sched, mips, ia64: Remove __ARCH_WANT_UNLOCKED_CTXSW
[linux-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 579 int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9
AS
672static inline void __update_task_entity_contrib(struct sched_entity *se);
673
674/* Give new task start runnable values to heavy its load in infant time */
675void init_task_runnable_average(struct task_struct *p)
676{
677 u32 slice;
678
679 p->se.avg.decay_count = 0;
680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 p->se.avg.runnable_avg_sum = slice;
682 p->se.avg.runnable_avg_period = slice;
683 __update_task_entity_contrib(&p->se);
684}
685#else
686void init_task_runnable_average(struct task_struct *p)
687{
688}
689#endif
690
bf0f6f24 691/*
9dbdb155 692 * Update the current task's runtime statistics.
bf0f6f24 693 */
b7cc0896 694static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 695{
429d43bc 696 struct sched_entity *curr = cfs_rq->curr;
78becc27 697 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 698 u64 delta_exec;
bf0f6f24
IM
699
700 if (unlikely(!curr))
701 return;
702
9dbdb155
PZ
703 delta_exec = now - curr->exec_start;
704 if (unlikely((s64)delta_exec <= 0))
34f28ecd 705 return;
bf0f6f24 706
8ebc91d9 707 curr->exec_start = now;
d842de87 708
9dbdb155
PZ
709 schedstat_set(curr->statistics.exec_max,
710 max(delta_exec, curr->statistics.exec_max));
711
712 curr->sum_exec_runtime += delta_exec;
713 schedstat_add(cfs_rq, exec_clock, delta_exec);
714
715 curr->vruntime += calc_delta_fair(delta_exec, curr);
716 update_min_vruntime(cfs_rq);
717
d842de87
SV
718 if (entity_is_task(curr)) {
719 struct task_struct *curtask = task_of(curr);
720
f977bb49 721 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 722 cpuacct_charge(curtask, delta_exec);
f06febc9 723 account_group_exec_runtime(curtask, delta_exec);
d842de87 724 }
ec12cb7f
PT
725
726 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
727}
728
729static inline void
5870db5b 730update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 731{
78becc27 732 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
733}
734
bf0f6f24
IM
735/*
736 * Task is being enqueued - update stats:
737 */
d2417e5a 738static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 739{
bf0f6f24
IM
740 /*
741 * Are we enqueueing a waiting task? (for current tasks
742 * a dequeue/enqueue event is a NOP)
743 */
429d43bc 744 if (se != cfs_rq->curr)
5870db5b 745 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
746}
747
bf0f6f24 748static void
9ef0a961 749update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 750{
41acab88 751 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 752 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
753 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
754 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 755 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
756#ifdef CONFIG_SCHEDSTATS
757 if (entity_is_task(se)) {
758 trace_sched_stat_wait(task_of(se),
78becc27 759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
760 }
761#endif
41acab88 762 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
763}
764
765static inline void
19b6a2e3 766update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 767{
bf0f6f24
IM
768 /*
769 * Mark the end of the wait period if dequeueing a
770 * waiting task:
771 */
429d43bc 772 if (se != cfs_rq->curr)
9ef0a961 773 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
774}
775
776/*
777 * We are picking a new current task - update its stats:
778 */
779static inline void
79303e9e 780update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
781{
782 /*
783 * We are starting a new run period:
784 */
78becc27 785 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
786}
787
bf0f6f24
IM
788/**************************************************
789 * Scheduling class queueing methods:
790 */
791
cbee9f88
PZ
792#ifdef CONFIG_NUMA_BALANCING
793/*
598f0ec0
MG
794 * Approximate time to scan a full NUMA task in ms. The task scan period is
795 * calculated based on the tasks virtual memory size and
796 * numa_balancing_scan_size.
cbee9f88 797 */
598f0ec0
MG
798unsigned int sysctl_numa_balancing_scan_period_min = 1000;
799unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
800
801/* Portion of address space to scan in MB */
802unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 803
4b96a29b
PZ
804/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
805unsigned int sysctl_numa_balancing_scan_delay = 1000;
806
598f0ec0
MG
807static unsigned int task_nr_scan_windows(struct task_struct *p)
808{
809 unsigned long rss = 0;
810 unsigned long nr_scan_pages;
811
812 /*
813 * Calculations based on RSS as non-present and empty pages are skipped
814 * by the PTE scanner and NUMA hinting faults should be trapped based
815 * on resident pages
816 */
817 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
818 rss = get_mm_rss(p->mm);
819 if (!rss)
820 rss = nr_scan_pages;
821
822 rss = round_up(rss, nr_scan_pages);
823 return rss / nr_scan_pages;
824}
825
826/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
827#define MAX_SCAN_WINDOW 2560
828
829static unsigned int task_scan_min(struct task_struct *p)
830{
831 unsigned int scan, floor;
832 unsigned int windows = 1;
833
834 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
835 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
836 floor = 1000 / windows;
837
838 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
839 return max_t(unsigned int, floor, scan);
840}
841
842static unsigned int task_scan_max(struct task_struct *p)
843{
844 unsigned int smin = task_scan_min(p);
845 unsigned int smax;
846
847 /* Watch for min being lower than max due to floor calculations */
848 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
849 return max(smin, smax);
850}
851
0ec8aa00
PZ
852static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
853{
854 rq->nr_numa_running += (p->numa_preferred_nid != -1);
855 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
856}
857
858static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
859{
860 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
861 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
862}
863
8c8a743c
PZ
864struct numa_group {
865 atomic_t refcount;
866
867 spinlock_t lock; /* nr_tasks, tasks */
868 int nr_tasks;
e29cf08b 869 pid_t gid;
8c8a743c
PZ
870 struct list_head task_list;
871
872 struct rcu_head rcu;
20e07dea 873 nodemask_t active_nodes;
989348b5 874 unsigned long total_faults;
7e2703e6
RR
875 /*
876 * Faults_cpu is used to decide whether memory should move
877 * towards the CPU. As a consequence, these stats are weighted
878 * more by CPU use than by memory faults.
879 */
50ec8a40 880 unsigned long *faults_cpu;
989348b5 881 unsigned long faults[0];
8c8a743c
PZ
882};
883
be1e4e76
RR
884/* Shared or private faults. */
885#define NR_NUMA_HINT_FAULT_TYPES 2
886
887/* Memory and CPU locality */
888#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
889
890/* Averaged statistics, and temporary buffers. */
891#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
892
e29cf08b
MG
893pid_t task_numa_group_id(struct task_struct *p)
894{
895 return p->numa_group ? p->numa_group->gid : 0;
896}
897
ac8e895b
MG
898static inline int task_faults_idx(int nid, int priv)
899{
be1e4e76 900 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
901}
902
903static inline unsigned long task_faults(struct task_struct *p, int nid)
904{
ff1df896 905 if (!p->numa_faults_memory)
ac8e895b
MG
906 return 0;
907
ff1df896
RR
908 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
909 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
910}
911
83e1d2cd
MG
912static inline unsigned long group_faults(struct task_struct *p, int nid)
913{
914 if (!p->numa_group)
915 return 0;
916
82897b4f
WL
917 return p->numa_group->faults[task_faults_idx(nid, 0)] +
918 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
919}
920
20e07dea
RR
921static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
922{
923 return group->faults_cpu[task_faults_idx(nid, 0)] +
924 group->faults_cpu[task_faults_idx(nid, 1)];
925}
926
83e1d2cd
MG
927/*
928 * These return the fraction of accesses done by a particular task, or
929 * task group, on a particular numa node. The group weight is given a
930 * larger multiplier, in order to group tasks together that are almost
931 * evenly spread out between numa nodes.
932 */
933static inline unsigned long task_weight(struct task_struct *p, int nid)
934{
935 unsigned long total_faults;
936
ff1df896 937 if (!p->numa_faults_memory)
83e1d2cd
MG
938 return 0;
939
940 total_faults = p->total_numa_faults;
941
942 if (!total_faults)
943 return 0;
944
945 return 1000 * task_faults(p, nid) / total_faults;
946}
947
948static inline unsigned long group_weight(struct task_struct *p, int nid)
949{
989348b5 950 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
951 return 0;
952
989348b5 953 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
954}
955
10f39042
RR
956bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
957 int src_nid, int dst_cpu)
958{
959 struct numa_group *ng = p->numa_group;
960 int dst_nid = cpu_to_node(dst_cpu);
961 int last_cpupid, this_cpupid;
962
963 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
964
965 /*
966 * Multi-stage node selection is used in conjunction with a periodic
967 * migration fault to build a temporal task<->page relation. By using
968 * a two-stage filter we remove short/unlikely relations.
969 *
970 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
971 * a task's usage of a particular page (n_p) per total usage of this
972 * page (n_t) (in a given time-span) to a probability.
973 *
974 * Our periodic faults will sample this probability and getting the
975 * same result twice in a row, given these samples are fully
976 * independent, is then given by P(n)^2, provided our sample period
977 * is sufficiently short compared to the usage pattern.
978 *
979 * This quadric squishes small probabilities, making it less likely we
980 * act on an unlikely task<->page relation.
981 */
982 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
983 if (!cpupid_pid_unset(last_cpupid) &&
984 cpupid_to_nid(last_cpupid) != dst_nid)
985 return false;
986
987 /* Always allow migrate on private faults */
988 if (cpupid_match_pid(p, last_cpupid))
989 return true;
990
991 /* A shared fault, but p->numa_group has not been set up yet. */
992 if (!ng)
993 return true;
994
995 /*
996 * Do not migrate if the destination is not a node that
997 * is actively used by this numa group.
998 */
999 if (!node_isset(dst_nid, ng->active_nodes))
1000 return false;
1001
1002 /*
1003 * Source is a node that is not actively used by this
1004 * numa group, while the destination is. Migrate.
1005 */
1006 if (!node_isset(src_nid, ng->active_nodes))
1007 return true;
1008
1009 /*
1010 * Both source and destination are nodes in active
1011 * use by this numa group. Maximize memory bandwidth
1012 * by migrating from more heavily used groups, to less
1013 * heavily used ones, spreading the load around.
1014 * Use a 1/4 hysteresis to avoid spurious page movement.
1015 */
1016 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1017}
1018
e6628d5b 1019static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1020static unsigned long source_load(int cpu, int type);
1021static unsigned long target_load(int cpu, int type);
ced549fa 1022static unsigned long capacity_of(int cpu);
58d081b5
MG
1023static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1024
fb13c7ee 1025/* Cached statistics for all CPUs within a node */
58d081b5 1026struct numa_stats {
fb13c7ee 1027 unsigned long nr_running;
58d081b5 1028 unsigned long load;
fb13c7ee
MG
1029
1030 /* Total compute capacity of CPUs on a node */
5ef20ca1 1031 unsigned long compute_capacity;
fb13c7ee
MG
1032
1033 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1034 unsigned long task_capacity;
1b6a7495 1035 int has_free_capacity;
58d081b5 1036};
e6628d5b 1037
fb13c7ee
MG
1038/*
1039 * XXX borrowed from update_sg_lb_stats
1040 */
1041static void update_numa_stats(struct numa_stats *ns, int nid)
1042{
83d7f242
RR
1043 int smt, cpu, cpus = 0;
1044 unsigned long capacity;
fb13c7ee
MG
1045
1046 memset(ns, 0, sizeof(*ns));
1047 for_each_cpu(cpu, cpumask_of_node(nid)) {
1048 struct rq *rq = cpu_rq(cpu);
1049
1050 ns->nr_running += rq->nr_running;
1051 ns->load += weighted_cpuload(cpu);
ced549fa 1052 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1053
1054 cpus++;
fb13c7ee
MG
1055 }
1056
5eca82a9
PZ
1057 /*
1058 * If we raced with hotplug and there are no CPUs left in our mask
1059 * the @ns structure is NULL'ed and task_numa_compare() will
1060 * not find this node attractive.
1061 *
1b6a7495
NP
1062 * We'll either bail at !has_free_capacity, or we'll detect a huge
1063 * imbalance and bail there.
5eca82a9
PZ
1064 */
1065 if (!cpus)
1066 return;
1067
83d7f242
RR
1068 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1069 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1070 capacity = cpus / smt; /* cores */
1071
1072 ns->task_capacity = min_t(unsigned, capacity,
1073 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1074 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1075}
1076
58d081b5
MG
1077struct task_numa_env {
1078 struct task_struct *p;
e6628d5b 1079
58d081b5
MG
1080 int src_cpu, src_nid;
1081 int dst_cpu, dst_nid;
e6628d5b 1082
58d081b5 1083 struct numa_stats src_stats, dst_stats;
e6628d5b 1084
40ea2b42 1085 int imbalance_pct;
fb13c7ee
MG
1086
1087 struct task_struct *best_task;
1088 long best_imp;
58d081b5
MG
1089 int best_cpu;
1090};
1091
fb13c7ee
MG
1092static void task_numa_assign(struct task_numa_env *env,
1093 struct task_struct *p, long imp)
1094{
1095 if (env->best_task)
1096 put_task_struct(env->best_task);
1097 if (p)
1098 get_task_struct(p);
1099
1100 env->best_task = p;
1101 env->best_imp = imp;
1102 env->best_cpu = env->dst_cpu;
1103}
1104
28a21745 1105static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1106 struct task_numa_env *env)
1107{
1108 long imb, old_imb;
28a21745
RR
1109 long orig_src_load, orig_dst_load;
1110 long src_capacity, dst_capacity;
1111
1112 /*
1113 * The load is corrected for the CPU capacity available on each node.
1114 *
1115 * src_load dst_load
1116 * ------------ vs ---------
1117 * src_capacity dst_capacity
1118 */
1119 src_capacity = env->src_stats.compute_capacity;
1120 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1121
1122 /* We care about the slope of the imbalance, not the direction. */
1123 if (dst_load < src_load)
1124 swap(dst_load, src_load);
1125
1126 /* Is the difference below the threshold? */
28a21745
RR
1127 imb = dst_load * src_capacity * 100 -
1128 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1129 if (imb <= 0)
1130 return false;
1131
1132 /*
1133 * The imbalance is above the allowed threshold.
1134 * Compare it with the old imbalance.
1135 */
28a21745
RR
1136 orig_src_load = env->src_stats.load;
1137 orig_dst_load = env->dst_stats.load;
1138
e63da036
RR
1139 if (orig_dst_load < orig_src_load)
1140 swap(orig_dst_load, orig_src_load);
1141
28a21745
RR
1142 old_imb = orig_dst_load * src_capacity * 100 -
1143 orig_src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1144
1145 /* Would this change make things worse? */
1662867a 1146 return (imb > old_imb);
e63da036
RR
1147}
1148
fb13c7ee
MG
1149/*
1150 * This checks if the overall compute and NUMA accesses of the system would
1151 * be improved if the source tasks was migrated to the target dst_cpu taking
1152 * into account that it might be best if task running on the dst_cpu should
1153 * be exchanged with the source task
1154 */
887c290e
RR
1155static void task_numa_compare(struct task_numa_env *env,
1156 long taskimp, long groupimp)
fb13c7ee
MG
1157{
1158 struct rq *src_rq = cpu_rq(env->src_cpu);
1159 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1160 struct task_struct *cur;
28a21745 1161 long src_load, dst_load;
fb13c7ee 1162 long load;
1c5d3eb3 1163 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1164 long moveimp = imp;
fb13c7ee
MG
1165
1166 rcu_read_lock();
1167 cur = ACCESS_ONCE(dst_rq->curr);
1168 if (cur->pid == 0) /* idle */
1169 cur = NULL;
1170
1171 /*
1172 * "imp" is the fault differential for the source task between the
1173 * source and destination node. Calculate the total differential for
1174 * the source task and potential destination task. The more negative
1175 * the value is, the more rmeote accesses that would be expected to
1176 * be incurred if the tasks were swapped.
1177 */
1178 if (cur) {
1179 /* Skip this swap candidate if cannot move to the source cpu */
1180 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1181 goto unlock;
1182
887c290e
RR
1183 /*
1184 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1185 * in any group then look only at task weights.
887c290e 1186 */
ca28aa53 1187 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1188 imp = taskimp + task_weight(cur, env->src_nid) -
1189 task_weight(cur, env->dst_nid);
ca28aa53
RR
1190 /*
1191 * Add some hysteresis to prevent swapping the
1192 * tasks within a group over tiny differences.
1193 */
1194 if (cur->numa_group)
1195 imp -= imp/16;
887c290e 1196 } else {
ca28aa53
RR
1197 /*
1198 * Compare the group weights. If a task is all by
1199 * itself (not part of a group), use the task weight
1200 * instead.
1201 */
ca28aa53
RR
1202 if (cur->numa_group)
1203 imp += group_weight(cur, env->src_nid) -
1204 group_weight(cur, env->dst_nid);
1205 else
1206 imp += task_weight(cur, env->src_nid) -
1207 task_weight(cur, env->dst_nid);
887c290e 1208 }
fb13c7ee
MG
1209 }
1210
0132c3e1 1211 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1212 goto unlock;
1213
1214 if (!cur) {
1215 /* Is there capacity at our destination? */
b932c03c 1216 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1217 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1218 goto unlock;
1219
1220 goto balance;
1221 }
1222
1223 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1224 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1225 dst_rq->nr_running == 1)
fb13c7ee
MG
1226 goto assign;
1227
1228 /*
1229 * In the overloaded case, try and keep the load balanced.
1230 */
1231balance:
e720fff6
PZ
1232 load = task_h_load(env->p);
1233 dst_load = env->dst_stats.load + load;
1234 src_load = env->src_stats.load - load;
fb13c7ee 1235
0132c3e1
RR
1236 if (moveimp > imp && moveimp > env->best_imp) {
1237 /*
1238 * If the improvement from just moving env->p direction is
1239 * better than swapping tasks around, check if a move is
1240 * possible. Store a slightly smaller score than moveimp,
1241 * so an actually idle CPU will win.
1242 */
1243 if (!load_too_imbalanced(src_load, dst_load, env)) {
1244 imp = moveimp - 1;
1245 cur = NULL;
1246 goto assign;
1247 }
1248 }
1249
1250 if (imp <= env->best_imp)
1251 goto unlock;
1252
fb13c7ee 1253 if (cur) {
e720fff6
PZ
1254 load = task_h_load(cur);
1255 dst_load -= load;
1256 src_load += load;
fb13c7ee
MG
1257 }
1258
28a21745 1259 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1260 goto unlock;
1261
ba7e5a27
RR
1262 /*
1263 * One idle CPU per node is evaluated for a task numa move.
1264 * Call select_idle_sibling to maybe find a better one.
1265 */
1266 if (!cur)
1267 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1268
fb13c7ee
MG
1269assign:
1270 task_numa_assign(env, cur, imp);
1271unlock:
1272 rcu_read_unlock();
1273}
1274
887c290e
RR
1275static void task_numa_find_cpu(struct task_numa_env *env,
1276 long taskimp, long groupimp)
2c8a50aa
MG
1277{
1278 int cpu;
1279
1280 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1281 /* Skip this CPU if the source task cannot migrate */
1282 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1283 continue;
1284
1285 env->dst_cpu = cpu;
887c290e 1286 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1287 }
1288}
1289
58d081b5
MG
1290static int task_numa_migrate(struct task_struct *p)
1291{
58d081b5
MG
1292 struct task_numa_env env = {
1293 .p = p,
fb13c7ee 1294
58d081b5 1295 .src_cpu = task_cpu(p),
b32e86b4 1296 .src_nid = task_node(p),
fb13c7ee
MG
1297
1298 .imbalance_pct = 112,
1299
1300 .best_task = NULL,
1301 .best_imp = 0,
1302 .best_cpu = -1
58d081b5
MG
1303 };
1304 struct sched_domain *sd;
887c290e 1305 unsigned long taskweight, groupweight;
2c8a50aa 1306 int nid, ret;
887c290e 1307 long taskimp, groupimp;
e6628d5b 1308
58d081b5 1309 /*
fb13c7ee
MG
1310 * Pick the lowest SD_NUMA domain, as that would have the smallest
1311 * imbalance and would be the first to start moving tasks about.
1312 *
1313 * And we want to avoid any moving of tasks about, as that would create
1314 * random movement of tasks -- counter the numa conditions we're trying
1315 * to satisfy here.
58d081b5
MG
1316 */
1317 rcu_read_lock();
fb13c7ee 1318 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1319 if (sd)
1320 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1321 rcu_read_unlock();
1322
46a73e8a
RR
1323 /*
1324 * Cpusets can break the scheduler domain tree into smaller
1325 * balance domains, some of which do not cross NUMA boundaries.
1326 * Tasks that are "trapped" in such domains cannot be migrated
1327 * elsewhere, so there is no point in (re)trying.
1328 */
1329 if (unlikely(!sd)) {
de1b301a 1330 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1331 return -EINVAL;
1332 }
1333
887c290e
RR
1334 taskweight = task_weight(p, env.src_nid);
1335 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1336 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1337 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1338 taskimp = task_weight(p, env.dst_nid) - taskweight;
1339 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1340 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1341
a43455a1
RR
1342 /* Try to find a spot on the preferred nid. */
1343 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1344
1345 /* No space available on the preferred nid. Look elsewhere. */
1346 if (env.best_cpu == -1) {
2c8a50aa
MG
1347 for_each_online_node(nid) {
1348 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1349 continue;
58d081b5 1350
83e1d2cd 1351 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1352 taskimp = task_weight(p, nid) - taskweight;
1353 groupimp = group_weight(p, nid) - groupweight;
1354 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1355 continue;
1356
2c8a50aa
MG
1357 env.dst_nid = nid;
1358 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1359 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1360 }
1361 }
1362
68d1b02a
RR
1363 /*
1364 * If the task is part of a workload that spans multiple NUMA nodes,
1365 * and is migrating into one of the workload's active nodes, remember
1366 * this node as the task's preferred numa node, so the workload can
1367 * settle down.
1368 * A task that migrated to a second choice node will be better off
1369 * trying for a better one later. Do not set the preferred node here.
1370 */
db015dae
RR
1371 if (p->numa_group) {
1372 if (env.best_cpu == -1)
1373 nid = env.src_nid;
1374 else
1375 nid = env.dst_nid;
1376
1377 if (node_isset(nid, p->numa_group->active_nodes))
1378 sched_setnuma(p, env.dst_nid);
1379 }
1380
1381 /* No better CPU than the current one was found. */
1382 if (env.best_cpu == -1)
1383 return -EAGAIN;
0ec8aa00 1384
04bb2f94
RR
1385 /*
1386 * Reset the scan period if the task is being rescheduled on an
1387 * alternative node to recheck if the tasks is now properly placed.
1388 */
1389 p->numa_scan_period = task_scan_min(p);
1390
fb13c7ee 1391 if (env.best_task == NULL) {
286549dc
MG
1392 ret = migrate_task_to(p, env.best_cpu);
1393 if (ret != 0)
1394 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1395 return ret;
1396 }
1397
1398 ret = migrate_swap(p, env.best_task);
286549dc
MG
1399 if (ret != 0)
1400 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1401 put_task_struct(env.best_task);
1402 return ret;
e6628d5b
MG
1403}
1404
6b9a7460
MG
1405/* Attempt to migrate a task to a CPU on the preferred node. */
1406static void numa_migrate_preferred(struct task_struct *p)
1407{
5085e2a3
RR
1408 unsigned long interval = HZ;
1409
2739d3ee 1410 /* This task has no NUMA fault statistics yet */
ff1df896 1411 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1412 return;
1413
2739d3ee 1414 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1415 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1416 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1417
1418 /* Success if task is already running on preferred CPU */
de1b301a 1419 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1420 return;
1421
1422 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1423 task_numa_migrate(p);
6b9a7460
MG
1424}
1425
20e07dea
RR
1426/*
1427 * Find the nodes on which the workload is actively running. We do this by
1428 * tracking the nodes from which NUMA hinting faults are triggered. This can
1429 * be different from the set of nodes where the workload's memory is currently
1430 * located.
1431 *
1432 * The bitmask is used to make smarter decisions on when to do NUMA page
1433 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1434 * are added when they cause over 6/16 of the maximum number of faults, but
1435 * only removed when they drop below 3/16.
1436 */
1437static void update_numa_active_node_mask(struct numa_group *numa_group)
1438{
1439 unsigned long faults, max_faults = 0;
1440 int nid;
1441
1442 for_each_online_node(nid) {
1443 faults = group_faults_cpu(numa_group, nid);
1444 if (faults > max_faults)
1445 max_faults = faults;
1446 }
1447
1448 for_each_online_node(nid) {
1449 faults = group_faults_cpu(numa_group, nid);
1450 if (!node_isset(nid, numa_group->active_nodes)) {
1451 if (faults > max_faults * 6 / 16)
1452 node_set(nid, numa_group->active_nodes);
1453 } else if (faults < max_faults * 3 / 16)
1454 node_clear(nid, numa_group->active_nodes);
1455 }
1456}
1457
04bb2f94
RR
1458/*
1459 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1460 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1461 * period will be for the next scan window. If local/(local+remote) ratio is
1462 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1463 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1464 */
1465#define NUMA_PERIOD_SLOTS 10
a22b4b01 1466#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1467
1468/*
1469 * Increase the scan period (slow down scanning) if the majority of
1470 * our memory is already on our local node, or if the majority of
1471 * the page accesses are shared with other processes.
1472 * Otherwise, decrease the scan period.
1473 */
1474static void update_task_scan_period(struct task_struct *p,
1475 unsigned long shared, unsigned long private)
1476{
1477 unsigned int period_slot;
1478 int ratio;
1479 int diff;
1480
1481 unsigned long remote = p->numa_faults_locality[0];
1482 unsigned long local = p->numa_faults_locality[1];
1483
1484 /*
1485 * If there were no record hinting faults then either the task is
1486 * completely idle or all activity is areas that are not of interest
1487 * to automatic numa balancing. Scan slower
1488 */
1489 if (local + shared == 0) {
1490 p->numa_scan_period = min(p->numa_scan_period_max,
1491 p->numa_scan_period << 1);
1492
1493 p->mm->numa_next_scan = jiffies +
1494 msecs_to_jiffies(p->numa_scan_period);
1495
1496 return;
1497 }
1498
1499 /*
1500 * Prepare to scale scan period relative to the current period.
1501 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1502 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1503 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1504 */
1505 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1506 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1507 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1508 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1509 if (!slot)
1510 slot = 1;
1511 diff = slot * period_slot;
1512 } else {
1513 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1514
1515 /*
1516 * Scale scan rate increases based on sharing. There is an
1517 * inverse relationship between the degree of sharing and
1518 * the adjustment made to the scanning period. Broadly
1519 * speaking the intent is that there is little point
1520 * scanning faster if shared accesses dominate as it may
1521 * simply bounce migrations uselessly
1522 */
04bb2f94
RR
1523 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1524 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1525 }
1526
1527 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1528 task_scan_min(p), task_scan_max(p));
1529 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1530}
1531
7e2703e6
RR
1532/*
1533 * Get the fraction of time the task has been running since the last
1534 * NUMA placement cycle. The scheduler keeps similar statistics, but
1535 * decays those on a 32ms period, which is orders of magnitude off
1536 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1537 * stats only if the task is so new there are no NUMA statistics yet.
1538 */
1539static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1540{
1541 u64 runtime, delta, now;
1542 /* Use the start of this time slice to avoid calculations. */
1543 now = p->se.exec_start;
1544 runtime = p->se.sum_exec_runtime;
1545
1546 if (p->last_task_numa_placement) {
1547 delta = runtime - p->last_sum_exec_runtime;
1548 *period = now - p->last_task_numa_placement;
1549 } else {
1550 delta = p->se.avg.runnable_avg_sum;
1551 *period = p->se.avg.runnable_avg_period;
1552 }
1553
1554 p->last_sum_exec_runtime = runtime;
1555 p->last_task_numa_placement = now;
1556
1557 return delta;
1558}
1559
cbee9f88
PZ
1560static void task_numa_placement(struct task_struct *p)
1561{
83e1d2cd
MG
1562 int seq, nid, max_nid = -1, max_group_nid = -1;
1563 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1564 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1565 unsigned long total_faults;
1566 u64 runtime, period;
7dbd13ed 1567 spinlock_t *group_lock = NULL;
cbee9f88 1568
2832bc19 1569 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1570 if (p->numa_scan_seq == seq)
1571 return;
1572 p->numa_scan_seq = seq;
598f0ec0 1573 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1574
7e2703e6
RR
1575 total_faults = p->numa_faults_locality[0] +
1576 p->numa_faults_locality[1];
1577 runtime = numa_get_avg_runtime(p, &period);
1578
7dbd13ed
MG
1579 /* If the task is part of a group prevent parallel updates to group stats */
1580 if (p->numa_group) {
1581 group_lock = &p->numa_group->lock;
60e69eed 1582 spin_lock_irq(group_lock);
7dbd13ed
MG
1583 }
1584
688b7585
MG
1585 /* Find the node with the highest number of faults */
1586 for_each_online_node(nid) {
83e1d2cd 1587 unsigned long faults = 0, group_faults = 0;
ac8e895b 1588 int priv, i;
745d6147 1589
be1e4e76 1590 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1591 long diff, f_diff, f_weight;
8c8a743c 1592
ac8e895b 1593 i = task_faults_idx(nid, priv);
745d6147 1594
ac8e895b 1595 /* Decay existing window, copy faults since last scan */
35664fd4 1596 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1597 fault_types[priv] += p->numa_faults_buffer_memory[i];
1598 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1599
7e2703e6
RR
1600 /*
1601 * Normalize the faults_from, so all tasks in a group
1602 * count according to CPU use, instead of by the raw
1603 * number of faults. Tasks with little runtime have
1604 * little over-all impact on throughput, and thus their
1605 * faults are less important.
