sched: Don't mix use of typedef ctl_table and struct ctl_table
[linux-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
bf0f6f24
IM
683/*
684 * Update the current task's runtime statistics. Skip current tasks that
685 * are not in our scheduling class.
686 */
687static inline void
8ebc91d9
IM
688__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
689 unsigned long delta_exec)
bf0f6f24 690{
bbdba7c0 691 unsigned long delta_exec_weighted;
bf0f6f24 692
41acab88
LDM
693 schedstat_set(curr->statistics.exec_max,
694 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
695
696 curr->sum_exec_runtime += delta_exec;
7a62eabc 697 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 698 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 699
e9acbff6 700 curr->vruntime += delta_exec_weighted;
1af5f730 701 update_min_vruntime(cfs_rq);
bf0f6f24
IM
702}
703
b7cc0896 704static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 705{
429d43bc 706 struct sched_entity *curr = cfs_rq->curr;
78becc27 707 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
708 unsigned long delta_exec;
709
710 if (unlikely(!curr))
711 return;
712
713 /*
714 * Get the amount of time the current task was running
715 * since the last time we changed load (this cannot
716 * overflow on 32 bits):
717 */
8ebc91d9 718 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
719 if (!delta_exec)
720 return;
bf0f6f24 721
8ebc91d9
IM
722 __update_curr(cfs_rq, curr, delta_exec);
723 curr->exec_start = now;
d842de87
SV
724
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
f977bb49 728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 729 cpuacct_charge(curtask, delta_exec);
f06febc9 730 account_group_exec_runtime(curtask, delta_exec);
d842de87 731 }
ec12cb7f
PT
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
734}
735
736static inline void
5870db5b 737update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 738{
78becc27 739 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
740}
741
bf0f6f24
IM
742/*
743 * Task is being enqueued - update stats:
744 */
d2417e5a 745static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 746{
bf0f6f24
IM
747 /*
748 * Are we enqueueing a waiting task? (for current tasks
749 * a dequeue/enqueue event is a NOP)
750 */
429d43bc 751 if (se != cfs_rq->curr)
5870db5b 752 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
753}
754
bf0f6f24 755static void
9ef0a961 756update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 757{
41acab88 758 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
760 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
761 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 762 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
763#ifdef CONFIG_SCHEDSTATS
764 if (entity_is_task(se)) {
765 trace_sched_stat_wait(task_of(se),
78becc27 766 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
767 }
768#endif
41acab88 769 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
770}
771
772static inline void
19b6a2e3 773update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 774{
bf0f6f24
IM
775 /*
776 * Mark the end of the wait period if dequeueing a
777 * waiting task:
778 */
429d43bc 779 if (se != cfs_rq->curr)
9ef0a961 780 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
781}
782
783/*
784 * We are picking a new current task - update its stats:
785 */
786static inline void
79303e9e 787update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
788{
789 /*
790 * We are starting a new run period:
791 */
78becc27 792 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
793}
794
bf0f6f24
IM
795/**************************************************
796 * Scheduling class queueing methods:
797 */
798
cbee9f88
PZ
799#ifdef CONFIG_NUMA_BALANCING
800/*
6e5fb223 801 * numa task sample period in ms
cbee9f88 802 */
6e5fb223 803unsigned int sysctl_numa_balancing_scan_period_min = 100;
b8593bfd
MG
804unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
805unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
6e5fb223
PZ
806
807/* Portion of address space to scan in MB */
808unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 809
4b96a29b
PZ
810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
cbee9f88
PZ
813static void task_numa_placement(struct task_struct *p)
814{
2832bc19 815 int seq;
cbee9f88 816
2832bc19
HD
817 if (!p->mm) /* for example, ksmd faulting in a user's mm */
818 return;
819 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
820 if (p->numa_scan_seq == seq)
821 return;
822 p->numa_scan_seq = seq;
823
824 /* FIXME: Scheduling placement policy hints go here */
825}
826
827/*
828 * Got a PROT_NONE fault for a page on @node.
829 */
b8593bfd 830void task_numa_fault(int node, int pages, bool migrated)
cbee9f88
PZ
831{
832 struct task_struct *p = current;
833
1a687c2e
MG
834 if (!sched_feat_numa(NUMA))
835 return;
836
cbee9f88
PZ
837 /* FIXME: Allocate task-specific structure for placement policy here */
838
fb003b80 839 /*
b8593bfd
MG
840 * If pages are properly placed (did not migrate) then scan slower.
841 * This is reset periodically in case of phase changes
fb003b80 842 */
b8593bfd
MG
843 if (!migrated)
844 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
845 p->numa_scan_period + jiffies_to_msecs(10));
fb003b80 846
cbee9f88
PZ
847 task_numa_placement(p);
848}
849
6e5fb223
PZ
850static void reset_ptenuma_scan(struct task_struct *p)
851{
852 ACCESS_ONCE(p->mm->numa_scan_seq)++;
853 p->mm->numa_scan_offset = 0;
854}
855
cbee9f88
PZ
856/*
857 * The expensive part of numa migration is done from task_work context.
858 * Triggered from task_tick_numa().
859 */
860void task_numa_work(struct callback_head *work)
861{
862 unsigned long migrate, next_scan, now = jiffies;
863 struct task_struct *p = current;
864 struct mm_struct *mm = p->mm;
6e5fb223 865 struct vm_area_struct *vma;
9f40604c
MG
866 unsigned long start, end;
867 long pages;
cbee9f88
PZ
868
869 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
870
871 work->next = work; /* protect against double add */
872 /*
873 * Who cares about NUMA placement when they're dying.
874 *
875 * NOTE: make sure not to dereference p->mm before this check,
876 * exit_task_work() happens _after_ exit_mm() so we could be called
877 * without p->mm even though we still had it when we enqueued this
878 * work.
879 */
880 if (p->flags & PF_EXITING)
881 return;
882
5bca2303
MG
883 /*
884 * We do not care about task placement until a task runs on a node
885 * other than the first one used by the address space. This is
886 * largely because migrations are driven by what CPU the task
887 * is running on. If it's never scheduled on another node, it'll
888 * not migrate so why bother trapping the fault.
