9d85f21c 2546 struct sched_avg *sa,
36ee28e4
VG
2547 int runnable,
2548 int running)
9d85f21c 2549{
5b51f2f8
PT
2550 u64 delta, periods;
2551 u32 runnable_contrib;
9d85f21c 2552 int delta_w, decayed = 0;
0c1dc6b2 2553 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
9d85f21c
PT
2554
2555 delta = now - sa->last_runnable_update;
2556 /*
2557 * This should only happen when time goes backwards, which it
2558 * unfortunately does during sched clock init when we swap over to TSC.
2559 */
2560 if ((s64)delta < 0) {
2561 sa->last_runnable_update = now;
2562 return 0;
2563 }
2564
2565 /*
2566 * Use 1024ns as the unit of measurement since it's a reasonable
2567 * approximation of 1us and fast to compute.
2568 */
2569 delta >>= 10;
2570 if (!delta)
2571 return 0;
2572 sa->last_runnable_update = now;
2573
2574 /* delta_w is the amount already accumulated against our next period */
36ee28e4 2575 delta_w = sa->avg_period % 1024;
9d85f21c
PT
2576 if (delta + delta_w >= 1024) {
2577 /* period roll-over */
2578 decayed = 1;
2579
2580 /*
2581 * Now that we know we're crossing a period boundary, figure
2582 * out how much from delta we need to complete the current
2583 * period and accrue it.
2584 */
2585 delta_w = 1024 - delta_w;
5b51f2f8
PT
2586 if (runnable)
2587 sa->runnable_avg_sum += delta_w;
36ee28e4 2588 if (running)
0c1dc6b2
MR
2589 sa->running_avg_sum += delta_w * scale_freq
2590 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2591 sa->avg_period += delta_w;
5b51f2f8
PT
2592
2593 delta -= delta_w;
2594
2595 /* Figure out how many additional periods this update spans */
2596 periods = delta / 1024;
2597 delta %= 1024;
2598
2599 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2600 periods + 1);
36ee28e4
VG
2601 sa->running_avg_sum = decay_load(sa->running_avg_sum,
2602 periods + 1);
2603 sa->avg_period = decay_load(sa->avg_period,
5b51f2f8
PT
2604 periods + 1);
2605
2606 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2607 runnable_contrib = __compute_runnable_contrib(periods);
2608 if (runnable)
2609 sa->runnable_avg_sum += runnable_contrib;
36ee28e4 2610 if (running)
0c1dc6b2
MR
2611 sa->running_avg_sum += runnable_contrib * scale_freq
2612 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2613 sa->avg_period += runnable_contrib;
9d85f21c
PT
2614 }
2615
2616 /* Remainder of delta accrued against u_0` */
2617 if (runnable)
2618 sa->runnable_avg_sum += delta;
36ee28e4 2619 if (running)
0c1dc6b2
MR
2620 sa->running_avg_sum += delta * scale_freq
2621 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2622 sa->avg_period += delta;
9d85f21c
PT
2623
2624 return decayed;
2625}
2626
9ee474f5 2627/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2628static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2629{
2630 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2631 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2632
2633 decays -= se->avg.decay_count;
63847600 2634 se->avg.decay_count = 0;
9ee474f5 2635 if (!decays)
aff3e498 2636 return 0;
9ee474f5
PT
2637
2638 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
36ee28e4
VG
2639 se->avg.utilization_avg_contrib =
2640 decay_load(se->avg.utilization_avg_contrib, decays);
aff3e498
PT
2641
2642 return decays;
9ee474f5
PT
2643}
2644
c566e8e9
PT
2645#ifdef CONFIG_FAIR_GROUP_SCHED
2646static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2647 int force_update)
2648{
2649 struct task_group *tg = cfs_rq->tg;
bf5b986e 2650 long tg_contrib;
c566e8e9
PT
2651
2652 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2653 tg_contrib -= cfs_rq->tg_load_contrib;
2654
8236d907
JL
2655 if (!tg_contrib)
2656 return;
2657
bf5b986e
AS
2658 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2659 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2660 cfs_rq->tg_load_contrib += tg_contrib;
2661 }
2662}
8165e145 2663
bb17f655
PT
2664/*
2665 * Aggregate cfs_rq runnable averages into an equivalent task_group
2666 * representation for computing load contributions.
2667 */
2668static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2669 struct cfs_rq *cfs_rq)
2670{
2671 struct task_group *tg = cfs_rq->tg;
2672 long contrib;
2673
2674 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2675 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
36ee28e4 2676 sa->avg_period + 1);
bb17f655
PT
2677 contrib -= cfs_rq->tg_runnable_contrib;
2678
2679 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2680 atomic_add(contrib, &tg->runnable_avg);
2681 cfs_rq->tg_runnable_contrib += contrib;
2682 }
2683}
2684
8165e145
PT
2685static inline void __update_group_entity_contrib(struct sched_entity *se)
2686{
2687 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2688 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2689 int runnable_avg;
2690
8165e145
PT
2691 u64 contrib;
2692
2693 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2694 se->avg.load_avg_contrib = div_u64(contrib,
2695 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2696
2697 /*
2698 * For group entities we need to compute a correction term in the case
2699 * that they are consuming <1 cpu so that we would contribute the same
2700 * load as a task of equal weight.
2701 *
2702 * Explicitly co-ordinating this measurement would be expensive, but
2703 * fortunately the sum of each cpus contribution forms a usable
2704 * lower-bound on the true value.
2705 *
2706 * Consider the aggregate of 2 contributions. Either they are disjoint
2707 * (and the sum represents true value) or they are disjoint and we are
2708 * understating by the aggregate of their overlap.
2709 *
2710 * Extending this to N cpus, for a given overlap, the maximum amount we
2711 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2712 * cpus that overlap for this interval and w_i is the interval width.
2713 *
2714 * On a small machine; the first term is well-bounded which bounds the
2715 * total error since w_i is a subset of the period. Whereas on a
2716 * larger machine, while this first term can be larger, if w_i is the
2717 * of consequential size guaranteed to see n_i*w_i quickly converge to
2718 * our upper bound of 1-cpu.
2719 */
2720 runnable_avg = atomic_read(&tg->runnable_avg);
2721 if (runnable_avg < NICE_0_LOAD) {
2722 se->avg.load_avg_contrib *= runnable_avg;
2723 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2724 }
8165e145 2725}
f5f9739d
DE
2726
2727static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2728{
0c1dc6b2
MR
2729 __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2730 runnable, runnable);
f5f9739d
DE
2731 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2732}
6e83125c 2733#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2734static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2735 int force_update) {}
bb17f655
PT
2736static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2737 struct cfs_rq *cfs_rq) {}
8165e145 2738static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2739static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2740#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2741
8165e145
PT
2742static inline void __update_task_entity_contrib(struct sched_entity *se)
2743{
2744 u32 contrib;
2745
2746 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2747 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
36ee28e4 2748 contrib /= (se->avg.avg_period + 1);
8165e145
PT
2749 se->avg.load_avg_contrib = scale_load(contrib);
2750}
2751
2dac754e
PT
2752/* Compute the current contribution to load_avg by se, return any delta */
2753static long __update_entity_load_avg_contrib(struct sched_entity *se)
2754{
2755 long old_contrib = se->avg.load_avg_contrib;
2756
8165e145
PT
2757 if (entity_is_task(se)) {
2758 __update_task_entity_contrib(se);
2759 } else {
bb17f655 2760 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2761 __update_group_entity_contrib(se);
2762 }
2dac754e
PT
2763
2764 return se->avg.load_avg_contrib - old_contrib;
2765}
2766
36ee28e4
VG
2767
2768static inline void __update_task_entity_utilization(struct sched_entity *se)
2769{
2770 u32 contrib;
2771
2772 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2773 contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2774 contrib /= (se->avg.avg_period + 1);
2775 se->avg.utilization_avg_contrib = scale_load(contrib);
2776}
2777
2778static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2779{
2780 long old_contrib = se->avg.utilization_avg_contrib;
2781
2782 if (entity_is_task(se))
2783 __update_task_entity_utilization(se);
21f44866
MR
2784 else
2785 se->avg.utilization_avg_contrib =
2786 group_cfs_rq(se)->utilization_load_avg;
36ee28e4
VG
2787
2788 return se->avg.utilization_avg_contrib - old_contrib;
2789}
2790
9ee474f5
PT
2791static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2792 long load_contrib)
2793{
2794 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2795 cfs_rq->blocked_load_avg -= load_contrib;
2796 else
2797 cfs_rq->blocked_load_avg = 0;
2798}
2799
f1b17280
PT
2800static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2801
9d85f21c 2802/* Update a sched_entity's runnable average */
9ee474f5
PT
2803static inline void update_entity_load_avg(struct sched_entity *se,
2804 int update_cfs_rq)
9d85f21c 2805{
2dac754e 2806 struct cfs_rq *cfs_rq = cfs_rq_of(se);
36ee28e4 2807 long contrib_delta, utilization_delta;
0c1dc6b2 2808 int cpu = cpu_of(rq_of(cfs_rq));
f1b17280 2809 u64 now;
2dac754e 2810
f1b17280
PT
2811 /*
2812 * For a group entity we need to use their owned cfs_rq_clock_task() in
2813 * case they are the parent of a throttled hierarchy.
2814 */
2815 if (entity_is_task(se))
2816 now = cfs_rq_clock_task(cfs_rq);
2817 else
2818 now = cfs_rq_clock_task(group_cfs_rq(se));
2819
0c1dc6b2 2820 if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
36ee28e4 2821 cfs_rq->curr == se))
2dac754e
PT
2822 return;
2823
2824 contrib_delta = __update_entity_load_avg_contrib(se);
36ee28e4 2825 utilization_delta = __update_entity_utilization_avg_contrib(se);
9ee474f5
PT
2826
2827 if (!update_cfs_rq)
2828 return;
2829
36ee28e4 2830 if (se->on_rq) {
2dac754e 2831 cfs_rq->runnable_load_avg += contrib_delta;
36ee28e4
VG
2832 cfs_rq->utilization_load_avg += utilization_delta;
2833 } else {
9ee474f5 2834 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
36ee28e4 2835 }
9ee474f5
PT
2836}
2837
2838/*
2839 * Decay the load contributed by all blocked children and account this so that
2840 * their contribution may appropriately discounted when they wake up.
2841 */
aff3e498 2842static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2843{
f1b17280 2844 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2845 u64 decays;
2846
2847 decays = now - cfs_rq->last_decay;
aff3e498 2848 if (!decays && !force_update)
9ee474f5
PT
2849 return;
2850
2509940f
AS
2851 if (atomic_long_read(&cfs_rq->removed_load)) {
2852 unsigned long removed_load;
2853 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2854 subtract_blocked_load_contrib(cfs_rq, removed_load);
2855 }
9ee474f5 2856
aff3e498
PT
2857 if (decays) {
2858 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2859 decays);
2860 atomic64_add(decays, &cfs_rq->decay_counter);
2861 cfs_rq->last_decay = now;
2862 }
c566e8e9
PT
2863
2864 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2865}
18bf2805 2866
2dac754e
PT
2867/* Add the load generated by se into cfs_rq's child load-average */
2868static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2869 struct sched_entity *se,
2870 int wakeup)
2dac754e 2871{
aff3e498
PT
2872 /*
2873 * We track migrations using entity decay_count <= 0, on a wake-up
2874 * migration we use a negative decay count to track the remote decays
2875 * accumulated while sleeping.
a75cdaa9
AS
2876 *
2877 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2878 * are seen by enqueue_entity_load_avg() as a migration with an already
2879 * constructed load_avg_contrib.
aff3e498
PT
2880 */
2881 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2882 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2883 if (se->avg.decay_count) {
2884 /*
2885 * In a wake-up migration we have to approximate the
2886 * time sleeping. This is because we can't synchronize
2887 * clock_task between the two cpus, and it is not
2888 * guaranteed to be read-safe. Instead, we can
2889 * approximate this using our carried decays, which are
2890 * explicitly atomically readable.
2891 */
2892 se->avg.last_runnable_update -= (-se->avg.decay_count)
2893 << 20;
2894 update_entity_load_avg(se, 0);
2895 /* Indicate that we're now synchronized and on-rq */
2896 se->avg.decay_count = 0;
2897 }
9ee474f5
PT
2898 wakeup = 0;
2899 } else {
9390675a 2900 __synchronize_entity_decay(se);
9ee474f5
PT
2901 }
2902
aff3e498
PT
2903 /* migrated tasks did not contribute to our blocked load */
2904 if (wakeup) {
9ee474f5 2905 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2906 update_entity_load_avg(se, 0);
2907 }
9ee474f5 2908
2dac754e 2909 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
36ee28e4 2910 cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
aff3e498
PT
2911 /* we force update consideration on load-balancer moves */
2912 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2913}
2914
9ee474f5
PT
2915/*
2916 * Remove se's load from this cfs_rq child load-average, if the entity is
2917 * transitioning to a blocked state we track its projected decay using
2918 * blocked_load_avg.
2919 */
2dac754e 2920static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2921 struct sched_entity *se,
2922 int sleep)
2dac754e 2923{
9ee474f5 2924 update_entity_load_avg(se, 1);
aff3e498
PT
2925 /* we force update consideration on load-balancer moves */
2926 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2927
2dac754e 2928 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
36ee28e4 2929 cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
9ee474f5
PT
2930 if (sleep) {
2931 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2932 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2933 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2934}
642dbc39
VG
2935
2936/*
2937 * Update the rq's load with the elapsed running time before entering
2938 * idle. if the last scheduled task is not a CFS task, idle_enter will
2939 * be the only way to update the runnable statistic.
2940 */
2941void idle_enter_fair(struct rq *this_rq)
2942{
2943 update_rq_runnable_avg(this_rq, 1);
2944}
2945
2946/*
2947 * Update the rq's load with the elapsed idle time before a task is
2948 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2949 * be the only way to update the runnable statistic.
2950 */
2951void idle_exit_fair(struct rq *this_rq)
2952{
2953 update_rq_runnable_avg(this_rq, 0);
2954}
2955
6e83125c
PZ
2956static int idle_balance(struct rq *this_rq);
2957
38033c37
PZ
2958#else /* CONFIG_SMP */
2959
9ee474f5
PT
2960static inline void update_entity_load_avg(struct sched_entity *se,
2961 int update_cfs_rq) {}
18bf2805 2962static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2963static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2964 struct sched_entity *se,
2965 int wakeup) {}
2dac754e 2966static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2967 struct sched_entity *se,
2968 int sleep) {}
aff3e498
PT
2969static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2970 int force_update) {}
6e83125c
PZ
2971
2972static inline int idle_balance(struct rq *rq)
2973{
2974 return 0;
2975}
2976
38033c37 2977#endif /* CONFIG_SMP */
9d85f21c 2978
2396af69 2979static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2980{
bf0f6f24 2981#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2982 struct task_struct *tsk = NULL;
2983
2984 if (entity_is_task(se))
2985 tsk = task_of(se);
2986
41acab88 2987 if (se->statistics.sleep_start) {
78becc27 2988 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2989
2990 if ((s64)delta < 0)
2991 delta = 0;
2992
41acab88
LDM
2993 if (unlikely(delta > se->statistics.sleep_max))
2994 se->statistics.sleep_max = delta;
bf0f6f24 2995
8c79a045 2996 se->statistics.sleep_start = 0;
41acab88 2997 se->statistics.sum_sleep_runtime += delta;
9745512c 2998
768d0c27 2999 if (tsk) {
e414314c 3000 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3001 trace_sched_stat_sleep(tsk, delta);
3002 }
bf0f6f24 3003 }
41acab88 3004 if (se->statistics.block_start) {
78becc27 3005 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3006
3007 if ((s64)delta < 0)
3008 delta = 0;
3009
41acab88
LDM
3010 if (unlikely(delta > se->statistics.block_max))
3011 se->statistics.block_max = delta;
bf0f6f24 3012
8c79a045 3013 se->statistics.block_start = 0;
41acab88 3014 se->statistics.sum_sleep_runtime += delta;
30084fbd 3015
e414314c 3016 if (tsk) {
8f0dfc34 3017 if (tsk->in_iowait) {
41acab88
LDM
3018 se->statistics.iowait_sum += delta;
3019 se->statistics.iowait_count++;
768d0c27 3020 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3021 }
3022
b781a602
AV
3023 trace_sched_stat_blocked(tsk, delta);
3024
e414314c
PZ
3025 /*
3026 * Blocking time is in units of nanosecs, so shift by
3027 * 20 to get a milliseconds-range estimation of the
3028 * amount of time that the task spent sleeping:
3029 */
3030 if (unlikely(prof_on == SLEEP_PROFILING)) {
3031 profile_hits(SLEEP_PROFILING,
3032 (void *)get_wchan(tsk),
3033 delta >> 20);
3034 }
3035 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3036 }
bf0f6f24
IM
3037 }
3038#endif
3039}
3040
ddc97297
PZ
3041static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3042{
3043#ifdef CONFIG_SCHED_DEBUG
3044 s64 d = se->vruntime - cfs_rq->min_vruntime;
3045
3046 if (d < 0)
3047 d = -d;
3048
3049 if (d > 3*sysctl_sched_latency)
3050 schedstat_inc(cfs_rq, nr_spread_over);
3051#endif
3052}
3053
aeb73b04
PZ
3054static void
3055place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3056{
1af5f730 3057 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3058
2cb8600e
PZ
3059 /*
3060 * The 'current' period is already promised to the current tasks,
3061 * however the extra weight of the new task will slow them down a
3062 * little, place the new task so that it fits in the slot that
3063 * stays open at the end.
3064 */
94dfb5e7 3065 if (initial && sched_feat(START_DEBIT))
f9c0b095 3066 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3067
a2e7a7eb 3068 /* sleeps up to a single latency don't count. */
5ca9880c 3069 if (!initial) {
a2e7a7eb 3070 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3071
a2e7a7eb
MG
3072 /*
3073 * Halve their sleep time's effect, to allow
3074 * for a gentler effect of sleepers:
3075 */
3076 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3077 thresh >>= 1;
51e0304c 3078
a2e7a7eb 3079 vruntime -= thresh;
aeb73b04
PZ
3080 }
3081
b5d9d734 3082 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3083 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3084}
3085
d3d9dc33
PT
3086static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3087
bf0f6f24 3088static void
88ec22d3 3089enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3090{
88ec22d3
PZ
3091 /*
3092 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3093 * through calling update_curr().
88ec22d3 3094 */
371fd7e7 3095 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3096 se->vruntime += cfs_rq->min_vruntime;
3097
bf0f6f24 3098 /*
a2a2d680 3099 * Update run-time statistics of the 'current'.
bf0f6f24 3100 */
b7cc0896 3101 update_curr(cfs_rq);
f269ae04 3102 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
3103 account_entity_enqueue(cfs_rq, se);
3104 update_cfs_shares(cfs_rq);
bf0f6f24 3105
88ec22d3 3106 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3107 place_entity(cfs_rq, se, 0);
2396af69 3108 enqueue_sleeper(cfs_rq, se);
e9acbff6 3109 }
bf0f6f24 3110
d2417e5a 3111 update_stats_enqueue(cfs_rq, se);
ddc97297 3112 check_spread(cfs_rq, se);
83b699ed
SV
3113 if (se != cfs_rq->curr)
3114 __enqueue_entity(cfs_rq, se);
2069dd75 3115 se->on_rq = 1;
3d4b47b4 3116
d3d9dc33 3117 if (cfs_rq->nr_running == 1) {
3d4b47b4 3118 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3119 check_enqueue_throttle(cfs_rq);
3120 }
bf0f6f24
IM
3121}
3122
2c13c919 3123static void __clear_buddies_last(struct sched_entity *se)
2002c695 3124{
2c13c919
RR
3125 for_each_sched_entity(se) {
3126 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3127 if (cfs_rq->last != se)
2c13c919 3128 break;
f1044799
PZ
3129
3130 cfs_rq->last = NULL;
2c13c919
RR
3131 }
3132}
2002c695 3133
2c13c919
RR
3134static void __clear_buddies_next(struct sched_entity *se)
3135{
3136 for_each_sched_entity(se) {
3137 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3138 if (cfs_rq->next != se)
2c13c919 3139 break;
f1044799
PZ
3140
3141 cfs_rq->next = NULL;
2c13c919 3142 }
2002c695
PZ
3143}
3144
ac53db59
RR
3145static void __clear_buddies_skip(struct sched_entity *se)
3146{
3147 for_each_sched_entity(se) {
3148 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3149 if (cfs_rq->skip != se)
ac53db59 3150 break;
f1044799
PZ
3151
3152 cfs_rq->skip = NULL;
ac53db59
RR
3153 }
3154}
3155
a571bbea
PZ
3156static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3157{
2c13c919
RR
3158 if (cfs_rq->last == se)
3159 __clear_buddies_last(se);
3160
3161 if (cfs_rq->next == se)
3162 __clear_buddies_next(se);
ac53db59
RR
3163
3164 if (cfs_rq->skip == se)
3165 __clear_buddies_skip(se);
a571bbea
PZ
3166}
3167
6c16a6dc 3168static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3169
bf0f6f24 3170static void
371fd7e7 3171dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3172{
a2a2d680
DA
3173 /*
3174 * Update run-time statistics of the 'current'.
3175 */
3176 update_curr(cfs_rq);
17bc14b7 3177 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 3178
19b6a2e3 3179 update_stats_dequeue(cfs_rq, se);
371fd7e7 3180 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3181#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3182 if (entity_is_task(se)) {
3183 struct task_struct *tsk = task_of(se);
3184
3185 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3186 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3187 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3188 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3189 }
db36cc7d 3190#endif
67e9fb2a
PZ
3191 }
3192
2002c695 3193 clear_buddies(cfs_rq, se);
4793241b 3194
83b699ed 3195 if (se != cfs_rq->curr)
30cfdcfc 3196 __dequeue_entity(cfs_rq, se);
17bc14b7 3197 se->on_rq = 0;
30cfdcfc 3198 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3199
3200 /*
3201 * Normalize the entity after updating the min_vruntime because the
3202 * update can refer to the ->curr item and we need to reflect this
3203 * movement in our normalized position.
3204 */
371fd7e7 3205 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3206 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3207
d8b4986d
PT
3208 /* return excess runtime on last dequeue */
3209 return_cfs_rq_runtime(cfs_rq);
3210
1e876231 3211 update_min_vruntime(cfs_rq);
17bc14b7 3212 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3213}
3214
3215/*
3216 * Preempt the current task with a newly woken task if needed:
3217 */
7c92e54f 3218static void
2e09bf55 3219check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3220{
11697830 3221 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3222 struct sched_entity *se;
3223 s64 delta;
11697830 3224
6d0f0ebd 3225 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3226 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3227 if (delta_exec > ideal_runtime) {
8875125e 3228 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3229 /*
3230 * The current task ran long enough, ensure it doesn't get
3231 * re-elected due to buddy favours.
3232 */
3233 clear_buddies(cfs_rq, curr);
f685ceac
MG
3234 return;
3235 }
3236
3237 /*
3238 * Ensure that a task that missed wakeup preemption by a
3239 * narrow margin doesn't have to wait for a full slice.
3240 * This also mitigates buddy induced latencies under load.
3241 */
f685ceac
MG
3242 if (delta_exec < sysctl_sched_min_granularity)
3243 return;
3244
f4cfb33e
WX
3245 se = __pick_first_entity(cfs_rq);
3246 delta = curr->vruntime - se->vruntime;
f685ceac 3247
f4cfb33e
WX
3248 if (delta < 0)
3249 return;
d7d82944 3250
f4cfb33e 3251 if (delta > ideal_runtime)
8875125e 3252 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3253}
3254
83b699ed 3255static void
8494f412 3256set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3257{
83b699ed
SV
3258 /* 'current' is not kept within the tree. */
3259 if (se->on_rq) {
3260 /*
3261 * Any task has to be enqueued before it get to execute on
3262 * a CPU. So account for the time it spent waiting on the
3263 * runqueue.