1606 */
1607 f_weight = div64_u64(runtime << 16, period + 1);
1608 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1609 (total_faults + 1);
35664fd4 1610 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1611 p->numa_faults_buffer_cpu[i] = 0;
1612
35664fd4
RR
1613 p->numa_faults_memory[i] += diff;
1614 p->numa_faults_cpu[i] += f_diff;
ff1df896 1615 faults += p->numa_faults_memory[i];
83e1d2cd 1616 p->total_numa_faults += diff;
8c8a743c
PZ
1617 if (p->numa_group) {
1618 /* safe because we can only change our own group */
989348b5 1619 p->numa_group->faults[i] += diff;
50ec8a40 1620 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1621 p->numa_group->total_faults += diff;
1622 group_faults += p->numa_group->faults[i];
8c8a743c 1623 }
ac8e895b
MG
1624 }
1625
688b7585
MG
1626 if (faults > max_faults) {
1627 max_faults = faults;
1628 max_nid = nid;
1629 }
83e1d2cd
MG
1630
1631 if (group_faults > max_group_faults) {
1632 max_group_faults = group_faults;
1633 max_group_nid = nid;
1634 }
1635 }
1636
04bb2f94
RR
1637 update_task_scan_period(p, fault_types[0], fault_types[1]);
1638
7dbd13ed 1639 if (p->numa_group) {
20e07dea 1640 update_numa_active_node_mask(p->numa_group);
60e69eed 1641 spin_unlock_irq(group_lock);
f0b8a4af 1642 max_nid = max_group_nid;
688b7585
MG
1643 }
1644
bb97fc31
RR
1645 if (max_faults) {
1646 /* Set the new preferred node */
1647 if (max_nid != p->numa_preferred_nid)
1648 sched_setnuma(p, max_nid);
1649
1650 if (task_node(p) != p->numa_preferred_nid)
1651 numa_migrate_preferred(p);
3a7053b3 1652 }
cbee9f88
PZ
1653}
1654
8c8a743c
PZ
1655static inline int get_numa_group(struct numa_group *grp)
1656{
1657 return atomic_inc_not_zero(&grp->refcount);
1658}
1659
1660static inline void put_numa_group(struct numa_group *grp)
1661{
1662 if (atomic_dec_and_test(&grp->refcount))
1663 kfree_rcu(grp, rcu);
1664}
1665
3e6a9418
MG
1666static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1667 int *priv)
8c8a743c
PZ
1668{
1669 struct numa_group *grp, *my_grp;
1670 struct task_struct *tsk;
1671 bool join = false;
1672 int cpu = cpupid_to_cpu(cpupid);
1673 int i;
1674
1675 if (unlikely(!p->numa_group)) {
1676 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1677 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1678
1679 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1680 if (!grp)
1681 return;
1682
1683 atomic_set(&grp->refcount, 1);
1684 spin_lock_init(&grp->lock);
1685 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1686 grp->gid = p->pid;
50ec8a40 1687 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1688 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1689 nr_node_ids;
8c8a743c 1690
20e07dea
RR
1691 node_set(task_node(current), grp->active_nodes);
1692
be1e4e76 1693 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1694 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1695
989348b5 1696 grp->total_faults = p->total_numa_faults;
83e1d2cd 1697
8c8a743c
PZ
1698 list_add(&p->numa_entry, &grp->task_list);
1699 grp->nr_tasks++;
1700 rcu_assign_pointer(p->numa_group, grp);
1701 }
1702
1703 rcu_read_lock();
1704 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1705
1706 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1707 goto no_join;
8c8a743c
PZ
1708
1709 grp = rcu_dereference(tsk->numa_group);
1710 if (!grp)
3354781a 1711 goto no_join;
8c8a743c
PZ
1712
1713 my_grp = p->numa_group;
1714 if (grp == my_grp)
3354781a 1715 goto no_join;
8c8a743c
PZ
1716
1717 /*
1718 * Only join the other group if its bigger; if we're the bigger group,
1719 * the other task will join us.
1720 */
1721 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1722 goto no_join;
8c8a743c
PZ
1723
1724 /*
1725 * Tie-break on the grp address.
1726 */
1727 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1728 goto no_join;
8c8a743c 1729
dabe1d99
RR
1730 /* Always join threads in the same process. */
1731 if (tsk->mm == current->mm)
1732 join = true;
1733
1734 /* Simple filter to avoid false positives due to PID collisions */
1735 if (flags & TNF_SHARED)
1736 join = true;
8c8a743c 1737
3e6a9418
MG
1738 /* Update priv based on whether false sharing was detected */
1739 *priv = !join;
1740
dabe1d99 1741 if (join && !get_numa_group(grp))
3354781a 1742 goto no_join;
8c8a743c 1743
8c8a743c
PZ
1744 rcu_read_unlock();
1745
1746 if (!join)
1747 return;
1748
60e69eed
MG
1749 BUG_ON(irqs_disabled());
1750 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1751
be1e4e76 1752 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1753 my_grp->faults[i] -= p->numa_faults_memory[i];
1754 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1755 }
989348b5
MG
1756 my_grp->total_faults -= p->total_numa_faults;
1757 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1758
1759 list_move(&p->numa_entry, &grp->task_list);
1760 my_grp->nr_tasks--;
1761 grp->nr_tasks++;
1762
1763 spin_unlock(&my_grp->lock);
60e69eed 1764 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1765
1766 rcu_assign_pointer(p->numa_group, grp);
1767
1768 put_numa_group(my_grp);
3354781a
PZ
1769 return;
1770
1771no_join:
1772 rcu_read_unlock();
1773 return;
8c8a743c
PZ
1774}
1775
1776void task_numa_free(struct task_struct *p)
1777{
1778 struct numa_group *grp = p->numa_group;
ff1df896 1779 void *numa_faults = p->numa_faults_memory;
e9dd685c
SR
1780 unsigned long flags;
1781 int i;
8c8a743c
PZ
1782
1783 if (grp) {
e9dd685c 1784 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 1785 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1786 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1787 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1788
8c8a743c
PZ
1789 list_del(&p->numa_entry);
1790 grp->nr_tasks--;
e9dd685c 1791 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 1792 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
1793 put_numa_group(grp);
1794 }
1795
ff1df896
RR
1796 p->numa_faults_memory = NULL;
1797 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1798 p->numa_faults_cpu= NULL;
1799 p->numa_faults_buffer_cpu = NULL;
82727018 1800 kfree(numa_faults);
8c8a743c
PZ
1801}
1802
cbee9f88
PZ
1803/*
1804 * Got a PROT_NONE fault for a page on @node.
1805 */
58b46da3 1806void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1807{
1808 struct task_struct *p = current;
6688cc05 1809 bool migrated = flags & TNF_MIGRATED;
58b46da3 1810 int cpu_node = task_node(current);
792568ec 1811 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1812 int priv;
cbee9f88 1813
10e84b97 1814 if (!numabalancing_enabled)
1a687c2e
MG
1815 return;
1816
9ff1d9ff
MG
1817 /* for example, ksmd faulting in a user's mm */
1818 if (!p->mm)
1819 return;
82727018 1820
f809ca9a 1821 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1822 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1823 int size = sizeof(*p->numa_faults_memory) *
1824 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1825
be1e4e76 1826 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1827 if (!p->numa_faults_memory)
f809ca9a 1828 return;
745d6147 1829
ff1df896 1830 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1831 /*
1832 * The averaged statistics, shared & private, memory & cpu,
1833 * occupy the first half of the array. The second half of the
1834 * array is for current counters, which are averaged into the
1835 * first set by task_numa_placement.
1836 */
50ec8a40
RR
1837 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1838 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1839 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1840 p->total_numa_faults = 0;
04bb2f94 1841 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1842 }
cbee9f88 1843
8c8a743c
PZ
1844 /*
1845 * First accesses are treated as private, otherwise consider accesses
1846 * to be private if the accessing pid has not changed
1847 */
1848 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1849 priv = 1;
1850 } else {
1851 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1852 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1853 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1854 }
1855
792568ec
RR
1856 /*
1857 * If a workload spans multiple NUMA nodes, a shared fault that
1858 * occurs wholly within the set of nodes that the workload is
1859 * actively using should be counted as local. This allows the
1860 * scan rate to slow down when a workload has settled down.
1861 */
1862 if (!priv && !local && p->numa_group &&
1863 node_isset(cpu_node, p->numa_group->active_nodes) &&
1864 node_isset(mem_node, p->numa_group->active_nodes))
1865 local = 1;
1866
cbee9f88 1867 task_numa_placement(p);
f809ca9a 1868
2739d3ee
RR
1869 /*
1870 * Retry task to preferred node migration periodically, in case it
1871 * case it previously failed, or the scheduler moved us.
1872 */
1873 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1874 numa_migrate_preferred(p);
1875
b32e86b4
IM
1876 if (migrated)
1877 p->numa_pages_migrated += pages;
1878
58b46da3
RR
1879 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1880 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1881 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1882}
1883
6e5fb223
PZ
1884static void reset_ptenuma_scan(struct task_struct *p)
1885{
1886 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1887 p->mm->numa_scan_offset = 0;
1888}
1889
cbee9f88
PZ
1890/*
1891 * The expensive part of numa migration is done from task_work context.
1892 * Triggered from task_tick_numa().
1893 */
1894void task_numa_work(struct callback_head *work)
1895{
1896 unsigned long migrate, next_scan, now = jiffies;
1897 struct task_struct *p = current;
1898 struct mm_struct *mm = p->mm;
6e5fb223 1899 struct vm_area_struct *vma;
9f40604c 1900 unsigned long start, end;
598f0ec0 1901 unsigned long nr_pte_updates = 0;
9f40604c 1902 long pages;
cbee9f88
PZ
1903
1904 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1905
1906 work->next = work; /* protect against double add */
1907 /*
1908 * Who cares about NUMA placement when they're dying.
1909 *
1910 * NOTE: make sure not to dereference p->mm before this check,
1911 * exit_task_work() happens _after_ exit_mm() so we could be called
1912 * without p->mm even though we still had it when we enqueued this
1913 * work.
1914 */
1915 if (p->flags & PF_EXITING)
1916 return;
1917
930aa174 1918 if (!mm->numa_next_scan) {
7e8d16b6
MG
1919 mm->numa_next_scan = now +
1920 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1921 }
1922
cbee9f88
PZ
1923 /*
1924 * Enforce maximal scan/migration frequency..
1925 */
1926 migrate = mm->numa_next_scan;
1927 if (time_before(now, migrate))
1928 return;
1929
598f0ec0
MG
1930 if (p->numa_scan_period == 0) {
1931 p->numa_scan_period_max = task_scan_max(p);
1932 p->numa_scan_period = task_scan_min(p);
1933 }
cbee9f88 1934
fb003b80 1935 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1936 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1937 return;
1938
19a78d11
PZ
1939 /*
1940 * Delay this task enough that another task of this mm will likely win
1941 * the next time around.
1942 */
1943 p->node_stamp += 2 * TICK_NSEC;
1944
9f40604c
MG
1945 start = mm->numa_scan_offset;
1946 pages = sysctl_numa_balancing_scan_size;
1947 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1948 if (!pages)
1949 return;
cbee9f88 1950
6e5fb223 1951 down_read(&mm->mmap_sem);
9f40604c 1952 vma = find_vma(mm, start);
6e5fb223
PZ
1953 if (!vma) {
1954 reset_ptenuma_scan(p);
9f40604c 1955 start = 0;
6e5fb223
PZ
1956 vma = mm->mmap;
1957 }
9f40604c 1958 for (; vma; vma = vma->vm_next) {
fc314724 1959 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1960 continue;
1961
4591ce4f
MG
1962 /*
1963 * Shared library pages mapped by multiple processes are not
1964 * migrated as it is expected they are cache replicated. Avoid
1965 * hinting faults in read-only file-backed mappings or the vdso
1966 * as migrating the pages will be of marginal benefit.
1967 */
1968 if (!vma->vm_mm ||
1969 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1970 continue;
1971
3c67f474
MG
1972 /*
1973 * Skip inaccessible VMAs to avoid any confusion between
1974 * PROT_NONE and NUMA hinting ptes
1975 */
1976 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1977 continue;
4591ce4f 1978
9f40604c
MG
1979 do {
1980 start = max(start, vma->vm_start);
1981 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1982 end = min(end, vma->vm_end);
598f0ec0
MG
1983 nr_pte_updates += change_prot_numa(vma, start, end);
1984
1985 /*
1986 * Scan sysctl_numa_balancing_scan_size but ensure that
1987 * at least one PTE is updated so that unused virtual
1988 * address space is quickly skipped.
1989 */
1990 if (nr_pte_updates)
1991 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1992
9f40604c
MG
1993 start = end;
1994 if (pages <= 0)
1995 goto out;
3cf1962c
RR
1996
1997 cond_resched();
9f40604c 1998 } while (end != vma->vm_end);
cbee9f88 1999 }
6e5fb223 2000
9f40604c 2001out:
6e5fb223 2002 /*
c69307d5
PZ
2003 * It is possible to reach the end of the VMA list but the last few
2004 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2005 * would find the !migratable VMA on the next scan but not reset the
2006 * scanner to the start so check it now.
6e5fb223
PZ
2007 */
2008 if (vma)
9f40604c 2009 mm->numa_scan_offset = start;
6e5fb223
PZ
2010 else
2011 reset_ptenuma_scan(p);
2012 up_read(&mm->mmap_sem);
cbee9f88
PZ
2013}
2014
2015/*
2016 * Drive the periodic memory faults..
2017 */
2018void task_tick_numa(struct rq *rq, struct task_struct *curr)
2019{
2020 struct callback_head *work = &curr->numa_work;
2021 u64 period, now;
2022
2023 /*
2024 * We don't care about NUMA placement if we don't have memory.
2025 */
2026 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2027 return;
2028
2029 /*
2030 * Using runtime rather than walltime has the dual advantage that
2031 * we (mostly) drive the selection from busy threads and that the
2032 * task needs to have done some actual work before we bother with
2033 * NUMA placement.
2034 */
2035 now = curr->se.sum_exec_runtime;
2036 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2037
2038 if (now - curr->node_stamp > period) {
4b96a29b 2039 if (!curr->node_stamp)
598f0ec0 2040 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2041 curr->node_stamp += period;
cbee9f88
PZ
2042
2043 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2044 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2045 task_work_add(curr, work, true);
2046 }
2047 }
2048}
2049#else
2050static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2051{
2052}
0ec8aa00
PZ
2053
2054static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2055{
2056}
2057
2058static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2059{
2060}
cbee9f88
PZ
2061#endif /* CONFIG_NUMA_BALANCING */
2062
30cfdcfc
DA
2063static void
2064account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2065{
2066 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2067 if (!parent_entity(se))
029632fb 2068 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2069#ifdef CONFIG_SMP
0ec8aa00
PZ
2070 if (entity_is_task(se)) {
2071 struct rq *rq = rq_of(cfs_rq);
2072
2073 account_numa_enqueue(rq, task_of(se));
2074 list_add(&se->group_node, &rq->cfs_tasks);
2075 }
367456c7 2076#endif
30cfdcfc 2077 cfs_rq->nr_running++;
30cfdcfc
DA
2078}
2079
2080static void
2081account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2082{
2083 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2084 if (!parent_entity(se))
029632fb 2085 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2086 if (entity_is_task(se)) {
2087 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2088 list_del_init(&se->group_node);
0ec8aa00 2089 }
30cfdcfc 2090 cfs_rq->nr_running--;
30cfdcfc
DA
2091}
2092
3ff6dcac
YZ
2093#ifdef CONFIG_FAIR_GROUP_SCHED
2094# ifdef CONFIG_SMP
cf5f0acf
PZ
2095static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2096{
2097 long tg_weight;
2098
2099 /*
2100 * Use this CPU's actual weight instead of the last load_contribution
2101 * to gain a more accurate current total weight. See
2102 * update_cfs_rq_load_contribution().
2103 */
bf5b986e 2104 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2105 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2106 tg_weight += cfs_rq->load.weight;
2107
2108 return tg_weight;
2109}
2110
6d5ab293 2111static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2112{
cf5f0acf 2113 long tg_weight, load, shares;
3ff6dcac 2114
cf5f0acf 2115 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2116 load = cfs_rq->load.weight;
3ff6dcac 2117
3ff6dcac 2118 shares = (tg->shares * load);
cf5f0acf
PZ
2119 if (tg_weight)
2120 shares /= tg_weight;
3ff6dcac
YZ
2121
2122 if (shares < MIN_SHARES)
2123 shares = MIN_SHARES;
2124 if (shares > tg->shares)
2125 shares = tg->shares;
2126
2127 return shares;
2128}
3ff6dcac 2129# else /* CONFIG_SMP */
6d5ab293 2130static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2131{
2132 return tg->shares;
2133}
3ff6dcac 2134# endif /* CONFIG_SMP */
2069dd75
PZ
2135static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2136 unsigned long weight)
2137{
19e5eebb
PT
2138 if (se->on_rq) {
2139 /* commit outstanding execution time */
2140 if (cfs_rq->curr == se)
2141 update_curr(cfs_rq);
2069dd75 2142 account_entity_dequeue(cfs_rq, se);
19e5eebb 2143 }
2069dd75
PZ
2144
2145 update_load_set(&se->load, weight);
2146
2147 if (se->on_rq)
2148 account_entity_enqueue(cfs_rq, se);
2149}
2150
82958366
PT
2151static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2152
6d5ab293 2153static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2154{
2155 struct task_group *tg;
2156 struct sched_entity *se;
3ff6dcac 2157 long shares;
2069dd75 2158
2069dd75
PZ
2159 tg = cfs_rq->tg;
2160 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2161 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2162 return;
3ff6dcac
YZ
2163#ifndef CONFIG_SMP
2164 if (likely(se->load.weight == tg->shares))
2165 return;
2166#endif
6d5ab293 2167 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2168
2169 reweight_entity(cfs_rq_of(se), se, shares);
2170}
2171#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2172static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2173{
2174}
2175#endif /* CONFIG_FAIR_GROUP_SCHED */
2176
141965c7 2177#ifdef CONFIG_SMP
5b51f2f8
PT
2178/*
2179 * We choose a half-life close to 1 scheduling period.
2180 * Note: The tables below are dependent on this value.
2181 */
2182#define LOAD_AVG_PERIOD 32
2183#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2184#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2185
2186/* Precomputed fixed inverse multiplies for multiplication by y^n */
2187static const u32 runnable_avg_yN_inv[] = {
2188 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2189 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2190 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2191 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2192 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2193 0x85aac367, 0x82cd8698,
2194};
2195
2196/*
2197 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2198 * over-estimates when re-combining.
2199 */
2200static const u32 runnable_avg_yN_sum[] = {
2201 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2202 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2203 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2204};
2205
9d85f21c
PT
2206/*
2207 * Approximate:
2208 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2209 */
2210static __always_inline u64 decay_load(u64 val, u64 n)
2211{
5b51f2f8
PT
2212 unsigned int local_n;
2213
2214 if (!n)
2215 return val;
2216 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2217 return 0;
2218
2219 /* after bounds checking we can collapse to 32-bit */
2220 local_n = n;
2221
2222 /*
2223 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2224 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2225 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2226 *
2227 * To achieve constant time decay_load.
2228 */
2229 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2230 val >>= local_n / LOAD_AVG_PERIOD;
2231 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2232 }
2233
5b51f2f8
PT
2234 val *= runnable_avg_yN_inv[local_n];
2235 /* We don't use SRR here since we always want to round down. */
2236 return val >> 32;
2237}
2238
2239/*
2240 * For updates fully spanning n periods, the contribution to runnable
2241 * average will be: \Sum 1024*y^n
2242 *
2243 * We can compute this reasonably efficiently by combining:
2244 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2245 */
2246static u32 __compute_runnable_contrib(u64 n)
2247{
2248 u32 contrib = 0;
2249
2250 if (likely(n <= LOAD_AVG_PERIOD))
2251 return runnable_avg_yN_sum[n];
2252 else if (unlikely(n >= LOAD_AVG_MAX_N))
2253 return LOAD_AVG_MAX;
2254
2255 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2256 do {
2257 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2258 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2259
2260 n -= LOAD_AVG_PERIOD;
2261 } while (n > LOAD_AVG_PERIOD);
2262
2263 contrib = decay_load(contrib, n);
2264 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2265}
2266
2267/*
2268 * We can represent the historical contribution to runnable average as the
2269 * coefficients of a geometric series. To do this we sub-divide our runnable
2270 * history into segments of approximately 1ms (1024us); label the segment that
2271 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2272 *
2273 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2274 * p0 p1 p2
2275 * (now) (~1ms ago) (~2ms ago)
2276 *
2277 * Let u_i denote the fraction of p_i that the entity was runnable.
2278 *
2279 * We then designate the fractions u_i as our co-efficients, yielding the
2280 * following representation of historical load:
2281 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2282 *
2283 * We choose y based on the with of a reasonably scheduling period, fixing:
2284 * y^32 = 0.5
2285 *
2286 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2287 * approximately half as much as the contribution to load within the last ms
2288 * (u_0).
2289 *
2290 * When a period "rolls over" and we have new u_0`, multiplying the previous
2291 * sum again by y is sufficient to update:
2292 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2293 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2294 */
2295static __always_inline int __update_entity_runnable_avg(u64 now,
2296 struct sched_avg *sa,
2297 int runnable)
2298{
5b51f2f8
PT
2299 u64 delta, periods;
2300 u32 runnable_contrib;
9d85f21c
PT
2301 int delta_w, decayed = 0;
2302
2303 delta = now - sa->last_runnable_update;
2304 /*
2305 * This should only happen when time goes backwards, which it
2306 * unfortunately does during sched clock init when we swap over to TSC.
2307 */
2308 if ((s64)delta < 0) {
2309 sa->last_runnable_update = now;
2310 return 0;
2311 }
2312
2313 /*
2314 * Use 1024ns as the unit of measurement since it's a reasonable
2315 * approximation of 1us and fast to compute.
2316 */
2317 delta >>= 10;
2318 if (!delta)
2319 return 0;
2320 sa->last_runnable_update = now;
2321
2322 /* delta_w is the amount already accumulated against our next period */
2323 delta_w = sa->runnable_avg_period % 1024;
2324 if (delta + delta_w >= 1024) {
2325 /* period roll-over */
2326 decayed = 1;
2327
2328 /*
2329 * Now that we know we're crossing a period boundary, figure
2330 * out how much from delta we need to complete the current
2331 * period and accrue it.
2332 */
2333 delta_w = 1024 - delta_w;
5b51f2f8
PT
2334 if (runnable)
2335 sa->runnable_avg_sum += delta_w;
2336 sa->runnable_avg_period += delta_w;
2337
2338 delta -= delta_w;
2339
2340 /* Figure out how many additional periods this update spans */
2341 periods = delta / 1024;
2342 delta %= 1024;
2343
2344 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2345 periods + 1);
2346 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2347 periods + 1);
2348
2349 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2350 runnable_contrib = __compute_runnable_contrib(periods);
2351 if (runnable)
2352 sa->runnable_avg_sum += runnable_contrib;
2353 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2354 }
2355
2356 /* Remainder of delta accrued against u_0` */
2357 if (runnable)
2358 sa->runnable_avg_sum += delta;
2359 sa->runnable_avg_period += delta;
2360
2361 return decayed;
2362}
2363
9ee474f5 2364/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2365static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2366{
2367 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2368 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2369
2370 decays -= se->avg.decay_count;
2371 if (!decays)
aff3e498 2372 return 0;
9ee474f5
PT
2373
2374 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2375 se->avg.decay_count = 0;
aff3e498
PT
2376
2377 return decays;
9ee474f5
PT
2378}
2379
c566e8e9
PT
2380#ifdef CONFIG_FAIR_GROUP_SCHED
2381static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2382 int force_update)
2383{
2384 struct task_group *tg = cfs_rq->tg;
bf5b986e 2385 long tg_contrib;
c566e8e9
PT
2386
2387 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2388 tg_contrib -= cfs_rq->tg_load_contrib;
2389
8236d907
JL
2390 if (!tg_contrib)
2391 return;
2392
bf5b986e
AS
2393 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2394 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2395 cfs_rq->tg_load_contrib += tg_contrib;
2396 }
2397}
8165e145 2398
bb17f655
PT
2399/*
2400 * Aggregate cfs_rq runnable averages into an equivalent task_group
2401 * representation for computing load contributions.
2402 */
2403static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2404 struct cfs_rq *cfs_rq)
2405{
2406 struct task_group *tg = cfs_rq->tg;
2407 long contrib;
2408
2409 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2410 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2411 sa->runnable_avg_period + 1);
2412 contrib -= cfs_rq->tg_runnable_contrib;
2413
2414 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2415 atomic_add(contrib, &tg->runnable_avg);
2416 cfs_rq->tg_runnable_contrib += contrib;
2417 }
2418}
2419
8165e145
PT
2420static inline void __update_group_entity_contrib(struct sched_entity *se)
2421{
2422 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2423 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2424 int runnable_avg;
2425
8165e145
PT
2426 u64 contrib;
2427
2428 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2429 se->avg.load_avg_contrib = div_u64(contrib,
2430 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2431
2432 /*
2433 * For group entities we need to compute a correction term in the case
2434 * that they are consuming <1 cpu so that we would contribute the same
2435 * load as a task of equal weight.
2436 *
2437 * Explicitly co-ordinating this measurement would be expensive, but
2438 * fortunately the sum of each cpus contribution forms a usable
2439 * lower-bound on the true value.
2440 *
2441 * Consider the aggregate of 2 contributions. Either they are disjoint
2442 * (and the sum represents true value) or they are disjoint and we are
2443 * understating by the aggregate of their overlap.
2444 *
2445 * Extending this to N cpus, for a given overlap, the maximum amount we
2446 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2447 * cpus that overlap for this interval and w_i is the interval width.
2448 *
2449 * On a small machine; the first term is well-bounded which bounds the
2450 * total error since w_i is a subset of the period. Whereas on a
2451 * larger machine, while this first term can be larger, if w_i is the
2452 * of consequential size guaranteed to see n_i*w_i quickly converge to
2453 * our upper bound of 1-cpu.
2454 */
2455 runnable_avg = atomic_read(&tg->runnable_avg);
2456 if (runnable_avg < NICE_0_LOAD) {
2457 se->avg.load_avg_contrib *= runnable_avg;
2458 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2459 }
8165e145 2460}
f5f9739d
DE
2461
2462static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2463{
2464 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2465 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2466}
6e83125c 2467#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2468static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2469 int force_update) {}
bb17f655
PT
2470static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2471 struct cfs_rq *cfs_rq) {}
8165e145 2472static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2473static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2474#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2475
8165e145
PT
2476static inline void __update_task_entity_contrib(struct sched_entity *se)
2477{
2478 u32 contrib;
2479
2480 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2481 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2482 contrib /= (se->avg.runnable_avg_period + 1);
2483 se->avg.load_avg_contrib = scale_load(contrib);
2484}
2485
2dac754e
PT
2486/* Compute the current contribution to load_avg by se, return any delta */
2487static long __update_entity_load_avg_contrib(struct sched_entity *se)
2488{
2489 long old_contrib = se->avg.load_avg_contrib;
2490
8165e145
PT
2491 if (entity_is_task(se)) {
2492 __update_task_entity_contrib(se);
2493 } else {
bb17f655 2494 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2495 __update_group_entity_contrib(se);
2496 }
2dac754e
PT
2497
2498 return se->avg.load_avg_contrib - old_contrib;
2499}
2500
9ee474f5
PT
2501static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2502 long load_contrib)
2503{
2504 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2505 cfs_rq->blocked_load_avg -= load_contrib;
2506 else
2507 cfs_rq->blocked_load_avg = 0;
2508}
2509
f1b17280
PT
2510static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2511
9d85f21c 2512/* Update a sched_entity's runnable average */
9ee474f5
PT
2513static inline void update_entity_load_avg(struct sched_entity *se,
2514 int update_cfs_rq)
9d85f21c 2515{
2dac754e
PT
2516 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2517 long contrib_delta;
f1b17280 2518 u64 now;
2dac754e 2519
f1b17280
PT
2520 /*
2521 * For a group entity we need to use their owned cfs_rq_clock_task() in
2522 * case they are the parent of a throttled hierarchy.