889 */
890 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
891 mm->first_nid = numa_node_id();
892 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
893 /* Are we running on a new node yet? */
894 if (numa_node_id() == mm->first_nid &&
895 !sched_feat_numa(NUMA_FORCE))
896 return;
897
898 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
899 }
900
b8593bfd
MG
901 /*
902 * Reset the scan period if enough time has gone by. Objective is that
903 * scanning will be reduced if pages are properly placed. As tasks
904 * can enter different phases this needs to be re-examined. Lacking
905 * proper tracking of reference behaviour, this blunt hammer is used.
906 */
907 migrate = mm->numa_next_reset;
908 if (time_after(now, migrate)) {
909 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
910 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
911 xchg(&mm->numa_next_reset, next_scan);
912 }
913
cbee9f88
PZ
914 /*
915 * Enforce maximal scan/migration frequency..
916 */
917 migrate = mm->numa_next_scan;
918 if (time_before(now, migrate))
919 return;
920
921 if (p->numa_scan_period == 0)
922 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
923
fb003b80 924 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
925 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
926 return;
927
e14808b4
MG
928 /*
929 * Do not set pte_numa if the current running node is rate-limited.
930 * This loses statistics on the fault but if we are unwilling to
931 * migrate to this node, it is less likely we can do useful work
932 */
933 if (migrate_ratelimited(numa_node_id()))
934 return;
935
9f40604c
MG
936 start = mm->numa_scan_offset;
937 pages = sysctl_numa_balancing_scan_size;
938 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
939 if (!pages)
940 return;
cbee9f88 941
6e5fb223 942 down_read(&mm->mmap_sem);
9f40604c 943 vma = find_vma(mm, start);
6e5fb223
PZ
944 if (!vma) {
945 reset_ptenuma_scan(p);
9f40604c 946 start = 0;
6e5fb223
PZ
947 vma = mm->mmap;
948 }
9f40604c 949 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
950 if (!vma_migratable(vma))
951 continue;
952
953 /* Skip small VMAs. They are not likely to be of relevance */
221392c3 954 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
6e5fb223
PZ
955 continue;
956
9f40604c
MG
957 do {
958 start = max(start, vma->vm_start);
959 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
960 end = min(end, vma->vm_end);
961 pages -= change_prot_numa(vma, start, end);
6e5fb223 962
9f40604c
MG
963 start = end;
964 if (pages <= 0)
965 goto out;
966 } while (end != vma->vm_end);
cbee9f88 967 }
6e5fb223 968
9f40604c 969out:
6e5fb223
PZ
970 /*
971 * It is possible to reach the end of the VMA list but the last few VMAs are
972 * not guaranteed to the vma_migratable. If they are not, we would find the
973 * !migratable VMA on the next scan but not reset the scanner to the start
974 * so check it now.
975 */
976 if (vma)
9f40604c 977 mm->numa_scan_offset = start;
6e5fb223
PZ
978 else
979 reset_ptenuma_scan(p);
980 up_read(&mm->mmap_sem);
cbee9f88
PZ
981}
982
983/*
984 * Drive the periodic memory faults..
985 */
986void task_tick_numa(struct rq *rq, struct task_struct *curr)
987{
988 struct callback_head *work = &curr->numa_work;
989 u64 period, now;
990
991 /*
992 * We don't care about NUMA placement if we don't have memory.
993 */
994 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
995 return;
996
997 /*
998 * Using runtime rather than walltime has the dual advantage that
999 * we (mostly) drive the selection from busy threads and that the
1000 * task needs to have done some actual work before we bother with
1001 * NUMA placement.
1002 */
1003 now = curr->se.sum_exec_runtime;
1004 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1005
1006 if (now - curr->node_stamp > period) {
4b96a29b
PZ
1007 if (!curr->node_stamp)
1008 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
cbee9f88
PZ
1009 curr->node_stamp = now;
1010
1011 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1012 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1013 task_work_add(curr, work, true);
1014 }
1015 }
1016}
1017#else
1018static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1019{
1020}
1021#endif /* CONFIG_NUMA_BALANCING */
1022
30cfdcfc
DA
1023static void
1024account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1025{
1026 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1027 if (!parent_entity(se))
029632fb 1028 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1029#ifdef CONFIG_SMP
1030 if (entity_is_task(se))
eb95308e 1031 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1032#endif
30cfdcfc 1033 cfs_rq->nr_running++;
30cfdcfc
DA
1034}
1035
1036static void
1037account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1038{
1039 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1040 if (!parent_entity(se))
029632fb 1041 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1042 if (entity_is_task(se))
b87f1724 1043 list_del_init(&se->group_node);
30cfdcfc 1044 cfs_rq->nr_running--;
30cfdcfc
DA
1045}
1046
3ff6dcac
YZ
1047#ifdef CONFIG_FAIR_GROUP_SCHED
1048# ifdef CONFIG_SMP
cf5f0acf
PZ
1049static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1050{
1051 long tg_weight;
1052
1053 /*
1054 * Use this CPU's actual weight instead of the last load_contribution
1055 * to gain a more accurate current total weight. See
1056 * update_cfs_rq_load_contribution().