3264 */
3265 update_stats_wait_end(cfs_rq, se);
3266 __dequeue_entity(cfs_rq, se);
36ee28e4 3267 update_entity_load_avg(se, 1);
83b699ed
SV
3268 }
3269
79303e9e 3270 update_stats_curr_start(cfs_rq, se);
429d43bc 3271 cfs_rq->curr = se;
eba1ed4b
IM
3272#ifdef CONFIG_SCHEDSTATS
3273 /*
3274 * Track our maximum slice length, if the CPU's load is at
3275 * least twice that of our own weight (i.e. dont track it
3276 * when there are only lesser-weight tasks around):
3277 */
495eca49 3278 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3279 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3280 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3281 }
3282#endif
4a55b450 3283 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3284}
3285
3f3a4904
PZ
3286static int
3287wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3288
ac53db59
RR
3289/*
3290 * Pick the next process, keeping these things in mind, in this order:
3291 * 1) keep things fair between processes/task groups
3292 * 2) pick the "next" process, since someone really wants that to run
3293 * 3) pick the "last" process, for cache locality
3294 * 4) do not run the "skip" process, if something else is available
3295 */
678d5718
PZ
3296static struct sched_entity *
3297pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3298{
678d5718
PZ
3299 struct sched_entity *left = __pick_first_entity(cfs_rq);
3300 struct sched_entity *se;
3301
3302 /*
3303 * If curr is set we have to see if its left of the leftmost entity
3304 * still in the tree, provided there was anything in the tree at all.
3305 */
3306 if (!left || (curr && entity_before(curr, left)))
3307 left = curr;
3308
3309 se = left; /* ideally we run the leftmost entity */
f4b6755f 3310
ac53db59
RR
3311 /*
3312 * Avoid running the skip buddy, if running something else can
3313 * be done without getting too unfair.
3314 */
3315 if (cfs_rq->skip == se) {
678d5718
PZ
3316 struct sched_entity *second;
3317
3318 if (se == curr) {
3319 second = __pick_first_entity(cfs_rq);
3320 } else {
3321 second = __pick_next_entity(se);
3322 if (!second || (curr && entity_before(curr, second)))
3323 second = curr;
3324 }
3325
ac53db59
RR
3326 if (second && wakeup_preempt_entity(second, left) < 1)
3327 se = second;
3328 }
aa2ac252 3329
f685ceac
MG
3330 /*
3331 * Prefer last buddy, try to return the CPU to a preempted task.
3332 */
3333 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3334 se = cfs_rq->last;
3335
ac53db59
RR
3336 /*
3337 * Someone really wants this to run. If it's not unfair, run it.
3338 */
3339 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3340 se = cfs_rq->next;
3341
f685ceac 3342 clear_buddies(cfs_rq, se);
4793241b
PZ
3343
3344 return se;
aa2ac252
PZ
3345}
3346
678d5718 3347static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3348
ab6cde26 3349static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3350{
3351 /*
3352 * If still on the runqueue then deactivate_task()
3353 * was not called and update_curr() has to be done:
3354 */
3355 if (prev->on_rq)
b7cc0896 3356 update_curr(cfs_rq);
bf0f6f24 3357
d3d9dc33
PT
3358 /* throttle cfs_rqs exceeding runtime */
3359 check_cfs_rq_runtime(cfs_rq);
3360
ddc97297 3361 check_spread(cfs_rq, prev);
30cfdcfc 3362 if (prev->on_rq) {
5870db5b 3363 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3364 /* Put 'current' back into the tree. */
3365 __enqueue_entity(cfs_rq, prev);
9d85f21c 3366 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3367 update_entity_load_avg(prev, 1);
30cfdcfc 3368 }
429d43bc 3369 cfs_rq->curr = NULL;
bf0f6f24
IM
3370}
3371
8f4d37ec
PZ
3372static void
3373entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3374{
bf0f6f24 3375 /*
30cfdcfc 3376 * Update run-time statistics of the 'current'.
bf0f6f24 3377 */
30cfdcfc 3378 update_curr(cfs_rq);
bf0f6f24 3379
9d85f21c
PT
3380 /*
3381 * Ensure that runnable average is periodically updated.
3382 */
9ee474f5 3383 update_entity_load_avg(curr, 1);
aff3e498 3384 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3385 update_cfs_shares(cfs_rq);
9d85f21c 3386
8f4d37ec
PZ
3387#ifdef CONFIG_SCHED_HRTICK
3388 /*
3389 * queued ticks are scheduled to match the slice, so don't bother
3390 * validating it and just reschedule.
3391 */
983ed7a6 3392 if (queued) {
8875125e 3393 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3394 return;
3395 }
8f4d37ec
PZ
3396 /*
3397 * don't let the period tick interfere with the hrtick preemption
3398 */
3399 if (!sched_feat(DOUBLE_TICK) &&
3400 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3401 return;
3402#endif
3403
2c2efaed 3404 if (cfs_rq->nr_running > 1)
2e09bf55 3405 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3406}
3407
ab84d31e
PT
3408
3409/**************************************************
3410 * CFS bandwidth control machinery
3411 */
3412
3413#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3414
3415#ifdef HAVE_JUMP_LABEL
c5905afb 3416static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3417
3418static inline bool cfs_bandwidth_used(void)
3419{
c5905afb 3420 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3421}
3422
1ee14e6c 3423void cfs_bandwidth_usage_inc(void)
029632fb 3424{
1ee14e6c
BS
3425 static_key_slow_inc(&__cfs_bandwidth_used);
3426}
3427
3428void cfs_bandwidth_usage_dec(void)
3429{
3430 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3431}
3432#else /* HAVE_JUMP_LABEL */
3433static bool cfs_bandwidth_used(void)
3434{
3435 return true;
3436}
3437
1ee14e6c
BS
3438void cfs_bandwidth_usage_inc(void) {}
3439void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3440#endif /* HAVE_JUMP_LABEL */
3441
ab84d31e
PT
3442/*
3443 * default period for cfs group bandwidth.
3444 * default: 0.1s, units: nanoseconds
3445 */
3446static inline u64 default_cfs_period(void)
3447{
3448 return 100000000ULL;
3449}
ec12cb7f
PT
3450
3451static inline u64 sched_cfs_bandwidth_slice(void)
3452{
3453 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3454}
3455
a9cf55b2
PT
3456/*
3457 * Replenish runtime according to assigned quota and update expiration time.
3458 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3459 * additional synchronization around rq->lock.
3460 *
3461 * requires cfs_b->lock
3462 */
029632fb 3463void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3464{
3465 u64 now;
3466
3467 if (cfs_b->quota == RUNTIME_INF)
3468 return;
3469
3470 now = sched_clock_cpu(smp_processor_id());
3471 cfs_b->runtime = cfs_b->quota;
3472 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3473}
3474
029632fb
PZ
3475static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3476{
3477 return &tg->cfs_bandwidth;
3478}
3479
f1b17280
PT
3480/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3481static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3482{
3483 if (unlikely(cfs_rq->throttle_count))
3484 return cfs_rq->throttled_clock_task;
3485
78becc27 3486 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3487}
3488
85dac906
PT
3489/* returns 0 on failure to allocate runtime */
3490static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3491{
3492 struct task_group *tg = cfs_rq->tg;
3493 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3494 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3495
3496 /* note: this is a positive sum as runtime_remaining <= 0 */
3497 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3498
3499 raw_spin_lock(&cfs_b->lock);
3500 if (cfs_b->quota == RUNTIME_INF)
3501 amount = min_amount;
58088ad0 3502 else {
77a4d1a1 3503 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3504
3505 if (cfs_b->runtime > 0) {
3506 amount = min(cfs_b->runtime, min_amount);
3507 cfs_b->runtime -= amount;
3508 cfs_b->idle = 0;
3509 }
ec12cb7f 3510 }
a9cf55b2 3511 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3512 raw_spin_unlock(&cfs_b->lock);
3513
3514 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3515 /*
3516 * we may have advanced our local expiration to account for allowed
3517 * spread between our sched_clock and the one on which runtime was
3518 * issued.
3519 */
3520 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3521 cfs_rq->runtime_expires = expires;
85dac906
PT
3522
3523 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3524}
3525
a9cf55b2
PT
3526/*
3527 * Note: This depends on the synchronization provided by sched_clock and the
3528 * fact that rq->clock snapshots this value.
3529 */
3530static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3531{
a9cf55b2 3532 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3533
3534 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3535 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3536 return;
3537
a9cf55b2
PT
3538 if (cfs_rq->runtime_remaining < 0)
3539 return;
3540
3541 /*
3542 * If the local deadline has passed we have to consider the
3543 * possibility that our sched_clock is 'fast' and the global deadline
3544 * has not truly expired.
3545 *
3546 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3547 * whether the global deadline has advanced. It is valid to compare
3548 * cfs_b->runtime_expires without any locks since we only care about
3549 * exact equality, so a partial write will still work.
a9cf55b2
PT
3550 */
3551
51f2176d 3552 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3553 /* extend local deadline, drift is bounded above by 2 ticks */
3554 cfs_rq->runtime_expires += TICK_NSEC;
3555 } else {
3556 /* global deadline is ahead, expiration has passed */
3557 cfs_rq->runtime_remaining = 0;
3558 }
3559}
3560
9dbdb155 3561static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3562{
3563 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3564 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3565 expire_cfs_rq_runtime(cfs_rq);
3566
3567 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3568 return;
3569
85dac906
PT
3570 /*
3571 * if we're unable to extend our runtime we resched so that the active
3572 * hierarchy can be throttled
3573 */
3574 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3575 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3576}
3577
6c16a6dc 3578static __always_inline
9dbdb155 3579void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3580{
56f570e5 3581 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3582 return;
3583
3584 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3585}
3586
85dac906
PT
3587static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3588{
56f570e5 3589 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3590}
3591
64660c86
PT
3592/* check whether cfs_rq, or any parent, is throttled */
3593static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3594{
56f570e5 3595 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3596}
3597
3598/*
3599 * Ensure that neither of the group entities corresponding to src_cpu or
3600 * dest_cpu are members of a throttled hierarchy when performing group
3601 * load-balance operations.
3602 */
3603static inline int throttled_lb_pair(struct task_group *tg,
3604 int src_cpu, int dest_cpu)
3605{
3606 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3607
3608 src_cfs_rq = tg->cfs_rq[src_cpu];
3609 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3610
3611 return throttled_hierarchy(src_cfs_rq) ||
3612 throttled_hierarchy(dest_cfs_rq);
3613}
3614
3615/* updated child weight may affect parent so we have to do this bottom up */
3616static int tg_unthrottle_up(struct task_group *tg, void *data)
3617{
3618 struct rq *rq = data;
3619 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3620
3621 cfs_rq->throttle_count--;
3622#ifdef CONFIG_SMP
3623 if (!cfs_rq->throttle_count) {
f1b17280 3624 /* adjust cfs_rq_clock_task() */
78becc27 3625 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3626 cfs_rq->throttled_clock_task;
64660c86
PT
3627 }
3628#endif
3629
3630 return 0;
3631}
3632
3633static int tg_throttle_down(struct task_group *tg, void *data)
3634{
3635 struct rq *rq = data;
3636 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3637
82958366
PT
3638 /* group is entering throttled state, stop time */
3639 if (!cfs_rq->throttle_count)
78becc27 3640 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3641 cfs_rq->throttle_count++;
3642
3643 return 0;
3644}
3645
d3d9dc33 3646static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3647{
3648 struct rq *rq = rq_of(cfs_rq);
3649 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3650 struct sched_entity *se;
3651 long task_delta, dequeue = 1;
77a4d1a1 3652 bool empty;
85dac906
PT
3653
3654 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3655
f1b17280 3656 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3657 rcu_read_lock();
3658 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3659 rcu_read_unlock();
85dac906
PT
3660
3661 task_delta = cfs_rq->h_nr_running;
3662 for_each_sched_entity(se) {
3663 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3664 /* throttled entity or throttle-on-deactivate */
3665 if (!se->on_rq)
3666 break;
3667
3668 if (dequeue)
3669 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3670 qcfs_rq->h_nr_running -= task_delta;
3671
3672 if (qcfs_rq->load.weight)
3673 dequeue = 0;
3674 }
3675
3676 if (!se)
72465447 3677 sub_nr_running(rq, task_delta);
85dac906
PT
3678
3679 cfs_rq->throttled = 1;
78becc27 3680 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3681 raw_spin_lock(&cfs_b->lock);
d49db342 3682 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3683
c06f04c7
BS
3684 /*
3685 * Add to the _head_ of the list, so that an already-started
3686 * distribute_cfs_runtime will not see us
3687 */
3688 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3689
3690 /*
3691 * If we're the first throttled task, make sure the bandwidth
3692 * timer is running.
3693 */
3694 if (empty)
3695 start_cfs_bandwidth(cfs_b);
3696
85dac906
PT
3697 raw_spin_unlock(&cfs_b->lock);
3698}
3699
029632fb 3700void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3701{
3702 struct rq *rq = rq_of(cfs_rq);
3703 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3704 struct sched_entity *se;
3705 int enqueue = 1;
3706 long task_delta;
3707
22b958d8 3708 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3709
3710 cfs_rq->throttled = 0;
1a55af2e
FW
3711
3712 update_rq_clock(rq);
3713
671fd9da 3714 raw_spin_lock(&cfs_b->lock);
78becc27 3715 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3716 list_del_rcu(&cfs_rq->throttled_list);
3717 raw_spin_unlock(&cfs_b->lock);
3718
64660c86
PT
3719 /* update hierarchical throttle state */
3720 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3721
671fd9da
PT
3722 if (!cfs_rq->load.weight)
3723 return;
3724
3725 task_delta = cfs_rq->h_nr_running;
3726 for_each_sched_entity(se) {
3727 if (se->on_rq)
3728 enqueue = 0;
3729
3730 cfs_rq = cfs_rq_of(se);
3731 if (enqueue)
3732 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3733 cfs_rq->h_nr_running += task_delta;
3734
3735 if (cfs_rq_throttled(cfs_rq))
3736 break;
3737 }
3738
3739 if (!se)
72465447 3740 add_nr_running(rq, task_delta);
671fd9da
PT
3741
3742 /* determine whether we need to wake up potentially idle cpu */
3743 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3744 resched_curr(rq);
671fd9da
PT
3745}
3746
3747static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3748 u64 remaining, u64 expires)
3749{
3750 struct cfs_rq *cfs_rq;
c06f04c7
BS
3751 u64 runtime;
3752 u64 starting_runtime = remaining;
671fd9da
PT
3753
3754 rcu_read_lock();
3755 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3756 throttled_list) {
3757 struct rq *rq = rq_of(cfs_rq);
3758
3759 raw_spin_lock(&rq->lock);
3760 if (!cfs_rq_throttled(cfs_rq))
3761 goto next;
3762
3763 runtime = -cfs_rq->runtime_remaining + 1;
3764 if (runtime > remaining)
3765 runtime = remaining;
3766 remaining -= runtime;
3767
3768 cfs_rq->runtime_remaining += runtime;
3769 cfs_rq->runtime_expires = expires;
3770
3771 /* we check whether we're throttled above */
3772 if (cfs_rq->runtime_remaining > 0)
3773 unthrottle_cfs_rq(cfs_rq);
3774
3775next:
3776 raw_spin_unlock(&rq->lock);
3777
3778 if (!remaining)
3779 break;
3780 }
3781 rcu_read_unlock();
3782
c06f04c7 3783 return starting_runtime - remaining;
671fd9da
PT
3784}
3785
58088ad0
PT
3786/*
3787 * Responsible for refilling a task_group's bandwidth and unthrottling its
3788 * cfs_rqs as appropriate. If there has been no activity within the last
3789 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3790 * used to track this state.
3791 */
3792static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3793{
671fd9da 3794 u64 runtime, runtime_expires;
51f2176d 3795 int throttled;
58088ad0 3796
58088ad0
PT
3797 /* no need to continue the timer with no bandwidth constraint */
3798 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3799 goto out_deactivate;
58088ad0 3800
671fd9da 3801 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3802 cfs_b->nr_periods += overrun;
671fd9da 3803
51f2176d
BS
3804 /*
3805 * idle depends on !throttled (for the case of a large deficit), and if
3806 * we're going inactive then everything else can be deferred
3807 */
3808 if (cfs_b->idle && !throttled)
3809 goto out_deactivate;
a9cf55b2
PT
3810
3811 __refill_cfs_bandwidth_runtime(cfs_b);
3812
671fd9da
PT
3813 if (!throttled) {
3814 /* mark as potentially idle for the upcoming period */
3815 cfs_b->idle = 1;
51f2176d 3816 return 0;
671fd9da
PT
3817 }
3818
e8da1b18
NR
3819 /* account preceding periods in which throttling occurred */
3820 cfs_b->nr_throttled += overrun;
3821
671fd9da 3822 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3823
3824 /*
c06f04c7
BS
3825 * This check is repeated as we are holding onto the new bandwidth while
3826 * we unthrottle. This can potentially race with an unthrottled group
3827 * trying to acquire new bandwidth from the global pool. This can result
3828 * in us over-using our runtime if it is all used during this loop, but
3829 * only by limited amounts in that extreme case.
671fd9da 3830 */
c06f04c7
BS
3831 while (throttled && cfs_b->runtime > 0) {
3832 runtime = cfs_b->runtime;
671fd9da
PT
3833 raw_spin_unlock(&cfs_b->lock);
3834 /* we can't nest cfs_b->lock while distributing bandwidth */
3835 runtime = distribute_cfs_runtime(cfs_b, runtime,
3836 runtime_expires);
3837 raw_spin_lock(&cfs_b->lock);
3838
3839 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3840
3841 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3842 }
58088ad0 3843
671fd9da
PT
3844 /*
3845 * While we are ensured activity in the period following an
3846 * unthrottle, this also covers the case in which the new bandwidth is
3847 * insufficient to cover the existing bandwidth deficit. (Forcing the
3848 * timer to remain active while there are any throttled entities.)
3849 */
3850 cfs_b->idle = 0;
58088ad0 3851
51f2176d
BS
3852 return 0;
3853
3854out_deactivate:
51f2176d 3855 return 1;
58088ad0 3856}
d3d9dc33 3857
d8b4986d
PT
3858/* a cfs_rq won't donate quota below this amount */
3859static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3860/* minimum remaining period time to redistribute slack quota */
3861static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3862/* how long we wait to gather additional slack before distributing */
3863static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3864
db06e78c
BS
3865/*
3866 * Are we near the end of the current quota period?
3867 *
3868 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3869 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3870 * migrate_hrtimers, base is never cleared, so we are fine.
3871 */
d8b4986d
PT
3872static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3873{
3874 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3875 u64 remaining;
3876
3877 /* if the call-back is running a quota refresh is already occurring */
3878 if (hrtimer_callback_running(refresh_timer))
3879 return 1;
3880
3881 /* is a quota refresh about to occur? */
3882 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3883 if (remaining < min_expire)
3884 return 1;
3885
3886 return 0;
3887}
3888
3889static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3890{
3891 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3892
3893 /* if there's a quota refresh soon don't bother with slack */
3894 if (runtime_refresh_within(cfs_b, min_left))
3895 return;
3896
4cfafd30
PZ
3897 hrtimer_start(&cfs_b->slack_timer,
3898 ns_to_ktime(cfs_bandwidth_slack_period),
3899 HRTIMER_MODE_REL);
d8b4986d
PT
3900}
3901
3902/* we know any runtime found here is valid as update_curr() precedes return */
3903static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3904{
3905 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3906 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3907
3908 if (slack_runtime <= 0)
3909 return;
3910
3911 raw_spin_lock(&cfs_b->lock);
3912 if (cfs_b->quota != RUNTIME_INF &&
3913 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3914 cfs_b->runtime += slack_runtime;
3915
3916 /* we are under rq->lock, defer unthrottling using a timer */
3917 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3918 !list_empty(&cfs_b->throttled_cfs_rq))
3919 start_cfs_slack_bandwidth(cfs_b);
3920 }
3921 raw_spin_unlock(&cfs_b->lock);
3922
3923 /* even if it's not valid for return we don't want to try again */
3924 cfs_rq->runtime_remaining -= slack_runtime;
3925}
3926
3927static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3928{
56f570e5
PT
3929 if (!cfs_bandwidth_used())
3930 return;
3931
fccfdc6f 3932 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3933 return;
3934
3935 __return_cfs_rq_runtime(cfs_rq);
3936}
3937
3938/*
3939 * This is done with a timer (instead of inline with bandwidth return) since
3940 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3941 */
3942static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3943{
3944 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3945 u64 expires;
3946
3947 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3948 raw_spin_lock(&cfs_b->lock);
3949 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3950 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3951 return;
db06e78c 3952 }
d8b4986d 3953
c06f04c7 3954 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3955 runtime = cfs_b->runtime;
c06f04c7 3956
d8b4986d
PT
3957 expires = cfs_b->runtime_expires;
3958 raw_spin_unlock(&cfs_b->lock);
3959
3960 if (!runtime)
3961 return;
3962
3963 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3964
3965 raw_spin_lock(&cfs_b->lock);
3966 if (expires == cfs_b->runtime_expires)
c06f04c7 3967 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3968 raw_spin_unlock(&cfs_b->lock);
3969}
3970
d3d9dc33
PT
3971/*
3972 * When a group wakes up we want to make sure that its quota is not already
3973 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3974 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3975 */
3976static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3977{
56f570e5
PT
3978 if (!cfs_bandwidth_used())
3979 return;
3980
d3d9dc33
PT
3981 /* an active group must be handled by the update_curr()->put() path */
3982 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3983 return;
3984
3985 /* ensure the group is not already throttled */
3986 if (cfs_rq_throttled(cfs_rq))
3987 return;
3988
3989 /* update runtime allocation */
3990 account_cfs_rq_runtime(cfs_rq, 0);
3991 if (cfs_rq->runtime_remaining <= 0)
3992 throttle_cfs_rq(cfs_rq);
3993}
3994
3995/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3996static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3997{
56f570e5 3998 if (!cfs_bandwidth_used())
678d5718 3999 return false;
56f570e5 4000
d3d9dc33 4001 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4002 return false;
d3d9dc33
PT
4003
4004 /*
4005 * it's possible for a throttled entity to be forced into a running
4006 * state (e.g. set_curr_task), in this case we're finished.