2523 */
2524 if (entity_is_task(se))
2525 now = cfs_rq_clock_task(cfs_rq);
2526 else
2527 now = cfs_rq_clock_task(group_cfs_rq(se));
2528
2529 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2530 return;
2531
2532 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2533
2534 if (!update_cfs_rq)
2535 return;
2536
2dac754e
PT
2537 if (se->on_rq)
2538 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2539 else
2540 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2541}
2542
2543/*
2544 * Decay the load contributed by all blocked children and account this so that
2545 * their contribution may appropriately discounted when they wake up.
2546 */
aff3e498 2547static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2548{
f1b17280 2549 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2550 u64 decays;
2551
2552 decays = now - cfs_rq->last_decay;
aff3e498 2553 if (!decays && !force_update)
9ee474f5
PT
2554 return;
2555
2509940f
AS
2556 if (atomic_long_read(&cfs_rq->removed_load)) {
2557 unsigned long removed_load;
2558 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2559 subtract_blocked_load_contrib(cfs_rq, removed_load);
2560 }
9ee474f5 2561
aff3e498
PT
2562 if (decays) {
2563 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2564 decays);
2565 atomic64_add(decays, &cfs_rq->decay_counter);
2566 cfs_rq->last_decay = now;
2567 }
c566e8e9
PT
2568
2569 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2570}
18bf2805 2571
2dac754e
PT
2572/* Add the load generated by se into cfs_rq's child load-average */
2573static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2574 struct sched_entity *se,
2575 int wakeup)
2dac754e 2576{
aff3e498
PT
2577 /*
2578 * We track migrations using entity decay_count <= 0, on a wake-up
2579 * migration we use a negative decay count to track the remote decays
2580 * accumulated while sleeping.
a75cdaa9
AS
2581 *
2582 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2583 * are seen by enqueue_entity_load_avg() as a migration with an already
2584 * constructed load_avg_contrib.
aff3e498
PT
2585 */
2586 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2587 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2588 if (se->avg.decay_count) {
2589 /*
2590 * In a wake-up migration we have to approximate the
2591 * time sleeping. This is because we can't synchronize
2592 * clock_task between the two cpus, and it is not
2593 * guaranteed to be read-safe. Instead, we can
2594 * approximate this using our carried decays, which are
2595 * explicitly atomically readable.
2596 */
2597 se->avg.last_runnable_update -= (-se->avg.decay_count)
2598 << 20;
2599 update_entity_load_avg(se, 0);
2600 /* Indicate that we're now synchronized and on-rq */
2601 se->avg.decay_count = 0;
2602 }
9ee474f5
PT
2603 wakeup = 0;
2604 } else {
9390675a 2605 __synchronize_entity_decay(se);
9ee474f5
PT
2606 }
2607
aff3e498
PT
2608 /* migrated tasks did not contribute to our blocked load */
2609 if (wakeup) {
9ee474f5 2610 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2611 update_entity_load_avg(se, 0);
2612 }
9ee474f5 2613
2dac754e 2614 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2615 /* we force update consideration on load-balancer moves */
2616 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2617}
2618
9ee474f5
PT
2619/*
2620 * Remove se's load from this cfs_rq child load-average, if the entity is
2621 * transitioning to a blocked state we track its projected decay using
2622 * blocked_load_avg.
2623 */
2dac754e 2624static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2625 struct sched_entity *se,
2626 int sleep)
2dac754e 2627{
9ee474f5 2628 update_entity_load_avg(se, 1);
aff3e498
PT
2629 /* we force update consideration on load-balancer moves */
2630 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2631
2dac754e 2632 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2633 if (sleep) {
2634 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2635 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2636 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2637}
642dbc39
VG
2638
2639/*
2640 * Update the rq's load with the elapsed running time before entering
2641 * idle. if the last scheduled task is not a CFS task, idle_enter will
2642 * be the only way to update the runnable statistic.
2643 */
2644void idle_enter_fair(struct rq *this_rq)
2645{
2646 update_rq_runnable_avg(this_rq, 1);
2647}
2648
2649/*
2650 * Update the rq's load with the elapsed idle time before a task is
2651 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2652 * be the only way to update the runnable statistic.
2653 */
2654void idle_exit_fair(struct rq *this_rq)
2655{
2656 update_rq_runnable_avg(this_rq, 0);
2657}
2658
6e83125c
PZ
2659static int idle_balance(struct rq *this_rq);
2660
38033c37
PZ
2661#else /* CONFIG_SMP */
2662
9ee474f5
PT
2663static inline void update_entity_load_avg(struct sched_entity *se,
2664 int update_cfs_rq) {}
18bf2805 2665static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2666static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2667 struct sched_entity *se,
2668 int wakeup) {}
2dac754e 2669static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2670 struct sched_entity *se,
2671 int sleep) {}
aff3e498
PT
2672static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2673 int force_update) {}
6e83125c
PZ
2674
2675static inline int idle_balance(struct rq *rq)
2676{
2677 return 0;
2678}
2679
38033c37 2680#endif /* CONFIG_SMP */
9d85f21c 2681
2396af69 2682static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2683{
bf0f6f24 2684#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2685 struct task_struct *tsk = NULL;
2686
2687 if (entity_is_task(se))
2688 tsk = task_of(se);
2689
41acab88 2690 if (se->statistics.sleep_start) {
78becc27 2691 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2692
2693 if ((s64)delta < 0)
2694 delta = 0;
2695
41acab88
LDM
2696 if (unlikely(delta > se->statistics.sleep_max))
2697 se->statistics.sleep_max = delta;
bf0f6f24 2698
8c79a045 2699 se->statistics.sleep_start = 0;
41acab88 2700 se->statistics.sum_sleep_runtime += delta;
9745512c 2701
768d0c27 2702 if (tsk) {
e414314c 2703 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2704 trace_sched_stat_sleep(tsk, delta);
2705 }
bf0f6f24 2706 }
41acab88 2707 if (se->statistics.block_start) {
78becc27 2708 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2709
2710 if ((s64)delta < 0)
2711 delta = 0;
2712
41acab88
LDM
2713 if (unlikely(delta > se->statistics.block_max))
2714 se->statistics.block_max = delta;
bf0f6f24 2715
8c79a045 2716 se->statistics.block_start = 0;
41acab88 2717 se->statistics.sum_sleep_runtime += delta;
30084fbd 2718
e414314c 2719 if (tsk) {
8f0dfc34 2720 if (tsk->in_iowait) {
41acab88
LDM
2721 se->statistics.iowait_sum += delta;
2722 se->statistics.iowait_count++;
768d0c27 2723 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2724 }
2725
b781a602
AV
2726 trace_sched_stat_blocked(tsk, delta);
2727
e414314c
PZ
2728 /*
2729 * Blocking time is in units of nanosecs, so shift by
2730 * 20 to get a milliseconds-range estimation of the
2731 * amount of time that the task spent sleeping:
2732 */
2733 if (unlikely(prof_on == SLEEP_PROFILING)) {
2734 profile_hits(SLEEP_PROFILING,
2735 (void *)get_wchan(tsk),
2736 delta >> 20);
2737 }
2738 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2739 }
bf0f6f24
IM
2740 }
2741#endif
2742}
2743
ddc97297
PZ
2744static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2745{
2746#ifdef CONFIG_SCHED_DEBUG
2747 s64 d = se->vruntime - cfs_rq->min_vruntime;
2748
2749 if (d < 0)
2750 d = -d;
2751
2752 if (d > 3*sysctl_sched_latency)
2753 schedstat_inc(cfs_rq, nr_spread_over);
2754#endif
2755}
2756
aeb73b04
PZ
2757static void
2758place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2759{
1af5f730 2760 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2761
2cb8600e
PZ
2762 /*
2763 * The 'current' period is already promised to the current tasks,
2764 * however the extra weight of the new task will slow them down a
2765 * little, place the new task so that it fits in the slot that
2766 * stays open at the end.
2767 */
94dfb5e7 2768 if (initial && sched_feat(START_DEBIT))
f9c0b095 2769 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2770
a2e7a7eb 2771 /* sleeps up to a single latency don't count. */
5ca9880c 2772 if (!initial) {
a2e7a7eb 2773 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2774
a2e7a7eb
MG
2775 /*
2776 * Halve their sleep time's effect, to allow
2777 * for a gentler effect of sleepers:
2778 */
2779 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2780 thresh >>= 1;
51e0304c 2781
a2e7a7eb 2782 vruntime -= thresh;
aeb73b04
PZ
2783 }
2784
b5d9d734 2785 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2786 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2787}
2788
d3d9dc33
PT
2789static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2790
bf0f6f24 2791static void
88ec22d3 2792enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2793{
88ec22d3
PZ
2794 /*
2795 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2796 * through calling update_curr().
88ec22d3 2797 */
371fd7e7 2798 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2799 se->vruntime += cfs_rq->min_vruntime;
2800
bf0f6f24 2801 /*
a2a2d680 2802 * Update run-time statistics of the 'current'.
bf0f6f24 2803 */
b7cc0896 2804 update_curr(cfs_rq);
f269ae04 2805 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2806 account_entity_enqueue(cfs_rq, se);
2807 update_cfs_shares(cfs_rq);
bf0f6f24 2808
88ec22d3 2809 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2810 place_entity(cfs_rq, se, 0);
2396af69 2811 enqueue_sleeper(cfs_rq, se);
e9acbff6 2812 }
bf0f6f24 2813
d2417e5a 2814 update_stats_enqueue(cfs_rq, se);
ddc97297 2815 check_spread(cfs_rq, se);
83b699ed
SV
2816 if (se != cfs_rq->curr)
2817 __enqueue_entity(cfs_rq, se);
2069dd75 2818 se->on_rq = 1;
3d4b47b4 2819
d3d9dc33 2820 if (cfs_rq->nr_running == 1) {
3d4b47b4 2821 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2822 check_enqueue_throttle(cfs_rq);
2823 }
bf0f6f24
IM
2824}
2825
2c13c919 2826static void __clear_buddies_last(struct sched_entity *se)
2002c695 2827{
2c13c919
RR
2828 for_each_sched_entity(se) {
2829 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2830 if (cfs_rq->last != se)
2c13c919 2831 break;
f1044799
PZ
2832
2833 cfs_rq->last = NULL;
2c13c919
RR
2834 }
2835}
2002c695 2836
2c13c919
RR
2837static void __clear_buddies_next(struct sched_entity *se)
2838{
2839 for_each_sched_entity(se) {
2840 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2841 if (cfs_rq->next != se)
2c13c919 2842 break;
f1044799
PZ
2843
2844 cfs_rq->next = NULL;
2c13c919 2845 }
2002c695
PZ
2846}
2847
ac53db59
RR
2848static void __clear_buddies_skip(struct sched_entity *se)
2849{
2850 for_each_sched_entity(se) {
2851 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2852 if (cfs_rq->skip != se)
ac53db59 2853 break;
f1044799
PZ
2854
2855 cfs_rq->skip = NULL;
ac53db59
RR
2856 }
2857}
2858
a571bbea
PZ
2859static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2860{
2c13c919
RR
2861 if (cfs_rq->last == se)
2862 __clear_buddies_last(se);
2863
2864 if (cfs_rq->next == se)
2865 __clear_buddies_next(se);
ac53db59
RR
2866
2867 if (cfs_rq->skip == se)
2868 __clear_buddies_skip(se);
a571bbea
PZ
2869}
2870
6c16a6dc 2871static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2872
bf0f6f24 2873static void
371fd7e7 2874dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2875{
a2a2d680
DA
2876 /*
2877 * Update run-time statistics of the 'current'.
2878 */
2879 update_curr(cfs_rq);
17bc14b7 2880 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2881
19b6a2e3 2882 update_stats_dequeue(cfs_rq, se);
371fd7e7 2883 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2884#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2885 if (entity_is_task(se)) {
2886 struct task_struct *tsk = task_of(se);
2887
2888 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2889 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2890 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2891 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2892 }
db36cc7d 2893#endif
67e9fb2a
PZ
2894 }
2895
2002c695 2896 clear_buddies(cfs_rq, se);
4793241b 2897
83b699ed 2898 if (se != cfs_rq->curr)
30cfdcfc 2899 __dequeue_entity(cfs_rq, se);
17bc14b7 2900 se->on_rq = 0;
30cfdcfc 2901 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2902
2903 /*
2904 * Normalize the entity after updating the min_vruntime because the
2905 * update can refer to the ->curr item and we need to reflect this
2906 * movement in our normalized position.
2907 */
371fd7e7 2908 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2909 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2910
d8b4986d
PT
2911 /* return excess runtime on last dequeue */
2912 return_cfs_rq_runtime(cfs_rq);
2913
1e876231 2914 update_min_vruntime(cfs_rq);
17bc14b7 2915 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2916}
2917
2918/*
2919 * Preempt the current task with a newly woken task if needed:
2920 */
7c92e54f 2921static void
2e09bf55 2922check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2923{
11697830 2924 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2925 struct sched_entity *se;
2926 s64 delta;
11697830 2927
6d0f0ebd 2928 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2929 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2930 if (delta_exec > ideal_runtime) {
8875125e 2931 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
2932 /*
2933 * The current task ran long enough, ensure it doesn't get
2934 * re-elected due to buddy favours.
2935 */
2936 clear_buddies(cfs_rq, curr);
f685ceac
MG
2937 return;
2938 }
2939
2940 /*
2941 * Ensure that a task that missed wakeup preemption by a
2942 * narrow margin doesn't have to wait for a full slice.
2943 * This also mitigates buddy induced latencies under load.
2944 */
f685ceac
MG
2945 if (delta_exec < sysctl_sched_min_granularity)
2946 return;
2947
f4cfb33e
WX
2948 se = __pick_first_entity(cfs_rq);
2949 delta = curr->vruntime - se->vruntime;
f685ceac 2950
f4cfb33e
WX
2951 if (delta < 0)
2952 return;
d7d82944 2953
f4cfb33e 2954 if (delta > ideal_runtime)
8875125e 2955 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
2956}
2957
83b699ed 2958static void
8494f412 2959set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2960{
83b699ed
SV
2961 /* 'current' is not kept within the tree. */
2962 if (se->on_rq) {
2963 /*
2964 * Any task has to be enqueued before it get to execute on
2965 * a CPU. So account for the time it spent waiting on the
2966 * runqueue.
2967 */
2968 update_stats_wait_end(cfs_rq, se);
2969 __dequeue_entity(cfs_rq, se);
2970 }
2971
79303e9e 2972 update_stats_curr_start(cfs_rq, se);
429d43bc 2973 cfs_rq->curr = se;
eba1ed4b
IM
2974#ifdef CONFIG_SCHEDSTATS
2975 /*
2976 * Track our maximum slice length, if the CPU's load is at
2977 * least twice that of our own weight (i.e. dont track it
2978 * when there are only lesser-weight tasks around):
2979 */
495eca49 2980 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2981 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2982 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2983 }
2984#endif
4a55b450 2985 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2986}
2987
3f3a4904
PZ
2988static int
2989wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2990
ac53db59
RR
2991/*
2992 * Pick the next process, keeping these things in mind, in this order:
2993 * 1) keep things fair between processes/task groups
2994 * 2) pick the "next" process, since someone really wants that to run
2995 * 3) pick the "last" process, for cache locality
2996 * 4) do not run the "skip" process, if something else is available
2997 */
678d5718
PZ
2998static struct sched_entity *
2999pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3000{
678d5718
PZ
3001 struct sched_entity *left = __pick_first_entity(cfs_rq);
3002 struct sched_entity *se;
3003
3004 /*
3005 * If curr is set we have to see if its left of the leftmost entity
3006 * still in the tree, provided there was anything in the tree at all.
3007 */
3008 if (!left || (curr && entity_before(curr, left)))
3009 left = curr;
3010
3011 se = left; /* ideally we run the leftmost entity */
f4b6755f 3012
ac53db59
RR
3013 /*
3014 * Avoid running the skip buddy, if running something else can
3015 * be done without getting too unfair.
3016 */
3017 if (cfs_rq->skip == se) {
678d5718
PZ
3018 struct sched_entity *second;
3019
3020 if (se == curr) {
3021 second = __pick_first_entity(cfs_rq);
3022 } else {
3023 second = __pick_next_entity(se);
3024 if (!second || (curr && entity_before(curr, second)))
3025 second = curr;
3026 }
3027
ac53db59
RR
3028 if (second && wakeup_preempt_entity(second, left) < 1)
3029 se = second;
3030 }
aa2ac252 3031
f685ceac
MG
3032 /*
3033 * Prefer last buddy, try to return the CPU to a preempted task.
3034 */
3035 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3036 se = cfs_rq->last;
3037
ac53db59
RR
3038 /*
3039 * Someone really wants this to run. If it's not unfair, run it.
3040 */
3041 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3042 se = cfs_rq->next;
3043
f685ceac 3044 clear_buddies(cfs_rq, se);
4793241b
PZ
3045
3046 return se;
aa2ac252
PZ
3047}
3048
678d5718 3049static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3050
ab6cde26 3051static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3052{
3053 /*
3054 * If still on the runqueue then deactivate_task()
3055 * was not called and update_curr() has to be done:
3056 */
3057 if (prev->on_rq)
b7cc0896 3058 update_curr(cfs_rq);
bf0f6f24 3059
d3d9dc33
PT
3060 /* throttle cfs_rqs exceeding runtime */
3061 check_cfs_rq_runtime(cfs_rq);
3062
ddc97297 3063 check_spread(cfs_rq, prev);
30cfdcfc 3064 if (prev->on_rq) {
5870db5b 3065 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3066 /* Put 'current' back into the tree. */
3067 __enqueue_entity(cfs_rq, prev);
9d85f21c 3068 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3069 update_entity_load_avg(prev, 1);
30cfdcfc 3070 }
429d43bc 3071 cfs_rq->curr = NULL;
bf0f6f24
IM
3072}
3073
8f4d37ec
PZ
3074static void
3075entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3076{
bf0f6f24 3077 /*
30cfdcfc 3078 * Update run-time statistics of the 'current'.
bf0f6f24 3079 */
30cfdcfc 3080 update_curr(cfs_rq);
bf0f6f24 3081
9d85f21c
PT
3082 /*
3083 * Ensure that runnable average is periodically updated.
3084 */
9ee474f5 3085 update_entity_load_avg(curr, 1);
aff3e498 3086 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3087 update_cfs_shares(cfs_rq);
9d85f21c 3088
8f4d37ec
PZ
3089#ifdef CONFIG_SCHED_HRTICK
3090 /*
3091 * queued ticks are scheduled to match the slice, so don't bother
3092 * validating it and just reschedule.
3093 */
983ed7a6 3094 if (queued) {
8875125e 3095 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3096 return;
3097 }
8f4d37ec
PZ
3098 /*
3099 * don't let the period tick interfere with the hrtick preemption
3100 */
3101 if (!sched_feat(DOUBLE_TICK) &&
3102 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3103 return;
3104#endif
3105
2c2efaed 3106 if (cfs_rq->nr_running > 1)
2e09bf55 3107 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3108}
3109
ab84d31e
PT
3110
3111/**************************************************
3112 * CFS bandwidth control machinery
3113 */
3114
3115#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3116
3117#ifdef HAVE_JUMP_LABEL
c5905afb 3118static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3119
3120static inline bool cfs_bandwidth_used(void)
3121{
c5905afb 3122 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3123}
3124
1ee14e6c 3125void cfs_bandwidth_usage_inc(void)
029632fb 3126{
1ee14e6c
BS
3127 static_key_slow_inc(&__cfs_bandwidth_used);
3128}
3129
3130void cfs_bandwidth_usage_dec(void)
3131{
3132 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3133}
3134#else /* HAVE_JUMP_LABEL */
3135static bool cfs_bandwidth_used(void)
3136{
3137 return true;
3138}
3139
1ee14e6c
BS
3140void cfs_bandwidth_usage_inc(void) {}
3141void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3142#endif /* HAVE_JUMP_LABEL */
3143
ab84d31e
PT
3144/*
3145 * default period for cfs group bandwidth.
3146 * default: 0.1s, units: nanoseconds
3147 */
3148static inline u64 default_cfs_period(void)
3149{
3150 return 100000000ULL;
3151}
ec12cb7f
PT
3152
3153static inline u64 sched_cfs_bandwidth_slice(void)
3154{
3155 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3156}
3157
a9cf55b2
PT
3158/*
3159 * Replenish runtime according to assigned quota and update expiration time.
3160 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3161 * additional synchronization around rq->lock.
3162 *
3163 * requires cfs_b->lock
3164 */
029632fb 3165void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3166{
3167 u64 now;
3168
3169 if (cfs_b->quota == RUNTIME_INF)
3170 return;
3171
3172 now = sched_clock_cpu(smp_processor_id());
3173 cfs_b->runtime = cfs_b->quota;
3174 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3175}
3176
029632fb
PZ
3177static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3178{
3179 return &tg->cfs_bandwidth;
3180}
3181
f1b17280
PT
3182/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3183static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3184{
3185 if (unlikely(cfs_rq->throttle_count))
3186 return cfs_rq->throttled_clock_task;
3187
78becc27 3188 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3189}
3190
85dac906
PT
3191/* returns 0 on failure to allocate runtime */
3192static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3193{
3194 struct task_group *tg = cfs_rq->tg;
3195 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3196 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3197
3198 /* note: this is a positive sum as runtime_remaining <= 0 */
3199 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3200
3201 raw_spin_lock(&cfs_b->lock);
3202 if (cfs_b->quota == RUNTIME_INF)
3203 amount = min_amount;
58088ad0 3204 else {
a9cf55b2
PT
3205 /*
3206 * If the bandwidth pool has become inactive, then at least one
3207 * period must have elapsed since the last consumption.
3208 * Refresh the global state and ensure bandwidth timer becomes
3209 * active.
3210 */
3211 if (!cfs_b->timer_active) {
3212 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3213 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3214 }
58088ad0
PT
3215
3216 if (cfs_b->runtime > 0) {
3217 amount = min(cfs_b->runtime, min_amount);
3218 cfs_b->runtime -= amount;
3219 cfs_b->idle = 0;
3220 }
ec12cb7f 3221 }
a9cf55b2 3222 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3223 raw_spin_unlock(&cfs_b->lock);
3224
3225 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3226 /*
3227 * we may have advanced our local expiration to account for allowed
3228 * spread between our sched_clock and the one on which runtime was
3229 * issued.
3230 */
3231 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3232 cfs_rq->runtime_expires = expires;
85dac906
PT
3233
3234 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3235}
3236
a9cf55b2
PT
3237/*
3238 * Note: This depends on the synchronization provided by sched_clock and the
3239 * fact that rq->clock snapshots this value.
3240 */
3241static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3242{
a9cf55b2 3243 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3244
3245 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3246 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3247 return;
3248
a9cf55b2
PT
3249 if (cfs_rq->runtime_remaining < 0)
3250 return;
3251
3252 /*
3253 * If the local deadline has passed we have to consider the
3254 * possibility that our sched_clock is 'fast' and the global deadline
3255 * has not truly expired.
3256 *
3257 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3258 * whether the global deadline has advanced. It is valid to compare
3259 * cfs_b->runtime_expires without any locks since we only care about
3260 * exact equality, so a partial write will still work.
a9cf55b2
PT
3261 */
3262
51f2176d 3263 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3264 /* extend local deadline, drift is bounded above by 2 ticks */
3265 cfs_rq->runtime_expires += TICK_NSEC;
3266 } else {
3267 /* global deadline is ahead, expiration has passed */
3268 cfs_rq->runtime_remaining = 0;
3269 }
3270}
3271
9dbdb155 3272static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3273{
3274 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3275 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3276 expire_cfs_rq_runtime(cfs_rq);
3277
3278 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3279 return;
3280
85dac906
PT
3281 /*
3282 * if we're unable to extend our runtime we resched so that the active
3283 * hierarchy can be throttled
3284 */
3285 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3286 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3287}
3288
6c16a6dc 3289static __always_inline
9dbdb155 3290void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3291{
56f570e5 3292 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3293 return;
3294
3295 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3296}
3297
85dac906
PT
3298static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3299{
56f570e5 3300 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3301}
3302
64660c86
PT
3303/* check whether cfs_rq, or any parent, is throttled */
3304static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3305{
56f570e5 3306 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3307}
3308
3309/*
3310 * Ensure that neither of the group entities corresponding to src_cpu or
3311 * dest_cpu are members of a throttled hierarchy when performing group
3312 * load-balance operations.
3313 */
3314static inline int throttled_lb_pair(struct task_group *tg,
3315 int src_cpu, int dest_cpu)
3316{
3317 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3318
3319 src_cfs_rq = tg->cfs_rq[src_cpu];
3320 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3321
3322 return throttled_hierarchy(src_cfs_rq) ||
3323 throttled_hierarchy(dest_cfs_rq);
3324}
3325
3326/* updated child weight may affect parent so we have to do this bottom up */
3327static int tg_unthrottle_up(struct task_group *tg, void *data)
3328{
3329 struct rq *rq = data;
3330 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3331
3332 cfs_rq->throttle_count--;
3333#ifdef CONFIG_SMP
3334 if (!cfs_rq->throttle_count) {
f1b17280 3335 /* adjust cfs_rq_clock_task() */
78becc27 3336 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3337 cfs_rq->throttled_clock_task;
64660c86
PT
3338 }
3339#endif
3340
3341 return 0;
3342}
3343
3344static int tg_throttle_down(struct task_group *tg, void *data)
3345{
3346 struct rq *rq = data;
3347 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3348
82958366
PT
3349 /* group is entering throttled state, stop time */
3350 if (!cfs_rq->throttle_count)
78becc27 3351 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3352 cfs_rq->throttle_count++;
3353
3354 return 0;
3355}
3356
d3d9dc33 3357static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3358{
3359 struct rq *rq = rq_of(cfs_rq);
3360 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3361 struct sched_entity *se;
3362 long task_delta, dequeue = 1;
3363
3364 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3365
f1b17280 3366 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3367 rcu_read_lock();
3368 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3369 rcu_read_unlock();
85dac906
PT
3370
3371 task_delta = cfs_rq->h_nr_running;
3372 for_each_sched_entity(se) {
3373 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3374 /* throttled entity or throttle-on-deactivate */
3375 if (!se->on_rq)
3376 break;
3377
3378 if (dequeue)
3379 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3380 qcfs_rq->h_nr_running -= task_delta;
3381
3382 if (qcfs_rq->load.weight)
3383 dequeue = 0;
3384 }
3385
3386 if (!se)
72465447 3387 sub_nr_running(rq, task_delta);
85dac906
PT
3388
3389 cfs_rq->throttled = 1;
78becc27 3390 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3391 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3392 /*
3393 * Add to the _head_ of the list, so that an already-started
3394 * distribute_cfs_runtime will not see us
3395 */
3396 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3397 if (!cfs_b->timer_active)
09dc4ab0 3398 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3399 raw_spin_unlock(&cfs_b->lock);
3400}
3401
029632fb 3402void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3403{
3404 struct rq *rq = rq_of(cfs_rq);
3405 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3406 struct sched_entity *se;
3407 int enqueue = 1;
3408 long task_delta;
3409
22b958d8 3410 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3411
3412 cfs_rq->throttled = 0;
1a55af2e
FW
3413
3414 update_rq_clock(rq);
3415
671fd9da 3416 raw_spin_lock(&cfs_b->lock);
78becc27 3417 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3418 list_del_rcu(&cfs_rq->throttled_list);
3419 raw_spin_unlock(&cfs_b->lock);
3420
64660c86
PT
3421 /* update hierarchical throttle state */
3422 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3423
671fd9da
PT
3424 if (!cfs_rq->load.weight)
3425 return;
3426
3427 task_delta = cfs_rq->h_nr_running;
3428 for_each_sched_entity(se) {
3429 if (se->on_rq)
3430 enqueue = 0;
3431
3432 cfs_rq = cfs_rq_of(se);
3433 if (enqueue)
3434 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3435 cfs_rq->h_nr_running += task_delta;
3436
3437 if (cfs_rq_throttled(cfs_rq))
3438 break;
3439 }
3440
3441 if (!se)
72465447 3442 add_nr_running(rq, task_delta);
671fd9da
PT
3443
3444 /* determine whether we need to wake up potentially idle cpu */
3445 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3446 resched_curr(rq);
671fd9da
PT
3447}
3448
3449static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3450 u64 remaining, u64 expires)
3451{
3452 struct cfs_rq *cfs_rq;
c06f04c7
BS
3453 u64 runtime;
3454 u64 starting_runtime = remaining;
671fd9da
PT
3455
3456 rcu_read_lock();
3457 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3458 throttled_list) {
3459 struct rq *rq = rq_of(cfs_rq);
3460
3461 raw_spin_lock(&rq->lock);
3462 if (!cfs_rq_throttled(cfs_rq))
3463 goto next;
3464
3465 runtime = -cfs_rq->runtime_remaining + 1;
3466 if (runtime > remaining)
3467 runtime = remaining;
3468 remaining -= runtime;
3469
3470 cfs_rq->runtime_remaining += runtime;
3471 cfs_rq->runtime_expires = expires;
3472
3473 /* we check whether we're throttled above */
3474 if (cfs_rq->runtime_remaining > 0)
3475 unthrottle_cfs_rq(cfs_rq);
3476
3477next:
3478 raw_spin_unlock(&rq->lock);
3479
3480 if (!remaining)
3481 break;
3482 }
3483 rcu_read_unlock();
3484
c06f04c7 3485 return starting_runtime - remaining;
671fd9da
PT
3486}
3487
58088ad0
PT
3488/*
3489 * Responsible for refilling a task_group's bandwidth and unthrottling its
3490 * cfs_rqs as appropriate. If there has been no activity within the last
3491 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3492 * used to track this state.