1057 */
82958366
PT
1058 tg_weight = atomic64_read(&tg->load_avg);
1059 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1060 tg_weight += cfs_rq->load.weight;
1061
1062 return tg_weight;
1063}
1064
6d5ab293 1065static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1066{
cf5f0acf 1067 long tg_weight, load, shares;
3ff6dcac 1068
cf5f0acf 1069 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1070 load = cfs_rq->load.weight;
3ff6dcac 1071
3ff6dcac 1072 shares = (tg->shares * load);
cf5f0acf
PZ
1073 if (tg_weight)
1074 shares /= tg_weight;
3ff6dcac
YZ
1075
1076 if (shares < MIN_SHARES)
1077 shares = MIN_SHARES;
1078 if (shares > tg->shares)
1079 shares = tg->shares;
1080
1081 return shares;
1082}
3ff6dcac 1083# else /* CONFIG_SMP */
6d5ab293 1084static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1085{
1086 return tg->shares;
1087}
3ff6dcac 1088# endif /* CONFIG_SMP */
2069dd75
PZ
1089static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1090 unsigned long weight)
1091{
19e5eebb
PT
1092 if (se->on_rq) {
1093 /* commit outstanding execution time */
1094 if (cfs_rq->curr == se)
1095 update_curr(cfs_rq);
2069dd75 1096 account_entity_dequeue(cfs_rq, se);
19e5eebb 1097 }
2069dd75
PZ
1098
1099 update_load_set(&se->load, weight);
1100
1101 if (se->on_rq)
1102 account_entity_enqueue(cfs_rq, se);
1103}
1104
82958366
PT
1105static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1106
6d5ab293 1107static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1108{
1109 struct task_group *tg;
1110 struct sched_entity *se;
3ff6dcac 1111 long shares;
2069dd75 1112
2069dd75
PZ
1113 tg = cfs_rq->tg;
1114 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1115 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1116 return;
3ff6dcac
YZ
1117#ifndef CONFIG_SMP
1118 if (likely(se->load.weight == tg->shares))
1119 return;
1120#endif
6d5ab293 1121 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1122
1123 reweight_entity(cfs_rq_of(se), se, shares);
1124}
1125#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1126static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1127{
1128}
1129#endif /* CONFIG_FAIR_GROUP_SCHED */
1130
f4e26b12
PT
1131/* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1132#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
5b51f2f8
PT
1133/*
1134 * We choose a half-life close to 1 scheduling period.
1135 * Note: The tables below are dependent on this value.
1136 */
1137#define LOAD_AVG_PERIOD 32
1138#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1139#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1140
1141/* Precomputed fixed inverse multiplies for multiplication by y^n */
1142static const u32 runnable_avg_yN_inv[] = {
1143 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1144 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1145 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1146 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1147 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1148 0x85aac367, 0x82cd8698,
1149};
1150
1151/*
1152 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1153 * over-estimates when re-combining.
1154 */
1155static const u32 runnable_avg_yN_sum[] = {
1156 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1157 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1158 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1159};
1160
9d85f21c
PT
1161/*
1162 * Approximate:
1163 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1164 */
1165static __always_inline u64 decay_load(u64 val, u64 n)
1166{
5b51f2f8
PT
1167 unsigned int local_n;
1168
1169 if (!n)
1170 return val;
1171 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1172 return 0;
1173
1174 /* after bounds checking we can collapse to 32-bit */
1175 local_n = n;
1176
1177 /*
1178 * As y^PERIOD = 1/2, we can combine
1179 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1180 * With a look-up table which covers k^n (n<PERIOD)
1181 *
1182 * To achieve constant time decay_load.
1183 */
1184 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1185 val >>= local_n / LOAD_AVG_PERIOD;
1186 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1187 }
1188
5b51f2f8
PT
1189 val *= runnable_avg_yN_inv[local_n];
1190 /* We don't use SRR here since we always want to round down. */
1191 return val >> 32;
1192}
1193
1194/*
1195 * For updates fully spanning n periods, the contribution to runnable
1196 * average will be: \Sum 1024*y^n
1197 *
1198 * We can compute this reasonably efficiently by combining:
1199 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1200 */
1201static u32 __compute_runnable_contrib(u64 n)
1202{
1203 u32 contrib = 0;
1204
1205 if (likely(n <= LOAD_AVG_PERIOD))
1206 return runnable_avg_yN_sum[n];
1207 else if (unlikely(n >= LOAD_AVG_MAX_N))
1208 return LOAD_AVG_MAX;
1209
1210 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1211 do {
1212 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1213 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1214
1215 n -= LOAD_AVG_PERIOD;
1216 } while (n > LOAD_AVG_PERIOD);
1217
1218 contrib = decay_load(contrib, n);
1219 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1220}
1221
1222/*
1223 * We can represent the historical contribution to runnable average as the
1224 * coefficients of a geometric series. To do this we sub-divide our runnable
1225 * history into segments of approximately 1ms (1024us); label the segment that
1226 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1227 *
1228 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1229 * p0 p1 p2
1230 * (now) (~1ms ago) (~2ms ago)
1231 *
1232 * Let u_i denote the fraction of p_i that the entity was runnable.
1233 *
1234 * We then designate the fractions u_i as our co-efficients, yielding the
1235 * following representation of historical load:
1236 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1237 *
1238 * We choose y based on the with of a reasonably scheduling period, fixing:
1239 * y^32 = 0.5
1240 *
1241 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1242 * approximately half as much as the contribution to load within the last ms
1243 * (u_0).
1244 *
1245 * When a period "rolls over" and we have new u_0`, multiplying the previous
1246 * sum again by y is sufficient to update:
1247 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1248 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1249 */
1250static __always_inline int __update_entity_runnable_avg(u64 now,
1251 struct sched_avg *sa,
1252 int runnable)
1253{
5b51f2f8
PT
1254 u64 delta, periods;
1255 u32 runnable_contrib;
9d85f21c
PT
1256 int delta_w, decayed = 0;
1257
1258 delta = now - sa->last_runnable_update;
1259 /*
1260 * This should only happen when time goes backwards, which it
1261 * unfortunately does during sched clock init when we swap over to TSC.
1262 */
1263 if ((s64)delta < 0) {
1264 sa->last_runnable_update = now;
1265 return 0;
1266 }
1267
1268 /*
1269 * Use 1024ns as the unit of measurement since it's a reasonable
1270 * approximation of 1us and fast to compute.
1271 */
1272 delta >>= 10;
1273 if (!delta)
1274 return 0;
1275 sa->last_runnable_update = now;
1276
1277 /* delta_w is the amount already accumulated against our next period */
1278 delta_w = sa->runnable_avg_period % 1024;
1279 if (delta + delta_w >= 1024) {
1280 /* period roll-over */
1281 decayed = 1;
1282
1283 /*
1284 * Now that we know we're crossing a period boundary, figure
1285 * out how much from delta we need to complete the current
1286 * period and accrue it.