4007 */
4008 if (cfs_rq_throttled(cfs_rq))
678d5718 4009 return true;
d3d9dc33
PT
4010
4011 throttle_cfs_rq(cfs_rq);
678d5718 4012 return true;
d3d9dc33 4013}
029632fb 4014
029632fb
PZ
4015static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4016{
4017 struct cfs_bandwidth *cfs_b =
4018 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4019
029632fb
PZ
4020 do_sched_cfs_slack_timer(cfs_b);
4021
4022 return HRTIMER_NORESTART;
4023}
4024
4025static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4026{
4027 struct cfs_bandwidth *cfs_b =
4028 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4029 int overrun;
4030 int idle = 0;
4031
51f2176d 4032 raw_spin_lock(&cfs_b->lock);
029632fb 4033 for (;;) {
77a4d1a1 4034 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4035 if (!overrun)
4036 break;
4037
4038 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4039 }
4cfafd30
PZ
4040 if (idle)
4041 cfs_b->period_active = 0;
51f2176d 4042 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4043
4044 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4045}
4046
4047void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4048{
4049 raw_spin_lock_init(&cfs_b->lock);
4050 cfs_b->runtime = 0;
4051 cfs_b->quota = RUNTIME_INF;
4052 cfs_b->period = ns_to_ktime(default_cfs_period());
4053
4054 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4055 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4056 cfs_b->period_timer.function = sched_cfs_period_timer;
4057 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4058 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4059}
4060
4061static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4062{
4063 cfs_rq->runtime_enabled = 0;
4064 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4065}
4066
77a4d1a1 4067void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4068{
4cfafd30 4069 lockdep_assert_held(&cfs_b->lock);
029632fb 4070
4cfafd30
PZ
4071 if (!cfs_b->period_active) {
4072 cfs_b->period_active = 1;
4073 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4074 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4075 }
029632fb
PZ
4076}
4077
4078static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4079{
7f1a169b
TH
4080 /* init_cfs_bandwidth() was not called */
4081 if (!cfs_b->throttled_cfs_rq.next)
4082 return;
4083
029632fb
PZ
4084 hrtimer_cancel(&cfs_b->period_timer);
4085 hrtimer_cancel(&cfs_b->slack_timer);
4086}
4087
0e59bdae
KT
4088static void __maybe_unused update_runtime_enabled(struct rq *rq)
4089{
4090 struct cfs_rq *cfs_rq;
4091
4092 for_each_leaf_cfs_rq(rq, cfs_rq) {
4093 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4094
4095 raw_spin_lock(&cfs_b->lock);
4096 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4097 raw_spin_unlock(&cfs_b->lock);
4098 }
4099}
4100
38dc3348 4101static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4102{
4103 struct cfs_rq *cfs_rq;
4104
4105 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4106 if (!cfs_rq->runtime_enabled)
4107 continue;
4108
4109 /*
4110 * clock_task is not advancing so we just need to make sure
4111 * there's some valid quota amount
4112 */
51f2176d 4113 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4114 /*
4115 * Offline rq is schedulable till cpu is completely disabled
4116 * in take_cpu_down(), so we prevent new cfs throttling here.
4117 */
4118 cfs_rq->runtime_enabled = 0;
4119
029632fb
PZ
4120 if (cfs_rq_throttled(cfs_rq))
4121 unthrottle_cfs_rq(cfs_rq);
4122 }
4123}
4124
4125#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4126static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4127{
78becc27 4128 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4129}
4130
9dbdb155 4131static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4132static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4133static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4134static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4135
4136static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4137{
4138 return 0;
4139}
64660c86
PT
4140
4141static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4142{
4143 return 0;
4144}
4145
4146static inline int throttled_lb_pair(struct task_group *tg,
4147 int src_cpu, int dest_cpu)
4148{
4149 return 0;
4150}
029632fb
PZ
4151
4152void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4153
4154#ifdef CONFIG_FAIR_GROUP_SCHED
4155static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4156#endif
4157
029632fb
PZ
4158static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4159{
4160 return NULL;
4161}
4162static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4163static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4164static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4165
4166#endif /* CONFIG_CFS_BANDWIDTH */
4167
bf0f6f24
IM
4168/**************************************************
4169 * CFS operations on tasks:
4170 */
4171
8f4d37ec
PZ
4172#ifdef CONFIG_SCHED_HRTICK
4173static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4174{
8f4d37ec
PZ
4175 struct sched_entity *se = &p->se;
4176 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4177
4178 WARN_ON(task_rq(p) != rq);
4179
b39e66ea 4180 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4181 u64 slice = sched_slice(cfs_rq, se);
4182 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4183 s64 delta = slice - ran;
4184
4185 if (delta < 0) {
4186 if (rq->curr == p)
8875125e 4187 resched_curr(rq);
8f4d37ec
PZ
4188 return;
4189 }
31656519 4190 hrtick_start(rq, delta);
8f4d37ec
PZ
4191 }
4192}
a4c2f00f
PZ
4193
4194/*
4195 * called from enqueue/dequeue and updates the hrtick when the
4196 * current task is from our class and nr_running is low enough
4197 * to matter.
4198 */
4199static void hrtick_update(struct rq *rq)
4200{
4201 struct task_struct *curr = rq->curr;
4202
b39e66ea 4203 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4204 return;
4205
4206 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4207 hrtick_start_fair(rq, curr);
4208}
55e12e5e 4209#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4210static inline void
4211hrtick_start_fair(struct rq *rq, struct task_struct *p)
4212{
4213}
a4c2f00f
PZ
4214
4215static inline void hrtick_update(struct rq *rq)
4216{
4217}
8f4d37ec
PZ
4218#endif
4219
bf0f6f24
IM
4220/*
4221 * The enqueue_task method is called before nr_running is
4222 * increased. Here we update the fair scheduling stats and
4223 * then put the task into the rbtree:
4224 */
ea87bb78 4225static void
371fd7e7 4226enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4227{
4228 struct cfs_rq *cfs_rq;
62fb1851 4229 struct sched_entity *se = &p->se;
bf0f6f24
IM
4230
4231 for_each_sched_entity(se) {
62fb1851 4232 if (se->on_rq)
bf0f6f24
IM
4233 break;
4234 cfs_rq = cfs_rq_of(se);
88ec22d3 4235 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4236
4237 /*
4238 * end evaluation on encountering a throttled cfs_rq
4239 *
4240 * note: in the case of encountering a throttled cfs_rq we will
4241 * post the final h_nr_running increment below.
4242 */
4243 if (cfs_rq_throttled(cfs_rq))
4244 break;
953bfcd1 4245 cfs_rq->h_nr_running++;
85dac906 4246
88ec22d3 4247 flags = ENQUEUE_WAKEUP;
bf0f6f24 4248 }
8f4d37ec 4249
2069dd75 4250 for_each_sched_entity(se) {
0f317143 4251 cfs_rq = cfs_rq_of(se);
953bfcd1 4252 cfs_rq->h_nr_running++;
2069dd75 4253
85dac906
PT
4254 if (cfs_rq_throttled(cfs_rq))
4255 break;
4256
17bc14b7 4257 update_cfs_shares(cfs_rq);
9ee474f5 4258 update_entity_load_avg(se, 1);
2069dd75
PZ
4259 }
4260
18bf2805
BS
4261 if (!se) {
4262 update_rq_runnable_avg(rq, rq->nr_running);
72465447 4263 add_nr_running(rq, 1);
18bf2805 4264 }
a4c2f00f 4265 hrtick_update(rq);
bf0f6f24
IM
4266}
4267
2f36825b
VP
4268static void set_next_buddy(struct sched_entity *se);
4269
bf0f6f24
IM
4270/*
4271 * The dequeue_task method is called before nr_running is
4272 * decreased. We remove the task from the rbtree and
4273 * update the fair scheduling stats:
4274 */
371fd7e7 4275static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4276{
4277 struct cfs_rq *cfs_rq;
62fb1851 4278 struct sched_entity *se = &p->se;
2f36825b 4279 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4280
4281 for_each_sched_entity(se) {
4282 cfs_rq = cfs_rq_of(se);
371fd7e7 4283 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4284
4285 /*
4286 * end evaluation on encountering a throttled cfs_rq
4287 *
4288 * note: in the case of encountering a throttled cfs_rq we will
4289 * post the final h_nr_running decrement below.
4290 */
4291 if (cfs_rq_throttled(cfs_rq))
4292 break;
953bfcd1 4293 cfs_rq->h_nr_running--;
2069dd75 4294
bf0f6f24 4295 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4296 if (cfs_rq->load.weight) {
4297 /*
4298 * Bias pick_next to pick a task from this cfs_rq, as
4299 * p is sleeping when it is within its sched_slice.
4300 */
4301 if (task_sleep && parent_entity(se))
4302 set_next_buddy(parent_entity(se));
9598c82d
PT
4303
4304 /* avoid re-evaluating load for this entity */
4305 se = parent_entity(se);
bf0f6f24 4306 break;
2f36825b 4307 }
371fd7e7 4308 flags |= DEQUEUE_SLEEP;
bf0f6f24 4309 }
8f4d37ec 4310
2069dd75 4311 for_each_sched_entity(se) {
0f317143 4312 cfs_rq = cfs_rq_of(se);
953bfcd1 4313 cfs_rq->h_nr_running--;
2069dd75 4314
85dac906
PT
4315 if (cfs_rq_throttled(cfs_rq))
4316 break;
4317
17bc14b7 4318 update_cfs_shares(cfs_rq);
9ee474f5 4319 update_entity_load_avg(se, 1);
2069dd75
PZ
4320 }
4321
18bf2805 4322 if (!se) {
72465447 4323 sub_nr_running(rq, 1);
18bf2805
BS
4324 update_rq_runnable_avg(rq, 1);
4325 }
a4c2f00f 4326 hrtick_update(rq);
bf0f6f24
IM
4327}
4328
e7693a36 4329#ifdef CONFIG_SMP
3289bdb4
PZ
4330
4331/*
4332 * per rq 'load' arrray crap; XXX kill this.
4333 */
4334
4335/*
4336 * The exact cpuload at various idx values, calculated at every tick would be
4337 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4338 *
4339 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4340 * on nth tick when cpu may be busy, then we have:
4341 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4342 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4343 *
4344 * decay_load_missed() below does efficient calculation of
4345 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4346 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4347 *
4348 * The calculation is approximated on a 128 point scale.
4349 * degrade_zero_ticks is the number of ticks after which load at any
4350 * particular idx is approximated to be zero.
4351 * degrade_factor is a precomputed table, a row for each load idx.
4352 * Each column corresponds to degradation factor for a power of two ticks,
4353 * based on 128 point scale.
4354 * Example:
4355 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4356 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4357 *
4358 * With this power of 2 load factors, we can degrade the load n times
4359 * by looking at 1 bits in n and doing as many mult/shift instead of
4360 * n mult/shifts needed by the exact degradation.
4361 */
4362#define DEGRADE_SHIFT 7
4363static const unsigned char
4364 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4365static const unsigned char
4366 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4367 {0, 0, 0, 0, 0, 0, 0, 0},
4368 {64, 32, 8, 0, 0, 0, 0, 0},
4369 {96, 72, 40, 12, 1, 0, 0},
4370 {112, 98, 75, 43, 15, 1, 0},
4371 {120, 112, 98, 76, 45, 16, 2} };
4372
4373/*
4374 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4375 * would be when CPU is idle and so we just decay the old load without
4376 * adding any new load.
4377 */
4378static unsigned long
4379decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4380{
4381 int j = 0;
4382
4383 if (!missed_updates)
4384 return load;
4385
4386 if (missed_updates >= degrade_zero_ticks[idx])
4387 return 0;
4388
4389 if (idx == 1)
4390 return load >> missed_updates;
4391
4392 while (missed_updates) {
4393 if (missed_updates % 2)
4394 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4395
4396 missed_updates >>= 1;
4397 j++;
4398 }
4399 return load;
4400}
4401
4402/*
4403 * Update rq->cpu_load[] statistics. This function is usually called every
4404 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4405 * every tick. We fix it up based on jiffies.
4406 */
4407static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4408 unsigned long pending_updates)
4409{
4410 int i, scale;
4411
4412 this_rq->nr_load_updates++;
4413
4414 /* Update our load: */
4415 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4416 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4417 unsigned long old_load, new_load;
4418
4419 /* scale is effectively 1 << i now, and >> i divides by scale */
4420
4421 old_load = this_rq->cpu_load[i];
4422 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4423 new_load = this_load;
4424 /*
4425 * Round up the averaging division if load is increasing. This
4426 * prevents us from getting stuck on 9 if the load is 10, for
4427 * example.
4428 */
4429 if (new_load > old_load)
4430 new_load += scale - 1;
4431
4432 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4433 }
4434
4435 sched_avg_update(this_rq);
4436}
4437
4438#ifdef CONFIG_NO_HZ_COMMON
4439/*
4440 * There is no sane way to deal with nohz on smp when using jiffies because the
4441 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4442 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4443 *
4444 * Therefore we cannot use the delta approach from the regular tick since that
4445 * would seriously skew the load calculation. However we'll make do for those
4446 * updates happening while idle (nohz_idle_balance) or coming out of idle
4447 * (tick_nohz_idle_exit).
4448 *
4449 * This means we might still be one tick off for nohz periods.
4450 */
4451
4452/*
4453 * Called from nohz_idle_balance() to update the load ratings before doing the
4454 * idle balance.
4455 */
4456static void update_idle_cpu_load(struct rq *this_rq)
4457{
316c1608 4458 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4459 unsigned long load = this_rq->cfs.runnable_load_avg;
4460 unsigned long pending_updates;
4461
4462 /*
4463 * bail if there's load or we're actually up-to-date.
4464 */
4465 if (load || curr_jiffies == this_rq->last_load_update_tick)
4466 return;
4467
4468 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4469 this_rq->last_load_update_tick = curr_jiffies;
4470
4471 __update_cpu_load(this_rq, load, pending_updates);
4472}
4473
4474/*
4475 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4476 */
4477void update_cpu_load_nohz(void)
4478{
4479 struct rq *this_rq = this_rq();
316c1608 4480 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4481 unsigned long pending_updates;
4482
4483 if (curr_jiffies == this_rq->last_load_update_tick)
4484 return;
4485
4486 raw_spin_lock(&this_rq->lock);
4487 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4488 if (pending_updates) {
4489 this_rq->last_load_update_tick = curr_jiffies;
4490 /*
4491 * We were idle, this means load 0, the current load might be
4492 * !0 due to remote wakeups and the sort.
4493 */
4494 __update_cpu_load(this_rq, 0, pending_updates);
4495 }
4496 raw_spin_unlock(&this_rq->lock);
4497}
4498#endif /* CONFIG_NO_HZ */
4499
4500/*
4501 * Called from scheduler_tick()
4502 */
4503void update_cpu_load_active(struct rq *this_rq)
4504{
4505 unsigned long load = this_rq->cfs.runnable_load_avg;
4506 /*
4507 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4508 */
4509 this_rq->last_load_update_tick = jiffies;
4510 __update_cpu_load(this_rq, load, 1);
4511}
4512
029632fb
PZ
4513/* Used instead of source_load when we know the type == 0 */
4514static unsigned long weighted_cpuload(const int cpu)
4515{
b92486cb 4516 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4517}
4518
4519/*
4520 * Return a low guess at the load of a migration-source cpu weighted
4521 * according to the scheduling class and "nice" value.
4522 *
4523 * We want to under-estimate the load of migration sources, to
4524 * balance conservatively.
4525 */
4526static unsigned long source_load(int cpu, int type)
4527{
4528 struct rq *rq = cpu_rq(cpu);
4529 unsigned long total = weighted_cpuload(cpu);
4530
4531 if (type == 0 || !sched_feat(LB_BIAS))
4532 return total;
4533
4534 return min(rq->cpu_load[type-1], total);
4535}
4536
4537/*
4538 * Return a high guess at the load of a migration-target cpu weighted
4539 * according to the scheduling class and "nice" value.
4540 */
4541static unsigned long target_load(int cpu, int type)
4542{
4543 struct rq *rq = cpu_rq(cpu);
4544 unsigned long total = weighted_cpuload(cpu);
4545
4546 if (type == 0 || !sched_feat(LB_BIAS))
4547 return total;
4548
4549 return max(rq->cpu_load[type-1], total);
4550}
4551
ced549fa 4552static unsigned long capacity_of(int cpu)
029632fb 4553{
ced549fa 4554 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4555}
4556
ca6d75e6
VG
4557static unsigned long capacity_orig_of(int cpu)
4558{
4559 return cpu_rq(cpu)->cpu_capacity_orig;
4560}
4561
029632fb
PZ
4562static unsigned long cpu_avg_load_per_task(int cpu)
4563{
4564 struct rq *rq = cpu_rq(cpu);
316c1608 4565 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
b92486cb 4566 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4567
4568 if (nr_running)
b92486cb 4569 return load_avg / nr_running;
029632fb
PZ
4570
4571 return 0;
4572}
4573
62470419
MW
4574static void record_wakee(struct task_struct *p)
4575{
4576 /*
4577 * Rough decay (wiping) for cost saving, don't worry
4578 * about the boundary, really active task won't care
4579 * about the loss.
4580 */
2538d960 4581 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4582 current->wakee_flips >>= 1;
62470419
MW
4583 current->wakee_flip_decay_ts = jiffies;
4584 }
4585
4586 if (current->last_wakee != p) {
4587 current->last_wakee = p;
4588 current->wakee_flips++;
4589 }
4590}
098fb9db 4591
74f8e4b2 4592static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4593{
4594 struct sched_entity *se = &p->se;
4595 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4596 u64 min_vruntime;
4597
4598#ifndef CONFIG_64BIT
4599 u64 min_vruntime_copy;
88ec22d3 4600
3fe1698b
PZ
4601 do {
4602 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4603 smp_rmb();
4604 min_vruntime = cfs_rq->min_vruntime;
4605 } while (min_vruntime != min_vruntime_copy);
4606#else
4607 min_vruntime = cfs_rq->min_vruntime;
4608#endif
88ec22d3 4609
3fe1698b 4610 se->vruntime -= min_vruntime;
62470419 4611 record_wakee(p);
88ec22d3
PZ
4612}
4613
bb3469ac 4614#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4615/*
4616 * effective_load() calculates the load change as seen from the root_task_group
4617 *
4618 * Adding load to a group doesn't make a group heavier, but can cause movement
4619 * of group shares between cpus. Assuming the shares were perfectly aligned one
4620 * can calculate the shift in shares.
cf5f0acf
PZ
4621 *
4622 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4623 * on this @cpu and results in a total addition (subtraction) of @wg to the
4624 * total group weight.
4625 *
4626 * Given a runqueue weight distribution (rw_i) we can compute a shares
4627 * distribution (s_i) using:
4628 *
4629 * s_i = rw_i / \Sum rw_j (1)
4630 *
4631 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4632 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4633 * shares distribution (s_i):
4634 *
4635 * rw_i = { 2, 4, 1, 0 }
4636 * s_i = { 2/7, 4/7, 1/7, 0 }
4637 *
4638 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4639 * task used to run on and the CPU the waker is running on), we need to
4640 * compute the effect of waking a task on either CPU and, in case of a sync
4641 * wakeup, compute the effect of the current task going to sleep.
4642 *
4643 * So for a change of @wl to the local @cpu with an overall group weight change
4644 * of @wl we can compute the new shares distribution (s'_i) using:
4645 *
4646 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4647 *
4648 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4649 * differences in waking a task to CPU 0. The additional task changes the
4650 * weight and shares distributions like:
4651 *
4652 * rw'_i = { 3, 4, 1, 0 }
4653 * s'_i = { 3/8, 4/8, 1/8, 0 }
4654 *
4655 * We can then compute the difference in effective weight by using:
4656 *
4657 * dw_i = S * (s'_i - s_i) (3)
4658 *
4659 * Where 'S' is the group weight as seen by its parent.
4660 *
4661 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4662 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4663 * 4/7) times the weight of the group.
f5bfb7d9 4664 */
2069dd75 4665static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4666{
4be9daaa 4667 struct sched_entity *se = tg->se[cpu];
f1d239f7 4668
9722c2da 4669 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4670 return wl;
4671
4be9daaa 4672 for_each_sched_entity(se) {
cf5f0acf 4673 long w, W;
4be9daaa 4674
977dda7c 4675 tg = se->my_q->tg;
bb3469ac 4676
cf5f0acf
PZ
4677 /*
4678 * W = @wg + \Sum rw_j
4679 */
4680 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4681
cf5f0acf
PZ
4682 /*
4683 * w = rw_i + @wl
4684 */
4685 w = se->my_q->load.weight + wl;
940959e9 4686
cf5f0acf
PZ
4687 /*
4688 * wl = S * s'_i; see (2)
4689 */
4690 if (W > 0 && w < W)
32a8df4e 4691 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4692 else
4693 wl = tg->shares;
940959e9 4694
cf5f0acf
PZ
4695 /*
4696 * Per the above, wl is the new se->load.weight value; since
4697 * those are clipped to [MIN_SHARES, ...) do so now. See
4698 * calc_cfs_shares().
4699 */
977dda7c
PT
4700 if (wl < MIN_SHARES)
4701 wl = MIN_SHARES;
cf5f0acf
PZ
4702
4703 /*
4704 * wl = dw_i = S * (s'_i - s_i); see (3)
4705 */
977dda7c 4706 wl -= se->load.weight;
cf5f0acf
PZ
4707
4708 /*
4709 * Recursively apply this logic to all parent groups to compute
4710 * the final effective load change on the root group. Since
4711 * only the @tg group gets extra weight, all parent groups can
4712 * only redistribute existing shares. @wl is the shift in shares
4713 * resulting from this level per the above.
4714 */
4be9daaa 4715 wg = 0;
4be9daaa 4716 }
bb3469ac 4717
4be9daaa 4718 return wl;
bb3469ac
PZ
4719}
4720#else
4be9daaa 4721
58d081b5 4722static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4723{
83378269 4724 return wl;
bb3469ac 4725}
4be9daaa 4726
bb3469ac
PZ
4727#endif
4728
63b0e9ed
MG
4729/*
4730 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4731 * A waker of many should wake a different task than the one last awakened
4732 * at a frequency roughly N times higher than one of its wakees. In order
4733 * to determine whether we should let the load spread vs consolodating to
4734 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4735 * partner, and a factor of lls_size higher frequency in the other. With
4736 * both conditions met, we can be relatively sure that the relationship is
4737 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4738 * being client/server, worker/dispatcher, interrupt source or whatever is
4739 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4740 */
62470419
MW
4741static int wake_wide(struct task_struct *p)
4742{
63b0e9ed
MG
4743 unsigned int master = current->wakee_flips;
4744 unsigned int slave = p->wakee_flips;
7d9ffa89 4745 int factor = this_cpu_read(sd_llc_size);
62470419 4746
63b0e9ed
MG
4747 if (master < slave)
4748 swap(master, slave);
4749 if (slave < factor || master < slave * factor)
4750 return 0;
4751 return 1;
62470419
MW
4752}
4753
c88d5910 4754static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4755{
e37b6a7b 4756 s64 this_load, load;
bd61c98f 4757 s64 this_eff_load, prev_eff_load;
c88d5910 4758 int idx, this_cpu, prev_cpu;
c88d5910 4759 struct task_group *tg;
83378269 4760 unsigned long weight;
b3137bc8 4761 int balanced;
098fb9db 4762
c88d5910
PZ
4763 idx = sd->wake_idx;
4764 this_cpu = smp_processor_id();
4765 prev_cpu = task_cpu(p);
4766 load = source_load(prev_cpu, idx);
4767 this_load = target_load(this_cpu, idx);
098fb9db 4768
b3137bc8
MG
4769 /*
4770 * If sync wakeup then subtract the (maximum possible)
4771 * effect of the currently running task from the load
4772 * of the current CPU:
4773 */
83378269
PZ
4774 if (sync) {
4775 tg = task_group(current);
4776 weight = current->se.load.weight;
4777
c88d5910 4778 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4779 load += effective_load(tg, prev_cpu, 0, -weight);
4780 }
b3137bc8 4781
83378269
PZ
4782 tg = task_group(p);
4783 weight = p->se.load.weight;
b3137bc8 4784
71a29aa7
PZ
4785 /*
4786 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4787 * due to the sync cause above having dropped this_load to 0, we'll
4788 * always have an imbalance, but there's really nothing you can do
4789 * about that, so that's good too.
71a29aa7
PZ
4790 *
4791 * Otherwise check if either cpus are near enough in load to allow this
4792 * task to be woken on this_cpu.
4793 */
bd61c98f
VG
4794 this_eff_load = 100;
4795 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4796
bd61c98f
VG
4797 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4798 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4799
bd61c98f 4800 if (this_load > 0) {
e51fd5e2
PZ
4801 this_eff_load *= this_load +
4802 effective_load(tg, this_cpu, weight, weight);
4803
e51fd5e2 4804 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4805 }
e51fd5e2 4806
bd61c98f 4807 balanced = this_eff_load <= prev_eff_load;
098fb9db 4808
41acab88 4809 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4810
05bfb65f
VG
4811 if (!balanced)
4812 return 0;
098fb9db 4813
05bfb65f
VG
4814 schedstat_inc(sd, ttwu_move_affine);
4815 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4816
4817 return 1;
098fb9db
IM
4818}
4819
aaee1203
PZ
4820/*
4821 * find_idlest_group finds and returns the least busy CPU group within the
4822 * domain.