3493 */
3494static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3495{
671fd9da 3496 u64 runtime, runtime_expires;
51f2176d 3497 int throttled;
58088ad0 3498
58088ad0
PT
3499 /* no need to continue the timer with no bandwidth constraint */
3500 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3501 goto out_deactivate;
58088ad0 3502
671fd9da 3503 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3504 cfs_b->nr_periods += overrun;
671fd9da 3505
51f2176d
BS
3506 /*
3507 * idle depends on !throttled (for the case of a large deficit), and if
3508 * we're going inactive then everything else can be deferred
3509 */
3510 if (cfs_b->idle && !throttled)
3511 goto out_deactivate;
a9cf55b2 3512
927b54fc
BS
3513 /*
3514 * if we have relooped after returning idle once, we need to update our
3515 * status as actually running, so that other cpus doing
3516 * __start_cfs_bandwidth will stop trying to cancel us.
3517 */
3518 cfs_b->timer_active = 1;
3519
a9cf55b2
PT
3520 __refill_cfs_bandwidth_runtime(cfs_b);
3521
671fd9da
PT
3522 if (!throttled) {
3523 /* mark as potentially idle for the upcoming period */
3524 cfs_b->idle = 1;
51f2176d 3525 return 0;
671fd9da
PT
3526 }
3527
e8da1b18
NR
3528 /* account preceding periods in which throttling occurred */
3529 cfs_b->nr_throttled += overrun;
3530
671fd9da 3531 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3532
3533 /*
c06f04c7
BS
3534 * This check is repeated as we are holding onto the new bandwidth while
3535 * we unthrottle. This can potentially race with an unthrottled group
3536 * trying to acquire new bandwidth from the global pool. This can result
3537 * in us over-using our runtime if it is all used during this loop, but
3538 * only by limited amounts in that extreme case.
671fd9da 3539 */
c06f04c7
BS
3540 while (throttled && cfs_b->runtime > 0) {
3541 runtime = cfs_b->runtime;
671fd9da
PT
3542 raw_spin_unlock(&cfs_b->lock);
3543 /* we can't nest cfs_b->lock while distributing bandwidth */
3544 runtime = distribute_cfs_runtime(cfs_b, runtime,
3545 runtime_expires);
3546 raw_spin_lock(&cfs_b->lock);
3547
3548 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3549
3550 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3551 }
58088ad0 3552
671fd9da
PT
3553 /*
3554 * While we are ensured activity in the period following an
3555 * unthrottle, this also covers the case in which the new bandwidth is
3556 * insufficient to cover the existing bandwidth deficit. (Forcing the
3557 * timer to remain active while there are any throttled entities.)
3558 */
3559 cfs_b->idle = 0;
58088ad0 3560
51f2176d
BS
3561 return 0;
3562
3563out_deactivate:
3564 cfs_b->timer_active = 0;
3565 return 1;
58088ad0 3566}
d3d9dc33 3567
d8b4986d
PT
3568/* a cfs_rq won't donate quota below this amount */
3569static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3570/* minimum remaining period time to redistribute slack quota */
3571static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3572/* how long we wait to gather additional slack before distributing */
3573static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3574
db06e78c
BS
3575/*
3576 * Are we near the end of the current quota period?
3577 *
3578 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3579 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3580 * migrate_hrtimers, base is never cleared, so we are fine.
3581 */
d8b4986d
PT
3582static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3583{
3584 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3585 u64 remaining;
3586
3587 /* if the call-back is running a quota refresh is already occurring */
3588 if (hrtimer_callback_running(refresh_timer))
3589 return 1;
3590
3591 /* is a quota refresh about to occur? */
3592 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3593 if (remaining < min_expire)
3594 return 1;
3595
3596 return 0;
3597}
3598
3599static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3600{
3601 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3602
3603 /* if there's a quota refresh soon don't bother with slack */
3604 if (runtime_refresh_within(cfs_b, min_left))
3605 return;
3606
3607 start_bandwidth_timer(&cfs_b->slack_timer,
3608 ns_to_ktime(cfs_bandwidth_slack_period));
3609}
3610
3611/* we know any runtime found here is valid as update_curr() precedes return */
3612static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3613{
3614 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3615 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3616
3617 if (slack_runtime <= 0)
3618 return;
3619
3620 raw_spin_lock(&cfs_b->lock);
3621 if (cfs_b->quota != RUNTIME_INF &&
3622 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3623 cfs_b->runtime += slack_runtime;
3624
3625 /* we are under rq->lock, defer unthrottling using a timer */
3626 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3627 !list_empty(&cfs_b->throttled_cfs_rq))
3628 start_cfs_slack_bandwidth(cfs_b);
3629 }
3630 raw_spin_unlock(&cfs_b->lock);
3631
3632 /* even if it's not valid for return we don't want to try again */
3633 cfs_rq->runtime_remaining -= slack_runtime;
3634}
3635
3636static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3637{
56f570e5
PT
3638 if (!cfs_bandwidth_used())
3639 return;
3640
fccfdc6f 3641 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3642 return;
3643
3644 __return_cfs_rq_runtime(cfs_rq);
3645}
3646
3647/*
3648 * This is done with a timer (instead of inline with bandwidth return) since
3649 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3650 */
3651static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3652{
3653 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3654 u64 expires;
3655
3656 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3657 raw_spin_lock(&cfs_b->lock);
3658 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3659 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3660 return;
db06e78c 3661 }
d8b4986d 3662
c06f04c7 3663 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3664 runtime = cfs_b->runtime;
c06f04c7 3665
d8b4986d
PT
3666 expires = cfs_b->runtime_expires;
3667 raw_spin_unlock(&cfs_b->lock);
3668
3669 if (!runtime)
3670 return;
3671
3672 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3673
3674 raw_spin_lock(&cfs_b->lock);
3675 if (expires == cfs_b->runtime_expires)
c06f04c7 3676 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3677 raw_spin_unlock(&cfs_b->lock);
3678}
3679
d3d9dc33
PT
3680/*
3681 * When a group wakes up we want to make sure that its quota is not already
3682 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3683 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3684 */
3685static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3686{
56f570e5
PT
3687 if (!cfs_bandwidth_used())
3688 return;
3689
d3d9dc33
PT
3690 /* an active group must be handled by the update_curr()->put() path */
3691 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3692 return;
3693
3694 /* ensure the group is not already throttled */
3695 if (cfs_rq_throttled(cfs_rq))
3696 return;
3697
3698 /* update runtime allocation */
3699 account_cfs_rq_runtime(cfs_rq, 0);
3700 if (cfs_rq->runtime_remaining <= 0)
3701 throttle_cfs_rq(cfs_rq);
3702}
3703
3704/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3705static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3706{
56f570e5 3707 if (!cfs_bandwidth_used())
678d5718 3708 return false;
56f570e5 3709
d3d9dc33 3710 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3711 return false;
d3d9dc33
PT
3712
3713 /*
3714 * it's possible for a throttled entity to be forced into a running
3715 * state (e.g. set_curr_task), in this case we're finished.
3716 */
3717 if (cfs_rq_throttled(cfs_rq))
678d5718 3718 return true;
d3d9dc33
PT
3719
3720 throttle_cfs_rq(cfs_rq);
678d5718 3721 return true;
d3d9dc33 3722}
029632fb 3723
029632fb
PZ
3724static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3725{
3726 struct cfs_bandwidth *cfs_b =
3727 container_of(timer, struct cfs_bandwidth, slack_timer);
3728 do_sched_cfs_slack_timer(cfs_b);
3729
3730 return HRTIMER_NORESTART;
3731}
3732
3733static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3734{
3735 struct cfs_bandwidth *cfs_b =
3736 container_of(timer, struct cfs_bandwidth, period_timer);
3737 ktime_t now;
3738 int overrun;
3739 int idle = 0;
3740
51f2176d 3741 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3742 for (;;) {
3743 now = hrtimer_cb_get_time(timer);
3744 overrun = hrtimer_forward(timer, now, cfs_b->period);
3745
3746 if (!overrun)
3747 break;
3748
3749 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3750 }
51f2176d 3751 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3752
3753 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3754}
3755
3756void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3757{
3758 raw_spin_lock_init(&cfs_b->lock);
3759 cfs_b->runtime = 0;
3760 cfs_b->quota = RUNTIME_INF;
3761 cfs_b->period = ns_to_ktime(default_cfs_period());
3762
3763 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3764 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3765 cfs_b->period_timer.function = sched_cfs_period_timer;
3766 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3767 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3768}
3769
3770static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3771{
3772 cfs_rq->runtime_enabled = 0;
3773 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3774}
3775
3776/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3777void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3778{
3779 /*
3780 * The timer may be active because we're trying to set a new bandwidth
3781 * period or because we're racing with the tear-down path
3782 * (timer_active==0 becomes visible before the hrtimer call-back
3783 * terminates). In either case we ensure that it's re-programmed
3784 */
927b54fc
BS
3785 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3786 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3787 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3788 raw_spin_unlock(&cfs_b->lock);
927b54fc 3789 cpu_relax();
029632fb
PZ
3790 raw_spin_lock(&cfs_b->lock);
3791 /* if someone else restarted the timer then we're done */
09dc4ab0 3792 if (!force && cfs_b->timer_active)
029632fb
PZ
3793 return;
3794 }
3795
3796 cfs_b->timer_active = 1;
3797 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3798}
3799
3800static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3801{
3802 hrtimer_cancel(&cfs_b->period_timer);
3803 hrtimer_cancel(&cfs_b->slack_timer);
3804}
3805
0e59bdae
KT
3806static void __maybe_unused update_runtime_enabled(struct rq *rq)
3807{
3808 struct cfs_rq *cfs_rq;
3809
3810 for_each_leaf_cfs_rq(rq, cfs_rq) {
3811 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3812
3813 raw_spin_lock(&cfs_b->lock);
3814 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3815 raw_spin_unlock(&cfs_b->lock);
3816 }
3817}
3818
38dc3348 3819static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3820{
3821 struct cfs_rq *cfs_rq;
3822
3823 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3824 if (!cfs_rq->runtime_enabled)
3825 continue;
3826
3827 /*
3828 * clock_task is not advancing so we just need to make sure
3829 * there's some valid quota amount
3830 */
51f2176d 3831 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
3832 /*
3833 * Offline rq is schedulable till cpu is completely disabled
3834 * in take_cpu_down(), so we prevent new cfs throttling here.
3835 */
3836 cfs_rq->runtime_enabled = 0;
3837
029632fb
PZ
3838 if (cfs_rq_throttled(cfs_rq))
3839 unthrottle_cfs_rq(cfs_rq);
3840 }
3841}
3842
3843#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3844static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3845{
78becc27 3846 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3847}
3848
9dbdb155 3849static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3850static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3851static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3852static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3853
3854static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3855{
3856 return 0;
3857}
64660c86
PT
3858
3859static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3860{
3861 return 0;
3862}
3863
3864static inline int throttled_lb_pair(struct task_group *tg,
3865 int src_cpu, int dest_cpu)
3866{
3867 return 0;
3868}
029632fb
PZ
3869
3870void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3871
3872#ifdef CONFIG_FAIR_GROUP_SCHED
3873static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3874#endif
3875
029632fb
PZ
3876static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3877{
3878 return NULL;
3879}
3880static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 3881static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 3882static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3883
3884#endif /* CONFIG_CFS_BANDWIDTH */
3885
bf0f6f24
IM
3886/**************************************************
3887 * CFS operations on tasks:
3888 */
3889
8f4d37ec
PZ
3890#ifdef CONFIG_SCHED_HRTICK
3891static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3892{
8f4d37ec
PZ
3893 struct sched_entity *se = &p->se;
3894 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3895
3896 WARN_ON(task_rq(p) != rq);
3897
b39e66ea 3898 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3899 u64 slice = sched_slice(cfs_rq, se);
3900 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3901 s64 delta = slice - ran;
3902
3903 if (delta < 0) {
3904 if (rq->curr == p)
8875125e 3905 resched_curr(rq);
8f4d37ec
PZ
3906 return;
3907 }
31656519 3908 hrtick_start(rq, delta);
8f4d37ec
PZ
3909 }
3910}
a4c2f00f
PZ
3911
3912/*
3913 * called from enqueue/dequeue and updates the hrtick when the
3914 * current task is from our class and nr_running is low enough
3915 * to matter.
3916 */
3917static void hrtick_update(struct rq *rq)
3918{
3919 struct task_struct *curr = rq->curr;
3920
b39e66ea 3921 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3922 return;
3923
3924 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3925 hrtick_start_fair(rq, curr);
3926}
55e12e5e 3927#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3928static inline void
3929hrtick_start_fair(struct rq *rq, struct task_struct *p)
3930{
3931}
a4c2f00f
PZ
3932
3933static inline void hrtick_update(struct rq *rq)
3934{
3935}
8f4d37ec
PZ
3936#endif
3937
bf0f6f24
IM
3938/*
3939 * The enqueue_task method is called before nr_running is
3940 * increased. Here we update the fair scheduling stats and
3941 * then put the task into the rbtree:
3942 */
ea87bb78 3943static void
371fd7e7 3944enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3945{
3946 struct cfs_rq *cfs_rq;
62fb1851 3947 struct sched_entity *se = &p->se;
bf0f6f24
IM
3948
3949 for_each_sched_entity(se) {
62fb1851 3950 if (se->on_rq)
bf0f6f24
IM
3951 break;
3952 cfs_rq = cfs_rq_of(se);
88ec22d3 3953 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3954
3955 /*
3956 * end evaluation on encountering a throttled cfs_rq
3957 *
3958 * note: in the case of encountering a throttled cfs_rq we will
3959 * post the final h_nr_running increment below.
3960 */
3961 if (cfs_rq_throttled(cfs_rq))
3962 break;
953bfcd1 3963 cfs_rq->h_nr_running++;
85dac906 3964
88ec22d3 3965 flags = ENQUEUE_WAKEUP;
bf0f6f24 3966 }
8f4d37ec 3967
2069dd75 3968 for_each_sched_entity(se) {
0f317143 3969 cfs_rq = cfs_rq_of(se);
953bfcd1 3970 cfs_rq->h_nr_running++;
2069dd75 3971
85dac906
PT
3972 if (cfs_rq_throttled(cfs_rq))
3973 break;
3974
17bc14b7 3975 update_cfs_shares(cfs_rq);
9ee474f5 3976 update_entity_load_avg(se, 1);
2069dd75
PZ
3977 }
3978
18bf2805
BS
3979 if (!se) {
3980 update_rq_runnable_avg(rq, rq->nr_running);
72465447 3981 add_nr_running(rq, 1);
18bf2805 3982 }
a4c2f00f 3983 hrtick_update(rq);
bf0f6f24
IM
3984}
3985
2f36825b
VP
3986static void set_next_buddy(struct sched_entity *se);
3987
bf0f6f24
IM
3988/*
3989 * The dequeue_task method is called before nr_running is
3990 * decreased. We remove the task from the rbtree and
3991 * update the fair scheduling stats:
3992 */
371fd7e7 3993static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3994{
3995 struct cfs_rq *cfs_rq;
62fb1851 3996 struct sched_entity *se = &p->se;
2f36825b 3997 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3998
3999 for_each_sched_entity(se) {
4000 cfs_rq = cfs_rq_of(se);
371fd7e7 4001 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4002
4003 /*
4004 * end evaluation on encountering a throttled cfs_rq
4005 *
4006 * note: in the case of encountering a throttled cfs_rq we will
4007 * post the final h_nr_running decrement below.
4008 */
4009 if (cfs_rq_throttled(cfs_rq))
4010 break;
953bfcd1 4011 cfs_rq->h_nr_running--;
2069dd75 4012
bf0f6f24 4013 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4014 if (cfs_rq->load.weight) {
4015 /*
4016 * Bias pick_next to pick a task from this cfs_rq, as
4017 * p is sleeping when it is within its sched_slice.
4018 */
4019 if (task_sleep && parent_entity(se))
4020 set_next_buddy(parent_entity(se));
9598c82d
PT
4021
4022 /* avoid re-evaluating load for this entity */
4023 se = parent_entity(se);
bf0f6f24 4024 break;
2f36825b 4025 }
371fd7e7 4026 flags |= DEQUEUE_SLEEP;
bf0f6f24 4027 }
8f4d37ec 4028
2069dd75 4029 for_each_sched_entity(se) {
0f317143 4030 cfs_rq = cfs_rq_of(se);
953bfcd1 4031 cfs_rq->h_nr_running--;
2069dd75 4032
85dac906
PT
4033 if (cfs_rq_throttled(cfs_rq))
4034 break;
4035
17bc14b7 4036 update_cfs_shares(cfs_rq);
9ee474f5 4037 update_entity_load_avg(se, 1);
2069dd75
PZ
4038 }
4039
18bf2805 4040 if (!se) {
72465447 4041 sub_nr_running(rq, 1);
18bf2805
BS
4042 update_rq_runnable_avg(rq, 1);
4043 }
a4c2f00f 4044 hrtick_update(rq);
bf0f6f24
IM
4045}
4046
e7693a36 4047#ifdef CONFIG_SMP
029632fb
PZ
4048/* Used instead of source_load when we know the type == 0 */
4049static unsigned long weighted_cpuload(const int cpu)
4050{
b92486cb 4051 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4052}
4053
4054/*
4055 * Return a low guess at the load of a migration-source cpu weighted
4056 * according to the scheduling class and "nice" value.
4057 *
4058 * We want to under-estimate the load of migration sources, to
4059 * balance conservatively.
4060 */
4061static unsigned long source_load(int cpu, int type)
4062{
4063 struct rq *rq = cpu_rq(cpu);
4064 unsigned long total = weighted_cpuload(cpu);
4065
4066 if (type == 0 || !sched_feat(LB_BIAS))
4067 return total;
4068
4069 return min(rq->cpu_load[type-1], total);
4070}
4071
4072/*
4073 * Return a high guess at the load of a migration-target cpu weighted
4074 * according to the scheduling class and "nice" value.
4075 */
4076static unsigned long target_load(int cpu, int type)
4077{
4078 struct rq *rq = cpu_rq(cpu);
4079 unsigned long total = weighted_cpuload(cpu);
4080
4081 if (type == 0 || !sched_feat(LB_BIAS))
4082 return total;
4083
4084 return max(rq->cpu_load[type-1], total);
4085}
4086
ced549fa 4087static unsigned long capacity_of(int cpu)
029632fb 4088{
ced549fa 4089 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4090}
4091
4092static unsigned long cpu_avg_load_per_task(int cpu)
4093{
4094 struct rq *rq = cpu_rq(cpu);
65fdac08 4095 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
b92486cb 4096 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4097
4098 if (nr_running)
b92486cb 4099 return load_avg / nr_running;
029632fb
PZ
4100
4101 return 0;
4102}
4103
62470419
MW
4104static void record_wakee(struct task_struct *p)
4105{
4106 /*
4107 * Rough decay (wiping) for cost saving, don't worry
4108 * about the boundary, really active task won't care
4109 * about the loss.
4110 */
2538d960 4111 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4112 current->wakee_flips >>= 1;
62470419
MW
4113 current->wakee_flip_decay_ts = jiffies;
4114 }
4115
4116 if (current->last_wakee != p) {
4117 current->last_wakee = p;
4118 current->wakee_flips++;
4119 }
4120}
098fb9db 4121
74f8e4b2 4122static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4123{
4124 struct sched_entity *se = &p->se;
4125 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4126 u64 min_vruntime;
4127
4128#ifndef CONFIG_64BIT
4129 u64 min_vruntime_copy;
88ec22d3 4130
3fe1698b
PZ
4131 do {
4132 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4133 smp_rmb();
4134 min_vruntime = cfs_rq->min_vruntime;
4135 } while (min_vruntime != min_vruntime_copy);
4136#else
4137 min_vruntime = cfs_rq->min_vruntime;
4138#endif
88ec22d3 4139
3fe1698b 4140 se->vruntime -= min_vruntime;
62470419 4141 record_wakee(p);
88ec22d3
PZ
4142}
4143
bb3469ac 4144#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4145/*
4146 * effective_load() calculates the load change as seen from the root_task_group
4147 *
4148 * Adding load to a group doesn't make a group heavier, but can cause movement
4149 * of group shares between cpus. Assuming the shares were perfectly aligned one
4150 * can calculate the shift in shares.
cf5f0acf
PZ
4151 *
4152 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4153 * on this @cpu and results in a total addition (subtraction) of @wg to the
4154 * total group weight.
4155 *
4156 * Given a runqueue weight distribution (rw_i) we can compute a shares
4157 * distribution (s_i) using:
4158 *
4159 * s_i = rw_i / \Sum rw_j (1)
4160 *
4161 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4162 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4163 * shares distribution (s_i):
4164 *
4165 * rw_i = { 2, 4, 1, 0 }
4166 * s_i = { 2/7, 4/7, 1/7, 0 }
4167 *
4168 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4169 * task used to run on and the CPU the waker is running on), we need to
4170 * compute the effect of waking a task on either CPU and, in case of a sync
4171 * wakeup, compute the effect of the current task going to sleep.
4172 *
4173 * So for a change of @wl to the local @cpu with an overall group weight change
4174 * of @wl we can compute the new shares distribution (s'_i) using:
4175 *
4176 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4177 *
4178 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4179 * differences in waking a task to CPU 0. The additional task changes the
4180 * weight and shares distributions like:
4181 *
4182 * rw'_i = { 3, 4, 1, 0 }
4183 * s'_i = { 3/8, 4/8, 1/8, 0 }
4184 *
4185 * We can then compute the difference in effective weight by using:
4186 *
4187 * dw_i = S * (s'_i - s_i) (3)
4188 *
4189 * Where 'S' is the group weight as seen by its parent.
4190 *
4191 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4192 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4193 * 4/7) times the weight of the group.
f5bfb7d9 4194 */
2069dd75 4195static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4196{
4be9daaa 4197 struct sched_entity *se = tg->se[cpu];
f1d239f7 4198
9722c2da 4199 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4200 return wl;
4201
4be9daaa 4202 for_each_sched_entity(se) {
cf5f0acf 4203 long w, W;
4be9daaa 4204
977dda7c 4205 tg = se->my_q->tg;
bb3469ac 4206
cf5f0acf
PZ
4207 /*
4208 * W = @wg + \Sum rw_j
4209 */
4210 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4211
cf5f0acf
PZ
4212 /*
4213 * w = rw_i + @wl
4214 */
4215 w = se->my_q->load.weight + wl;
940959e9 4216
cf5f0acf
PZ
4217 /*
4218 * wl = S * s'_i; see (2)
4219 */
4220 if (W > 0 && w < W)
4221 wl = (w * tg->shares) / W;
977dda7c
PT
4222 else
4223 wl = tg->shares;
940959e9 4224
cf5f0acf
PZ
4225 /*
4226 * Per the above, wl is the new se->load.weight value; since
4227 * those are clipped to [MIN_SHARES, ...) do so now. See
4228 * calc_cfs_shares().
4229 */
977dda7c
PT
4230 if (wl < MIN_SHARES)
4231 wl = MIN_SHARES;
cf5f0acf
PZ
4232
4233 /*
4234 * wl = dw_i = S * (s'_i - s_i); see (3)
4235 */
977dda7c 4236 wl -= se->load.weight;
cf5f0acf
PZ
4237
4238 /*
4239 * Recursively apply this logic to all parent groups to compute
4240 * the final effective load change on the root group. Since
4241 * only the @tg group gets extra weight, all parent groups can
4242 * only redistribute existing shares. @wl is the shift in shares
4243 * resulting from this level per the above.
4244 */
4be9daaa 4245 wg = 0;
4be9daaa 4246 }
bb3469ac 4247
4be9daaa 4248 return wl;
bb3469ac
PZ
4249}
4250#else
4be9daaa 4251
58d081b5 4252static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4253{
83378269 4254 return wl;
bb3469ac 4255}
4be9daaa 4256
bb3469ac
PZ
4257#endif
4258
62470419
MW
4259static int wake_wide(struct task_struct *p)
4260{
7d9ffa89 4261 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4262
4263 /*
4264 * Yeah, it's the switching-frequency, could means many wakee or
4265 * rapidly switch, use factor here will just help to automatically
4266 * adjust the loose-degree, so bigger node will lead to more pull.
4267 */
4268 if (p->wakee_flips > factor) {
4269 /*
4270 * wakee is somewhat hot, it needs certain amount of cpu
4271 * resource, so if waker is far more hot, prefer to leave
4272 * it alone.
4273 */
4274 if (current->wakee_flips > (factor * p->wakee_flips))
4275 return 1;
4276 }
4277
4278 return 0;
4279}
4280
c88d5910 4281static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4282{
e37b6a7b 4283 s64 this_load, load;
bd61c98f 4284 s64 this_eff_load, prev_eff_load;
c88d5910 4285 int idx, this_cpu, prev_cpu;
c88d5910 4286 struct task_group *tg;
83378269 4287 unsigned long weight;
b3137bc8 4288 int balanced;
098fb9db 4289
62470419
MW
4290 /*
4291 * If we wake multiple tasks be careful to not bounce
4292 * ourselves around too much.
4293 */
4294 if (wake_wide(p))
4295 return 0;
4296
c88d5910
PZ
4297 idx = sd->wake_idx;
4298 this_cpu = smp_processor_id();
4299 prev_cpu = task_cpu(p);
4300 load = source_load(prev_cpu, idx);
4301 this_load = target_load(this_cpu, idx);
098fb9db 4302
b3137bc8
MG
4303 /*
4304 * If sync wakeup then subtract the (maximum possible)
4305 * effect of the currently running task from the load
4306 * of the current CPU:
4307 */
83378269
PZ
4308 if (sync) {
4309 tg = task_group(current);
4310 weight = current->se.load.weight;
4311
c88d5910 4312 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4313 load += effective_load(tg, prev_cpu, 0, -weight);
4314 }
b3137bc8 4315
83378269
PZ
4316 tg = task_group(p);
4317 weight = p->se.load.weight;
b3137bc8 4318
71a29aa7
PZ
4319 /*
4320 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4321 * due to the sync cause above having dropped this_load to 0, we'll
4322 * always have an imbalance, but there's really nothing you can do
4323 * about that, so that's good too.
71a29aa7
PZ
4324 *
4325 * Otherwise check if either cpus are near enough in load to allow this
4326 * task to be woken on this_cpu.
4327 */
bd61c98f
VG
4328 this_eff_load = 100;
4329 this_eff_load *= capacity_of(prev_cpu);
4330
4331 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4332 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4333
bd61c98f 4334 if (this_load > 0) {
e51fd5e2
PZ
4335 this_eff_load *= this_load +
4336 effective_load(tg, this_cpu, weight, weight);
4337
e51fd5e2 4338 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f
VG
4339 }
4340
4341 balanced = this_eff_load <= prev_eff_load;
e51fd5e2 4342
41acab88 4343 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4344
05bfb65f
VG
4345 if (!balanced)
4346 return 0;
098fb9db 4347
05bfb65f
VG
4348 schedstat_inc(sd, ttwu_move_affine);
4349 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4350
4351 return 1;
098fb9db
IM
4352}
4353
aaee1203
PZ
4354/*
4355 * find_idlest_group finds and returns the least busy CPU group within the
4356 * domain.