1287 */
1288 delta_w = 1024 - delta_w;
5b51f2f8
PT
1289 if (runnable)
1290 sa->runnable_avg_sum += delta_w;
1291 sa->runnable_avg_period += delta_w;
1292
1293 delta -= delta_w;
1294
1295 /* Figure out how many additional periods this update spans */
1296 periods = delta / 1024;
1297 delta %= 1024;
1298
1299 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1300 periods + 1);
1301 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1302 periods + 1);
1303
1304 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1305 runnable_contrib = __compute_runnable_contrib(periods);
1306 if (runnable)
1307 sa->runnable_avg_sum += runnable_contrib;
1308 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1309 }
1310
1311 /* Remainder of delta accrued against u_0` */
1312 if (runnable)
1313 sa->runnable_avg_sum += delta;
1314 sa->runnable_avg_period += delta;
1315
1316 return decayed;
1317}
1318
9ee474f5 1319/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1320static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1321{
1322 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1323 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1324
1325 decays -= se->avg.decay_count;
1326 if (!decays)
aff3e498 1327 return 0;
9ee474f5
PT
1328
1329 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1330 se->avg.decay_count = 0;
aff3e498
PT
1331
1332 return decays;
9ee474f5
PT
1333}
1334
c566e8e9
PT
1335#ifdef CONFIG_FAIR_GROUP_SCHED
1336static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1337 int force_update)
1338{
1339 struct task_group *tg = cfs_rq->tg;
1340 s64 tg_contrib;
1341
1342 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1343 tg_contrib -= cfs_rq->tg_load_contrib;
1344
1345 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1346 atomic64_add(tg_contrib, &tg->load_avg);
1347 cfs_rq->tg_load_contrib += tg_contrib;
1348 }
1349}
8165e145 1350
bb17f655
PT
1351/*
1352 * Aggregate cfs_rq runnable averages into an equivalent task_group
1353 * representation for computing load contributions.
1354 */
1355static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1356 struct cfs_rq *cfs_rq)
1357{
1358 struct task_group *tg = cfs_rq->tg;
1359 long contrib;
1360
1361 /* The fraction of a cpu used by this cfs_rq */
1362 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1363 sa->runnable_avg_period + 1);
1364 contrib -= cfs_rq->tg_runnable_contrib;
1365
1366 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1367 atomic_add(contrib, &tg->runnable_avg);
1368 cfs_rq->tg_runnable_contrib += contrib;
1369 }
1370}
1371
8165e145
PT
1372static inline void __update_group_entity_contrib(struct sched_entity *se)
1373{
1374 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1375 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1376 int runnable_avg;
1377
8165e145
PT
1378 u64 contrib;
1379
1380 contrib = cfs_rq->tg_load_contrib * tg->shares;
1381 se->avg.load_avg_contrib = div64_u64(contrib,
1382 atomic64_read(&tg->load_avg) + 1);
bb17f655
PT
1383
1384 /*
1385 * For group entities we need to compute a correction term in the case
1386 * that they are consuming <1 cpu so that we would contribute the same
1387 * load as a task of equal weight.
1388 *
1389 * Explicitly co-ordinating this measurement would be expensive, but
1390 * fortunately the sum of each cpus contribution forms a usable
1391 * lower-bound on the true value.
1392 *
1393 * Consider the aggregate of 2 contributions. Either they are disjoint
1394 * (and the sum represents true value) or they are disjoint and we are
1395 * understating by the aggregate of their overlap.
1396 *
1397 * Extending this to N cpus, for a given overlap, the maximum amount we
1398 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1399 * cpus that overlap for this interval and w_i is the interval width.
1400 *
1401 * On a small machine; the first term is well-bounded which bounds the
1402 * total error since w_i is a subset of the period. Whereas on a
1403 * larger machine, while this first term can be larger, if w_i is the
1404 * of consequential size guaranteed to see n_i*w_i quickly converge to
1405 * our upper bound of 1-cpu.
1406 */
1407 runnable_avg = atomic_read(&tg->runnable_avg);
1408 if (runnable_avg < NICE_0_LOAD) {
1409 se->avg.load_avg_contrib *= runnable_avg;
1410 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1411 }
8165e145 1412}
c566e8e9
PT
1413#else
1414static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1415 int force_update) {}
bb17f655
PT
1416static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1417 struct cfs_rq *cfs_rq) {}
8165e145 1418static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1419#endif
1420
8165e145
PT
1421static inline void __update_task_entity_contrib(struct sched_entity *se)
1422{
1423 u32 contrib;
1424
1425 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1426 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1427 contrib /= (se->avg.runnable_avg_period + 1);
1428 se->avg.load_avg_contrib = scale_load(contrib);
1429}
1430
2dac754e
PT
1431/* Compute the current contribution to load_avg by se, return any delta */
1432static long __update_entity_load_avg_contrib(struct sched_entity *se)
1433{
1434 long old_contrib = se->avg.load_avg_contrib;
1435
8165e145
PT
1436 if (entity_is_task(se)) {
1437 __update_task_entity_contrib(se);
1438 } else {
bb17f655 1439 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1440 __update_group_entity_contrib(se);
1441 }
2dac754e
PT
1442
1443 return se->avg.load_avg_contrib - old_contrib;
1444}
1445
9ee474f5
PT
1446static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1447 long load_contrib)
1448{
1449 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1450 cfs_rq->blocked_load_avg -= load_contrib;
1451 else
1452 cfs_rq->blocked_load_avg = 0;
1453}
1454
f1b17280
PT
1455static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1456
9d85f21c 1457/* Update a sched_entity's runnable average */
9ee474f5
PT
1458static inline void update_entity_load_avg(struct sched_entity *se,
1459 int update_cfs_rq)
9d85f21c 1460{
2dac754e
PT
1461 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1462 long contrib_delta;
f1b17280 1463 u64 now;
2dac754e 1464
f1b17280
PT
1465 /*
1466 * For a group entity we need to use their owned cfs_rq_clock_task() in
1467 * case they are the parent of a throttled hierarchy.
1468 */
1469 if (entity_is_task(se))
1470 now = cfs_rq_clock_task(cfs_rq);
1471 else
1472 now = cfs_rq_clock_task(group_cfs_rq(se));
1473
1474 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1475 return;
1476
1477 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1478
1479 if (!update_cfs_rq)
1480 return;
1481
2dac754e
PT
1482 if (se->on_rq)
1483 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1484 else
1485 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1486}
1487
1488/*
1489 * Decay the load contributed by all blocked children and account this so that
1490 * their contribution may appropriately discounted when they wake up.