4823 */
4824static struct sched_group *
78e7ed53 4825find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4826 int this_cpu, int sd_flag)
e7693a36 4827{
b3bd3de6 4828 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4829 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4830 int load_idx = sd->forkexec_idx;
aaee1203 4831 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4832
c44f2a02
VG
4833 if (sd_flag & SD_BALANCE_WAKE)
4834 load_idx = sd->wake_idx;
4835
aaee1203
PZ
4836 do {
4837 unsigned long load, avg_load;
4838 int local_group;
4839 int i;
e7693a36 4840
aaee1203
PZ
4841 /* Skip over this group if it has no CPUs allowed */
4842 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4843 tsk_cpus_allowed(p)))
aaee1203
PZ
4844 continue;
4845
4846 local_group = cpumask_test_cpu(this_cpu,
4847 sched_group_cpus(group));
4848
4849 /* Tally up the load of all CPUs in the group */
4850 avg_load = 0;
4851
4852 for_each_cpu(i, sched_group_cpus(group)) {
4853 /* Bias balancing toward cpus of our domain */
4854 if (local_group)
4855 load = source_load(i, load_idx);
4856 else
4857 load = target_load(i, load_idx);
4858
4859 avg_load += load;
4860 }
4861
63b2ca30 4862 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4863 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4864
4865 if (local_group) {
4866 this_load = avg_load;
aaee1203
PZ
4867 } else if (avg_load < min_load) {
4868 min_load = avg_load;
4869 idlest = group;
4870 }
4871 } while (group = group->next, group != sd->groups);
4872
4873 if (!idlest || 100*this_load < imbalance*min_load)
4874 return NULL;
4875 return idlest;
4876}
4877
4878/*
4879 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4880 */
4881static int
4882find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4883{
4884 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4885 unsigned int min_exit_latency = UINT_MAX;
4886 u64 latest_idle_timestamp = 0;
4887 int least_loaded_cpu = this_cpu;
4888 int shallowest_idle_cpu = -1;
aaee1203
PZ
4889 int i;
4890
4891 /* Traverse only the allowed CPUs */
fa17b507 4892 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4893 if (idle_cpu(i)) {
4894 struct rq *rq = cpu_rq(i);
4895 struct cpuidle_state *idle = idle_get_state(rq);
4896 if (idle && idle->exit_latency < min_exit_latency) {
4897 /*
4898 * We give priority to a CPU whose idle state
4899 * has the smallest exit latency irrespective
4900 * of any idle timestamp.
4901 */
4902 min_exit_latency = idle->exit_latency;
4903 latest_idle_timestamp = rq->idle_stamp;
4904 shallowest_idle_cpu = i;
4905 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4906 rq->idle_stamp > latest_idle_timestamp) {
4907 /*
4908 * If equal or no active idle state, then
4909 * the most recently idled CPU might have
4910 * a warmer cache.
4911 */
4912 latest_idle_timestamp = rq->idle_stamp;
4913 shallowest_idle_cpu = i;
4914 }
9f96742a 4915 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4916 load = weighted_cpuload(i);
4917 if (load < min_load || (load == min_load && i == this_cpu)) {
4918 min_load = load;
4919 least_loaded_cpu = i;
4920 }
e7693a36
GH
4921 }
4922 }
4923
83a0a96a 4924 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4925}
e7693a36 4926
a50bde51
PZ
4927/*
4928 * Try and locate an idle CPU in the sched_domain.
4929 */
99bd5e2f 4930static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4931{
99bd5e2f 4932 struct sched_domain *sd;
37407ea7 4933 struct sched_group *sg;
e0a79f52 4934 int i = task_cpu(p);
a50bde51 4935
e0a79f52
MG
4936 if (idle_cpu(target))
4937 return target;
99bd5e2f
SS
4938
4939 /*
e0a79f52 4940 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4941 */
e0a79f52
MG
4942 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4943 return i;
a50bde51
PZ
4944
4945 /*
37407ea7 4946 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4947 */
518cd623 4948 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4949 for_each_lower_domain(sd) {
37407ea7
LT
4950 sg = sd->groups;
4951 do {
4952 if (!cpumask_intersects(sched_group_cpus(sg),
4953 tsk_cpus_allowed(p)))
4954 goto next;
4955
4956 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4957 if (i == target || !idle_cpu(i))
37407ea7
LT
4958 goto next;
4959 }
970e1789 4960
37407ea7
LT
4961 target = cpumask_first_and(sched_group_cpus(sg),
4962 tsk_cpus_allowed(p));
4963 goto done;
4964next:
4965 sg = sg->next;
4966 } while (sg != sd->groups);
4967 }
4968done:
a50bde51
PZ
4969 return target;
4970}
8bb5b00c
VG
4971/*
4972 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4973 * tasks. The unit of the return value must be the one of capacity so we can
4974 * compare the usage with the capacity of the CPU that is available for CFS
4975 * task (ie cpu_capacity).
4976 * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4977 * CPU. It represents the amount of utilization of a CPU in the range
4978 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4979 * capacity of the CPU because it's about the running time on this CPU.
4980 * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4981 * because of unfortunate rounding in avg_period and running_load_avg or just
4982 * after migrating tasks until the average stabilizes with the new running
4983 * time. So we need to check that the usage stays into the range
4984 * [0..cpu_capacity_orig] and cap if necessary.
4985 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4986 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4987 */
4988static int get_cpu_usage(int cpu)
4989{
4990 unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
4991 unsigned long capacity = capacity_orig_of(cpu);
4992
4993 if (usage >= SCHED_LOAD_SCALE)
4994 return capacity;
4995
4996 return (usage * capacity) >> SCHED_LOAD_SHIFT;
4997}
a50bde51 4998
aaee1203 4999/*
de91b9cb
MR
5000 * select_task_rq_fair: Select target runqueue for the waking task in domains
5001 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5002 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5003 *
de91b9cb
MR
5004 * Balances load by selecting the idlest cpu in the idlest group, or under
5005 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5006 *
de91b9cb 5007 * Returns the target cpu number.
aaee1203
PZ
5008 *
5009 * preempt must be disabled.
5010 */
0017d735 5011static int
ac66f547 5012select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5013{
29cd8bae 5014 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5015 int cpu = smp_processor_id();
63b0e9ed 5016 int new_cpu = prev_cpu;
99bd5e2f 5017 int want_affine = 0;
5158f4e4 5018 int sync = wake_flags & WF_SYNC;
c88d5910 5019
a8edd075 5020 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 5021 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5022
dce840a0 5023 rcu_read_lock();
aaee1203 5024 for_each_domain(cpu, tmp) {
e4f42888 5025 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5026 break;
e4f42888 5027
fe3bcfe1 5028 /*
99bd5e2f
SS
5029 * If both cpu and prev_cpu are part of this domain,
5030 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5031 */
99bd5e2f
SS
5032 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5033 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5034 affine_sd = tmp;
29cd8bae 5035 break;
f03542a7 5036 }
29cd8bae 5037
f03542a7 5038 if (tmp->flags & sd_flag)
29cd8bae 5039 sd = tmp;
63b0e9ed
MG
5040 else if (!want_affine)
5041 break;
29cd8bae
PZ
5042 }
5043
63b0e9ed
MG
5044 if (affine_sd) {
5045 sd = NULL; /* Prefer wake_affine over balance flags */
5046 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5047 new_cpu = cpu;
8b911acd 5048 }
e7693a36 5049
63b0e9ed
MG
5050 if (!sd) {
5051 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5052 new_cpu = select_idle_sibling(p, new_cpu);
5053
5054 } else while (sd) {
aaee1203 5055 struct sched_group *group;
c88d5910 5056 int weight;
098fb9db 5057
0763a660 5058 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5059 sd = sd->child;
5060 continue;
5061 }
098fb9db 5062
c44f2a02 5063 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5064 if (!group) {
5065 sd = sd->child;
5066 continue;
5067 }
4ae7d5ce 5068
d7c33c49 5069 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5070 if (new_cpu == -1 || new_cpu == cpu) {
5071 /* Now try balancing at a lower domain level of cpu */
5072 sd = sd->child;
5073 continue;
e7693a36 5074 }
aaee1203
PZ
5075
5076 /* Now try balancing at a lower domain level of new_cpu */
5077 cpu = new_cpu;
669c55e9 5078 weight = sd->span_weight;
aaee1203
PZ
5079 sd = NULL;
5080 for_each_domain(cpu, tmp) {
669c55e9 5081 if (weight <= tmp->span_weight)
aaee1203 5082 break;
0763a660 5083 if (tmp->flags & sd_flag)
aaee1203
PZ
5084 sd = tmp;
5085 }
5086 /* while loop will break here if sd == NULL */
e7693a36 5087 }
dce840a0 5088 rcu_read_unlock();
e7693a36 5089
c88d5910 5090 return new_cpu;
e7693a36 5091}
0a74bef8
PT
5092
5093/*
5094 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5095 * cfs_rq_of(p) references at time of call are still valid and identify the
5096 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
5097 * other assumptions, including the state of rq->lock, should be made.
5098 */
5099static void
5100migrate_task_rq_fair(struct task_struct *p, int next_cpu)
5101{
aff3e498
PT
5102 struct sched_entity *se = &p->se;
5103 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5104
5105 /*
5106 * Load tracking: accumulate removed load so that it can be processed
5107 * when we next update owning cfs_rq under rq->lock. Tasks contribute
5108 * to blocked load iff they have a positive decay-count. It can never
5109 * be negative here since on-rq tasks have decay-count == 0.
5110 */
5111 if (se->avg.decay_count) {
5112 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
5113 atomic_long_add(se->avg.load_avg_contrib,
5114 &cfs_rq->removed_load);
aff3e498 5115 }
3944a927
BS
5116
5117 /* We have migrated, no longer consider this task hot */
5118 se->exec_start = 0;
0a74bef8 5119}
e7693a36
GH
5120#endif /* CONFIG_SMP */
5121
e52fb7c0
PZ
5122static unsigned long
5123wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5124{
5125 unsigned long gran = sysctl_sched_wakeup_granularity;
5126
5127 /*
e52fb7c0
PZ
5128 * Since its curr running now, convert the gran from real-time
5129 * to virtual-time in his units.
13814d42
MG
5130 *
5131 * By using 'se' instead of 'curr' we penalize light tasks, so
5132 * they get preempted easier. That is, if 'se' < 'curr' then
5133 * the resulting gran will be larger, therefore penalizing the
5134 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5135 * be smaller, again penalizing the lighter task.
5136 *
5137 * This is especially important for buddies when the leftmost
5138 * task is higher priority than the buddy.
0bbd3336 5139 */
f4ad9bd2 5140 return calc_delta_fair(gran, se);
0bbd3336
PZ
5141}
5142
464b7527
PZ
5143/*
5144 * Should 'se' preempt 'curr'.
5145 *
5146 * |s1
5147 * |s2
5148 * |s3
5149 * g
5150 * |<--->|c
5151 *
5152 * w(c, s1) = -1
5153 * w(c, s2) = 0
5154 * w(c, s3) = 1
5155 *
5156 */
5157static int
5158wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5159{
5160 s64 gran, vdiff = curr->vruntime - se->vruntime;
5161
5162 if (vdiff <= 0)
5163 return -1;
5164
e52fb7c0 5165 gran = wakeup_gran(curr, se);
464b7527
PZ
5166 if (vdiff > gran)
5167 return 1;
5168
5169 return 0;
5170}
5171
02479099
PZ
5172static void set_last_buddy(struct sched_entity *se)
5173{
69c80f3e
VP
5174 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5175 return;
5176
5177 for_each_sched_entity(se)
5178 cfs_rq_of(se)->last = se;
02479099
PZ
5179}
5180
5181static void set_next_buddy(struct sched_entity *se)
5182{
69c80f3e
VP
5183 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5184 return;
5185
5186 for_each_sched_entity(se)
5187 cfs_rq_of(se)->next = se;
02479099
PZ
5188}
5189
ac53db59
RR
5190static void set_skip_buddy(struct sched_entity *se)
5191{
69c80f3e
VP
5192 for_each_sched_entity(se)
5193 cfs_rq_of(se)->skip = se;
ac53db59
RR
5194}
5195
bf0f6f24
IM
5196/*
5197 * Preempt the current task with a newly woken task if needed:
5198 */
5a9b86f6 5199static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5200{
5201 struct task_struct *curr = rq->curr;
8651a86c 5202 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5203 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5204 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5205 int next_buddy_marked = 0;
bf0f6f24 5206
4ae7d5ce
IM
5207 if (unlikely(se == pse))
5208 return;
5209
5238cdd3 5210 /*
163122b7 5211 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5212 * unconditionally check_prempt_curr() after an enqueue (which may have
5213 * lead to a throttle). This both saves work and prevents false
5214 * next-buddy nomination below.
5215 */
5216 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5217 return;
5218
2f36825b 5219 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5220 set_next_buddy(pse);
2f36825b
VP
5221 next_buddy_marked = 1;
5222 }
57fdc26d 5223
aec0a514
BR
5224 /*
5225 * We can come here with TIF_NEED_RESCHED already set from new task
5226 * wake up path.
5238cdd3
PT
5227 *
5228 * Note: this also catches the edge-case of curr being in a throttled
5229 * group (e.g. via set_curr_task), since update_curr() (in the
5230 * enqueue of curr) will have resulted in resched being set. This
5231 * prevents us from potentially nominating it as a false LAST_BUDDY
5232 * below.
aec0a514
BR
5233 */
5234 if (test_tsk_need_resched(curr))
5235 return;
5236
a2f5c9ab
DH
5237 /* Idle tasks are by definition preempted by non-idle tasks. */
5238 if (unlikely(curr->policy == SCHED_IDLE) &&
5239 likely(p->policy != SCHED_IDLE))
5240 goto preempt;
5241
91c234b4 5242 /*
a2f5c9ab
DH
5243 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5244 * is driven by the tick):
91c234b4 5245 */
8ed92e51 5246 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5247 return;
bf0f6f24 5248
464b7527 5249 find_matching_se(&se, &pse);
9bbd7374 5250 update_curr(cfs_rq_of(se));
002f128b 5251 BUG_ON(!pse);
2f36825b
VP
5252 if (wakeup_preempt_entity(se, pse) == 1) {
5253 /*
5254 * Bias pick_next to pick the sched entity that is
5255 * triggering this preemption.
5256 */
5257 if (!next_buddy_marked)
5258 set_next_buddy(pse);
3a7e73a2 5259 goto preempt;
2f36825b 5260 }
464b7527 5261
3a7e73a2 5262 return;
a65ac745 5263
3a7e73a2 5264preempt:
8875125e 5265 resched_curr(rq);
3a7e73a2
PZ
5266 /*
5267 * Only set the backward buddy when the current task is still
5268 * on the rq. This can happen when a wakeup gets interleaved
5269 * with schedule on the ->pre_schedule() or idle_balance()
5270 * point, either of which can * drop the rq lock.
5271 *
5272 * Also, during early boot the idle thread is in the fair class,
5273 * for obvious reasons its a bad idea to schedule back to it.
5274 */
5275 if (unlikely(!se->on_rq || curr == rq->idle))
5276 return;
5277
5278 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5279 set_last_buddy(se);
bf0f6f24
IM
5280}
5281
606dba2e
PZ
5282static struct task_struct *
5283pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5284{
5285 struct cfs_rq *cfs_rq = &rq->cfs;
5286 struct sched_entity *se;
678d5718 5287 struct task_struct *p;
37e117c0 5288 int new_tasks;
678d5718 5289
6e83125c 5290again:
678d5718
PZ
5291#ifdef CONFIG_FAIR_GROUP_SCHED
5292 if (!cfs_rq->nr_running)
38033c37 5293 goto idle;
678d5718 5294
3f1d2a31 5295 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5296 goto simple;
5297
5298 /*
5299 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5300 * likely that a next task is from the same cgroup as the current.
5301 *
5302 * Therefore attempt to avoid putting and setting the entire cgroup
5303 * hierarchy, only change the part that actually changes.
5304 */
5305
5306 do {
5307 struct sched_entity *curr = cfs_rq->curr;
5308
5309 /*
5310 * Since we got here without doing put_prev_entity() we also
5311 * have to consider cfs_rq->curr. If it is still a runnable
5312 * entity, update_curr() will update its vruntime, otherwise
5313 * forget we've ever seen it.
5314 */
54d27365
BS
5315 if (curr) {
5316 if (curr->on_rq)
5317 update_curr(cfs_rq);
5318 else
5319 curr = NULL;
678d5718 5320
54d27365
BS
5321 /*
5322 * This call to check_cfs_rq_runtime() will do the
5323 * throttle and dequeue its entity in the parent(s).
5324 * Therefore the 'simple' nr_running test will indeed
5325 * be correct.
5326 */
5327 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5328 goto simple;
5329 }
678d5718
PZ
5330
5331 se = pick_next_entity(cfs_rq, curr);
5332 cfs_rq = group_cfs_rq(se);
5333 } while (cfs_rq);
5334
5335 p = task_of(se);
5336
5337 /*
5338 * Since we haven't yet done put_prev_entity and if the selected task
5339 * is a different task than we started out with, try and touch the
5340 * least amount of cfs_rqs.
5341 */
5342 if (prev != p) {
5343 struct sched_entity *pse = &prev->se;
5344
5345 while (!(cfs_rq = is_same_group(se, pse))) {
5346 int se_depth = se->depth;
5347 int pse_depth = pse->depth;
5348
5349 if (se_depth <= pse_depth) {
5350 put_prev_entity(cfs_rq_of(pse), pse);
5351 pse = parent_entity(pse);
5352 }
5353 if (se_depth >= pse_depth) {
5354 set_next_entity(cfs_rq_of(se), se);
5355 se = parent_entity(se);
5356 }
5357 }
5358
5359 put_prev_entity(cfs_rq, pse);
5360 set_next_entity(cfs_rq, se);
5361 }
5362
5363 if (hrtick_enabled(rq))
5364 hrtick_start_fair(rq, p);
5365
5366 return p;
5367simple:
5368 cfs_rq = &rq->cfs;
5369#endif
bf0f6f24 5370
36ace27e 5371 if (!cfs_rq->nr_running)
38033c37 5372 goto idle;
bf0f6f24 5373
3f1d2a31 5374 put_prev_task(rq, prev);
606dba2e 5375
bf0f6f24 5376 do {
678d5718 5377 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5378 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5379 cfs_rq = group_cfs_rq(se);
5380 } while (cfs_rq);
5381
8f4d37ec 5382 p = task_of(se);
678d5718 5383
b39e66ea
MG
5384 if (hrtick_enabled(rq))
5385 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5386
5387 return p;
38033c37
PZ
5388
5389idle:
cbce1a68
PZ
5390 /*
5391 * This is OK, because current is on_cpu, which avoids it being picked
5392 * for load-balance and preemption/IRQs are still disabled avoiding
5393 * further scheduler activity on it and we're being very careful to
5394 * re-start the picking loop.
5395 */
5396 lockdep_unpin_lock(&rq->lock);
e4aa358b 5397 new_tasks = idle_balance(rq);
cbce1a68 5398 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5399 /*
5400 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5401 * possible for any higher priority task to appear. In that case we
5402 * must re-start the pick_next_entity() loop.
5403 */
e4aa358b 5404 if (new_tasks < 0)
37e117c0
PZ
5405 return RETRY_TASK;
5406
e4aa358b 5407 if (new_tasks > 0)
38033c37 5408 goto again;
38033c37
PZ
5409
5410 return NULL;
bf0f6f24
IM
5411}
5412
5413/*
5414 * Account for a descheduled task:
5415 */
31ee529c 5416static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5417{
5418 struct sched_entity *se = &prev->se;
5419 struct cfs_rq *cfs_rq;
5420
5421 for_each_sched_entity(se) {
5422 cfs_rq = cfs_rq_of(se);
ab6cde26 5423 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5424 }
5425}
5426
ac53db59
RR
5427/*
5428 * sched_yield() is very simple
5429 *
5430 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5431 */
5432static void yield_task_fair(struct rq *rq)
5433{
5434 struct task_struct *curr = rq->curr;
5435 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5436 struct sched_entity *se = &curr->se;
5437
5438 /*
5439 * Are we the only task in the tree?
5440 */
5441 if (unlikely(rq->nr_running == 1))
5442 return;
5443
5444 clear_buddies(cfs_rq, se);
5445
5446 if (curr->policy != SCHED_BATCH) {
5447 update_rq_clock(rq);
5448 /*
5449 * Update run-time statistics of the 'current'.
5450 */
5451 update_curr(cfs_rq);
916671c0
MG
5452 /*
5453 * Tell update_rq_clock() that we've just updated,
5454 * so we don't do microscopic update in schedule()
5455 * and double the fastpath cost.
5456 */
9edfbfed 5457 rq_clock_skip_update(rq, true);
ac53db59
RR
5458 }
5459
5460 set_skip_buddy(se);
5461}
5462
d95f4122
MG
5463static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5464{
5465 struct sched_entity *se = &p->se;
5466
5238cdd3
PT
5467 /* throttled hierarchies are not runnable */
5468 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5469 return false;
5470
5471 /* Tell the scheduler that we'd really like pse to run next. */
5472 set_next_buddy(se);
5473
d95f4122
MG
5474 yield_task_fair(rq);
5475
5476 return true;
5477}
5478
681f3e68 5479#ifdef CONFIG_SMP
bf0f6f24 5480/**************************************************
e9c84cb8
PZ
5481 * Fair scheduling class load-balancing methods.
5482 *
5483 * BASICS
5484 *
5485 * The purpose of load-balancing is to achieve the same basic fairness the
5486 * per-cpu scheduler provides, namely provide a proportional amount of compute
5487 * time to each task. This is expressed in the following equation:
5488 *
5489 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5490 *
5491 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5492 * W_i,0 is defined as:
5493 *
5494 * W_i,0 = \Sum_j w_i,j (2)
5495 *
5496 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5497 * is derived from the nice value as per prio_to_weight[].
5498 *
5499 * The weight average is an exponential decay average of the instantaneous
5500 * weight:
5501 *
5502 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5503 *
ced549fa 5504 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5505 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5506 * can also include other factors [XXX].
5507 *
5508 * To achieve this balance we define a measure of imbalance which follows
5509 * directly from (1):
5510 *
ced549fa 5511 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5512 *
5513 * We them move tasks around to minimize the imbalance. In the continuous
5514 * function space it is obvious this converges, in the discrete case we get
5515 * a few fun cases generally called infeasible weight scenarios.
5516 *
5517 * [XXX expand on:
5518 * - infeasible weights;
5519 * - local vs global optima in the discrete case. ]
5520 *
5521 *
5522 * SCHED DOMAINS
5523 *
5524 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5525 * for all i,j solution, we create a tree of cpus that follows the hardware
5526 * topology where each level pairs two lower groups (or better). This results
5527 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5528 * tree to only the first of the previous level and we decrease the frequency
5529 * of load-balance at each level inv. proportional to the number of cpus in
5530 * the groups.
5531 *
5532 * This yields:
5533 *
5534 * log_2 n 1 n
5535 * \Sum { --- * --- * 2^i } = O(n) (5)
5536 * i = 0 2^i 2^i
5537 * `- size of each group
5538 * | | `- number of cpus doing load-balance
5539 * | `- freq
5540 * `- sum over all levels
5541 *
5542 * Coupled with a limit on how many tasks we can migrate every balance pass,
5543 * this makes (5) the runtime complexity of the balancer.