4357 */
4358static struct sched_group *
78e7ed53 4359find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4360 int this_cpu, int sd_flag)
e7693a36 4361{
b3bd3de6 4362 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4363 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4364 int load_idx = sd->forkexec_idx;
aaee1203 4365 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4366
c44f2a02
VG
4367 if (sd_flag & SD_BALANCE_WAKE)
4368 load_idx = sd->wake_idx;
4369
aaee1203
PZ
4370 do {
4371 unsigned long load, avg_load;
4372 int local_group;
4373 int i;
e7693a36 4374
aaee1203
PZ
4375 /* Skip over this group if it has no CPUs allowed */
4376 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4377 tsk_cpus_allowed(p)))
aaee1203
PZ
4378 continue;
4379
4380 local_group = cpumask_test_cpu(this_cpu,
4381 sched_group_cpus(group));
4382
4383 /* Tally up the load of all CPUs in the group */
4384 avg_load = 0;
4385
4386 for_each_cpu(i, sched_group_cpus(group)) {
4387 /* Bias balancing toward cpus of our domain */
4388 if (local_group)
4389 load = source_load(i, load_idx);
4390 else
4391 load = target_load(i, load_idx);
4392
4393 avg_load += load;
4394 }
4395
63b2ca30 4396 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4397 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4398
4399 if (local_group) {
4400 this_load = avg_load;
aaee1203
PZ
4401 } else if (avg_load < min_load) {
4402 min_load = avg_load;
4403 idlest = group;
4404 }
4405 } while (group = group->next, group != sd->groups);
4406
4407 if (!idlest || 100*this_load < imbalance*min_load)
4408 return NULL;
4409 return idlest;
4410}
4411
4412/*
4413 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4414 */
4415static int
4416find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4417{
4418 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4419 unsigned int min_exit_latency = UINT_MAX;
4420 u64 latest_idle_timestamp = 0;
4421 int least_loaded_cpu = this_cpu;
4422 int shallowest_idle_cpu = -1;
aaee1203
PZ
4423 int i;
4424
4425 /* Traverse only the allowed CPUs */
fa17b507 4426 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4427 if (idle_cpu(i)) {
4428 struct rq *rq = cpu_rq(i);
4429 struct cpuidle_state *idle = idle_get_state(rq);
4430 if (idle && idle->exit_latency < min_exit_latency) {
4431 /*
4432 * We give priority to a CPU whose idle state
4433 * has the smallest exit latency irrespective
4434 * of any idle timestamp.
4435 */
4436 min_exit_latency = idle->exit_latency;
4437 latest_idle_timestamp = rq->idle_stamp;
4438 shallowest_idle_cpu = i;
4439 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4440 rq->idle_stamp > latest_idle_timestamp) {
4441 /*
4442 * If equal or no active idle state, then
4443 * the most recently idled CPU might have
4444 * a warmer cache.
4445 */
4446 latest_idle_timestamp = rq->idle_stamp;
4447 shallowest_idle_cpu = i;
4448 }
4449 } else {
4450 load = weighted_cpuload(i);
4451 if (load < min_load || (load == min_load && i == this_cpu)) {
4452 min_load = load;
4453 least_loaded_cpu = i;
4454 }
e7693a36
GH
4455 }
4456 }
4457
83a0a96a 4458 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4459}
e7693a36 4460
a50bde51
PZ
4461/*
4462 * Try and locate an idle CPU in the sched_domain.
4463 */
99bd5e2f 4464static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4465{
99bd5e2f 4466 struct sched_domain *sd;
37407ea7 4467 struct sched_group *sg;
e0a79f52 4468 int i = task_cpu(p);
a50bde51 4469
e0a79f52
MG
4470 if (idle_cpu(target))
4471 return target;
99bd5e2f
SS
4472
4473 /*
e0a79f52 4474 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4475 */
e0a79f52
MG
4476 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4477 return i;
a50bde51
PZ
4478
4479 /*
37407ea7 4480 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4481 */
518cd623 4482 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4483 for_each_lower_domain(sd) {
37407ea7
LT
4484 sg = sd->groups;
4485 do {
4486 if (!cpumask_intersects(sched_group_cpus(sg),
4487 tsk_cpus_allowed(p)))
4488 goto next;
4489
4490 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4491 if (i == target || !idle_cpu(i))
37407ea7
LT
4492 goto next;
4493 }
970e1789 4494
37407ea7
LT
4495 target = cpumask_first_and(sched_group_cpus(sg),
4496 tsk_cpus_allowed(p));
4497 goto done;
4498next:
4499 sg = sg->next;
4500 } while (sg != sd->groups);
4501 }
4502done:
a50bde51
PZ
4503 return target;
4504}
4505
aaee1203 4506/*
de91b9cb
MR
4507 * select_task_rq_fair: Select target runqueue for the waking task in domains
4508 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4509 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4510 *
de91b9cb
MR
4511 * Balances load by selecting the idlest cpu in the idlest group, or under
4512 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4513 *
de91b9cb 4514 * Returns the target cpu number.
aaee1203
PZ
4515 *
4516 * preempt must be disabled.
4517 */
0017d735 4518static int
ac66f547 4519select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4520{
29cd8bae 4521 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4522 int cpu = smp_processor_id();
c88d5910 4523 int new_cpu = cpu;
99bd5e2f 4524 int want_affine = 0;
5158f4e4 4525 int sync = wake_flags & WF_SYNC;
c88d5910 4526
29baa747 4527 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4528 return prev_cpu;
4529
a8edd075
KT
4530 if (sd_flag & SD_BALANCE_WAKE)
4531 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4532
dce840a0 4533 rcu_read_lock();
aaee1203 4534 for_each_domain(cpu, tmp) {
e4f42888
PZ
4535 if (!(tmp->flags & SD_LOAD_BALANCE))
4536 continue;
4537
fe3bcfe1 4538 /*
99bd5e2f
SS
4539 * If both cpu and prev_cpu are part of this domain,
4540 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4541 */
99bd5e2f
SS
4542 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4543 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4544 affine_sd = tmp;
29cd8bae 4545 break;
f03542a7 4546 }
29cd8bae 4547
f03542a7 4548 if (tmp->flags & sd_flag)
29cd8bae
PZ
4549 sd = tmp;
4550 }
4551
8bf21433
RR
4552 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4553 prev_cpu = cpu;
dce840a0 4554
8bf21433 4555 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4556 new_cpu = select_idle_sibling(p, prev_cpu);
4557 goto unlock;
8b911acd 4558 }
e7693a36 4559
aaee1203
PZ
4560 while (sd) {
4561 struct sched_group *group;
c88d5910 4562 int weight;
098fb9db 4563
0763a660 4564 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4565 sd = sd->child;
4566 continue;
4567 }
098fb9db 4568
c44f2a02 4569 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4570 if (!group) {
4571 sd = sd->child;
4572 continue;
4573 }
4ae7d5ce 4574
d7c33c49 4575 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4576 if (new_cpu == -1 || new_cpu == cpu) {
4577 /* Now try balancing at a lower domain level of cpu */
4578 sd = sd->child;
4579 continue;
e7693a36 4580 }
aaee1203
PZ
4581
4582 /* Now try balancing at a lower domain level of new_cpu */
4583 cpu = new_cpu;
669c55e9 4584 weight = sd->span_weight;
aaee1203
PZ
4585 sd = NULL;
4586 for_each_domain(cpu, tmp) {
669c55e9 4587 if (weight <= tmp->span_weight)
aaee1203 4588 break;
0763a660 4589 if (tmp->flags & sd_flag)
aaee1203
PZ
4590 sd = tmp;
4591 }
4592 /* while loop will break here if sd == NULL */
e7693a36 4593 }
dce840a0
PZ
4594unlock:
4595 rcu_read_unlock();
e7693a36 4596
c88d5910 4597 return new_cpu;
e7693a36 4598}
0a74bef8
PT
4599
4600/*
4601 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4602 * cfs_rq_of(p) references at time of call are still valid and identify the
4603 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4604 * other assumptions, including the state of rq->lock, should be made.
4605 */
4606static void
4607migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4608{
aff3e498
PT
4609 struct sched_entity *se = &p->se;
4610 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4611
4612 /*
4613 * Load tracking: accumulate removed load so that it can be processed
4614 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4615 * to blocked load iff they have a positive decay-count. It can never
4616 * be negative here since on-rq tasks have decay-count == 0.
4617 */
4618 if (se->avg.decay_count) {
4619 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4620 atomic_long_add(se->avg.load_avg_contrib,
4621 &cfs_rq->removed_load);
aff3e498 4622 }
3944a927
BS
4623
4624 /* We have migrated, no longer consider this task hot */
4625 se->exec_start = 0;
0a74bef8 4626}
e7693a36
GH
4627#endif /* CONFIG_SMP */
4628
e52fb7c0
PZ
4629static unsigned long
4630wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4631{
4632 unsigned long gran = sysctl_sched_wakeup_granularity;
4633
4634 /*
e52fb7c0
PZ
4635 * Since its curr running now, convert the gran from real-time
4636 * to virtual-time in his units.
13814d42
MG
4637 *
4638 * By using 'se' instead of 'curr' we penalize light tasks, so
4639 * they get preempted easier. That is, if 'se' < 'curr' then
4640 * the resulting gran will be larger, therefore penalizing the
4641 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4642 * be smaller, again penalizing the lighter task.
4643 *
4644 * This is especially important for buddies when the leftmost
4645 * task is higher priority than the buddy.
0bbd3336 4646 */
f4ad9bd2 4647 return calc_delta_fair(gran, se);
0bbd3336
PZ
4648}
4649
464b7527
PZ
4650/*
4651 * Should 'se' preempt 'curr'.
4652 *
4653 * |s1
4654 * |s2
4655 * |s3
4656 * g
4657 * |<--->|c
4658 *
4659 * w(c, s1) = -1
4660 * w(c, s2) = 0
4661 * w(c, s3) = 1
4662 *
4663 */
4664static int
4665wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4666{
4667 s64 gran, vdiff = curr->vruntime - se->vruntime;
4668
4669 if (vdiff <= 0)
4670 return -1;
4671
e52fb7c0 4672 gran = wakeup_gran(curr, se);
464b7527
PZ
4673 if (vdiff > gran)
4674 return 1;
4675
4676 return 0;
4677}
4678
02479099
PZ
4679static void set_last_buddy(struct sched_entity *se)
4680{
69c80f3e
VP
4681 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4682 return;
4683
4684 for_each_sched_entity(se)
4685 cfs_rq_of(se)->last = se;
02479099
PZ
4686}
4687
4688static void set_next_buddy(struct sched_entity *se)
4689{
69c80f3e
VP
4690 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4691 return;
4692
4693 for_each_sched_entity(se)
4694 cfs_rq_of(se)->next = se;
02479099
PZ
4695}
4696
ac53db59
RR
4697static void set_skip_buddy(struct sched_entity *se)
4698{
69c80f3e
VP
4699 for_each_sched_entity(se)
4700 cfs_rq_of(se)->skip = se;
ac53db59
RR
4701}
4702
bf0f6f24
IM
4703/*
4704 * Preempt the current task with a newly woken task if needed:
4705 */
5a9b86f6 4706static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4707{
4708 struct task_struct *curr = rq->curr;
8651a86c 4709 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4710 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4711 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4712 int next_buddy_marked = 0;
bf0f6f24 4713
4ae7d5ce
IM
4714 if (unlikely(se == pse))
4715 return;
4716
5238cdd3 4717 /*
163122b7 4718 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
4719 * unconditionally check_prempt_curr() after an enqueue (which may have
4720 * lead to a throttle). This both saves work and prevents false
4721 * next-buddy nomination below.
4722 */
4723 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4724 return;
4725
2f36825b 4726 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4727 set_next_buddy(pse);
2f36825b
VP
4728 next_buddy_marked = 1;
4729 }
57fdc26d 4730
aec0a514
BR
4731 /*
4732 * We can come here with TIF_NEED_RESCHED already set from new task
4733 * wake up path.
5238cdd3
PT
4734 *
4735 * Note: this also catches the edge-case of curr being in a throttled
4736 * group (e.g. via set_curr_task), since update_curr() (in the
4737 * enqueue of curr) will have resulted in resched being set. This
4738 * prevents us from potentially nominating it as a false LAST_BUDDY
4739 * below.
aec0a514
BR
4740 */
4741 if (test_tsk_need_resched(curr))
4742 return;
4743
a2f5c9ab
DH
4744 /* Idle tasks are by definition preempted by non-idle tasks. */
4745 if (unlikely(curr->policy == SCHED_IDLE) &&
4746 likely(p->policy != SCHED_IDLE))
4747 goto preempt;
4748
91c234b4 4749 /*
a2f5c9ab
DH
4750 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4751 * is driven by the tick):
91c234b4 4752 */
8ed92e51 4753 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4754 return;
bf0f6f24 4755
464b7527 4756 find_matching_se(&se, &pse);
9bbd7374 4757 update_curr(cfs_rq_of(se));
002f128b 4758 BUG_ON(!pse);
2f36825b
VP
4759 if (wakeup_preempt_entity(se, pse) == 1) {
4760 /*
4761 * Bias pick_next to pick the sched entity that is
4762 * triggering this preemption.
4763 */
4764 if (!next_buddy_marked)
4765 set_next_buddy(pse);
3a7e73a2 4766 goto preempt;
2f36825b 4767 }
464b7527 4768
3a7e73a2 4769 return;
a65ac745 4770
3a7e73a2 4771preempt:
8875125e 4772 resched_curr(rq);
3a7e73a2
PZ
4773 /*
4774 * Only set the backward buddy when the current task is still
4775 * on the rq. This can happen when a wakeup gets interleaved
4776 * with schedule on the ->pre_schedule() or idle_balance()
4777 * point, either of which can * drop the rq lock.
4778 *
4779 * Also, during early boot the idle thread is in the fair class,
4780 * for obvious reasons its a bad idea to schedule back to it.
4781 */
4782 if (unlikely(!se->on_rq || curr == rq->idle))
4783 return;
4784
4785 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4786 set_last_buddy(se);
bf0f6f24
IM
4787}
4788
606dba2e
PZ
4789static struct task_struct *
4790pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4791{
4792 struct cfs_rq *cfs_rq = &rq->cfs;
4793 struct sched_entity *se;
678d5718 4794 struct task_struct *p;
37e117c0 4795 int new_tasks;
678d5718 4796
6e83125c 4797again:
678d5718
PZ
4798#ifdef CONFIG_FAIR_GROUP_SCHED
4799 if (!cfs_rq->nr_running)
38033c37 4800 goto idle;
678d5718 4801
3f1d2a31 4802 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4803 goto simple;
4804
4805 /*
4806 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4807 * likely that a next task is from the same cgroup as the current.
4808 *
4809 * Therefore attempt to avoid putting and setting the entire cgroup
4810 * hierarchy, only change the part that actually changes.
4811 */
4812
4813 do {
4814 struct sched_entity *curr = cfs_rq->curr;
4815
4816 /*
4817 * Since we got here without doing put_prev_entity() we also
4818 * have to consider cfs_rq->curr. If it is still a runnable
4819 * entity, update_curr() will update its vruntime, otherwise
4820 * forget we've ever seen it.
4821 */
4822 if (curr && curr->on_rq)
4823 update_curr(cfs_rq);
4824 else
4825 curr = NULL;
4826
4827 /*
4828 * This call to check_cfs_rq_runtime() will do the throttle and
4829 * dequeue its entity in the parent(s). Therefore the 'simple'
4830 * nr_running test will indeed be correct.
4831 */
4832 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4833 goto simple;
4834
4835 se = pick_next_entity(cfs_rq, curr);
4836 cfs_rq = group_cfs_rq(se);
4837 } while (cfs_rq);
4838
4839 p = task_of(se);
4840
4841 /*
4842 * Since we haven't yet done put_prev_entity and if the selected task
4843 * is a different task than we started out with, try and touch the
4844 * least amount of cfs_rqs.
4845 */
4846 if (prev != p) {
4847 struct sched_entity *pse = &prev->se;
4848
4849 while (!(cfs_rq = is_same_group(se, pse))) {
4850 int se_depth = se->depth;
4851 int pse_depth = pse->depth;
4852
4853 if (se_depth <= pse_depth) {
4854 put_prev_entity(cfs_rq_of(pse), pse);
4855 pse = parent_entity(pse);
4856 }
4857 if (se_depth >= pse_depth) {
4858 set_next_entity(cfs_rq_of(se), se);
4859 se = parent_entity(se);
4860 }
4861 }
4862
4863 put_prev_entity(cfs_rq, pse);
4864 set_next_entity(cfs_rq, se);
4865 }
4866
4867 if (hrtick_enabled(rq))
4868 hrtick_start_fair(rq, p);
4869
4870 return p;
4871simple:
4872 cfs_rq = &rq->cfs;
4873#endif
bf0f6f24 4874
36ace27e 4875 if (!cfs_rq->nr_running)
38033c37 4876 goto idle;
bf0f6f24 4877
3f1d2a31 4878 put_prev_task(rq, prev);
606dba2e 4879
bf0f6f24 4880 do {
678d5718 4881 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4882 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4883 cfs_rq = group_cfs_rq(se);
4884 } while (cfs_rq);
4885
8f4d37ec 4886 p = task_of(se);
678d5718 4887
b39e66ea
MG
4888 if (hrtick_enabled(rq))
4889 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4890
4891 return p;
38033c37
PZ
4892
4893idle:
e4aa358b 4894 new_tasks = idle_balance(rq);
37e117c0
PZ
4895 /*
4896 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4897 * possible for any higher priority task to appear. In that case we
4898 * must re-start the pick_next_entity() loop.
4899 */
e4aa358b 4900 if (new_tasks < 0)
37e117c0
PZ
4901 return RETRY_TASK;
4902
e4aa358b 4903 if (new_tasks > 0)
38033c37 4904 goto again;
38033c37
PZ
4905
4906 return NULL;
bf0f6f24
IM
4907}
4908
4909/*
4910 * Account for a descheduled task:
4911 */
31ee529c 4912static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4913{
4914 struct sched_entity *se = &prev->se;
4915 struct cfs_rq *cfs_rq;
4916
4917 for_each_sched_entity(se) {
4918 cfs_rq = cfs_rq_of(se);
ab6cde26 4919 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4920 }
4921}
4922
ac53db59
RR
4923/*
4924 * sched_yield() is very simple
4925 *
4926 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4927 */
4928static void yield_task_fair(struct rq *rq)
4929{
4930 struct task_struct *curr = rq->curr;
4931 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4932 struct sched_entity *se = &curr->se;
4933
4934 /*
4935 * Are we the only task in the tree?
4936 */
4937 if (unlikely(rq->nr_running == 1))
4938 return;
4939
4940 clear_buddies(cfs_rq, se);
4941
4942 if (curr->policy != SCHED_BATCH) {
4943 update_rq_clock(rq);
4944 /*
4945 * Update run-time statistics of the 'current'.
4946 */
4947 update_curr(cfs_rq);
916671c0
MG
4948 /*
4949 * Tell update_rq_clock() that we've just updated,
4950 * so we don't do microscopic update in schedule()
4951 * and double the fastpath cost.
4952 */
4953 rq->skip_clock_update = 1;
ac53db59
RR
4954 }
4955
4956 set_skip_buddy(se);
4957}
4958
d95f4122
MG
4959static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4960{
4961 struct sched_entity *se = &p->se;
4962
5238cdd3
PT
4963 /* throttled hierarchies are not runnable */
4964 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4965 return false;
4966
4967 /* Tell the scheduler that we'd really like pse to run next. */
4968 set_next_buddy(se);
4969
d95f4122
MG
4970 yield_task_fair(rq);
4971
4972 return true;
4973}
4974
681f3e68 4975#ifdef CONFIG_SMP
bf0f6f24 4976/**************************************************
e9c84cb8
PZ
4977 * Fair scheduling class load-balancing methods.
4978 *
4979 * BASICS
4980 *
4981 * The purpose of load-balancing is to achieve the same basic fairness the
4982 * per-cpu scheduler provides, namely provide a proportional amount of compute
4983 * time to each task. This is expressed in the following equation:
4984 *
4985 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4986 *
4987 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4988 * W_i,0 is defined as:
4989 *
4990 * W_i,0 = \Sum_j w_i,j (2)
4991 *
4992 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4993 * is derived from the nice value as per prio_to_weight[].
4994 *
4995 * The weight average is an exponential decay average of the instantaneous
4996 * weight:
4997 *
4998 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4999 *
ced549fa 5000 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5001 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5002 * can also include other factors [XXX].
5003 *
5004 * To achieve this balance we define a measure of imbalance which follows
5005 * directly from (1):
5006 *
ced549fa 5007 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5008 *
5009 * We them move tasks around to minimize the imbalance. In the continuous
5010 * function space it is obvious this converges, in the discrete case we get
5011 * a few fun cases generally called infeasible weight scenarios.
5012 *
5013 * [XXX expand on:
5014 * - infeasible weights;
5015 * - local vs global optima in the discrete case. ]
5016 *
5017 *
5018 * SCHED DOMAINS
5019 *
5020 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5021 * for all i,j solution, we create a tree of cpus that follows the hardware
5022 * topology where each level pairs two lower groups (or better). This results
5023 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5024 * tree to only the first of the previous level and we decrease the frequency
5025 * of load-balance at each level inv. proportional to the number of cpus in
5026 * the groups.
5027 *
5028 * This yields:
5029 *
5030 * log_2 n 1 n
5031 * \Sum { --- * --- * 2^i } = O(n) (5)
5032 * i = 0 2^i 2^i
5033 * `- size of each group
5034 * | | `- number of cpus doing load-balance
5035 * | `- freq
5036 * `- sum over all levels
5037 *
5038 * Coupled with a limit on how many tasks we can migrate every balance pass,
5039 * this makes (5) the runtime complexity of the balancer.
5040 *
5041 * An important property here is that each CPU is still (indirectly) connected
5042 * to every other cpu in at most O(log n) steps:
5043 *
5044 * The adjacency matrix of the resulting graph is given by:
5045 *
5046 * log_2 n
5047 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5048 * k = 0
5049 *
5050 * And you'll find that:
5051 *
5052 * A^(log_2 n)_i,j != 0 for all i,j (7)
5053 *
5054 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5055 * The task movement gives a factor of O(m), giving a convergence complexity
5056 * of:
5057 *
5058 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5059 *
5060 *
5061 * WORK CONSERVING
5062 *
5063 * In order to avoid CPUs going idle while there's still work to do, new idle
5064 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5065 * tree itself instead of relying on other CPUs to bring it work.
5066 *
5067 * This adds some complexity to both (5) and (8) but it reduces the total idle
5068 * time.
5069 *
5070 * [XXX more?]
5071 *
5072 *
5073 * CGROUPS
5074 *
5075 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5076 *
5077 * s_k,i
5078 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5079 * S_k
5080 *
5081 * Where
5082 *
5083 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5084 *
5085 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5086 *
5087 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5088 * property.
5089 *
5090 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5091 * rewrite all of this once again.]
5092 */
bf0f6f24 5093
ed387b78
HS
5094static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5095
0ec8aa00
PZ
5096enum fbq_type { regular, remote, all };
5097
ddcdf6e7 5098#define LBF_ALL_PINNED 0x01
367456c7 5099#define LBF_NEED_BREAK 0x02
6263322c
PZ
5100#define LBF_DST_PINNED 0x04
5101#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5102
5103struct lb_env {
5104 struct sched_domain *sd;
5105
ddcdf6e7 5106 struct rq *src_rq;
85c1e7da 5107 int src_cpu;
ddcdf6e7
PZ
5108
5109 int dst_cpu;
5110 struct rq *dst_rq;
5111
88b8dac0
SV
5112 struct cpumask *dst_grpmask;
5113 int new_dst_cpu;
ddcdf6e7 5114 enum cpu_idle_type idle;
bd939f45 5115 long imbalance;
b9403130
MW
5116 /* The set of CPUs under consideration for load-balancing */
5117 struct cpumask *cpus;
5118
ddcdf6e7 5119 unsigned int flags;
367456c7
PZ
5120
5121 unsigned int loop;
5122 unsigned int loop_break;
5123 unsigned int loop_max;
0ec8aa00
PZ
5124
5125 enum fbq_type fbq_type;
163122b7 5126 struct list_head tasks;
ddcdf6e7
PZ
5127};
5128
029632fb
PZ
5129/*
5130 * Is this task likely cache-hot:
5131 */
5d5e2b1b 5132static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5133{
5134 s64 delta;
5135
e5673f28
KT
5136 lockdep_assert_held(&env->src_rq->lock);
5137
029632fb
PZ
5138 if (p->sched_class != &fair_sched_class)
5139 return 0;
5140
5141 if (unlikely(p->policy == SCHED_IDLE))
5142 return 0;
5143
5144 /*
5145 * Buddy candidates are cache hot:
5146 */
5d5e2b1b 5147 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5148 (&p->se == cfs_rq_of(&p->se)->next ||
5149 &p->se == cfs_rq_of(&p->se)->last))
5150 return 1;
5151
5152 if (sysctl_sched_migration_cost == -1)
5153 return 1;
5154 if (sysctl_sched_migration_cost == 0)
5155 return 0;
5156
5d5e2b1b 5157 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5158
5159 return delta < (s64)sysctl_sched_migration_cost;
5160}
5161
3a7053b3
MG
5162#ifdef CONFIG_NUMA_BALANCING
5163/* Returns true if the destination node has incurred more faults */
5164static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5165{
b1ad065e 5166 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5167 int src_nid, dst_nid;
5168
ff1df896 5169 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5170 !(env->sd->flags & SD_NUMA)) {
5171 return false;
5172 }
5173
5174 src_nid = cpu_to_node(env->src_cpu);
5175 dst_nid = cpu_to_node(env->dst_cpu);
5176
83e1d2cd 5177 if (src_nid == dst_nid)
3a7053b3
MG
5178 return false;
5179
b1ad065e
RR
5180 if (numa_group) {
5181 /* Task is already in the group's interleave set. */
5182 if (node_isset(src_nid, numa_group->active_nodes))
5183 return false;
83e1d2cd 5184
b1ad065e
RR
5185 /* Task is moving into the group's interleave set. */
5186 if (node_isset(dst_nid, numa_group->active_nodes))
5187 return true;
83e1d2cd 5188
b1ad065e
RR
5189 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5190 }
5191
5192 /* Encourage migration to the preferred node. */
5193 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5194 return true;
5195
b1ad065e 5196 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5197}
7a0f3083
MG
5198
5199
5200static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5201{
b1ad065e 5202 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5203 int src_nid, dst_nid;
5204
5205 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5206 return false;
5207
ff1df896 5208 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5209 return false;
5210
5211 src_nid = cpu_to_node(env->src_cpu);
5212 dst_nid = cpu_to_node(env->dst_cpu);
5213
83e1d2cd 5214 if (src_nid == dst_nid)
7a0f3083
MG
5215 return false;
5216
b1ad065e
RR
5217 if (numa_group) {
5218 /* Task is moving within/into the group's interleave set. */
5219 if (node_isset(dst_nid, numa_group->active_nodes))
5220 return false;
5221
5222 /* Task is moving out of the group's interleave set. */
5223 if (node_isset(src_nid, numa_group->active_nodes))
5224 return true;
5225
5226 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5227 }
5228
83e1d2cd
MG
5229 /* Migrating away from the preferred node is always bad. */
5230 if (src_nid == p->numa_preferred_nid)
5231 return true;
5232
b1ad065e 5233 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5234}
5235
3a7053b3
MG
5236#else
5237static inline bool migrate_improves_locality(struct task_struct *p,
5238 struct lb_env *env)
5239{
5240 return false;
5241}
7a0f3083
MG
5242
5243static inline bool migrate_degrades_locality(struct task_struct *p,
5244 struct lb_env *env)
5245{
5246 return false;
5247}
3a7053b3
MG
5248#endif
5249
1e3c88bd
PZ
5250/*
5251 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5252 */
5253static
8e45cb54 5254int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5255{
5256 int tsk_cache_hot = 0;
e5673f28
KT
5257
5258 lockdep_assert_held(&env->src_rq->lock);
5259
1e3c88bd
PZ
5260 /*
5261 * We do not migrate tasks that are:
d3198084 5262 * 1) throttled_lb_pair, or
1e3c88bd 5263 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5264 * 3) running (obviously), or
5265 * 4) are cache-hot on their current CPU.
1e3c88bd 5266 */
d3198084
JK
5267 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5268 return 0;
5269
ddcdf6e7 5270 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5271 int cpu;
88b8dac0 5272
41acab88 5273 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5274
6263322c
PZ
5275 env->flags |= LBF_SOME_PINNED;
5276
88b8dac0
SV
5277 /*
5278 * Remember if this task can be migrated to any other cpu in
5279 * our sched_group. We may want to revisit it if we couldn't
5280 * meet load balance goals by pulling other tasks on src_cpu.
5281 *
5282 * Also avoid computing new_dst_cpu if we have already computed
5283 * one in current iteration.