1491 */
aff3e498 1492static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1493{
f1b17280 1494 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1495 u64 decays;
1496
1497 decays = now - cfs_rq->last_decay;
aff3e498 1498 if (!decays && !force_update)
9ee474f5
PT
1499 return;
1500
aff3e498
PT
1501 if (atomic64_read(&cfs_rq->removed_load)) {
1502 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1503 subtract_blocked_load_contrib(cfs_rq, removed_load);
1504 }
9ee474f5 1505
aff3e498
PT
1506 if (decays) {
1507 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1508 decays);
1509 atomic64_add(decays, &cfs_rq->decay_counter);
1510 cfs_rq->last_decay = now;
1511 }
c566e8e9
PT
1512
1513 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1514}
18bf2805
BS
1515
1516static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1517{
78becc27 1518 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 1519 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1520}
2dac754e
PT
1521
1522/* Add the load generated by se into cfs_rq's child load-average */
1523static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1524 struct sched_entity *se,
1525 int wakeup)
2dac754e 1526{
aff3e498
PT
1527 /*
1528 * We track migrations using entity decay_count <= 0, on a wake-up
1529 * migration we use a negative decay count to track the remote decays
1530 * accumulated while sleeping.
1531 */
1532 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 1533 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
1534 if (se->avg.decay_count) {
1535 /*
1536 * In a wake-up migration we have to approximate the
1537 * time sleeping. This is because we can't synchronize
1538 * clock_task between the two cpus, and it is not
1539 * guaranteed to be read-safe. Instead, we can
1540 * approximate this using our carried decays, which are
1541 * explicitly atomically readable.
1542 */
1543 se->avg.last_runnable_update -= (-se->avg.decay_count)
1544 << 20;
1545 update_entity_load_avg(se, 0);
1546 /* Indicate that we're now synchronized and on-rq */
1547 se->avg.decay_count = 0;
1548 }
9ee474f5
PT
1549 wakeup = 0;
1550 } else {
1551 __synchronize_entity_decay(se);
1552 }
1553
aff3e498
PT
1554 /* migrated tasks did not contribute to our blocked load */
1555 if (wakeup) {
9ee474f5 1556 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1557 update_entity_load_avg(se, 0);
1558 }
9ee474f5 1559
2dac754e 1560 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1561 /* we force update consideration on load-balancer moves */
1562 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1563}
1564
9ee474f5
PT
1565/*
1566 * Remove se's load from this cfs_rq child load-average, if the entity is
1567 * transitioning to a blocked state we track its projected decay using
1568 * blocked_load_avg.
1569 */
2dac754e 1570static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1571 struct sched_entity *se,
1572 int sleep)
2dac754e 1573{
9ee474f5 1574 update_entity_load_avg(se, 1);
aff3e498
PT
1575 /* we force update consideration on load-balancer moves */
1576 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1577
2dac754e 1578 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1579 if (sleep) {
1580 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1581 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1582 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1583}
642dbc39
VG
1584
1585/*
1586 * Update the rq's load with the elapsed running time before entering
1587 * idle. if the last scheduled task is not a CFS task, idle_enter will
1588 * be the only way to update the runnable statistic.
1589 */
1590void idle_enter_fair(struct rq *this_rq)
1591{
1592 update_rq_runnable_avg(this_rq, 1);
1593}
1594
1595/*
1596 * Update the rq's load with the elapsed idle time before a task is
1597 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1598 * be the only way to update the runnable statistic.
1599 */
1600void idle_exit_fair(struct rq *this_rq)
1601{
1602 update_rq_runnable_avg(this_rq, 0);
1603}
1604
9d85f21c 1605#else
9ee474f5
PT
1606static inline void update_entity_load_avg(struct sched_entity *se,
1607 int update_cfs_rq) {}
18bf2805 1608static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1609static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1610 struct sched_entity *se,
1611 int wakeup) {}
2dac754e 1612static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1613 struct sched_entity *se,
1614 int sleep) {}
aff3e498
PT
1615static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1616 int force_update) {}
9d85f21c
PT
1617#endif
1618
2396af69 1619static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1620{
bf0f6f24 1621#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1622 struct task_struct *tsk = NULL;
1623
1624 if (entity_is_task(se))
1625 tsk = task_of(se);
1626
41acab88 1627 if (se->statistics.sleep_start) {
78becc27 1628 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
1629
1630 if ((s64)delta < 0)
1631 delta = 0;
1632
41acab88
LDM
1633 if (unlikely(delta > se->statistics.sleep_max))
1634 se->statistics.sleep_max = delta;
bf0f6f24 1635
8c79a045 1636 se->statistics.sleep_start = 0;
41acab88 1637 se->statistics.sum_sleep_runtime += delta;
9745512c 1638
768d0c27 1639 if (tsk) {
e414314c 1640 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1641 trace_sched_stat_sleep(tsk, delta);
1642 }
bf0f6f24 1643 }
41acab88 1644 if (se->statistics.block_start) {
78becc27 1645 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
1646
1647 if ((s64)delta < 0)
1648 delta = 0;
1649
41acab88
LDM
1650 if (unlikely(delta > se->statistics.block_max))
1651 se->statistics.block_max = delta;
bf0f6f24 1652
8c79a045 1653 se->statistics.block_start = 0;
41acab88 1654 se->statistics.sum_sleep_runtime += delta;
30084fbd 1655
e414314c 1656 if (tsk) {
8f0dfc34 1657 if (tsk->in_iowait) {
41acab88
LDM
1658 se->statistics.iowait_sum += delta;
1659 se->statistics.iowait_count++;
768d0c27 1660 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1661 }
1662
b781a602
AV
1663 trace_sched_stat_blocked(tsk, delta);
1664
e414314c
PZ
1665 /*
1666 * Blocking time is in units of nanosecs, so shift by
1667 * 20 to get a milliseconds-range estimation of the
1668 * amount of time that the task spent sleeping:
1669 */
1670 if (unlikely(prof_on == SLEEP_PROFILING)) {
1671 profile_hits(SLEEP_PROFILING,
1672 (void *)get_wchan(tsk),
1673 delta >> 20);
1674 }
1675 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1676 }
bf0f6f24
IM
1677 }
1678#endif
1679}
1680
ddc97297
PZ
1681static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1682{
1683#ifdef CONFIG_SCHED_DEBUG
1684 s64 d = se->vruntime - cfs_rq->min_vruntime;
1685
1686 if (d < 0)
1687 d = -d;
1688
1689 if (d > 3*sysctl_sched_latency)
1690 schedstat_inc(cfs_rq, nr_spread_over);
1691#endif
1692}
1693
aeb73b04
PZ
1694static void
1695place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1696{
1af5f730 1697 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1698
2cb8600e
PZ
1699 /*
1700 * The 'current' period is already promised to the current tasks,
1701 * however the extra weight of the new task will slow them down a
1702 * little, place the new task so that it fits in the slot that
1703 * stays open at the end.