5544 *
5545 * An important property here is that each CPU is still (indirectly) connected
5546 * to every other cpu in at most O(log n) steps:
5547 *
5548 * The adjacency matrix of the resulting graph is given by:
5549 *
5550 * log_2 n
5551 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5552 * k = 0
5553 *
5554 * And you'll find that:
5555 *
5556 * A^(log_2 n)_i,j != 0 for all i,j (7)
5557 *
5558 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5559 * The task movement gives a factor of O(m), giving a convergence complexity
5560 * of:
5561 *
5562 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5563 *
5564 *
5565 * WORK CONSERVING
5566 *
5567 * In order to avoid CPUs going idle while there's still work to do, new idle
5568 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5569 * tree itself instead of relying on other CPUs to bring it work.
5570 *
5571 * This adds some complexity to both (5) and (8) but it reduces the total idle
5572 * time.
5573 *
5574 * [XXX more?]
5575 *
5576 *
5577 * CGROUPS
5578 *
5579 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5580 *
5581 * s_k,i
5582 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5583 * S_k
5584 *
5585 * Where
5586 *
5587 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5588 *
5589 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5590 *
5591 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5592 * property.
5593 *
5594 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5595 * rewrite all of this once again.]
5596 */
bf0f6f24 5597
ed387b78
HS
5598static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5599
0ec8aa00
PZ
5600enum fbq_type { regular, remote, all };
5601
ddcdf6e7 5602#define LBF_ALL_PINNED 0x01
367456c7 5603#define LBF_NEED_BREAK 0x02
6263322c
PZ
5604#define LBF_DST_PINNED 0x04
5605#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5606
5607struct lb_env {
5608 struct sched_domain *sd;
5609
ddcdf6e7 5610 struct rq *src_rq;
85c1e7da 5611 int src_cpu;
ddcdf6e7
PZ
5612
5613 int dst_cpu;
5614 struct rq *dst_rq;
5615
88b8dac0
SV
5616 struct cpumask *dst_grpmask;
5617 int new_dst_cpu;
ddcdf6e7 5618 enum cpu_idle_type idle;
bd939f45 5619 long imbalance;
b9403130
MW
5620 /* The set of CPUs under consideration for load-balancing */
5621 struct cpumask *cpus;
5622
ddcdf6e7 5623 unsigned int flags;
367456c7
PZ
5624
5625 unsigned int loop;
5626 unsigned int loop_break;
5627 unsigned int loop_max;
0ec8aa00
PZ
5628
5629 enum fbq_type fbq_type;
163122b7 5630 struct list_head tasks;
ddcdf6e7
PZ
5631};
5632
029632fb
PZ
5633/*
5634 * Is this task likely cache-hot:
5635 */
5d5e2b1b 5636static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5637{
5638 s64 delta;
5639
e5673f28
KT
5640 lockdep_assert_held(&env->src_rq->lock);
5641
029632fb
PZ
5642 if (p->sched_class != &fair_sched_class)
5643 return 0;
5644
5645 if (unlikely(p->policy == SCHED_IDLE))
5646 return 0;
5647
5648 /*
5649 * Buddy candidates are cache hot:
5650 */
5d5e2b1b 5651 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5652 (&p->se == cfs_rq_of(&p->se)->next ||
5653 &p->se == cfs_rq_of(&p->se)->last))
5654 return 1;
5655
5656 if (sysctl_sched_migration_cost == -1)
5657 return 1;
5658 if (sysctl_sched_migration_cost == 0)
5659 return 0;
5660
5d5e2b1b 5661 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5662
5663 return delta < (s64)sysctl_sched_migration_cost;
5664}
5665
3a7053b3 5666#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5667/*
2a1ed24c
SD
5668 * Returns 1, if task migration degrades locality
5669 * Returns 0, if task migration improves locality i.e migration preferred.
5670 * Returns -1, if task migration is not affected by locality.
c1ceac62 5671 */
2a1ed24c 5672static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5673{
b1ad065e 5674 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5675 unsigned long src_faults, dst_faults;
3a7053b3
MG
5676 int src_nid, dst_nid;
5677
44dba3d5 5678 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c
SD
5679 return -1;
5680
5681 if (!sched_feat(NUMA))
5682 return -1;
7a0f3083
MG
5683
5684 src_nid = cpu_to_node(env->src_cpu);
5685 dst_nid = cpu_to_node(env->dst_cpu);
5686
83e1d2cd 5687 if (src_nid == dst_nid)
2a1ed24c 5688 return -1;
7a0f3083 5689
2a1ed24c
SD
5690 /* Migrating away from the preferred node is always bad. */
5691 if (src_nid == p->numa_preferred_nid) {
5692 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5693 return 1;
5694 else
5695 return -1;
5696 }
b1ad065e 5697
c1ceac62
RR
5698 /* Encourage migration to the preferred node. */
5699 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5700 return 0;
b1ad065e 5701
c1ceac62
RR
5702 if (numa_group) {
5703 src_faults = group_faults(p, src_nid);
5704 dst_faults = group_faults(p, dst_nid);
5705 } else {
5706 src_faults = task_faults(p, src_nid);
5707 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5708 }
5709
c1ceac62 5710 return dst_faults < src_faults;
7a0f3083
MG
5711}
5712
3a7053b3 5713#else
2a1ed24c 5714static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5715 struct lb_env *env)
5716{
2a1ed24c 5717 return -1;
7a0f3083 5718}
3a7053b3
MG
5719#endif
5720
1e3c88bd
PZ
5721/*
5722 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5723 */
5724static
8e45cb54 5725int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5726{
2a1ed24c 5727 int tsk_cache_hot;
e5673f28
KT
5728
5729 lockdep_assert_held(&env->src_rq->lock);
5730
1e3c88bd
PZ
5731 /*
5732 * We do not migrate tasks that are:
d3198084 5733 * 1) throttled_lb_pair, or
1e3c88bd 5734 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5735 * 3) running (obviously), or
5736 * 4) are cache-hot on their current CPU.
1e3c88bd 5737 */
d3198084
JK
5738 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5739 return 0;
5740
ddcdf6e7 5741 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5742 int cpu;
88b8dac0 5743
41acab88 5744 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5745
6263322c
PZ
5746 env->flags |= LBF_SOME_PINNED;
5747
88b8dac0
SV
5748 /*
5749 * Remember if this task can be migrated to any other cpu in
5750 * our sched_group. We may want to revisit it if we couldn't
5751 * meet load balance goals by pulling other tasks on src_cpu.
5752 *
5753 * Also avoid computing new_dst_cpu if we have already computed
5754 * one in current iteration.
5755 */
6263322c 5756 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5757 return 0;
5758
e02e60c1
JK
5759 /* Prevent to re-select dst_cpu via env's cpus */
5760 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5761 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5762 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5763 env->new_dst_cpu = cpu;
5764 break;
5765 }
88b8dac0 5766 }
e02e60c1 5767
1e3c88bd
PZ
5768 return 0;
5769 }
88b8dac0
SV
5770
5771 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5772 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5773
ddcdf6e7 5774 if (task_running(env->src_rq, p)) {
41acab88 5775 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5776 return 0;
5777 }
5778
5779 /*
5780 * Aggressive migration if:
3a7053b3
MG
5781 * 1) destination numa is preferred
5782 * 2) task is cache cold, or
5783 * 3) too many balance attempts have failed.
1e3c88bd 5784 */
2a1ed24c
SD
5785 tsk_cache_hot = migrate_degrades_locality(p, env);
5786 if (tsk_cache_hot == -1)
5787 tsk_cache_hot = task_hot(p, env);
3a7053b3 5788
2a1ed24c 5789 if (tsk_cache_hot <= 0 ||
7a96c231 5790 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5791 if (tsk_cache_hot == 1) {
3a7053b3
MG
5792 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5793 schedstat_inc(p, se.statistics.nr_forced_migrations);
5794 }
1e3c88bd
PZ
5795 return 1;
5796 }
5797
4e2dcb73
ZH
5798 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5799 return 0;
1e3c88bd
PZ
5800}
5801
897c395f 5802/*
163122b7
KT
5803 * detach_task() -- detach the task for the migration specified in env
5804 */
5805static void detach_task(struct task_struct *p, struct lb_env *env)
5806{
5807 lockdep_assert_held(&env->src_rq->lock);
5808
5809 deactivate_task(env->src_rq, p, 0);
5810 p->on_rq = TASK_ON_RQ_MIGRATING;
5811 set_task_cpu(p, env->dst_cpu);
5812}
5813
897c395f 5814/*
e5673f28 5815 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5816 * part of active balancing operations within "domain".
897c395f 5817 *
e5673f28 5818 * Returns a task if successful and NULL otherwise.
897c395f 5819 */
e5673f28 5820static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5821{
5822 struct task_struct *p, *n;
897c395f 5823
e5673f28
KT
5824 lockdep_assert_held(&env->src_rq->lock);
5825
367456c7 5826 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5827 if (!can_migrate_task(p, env))
5828 continue;
897c395f 5829
163122b7 5830 detach_task(p, env);
e5673f28 5831
367456c7 5832 /*
e5673f28 5833 * Right now, this is only the second place where
163122b7 5834 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5835 * so we can safely collect stats here rather than
163122b7 5836 * inside detach_tasks().
367456c7
PZ
5837 */
5838 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5839 return p;
897c395f 5840 }
e5673f28 5841 return NULL;
897c395f
PZ
5842}
5843
eb95308e
PZ
5844static const unsigned int sched_nr_migrate_break = 32;
5845
5d6523eb 5846/*
163122b7
KT
5847 * detach_tasks() -- tries to detach up to imbalance weighted load from
5848 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5849 *
163122b7 5850 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5851 */
163122b7 5852static int detach_tasks(struct lb_env *env)
1e3c88bd 5853{
5d6523eb
PZ
5854 struct list_head *tasks = &env->src_rq->cfs_tasks;
5855 struct task_struct *p;
367456c7 5856 unsigned long load;
163122b7
KT
5857 int detached = 0;
5858
5859 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5860
bd939f45 5861 if (env->imbalance <= 0)
5d6523eb 5862 return 0;
1e3c88bd 5863
5d6523eb 5864 while (!list_empty(tasks)) {
985d3a4c
YD
5865 /*
5866 * We don't want to steal all, otherwise we may be treated likewise,
5867 * which could at worst lead to a livelock crash.
5868 */
5869 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5870 break;
5871
5d6523eb 5872 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5873
367456c7
PZ
5874 env->loop++;
5875 /* We've more or less seen every task there is, call it quits */
5d6523eb 5876 if (env->loop > env->loop_max)
367456c7 5877 break;
5d6523eb
PZ
5878
5879 /* take a breather every nr_migrate tasks */
367456c7 5880 if (env->loop > env->loop_break) {
eb95308e 5881 env->loop_break += sched_nr_migrate_break;
8e45cb54 5882 env->flags |= LBF_NEED_BREAK;
ee00e66f 5883 break;
a195f004 5884 }
1e3c88bd 5885
d3198084 5886 if (!can_migrate_task(p, env))
367456c7
PZ
5887 goto next;
5888
5889 load = task_h_load(p);
5d6523eb 5890
eb95308e 5891 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5892 goto next;
5893
bd939f45 5894 if ((load / 2) > env->imbalance)
367456c7 5895 goto next;
1e3c88bd 5896
163122b7
KT
5897 detach_task(p, env);
5898 list_add(&p->se.group_node, &env->tasks);
5899
5900 detached++;
bd939f45 5901 env->imbalance -= load;
1e3c88bd
PZ
5902
5903#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5904 /*
5905 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5906 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5907 * the critical section.
5908 */
5d6523eb 5909 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5910 break;
1e3c88bd
PZ
5911#endif
5912
ee00e66f
PZ
5913 /*
5914 * We only want to steal up to the prescribed amount of
5915 * weighted load.
5916 */
bd939f45 5917 if (env->imbalance <= 0)
ee00e66f 5918 break;
367456c7
PZ
5919
5920 continue;
5921next:
5d6523eb 5922 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5923 }
5d6523eb 5924
1e3c88bd 5925 /*
163122b7
KT
5926 * Right now, this is one of only two places we collect this stat
5927 * so we can safely collect detach_one_task() stats here rather
5928 * than inside detach_one_task().
1e3c88bd 5929 */
163122b7 5930 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5931
163122b7
KT
5932 return detached;
5933}
5934
5935/*
5936 * attach_task() -- attach the task detached by detach_task() to its new rq.
5937 */
5938static void attach_task(struct rq *rq, struct task_struct *p)
5939{
5940 lockdep_assert_held(&rq->lock);
5941
5942 BUG_ON(task_rq(p) != rq);
5943 p->on_rq = TASK_ON_RQ_QUEUED;
5944 activate_task(rq, p, 0);
5945 check_preempt_curr(rq, p, 0);
5946}
5947
5948/*
5949 * attach_one_task() -- attaches the task returned from detach_one_task() to
5950 * its new rq.
5951 */
5952static void attach_one_task(struct rq *rq, struct task_struct *p)
5953{
5954 raw_spin_lock(&rq->lock);
5955 attach_task(rq, p);
5956 raw_spin_unlock(&rq->lock);
5957}
5958
5959/*
5960 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5961 * new rq.
5962 */
5963static void attach_tasks(struct lb_env *env)
5964{
5965 struct list_head *tasks = &env->tasks;
5966 struct task_struct *p;
5967
5968 raw_spin_lock(&env->dst_rq->lock);
5969
5970 while (!list_empty(tasks)) {
5971 p = list_first_entry(tasks, struct task_struct, se.group_node);
5972 list_del_init(&p->se.group_node);
1e3c88bd 5973
163122b7
KT
5974 attach_task(env->dst_rq, p);
5975 }
5976
5977 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5978}
5979
230059de 5980#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5981/*
5982 * update tg->load_weight by folding this cpu's load_avg
5983 */
48a16753 5984static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5985{
48a16753
PT
5986 struct sched_entity *se = tg->se[cpu];
5987 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5988
48a16753
PT
5989 /* throttled entities do not contribute to load */
5990 if (throttled_hierarchy(cfs_rq))
5991 return;
9e3081ca 5992
aff3e498 5993 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5994
82958366
PT
5995 if (se) {
5996 update_entity_load_avg(se, 1);
5997 /*
5998 * We pivot on our runnable average having decayed to zero for
5999 * list removal. This generally implies that all our children
6000 * have also been removed (modulo rounding error or bandwidth
6001 * control); however, such cases are rare and we can fix these
6002 * at enqueue.
6003 *
6004 * TODO: fix up out-of-order children on enqueue.
6005 */
6006 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
6007 list_del_leaf_cfs_rq(cfs_rq);
6008 } else {
48a16753 6009 struct rq *rq = rq_of(cfs_rq);
82958366
PT
6010 update_rq_runnable_avg(rq, rq->nr_running);
6011 }
9e3081ca
PZ
6012}
6013
48a16753 6014static void update_blocked_averages(int cpu)
9e3081ca 6015{
9e3081ca 6016 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6017 struct cfs_rq *cfs_rq;
6018 unsigned long flags;
9e3081ca 6019
48a16753
PT
6020 raw_spin_lock_irqsave(&rq->lock, flags);
6021 update_rq_clock(rq);
9763b67f
PZ
6022 /*
6023 * Iterates the task_group tree in a bottom up fashion, see
6024 * list_add_leaf_cfs_rq() for details.
6025 */
64660c86 6026 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
6027 /*
6028 * Note: We may want to consider periodically releasing
6029 * rq->lock about these updates so that creating many task
6030 * groups does not result in continually extending hold time.
6031 */
6032 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 6033 }
48a16753
PT
6034
6035 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6036}
6037
9763b67f 6038/*
68520796 6039 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6040 * This needs to be done in a top-down fashion because the load of a child
6041 * group is a fraction of its parents load.
6042 */
68520796 6043static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6044{
68520796
VD
6045 struct rq *rq = rq_of(cfs_rq);
6046 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6047 unsigned long now = jiffies;
68520796 6048 unsigned long load;
a35b6466 6049
68520796 6050 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6051 return;
6052
68520796
VD
6053 cfs_rq->h_load_next = NULL;
6054 for_each_sched_entity(se) {
6055 cfs_rq = cfs_rq_of(se);
6056 cfs_rq->h_load_next = se;
6057 if (cfs_rq->last_h_load_update == now)
6058 break;
6059 }
a35b6466 6060
68520796 6061 if (!se) {
7e3115ef 6062 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
6063 cfs_rq->last_h_load_update = now;
6064 }
6065
6066 while ((se = cfs_rq->h_load_next) != NULL) {
6067 load = cfs_rq->h_load;
6068 load = div64_ul(load * se->avg.load_avg_contrib,
6069 cfs_rq->runnable_load_avg + 1);
6070 cfs_rq = group_cfs_rq(se);
6071 cfs_rq->h_load = load;
6072 cfs_rq->last_h_load_update = now;
6073 }
9763b67f
PZ
6074}
6075
367456c7 6076static unsigned long task_h_load(struct task_struct *p)
230059de 6077{
367456c7 6078 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6079
68520796 6080 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
6081 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
6082 cfs_rq->runnable_load_avg + 1);
230059de
PZ
6083}
6084#else
48a16753 6085static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
6086{
6087}
6088
367456c7 6089static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6090{
a003a25b 6091 return p->se.avg.load_avg_contrib;
1e3c88bd 6092}
230059de 6093#endif
1e3c88bd 6094
1e3c88bd 6095/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6096
6097enum group_type {
6098 group_other = 0,
6099 group_imbalanced,
6100 group_overloaded,
6101};
6102
1e3c88bd
PZ
6103/*
6104 * sg_lb_stats - stats of a sched_group required for load_balancing
6105 */
6106struct sg_lb_stats {
6107 unsigned long avg_load; /*Avg load across the CPUs of the group */
6108 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6109 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6110 unsigned long load_per_task;
63b2ca30 6111 unsigned long group_capacity;
8bb5b00c 6112 unsigned long group_usage; /* Total usage of the group */
147c5fc2 6113 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6114 unsigned int idle_cpus;
6115 unsigned int group_weight;
caeb178c 6116 enum group_type group_type;
ea67821b 6117 int group_no_capacity;
0ec8aa00
PZ
6118#ifdef CONFIG_NUMA_BALANCING
6119 unsigned int nr_numa_running;
6120 unsigned int nr_preferred_running;
6121#endif
1e3c88bd
PZ
6122};
6123
56cf515b
JK
6124/*
6125 * sd_lb_stats - Structure to store the statistics of a sched_domain
6126 * during load balancing.
6127 */
6128struct sd_lb_stats {
6129 struct sched_group *busiest; /* Busiest group in this sd */
6130 struct sched_group *local; /* Local group in this sd */
6131 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6132 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6133 unsigned long avg_load; /* Average load across all groups in sd */
6134
56cf515b 6135 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6136 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6137};
6138
147c5fc2
PZ
6139static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6140{
6141 /*
6142 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6143 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6144 * We must however clear busiest_stat::avg_load because
6145 * update_sd_pick_busiest() reads this before assignment.
6146 */
6147 *sds = (struct sd_lb_stats){
6148 .busiest = NULL,
6149 .local = NULL,
6150 .total_load = 0UL,
63b2ca30 6151 .total_capacity = 0UL,
147c5fc2
PZ
6152 .busiest_stat = {
6153 .avg_load = 0UL,
caeb178c
RR
6154 .sum_nr_running = 0,
6155 .group_type = group_other,
147c5fc2
PZ
6156 },
6157 };
6158}
6159
1e3c88bd
PZ
6160/**
6161 * get_sd_load_idx - Obtain the load index for a given sched domain.
6162 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6163 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6164 *
6165 * Return: The load index.
1e3c88bd
PZ
6166 */
6167static inline int get_sd_load_idx(struct sched_domain *sd,
6168 enum cpu_idle_type idle)
6169{
6170 int load_idx;
6171
6172 switch (idle) {
6173 case CPU_NOT_IDLE:
6174 load_idx = sd->busy_idx;
6175 break;
6176
6177 case CPU_NEWLY_IDLE:
6178 load_idx = sd->newidle_idx;
6179 break;
6180 default:
6181 load_idx = sd->idle_idx;
6182 break;
6183 }
6184
6185 return load_idx;
6186}
6187
26bc3c50 6188static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6189{
26bc3c50
VG
6190 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6191 return sd->smt_gain / sd->span_weight;
1e3c88bd 6192
26bc3c50 6193 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6194}
6195
26bc3c50 6196unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6197{
26bc3c50 6198 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6199}
6200
ced549fa 6201static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6202{
6203 struct rq *rq = cpu_rq(cpu);
b5b4860d 6204 u64 total, used, age_stamp, avg;
cadefd3d 6205 s64 delta;
1e3c88bd 6206
b654f7de
PZ
6207 /*
6208 * Since we're reading these variables without serialization make sure
6209 * we read them once before doing sanity checks on them.
6210 */
316c1608
JL
6211 age_stamp = READ_ONCE(rq->age_stamp);
6212 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6213 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6214
cadefd3d
PZ
6215 if (unlikely(delta < 0))
6216 delta = 0;
6217
6218 total = sched_avg_period() + delta;
aa483808 6219
b5b4860d 6220 used = div_u64(avg, total);
1e3c88bd 6221
b5b4860d
VG
6222 if (likely(used < SCHED_CAPACITY_SCALE))
6223 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6224
b5b4860d 6225 return 1;
1e3c88bd
PZ
6226}
6227
ced549fa 6228static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6229{
ca8ce3d0 6230 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6231 struct sched_group *sdg = sd->groups;
6232
26bc3c50
VG
6233 if (sched_feat(ARCH_CAPACITY))
6234 capacity *= arch_scale_cpu_capacity(sd, cpu);
6235 else
6236 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 6237
26bc3c50 6238 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6239
ca6d75e6 6240 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6241
ced549fa 6242 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6243 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6244
ced549fa
NP
6245 if (!capacity)
6246 capacity = 1;
1e3c88bd 6247
ced549fa
NP
6248 cpu_rq(cpu)->cpu_capacity = capacity;
6249 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6250}
6251
63b2ca30 6252void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6253{
6254 struct sched_domain *child = sd->child;
6255 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6256 unsigned long capacity;
4ec4412e
VG
6257 unsigned long interval;
6258
6259 interval = msecs_to_jiffies(sd->balance_interval);
6260 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6261 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6262
6263 if (!child) {
ced549fa 6264 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6265 return;
6266 }
6267
dc7ff76e 6268 capacity = 0;
1e3c88bd 6269
74a5ce20
PZ
6270 if (child->flags & SD_OVERLAP) {
6271 /*
6272 * SD_OVERLAP domains cannot assume that child groups
6273 * span the current group.
6274 */
6275
863bffc8 6276 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6277 struct sched_group_capacity *sgc;
9abf24d4 6278 struct rq *rq = cpu_rq(cpu);
863bffc8 6279
9abf24d4 6280 /*
63b2ca30 6281 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6282 * gets here before we've attached the domains to the
6283 * runqueues.
6284 *
ced549fa
NP
6285 * Use capacity_of(), which is set irrespective of domains
6286 * in update_cpu_capacity().
9abf24d4 6287 *
dc7ff76e 6288 * This avoids capacity from being 0 and
9abf24d4 6289 * causing divide-by-zero issues on boot.
9abf24d4
SD
6290 */
6291 if (unlikely(!rq->sd)) {
ced549fa 6292 capacity += capacity_of(cpu);
9abf24d4
SD
6293 continue;
6294 }
863bffc8 6295
63b2ca30 6296 sgc = rq->sd->groups->sgc;
63b2ca30 6297 capacity += sgc->capacity;
863bffc8 6298 }
74a5ce20
PZ
6299 } else {
6300 /*
6301 * !SD_OVERLAP domains can assume that child groups
6302 * span the current group.