5284 */
6263322c 5285 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5286 return 0;
5287
e02e60c1
JK
5288 /* Prevent to re-select dst_cpu via env's cpus */
5289 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5290 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5291 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5292 env->new_dst_cpu = cpu;
5293 break;
5294 }
88b8dac0 5295 }
e02e60c1 5296
1e3c88bd
PZ
5297 return 0;
5298 }
88b8dac0
SV
5299
5300 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5301 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5302
ddcdf6e7 5303 if (task_running(env->src_rq, p)) {
41acab88 5304 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5305 return 0;
5306 }
5307
5308 /*
5309 * Aggressive migration if:
3a7053b3
MG
5310 * 1) destination numa is preferred
5311 * 2) task is cache cold, or
5312 * 3) too many balance attempts have failed.
1e3c88bd 5313 */
5d5e2b1b 5314 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5315 if (!tsk_cache_hot)
5316 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5317
5318 if (migrate_improves_locality(p, env)) {
5319#ifdef CONFIG_SCHEDSTATS
5320 if (tsk_cache_hot) {
5321 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5322 schedstat_inc(p, se.statistics.nr_forced_migrations);
5323 }
5324#endif
5325 return 1;
5326 }
5327
1e3c88bd 5328 if (!tsk_cache_hot ||
8e45cb54 5329 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5330
1e3c88bd 5331 if (tsk_cache_hot) {
8e45cb54 5332 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5333 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5334 }
4e2dcb73 5335
1e3c88bd
PZ
5336 return 1;
5337 }
5338
4e2dcb73
ZH
5339 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5340 return 0;
1e3c88bd
PZ
5341}
5342
163122b7
KT
5343/*
5344 * detach_task() -- detach the task for the migration specified in env
5345 */
5346static void detach_task(struct task_struct *p, struct lb_env *env)
5347{
5348 lockdep_assert_held(&env->src_rq->lock);
5349
5350 deactivate_task(env->src_rq, p, 0);
5351 p->on_rq = TASK_ON_RQ_MIGRATING;
5352 set_task_cpu(p, env->dst_cpu);
5353}
5354
897c395f 5355/*
e5673f28 5356 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5357 * part of active balancing operations within "domain".
897c395f 5358 *
e5673f28 5359 * Returns a task if successful and NULL otherwise.
897c395f 5360 */
e5673f28 5361static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5362{
5363 struct task_struct *p, *n;
897c395f 5364
e5673f28
KT
5365 lockdep_assert_held(&env->src_rq->lock);
5366
367456c7 5367 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5368 if (!can_migrate_task(p, env))
5369 continue;
897c395f 5370
163122b7 5371 detach_task(p, env);
e5673f28 5372
367456c7 5373 /*
e5673f28 5374 * Right now, this is only the second place where
163122b7 5375 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5376 * so we can safely collect stats here rather than
163122b7 5377 * inside detach_tasks().
367456c7
PZ
5378 */
5379 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5380 return p;
897c395f 5381 }
e5673f28
KT
5382 return NULL;
5383}
5384
eb95308e
PZ
5385static const unsigned int sched_nr_migrate_break = 32;
5386
5d6523eb 5387/*
163122b7
KT
5388 * detach_tasks() -- tries to detach up to imbalance weighted load from
5389 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5390 *
163122b7 5391 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5392 */
163122b7 5393static int detach_tasks(struct lb_env *env)
1e3c88bd 5394{
5d6523eb
PZ
5395 struct list_head *tasks = &env->src_rq->cfs_tasks;
5396 struct task_struct *p;
367456c7 5397 unsigned long load;
163122b7
KT
5398 int detached = 0;
5399
5400 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5401
bd939f45 5402 if (env->imbalance <= 0)
5d6523eb 5403 return 0;
1e3c88bd 5404
5d6523eb
PZ
5405 while (!list_empty(tasks)) {
5406 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5407
367456c7
PZ
5408 env->loop++;
5409 /* We've more or less seen every task there is, call it quits */
5d6523eb 5410 if (env->loop > env->loop_max)
367456c7 5411 break;
5d6523eb
PZ
5412
5413 /* take a breather every nr_migrate tasks */
367456c7 5414 if (env->loop > env->loop_break) {
eb95308e 5415 env->loop_break += sched_nr_migrate_break;
8e45cb54 5416 env->flags |= LBF_NEED_BREAK;
ee00e66f 5417 break;
a195f004 5418 }
1e3c88bd 5419
d3198084 5420 if (!can_migrate_task(p, env))
367456c7
PZ
5421 goto next;
5422
5423 load = task_h_load(p);
5d6523eb 5424
eb95308e 5425 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5426 goto next;
5427
bd939f45 5428 if ((load / 2) > env->imbalance)
367456c7 5429 goto next;
1e3c88bd 5430
163122b7
KT
5431 detach_task(p, env);
5432 list_add(&p->se.group_node, &env->tasks);
5433
5434 detached++;
bd939f45 5435 env->imbalance -= load;
1e3c88bd
PZ
5436
5437#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5438 /*
5439 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5440 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5441 * the critical section.
5442 */
5d6523eb 5443 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5444 break;
1e3c88bd
PZ
5445#endif
5446
ee00e66f
PZ
5447 /*
5448 * We only want to steal up to the prescribed amount of
5449 * weighted load.
5450 */
bd939f45 5451 if (env->imbalance <= 0)
ee00e66f 5452 break;
367456c7
PZ
5453
5454 continue;
5455next:
5d6523eb 5456 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5457 }
5d6523eb 5458
1e3c88bd 5459 /*
163122b7
KT
5460 * Right now, this is one of only two places we collect this stat
5461 * so we can safely collect detach_one_task() stats here rather
5462 * than inside detach_one_task().
1e3c88bd 5463 */
163122b7 5464 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5465
163122b7
KT
5466 return detached;
5467}
5468
5469/*
5470 * attach_task() -- attach the task detached by detach_task() to its new rq.
5471 */
5472static void attach_task(struct rq *rq, struct task_struct *p)
5473{
5474 lockdep_assert_held(&rq->lock);
5475
5476 BUG_ON(task_rq(p) != rq);
5477 p->on_rq = TASK_ON_RQ_QUEUED;
5478 activate_task(rq, p, 0);
5479 check_preempt_curr(rq, p, 0);
5480}
5481
5482/*
5483 * attach_one_task() -- attaches the task returned from detach_one_task() to
5484 * its new rq.
5485 */
5486static void attach_one_task(struct rq *rq, struct task_struct *p)
5487{
5488 raw_spin_lock(&rq->lock);
5489 attach_task(rq, p);
5490 raw_spin_unlock(&rq->lock);
5491}
5492
5493/*
5494 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5495 * new rq.
5496 */
5497static void attach_tasks(struct lb_env *env)
5498{
5499 struct list_head *tasks = &env->tasks;
5500 struct task_struct *p;
5501
5502 raw_spin_lock(&env->dst_rq->lock);
5503
5504 while (!list_empty(tasks)) {
5505 p = list_first_entry(tasks, struct task_struct, se.group_node);
5506 list_del_init(&p->se.group_node);
5507
5508 attach_task(env->dst_rq, p);
5509 }
5510
5511 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5512}
5513
230059de 5514#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5515/*
5516 * update tg->load_weight by folding this cpu's load_avg
5517 */
48a16753 5518static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5519{
48a16753
PT
5520 struct sched_entity *se = tg->se[cpu];
5521 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5522
48a16753
PT
5523 /* throttled entities do not contribute to load */
5524 if (throttled_hierarchy(cfs_rq))
5525 return;
9e3081ca 5526
aff3e498 5527 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5528
82958366
PT
5529 if (se) {
5530 update_entity_load_avg(se, 1);
5531 /*
5532 * We pivot on our runnable average having decayed to zero for
5533 * list removal. This generally implies that all our children
5534 * have also been removed (modulo rounding error or bandwidth
5535 * control); however, such cases are rare and we can fix these
5536 * at enqueue.
5537 *
5538 * TODO: fix up out-of-order children on enqueue.
5539 */
5540 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5541 list_del_leaf_cfs_rq(cfs_rq);
5542 } else {
48a16753 5543 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5544 update_rq_runnable_avg(rq, rq->nr_running);
5545 }
9e3081ca
PZ
5546}
5547
48a16753 5548static void update_blocked_averages(int cpu)
9e3081ca 5549{
9e3081ca 5550 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5551 struct cfs_rq *cfs_rq;
5552 unsigned long flags;
9e3081ca 5553
48a16753
PT
5554 raw_spin_lock_irqsave(&rq->lock, flags);
5555 update_rq_clock(rq);
9763b67f
PZ
5556 /*
5557 * Iterates the task_group tree in a bottom up fashion, see
5558 * list_add_leaf_cfs_rq() for details.
5559 */
64660c86 5560 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5561 /*
5562 * Note: We may want to consider periodically releasing
5563 * rq->lock about these updates so that creating many task
5564 * groups does not result in continually extending hold time.
5565 */
5566 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5567 }
48a16753
PT
5568
5569 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5570}
5571
9763b67f 5572/*
68520796 5573 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5574 * This needs to be done in a top-down fashion because the load of a child
5575 * group is a fraction of its parents load.
5576 */
68520796 5577static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5578{
68520796
VD
5579 struct rq *rq = rq_of(cfs_rq);
5580 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5581 unsigned long now = jiffies;
68520796 5582 unsigned long load;
a35b6466 5583
68520796 5584 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5585 return;
5586
68520796
VD
5587 cfs_rq->h_load_next = NULL;
5588 for_each_sched_entity(se) {
5589 cfs_rq = cfs_rq_of(se);
5590 cfs_rq->h_load_next = se;
5591 if (cfs_rq->last_h_load_update == now)
5592 break;
5593 }
a35b6466 5594
68520796 5595 if (!se) {
7e3115ef 5596 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5597 cfs_rq->last_h_load_update = now;
5598 }
5599
5600 while ((se = cfs_rq->h_load_next) != NULL) {
5601 load = cfs_rq->h_load;
5602 load = div64_ul(load * se->avg.load_avg_contrib,
5603 cfs_rq->runnable_load_avg + 1);
5604 cfs_rq = group_cfs_rq(se);
5605 cfs_rq->h_load = load;
5606 cfs_rq->last_h_load_update = now;
5607 }
9763b67f
PZ
5608}
5609
367456c7 5610static unsigned long task_h_load(struct task_struct *p)
230059de 5611{
367456c7 5612 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5613
68520796 5614 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5615 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5616 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5617}
5618#else
48a16753 5619static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5620{
5621}
5622
367456c7 5623static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5624{
a003a25b 5625 return p->se.avg.load_avg_contrib;
1e3c88bd 5626}
230059de 5627#endif
1e3c88bd 5628
1e3c88bd 5629/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5630
5631enum group_type {
5632 group_other = 0,
5633 group_imbalanced,
5634 group_overloaded,
5635};
5636
1e3c88bd
PZ
5637/*
5638 * sg_lb_stats - stats of a sched_group required for load_balancing
5639 */
5640struct sg_lb_stats {
5641 unsigned long avg_load; /*Avg load across the CPUs of the group */
5642 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5643 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5644 unsigned long load_per_task;
63b2ca30 5645 unsigned long group_capacity;
147c5fc2 5646 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5647 unsigned int group_capacity_factor;
147c5fc2
PZ
5648 unsigned int idle_cpus;
5649 unsigned int group_weight;
caeb178c 5650 enum group_type group_type;
1b6a7495 5651 int group_has_free_capacity;
0ec8aa00
PZ
5652#ifdef CONFIG_NUMA_BALANCING
5653 unsigned int nr_numa_running;
5654 unsigned int nr_preferred_running;
5655#endif
1e3c88bd
PZ
5656};
5657
56cf515b
JK
5658/*
5659 * sd_lb_stats - Structure to store the statistics of a sched_domain
5660 * during load balancing.
5661 */
5662struct sd_lb_stats {
5663 struct sched_group *busiest; /* Busiest group in this sd */
5664 struct sched_group *local; /* Local group in this sd */
5665 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5666 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5667 unsigned long avg_load; /* Average load across all groups in sd */
5668
56cf515b 5669 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5670 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5671};
5672
147c5fc2
PZ
5673static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5674{
5675 /*
5676 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5677 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5678 * We must however clear busiest_stat::avg_load because
5679 * update_sd_pick_busiest() reads this before assignment.
5680 */
5681 *sds = (struct sd_lb_stats){
5682 .busiest = NULL,
5683 .local = NULL,
5684 .total_load = 0UL,
63b2ca30 5685 .total_capacity = 0UL,
147c5fc2
PZ
5686 .busiest_stat = {
5687 .avg_load = 0UL,
caeb178c
RR
5688 .sum_nr_running = 0,
5689 .group_type = group_other,
147c5fc2
PZ
5690 },
5691 };
5692}
5693
1e3c88bd
PZ
5694/**
5695 * get_sd_load_idx - Obtain the load index for a given sched domain.
5696 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5697 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5698 *
5699 * Return: The load index.
1e3c88bd
PZ
5700 */
5701static inline int get_sd_load_idx(struct sched_domain *sd,
5702 enum cpu_idle_type idle)
5703{
5704 int load_idx;
5705
5706 switch (idle) {
5707 case CPU_NOT_IDLE:
5708 load_idx = sd->busy_idx;
5709 break;
5710
5711 case CPU_NEWLY_IDLE:
5712 load_idx = sd->newidle_idx;
5713 break;
5714 default:
5715 load_idx = sd->idle_idx;
5716 break;
5717 }
5718
5719 return load_idx;
5720}
5721
ced549fa 5722static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5723{
ca8ce3d0 5724 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5725}
5726
ca8ce3d0 5727unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5728{
ced549fa 5729 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5730}
5731
26bc3c50 5732static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5733{
26bc3c50
VG
5734 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5735 return sd->smt_gain / sd->span_weight;
1e3c88bd 5736
26bc3c50 5737 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5738}
5739
26bc3c50 5740unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5741{
26bc3c50 5742 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5743}
5744
ced549fa 5745static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5746{
5747 struct rq *rq = cpu_rq(cpu);
b654f7de 5748 u64 total, available, age_stamp, avg;
cadefd3d 5749 s64 delta;
1e3c88bd 5750
b654f7de
PZ
5751 /*
5752 * Since we're reading these variables without serialization make sure
5753 * we read them once before doing sanity checks on them.
5754 */
5755 age_stamp = ACCESS_ONCE(rq->age_stamp);
5756 avg = ACCESS_ONCE(rq->rt_avg);
5757
cadefd3d
PZ
5758 delta = rq_clock(rq) - age_stamp;
5759 if (unlikely(delta < 0))
5760 delta = 0;
5761
5762 total = sched_avg_period() + delta;
aa483808 5763
b654f7de 5764 if (unlikely(total < avg)) {
ced549fa 5765 /* Ensures that capacity won't end up being negative */
aa483808
VP
5766 available = 0;
5767 } else {
b654f7de 5768 available = total - avg;
aa483808 5769 }
1e3c88bd 5770
ca8ce3d0
NP
5771 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5772 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5773
ca8ce3d0 5774 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5775
5776 return div_u64(available, total);
5777}
5778
ced549fa 5779static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5780{
ca8ce3d0 5781 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5782 struct sched_group *sdg = sd->groups;
5783
26bc3c50
VG
5784 if (sched_feat(ARCH_CAPACITY))
5785 capacity *= arch_scale_cpu_capacity(sd, cpu);
5786 else
5787 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 5788
26bc3c50 5789 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5790
ced549fa 5791 sdg->sgc->capacity_orig = capacity;
9d5efe05 5792
5d4dfddd 5793 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5794 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5795 else
ced549fa 5796 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5797
ca8ce3d0 5798 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5799
ced549fa 5800 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5801 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5802
ced549fa
NP
5803 if (!capacity)
5804 capacity = 1;
1e3c88bd 5805
ced549fa
NP
5806 cpu_rq(cpu)->cpu_capacity = capacity;
5807 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5808}
5809
63b2ca30 5810void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5811{
5812 struct sched_domain *child = sd->child;
5813 struct sched_group *group, *sdg = sd->groups;
63b2ca30 5814 unsigned long capacity, capacity_orig;
4ec4412e
VG
5815 unsigned long interval;
5816
5817 interval = msecs_to_jiffies(sd->balance_interval);
5818 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 5819 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
5820
5821 if (!child) {
ced549fa 5822 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5823 return;
5824 }
5825
63b2ca30 5826 capacity_orig = capacity = 0;
1e3c88bd 5827
74a5ce20
PZ
5828 if (child->flags & SD_OVERLAP) {
5829 /*
5830 * SD_OVERLAP domains cannot assume that child groups
5831 * span the current group.
5832 */
5833
863bffc8 5834 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 5835 struct sched_group_capacity *sgc;
9abf24d4 5836 struct rq *rq = cpu_rq(cpu);
863bffc8 5837
9abf24d4 5838 /*
63b2ca30 5839 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
5840 * gets here before we've attached the domains to the
5841 * runqueues.
5842 *
ced549fa
NP
5843 * Use capacity_of(), which is set irrespective of domains
5844 * in update_cpu_capacity().
9abf24d4 5845 *
63b2ca30 5846 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
5847 * causing divide-by-zero issues on boot.
5848 *
63b2ca30 5849 * Runtime updates will correct capacity_orig.
9abf24d4
SD
5850 */
5851 if (unlikely(!rq->sd)) {
ced549fa
NP
5852 capacity_orig += capacity_of(cpu);
5853 capacity += capacity_of(cpu);
9abf24d4
SD
5854 continue;
5855 }
863bffc8 5856
63b2ca30
NP
5857 sgc = rq->sd->groups->sgc;
5858 capacity_orig += sgc->capacity_orig;
5859 capacity += sgc->capacity;
863bffc8 5860 }
74a5ce20
PZ
5861 } else {
5862 /*
5863 * !SD_OVERLAP domains can assume that child groups
5864 * span the current group.
5865 */
5866
5867 group = child->groups;
5868 do {
63b2ca30
NP
5869 capacity_orig += group->sgc->capacity_orig;
5870 capacity += group->sgc->capacity;
74a5ce20
PZ
5871 group = group->next;
5872 } while (group != child->groups);
5873 }
1e3c88bd 5874
63b2ca30
NP
5875 sdg->sgc->capacity_orig = capacity_orig;
5876 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5877}
5878
9d5efe05
SV
5879/*
5880 * Try and fix up capacity for tiny siblings, this is needed when
5881 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5882 * which on its own isn't powerful enough.
5883 *
5884 * See update_sd_pick_busiest() and check_asym_packing().
5885 */
5886static inline int
5887fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5888{
5889 /*
ca8ce3d0 5890 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 5891 */
5d4dfddd 5892 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
5893 return 0;
5894
5895 /*
63b2ca30 5896 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 5897 */
63b2ca30 5898 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
5899 return 1;
5900
5901 return 0;
5902}
5903
30ce5dab
PZ
5904/*
5905 * Group imbalance indicates (and tries to solve) the problem where balancing
5906 * groups is inadequate due to tsk_cpus_allowed() constraints.
5907 *
5908 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5909 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5910 * Something like:
5911 *
5912 * { 0 1 2 3 } { 4 5 6 7 }
5913 * * * * *
5914 *
5915 * If we were to balance group-wise we'd place two tasks in the first group and
5916 * two tasks in the second group. Clearly this is undesired as it will overload
5917 * cpu 3 and leave one of the cpus in the second group unused.
5918 *
5919 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5920 * by noticing the lower domain failed to reach balance and had difficulty
5921 * moving tasks due to affinity constraints.
30ce5dab
PZ
5922 *
5923 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5924 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5925 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5926 * to create an effective group imbalance.
5927 *
5928 * This is a somewhat tricky proposition since the next run might not find the
5929 * group imbalance and decide the groups need to be balanced again. A most
5930 * subtle and fragile situation.
5931 */
5932
6263322c 5933static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5934{
63b2ca30 5935 return group->sgc->imbalance;
30ce5dab
PZ
5936}
5937
b37d9316 5938/*
0fedc6c8 5939 * Compute the group capacity factor.
b37d9316 5940 *
ced549fa 5941 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 5942 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 5943 * and limit unit capacity with that.
b37d9316 5944 */
0fedc6c8 5945static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 5946{
0fedc6c8 5947 unsigned int capacity_factor, smt, cpus;
63b2ca30 5948 unsigned int capacity, capacity_orig;
c61037e9 5949
63b2ca30
NP
5950 capacity = group->sgc->capacity;
5951 capacity_orig = group->sgc->capacity_orig;
c61037e9 5952 cpus = group->group_weight;
b37d9316 5953
63b2ca30 5954 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 5955 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 5956 capacity_factor = cpus / smt; /* cores */
b37d9316 5957
63b2ca30 5958 capacity_factor = min_t(unsigned,
ca8ce3d0 5959 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
5960 if (!capacity_factor)
5961 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 5962
0fedc6c8 5963 return capacity_factor;
b37d9316
PZ
5964}
5965
caeb178c
RR
5966static enum group_type
5967group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
5968{
5969 if (sgs->sum_nr_running > sgs->group_capacity_factor)
5970 return group_overloaded;
5971
5972 if (sg_imbalanced(group))
5973 return group_imbalanced;
5974
5975 return group_other;
5976}
5977
1e3c88bd
PZ
5978/**
5979 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5980 * @env: The load balancing environment.
1e3c88bd 5981 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5982 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5983 * @local_group: Does group contain this_cpu.
1e3c88bd 5984 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 5985 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 5986 */
bd939f45
PZ
5987static inline void update_sg_lb_stats(struct lb_env *env,
5988 struct sched_group *group, int load_idx,
4486edd1
TC
5989 int local_group, struct sg_lb_stats *sgs,
5990 bool *overload)
1e3c88bd 5991{
30ce5dab 5992 unsigned long load;
bd939f45 5993 int i;
1e3c88bd 5994
b72ff13c
PZ
5995 memset(sgs, 0, sizeof(*sgs));
5996
b9403130 5997 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5998 struct rq *rq = cpu_rq(i);
5999
1e3c88bd 6000 /* Bias balancing toward cpus of our domain */
6263322c 6001 if (local_group)
04f733b4 6002 load = target_load(i, load_idx);
6263322c 6003 else
1e3c88bd 6004 load = source_load(i, load_idx);
1e3c88bd
PZ
6005
6006 sgs->group_load += load;
65fdac08 6007 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6008
6009 if (rq->nr_running > 1)
6010 *overload = true;
6011
0ec8aa00
PZ
6012#ifdef CONFIG_NUMA_BALANCING
6013 sgs->nr_numa_running += rq->nr_numa_running;
6014 sgs->nr_preferred_running += rq->nr_preferred_running;
6015#endif
1e3c88bd 6016 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6017 if (idle_cpu(i))
6018 sgs->idle_cpus++;
1e3c88bd
PZ
6019 }
6020
63b2ca30
NP
6021 /* Adjust by relative CPU capacity of the group */
6022 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6023 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6024
dd5feea1 6025 if (sgs->sum_nr_running)
38d0f770 6026 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6027
aae6d3dd 6028 sgs->group_weight = group->group_weight;
0fedc6c8 6029 sgs->group_capacity_factor = sg_capacity_factor(env, group);
caeb178c 6030 sgs->group_type = group_classify(group, sgs);
b37d9316 6031
0fedc6c8 6032 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 6033 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
6034}
6035
532cb4c4
MN
6036/**
6037 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6038 * @env: The load balancing environment.
532cb4c4
MN
6039 * @sds: sched_domain statistics
6040 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6041 * @sgs: sched_group statistics
532cb4c4
MN
6042 *
6043 * Determine if @sg is a busier group than the previously selected
6044 * busiest group.
e69f6186
YB
6045 *
6046 * Return: %true if @sg is a busier group than the previously selected
6047 * busiest group. %false otherwise.
532cb4c4 6048 */
bd939f45 6049static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6050 struct sd_lb_stats *sds,
6051 struct sched_group *sg,
bd939f45 6052 struct sg_lb_stats *sgs)
532cb4c4 6053{
caeb178c 6054 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6055
caeb178c 6056 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6057 return true;
6058
caeb178c
RR
6059 if (sgs->group_type < busiest->group_type)
6060 return false;
6061
6062 if (sgs->avg_load <= busiest->avg_load)
6063 return false;
6064
6065 /* This is the busiest node in its class. */
6066 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6067 return true;
6068
6069 /*
6070 * ASYM_PACKING needs to move all the work to the lowest
6071 * numbered CPUs in the group, therefore mark all groups
6072 * higher than ourself as busy.
6073 */
caeb178c 6074 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6075 if (!sds->busiest)
6076 return true;
6077
6078 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6079 return true;
6080 }
6081
6082 return false;
6083}
6084
0ec8aa00
PZ
6085#ifdef CONFIG_NUMA_BALANCING
6086static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6087{
6088 if (sgs->sum_nr_running > sgs->nr_numa_running)
6089 return regular;
6090 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6091 return remote;
6092 return all;
6093}
6094
6095static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6096{
6097 if (rq->nr_running > rq->nr_numa_running)
6098 return regular;
6099 if (rq->nr_running > rq->nr_preferred_running)
6100 return remote;
6101 return all;
6102}
6103#else
6104static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6105{
6106 return all;
6107}
6108
6109static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6110{
6111 return regular;
6112}
6113#endif /* CONFIG_NUMA_BALANCING */
6114
1e3c88bd 6115/**
461819ac 6116 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6117 * @env: The load balancing environment.
1e3c88bd
PZ
6118 * @sds: variable to hold the statistics for this sched_domain.
6119 */
0ec8aa00 6120static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6121{
bd939f45
PZ
6122 struct sched_domain *child = env->sd->child;
6123 struct sched_group *sg = env->sd->groups;
56cf515b 6124 struct sg_lb_stats tmp_sgs;
1e3c88bd 6125 int load_idx, prefer_sibling = 0;
4486edd1 6126 bool overload = false;
1e3c88bd
PZ
6127
6128 if (child && child->flags & SD_PREFER_SIBLING)
6129 prefer_sibling = 1;
6130
bd939f45 6131 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6132
6133 do {
56cf515b 6134 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6135 int local_group;
6136
bd939f45 6137 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6138 if (local_group) {
6139 sds->local = sg;
6140 sgs = &sds->local_stat;
b72ff13c
PZ
6141
6142 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6143 time_after_eq(jiffies, sg->sgc->next_update))
6144 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6145 }
1e3c88bd 6146
4486edd1
TC
6147 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6148 &overload);
1e3c88bd 6149
b72ff13c
PZ
6150 if (local_group)
6151 goto next_group;
6152
1e3c88bd
PZ
6153 /*
6154 * In case the child domain prefers tasks go to siblings
0fedc6c8 6155 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6156 * and move all the excess tasks away. We lower the capacity
6157 * of a group only if the local group has the capacity to fit
0fedc6c8 6158 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6159 * extra check prevents the case where you always pull from the
6160 * heaviest group when it is already under-utilized (possible
6161 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6162 */
b72ff13c 6163 if (prefer_sibling && sds->local &&
1b6a7495 6164 sds->local_stat.group_has_free_capacity)
0fedc6c8 6165 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
1e3c88bd 6166
b72ff13c 6167 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6168 sds->busiest = sg;
56cf515b 6169 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6170 }
6171
b72ff13c
PZ
6172next_group:
6173 /* Now, start updating sd_lb_stats */
6174 sds->total_load += sgs->group_load;
63b2ca30 6175 sds->total_capacity += sgs->group_capacity;
b72ff13c 6176
532cb4c4 6177 sg = sg->next;
bd939f45 6178 } while (sg != env->sd->groups);
0ec8aa00
PZ
6179
6180 if (env->sd->flags & SD_NUMA)
6181 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6182
6183 if (!env->sd->parent) {
6184 /* update overload indicator if we are at root domain */
6185 if (env->dst_rq->rd->overload != overload)
6186 env->dst_rq->rd->overload = overload;
6187 }
6188
532cb4c4
MN
6189}
6190
532cb4c4
MN
6191/**
6192 * check_asym_packing - Check to see if the group is packed into the
6193 * sched doman.
6194 *
6195 * This is primarily intended to used at the sibling level. Some
6196 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6197 * case of POWER7, it can move to lower SMT modes only when higher
6198 * threads are idle. When in lower SMT modes, the threads will
6199 * perform better since they share less core resources. Hence when we
6200 * have idle threads, we want them to be the higher ones.
6201 *
6202 * This packing function is run on idle threads. It checks to see if
6203 * the busiest CPU in this domain (core in the P7 case) has a higher
6204 * CPU number than the packing function is being run on. Here we are
6205 * assuming lower CPU number will be equivalent to lower a SMT thread
6206 * number.
6207 *
e69f6186 6208 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6209 * this CPU. The amount of the imbalance is returned in *imbalance.