1704 */
94dfb5e7 1705 if (initial && sched_feat(START_DEBIT))
f9c0b095 1706 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1707
a2e7a7eb 1708 /* sleeps up to a single latency don't count. */
5ca9880c 1709 if (!initial) {
a2e7a7eb 1710 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1711
a2e7a7eb
MG
1712 /*
1713 * Halve their sleep time's effect, to allow
1714 * for a gentler effect of sleepers:
1715 */
1716 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1717 thresh >>= 1;
51e0304c 1718
a2e7a7eb 1719 vruntime -= thresh;
aeb73b04
PZ
1720 }
1721
b5d9d734 1722 /* ensure we never gain time by being placed backwards. */
16c8f1c7 1723 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
1724}
1725
d3d9dc33
PT
1726static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1727
bf0f6f24 1728static void
88ec22d3 1729enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1730{
88ec22d3
PZ
1731 /*
1732 * Update the normalized vruntime before updating min_vruntime
1733 * through callig update_curr().
1734 */
371fd7e7 1735 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1736 se->vruntime += cfs_rq->min_vruntime;
1737
bf0f6f24 1738 /*
a2a2d680 1739 * Update run-time statistics of the 'current'.
bf0f6f24 1740 */
b7cc0896 1741 update_curr(cfs_rq);
f269ae04 1742 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
1743 account_entity_enqueue(cfs_rq, se);
1744 update_cfs_shares(cfs_rq);
bf0f6f24 1745
88ec22d3 1746 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1747 place_entity(cfs_rq, se, 0);
2396af69 1748 enqueue_sleeper(cfs_rq, se);
e9acbff6 1749 }
bf0f6f24 1750
d2417e5a 1751 update_stats_enqueue(cfs_rq, se);
ddc97297 1752 check_spread(cfs_rq, se);
83b699ed
SV
1753 if (se != cfs_rq->curr)
1754 __enqueue_entity(cfs_rq, se);
2069dd75 1755 se->on_rq = 1;
3d4b47b4 1756
d3d9dc33 1757 if (cfs_rq->nr_running == 1) {
3d4b47b4 1758 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1759 check_enqueue_throttle(cfs_rq);
1760 }
bf0f6f24
IM
1761}
1762
2c13c919 1763static void __clear_buddies_last(struct sched_entity *se)
2002c695 1764{
2c13c919
RR
1765 for_each_sched_entity(se) {
1766 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1767 if (cfs_rq->last == se)
1768 cfs_rq->last = NULL;
1769 else
1770 break;
1771 }
1772}
2002c695 1773
2c13c919
RR
1774static void __clear_buddies_next(struct sched_entity *se)
1775{
1776 for_each_sched_entity(se) {
1777 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1778 if (cfs_rq->next == se)
1779 cfs_rq->next = NULL;
1780 else
1781 break;
1782 }
2002c695
PZ
1783}
1784
ac53db59
RR
1785static void __clear_buddies_skip(struct sched_entity *se)
1786{
1787 for_each_sched_entity(se) {
1788 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1789 if (cfs_rq->skip == se)
1790 cfs_rq->skip = NULL;
1791 else
1792 break;
1793 }
1794}
1795
a571bbea
PZ
1796static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1797{
2c13c919
RR
1798 if (cfs_rq->last == se)
1799 __clear_buddies_last(se);
1800
1801 if (cfs_rq->next == se)
1802 __clear_buddies_next(se);
ac53db59
RR
1803
1804 if (cfs_rq->skip == se)
1805 __clear_buddies_skip(se);
a571bbea
PZ
1806}
1807
6c16a6dc 1808static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1809
bf0f6f24 1810static void
371fd7e7 1811dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1812{
a2a2d680
DA
1813 /*
1814 * Update run-time statistics of the 'current'.
1815 */
1816 update_curr(cfs_rq);
17bc14b7 1817 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 1818
19b6a2e3 1819 update_stats_dequeue(cfs_rq, se);
371fd7e7 1820 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1821#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1822 if (entity_is_task(se)) {
1823 struct task_struct *tsk = task_of(se);
1824
1825 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 1826 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1827 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 1828 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1829 }
db36cc7d 1830#endif
67e9fb2a
PZ
1831 }
1832
2002c695 1833 clear_buddies(cfs_rq, se);
4793241b 1834
83b699ed 1835 if (se != cfs_rq->curr)
30cfdcfc 1836 __dequeue_entity(cfs_rq, se);
17bc14b7 1837 se->on_rq = 0;
30cfdcfc 1838 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1839
1840 /*
1841 * Normalize the entity after updating the min_vruntime because the
1842 * update can refer to the ->curr item and we need to reflect this
1843 * movement in our normalized position.
1844 */
371fd7e7 1845 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1846 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1847
d8b4986d
PT
1848 /* return excess runtime on last dequeue */
1849 return_cfs_rq_runtime(cfs_rq);
1850
1e876231 1851 update_min_vruntime(cfs_rq);
17bc14b7 1852 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1853}
1854
1855/*
1856 * Preempt the current task with a newly woken task if needed:
1857 */
7c92e54f 1858static void
2e09bf55 1859check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1860{
11697830 1861 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1862 struct sched_entity *se;
1863 s64 delta;
11697830 1864
6d0f0ebd 1865 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1866 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1867 if (delta_exec > ideal_runtime) {
bf0f6f24 1868 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1869 /*
1870 * The current task ran long enough, ensure it doesn't get
1871 * re-elected due to buddy favours.