6303 */
6304
6305 group = child->groups;
6306 do {
63b2ca30 6307 capacity += group->sgc->capacity;
74a5ce20
PZ
6308 group = group->next;
6309 } while (group != child->groups);
6310 }
1e3c88bd 6311
63b2ca30 6312 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6313}
6314
9d5efe05 6315/*
ea67821b
VG
6316 * Check whether the capacity of the rq has been noticeably reduced by side
6317 * activity. The imbalance_pct is used for the threshold.
6318 * Return true is the capacity is reduced
9d5efe05
SV
6319 */
6320static inline int
ea67821b 6321check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6322{
ea67821b
VG
6323 return ((rq->cpu_capacity * sd->imbalance_pct) <
6324 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6325}
6326
30ce5dab
PZ
6327/*
6328 * Group imbalance indicates (and tries to solve) the problem where balancing
6329 * groups is inadequate due to tsk_cpus_allowed() constraints.
6330 *
6331 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6332 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6333 * Something like:
6334 *
6335 * { 0 1 2 3 } { 4 5 6 7 }
6336 * * * * *
6337 *
6338 * If we were to balance group-wise we'd place two tasks in the first group and
6339 * two tasks in the second group. Clearly this is undesired as it will overload
6340 * cpu 3 and leave one of the cpus in the second group unused.
6341 *
6342 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6343 * by noticing the lower domain failed to reach balance and had difficulty
6344 * moving tasks due to affinity constraints.
30ce5dab
PZ
6345 *
6346 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6347 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6348 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6349 * to create an effective group imbalance.
6350 *
6351 * This is a somewhat tricky proposition since the next run might not find the
6352 * group imbalance and decide the groups need to be balanced again. A most
6353 * subtle and fragile situation.
6354 */
6355
6263322c 6356static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6357{
63b2ca30 6358 return group->sgc->imbalance;
30ce5dab
PZ
6359}
6360
b37d9316 6361/*
ea67821b
VG
6362 * group_has_capacity returns true if the group has spare capacity that could
6363 * be used by some tasks.
6364 * We consider that a group has spare capacity if the * number of task is
6365 * smaller than the number of CPUs or if the usage is lower than the available
6366 * capacity for CFS tasks.
6367 * For the latter, we use a threshold to stabilize the state, to take into
6368 * account the variance of the tasks' load and to return true if the available
6369 * capacity in meaningful for the load balancer.
6370 * As an example, an available capacity of 1% can appear but it doesn't make
6371 * any benefit for the load balance.
b37d9316 6372 */
ea67821b
VG
6373static inline bool
6374group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6375{
ea67821b
VG
6376 if (sgs->sum_nr_running < sgs->group_weight)
6377 return true;
c61037e9 6378
ea67821b
VG
6379 if ((sgs->group_capacity * 100) >
6380 (sgs->group_usage * env->sd->imbalance_pct))
6381 return true;
b37d9316 6382
ea67821b
VG
6383 return false;
6384}
6385
6386/*
6387 * group_is_overloaded returns true if the group has more tasks than it can
6388 * handle.
6389 * group_is_overloaded is not equals to !group_has_capacity because a group
6390 * with the exact right number of tasks, has no more spare capacity but is not
6391 * overloaded so both group_has_capacity and group_is_overloaded return
6392 * false.
6393 */
6394static inline bool
6395group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6396{
6397 if (sgs->sum_nr_running <= sgs->group_weight)
6398 return false;
b37d9316 6399
ea67821b
VG
6400 if ((sgs->group_capacity * 100) <
6401 (sgs->group_usage * env->sd->imbalance_pct))
6402 return true;
b37d9316 6403
ea67821b 6404 return false;
b37d9316
PZ
6405}
6406
ea67821b
VG
6407static enum group_type group_classify(struct lb_env *env,
6408 struct sched_group *group,
6409 struct sg_lb_stats *sgs)
caeb178c 6410{
ea67821b 6411 if (sgs->group_no_capacity)
caeb178c
RR
6412 return group_overloaded;
6413
6414 if (sg_imbalanced(group))
6415 return group_imbalanced;
6416
6417 return group_other;
6418}
6419
1e3c88bd
PZ
6420/**
6421 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6422 * @env: The load balancing environment.
1e3c88bd 6423 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6424 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6425 * @local_group: Does group contain this_cpu.
1e3c88bd 6426 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6427 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6428 */
bd939f45
PZ
6429static inline void update_sg_lb_stats(struct lb_env *env,
6430 struct sched_group *group, int load_idx,
4486edd1
TC
6431 int local_group, struct sg_lb_stats *sgs,
6432 bool *overload)
1e3c88bd 6433{
30ce5dab 6434 unsigned long load;
bd939f45 6435 int i;
1e3c88bd 6436
b72ff13c
PZ
6437 memset(sgs, 0, sizeof(*sgs));
6438
b9403130 6439 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6440 struct rq *rq = cpu_rq(i);
6441
1e3c88bd 6442 /* Bias balancing toward cpus of our domain */
6263322c 6443 if (local_group)
04f733b4 6444 load = target_load(i, load_idx);
6263322c 6445 else
1e3c88bd 6446 load = source_load(i, load_idx);
1e3c88bd
PZ
6447
6448 sgs->group_load += load;
8bb5b00c 6449 sgs->group_usage += get_cpu_usage(i);
65fdac08 6450 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6451
6452 if (rq->nr_running > 1)
6453 *overload = true;
6454
0ec8aa00
PZ
6455#ifdef CONFIG_NUMA_BALANCING
6456 sgs->nr_numa_running += rq->nr_numa_running;
6457 sgs->nr_preferred_running += rq->nr_preferred_running;
6458#endif
1e3c88bd 6459 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6460 if (idle_cpu(i))
6461 sgs->idle_cpus++;
1e3c88bd
PZ
6462 }
6463
63b2ca30
NP
6464 /* Adjust by relative CPU capacity of the group */
6465 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6466 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6467
dd5feea1 6468 if (sgs->sum_nr_running)
38d0f770 6469 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6470
aae6d3dd 6471 sgs->group_weight = group->group_weight;
b37d9316 6472
ea67821b
VG
6473 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6474 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6475}
6476
532cb4c4
MN
6477/**
6478 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6479 * @env: The load balancing environment.
532cb4c4
MN
6480 * @sds: sched_domain statistics
6481 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6482 * @sgs: sched_group statistics
532cb4c4
MN
6483 *
6484 * Determine if @sg is a busier group than the previously selected
6485 * busiest group.
e69f6186
YB
6486 *
6487 * Return: %true if @sg is a busier group than the previously selected
6488 * busiest group. %false otherwise.
532cb4c4 6489 */
bd939f45 6490static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6491 struct sd_lb_stats *sds,
6492 struct sched_group *sg,
bd939f45 6493 struct sg_lb_stats *sgs)
532cb4c4 6494{
caeb178c 6495 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6496
caeb178c 6497 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6498 return true;
6499
caeb178c
RR
6500 if (sgs->group_type < busiest->group_type)
6501 return false;
6502
6503 if (sgs->avg_load <= busiest->avg_load)
6504 return false;
6505
6506 /* This is the busiest node in its class. */
6507 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6508 return true;
6509
6510 /*
6511 * ASYM_PACKING needs to move all the work to the lowest
6512 * numbered CPUs in the group, therefore mark all groups
6513 * higher than ourself as busy.
6514 */
caeb178c 6515 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6516 if (!sds->busiest)
6517 return true;
6518
6519 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6520 return true;
6521 }
6522
6523 return false;
6524}
6525
0ec8aa00
PZ
6526#ifdef CONFIG_NUMA_BALANCING
6527static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6528{
6529 if (sgs->sum_nr_running > sgs->nr_numa_running)
6530 return regular;
6531 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6532 return remote;
6533 return all;
6534}
6535
6536static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6537{
6538 if (rq->nr_running > rq->nr_numa_running)
6539 return regular;
6540 if (rq->nr_running > rq->nr_preferred_running)
6541 return remote;
6542 return all;
6543}
6544#else
6545static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6546{
6547 return all;
6548}
6549
6550static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6551{
6552 return regular;
6553}
6554#endif /* CONFIG_NUMA_BALANCING */
6555
1e3c88bd 6556/**
461819ac 6557 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6558 * @env: The load balancing environment.
1e3c88bd
PZ
6559 * @sds: variable to hold the statistics for this sched_domain.
6560 */
0ec8aa00 6561static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6562{
bd939f45
PZ
6563 struct sched_domain *child = env->sd->child;
6564 struct sched_group *sg = env->sd->groups;
56cf515b 6565 struct sg_lb_stats tmp_sgs;
1e3c88bd 6566 int load_idx, prefer_sibling = 0;
4486edd1 6567 bool overload = false;
1e3c88bd
PZ
6568
6569 if (child && child->flags & SD_PREFER_SIBLING)
6570 prefer_sibling = 1;
6571
bd939f45 6572 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6573
6574 do {
56cf515b 6575 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6576 int local_group;
6577
bd939f45 6578 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6579 if (local_group) {
6580 sds->local = sg;
6581 sgs = &sds->local_stat;
b72ff13c
PZ
6582
6583 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6584 time_after_eq(jiffies, sg->sgc->next_update))
6585 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6586 }
1e3c88bd 6587
4486edd1
TC
6588 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6589 &overload);
1e3c88bd 6590
b72ff13c
PZ
6591 if (local_group)
6592 goto next_group;
6593
1e3c88bd
PZ
6594 /*
6595 * In case the child domain prefers tasks go to siblings
ea67821b 6596 * first, lower the sg capacity so that we'll try
75dd321d
NR
6597 * and move all the excess tasks away. We lower the capacity
6598 * of a group only if the local group has the capacity to fit
ea67821b
VG
6599 * these excess tasks. The extra check prevents the case where
6600 * you always pull from the heaviest group when it is already
6601 * under-utilized (possible with a large weight task outweighs
6602 * the tasks on the system).
1e3c88bd 6603 */
b72ff13c 6604 if (prefer_sibling && sds->local &&
ea67821b
VG
6605 group_has_capacity(env, &sds->local_stat) &&
6606 (sgs->sum_nr_running > 1)) {
6607 sgs->group_no_capacity = 1;
6608 sgs->group_type = group_overloaded;
cb0b9f24 6609 }
1e3c88bd 6610
b72ff13c 6611 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6612 sds->busiest = sg;
56cf515b 6613 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6614 }
6615
b72ff13c
PZ
6616next_group:
6617 /* Now, start updating sd_lb_stats */
6618 sds->total_load += sgs->group_load;
63b2ca30 6619 sds->total_capacity += sgs->group_capacity;
b72ff13c 6620
532cb4c4 6621 sg = sg->next;
bd939f45 6622 } while (sg != env->sd->groups);
0ec8aa00
PZ
6623
6624 if (env->sd->flags & SD_NUMA)
6625 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6626
6627 if (!env->sd->parent) {
6628 /* update overload indicator if we are at root domain */
6629 if (env->dst_rq->rd->overload != overload)
6630 env->dst_rq->rd->overload = overload;
6631 }
6632
532cb4c4
MN
6633}
6634
532cb4c4
MN
6635/**
6636 * check_asym_packing - Check to see if the group is packed into the
6637 * sched doman.
6638 *
6639 * This is primarily intended to used at the sibling level. Some
6640 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6641 * case of POWER7, it can move to lower SMT modes only when higher
6642 * threads are idle. When in lower SMT modes, the threads will
6643 * perform better since they share less core resources. Hence when we
6644 * have idle threads, we want them to be the higher ones.
6645 *
6646 * This packing function is run on idle threads. It checks to see if
6647 * the busiest CPU in this domain (core in the P7 case) has a higher
6648 * CPU number than the packing function is being run on. Here we are
6649 * assuming lower CPU number will be equivalent to lower a SMT thread
6650 * number.
6651 *
e69f6186 6652 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6653 * this CPU. The amount of the imbalance is returned in *imbalance.
6654 *
cd96891d 6655 * @env: The load balancing environment.
532cb4c4 6656 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6657 */
bd939f45 6658static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6659{
6660 int busiest_cpu;
6661
bd939f45 6662 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6663 return 0;
6664
6665 if (!sds->busiest)
6666 return 0;
6667
6668 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6669 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6670 return 0;
6671
bd939f45 6672 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6673 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6674 SCHED_CAPACITY_SCALE);
bd939f45 6675
532cb4c4 6676 return 1;
1e3c88bd
PZ
6677}
6678
6679/**
6680 * fix_small_imbalance - Calculate the minor imbalance that exists
6681 * amongst the groups of a sched_domain, during
6682 * load balancing.
cd96891d 6683 * @env: The load balancing environment.
1e3c88bd 6684 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6685 */
bd939f45
PZ
6686static inline
6687void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6688{
63b2ca30 6689 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6690 unsigned int imbn = 2;
dd5feea1 6691 unsigned long scaled_busy_load_per_task;
56cf515b 6692 struct sg_lb_stats *local, *busiest;
1e3c88bd 6693
56cf515b
JK
6694 local = &sds->local_stat;
6695 busiest = &sds->busiest_stat;
1e3c88bd 6696
56cf515b
JK
6697 if (!local->sum_nr_running)
6698 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6699 else if (busiest->load_per_task > local->load_per_task)
6700 imbn = 1;
dd5feea1 6701
56cf515b 6702 scaled_busy_load_per_task =
ca8ce3d0 6703 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6704 busiest->group_capacity;
56cf515b 6705
3029ede3
VD
6706 if (busiest->avg_load + scaled_busy_load_per_task >=
6707 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6708 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6709 return;
6710 }
6711
6712 /*
6713 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6714 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6715 * moving them.
6716 */
6717
63b2ca30 6718 capa_now += busiest->group_capacity *
56cf515b 6719 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6720 capa_now += local->group_capacity *
56cf515b 6721 min(local->load_per_task, local->avg_load);
ca8ce3d0 6722 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6723
6724 /* Amount of load we'd subtract */
a2cd4260 6725 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6726 capa_move += busiest->group_capacity *
56cf515b 6727 min(busiest->load_per_task,
a2cd4260 6728 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6729 }
1e3c88bd
PZ
6730
6731 /* Amount of load we'd add */
63b2ca30 6732 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6733 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6734 tmp = (busiest->avg_load * busiest->group_capacity) /
6735 local->group_capacity;
56cf515b 6736 } else {
ca8ce3d0 6737 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6738 local->group_capacity;
56cf515b 6739 }
63b2ca30 6740 capa_move += local->group_capacity *
3ae11c90 6741 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6742 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6743
6744 /* Move if we gain throughput */
63b2ca30 6745 if (capa_move > capa_now)
56cf515b 6746 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6747}
6748
6749/**
6750 * calculate_imbalance - Calculate the amount of imbalance present within the
6751 * groups of a given sched_domain during load balance.
bd939f45 6752 * @env: load balance environment
1e3c88bd 6753 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6754 */
bd939f45 6755static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6756{
dd5feea1 6757 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6758 struct sg_lb_stats *local, *busiest;
6759
6760 local = &sds->local_stat;
56cf515b 6761 busiest = &sds->busiest_stat;
dd5feea1 6762
caeb178c 6763 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6764 /*
6765 * In the group_imb case we cannot rely on group-wide averages
6766 * to ensure cpu-load equilibrium, look at wider averages. XXX
6767 */
56cf515b
JK
6768 busiest->load_per_task =
6769 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6770 }
6771
1e3c88bd
PZ
6772 /*
6773 * In the presence of smp nice balancing, certain scenarios can have
6774 * max load less than avg load(as we skip the groups at or below
ced549fa 6775 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6776 */
b1885550
VD
6777 if (busiest->avg_load <= sds->avg_load ||
6778 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6779 env->imbalance = 0;
6780 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6781 }
6782
9a5d9ba6
PZ
6783 /*
6784 * If there aren't any idle cpus, avoid creating some.
6785 */
6786 if (busiest->group_type == group_overloaded &&
6787 local->group_type == group_overloaded) {
ea67821b
VG
6788 load_above_capacity = busiest->sum_nr_running *
6789 SCHED_LOAD_SCALE;
6790 if (load_above_capacity > busiest->group_capacity)
6791 load_above_capacity -= busiest->group_capacity;
6792 else
6793 load_above_capacity = ~0UL;
dd5feea1
SS
6794 }
6795
6796 /*
6797 * We're trying to get all the cpus to the average_load, so we don't
6798 * want to push ourselves above the average load, nor do we wish to
6799 * reduce the max loaded cpu below the average load. At the same time,
6800 * we also don't want to reduce the group load below the group capacity
6801 * (so that we can implement power-savings policies etc). Thus we look
6802 * for the minimum possible imbalance.
dd5feea1 6803 */
30ce5dab 6804 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6805
6806 /* How much load to actually move to equalise the imbalance */
56cf515b 6807 env->imbalance = min(
63b2ca30
NP
6808 max_pull * busiest->group_capacity,
6809 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6810 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6811
6812 /*
6813 * if *imbalance is less than the average load per runnable task
25985edc 6814 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6815 * a think about bumping its value to force at least one task to be
6816 * moved
6817 */
56cf515b 6818 if (env->imbalance < busiest->load_per_task)
bd939f45 6819 return fix_small_imbalance(env, sds);
1e3c88bd 6820}
fab47622 6821
1e3c88bd
PZ
6822/******* find_busiest_group() helpers end here *********************/
6823
6824/**
6825 * find_busiest_group - Returns the busiest group within the sched_domain
6826 * if there is an imbalance. If there isn't an imbalance, and
6827 * the user has opted for power-savings, it returns a group whose
6828 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6829 * such a group exists.
6830 *
6831 * Also calculates the amount of weighted load which should be moved
6832 * to restore balance.
6833 *
cd96891d 6834 * @env: The load balancing environment.
1e3c88bd 6835 *
e69f6186 6836 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6837 * - If no imbalance and user has opted for power-savings balance,
6838 * return the least loaded group whose CPUs can be
6839 * put to idle by rebalancing its tasks onto our group.
6840 */
56cf515b 6841static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6842{
56cf515b 6843 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6844 struct sd_lb_stats sds;
6845
147c5fc2 6846 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6847
6848 /*
6849 * Compute the various statistics relavent for load balancing at
6850 * this level.
6851 */
23f0d209 6852 update_sd_lb_stats(env, &sds);
56cf515b
JK
6853 local = &sds.local_stat;
6854 busiest = &sds.busiest_stat;
1e3c88bd 6855
ea67821b 6856 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6857 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6858 check_asym_packing(env, &sds))
532cb4c4
MN
6859 return sds.busiest;
6860
cc57aa8f 6861 /* There is no busy sibling group to pull tasks from */
56cf515b 6862 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6863 goto out_balanced;
6864
ca8ce3d0
NP
6865 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6866 / sds.total_capacity;
b0432d8f 6867
866ab43e
PZ
6868 /*
6869 * If the busiest group is imbalanced the below checks don't
30ce5dab 6870 * work because they assume all things are equal, which typically
866ab43e
PZ
6871 * isn't true due to cpus_allowed constraints and the like.
6872 */
caeb178c 6873 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6874 goto force_balance;
6875
cc57aa8f 6876 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6877 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6878 busiest->group_no_capacity)
fab47622
NR
6879 goto force_balance;
6880
cc57aa8f 6881 /*
9c58c79a 6882 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6883 * don't try and pull any tasks.
6884 */
56cf515b 6885 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6886 goto out_balanced;
6887
cc57aa8f
PZ
6888 /*
6889 * Don't pull any tasks if this group is already above the domain
6890 * average load.
6891 */
56cf515b 6892 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6893 goto out_balanced;
6894
bd939f45 6895 if (env->idle == CPU_IDLE) {
aae6d3dd 6896 /*
43f4d666
VG
6897 * This cpu is idle. If the busiest group is not overloaded
6898 * and there is no imbalance between this and busiest group
6899 * wrt idle cpus, it is balanced. The imbalance becomes
6900 * significant if the diff is greater than 1 otherwise we
6901 * might end up to just move the imbalance on another group
aae6d3dd 6902 */
43f4d666
VG
6903 if ((busiest->group_type != group_overloaded) &&
6904 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6905 goto out_balanced;
c186fafe
PZ
6906 } else {
6907 /*
6908 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6909 * imbalance_pct to be conservative.
6910 */
56cf515b
JK
6911 if (100 * busiest->avg_load <=
6912 env->sd->imbalance_pct * local->avg_load)
c186fafe 6913 goto out_balanced;
aae6d3dd 6914 }
1e3c88bd 6915
fab47622 6916force_balance:
1e3c88bd 6917 /* Looks like there is an imbalance. Compute it */
bd939f45 6918 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6919 return sds.busiest;
6920
6921out_balanced:
bd939f45 6922 env->imbalance = 0;
1e3c88bd
PZ
6923 return NULL;
6924}
6925
6926/*
6927 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6928 */
bd939f45 6929static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6930 struct sched_group *group)
1e3c88bd
PZ
6931{
6932 struct rq *busiest = NULL, *rq;
ced549fa 6933 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6934 int i;
6935
6906a408 6936 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6937 unsigned long capacity, wl;
0ec8aa00
PZ
6938 enum fbq_type rt;
6939
6940 rq = cpu_rq(i);
6941 rt = fbq_classify_rq(rq);
1e3c88bd 6942
0ec8aa00
PZ
6943 /*
6944 * We classify groups/runqueues into three groups:
6945 * - regular: there are !numa tasks
6946 * - remote: there are numa tasks that run on the 'wrong' node
6947 * - all: there is no distinction
6948 *
6949 * In order to avoid migrating ideally placed numa tasks,
6950 * ignore those when there's better options.
6951 *
6952 * If we ignore the actual busiest queue to migrate another
6953 * task, the next balance pass can still reduce the busiest
6954 * queue by moving tasks around inside the node.
6955 *
6956 * If we cannot move enough load due to this classification
6957 * the next pass will adjust the group classification and
6958 * allow migration of more tasks.
6959 *
6960 * Both cases only affect the total convergence complexity.
6961 */
6962 if (rt > env->fbq_type)
6963 continue;
6964
ced549fa 6965 capacity = capacity_of(i);
9d5efe05 6966
6e40f5bb 6967 wl = weighted_cpuload(i);
1e3c88bd 6968
6e40f5bb
TG
6969 /*
6970 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6971 * which is not scaled with the cpu capacity.
6e40f5bb 6972 */
ea67821b
VG
6973
6974 if (rq->nr_running == 1 && wl > env->imbalance &&
6975 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6976 continue;
6977
6e40f5bb
TG
6978 /*
6979 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6980 * the weighted_cpuload() scaled with the cpu capacity, so
6981 * that the load can be moved away from the cpu that is
6982 * potentially running at a lower capacity.
95a79b80 6983 *
ced549fa 6984 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6985 * multiplication to rid ourselves of the division works out
ced549fa
NP
6986 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6987 * our previous maximum.
6e40f5bb 6988 */
ced549fa 6989 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6990 busiest_load = wl;
ced549fa 6991 busiest_capacity = capacity;
1e3c88bd
PZ
6992 busiest = rq;
6993 }
6994 }
6995
6996 return busiest;
6997}
6998
6999/*
7000 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7001 * so long as it is large enough.
7002 */
7003#define MAX_PINNED_INTERVAL 512
7004
7005/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7006DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7007
bd939f45 7008static int need_active_balance(struct lb_env *env)
1af3ed3d 7009{
bd939f45
PZ
7010 struct sched_domain *sd = env->sd;
7011
7012 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7013
7014 /*
7015 * ASYM_PACKING needs to force migrate tasks from busy but
7016 * higher numbered CPUs in order to pack all tasks in the
7017 * lowest numbered CPUs.
7018 */
bd939f45 7019 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7020 return 1;
1af3ed3d
PZ
7021 }
7022
1aaf90a4
VG
7023 /*
7024 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7025 * It's worth migrating the task if the src_cpu's capacity is reduced
7026 * because of other sched_class or IRQs if more capacity stays
7027 * available on dst_cpu.