6210 *
cd96891d 6211 * @env: The load balancing environment.
532cb4c4 6212 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6213 */
bd939f45 6214static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6215{
6216 int busiest_cpu;
6217
bd939f45 6218 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6219 return 0;
6220
6221 if (!sds->busiest)
6222 return 0;
6223
6224 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6225 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6226 return 0;
6227
bd939f45 6228 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6229 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6230 SCHED_CAPACITY_SCALE);
bd939f45 6231
532cb4c4 6232 return 1;
1e3c88bd
PZ
6233}
6234
6235/**
6236 * fix_small_imbalance - Calculate the minor imbalance that exists
6237 * amongst the groups of a sched_domain, during
6238 * load balancing.
cd96891d 6239 * @env: The load balancing environment.
1e3c88bd 6240 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6241 */
bd939f45
PZ
6242static inline
6243void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6244{
63b2ca30 6245 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6246 unsigned int imbn = 2;
dd5feea1 6247 unsigned long scaled_busy_load_per_task;
56cf515b 6248 struct sg_lb_stats *local, *busiest;
1e3c88bd 6249
56cf515b
JK
6250 local = &sds->local_stat;
6251 busiest = &sds->busiest_stat;
1e3c88bd 6252
56cf515b
JK
6253 if (!local->sum_nr_running)
6254 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6255 else if (busiest->load_per_task > local->load_per_task)
6256 imbn = 1;
dd5feea1 6257
56cf515b 6258 scaled_busy_load_per_task =
ca8ce3d0 6259 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6260 busiest->group_capacity;
56cf515b 6261
3029ede3
VD
6262 if (busiest->avg_load + scaled_busy_load_per_task >=
6263 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6264 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6265 return;
6266 }
6267
6268 /*
6269 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6270 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6271 * moving them.
6272 */
6273
63b2ca30 6274 capa_now += busiest->group_capacity *
56cf515b 6275 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6276 capa_now += local->group_capacity *
56cf515b 6277 min(local->load_per_task, local->avg_load);
ca8ce3d0 6278 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6279
6280 /* Amount of load we'd subtract */
a2cd4260 6281 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6282 capa_move += busiest->group_capacity *
56cf515b 6283 min(busiest->load_per_task,
a2cd4260 6284 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6285 }
1e3c88bd
PZ
6286
6287 /* Amount of load we'd add */
63b2ca30 6288 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6289 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6290 tmp = (busiest->avg_load * busiest->group_capacity) /
6291 local->group_capacity;
56cf515b 6292 } else {
ca8ce3d0 6293 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6294 local->group_capacity;
56cf515b 6295 }
63b2ca30 6296 capa_move += local->group_capacity *
3ae11c90 6297 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6298 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6299
6300 /* Move if we gain throughput */
63b2ca30 6301 if (capa_move > capa_now)
56cf515b 6302 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6303}
6304
6305/**
6306 * calculate_imbalance - Calculate the amount of imbalance present within the
6307 * groups of a given sched_domain during load balance.
bd939f45 6308 * @env: load balance environment
1e3c88bd 6309 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6310 */
bd939f45 6311static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6312{
dd5feea1 6313 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6314 struct sg_lb_stats *local, *busiest;
6315
6316 local = &sds->local_stat;
56cf515b 6317 busiest = &sds->busiest_stat;
dd5feea1 6318
caeb178c 6319 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6320 /*
6321 * In the group_imb case we cannot rely on group-wide averages
6322 * to ensure cpu-load equilibrium, look at wider averages. XXX
6323 */
56cf515b
JK
6324 busiest->load_per_task =
6325 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6326 }
6327
1e3c88bd
PZ
6328 /*
6329 * In the presence of smp nice balancing, certain scenarios can have
6330 * max load less than avg load(as we skip the groups at or below
ced549fa 6331 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6332 */
b1885550
VD
6333 if (busiest->avg_load <= sds->avg_load ||
6334 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6335 env->imbalance = 0;
6336 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6337 }
6338
9a5d9ba6
PZ
6339 /*
6340 * If there aren't any idle cpus, avoid creating some.
6341 */
6342 if (busiest->group_type == group_overloaded &&
6343 local->group_type == group_overloaded) {
56cf515b 6344 load_above_capacity =
0fedc6c8 6345 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6346
ca8ce3d0 6347 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6348 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6349 }
6350
6351 /*
6352 * We're trying to get all the cpus to the average_load, so we don't
6353 * want to push ourselves above the average load, nor do we wish to
6354 * reduce the max loaded cpu below the average load. At the same time,
6355 * we also don't want to reduce the group load below the group capacity
6356 * (so that we can implement power-savings policies etc). Thus we look
6357 * for the minimum possible imbalance.
dd5feea1 6358 */
30ce5dab 6359 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6360
6361 /* How much load to actually move to equalise the imbalance */
56cf515b 6362 env->imbalance = min(
63b2ca30
NP
6363 max_pull * busiest->group_capacity,
6364 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6365 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6366
6367 /*
6368 * if *imbalance is less than the average load per runnable task
25985edc 6369 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6370 * a think about bumping its value to force at least one task to be
6371 * moved
6372 */
56cf515b 6373 if (env->imbalance < busiest->load_per_task)
bd939f45 6374 return fix_small_imbalance(env, sds);
1e3c88bd 6375}
fab47622 6376
1e3c88bd
PZ
6377/******* find_busiest_group() helpers end here *********************/
6378
6379/**
6380 * find_busiest_group - Returns the busiest group within the sched_domain
6381 * if there is an imbalance. If there isn't an imbalance, and
6382 * the user has opted for power-savings, it returns a group whose
6383 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6384 * such a group exists.
6385 *
6386 * Also calculates the amount of weighted load which should be moved
6387 * to restore balance.
6388 *
cd96891d 6389 * @env: The load balancing environment.
1e3c88bd 6390 *
e69f6186 6391 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6392 * - If no imbalance and user has opted for power-savings balance,
6393 * return the least loaded group whose CPUs can be
6394 * put to idle by rebalancing its tasks onto our group.
6395 */
56cf515b 6396static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6397{
56cf515b 6398 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6399 struct sd_lb_stats sds;
6400
147c5fc2 6401 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6402
6403 /*
6404 * Compute the various statistics relavent for load balancing at
6405 * this level.
6406 */
23f0d209 6407 update_sd_lb_stats(env, &sds);
56cf515b
JK
6408 local = &sds.local_stat;
6409 busiest = &sds.busiest_stat;
1e3c88bd 6410
bd939f45
PZ
6411 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6412 check_asym_packing(env, &sds))
532cb4c4
MN
6413 return sds.busiest;
6414
cc57aa8f 6415 /* There is no busy sibling group to pull tasks from */
56cf515b 6416 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6417 goto out_balanced;
6418
ca8ce3d0
NP
6419 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6420 / sds.total_capacity;
b0432d8f 6421
866ab43e
PZ
6422 /*
6423 * If the busiest group is imbalanced the below checks don't
30ce5dab 6424 * work because they assume all things are equal, which typically
866ab43e
PZ
6425 * isn't true due to cpus_allowed constraints and the like.
6426 */
caeb178c 6427 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6428 goto force_balance;
6429
cc57aa8f 6430 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6431 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6432 !busiest->group_has_free_capacity)
fab47622
NR
6433 goto force_balance;
6434
cc57aa8f 6435 /*
9c58c79a 6436 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6437 * don't try and pull any tasks.
6438 */
56cf515b 6439 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6440 goto out_balanced;
6441
cc57aa8f
PZ
6442 /*
6443 * Don't pull any tasks if this group is already above the domain
6444 * average load.
6445 */
56cf515b 6446 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6447 goto out_balanced;
6448
bd939f45 6449 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6450 /*
6451 * This cpu is idle. If the busiest group load doesn't
6452 * have more tasks than the number of available cpu's and
6453 * there is no imbalance between this and busiest group
6454 * wrt to idle cpu's, it is balanced.
6455 */
56cf515b
JK
6456 if ((local->idle_cpus < busiest->idle_cpus) &&
6457 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6458 goto out_balanced;
c186fafe
PZ
6459 } else {
6460 /*
6461 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6462 * imbalance_pct to be conservative.
6463 */
56cf515b
JK
6464 if (100 * busiest->avg_load <=
6465 env->sd->imbalance_pct * local->avg_load)
c186fafe 6466 goto out_balanced;
aae6d3dd 6467 }
1e3c88bd 6468
fab47622 6469force_balance:
1e3c88bd 6470 /* Looks like there is an imbalance. Compute it */
bd939f45 6471 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6472 return sds.busiest;
6473
6474out_balanced:
bd939f45 6475 env->imbalance = 0;
1e3c88bd
PZ
6476 return NULL;
6477}
6478
6479/*
6480 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6481 */
bd939f45 6482static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6483 struct sched_group *group)
1e3c88bd
PZ
6484{
6485 struct rq *busiest = NULL, *rq;
ced549fa 6486 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6487 int i;
6488
6906a408 6489 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6490 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6491 enum fbq_type rt;
6492
6493 rq = cpu_rq(i);
6494 rt = fbq_classify_rq(rq);
1e3c88bd 6495
0ec8aa00
PZ
6496 /*
6497 * We classify groups/runqueues into three groups:
6498 * - regular: there are !numa tasks
6499 * - remote: there are numa tasks that run on the 'wrong' node
6500 * - all: there is no distinction
6501 *
6502 * In order to avoid migrating ideally placed numa tasks,
6503 * ignore those when there's better options.
6504 *
6505 * If we ignore the actual busiest queue to migrate another
6506 * task, the next balance pass can still reduce the busiest
6507 * queue by moving tasks around inside the node.
6508 *
6509 * If we cannot move enough load due to this classification
6510 * the next pass will adjust the group classification and
6511 * allow migration of more tasks.
6512 *
6513 * Both cases only affect the total convergence complexity.
6514 */
6515 if (rt > env->fbq_type)
6516 continue;
6517
ced549fa 6518 capacity = capacity_of(i);
ca8ce3d0 6519 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6520 if (!capacity_factor)
6521 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6522
6e40f5bb 6523 wl = weighted_cpuload(i);
1e3c88bd 6524
6e40f5bb
TG
6525 /*
6526 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6527 * which is not scaled with the cpu capacity.
6e40f5bb 6528 */
0fedc6c8 6529 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6530 continue;
6531
6e40f5bb
TG
6532 /*
6533 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6534 * the weighted_cpuload() scaled with the cpu capacity, so
6535 * that the load can be moved away from the cpu that is
6536 * potentially running at a lower capacity.
95a79b80 6537 *
ced549fa 6538 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6539 * multiplication to rid ourselves of the division works out
ced549fa
NP
6540 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6541 * our previous maximum.
6e40f5bb 6542 */
ced549fa 6543 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6544 busiest_load = wl;
ced549fa 6545 busiest_capacity = capacity;
1e3c88bd
PZ
6546 busiest = rq;
6547 }
6548 }
6549
6550 return busiest;
6551}
6552
6553/*
6554 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6555 * so long as it is large enough.
6556 */
6557#define MAX_PINNED_INTERVAL 512
6558
6559/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6560DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6561
bd939f45 6562static int need_active_balance(struct lb_env *env)
1af3ed3d 6563{
bd939f45
PZ
6564 struct sched_domain *sd = env->sd;
6565
6566 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6567
6568 /*
6569 * ASYM_PACKING needs to force migrate tasks from busy but
6570 * higher numbered CPUs in order to pack all tasks in the
6571 * lowest numbered CPUs.
6572 */
bd939f45 6573 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6574 return 1;
1af3ed3d
PZ
6575 }
6576
6577 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6578}
6579
969c7921
TH
6580static int active_load_balance_cpu_stop(void *data);
6581
23f0d209
JK
6582static int should_we_balance(struct lb_env *env)
6583{
6584 struct sched_group *sg = env->sd->groups;
6585 struct cpumask *sg_cpus, *sg_mask;
6586 int cpu, balance_cpu = -1;
6587
6588 /*
6589 * In the newly idle case, we will allow all the cpu's
6590 * to do the newly idle load balance.
6591 */
6592 if (env->idle == CPU_NEWLY_IDLE)
6593 return 1;
6594
6595 sg_cpus = sched_group_cpus(sg);
6596 sg_mask = sched_group_mask(sg);
6597 /* Try to find first idle cpu */
6598 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6599 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6600 continue;
6601
6602 balance_cpu = cpu;
6603 break;
6604 }
6605
6606 if (balance_cpu == -1)
6607 balance_cpu = group_balance_cpu(sg);
6608
6609 /*
6610 * First idle cpu or the first cpu(busiest) in this sched group
6611 * is eligible for doing load balancing at this and above domains.
6612 */
b0cff9d8 6613 return balance_cpu == env->dst_cpu;
23f0d209
JK
6614}
6615
1e3c88bd
PZ
6616/*
6617 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6618 * tasks if there is an imbalance.
6619 */
6620static int load_balance(int this_cpu, struct rq *this_rq,
6621 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6622 int *continue_balancing)
1e3c88bd 6623{
88b8dac0 6624 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6625 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6626 struct sched_group *group;
1e3c88bd
PZ
6627 struct rq *busiest;
6628 unsigned long flags;
e6252c3e 6629 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6630
8e45cb54
PZ
6631 struct lb_env env = {
6632 .sd = sd,
ddcdf6e7
PZ
6633 .dst_cpu = this_cpu,
6634 .dst_rq = this_rq,
88b8dac0 6635 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6636 .idle = idle,
eb95308e 6637 .loop_break = sched_nr_migrate_break,
b9403130 6638 .cpus = cpus,
0ec8aa00 6639 .fbq_type = all,
163122b7 6640 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6641 };
6642
cfc03118
JK
6643 /*
6644 * For NEWLY_IDLE load_balancing, we don't need to consider
6645 * other cpus in our group
6646 */
e02e60c1 6647 if (idle == CPU_NEWLY_IDLE)
cfc03118 6648 env.dst_grpmask = NULL;
cfc03118 6649
1e3c88bd
PZ
6650 cpumask_copy(cpus, cpu_active_mask);
6651
1e3c88bd
PZ
6652 schedstat_inc(sd, lb_count[idle]);
6653
6654redo:
23f0d209
JK
6655 if (!should_we_balance(&env)) {
6656 *continue_balancing = 0;
1e3c88bd 6657 goto out_balanced;
23f0d209 6658 }
1e3c88bd 6659
23f0d209 6660 group = find_busiest_group(&env);
1e3c88bd
PZ
6661 if (!group) {
6662 schedstat_inc(sd, lb_nobusyg[idle]);
6663 goto out_balanced;
6664 }
6665
b9403130 6666 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6667 if (!busiest) {
6668 schedstat_inc(sd, lb_nobusyq[idle]);
6669 goto out_balanced;
6670 }
6671
78feefc5 6672 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6673
bd939f45 6674 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6675
6676 ld_moved = 0;
6677 if (busiest->nr_running > 1) {
6678 /*
6679 * Attempt to move tasks. If find_busiest_group has found
6680 * an imbalance but busiest->nr_running <= 1, the group is
6681 * still unbalanced. ld_moved simply stays zero, so it is
6682 * correctly treated as an imbalance.
6683 */
8e45cb54 6684 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6685 env.src_cpu = busiest->cpu;
6686 env.src_rq = busiest;
6687 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6688
5d6523eb 6689more_balance:
163122b7 6690 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6691
6692 /*
6693 * cur_ld_moved - load moved in current iteration
6694 * ld_moved - cumulative load moved across iterations
6695 */
163122b7
KT
6696 cur_ld_moved = detach_tasks(&env);
6697
6698 /*
6699 * We've detached some tasks from busiest_rq. Every
6700 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6701 * unlock busiest->lock, and we are able to be sure
6702 * that nobody can manipulate the tasks in parallel.
6703 * See task_rq_lock() family for the details.
6704 */
6705
6706 raw_spin_unlock(&busiest->lock);
6707
6708 if (cur_ld_moved) {
6709 attach_tasks(&env);
6710 ld_moved += cur_ld_moved;
6711 }
6712
1e3c88bd
PZ
6713 local_irq_restore(flags);
6714
6715 /*
6716 * some other cpu did the load balance for us.
6717 */
88b8dac0
SV
6718 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6719 resched_cpu(env.dst_cpu);
6720
f1cd0858
JK
6721 if (env.flags & LBF_NEED_BREAK) {
6722 env.flags &= ~LBF_NEED_BREAK;
6723 goto more_balance;
6724 }
6725
88b8dac0
SV
6726 /*
6727 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6728 * us and move them to an alternate dst_cpu in our sched_group
6729 * where they can run. The upper limit on how many times we
6730 * iterate on same src_cpu is dependent on number of cpus in our
6731 * sched_group.
6732 *
6733 * This changes load balance semantics a bit on who can move
6734 * load to a given_cpu. In addition to the given_cpu itself
6735 * (or a ilb_cpu acting on its behalf where given_cpu is
6736 * nohz-idle), we now have balance_cpu in a position to move
6737 * load to given_cpu. In rare situations, this may cause
6738 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6739 * _independently_ and at _same_ time to move some load to
6740 * given_cpu) causing exceess load to be moved to given_cpu.
6741 * This however should not happen so much in practice and
6742 * moreover subsequent load balance cycles should correct the
6743 * excess load moved.
6744 */
6263322c 6745 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6746
7aff2e3a
VD
6747 /* Prevent to re-select dst_cpu via env's cpus */
6748 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6749
78feefc5 6750 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6751 env.dst_cpu = env.new_dst_cpu;
6263322c 6752 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6753 env.loop = 0;
6754 env.loop_break = sched_nr_migrate_break;
e02e60c1 6755
88b8dac0
SV
6756 /*
6757 * Go back to "more_balance" rather than "redo" since we
6758 * need to continue with same src_cpu.
6759 */
6760 goto more_balance;
6761 }
1e3c88bd 6762
6263322c
PZ
6763 /*
6764 * We failed to reach balance because of affinity.
6765 */
6766 if (sd_parent) {
63b2ca30 6767 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 6768
afdeee05 6769 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 6770 *group_imbalance = 1;
6263322c
PZ
6771 }
6772
1e3c88bd 6773 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6774 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6775 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6776 if (!cpumask_empty(cpus)) {
6777 env.loop = 0;
6778 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6779 goto redo;
bbf18b19 6780 }
afdeee05 6781 goto out_all_pinned;
1e3c88bd
PZ
6782 }
6783 }
6784
6785 if (!ld_moved) {
6786 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6787 /*
6788 * Increment the failure counter only on periodic balance.
6789 * We do not want newidle balance, which can be very
6790 * frequent, pollute the failure counter causing
6791 * excessive cache_hot migrations and active balances.
6792 */
6793 if (idle != CPU_NEWLY_IDLE)
6794 sd->nr_balance_failed++;
1e3c88bd 6795
bd939f45 6796 if (need_active_balance(&env)) {
1e3c88bd
PZ
6797 raw_spin_lock_irqsave(&busiest->lock, flags);
6798
969c7921
TH
6799 /* don't kick the active_load_balance_cpu_stop,
6800 * if the curr task on busiest cpu can't be
6801 * moved to this_cpu
1e3c88bd
PZ
6802 */
6803 if (!cpumask_test_cpu(this_cpu,
fa17b507 6804 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6805 raw_spin_unlock_irqrestore(&busiest->lock,
6806 flags);
8e45cb54 6807 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6808 goto out_one_pinned;
6809 }
6810
969c7921
TH
6811 /*
6812 * ->active_balance synchronizes accesses to
6813 * ->active_balance_work. Once set, it's cleared
6814 * only after active load balance is finished.
6815 */
1e3c88bd
PZ
6816 if (!busiest->active_balance) {
6817 busiest->active_balance = 1;
6818 busiest->push_cpu = this_cpu;
6819 active_balance = 1;
6820 }
6821 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6822
bd939f45 6823 if (active_balance) {
969c7921
TH
6824 stop_one_cpu_nowait(cpu_of(busiest),
6825 active_load_balance_cpu_stop, busiest,
6826 &busiest->active_balance_work);
bd939f45 6827 }
1e3c88bd
PZ
6828
6829 /*
6830 * We've kicked active balancing, reset the failure
6831 * counter.
6832 */
6833 sd->nr_balance_failed = sd->cache_nice_tries+1;
6834 }
6835 } else
6836 sd->nr_balance_failed = 0;
6837
6838 if (likely(!active_balance)) {
6839 /* We were unbalanced, so reset the balancing interval */
6840 sd->balance_interval = sd->min_interval;
6841 } else {
6842 /*
6843 * If we've begun active balancing, start to back off. This
6844 * case may not be covered by the all_pinned logic if there
6845 * is only 1 task on the busy runqueue (because we don't call
163122b7 6846 * detach_tasks).
1e3c88bd
PZ
6847 */
6848 if (sd->balance_interval < sd->max_interval)
6849 sd->balance_interval *= 2;
6850 }
6851
1e3c88bd
PZ
6852 goto out;
6853
6854out_balanced:
afdeee05
VG
6855 /*
6856 * We reach balance although we may have faced some affinity
6857 * constraints. Clear the imbalance flag if it was set.
6858 */
6859 if (sd_parent) {
6860 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6861
6862 if (*group_imbalance)
6863 *group_imbalance = 0;
6864 }
6865
6866out_all_pinned:
6867 /*
6868 * We reach balance because all tasks are pinned at this level so
6869 * we can't migrate them. Let the imbalance flag set so parent level
6870 * can try to migrate them.
6871 */
1e3c88bd
PZ
6872 schedstat_inc(sd, lb_balanced[idle]);
6873
6874 sd->nr_balance_failed = 0;
6875
6876out_one_pinned:
6877 /* tune up the balancing interval */
8e45cb54 6878 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6879 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6880 (sd->balance_interval < sd->max_interval))
6881 sd->balance_interval *= 2;
6882
46e49b38 6883 ld_moved = 0;
1e3c88bd 6884out:
1e3c88bd
PZ
6885 return ld_moved;
6886}
6887
52a08ef1
JL
6888static inline unsigned long
6889get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6890{
6891 unsigned long interval = sd->balance_interval;
6892
6893 if (cpu_busy)
6894 interval *= sd->busy_factor;
6895
6896 /* scale ms to jiffies */
6897 interval = msecs_to_jiffies(interval);
6898 interval = clamp(interval, 1UL, max_load_balance_interval);
6899
6900 return interval;
6901}
6902
6903static inline void
6904update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6905{
6906 unsigned long interval, next;
6907
6908 interval = get_sd_balance_interval(sd, cpu_busy);
6909 next = sd->last_balance + interval;
6910
6911 if (time_after(*next_balance, next))
6912 *next_balance = next;
6913}
6914
1e3c88bd
PZ
6915/*
6916 * idle_balance is called by schedule() if this_cpu is about to become
6917 * idle. Attempts to pull tasks from other CPUs.
6918 */
6e83125c 6919static int idle_balance(struct rq *this_rq)
1e3c88bd 6920{
52a08ef1
JL
6921 unsigned long next_balance = jiffies + HZ;
6922 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6923 struct sched_domain *sd;
6924 int pulled_task = 0;
9bd721c5 6925 u64 curr_cost = 0;
1e3c88bd 6926
6e83125c 6927 idle_enter_fair(this_rq);
0e5b5337 6928
6e83125c
PZ
6929 /*
6930 * We must set idle_stamp _before_ calling idle_balance(), such that we
6931 * measure the duration of idle_balance() as idle time.
6932 */
6933 this_rq->idle_stamp = rq_clock(this_rq);
6934
4486edd1
TC
6935 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6936 !this_rq->rd->overload) {
52a08ef1
JL
6937 rcu_read_lock();
6938 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6939 if (sd)
6940 update_next_balance(sd, 0, &next_balance);
6941 rcu_read_unlock();
6942
6e83125c 6943 goto out;
52a08ef1 6944 }
1e3c88bd 6945
f492e12e
PZ
6946 /*
6947 * Drop the rq->lock, but keep IRQ/preempt disabled.
6948 */
6949 raw_spin_unlock(&this_rq->lock);
6950
48a16753 6951 update_blocked_averages(this_cpu);
dce840a0 6952 rcu_read_lock();
1e3c88bd 6953 for_each_domain(this_cpu, sd) {
23f0d209 6954 int continue_balancing = 1;
9bd721c5 6955 u64 t0, domain_cost;
1e3c88bd
PZ
6956
6957 if (!(sd->flags & SD_LOAD_BALANCE))
6958 continue;
6959
52a08ef1
JL
6960 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6961 update_next_balance(sd, 0, &next_balance);
9bd721c5 6962 break;
52a08ef1 6963 }
9bd721c5 6964
f492e12e 6965 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6966 t0 = sched_clock_cpu(this_cpu);
6967
f492e12e 6968 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6969 sd, CPU_NEWLY_IDLE,
6970 &continue_balancing);
9bd721c5
JL
6971
6972 domain_cost = sched_clock_cpu(this_cpu) - t0;
6973 if (domain_cost > sd->max_newidle_lb_cost)
6974 sd->max_newidle_lb_cost = domain_cost;
6975
6976 curr_cost += domain_cost;
f492e12e 6977 }
1e3c88bd 6978
52a08ef1 6979 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6980
6981 /*
6982 * Stop searching for tasks to pull if there are
6983 * now runnable tasks on this rq.
6984 */
6985 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6986 break;
1e3c88bd 6987 }
dce840a0 6988 rcu_read_unlock();
f492e12e
PZ
6989
6990 raw_spin_lock(&this_rq->lock);
6991
0e5b5337
JL
6992 if (curr_cost > this_rq->max_idle_balance_cost)
6993 this_rq->max_idle_balance_cost = curr_cost;
6994
e5fc6611 6995 /*
0e5b5337
JL
6996 * While browsing the domains, we released the rq lock, a task could
6997 * have been enqueued in the meantime. Since we're not going idle,
6998 * pretend we pulled a task.
e5fc6611 6999 */
0e5b5337 7000 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7001 pulled_task = 1;
e5fc6611 7002
52a08ef1
JL
7003out:
7004 /* Move the next balance forward */
7005 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7006 this_rq->next_balance = next_balance;
9bd721c5 7007
e4aa358b 7008 /* Is there a task of a high priority class? */
46383648 7009 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7010 pulled_task = -1;
7011
7012 if (pulled_task) {
7013 idle_exit_fair(this_rq);
6e83125c 7014 this_rq->idle_stamp = 0;
e4aa358b 7015 }
6e83125c 7016
3c4017c1 7017 return pulled_task;
1e3c88bd
PZ
7018}
7019
7020/*
969c7921
TH
7021 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7022 * running tasks off the busiest CPU onto idle CPUs. It requires at
7023 * least 1 task to be running on each physical CPU where possible, and
7024 * avoids physical / logical imbalances.
1e3c88bd 7025 */
969c7921 7026static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7027{
969c7921
TH
7028 struct rq *busiest_rq = data;
7029 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7030 int target_cpu = busiest_rq->push_cpu;
969c7921 7031 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7032 struct sched_domain *sd;
e5673f28 7033 struct task_struct *p = NULL;
969c7921
TH
7034
7035 raw_spin_lock_irq(&busiest_rq->lock);
7036
7037 /* make sure the requested cpu hasn't gone down in the meantime */
7038 if (unlikely(busiest_cpu != smp_processor_id() ||
7039 !busiest_rq->active_balance))
7040 goto out_unlock;
1e3c88bd
PZ
7041
7042 /* Is there any task to move? */
7043 if (busiest_rq->nr_running <= 1)
969c7921 7044 goto out_unlock;
1e3c88bd
PZ
7045
7046 /*
7047 * This condition is "impossible", if it occurs
7048 * we need to fix it. Originally reported by
7049 * Bjorn Helgaas on a 128-cpu setup.
7050 */
7051 BUG_ON(busiest_rq == target_rq);
7052
1e3c88bd 7053 /* Search for an sd spanning us and the target CPU. */
dce840a0 7054 rcu_read_lock();
1e3c88bd
PZ
7055 for_each_domain(target_cpu, sd) {
7056 if ((sd->flags & SD_LOAD_BALANCE) &&
7057 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7058 break;
7059 }
7060
7061 if (likely(sd)) {
8e45cb54
PZ
7062 struct lb_env env = {
7063 .sd = sd,
ddcdf6e7
PZ
7064 .dst_cpu = target_cpu,
7065 .dst_rq = target_rq,
7066 .src_cpu = busiest_rq->cpu,
7067 .src_rq = busiest_rq,
8e45cb54
PZ
7068 .idle = CPU_IDLE,
7069 };
7070
1e3c88bd
PZ
7071 schedstat_inc(sd, alb_count);
7072
e5673f28
KT
7073 p = detach_one_task(&env);
7074 if (p)
1e3c88bd
PZ
7075 schedstat_inc(sd, alb_pushed);
7076 else
7077 schedstat_inc(sd, alb_failed);
7078 }
dce840a0 7079 rcu_read_unlock();
969c7921
TH
7080out_unlock:
7081 busiest_rq->active_balance = 0;
e5673f28
KT
7082 raw_spin_unlock(&busiest_rq->lock);
7083
7084 if (p)
7085 attach_one_task(target_rq, p);
7086
7087 local_irq_enable();
7088
969c7921 7089 return 0;
1e3c88bd
PZ
7090}
7091
d987fc7f
MG
7092static inline int on_null_domain(struct rq *rq)
7093{
7094 return unlikely(!rcu_dereference_sched(rq->sd));
7095}
7096
3451d024 7097#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7098/*
7099 * idle load balancing details
83cd4fe2
VP
7100 * - When one of the busy CPUs notice that there may be an idle rebalancing
7101 * needed, they will kick the idle load balancer, which then does idle
7102 * load balancing for all the idle CPUs.