1872 */
1873 clear_buddies(cfs_rq, curr);
f685ceac
MG
1874 return;
1875 }
1876
1877 /*
1878 * Ensure that a task that missed wakeup preemption by a
1879 * narrow margin doesn't have to wait for a full slice.
1880 * This also mitigates buddy induced latencies under load.
1881 */
f685ceac
MG
1882 if (delta_exec < sysctl_sched_min_granularity)
1883 return;
1884
f4cfb33e
WX
1885 se = __pick_first_entity(cfs_rq);
1886 delta = curr->vruntime - se->vruntime;
f685ceac 1887
f4cfb33e
WX
1888 if (delta < 0)
1889 return;
d7d82944 1890
f4cfb33e
WX
1891 if (delta > ideal_runtime)
1892 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1893}
1894
83b699ed 1895static void
8494f412 1896set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1897{
83b699ed
SV
1898 /* 'current' is not kept within the tree. */
1899 if (se->on_rq) {
1900 /*
1901 * Any task has to be enqueued before it get to execute on
1902 * a CPU. So account for the time it spent waiting on the
1903 * runqueue.
1904 */
1905 update_stats_wait_end(cfs_rq, se);
1906 __dequeue_entity(cfs_rq, se);
1907 }
1908
79303e9e 1909 update_stats_curr_start(cfs_rq, se);
429d43bc 1910 cfs_rq->curr = se;
eba1ed4b
IM
1911#ifdef CONFIG_SCHEDSTATS
1912 /*
1913 * Track our maximum slice length, if the CPU's load is at
1914 * least twice that of our own weight (i.e. dont track it
1915 * when there are only lesser-weight tasks around):
1916 */
495eca49 1917 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1918 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1919 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1920 }
1921#endif
4a55b450 1922 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1923}
1924
3f3a4904
PZ
1925static int
1926wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1927
ac53db59
RR
1928/*
1929 * Pick the next process, keeping these things in mind, in this order:
1930 * 1) keep things fair between processes/task groups
1931 * 2) pick the "next" process, since someone really wants that to run
1932 * 3) pick the "last" process, for cache locality
1933 * 4) do not run the "skip" process, if something else is available
1934 */
f4b6755f 1935static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1936{
ac53db59 1937 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1938 struct sched_entity *left = se;
f4b6755f 1939
ac53db59
RR
1940 /*
1941 * Avoid running the skip buddy, if running something else can
1942 * be done without getting too unfair.
1943 */
1944 if (cfs_rq->skip == se) {
1945 struct sched_entity *second = __pick_next_entity(se);
1946 if (second && wakeup_preempt_entity(second, left) < 1)
1947 se = second;
1948 }
aa2ac252 1949
f685ceac
MG
1950 /*
1951 * Prefer last buddy, try to return the CPU to a preempted task.
1952 */
1953 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1954 se = cfs_rq->last;
1955
ac53db59
RR
1956 /*
1957 * Someone really wants this to run. If it's not unfair, run it.
1958 */
1959 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1960 se = cfs_rq->next;
1961
f685ceac 1962 clear_buddies(cfs_rq, se);
4793241b
PZ
1963
1964 return se;
aa2ac252
PZ
1965}
1966
d3d9dc33
PT
1967static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1968
ab6cde26 1969static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1970{
1971 /*
1972 * If still on the runqueue then deactivate_task()
1973 * was not called and update_curr() has to be done:
1974 */
1975 if (prev->on_rq)
b7cc0896 1976 update_curr(cfs_rq);
bf0f6f24 1977
d3d9dc33
PT
1978 /* throttle cfs_rqs exceeding runtime */
1979 check_cfs_rq_runtime(cfs_rq);
1980
ddc97297 1981 check_spread(cfs_rq, prev);
30cfdcfc 1982 if (prev->on_rq) {
5870db5b 1983 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1984 /* Put 'current' back into the tree. */
1985 __enqueue_entity(cfs_rq, prev);
9d85f21c 1986 /* in !on_rq case, update occurred at dequeue */
9ee474f5 1987 update_entity_load_avg(prev, 1);
30cfdcfc 1988 }
429d43bc 1989 cfs_rq->curr = NULL;
bf0f6f24
IM
1990}
1991
8f4d37ec
PZ
1992static void
1993entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1994{
bf0f6f24 1995 /*
30cfdcfc 1996 * Update run-time statistics of the 'current'.
bf0f6f24 1997 */
30cfdcfc 1998 update_curr(cfs_rq);
bf0f6f24 1999
9d85f21c
PT
2000 /*
2001 * Ensure that runnable average is periodically updated.
2002 */
9ee474f5 2003 update_entity_load_avg(curr, 1);
aff3e498 2004 update_cfs_rq_blocked_load(cfs_rq, 1);
9d85f21c 2005
8f4d37ec
PZ
2006#ifdef CONFIG_SCHED_HRTICK
2007 /*
2008 * queued ticks are scheduled to match the slice, so don't bother
2009 * validating it and just reschedule.
2010 */
983ed7a6
HH
2011 if (queued) {
2012 resched_task(rq_of(cfs_rq)->curr);
2013 return;
2014 }
8f4d37ec
PZ
2015 /*
2016 * don't let the period tick interfere with the hrtick preemption
2017 */
2018 if (!sched_feat(DOUBLE_TICK) &&
2019 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2020 return;
2021#endif
2022
2c2efaed 2023 if (cfs_rq->nr_running > 1)
2e09bf55 2024 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2025}
2026
ab84d31e
PT
2027
2028/**************************************************
2029 * CFS bandwidth control machinery
2030 */
2031
2032#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2033
2034#ifdef HAVE_JUMP_LABEL
c5905afb 2035static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2036
2037static inline bool cfs_bandwidth_used(void)
2038{
c5905afb 2039 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2040}
2041
2042void account_cfs_bandwidth_used(int enabled, int was_enabled)
2043{
2044 /* only need to count groups transitioning between enabled/!enabled */
2045 if (enabled && !was_enabled)
c5905afb 2046 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2047 else if (!enabled && was_enabled)
c5905afb 2048 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2049}
2050#else /* HAVE_JUMP_LABEL */
2051static bool cfs_bandwidth_used(void)
2052{
2053 return true;
2054}
2055
2056void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2057#endif /* HAVE_JUMP_LABEL */
2058
ab84d31e
PT
2059/*
2060 * default period for cfs group bandwidth.