7028 */
7029 if ((env->idle != CPU_NOT_IDLE) &&
7030 (env->src_rq->cfs.h_nr_running == 1)) {
7031 if ((check_cpu_capacity(env->src_rq, sd)) &&
7032 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7033 return 1;
7034 }
7035
1af3ed3d
PZ
7036 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7037}
7038
969c7921
TH
7039static int active_load_balance_cpu_stop(void *data);
7040
23f0d209
JK
7041static int should_we_balance(struct lb_env *env)
7042{
7043 struct sched_group *sg = env->sd->groups;
7044 struct cpumask *sg_cpus, *sg_mask;
7045 int cpu, balance_cpu = -1;
7046
7047 /*
7048 * In the newly idle case, we will allow all the cpu's
7049 * to do the newly idle load balance.
7050 */
7051 if (env->idle == CPU_NEWLY_IDLE)
7052 return 1;
7053
7054 sg_cpus = sched_group_cpus(sg);
7055 sg_mask = sched_group_mask(sg);
7056 /* Try to find first idle cpu */
7057 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7058 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7059 continue;
7060
7061 balance_cpu = cpu;
7062 break;
7063 }
7064
7065 if (balance_cpu == -1)
7066 balance_cpu = group_balance_cpu(sg);
7067
7068 /*
7069 * First idle cpu or the first cpu(busiest) in this sched group
7070 * is eligible for doing load balancing at this and above domains.
7071 */
b0cff9d8 7072 return balance_cpu == env->dst_cpu;
23f0d209
JK
7073}
7074
1e3c88bd
PZ
7075/*
7076 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7077 * tasks if there is an imbalance.
7078 */
7079static int load_balance(int this_cpu, struct rq *this_rq,
7080 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7081 int *continue_balancing)
1e3c88bd 7082{
88b8dac0 7083 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7084 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7085 struct sched_group *group;
1e3c88bd
PZ
7086 struct rq *busiest;
7087 unsigned long flags;
4ba29684 7088 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7089
8e45cb54
PZ
7090 struct lb_env env = {
7091 .sd = sd,
ddcdf6e7
PZ
7092 .dst_cpu = this_cpu,
7093 .dst_rq = this_rq,
88b8dac0 7094 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7095 .idle = idle,
eb95308e 7096 .loop_break = sched_nr_migrate_break,
b9403130 7097 .cpus = cpus,
0ec8aa00 7098 .fbq_type = all,
163122b7 7099 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7100 };
7101
cfc03118
JK
7102 /*
7103 * For NEWLY_IDLE load_balancing, we don't need to consider
7104 * other cpus in our group
7105 */
e02e60c1 7106 if (idle == CPU_NEWLY_IDLE)
cfc03118 7107 env.dst_grpmask = NULL;
cfc03118 7108
1e3c88bd
PZ
7109 cpumask_copy(cpus, cpu_active_mask);
7110
1e3c88bd
PZ
7111 schedstat_inc(sd, lb_count[idle]);
7112
7113redo:
23f0d209
JK
7114 if (!should_we_balance(&env)) {
7115 *continue_balancing = 0;
1e3c88bd 7116 goto out_balanced;
23f0d209 7117 }
1e3c88bd 7118
23f0d209 7119 group = find_busiest_group(&env);
1e3c88bd
PZ
7120 if (!group) {
7121 schedstat_inc(sd, lb_nobusyg[idle]);
7122 goto out_balanced;
7123 }
7124
b9403130 7125 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7126 if (!busiest) {
7127 schedstat_inc(sd, lb_nobusyq[idle]);
7128 goto out_balanced;
7129 }
7130
78feefc5 7131 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7132
bd939f45 7133 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7134
1aaf90a4
VG
7135 env.src_cpu = busiest->cpu;
7136 env.src_rq = busiest;
7137
1e3c88bd
PZ
7138 ld_moved = 0;
7139 if (busiest->nr_running > 1) {
7140 /*
7141 * Attempt to move tasks. If find_busiest_group has found
7142 * an imbalance but busiest->nr_running <= 1, the group is
7143 * still unbalanced. ld_moved simply stays zero, so it is
7144 * correctly treated as an imbalance.
7145 */
8e45cb54 7146 env.flags |= LBF_ALL_PINNED;
c82513e5 7147 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7148
5d6523eb 7149more_balance:
163122b7 7150 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7151
7152 /*
7153 * cur_ld_moved - load moved in current iteration
7154 * ld_moved - cumulative load moved across iterations
7155 */
163122b7 7156 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7157
7158 /*
163122b7
KT
7159 * We've detached some tasks from busiest_rq. Every
7160 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7161 * unlock busiest->lock, and we are able to be sure
7162 * that nobody can manipulate the tasks in parallel.
7163 * See task_rq_lock() family for the details.
1e3c88bd 7164 */
163122b7
KT
7165
7166 raw_spin_unlock(&busiest->lock);
7167
7168 if (cur_ld_moved) {
7169 attach_tasks(&env);
7170 ld_moved += cur_ld_moved;
7171 }
7172
1e3c88bd 7173 local_irq_restore(flags);
88b8dac0 7174
f1cd0858
JK
7175 if (env.flags & LBF_NEED_BREAK) {
7176 env.flags &= ~LBF_NEED_BREAK;
7177 goto more_balance;
7178 }
7179
88b8dac0
SV
7180 /*
7181 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7182 * us and move them to an alternate dst_cpu in our sched_group
7183 * where they can run. The upper limit on how many times we
7184 * iterate on same src_cpu is dependent on number of cpus in our
7185 * sched_group.
7186 *
7187 * This changes load balance semantics a bit on who can move
7188 * load to a given_cpu. In addition to the given_cpu itself
7189 * (or a ilb_cpu acting on its behalf where given_cpu is
7190 * nohz-idle), we now have balance_cpu in a position to move
7191 * load to given_cpu. In rare situations, this may cause
7192 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7193 * _independently_ and at _same_ time to move some load to
7194 * given_cpu) causing exceess load to be moved to given_cpu.
7195 * This however should not happen so much in practice and
7196 * moreover subsequent load balance cycles should correct the
7197 * excess load moved.
7198 */
6263322c 7199 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7200
7aff2e3a
VD
7201 /* Prevent to re-select dst_cpu via env's cpus */
7202 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7203
78feefc5 7204 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7205 env.dst_cpu = env.new_dst_cpu;
6263322c 7206 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7207 env.loop = 0;
7208 env.loop_break = sched_nr_migrate_break;
e02e60c1 7209
88b8dac0
SV
7210 /*
7211 * Go back to "more_balance" rather than "redo" since we
7212 * need to continue with same src_cpu.
7213 */
7214 goto more_balance;
7215 }
1e3c88bd 7216
6263322c
PZ
7217 /*
7218 * We failed to reach balance because of affinity.
7219 */
7220 if (sd_parent) {
63b2ca30 7221 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7222
afdeee05 7223 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7224 *group_imbalance = 1;
6263322c
PZ
7225 }
7226
1e3c88bd 7227 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7228 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7229 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7230 if (!cpumask_empty(cpus)) {
7231 env.loop = 0;
7232 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7233 goto redo;
bbf18b19 7234 }
afdeee05 7235 goto out_all_pinned;
1e3c88bd
PZ
7236 }
7237 }
7238
7239 if (!ld_moved) {
7240 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7241 /*
7242 * Increment the failure counter only on periodic balance.
7243 * We do not want newidle balance, which can be very
7244 * frequent, pollute the failure counter causing
7245 * excessive cache_hot migrations and active balances.
7246 */
7247 if (idle != CPU_NEWLY_IDLE)
7248 sd->nr_balance_failed++;
1e3c88bd 7249
bd939f45 7250 if (need_active_balance(&env)) {
1e3c88bd
PZ
7251 raw_spin_lock_irqsave(&busiest->lock, flags);
7252
969c7921
TH
7253 /* don't kick the active_load_balance_cpu_stop,
7254 * if the curr task on busiest cpu can't be
7255 * moved to this_cpu
1e3c88bd
PZ
7256 */
7257 if (!cpumask_test_cpu(this_cpu,
fa17b507 7258 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7259 raw_spin_unlock_irqrestore(&busiest->lock,
7260 flags);
8e45cb54 7261 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7262 goto out_one_pinned;
7263 }
7264
969c7921
TH
7265 /*
7266 * ->active_balance synchronizes accesses to
7267 * ->active_balance_work. Once set, it's cleared
7268 * only after active load balance is finished.
7269 */
1e3c88bd
PZ
7270 if (!busiest->active_balance) {
7271 busiest->active_balance = 1;
7272 busiest->push_cpu = this_cpu;
7273 active_balance = 1;
7274 }
7275 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7276
bd939f45 7277 if (active_balance) {
969c7921
TH
7278 stop_one_cpu_nowait(cpu_of(busiest),
7279 active_load_balance_cpu_stop, busiest,
7280 &busiest->active_balance_work);
bd939f45 7281 }
1e3c88bd
PZ
7282
7283 /*
7284 * We've kicked active balancing, reset the failure
7285 * counter.
7286 */
7287 sd->nr_balance_failed = sd->cache_nice_tries+1;
7288 }
7289 } else
7290 sd->nr_balance_failed = 0;
7291
7292 if (likely(!active_balance)) {
7293 /* We were unbalanced, so reset the balancing interval */
7294 sd->balance_interval = sd->min_interval;
7295 } else {
7296 /*
7297 * If we've begun active balancing, start to back off. This
7298 * case may not be covered by the all_pinned logic if there
7299 * is only 1 task on the busy runqueue (because we don't call
163122b7 7300 * detach_tasks).
1e3c88bd
PZ
7301 */
7302 if (sd->balance_interval < sd->max_interval)
7303 sd->balance_interval *= 2;
7304 }
7305
1e3c88bd
PZ
7306 goto out;
7307
7308out_balanced:
afdeee05
VG
7309 /*
7310 * We reach balance although we may have faced some affinity
7311 * constraints. Clear the imbalance flag if it was set.
7312 */
7313 if (sd_parent) {
7314 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7315
7316 if (*group_imbalance)
7317 *group_imbalance = 0;
7318 }
7319
7320out_all_pinned:
7321 /*
7322 * We reach balance because all tasks are pinned at this level so
7323 * we can't migrate them. Let the imbalance flag set so parent level
7324 * can try to migrate them.
7325 */
1e3c88bd
PZ
7326 schedstat_inc(sd, lb_balanced[idle]);
7327
7328 sd->nr_balance_failed = 0;
7329
7330out_one_pinned:
7331 /* tune up the balancing interval */
8e45cb54 7332 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7333 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7334 (sd->balance_interval < sd->max_interval))
7335 sd->balance_interval *= 2;
7336
46e49b38 7337 ld_moved = 0;
1e3c88bd 7338out:
1e3c88bd
PZ
7339 return ld_moved;
7340}
7341
52a08ef1
JL
7342static inline unsigned long
7343get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7344{
7345 unsigned long interval = sd->balance_interval;
7346
7347 if (cpu_busy)
7348 interval *= sd->busy_factor;
7349
7350 /* scale ms to jiffies */
7351 interval = msecs_to_jiffies(interval);
7352 interval = clamp(interval, 1UL, max_load_balance_interval);
7353
7354 return interval;
7355}
7356
7357static inline void
7358update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7359{
7360 unsigned long interval, next;
7361
7362 interval = get_sd_balance_interval(sd, cpu_busy);
7363 next = sd->last_balance + interval;
7364
7365 if (time_after(*next_balance, next))
7366 *next_balance = next;
7367}
7368
1e3c88bd
PZ
7369/*
7370 * idle_balance is called by schedule() if this_cpu is about to become
7371 * idle. Attempts to pull tasks from other CPUs.
7372 */
6e83125c 7373static int idle_balance(struct rq *this_rq)
1e3c88bd 7374{
52a08ef1
JL
7375 unsigned long next_balance = jiffies + HZ;
7376 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7377 struct sched_domain *sd;
7378 int pulled_task = 0;
9bd721c5 7379 u64 curr_cost = 0;
1e3c88bd 7380
6e83125c 7381 idle_enter_fair(this_rq);
0e5b5337 7382
6e83125c
PZ
7383 /*
7384 * We must set idle_stamp _before_ calling idle_balance(), such that we
7385 * measure the duration of idle_balance() as idle time.
7386 */
7387 this_rq->idle_stamp = rq_clock(this_rq);
7388
4486edd1
TC
7389 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7390 !this_rq->rd->overload) {
52a08ef1
JL
7391 rcu_read_lock();
7392 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7393 if (sd)
7394 update_next_balance(sd, 0, &next_balance);
7395 rcu_read_unlock();
7396
6e83125c 7397 goto out;
52a08ef1 7398 }
1e3c88bd 7399
f492e12e
PZ
7400 raw_spin_unlock(&this_rq->lock);
7401
48a16753 7402 update_blocked_averages(this_cpu);
dce840a0 7403 rcu_read_lock();
1e3c88bd 7404 for_each_domain(this_cpu, sd) {
23f0d209 7405 int continue_balancing = 1;
9bd721c5 7406 u64 t0, domain_cost;
1e3c88bd
PZ
7407
7408 if (!(sd->flags & SD_LOAD_BALANCE))
7409 continue;
7410
52a08ef1
JL
7411 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7412 update_next_balance(sd, 0, &next_balance);
9bd721c5 7413 break;
52a08ef1 7414 }
9bd721c5 7415
f492e12e 7416 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7417 t0 = sched_clock_cpu(this_cpu);
7418
f492e12e 7419 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7420 sd, CPU_NEWLY_IDLE,
7421 &continue_balancing);
9bd721c5
JL
7422
7423 domain_cost = sched_clock_cpu(this_cpu) - t0;
7424 if (domain_cost > sd->max_newidle_lb_cost)
7425 sd->max_newidle_lb_cost = domain_cost;
7426
7427 curr_cost += domain_cost;
f492e12e 7428 }
1e3c88bd 7429
52a08ef1 7430 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7431
7432 /*
7433 * Stop searching for tasks to pull if there are
7434 * now runnable tasks on this rq.
7435 */
7436 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7437 break;
1e3c88bd 7438 }
dce840a0 7439 rcu_read_unlock();
f492e12e
PZ
7440
7441 raw_spin_lock(&this_rq->lock);
7442
0e5b5337
JL
7443 if (curr_cost > this_rq->max_idle_balance_cost)
7444 this_rq->max_idle_balance_cost = curr_cost;
7445
e5fc6611 7446 /*
0e5b5337
JL
7447 * While browsing the domains, we released the rq lock, a task could
7448 * have been enqueued in the meantime. Since we're not going idle,
7449 * pretend we pulled a task.
e5fc6611 7450 */
0e5b5337 7451 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7452 pulled_task = 1;
e5fc6611 7453
52a08ef1
JL
7454out:
7455 /* Move the next balance forward */
7456 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7457 this_rq->next_balance = next_balance;
9bd721c5 7458
e4aa358b 7459 /* Is there a task of a high priority class? */
46383648 7460 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7461 pulled_task = -1;
7462
7463 if (pulled_task) {
7464 idle_exit_fair(this_rq);
6e83125c 7465 this_rq->idle_stamp = 0;
e4aa358b 7466 }
6e83125c 7467
3c4017c1 7468 return pulled_task;
1e3c88bd
PZ
7469}
7470
7471/*
969c7921
TH
7472 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7473 * running tasks off the busiest CPU onto idle CPUs. It requires at
7474 * least 1 task to be running on each physical CPU where possible, and
7475 * avoids physical / logical imbalances.
1e3c88bd 7476 */
969c7921 7477static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7478{
969c7921
TH
7479 struct rq *busiest_rq = data;
7480 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7481 int target_cpu = busiest_rq->push_cpu;
969c7921 7482 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7483 struct sched_domain *sd;
e5673f28 7484 struct task_struct *p = NULL;
969c7921
TH
7485
7486 raw_spin_lock_irq(&busiest_rq->lock);
7487
7488 /* make sure the requested cpu hasn't gone down in the meantime */
7489 if (unlikely(busiest_cpu != smp_processor_id() ||
7490 !busiest_rq->active_balance))
7491 goto out_unlock;
1e3c88bd
PZ
7492
7493 /* Is there any task to move? */
7494 if (busiest_rq->nr_running <= 1)
969c7921 7495 goto out_unlock;
1e3c88bd
PZ
7496
7497 /*
7498 * This condition is "impossible", if it occurs
7499 * we need to fix it. Originally reported by
7500 * Bjorn Helgaas on a 128-cpu setup.
7501 */
7502 BUG_ON(busiest_rq == target_rq);
7503
1e3c88bd 7504 /* Search for an sd spanning us and the target CPU. */
dce840a0 7505 rcu_read_lock();
1e3c88bd
PZ
7506 for_each_domain(target_cpu, sd) {
7507 if ((sd->flags & SD_LOAD_BALANCE) &&
7508 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7509 break;
7510 }
7511
7512 if (likely(sd)) {
8e45cb54
PZ
7513 struct lb_env env = {
7514 .sd = sd,
ddcdf6e7
PZ
7515 .dst_cpu = target_cpu,
7516 .dst_rq = target_rq,
7517 .src_cpu = busiest_rq->cpu,
7518 .src_rq = busiest_rq,
8e45cb54
PZ
7519 .idle = CPU_IDLE,
7520 };
7521
1e3c88bd
PZ
7522 schedstat_inc(sd, alb_count);
7523
e5673f28
KT
7524 p = detach_one_task(&env);
7525 if (p)
1e3c88bd
PZ
7526 schedstat_inc(sd, alb_pushed);
7527 else
7528 schedstat_inc(sd, alb_failed);
7529 }
dce840a0 7530 rcu_read_unlock();
969c7921
TH
7531out_unlock:
7532 busiest_rq->active_balance = 0;
e5673f28
KT
7533 raw_spin_unlock(&busiest_rq->lock);
7534
7535 if (p)
7536 attach_one_task(target_rq, p);
7537
7538 local_irq_enable();
7539
969c7921 7540 return 0;
1e3c88bd
PZ
7541}
7542
d987fc7f
MG
7543static inline int on_null_domain(struct rq *rq)
7544{
7545 return unlikely(!rcu_dereference_sched(rq->sd));
7546}
7547
3451d024 7548#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7549/*
7550 * idle load balancing details
83cd4fe2
VP
7551 * - When one of the busy CPUs notice that there may be an idle rebalancing
7552 * needed, they will kick the idle load balancer, which then does idle
7553 * load balancing for all the idle CPUs.
7554 */
1e3c88bd 7555static struct {
83cd4fe2 7556 cpumask_var_t idle_cpus_mask;
0b005cf5 7557 atomic_t nr_cpus;
83cd4fe2
VP
7558 unsigned long next_balance; /* in jiffy units */
7559} nohz ____cacheline_aligned;
1e3c88bd 7560
3dd0337d 7561static inline int find_new_ilb(void)
1e3c88bd 7562{
0b005cf5 7563 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7564
786d6dc7
SS
7565 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7566 return ilb;
7567
7568 return nr_cpu_ids;
1e3c88bd 7569}
1e3c88bd 7570
83cd4fe2
VP
7571/*
7572 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7573 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7574 * CPU (if there is one).
7575 */
0aeeeeba 7576static void nohz_balancer_kick(void)
83cd4fe2
VP
7577{
7578 int ilb_cpu;
7579
7580 nohz.next_balance++;
7581
3dd0337d 7582 ilb_cpu = find_new_ilb();
83cd4fe2 7583
0b005cf5
SS
7584 if (ilb_cpu >= nr_cpu_ids)
7585 return;
83cd4fe2 7586
cd490c5b 7587 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7588 return;
7589 /*
7590 * Use smp_send_reschedule() instead of resched_cpu().
7591 * This way we generate a sched IPI on the target cpu which
7592 * is idle. And the softirq performing nohz idle load balance
7593 * will be run before returning from the IPI.
7594 */
7595 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7596 return;
7597}
7598
c1cc017c 7599static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7600{
7601 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7602 /*
7603 * Completely isolated CPUs don't ever set, so we must test.
7604 */
7605 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7606 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7607 atomic_dec(&nohz.nr_cpus);
7608 }
71325960
SS
7609 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7610 }
7611}
7612
69e1e811
SS
7613static inline void set_cpu_sd_state_busy(void)
7614{
7615 struct sched_domain *sd;
37dc6b50 7616 int cpu = smp_processor_id();
69e1e811 7617
69e1e811 7618 rcu_read_lock();
37dc6b50 7619 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7620
7621 if (!sd || !sd->nohz_idle)
7622 goto unlock;
7623 sd->nohz_idle = 0;
7624
63b2ca30 7625 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7626unlock:
69e1e811
SS
7627 rcu_read_unlock();
7628}
7629
7630void set_cpu_sd_state_idle(void)
7631{
7632 struct sched_domain *sd;
37dc6b50 7633 int cpu = smp_processor_id();
69e1e811 7634
69e1e811 7635 rcu_read_lock();
37dc6b50 7636 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7637
7638 if (!sd || sd->nohz_idle)
7639 goto unlock;
7640 sd->nohz_idle = 1;
7641
63b2ca30 7642 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7643unlock:
69e1e811
SS
7644 rcu_read_unlock();
7645}
7646
1e3c88bd 7647/*
c1cc017c 7648 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7649 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7650 */
c1cc017c 7651void nohz_balance_enter_idle(int cpu)
1e3c88bd 7652{
71325960
SS
7653 /*
7654 * If this cpu is going down, then nothing needs to be done.
7655 */
7656 if (!cpu_active(cpu))
7657 return;
7658
c1cc017c
AS
7659 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7660 return;
1e3c88bd 7661
d987fc7f
MG
7662 /*
7663 * If we're a completely isolated CPU, we don't play.
7664 */
7665 if (on_null_domain(cpu_rq(cpu)))
7666 return;
7667
c1cc017c
AS
7668 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7669 atomic_inc(&nohz.nr_cpus);
7670 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7671}
71325960 7672
0db0628d 7673static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7674 unsigned long action, void *hcpu)
7675{
7676 switch (action & ~CPU_TASKS_FROZEN) {
7677 case CPU_DYING:
c1cc017c 7678 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7679 return NOTIFY_OK;
7680 default:
7681 return NOTIFY_DONE;
7682 }
7683}
1e3c88bd
PZ
7684#endif
7685
7686static DEFINE_SPINLOCK(balancing);
7687
49c022e6
PZ
7688/*
7689 * Scale the max load_balance interval with the number of CPUs in the system.
7690 * This trades load-balance latency on larger machines for less cross talk.
7691 */
029632fb 7692void update_max_interval(void)
49c022e6
PZ
7693{
7694 max_load_balance_interval = HZ*num_online_cpus()/10;
7695}
7696
1e3c88bd
PZ
7697/*
7698 * It checks each scheduling domain to see if it is due to be balanced,
7699 * and initiates a balancing operation if so.
7700 *
b9b0853a 7701 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7702 */
f7ed0a89 7703static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7704{
23f0d209 7705 int continue_balancing = 1;
f7ed0a89 7706 int cpu = rq->cpu;
1e3c88bd 7707 unsigned long interval;
04f733b4 7708 struct sched_domain *sd;
1e3c88bd
PZ
7709 /* Earliest time when we have to do rebalance again */
7710 unsigned long next_balance = jiffies + 60*HZ;
7711 int update_next_balance = 0;
f48627e6
JL
7712 int need_serialize, need_decay = 0;
7713 u64 max_cost = 0;
1e3c88bd 7714
48a16753 7715 update_blocked_averages(cpu);
2069dd75 7716
dce840a0 7717 rcu_read_lock();
1e3c88bd 7718 for_each_domain(cpu, sd) {
f48627e6
JL
7719 /*
7720 * Decay the newidle max times here because this is a regular
7721 * visit to all the domains. Decay ~1% per second.