7103 */
1e3c88bd 7104static struct {
83cd4fe2 7105 cpumask_var_t idle_cpus_mask;
0b005cf5 7106 atomic_t nr_cpus;
83cd4fe2
VP
7107 unsigned long next_balance; /* in jiffy units */
7108} nohz ____cacheline_aligned;
1e3c88bd 7109
3dd0337d 7110static inline int find_new_ilb(void)
1e3c88bd 7111{
0b005cf5 7112 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7113
786d6dc7
SS
7114 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7115 return ilb;
7116
7117 return nr_cpu_ids;
1e3c88bd 7118}
1e3c88bd 7119
83cd4fe2
VP
7120/*
7121 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7122 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7123 * CPU (if there is one).
7124 */
0aeeeeba 7125static void nohz_balancer_kick(void)
83cd4fe2
VP
7126{
7127 int ilb_cpu;
7128
7129 nohz.next_balance++;
7130
3dd0337d 7131 ilb_cpu = find_new_ilb();
83cd4fe2 7132
0b005cf5
SS
7133 if (ilb_cpu >= nr_cpu_ids)
7134 return;
83cd4fe2 7135
cd490c5b 7136 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7137 return;
7138 /*
7139 * Use smp_send_reschedule() instead of resched_cpu().
7140 * This way we generate a sched IPI on the target cpu which
7141 * is idle. And the softirq performing nohz idle load balance
7142 * will be run before returning from the IPI.
7143 */
7144 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7145 return;
7146}
7147
c1cc017c 7148static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7149{
7150 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7151 /*
7152 * Completely isolated CPUs don't ever set, so we must test.
7153 */
7154 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7155 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7156 atomic_dec(&nohz.nr_cpus);
7157 }
71325960
SS
7158 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7159 }
7160}
7161
69e1e811
SS
7162static inline void set_cpu_sd_state_busy(void)
7163{
7164 struct sched_domain *sd;
37dc6b50 7165 int cpu = smp_processor_id();
69e1e811 7166
69e1e811 7167 rcu_read_lock();
37dc6b50 7168 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7169
7170 if (!sd || !sd->nohz_idle)
7171 goto unlock;
7172 sd->nohz_idle = 0;
7173
63b2ca30 7174 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7175unlock:
69e1e811
SS
7176 rcu_read_unlock();
7177}
7178
7179void set_cpu_sd_state_idle(void)
7180{
7181 struct sched_domain *sd;
37dc6b50 7182 int cpu = smp_processor_id();
69e1e811 7183
69e1e811 7184 rcu_read_lock();
37dc6b50 7185 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7186
7187 if (!sd || sd->nohz_idle)
7188 goto unlock;
7189 sd->nohz_idle = 1;
7190
63b2ca30 7191 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7192unlock:
69e1e811
SS
7193 rcu_read_unlock();
7194}
7195
1e3c88bd 7196/*
c1cc017c 7197 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7198 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7199 */
c1cc017c 7200void nohz_balance_enter_idle(int cpu)
1e3c88bd 7201{
71325960
SS
7202 /*
7203 * If this cpu is going down, then nothing needs to be done.
7204 */
7205 if (!cpu_active(cpu))
7206 return;
7207
c1cc017c
AS
7208 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7209 return;
1e3c88bd 7210
d987fc7f
MG
7211 /*
7212 * If we're a completely isolated CPU, we don't play.
7213 */
7214 if (on_null_domain(cpu_rq(cpu)))
7215 return;
7216
c1cc017c
AS
7217 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7218 atomic_inc(&nohz.nr_cpus);
7219 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7220}
71325960 7221
0db0628d 7222static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7223 unsigned long action, void *hcpu)
7224{
7225 switch (action & ~CPU_TASKS_FROZEN) {
7226 case CPU_DYING:
c1cc017c 7227 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7228 return NOTIFY_OK;
7229 default:
7230 return NOTIFY_DONE;
7231 }
7232}
1e3c88bd
PZ
7233#endif
7234
7235static DEFINE_SPINLOCK(balancing);
7236
49c022e6
PZ
7237/*
7238 * Scale the max load_balance interval with the number of CPUs in the system.
7239 * This trades load-balance latency on larger machines for less cross talk.
7240 */
029632fb 7241void update_max_interval(void)
49c022e6
PZ
7242{
7243 max_load_balance_interval = HZ*num_online_cpus()/10;
7244}
7245
1e3c88bd
PZ
7246/*
7247 * It checks each scheduling domain to see if it is due to be balanced,
7248 * and initiates a balancing operation if so.
7249 *
b9b0853a 7250 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7251 */
f7ed0a89 7252static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7253{
23f0d209 7254 int continue_balancing = 1;
f7ed0a89 7255 int cpu = rq->cpu;
1e3c88bd 7256 unsigned long interval;
04f733b4 7257 struct sched_domain *sd;
1e3c88bd
PZ
7258 /* Earliest time when we have to do rebalance again */
7259 unsigned long next_balance = jiffies + 60*HZ;
7260 int update_next_balance = 0;
f48627e6
JL
7261 int need_serialize, need_decay = 0;
7262 u64 max_cost = 0;
1e3c88bd 7263
48a16753 7264 update_blocked_averages(cpu);
2069dd75 7265
dce840a0 7266 rcu_read_lock();
1e3c88bd 7267 for_each_domain(cpu, sd) {
f48627e6
JL
7268 /*
7269 * Decay the newidle max times here because this is a regular
7270 * visit to all the domains. Decay ~1% per second.
7271 */
7272 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7273 sd->max_newidle_lb_cost =
7274 (sd->max_newidle_lb_cost * 253) / 256;
7275 sd->next_decay_max_lb_cost = jiffies + HZ;
7276 need_decay = 1;
7277 }
7278 max_cost += sd->max_newidle_lb_cost;
7279
1e3c88bd
PZ
7280 if (!(sd->flags & SD_LOAD_BALANCE))
7281 continue;
7282
f48627e6
JL
7283 /*
7284 * Stop the load balance at this level. There is another
7285 * CPU in our sched group which is doing load balancing more
7286 * actively.
7287 */
7288 if (!continue_balancing) {
7289 if (need_decay)
7290 continue;
7291 break;
7292 }
7293
52a08ef1 7294 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7295
7296 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7297 if (need_serialize) {
7298 if (!spin_trylock(&balancing))
7299 goto out;
7300 }
7301
7302 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7303 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7304 /*
6263322c 7305 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7306 * env->dst_cpu, so we can't know our idle
7307 * state even if we migrated tasks. Update it.
1e3c88bd 7308 */
de5eb2dd 7309 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7310 }
7311 sd->last_balance = jiffies;
52a08ef1 7312 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7313 }
7314 if (need_serialize)
7315 spin_unlock(&balancing);
7316out:
7317 if (time_after(next_balance, sd->last_balance + interval)) {
7318 next_balance = sd->last_balance + interval;
7319 update_next_balance = 1;
7320 }
f48627e6
JL
7321 }
7322 if (need_decay) {
1e3c88bd 7323 /*
f48627e6
JL
7324 * Ensure the rq-wide value also decays but keep it at a
7325 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7326 */
f48627e6
JL
7327 rq->max_idle_balance_cost =
7328 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7329 }
dce840a0 7330 rcu_read_unlock();
1e3c88bd
PZ
7331
7332 /*
7333 * next_balance will be updated only when there is a need.
7334 * When the cpu is attached to null domain for ex, it will not be
7335 * updated.
7336 */
7337 if (likely(update_next_balance))
7338 rq->next_balance = next_balance;
7339}
7340
3451d024 7341#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7342/*
3451d024 7343 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7344 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7345 */
208cb16b 7346static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7347{
208cb16b 7348 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7349 struct rq *rq;
7350 int balance_cpu;
7351
1c792db7
SS
7352 if (idle != CPU_IDLE ||
7353 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7354 goto end;
83cd4fe2
VP
7355
7356 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7357 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7358 continue;
7359
7360 /*
7361 * If this cpu gets work to do, stop the load balancing
7362 * work being done for other cpus. Next load
7363 * balancing owner will pick it up.
7364 */
1c792db7 7365 if (need_resched())
83cd4fe2 7366 break;
83cd4fe2 7367
5ed4f1d9
VG
7368 rq = cpu_rq(balance_cpu);
7369
ed61bbc6
TC
7370 /*
7371 * If time for next balance is due,
7372 * do the balance.
7373 */
7374 if (time_after_eq(jiffies, rq->next_balance)) {
7375 raw_spin_lock_irq(&rq->lock);
7376 update_rq_clock(rq);
7377 update_idle_cpu_load(rq);
7378 raw_spin_unlock_irq(&rq->lock);
7379 rebalance_domains(rq, CPU_IDLE);
7380 }
83cd4fe2 7381
83cd4fe2
VP
7382 if (time_after(this_rq->next_balance, rq->next_balance))
7383 this_rq->next_balance = rq->next_balance;
7384 }
7385 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7386end:
7387 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7388}
7389
7390/*
0b005cf5
SS
7391 * Current heuristic for kicking the idle load balancer in the presence
7392 * of an idle cpu is the system.
7393 * - This rq has more than one task.
7394 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7395 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7396 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7397 * domain span are idle.
83cd4fe2 7398 */
4a725627 7399static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7400{
7401 unsigned long now = jiffies;
0b005cf5 7402 struct sched_domain *sd;
63b2ca30 7403 struct sched_group_capacity *sgc;
4a725627 7404 int nr_busy, cpu = rq->cpu;
83cd4fe2 7405
4a725627 7406 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7407 return 0;
7408
1c792db7
SS
7409 /*
7410 * We may be recently in ticked or tickless idle mode. At the first
7411 * busy tick after returning from idle, we will update the busy stats.
7412 */
69e1e811 7413 set_cpu_sd_state_busy();
c1cc017c 7414 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7415
7416 /*
7417 * None are in tickless mode and hence no need for NOHZ idle load
7418 * balancing.
7419 */
7420 if (likely(!atomic_read(&nohz.nr_cpus)))
7421 return 0;
1c792db7
SS
7422
7423 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7424 return 0;
7425
0b005cf5
SS
7426 if (rq->nr_running >= 2)
7427 goto need_kick;
83cd4fe2 7428
067491b7 7429 rcu_read_lock();
37dc6b50 7430 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7431
37dc6b50 7432 if (sd) {
63b2ca30
NP
7433 sgc = sd->groups->sgc;
7434 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7435
37dc6b50 7436 if (nr_busy > 1)
067491b7 7437 goto need_kick_unlock;
83cd4fe2 7438 }
37dc6b50
PM
7439
7440 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7441
7442 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7443 sched_domain_span(sd)) < cpu))
7444 goto need_kick_unlock;
7445
067491b7 7446 rcu_read_unlock();
83cd4fe2 7447 return 0;
067491b7
PZ
7448
7449need_kick_unlock:
7450 rcu_read_unlock();
0b005cf5
SS
7451need_kick:
7452 return 1;
83cd4fe2
VP
7453}
7454#else
208cb16b 7455static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7456#endif
7457
7458/*
7459 * run_rebalance_domains is triggered when needed from the scheduler tick.
7460 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7461 */
1e3c88bd
PZ
7462static void run_rebalance_domains(struct softirq_action *h)
7463{
208cb16b 7464 struct rq *this_rq = this_rq();
6eb57e0d 7465 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7466 CPU_IDLE : CPU_NOT_IDLE;
7467
f7ed0a89 7468 rebalance_domains(this_rq, idle);
1e3c88bd 7469
1e3c88bd 7470 /*
83cd4fe2 7471 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7472 * balancing on behalf of the other idle cpus whose ticks are
7473 * stopped.
7474 */
208cb16b 7475 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7476}
7477
1e3c88bd
PZ
7478/*
7479 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7480 */
7caff66f 7481void trigger_load_balance(struct rq *rq)
1e3c88bd 7482{
1e3c88bd 7483 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7484 if (unlikely(on_null_domain(rq)))
7485 return;
7486
7487 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7488 raise_softirq(SCHED_SOFTIRQ);
3451d024 7489#ifdef CONFIG_NO_HZ_COMMON
c726099e 7490 if (nohz_kick_needed(rq))
0aeeeeba 7491 nohz_balancer_kick();
83cd4fe2 7492#endif
1e3c88bd
PZ
7493}
7494
0bcdcf28
CE
7495static void rq_online_fair(struct rq *rq)
7496{
7497 update_sysctl();
0e59bdae
KT
7498
7499 update_runtime_enabled(rq);
0bcdcf28
CE
7500}
7501
7502static void rq_offline_fair(struct rq *rq)
7503{
7504 update_sysctl();
a4c96ae3
PB
7505
7506 /* Ensure any throttled groups are reachable by pick_next_task */
7507 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7508}
7509
55e12e5e 7510#endif /* CONFIG_SMP */
e1d1484f 7511
bf0f6f24
IM
7512/*
7513 * scheduler tick hitting a task of our scheduling class:
7514 */
8f4d37ec 7515static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7516{
7517 struct cfs_rq *cfs_rq;
7518 struct sched_entity *se = &curr->se;
7519
7520 for_each_sched_entity(se) {
7521 cfs_rq = cfs_rq_of(se);
8f4d37ec 7522 entity_tick(cfs_rq, se, queued);
bf0f6f24 7523 }
18bf2805 7524
10e84b97 7525 if (numabalancing_enabled)
cbee9f88 7526 task_tick_numa(rq, curr);
3d59eebc 7527
18bf2805 7528 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7529}
7530
7531/*
cd29fe6f
PZ
7532 * called on fork with the child task as argument from the parent's context
7533 * - child not yet on the tasklist
7534 * - preemption disabled
bf0f6f24 7535 */
cd29fe6f 7536static void task_fork_fair(struct task_struct *p)
bf0f6f24 7537{
4fc420c9
DN
7538 struct cfs_rq *cfs_rq;
7539 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7540 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7541 struct rq *rq = this_rq();
7542 unsigned long flags;
7543
05fa785c 7544 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7545
861d034e
PZ
7546 update_rq_clock(rq);
7547
4fc420c9
DN
7548 cfs_rq = task_cfs_rq(current);
7549 curr = cfs_rq->curr;
7550
6c9a27f5
DN
7551 /*
7552 * Not only the cpu but also the task_group of the parent might have
7553 * been changed after parent->se.parent,cfs_rq were copied to
7554 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7555 * of child point to valid ones.
7556 */
7557 rcu_read_lock();
7558 __set_task_cpu(p, this_cpu);
7559 rcu_read_unlock();
bf0f6f24 7560
7109c442 7561 update_curr(cfs_rq);
cd29fe6f 7562
b5d9d734
MG
7563 if (curr)
7564 se->vruntime = curr->vruntime;
aeb73b04 7565 place_entity(cfs_rq, se, 1);
4d78e7b6 7566
cd29fe6f 7567 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7568 /*
edcb60a3
IM
7569 * Upon rescheduling, sched_class::put_prev_task() will place
7570 * 'current' within the tree based on its new key value.
7571 */
4d78e7b6 7572 swap(curr->vruntime, se->vruntime);
8875125e 7573 resched_curr(rq);
4d78e7b6 7574 }
bf0f6f24 7575
88ec22d3
PZ
7576 se->vruntime -= cfs_rq->min_vruntime;
7577
05fa785c 7578 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7579}
7580
cb469845
SR
7581/*
7582 * Priority of the task has changed. Check to see if we preempt
7583 * the current task.
7584 */
da7a735e
PZ
7585static void
7586prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7587{
da0c1e65 7588 if (!task_on_rq_queued(p))
da7a735e
PZ
7589 return;
7590
cb469845
SR
7591 /*
7592 * Reschedule if we are currently running on this runqueue and
7593 * our priority decreased, or if we are not currently running on
7594 * this runqueue and our priority is higher than the current's
7595 */
da7a735e 7596 if (rq->curr == p) {
cb469845 7597 if (p->prio > oldprio)
8875125e 7598 resched_curr(rq);
cb469845 7599 } else
15afe09b 7600 check_preempt_curr(rq, p, 0);
cb469845
SR
7601}
7602
da7a735e
PZ
7603static void switched_from_fair(struct rq *rq, struct task_struct *p)
7604{
7605 struct sched_entity *se = &p->se;
7606 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7607
7608 /*
791c9e02 7609 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7610 * switched back to the fair class the enqueue_entity(.flags=0) will
7611 * do the right thing.
7612 *
da0c1e65
KT
7613 * If it's queued, then the dequeue_entity(.flags=0) will already
7614 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7615 * the task is sleeping will it still have non-normalized vruntime.
7616 */
da0c1e65 7617 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7618 /*
7619 * Fix up our vruntime so that the current sleep doesn't
7620 * cause 'unlimited' sleep bonus.
7621 */
7622 place_entity(cfs_rq, se, 0);
7623 se->vruntime -= cfs_rq->min_vruntime;
7624 }
9ee474f5 7625
141965c7 7626#ifdef CONFIG_SMP
9ee474f5
PT
7627 /*
7628 * Remove our load from contribution when we leave sched_fair
7629 * and ensure we don't carry in an old decay_count if we
7630 * switch back.
7631 */
87e3c8ae
KT
7632 if (se->avg.decay_count) {
7633 __synchronize_entity_decay(se);
7634 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7635 }
7636#endif
da7a735e
PZ
7637}
7638
cb469845
SR
7639/*
7640 * We switched to the sched_fair class.
7641 */
da7a735e 7642static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7643{
eb7a59b2 7644#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7645 struct sched_entity *se = &p->se;
eb7a59b2
M
7646 /*
7647 * Since the real-depth could have been changed (only FAIR
7648 * class maintain depth value), reset depth properly.
7649 */
7650 se->depth = se->parent ? se->parent->depth + 1 : 0;
7651#endif
da0c1e65 7652 if (!task_on_rq_queued(p))
da7a735e
PZ
7653 return;
7654
cb469845
SR
7655 /*
7656 * We were most likely switched from sched_rt, so
7657 * kick off the schedule if running, otherwise just see
7658 * if we can still preempt the current task.
7659 */
da7a735e 7660 if (rq->curr == p)
8875125e 7661 resched_curr(rq);
cb469845 7662 else
15afe09b 7663 check_preempt_curr(rq, p, 0);
cb469845
SR
7664}
7665
83b699ed
SV
7666/* Account for a task changing its policy or group.
7667 *
7668 * This routine is mostly called to set cfs_rq->curr field when a task
7669 * migrates between groups/classes.
7670 */
7671static void set_curr_task_fair(struct rq *rq)
7672{
7673 struct sched_entity *se = &rq->curr->se;
7674
ec12cb7f
PT
7675 for_each_sched_entity(se) {
7676 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7677
7678 set_next_entity(cfs_rq, se);
7679 /* ensure bandwidth has been allocated on our new cfs_rq */
7680 account_cfs_rq_runtime(cfs_rq, 0);
7681 }
83b699ed
SV
7682}
7683
029632fb
PZ
7684void init_cfs_rq(struct cfs_rq *cfs_rq)
7685{
7686 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7687 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7688#ifndef CONFIG_64BIT
7689 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7690#endif
141965c7 7691#ifdef CONFIG_SMP
9ee474f5 7692 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7693 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7694#endif
029632fb
PZ
7695}
7696
810b3817 7697#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7698static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7699{
fed14d45 7700 struct sched_entity *se = &p->se;
aff3e498 7701 struct cfs_rq *cfs_rq;
fed14d45 7702
b2b5ce02
PZ
7703 /*
7704 * If the task was not on the rq at the time of this cgroup movement
7705 * it must have been asleep, sleeping tasks keep their ->vruntime
7706 * absolute on their old rq until wakeup (needed for the fair sleeper
7707 * bonus in place_entity()).
7708 *
7709 * If it was on the rq, we've just 'preempted' it, which does convert
7710 * ->vruntime to a relative base.
7711 *
7712 * Make sure both cases convert their relative position when migrating
7713 * to another cgroup's rq. This does somewhat interfere with the
7714 * fair sleeper stuff for the first placement, but who cares.
7715 */
7ceff013 7716 /*
da0c1e65 7717 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7718 * But there are some cases where it has already been normalized:
7719 *
7720 * - Moving a forked child which is waiting for being woken up by
7721 * wake_up_new_task().
62af3783
DN
7722 * - Moving a task which has been woken up by try_to_wake_up() and
7723 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7724 *
7725 * To prevent boost or penalty in the new cfs_rq caused by delta
7726 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7727 */
da0c1e65
KT
7728 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7729 queued = 1;
7ceff013 7730
da0c1e65 7731 if (!queued)
fed14d45 7732 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7733 set_task_rq(p, task_cpu(p));
fed14d45 7734 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 7735 if (!queued) {
fed14d45
PZ
7736 cfs_rq = cfs_rq_of(se);
7737 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7738#ifdef CONFIG_SMP
7739 /*
7740 * migrate_task_rq_fair() will have removed our previous
7741 * contribution, but we must synchronize for ongoing future
7742 * decay.
7743 */
fed14d45
PZ
7744 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7745 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7746#endif
7747 }
810b3817 7748}
029632fb
PZ
7749
7750void free_fair_sched_group(struct task_group *tg)
7751{
7752 int i;
7753
7754 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7755
7756 for_each_possible_cpu(i) {
7757 if (tg->cfs_rq)
7758 kfree(tg->cfs_rq[i]);
7759 if (tg->se)
7760 kfree(tg->se[i]);
7761 }
7762
7763 kfree(tg->cfs_rq);
7764 kfree(tg->se);
7765}
7766
7767int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7768{
7769 struct cfs_rq *cfs_rq;
7770 struct sched_entity *se;
7771 int i;
7772
7773 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7774 if (!tg->cfs_rq)
7775 goto err;
7776 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7777 if (!tg->se)
7778 goto err;
7779
7780 tg->shares = NICE_0_LOAD;
7781
7782 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7783
7784 for_each_possible_cpu(i) {
7785 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7786 GFP_KERNEL, cpu_to_node(i));
7787 if (!cfs_rq)
7788 goto err;
7789
7790 se = kzalloc_node(sizeof(struct sched_entity),
7791 GFP_KERNEL, cpu_to_node(i));
7792 if (!se)
7793 goto err_free_rq;
7794
7795 init_cfs_rq(cfs_rq);
7796 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7797 }
7798
7799 return 1;
7800
7801err_free_rq:
7802 kfree(cfs_rq);
7803err:
7804 return 0;
7805}
7806
7807void unregister_fair_sched_group(struct task_group *tg, int cpu)
7808{
7809 struct rq *rq = cpu_rq(cpu);
7810 unsigned long flags;
7811
7812 /*
7813 * Only empty task groups can be destroyed; so we can speculatively
7814 * check on_list without danger of it being re-added.
7815 */
7816 if (!tg->cfs_rq[cpu]->on_list)
7817 return;
7818
7819 raw_spin_lock_irqsave(&rq->lock, flags);
7820 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7821 raw_spin_unlock_irqrestore(&rq->lock, flags);
7822}
7823
7824void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7825 struct sched_entity *se, int cpu,
7826 struct sched_entity *parent)
7827{
7828 struct rq *rq = cpu_rq(cpu);
7829
7830 cfs_rq->tg = tg;
7831 cfs_rq->rq = rq;
029632fb
PZ
7832 init_cfs_rq_runtime(cfs_rq);
7833
7834 tg->cfs_rq[cpu] = cfs_rq;
7835 tg->se[cpu] = se;
7836
7837 /* se could be NULL for root_task_group */
7838 if (!se)
7839 return;
7840
fed14d45 7841 if (!parent) {
029632fb 7842 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7843 se->depth = 0;
7844 } else {
029632fb 7845 se->cfs_rq = parent->my_q;
fed14d45
PZ
7846 se->depth = parent->depth + 1;
7847 }
029632fb
PZ
7848
7849 se->my_q = cfs_rq;
0ac9b1c2
PT
7850 /* guarantee group entities always have weight */
7851 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7852 se->parent = parent;
7853}
7854
7855static DEFINE_MUTEX(shares_mutex);
7856
7857int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7858{
7859 int i;
7860 unsigned long flags;
7861
7862 /*
7863 * We can't change the weight of the root cgroup.
7864 */
7865 if (!tg->se[0])
7866 return -EINVAL;
7867
7868 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7869
7870 mutex_lock(&shares_mutex);
7871 if (tg->shares == shares)
7872 goto done;
7873
7874 tg->shares = shares;
7875 for_each_possible_cpu(i) {
7876 struct rq *rq = cpu_rq(i);
7877 struct sched_entity *se;
7878
7879 se = tg->se[i];
7880 /* Propagate contribution to hierarchy */
7881 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7882
7883 /* Possible calls to update_curr() need rq clock */
7884 update_rq_clock(rq);
17bc14b7 7885 for_each_sched_entity(se)
029632fb
PZ
7886 update_cfs_shares(group_cfs_rq(se));
7887 raw_spin_unlock_irqrestore(&rq->lock, flags);
7888 }
7889
7890done:
7891 mutex_unlock(&shares_mutex);
7892 return 0;
7893}
7894#else /* CONFIG_FAIR_GROUP_SCHED */
7895
7896void free_fair_sched_group(struct task_group *tg) { }
7897
7898int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7899{
7900 return 1;
7901}
7902
7903void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7904
7905#endif /* CONFIG_FAIR_GROUP_SCHED */
7906
810b3817 7907
6d686f45 7908static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7909{
7910 struct sched_entity *se = &task->se;
0d721cea
PW
7911 unsigned int rr_interval = 0;
7912
7913 /*
7914 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7915 * idle runqueue:
7916 */
0d721cea 7917 if (rq->cfs.load.weight)
a59f4e07 7918 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7919
7920 return rr_interval;
7921}
7922
bf0f6f24
IM
7923/*
7924 * All the scheduling class methods:
7925 */
029632fb 7926const struct sched_class fair_sched_class = {
5522d5d5 7927 .next = &idle_sched_class,
bf0f6f24
IM
7928 .enqueue_task = enqueue_task_fair,
7929 .dequeue_task = dequeue_task_fair,
7930 .yield_task = yield_task_fair,
d95f4122 7931 .yield_to_task = yield_to_task_fair,
bf0f6f24 7932
2e09bf55 7933 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7934
7935 .pick_next_task = pick_next_task_fair,
7936 .put_prev_task = put_prev_task_fair,
7937
681f3e68 7938#ifdef CONFIG_SMP
4ce72a2c 7939 .select_task_rq = select_task_rq_fair,
0a74bef8 7940 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7941
0bcdcf28
CE
7942 .rq_online = rq_online_fair,
7943 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7944
7945 .task_waking = task_waking_fair,
681f3e68 7946#endif
bf0f6f24 7947
83b699ed 7948 .set_curr_task = set_curr_task_fair,
bf0f6f24 7949 .task_tick = task_tick_fair,
cd29fe6f 7950 .task_fork = task_fork_fair,
cb469845
SR
7951
7952 .prio_changed = prio_changed_fair,
da7a735e 7953 .switched_from = switched_from_fair,
cb469845 7954 .switched_to = switched_to_fair,
810b3817 7955
0d721cea
PW
7956 .get_rr_interval = get_rr_interval_fair,
7957
810b3817 7958#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7959 .task_move_group = task_move_group_fair,
810b3817 7960#endif
bf0f6f24
IM
7961};
7962
7963#ifdef CONFIG_SCHED_DEBUG
029632fb 7964void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7965{
bf0f6f24
IM
7966 struct cfs_rq *cfs_rq;
7967
5973e5b9 7968 rcu_read_lock();
c3b64f1e 7969 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7970 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7971 rcu_read_unlock();
bf0f6f24
IM
7972}
7973#endif
029632fb
PZ
7974
7975__init void init_sched_fair_class(void)
7976{
7977#ifdef CONFIG_SMP
7978 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7979
3451d024 7980#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7981 nohz.next_balance = jiffies;
029632fb 7982 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7983 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7984#endif
7985#endif /* SMP */
7986
7987}