7722 */
7723 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7724 sd->max_newidle_lb_cost =
7725 (sd->max_newidle_lb_cost * 253) / 256;
7726 sd->next_decay_max_lb_cost = jiffies + HZ;
7727 need_decay = 1;
7728 }
7729 max_cost += sd->max_newidle_lb_cost;
7730
1e3c88bd
PZ
7731 if (!(sd->flags & SD_LOAD_BALANCE))
7732 continue;
7733
f48627e6
JL
7734 /*
7735 * Stop the load balance at this level. There is another
7736 * CPU in our sched group which is doing load balancing more
7737 * actively.
7738 */
7739 if (!continue_balancing) {
7740 if (need_decay)
7741 continue;
7742 break;
7743 }
7744
52a08ef1 7745 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7746
7747 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7748 if (need_serialize) {
7749 if (!spin_trylock(&balancing))
7750 goto out;
7751 }
7752
7753 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7754 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7755 /*
6263322c 7756 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7757 * env->dst_cpu, so we can't know our idle
7758 * state even if we migrated tasks. Update it.
1e3c88bd 7759 */
de5eb2dd 7760 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7761 }
7762 sd->last_balance = jiffies;
52a08ef1 7763 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7764 }
7765 if (need_serialize)
7766 spin_unlock(&balancing);
7767out:
7768 if (time_after(next_balance, sd->last_balance + interval)) {
7769 next_balance = sd->last_balance + interval;
7770 update_next_balance = 1;
7771 }
f48627e6
JL
7772 }
7773 if (need_decay) {
1e3c88bd 7774 /*
f48627e6
JL
7775 * Ensure the rq-wide value also decays but keep it at a
7776 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7777 */
f48627e6
JL
7778 rq->max_idle_balance_cost =
7779 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7780 }
dce840a0 7781 rcu_read_unlock();
1e3c88bd
PZ
7782
7783 /*
7784 * next_balance will be updated only when there is a need.
7785 * When the cpu is attached to null domain for ex, it will not be
7786 * updated.
7787 */
7788 if (likely(update_next_balance))
7789 rq->next_balance = next_balance;
7790}
7791
3451d024 7792#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7793/*
3451d024 7794 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7795 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7796 */
208cb16b 7797static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7798{
208cb16b 7799 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7800 struct rq *rq;
7801 int balance_cpu;
7802
1c792db7
SS
7803 if (idle != CPU_IDLE ||
7804 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7805 goto end;
83cd4fe2
VP
7806
7807 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7808 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7809 continue;
7810
7811 /*
7812 * If this cpu gets work to do, stop the load balancing
7813 * work being done for other cpus. Next load
7814 * balancing owner will pick it up.
7815 */
1c792db7 7816 if (need_resched())
83cd4fe2 7817 break;
83cd4fe2 7818
5ed4f1d9
VG
7819 rq = cpu_rq(balance_cpu);
7820
ed61bbc6
TC
7821 /*
7822 * If time for next balance is due,
7823 * do the balance.
7824 */
7825 if (time_after_eq(jiffies, rq->next_balance)) {
7826 raw_spin_lock_irq(&rq->lock);
7827 update_rq_clock(rq);
7828 update_idle_cpu_load(rq);
7829 raw_spin_unlock_irq(&rq->lock);
7830 rebalance_domains(rq, CPU_IDLE);
7831 }
83cd4fe2 7832
83cd4fe2
VP
7833 if (time_after(this_rq->next_balance, rq->next_balance))
7834 this_rq->next_balance = rq->next_balance;
7835 }
7836 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7837end:
7838 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7839}
7840
7841/*
0b005cf5 7842 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7843 * of an idle cpu in the system.
0b005cf5 7844 * - This rq has more than one task.
1aaf90a4
VG
7845 * - This rq has at least one CFS task and the capacity of the CPU is
7846 * significantly reduced because of RT tasks or IRQs.
7847 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7848 * multiple busy cpu.
0b005cf5
SS
7849 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7850 * domain span are idle.
83cd4fe2 7851 */
1aaf90a4 7852static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7853{
7854 unsigned long now = jiffies;
0b005cf5 7855 struct sched_domain *sd;
63b2ca30 7856 struct sched_group_capacity *sgc;
4a725627 7857 int nr_busy, cpu = rq->cpu;
1aaf90a4 7858 bool kick = false;
83cd4fe2 7859
4a725627 7860 if (unlikely(rq->idle_balance))
1aaf90a4 7861 return false;
83cd4fe2 7862
1c792db7
SS
7863 /*
7864 * We may be recently in ticked or tickless idle mode. At the first
7865 * busy tick after returning from idle, we will update the busy stats.
7866 */
69e1e811 7867 set_cpu_sd_state_busy();
c1cc017c 7868 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7869
7870 /*
7871 * None are in tickless mode and hence no need for NOHZ idle load
7872 * balancing.
7873 */
7874 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7875 return false;
1c792db7
SS
7876
7877 if (time_before(now, nohz.next_balance))
1aaf90a4 7878 return false;
83cd4fe2 7879
0b005cf5 7880 if (rq->nr_running >= 2)
1aaf90a4 7881 return true;
83cd4fe2 7882
067491b7 7883 rcu_read_lock();
37dc6b50 7884 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7885 if (sd) {
63b2ca30
NP
7886 sgc = sd->groups->sgc;
7887 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7888
1aaf90a4
VG
7889 if (nr_busy > 1) {
7890 kick = true;
7891 goto unlock;
7892 }
7893
83cd4fe2 7894 }
37dc6b50 7895
1aaf90a4
VG
7896 sd = rcu_dereference(rq->sd);
7897 if (sd) {
7898 if ((rq->cfs.h_nr_running >= 1) &&
7899 check_cpu_capacity(rq, sd)) {
7900 kick = true;
7901 goto unlock;
7902 }
7903 }
37dc6b50 7904
1aaf90a4 7905 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7906 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7907 sched_domain_span(sd)) < cpu)) {
7908 kick = true;
7909 goto unlock;
7910 }
067491b7 7911
1aaf90a4 7912unlock:
067491b7 7913 rcu_read_unlock();
1aaf90a4 7914 return kick;
83cd4fe2
VP
7915}
7916#else
208cb16b 7917static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7918#endif
7919
7920/*
7921 * run_rebalance_domains is triggered when needed from the scheduler tick.
7922 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7923 */
1e3c88bd
PZ
7924static void run_rebalance_domains(struct softirq_action *h)
7925{
208cb16b 7926 struct rq *this_rq = this_rq();
6eb57e0d 7927 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7928 CPU_IDLE : CPU_NOT_IDLE;
7929
1e3c88bd 7930 /*
83cd4fe2 7931 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7932 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7933 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7934 * give the idle cpus a chance to load balance. Else we may
7935 * load balance only within the local sched_domain hierarchy
7936 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7937 */
208cb16b 7938 nohz_idle_balance(this_rq, idle);
d4573c3e 7939 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7940}
7941
1e3c88bd
PZ
7942/*
7943 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7944 */
7caff66f 7945void trigger_load_balance(struct rq *rq)
1e3c88bd 7946{
1e3c88bd 7947 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7948 if (unlikely(on_null_domain(rq)))
7949 return;
7950
7951 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7952 raise_softirq(SCHED_SOFTIRQ);
3451d024 7953#ifdef CONFIG_NO_HZ_COMMON
c726099e 7954 if (nohz_kick_needed(rq))
0aeeeeba 7955 nohz_balancer_kick();
83cd4fe2 7956#endif
1e3c88bd
PZ
7957}
7958
0bcdcf28
CE
7959static void rq_online_fair(struct rq *rq)
7960{
7961 update_sysctl();
0e59bdae
KT
7962
7963 update_runtime_enabled(rq);
0bcdcf28
CE
7964}
7965
7966static void rq_offline_fair(struct rq *rq)
7967{
7968 update_sysctl();
a4c96ae3
PB
7969
7970 /* Ensure any throttled groups are reachable by pick_next_task */
7971 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7972}
7973
55e12e5e 7974#endif /* CONFIG_SMP */
e1d1484f 7975
bf0f6f24
IM
7976/*
7977 * scheduler tick hitting a task of our scheduling class:
7978 */
8f4d37ec 7979static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7980{
7981 struct cfs_rq *cfs_rq;
7982 struct sched_entity *se = &curr->se;
7983
7984 for_each_sched_entity(se) {
7985 cfs_rq = cfs_rq_of(se);
8f4d37ec 7986 entity_tick(cfs_rq, se, queued);
bf0f6f24 7987 }
18bf2805 7988
10e84b97 7989 if (numabalancing_enabled)
cbee9f88 7990 task_tick_numa(rq, curr);
3d59eebc 7991
18bf2805 7992 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7993}
7994
7995/*
cd29fe6f
PZ
7996 * called on fork with the child task as argument from the parent's context
7997 * - child not yet on the tasklist
7998 * - preemption disabled
bf0f6f24 7999 */
cd29fe6f 8000static void task_fork_fair(struct task_struct *p)
bf0f6f24 8001{
4fc420c9
DN
8002 struct cfs_rq *cfs_rq;
8003 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8004 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8005 struct rq *rq = this_rq();
8006 unsigned long flags;
8007
05fa785c 8008 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8009
861d034e
PZ
8010 update_rq_clock(rq);
8011
4fc420c9
DN
8012 cfs_rq = task_cfs_rq(current);
8013 curr = cfs_rq->curr;
8014
6c9a27f5
DN
8015 /*
8016 * Not only the cpu but also the task_group of the parent might have
8017 * been changed after parent->se.parent,cfs_rq were copied to
8018 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8019 * of child point to valid ones.
8020 */
8021 rcu_read_lock();
8022 __set_task_cpu(p, this_cpu);
8023 rcu_read_unlock();
bf0f6f24 8024
7109c442 8025 update_curr(cfs_rq);
cd29fe6f 8026
b5d9d734
MG
8027 if (curr)
8028 se->vruntime = curr->vruntime;
aeb73b04 8029 place_entity(cfs_rq, se, 1);
4d78e7b6 8030
cd29fe6f 8031 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8032 /*
edcb60a3
IM
8033 * Upon rescheduling, sched_class::put_prev_task() will place
8034 * 'current' within the tree based on its new key value.
8035 */
4d78e7b6 8036 swap(curr->vruntime, se->vruntime);
8875125e 8037 resched_curr(rq);
4d78e7b6 8038 }
bf0f6f24 8039
88ec22d3
PZ
8040 se->vruntime -= cfs_rq->min_vruntime;
8041
05fa785c 8042 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8043}
8044
cb469845
SR
8045/*
8046 * Priority of the task has changed. Check to see if we preempt
8047 * the current task.
8048 */
da7a735e
PZ
8049static void
8050prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8051{
da0c1e65 8052 if (!task_on_rq_queued(p))
da7a735e
PZ
8053 return;
8054
cb469845
SR
8055 /*
8056 * Reschedule if we are currently running on this runqueue and
8057 * our priority decreased, or if we are not currently running on
8058 * this runqueue and our priority is higher than the current's
8059 */
da7a735e 8060 if (rq->curr == p) {
cb469845 8061 if (p->prio > oldprio)
8875125e 8062 resched_curr(rq);
cb469845 8063 } else
15afe09b 8064 check_preempt_curr(rq, p, 0);
cb469845
SR
8065}
8066
da7a735e
PZ
8067static void switched_from_fair(struct rq *rq, struct task_struct *p)
8068{
8069 struct sched_entity *se = &p->se;
8070 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8071
8072 /*
791c9e02 8073 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
8074 * switched back to the fair class the enqueue_entity(.flags=0) will
8075 * do the right thing.
8076 *
da0c1e65
KT
8077 * If it's queued, then the dequeue_entity(.flags=0) will already
8078 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
8079 * the task is sleeping will it still have non-normalized vruntime.
8080 */
da0c1e65 8081 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
8082 /*
8083 * Fix up our vruntime so that the current sleep doesn't
8084 * cause 'unlimited' sleep bonus.
8085 */
8086 place_entity(cfs_rq, se, 0);
8087 se->vruntime -= cfs_rq->min_vruntime;
8088 }
9ee474f5 8089
141965c7 8090#ifdef CONFIG_SMP
9ee474f5
PT
8091 /*
8092 * Remove our load from contribution when we leave sched_fair
8093 * and ensure we don't carry in an old decay_count if we
8094 * switch back.
8095 */
87e3c8ae
KT
8096 if (se->avg.decay_count) {
8097 __synchronize_entity_decay(se);
8098 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
8099 }
8100#endif
da7a735e
PZ
8101}
8102
cb469845
SR
8103/*
8104 * We switched to the sched_fair class.
8105 */
da7a735e 8106static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 8107{
eb7a59b2 8108#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 8109 struct sched_entity *se = &p->se;
eb7a59b2
M
8110 /*
8111 * Since the real-depth could have been changed (only FAIR
8112 * class maintain depth value), reset depth properly.
8113 */
8114 se->depth = se->parent ? se->parent->depth + 1 : 0;
8115#endif
da0c1e65 8116 if (!task_on_rq_queued(p))
da7a735e
PZ
8117 return;
8118
cb469845
SR
8119 /*
8120 * We were most likely switched from sched_rt, so
8121 * kick off the schedule if running, otherwise just see
8122 * if we can still preempt the current task.
8123 */
da7a735e 8124 if (rq->curr == p)
8875125e 8125 resched_curr(rq);
cb469845 8126 else
15afe09b 8127 check_preempt_curr(rq, p, 0);
cb469845
SR
8128}
8129
83b699ed
SV
8130/* Account for a task changing its policy or group.
8131 *
8132 * This routine is mostly called to set cfs_rq->curr field when a task
8133 * migrates between groups/classes.
8134 */
8135static void set_curr_task_fair(struct rq *rq)
8136{
8137 struct sched_entity *se = &rq->curr->se;
8138
ec12cb7f
PT
8139 for_each_sched_entity(se) {
8140 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8141
8142 set_next_entity(cfs_rq, se);
8143 /* ensure bandwidth has been allocated on our new cfs_rq */
8144 account_cfs_rq_runtime(cfs_rq, 0);
8145 }
83b699ed
SV
8146}
8147
029632fb
PZ
8148void init_cfs_rq(struct cfs_rq *cfs_rq)
8149{
8150 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8151 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8152#ifndef CONFIG_64BIT
8153 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8154#endif
141965c7 8155#ifdef CONFIG_SMP
9ee474f5 8156 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 8157 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 8158#endif
029632fb
PZ
8159}
8160
810b3817 8161#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 8162static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 8163{
fed14d45 8164 struct sched_entity *se = &p->se;
aff3e498 8165 struct cfs_rq *cfs_rq;
fed14d45 8166
b2b5ce02
PZ
8167 /*
8168 * If the task was not on the rq at the time of this cgroup movement
8169 * it must have been asleep, sleeping tasks keep their ->vruntime
8170 * absolute on their old rq until wakeup (needed for the fair sleeper
8171 * bonus in place_entity()).
8172 *
8173 * If it was on the rq, we've just 'preempted' it, which does convert
8174 * ->vruntime to a relative base.
8175 *
8176 * Make sure both cases convert their relative position when migrating
8177 * to another cgroup's rq. This does somewhat interfere with the
8178 * fair sleeper stuff for the first placement, but who cares.
8179 */
7ceff013 8180 /*
da0c1e65 8181 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
8182 * But there are some cases where it has already been normalized:
8183 *
8184 * - Moving a forked child which is waiting for being woken up by
8185 * wake_up_new_task().
62af3783
DN
8186 * - Moving a task which has been woken up by try_to_wake_up() and
8187 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
8188 *
8189 * To prevent boost or penalty in the new cfs_rq caused by delta
8190 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8191 */
da0c1e65
KT
8192 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8193 queued = 1;
7ceff013 8194
da0c1e65 8195 if (!queued)
fed14d45 8196 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 8197 set_task_rq(p, task_cpu(p));
fed14d45 8198 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 8199 if (!queued) {
fed14d45
PZ
8200 cfs_rq = cfs_rq_of(se);
8201 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
8202#ifdef CONFIG_SMP
8203 /*
8204 * migrate_task_rq_fair() will have removed our previous
8205 * contribution, but we must synchronize for ongoing future
8206 * decay.
8207 */
fed14d45
PZ
8208 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8209 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
8210#endif
8211 }
810b3817 8212}
029632fb
PZ
8213
8214void free_fair_sched_group(struct task_group *tg)
8215{
8216 int i;
8217
8218 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8219
8220 for_each_possible_cpu(i) {
8221 if (tg->cfs_rq)
8222 kfree(tg->cfs_rq[i]);
8223 if (tg->se)
8224 kfree(tg->se[i]);
8225 }
8226
8227 kfree(tg->cfs_rq);
8228 kfree(tg->se);
8229}
8230
8231int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8232{
8233 struct cfs_rq *cfs_rq;
8234 struct sched_entity *se;
8235 int i;
8236
8237 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8238 if (!tg->cfs_rq)
8239 goto err;
8240 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8241 if (!tg->se)
8242 goto err;
8243
8244 tg->shares = NICE_0_LOAD;
8245
8246 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8247
8248 for_each_possible_cpu(i) {
8249 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8250 GFP_KERNEL, cpu_to_node(i));
8251 if (!cfs_rq)
8252 goto err;
8253
8254 se = kzalloc_node(sizeof(struct sched_entity),
8255 GFP_KERNEL, cpu_to_node(i));
8256 if (!se)
8257 goto err_free_rq;
8258
8259 init_cfs_rq(cfs_rq);
8260 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8261 }
8262
8263 return 1;
8264
8265err_free_rq:
8266 kfree(cfs_rq);
8267err:
8268 return 0;
8269}
8270
8271void unregister_fair_sched_group(struct task_group *tg, int cpu)
8272{
8273 struct rq *rq = cpu_rq(cpu);
8274 unsigned long flags;
8275
8276 /*
8277 * Only empty task groups can be destroyed; so we can speculatively
8278 * check on_list without danger of it being re-added.
8279 */
8280 if (!tg->cfs_rq[cpu]->on_list)
8281 return;
8282
8283 raw_spin_lock_irqsave(&rq->lock, flags);
8284 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8285 raw_spin_unlock_irqrestore(&rq->lock, flags);
8286}
8287
8288void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8289 struct sched_entity *se, int cpu,
8290 struct sched_entity *parent)
8291{
8292 struct rq *rq = cpu_rq(cpu);
8293
8294 cfs_rq->tg = tg;
8295 cfs_rq->rq = rq;
029632fb
PZ
8296 init_cfs_rq_runtime(cfs_rq);
8297
8298 tg->cfs_rq[cpu] = cfs_rq;
8299 tg->se[cpu] = se;
8300
8301 /* se could be NULL for root_task_group */
8302 if (!se)
8303 return;
8304
fed14d45 8305 if (!parent) {
029632fb 8306 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8307 se->depth = 0;
8308 } else {
029632fb 8309 se->cfs_rq = parent->my_q;
fed14d45
PZ
8310 se->depth = parent->depth + 1;
8311 }
029632fb
PZ
8312
8313 se->my_q = cfs_rq;
0ac9b1c2
PT
8314 /* guarantee group entities always have weight */
8315 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8316 se->parent = parent;
8317}
8318
8319static DEFINE_MUTEX(shares_mutex);
8320
8321int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8322{
8323 int i;
8324 unsigned long flags;
8325
8326 /*
8327 * We can't change the weight of the root cgroup.
8328 */
8329 if (!tg->se[0])
8330 return -EINVAL;
8331
8332 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8333
8334 mutex_lock(&shares_mutex);
8335 if (tg->shares == shares)
8336 goto done;
8337
8338 tg->shares = shares;
8339 for_each_possible_cpu(i) {
8340 struct rq *rq = cpu_rq(i);
8341 struct sched_entity *se;
8342
8343 se = tg->se[i];
8344 /* Propagate contribution to hierarchy */
8345 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8346
8347 /* Possible calls to update_curr() need rq clock */
8348 update_rq_clock(rq);
17bc14b7 8349 for_each_sched_entity(se)
029632fb
PZ
8350 update_cfs_shares(group_cfs_rq(se));
8351 raw_spin_unlock_irqrestore(&rq->lock, flags);
8352 }
8353
8354done:
8355 mutex_unlock(&shares_mutex);
8356 return 0;
8357}
8358#else /* CONFIG_FAIR_GROUP_SCHED */
8359
8360void free_fair_sched_group(struct task_group *tg) { }
8361
8362int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8363{
8364 return 1;
8365}
8366
8367void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8368
8369#endif /* CONFIG_FAIR_GROUP_SCHED */
8370
810b3817 8371
6d686f45 8372static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8373{
8374 struct sched_entity *se = &task->se;
0d721cea
PW
8375 unsigned int rr_interval = 0;
8376
8377 /*
8378 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8379 * idle runqueue:
8380 */
0d721cea 8381 if (rq->cfs.load.weight)
a59f4e07 8382 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8383
8384 return rr_interval;
8385}
8386
bf0f6f24
IM
8387/*
8388 * All the scheduling class methods:
8389 */
029632fb 8390const struct sched_class fair_sched_class = {
5522d5d5 8391 .next = &idle_sched_class,
bf0f6f24
IM
8392 .enqueue_task = enqueue_task_fair,
8393 .dequeue_task = dequeue_task_fair,
8394 .yield_task = yield_task_fair,
d95f4122 8395 .yield_to_task = yield_to_task_fair,
bf0f6f24 8396
2e09bf55 8397 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8398
8399 .pick_next_task = pick_next_task_fair,
8400 .put_prev_task = put_prev_task_fair,
8401
681f3e68 8402#ifdef CONFIG_SMP
4ce72a2c 8403 .select_task_rq = select_task_rq_fair,
0a74bef8 8404 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8405
0bcdcf28
CE
8406 .rq_online = rq_online_fair,
8407 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8408
8409 .task_waking = task_waking_fair,
681f3e68 8410#endif
bf0f6f24 8411
83b699ed 8412 .set_curr_task = set_curr_task_fair,
bf0f6f24 8413 .task_tick = task_tick_fair,
cd29fe6f 8414 .task_fork = task_fork_fair,
cb469845
SR
8415
8416 .prio_changed = prio_changed_fair,
da7a735e 8417 .switched_from = switched_from_fair,
cb469845 8418 .switched_to = switched_to_fair,
810b3817 8419
0d721cea
PW
8420 .get_rr_interval = get_rr_interval_fair,
8421
6e998916
SG
8422 .update_curr = update_curr_fair,
8423
810b3817 8424#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8425 .task_move_group = task_move_group_fair,
810b3817 8426#endif
bf0f6f24
IM
8427};
8428
8429#ifdef CONFIG_SCHED_DEBUG
029632fb 8430void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8431{
bf0f6f24
IM
8432 struct cfs_rq *cfs_rq;
8433
5973e5b9 8434 rcu_read_lock();
c3b64f1e 8435 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8436 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8437 rcu_read_unlock();
bf0f6f24 8438}
397f2378
SD
8439
8440#ifdef CONFIG_NUMA_BALANCING
8441void show_numa_stats(struct task_struct *p, struct seq_file *m)
8442{
8443 int node;
8444 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8445
8446 for_each_online_node(node) {
8447 if (p->numa_faults) {
8448 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8449 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8450 }
8451 if (p->numa_group) {
8452 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8453 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8454 }
8455 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8456 }
8457}
8458#endif /* CONFIG_NUMA_BALANCING */
8459#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8460
8461__init void init_sched_fair_class(void)
8462{
8463#ifdef CONFIG_SMP
8464 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8465
3451d024 8466#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8467 nohz.next_balance = jiffies;
029632fb 8468 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8469 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8470#endif
8471#endif /* SMP */
8472
8473}