2061 * default: 0.1s, units: nanoseconds
2062 */
2063static inline u64 default_cfs_period(void)
2064{
2065 return 100000000ULL;
2066}
ec12cb7f
PT
2067
2068static inline u64 sched_cfs_bandwidth_slice(void)
2069{
2070 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2071}
2072
a9cf55b2
PT
2073/*
2074 * Replenish runtime according to assigned quota and update expiration time.
2075 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2076 * additional synchronization around rq->lock.
2077 *
2078 * requires cfs_b->lock
2079 */
029632fb 2080void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2081{
2082 u64 now;
2083
2084 if (cfs_b->quota == RUNTIME_INF)
2085 return;
2086
2087 now = sched_clock_cpu(smp_processor_id());
2088 cfs_b->runtime = cfs_b->quota;
2089 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2090}
2091
029632fb
PZ
2092static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2093{
2094 return &tg->cfs_bandwidth;
2095}
2096
f1b17280
PT
2097/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2098static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2099{
2100 if (unlikely(cfs_rq->throttle_count))
2101 return cfs_rq->throttled_clock_task;
2102
78becc27 2103 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2104}
2105
85dac906
PT
2106/* returns 0 on failure to allocate runtime */
2107static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2108{
2109 struct task_group *tg = cfs_rq->tg;
2110 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2111 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2112
2113 /* note: this is a positive sum as runtime_remaining <= 0 */
2114 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2115
2116 raw_spin_lock(&cfs_b->lock);
2117 if (cfs_b->quota == RUNTIME_INF)
2118 amount = min_amount;
58088ad0 2119 else {
a9cf55b2
PT
2120 /*
2121 * If the bandwidth pool has become inactive, then at least one
2122 * period must have elapsed since the last consumption.
2123 * Refresh the global state and ensure bandwidth timer becomes
2124 * active.
2125 */
2126 if (!cfs_b->timer_active) {
2127 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2128 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2129 }
58088ad0
PT
2130
2131 if (cfs_b->runtime > 0) {
2132 amount = min(cfs_b->runtime, min_amount);
2133 cfs_b->runtime -= amount;
2134 cfs_b->idle = 0;
2135 }
ec12cb7f 2136 }
a9cf55b2 2137 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2138 raw_spin_unlock(&cfs_b->lock);
2139
2140 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2141 /*
2142 * we may have advanced our local expiration to account for allowed
2143 * spread between our sched_clock and the one on which runtime was
2144 * issued.
2145 */
2146 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2147 cfs_rq->runtime_expires = expires;
85dac906
PT
2148
2149 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2150}
2151
a9cf55b2
PT
2152/*
2153 * Note: This depends on the synchronization provided by sched_clock and the
2154 * fact that rq->clock snapshots this value.
2155 */
2156static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2157{
a9cf55b2 2158 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2159
2160 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2161 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2162 return;
2163
a9cf55b2
PT
2164 if (cfs_rq->runtime_remaining < 0)
2165 return;
2166
2167 /*
2168 * If the local deadline has passed we have to consider the
2169 * possibility that our sched_clock is 'fast' and the global deadline
2170 * has not truly expired.
2171 *
2172 * Fortunately we can check determine whether this the case by checking
2173 * whether the global deadline has advanced.
2174 */
2175
2176 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2177 /* extend local deadline, drift is bounded above by 2 ticks */
2178 cfs_rq->runtime_expires += TICK_NSEC;
2179 } else {
2180 /* global deadline is ahead, expiration has passed */
2181 cfs_rq->runtime_remaining = 0;
2182 }
2183}
2184
2185static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2186 unsigned long delta_exec)
2187{
2188 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2189 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2190 expire_cfs_rq_runtime(cfs_rq);
2191
2192 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2193 return;
2194
85dac906
PT
2195 /*
2196 * if we're unable to extend our runtime we resched so that the active
2197 * hierarchy can be throttled
2198 */
2199 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2200 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2201}
2202
6c16a6dc
PZ
2203static __always_inline
2204void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2205{
56f570e5 2206 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2207 return;
2208
2209 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2210}
2211
85dac906
PT
2212static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2213{
56f570e5 2214 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2215}
2216
64660c86
PT
2217/* check whether cfs_rq, or any parent, is throttled */
2218static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2219{
56f570e5 2220 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2221}
2222
2223/*
2224 * Ensure that neither of the group entities corresponding to src_cpu or
2225 * dest_cpu are members of a throttled hierarchy when performing group
2226 * load-balance operations.
2227 */
2228static inline int throttled_lb_pair(struct task_group *tg,
2229 int src_cpu, int dest_cpu)
2230{
2231 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2232
2233 src_cfs_rq = tg->cfs_rq[src_cpu];
2234 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2235
2236 return throttled_hierarchy(src_cfs_rq) ||
2237 throttled_hierarchy(dest_cfs_rq);
2238}
2239
2240/* updated child weight may affect parent so we have to do this bottom up */
2241static int tg_unthrottle_up(struct task_group *tg, void *data)
2242{
2243 struct rq *rq = data;
2244 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2245
2246 cfs_rq->throttle_count--;
2247#ifdef CONFIG_SMP
2248 if (!cfs_rq->throttle_count) {
f1b17280 2249 /* adjust cfs_rq_clock_task() */
78becc27 2250 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 2251 cfs_rq->throttled_clock_task;
64660c86
PT
2252 }
2253#endif
2254
2255 return 0;
2256}
2257
2258static int tg_throttle_down(struct task_group *tg, void *data)
2259{
2260 struct rq *rq = data;
2261 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2262
82958366
PT
2263 /* group is entering throttled state, stop time */
2264 if (!cfs_rq->throttle_count)
78becc27 2265 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
2266 cfs_rq->throttle_count++;
2267
2268 return 0;
2269}
2270
d3d9dc33 2271static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2272{
2273 struct rq *rq = rq_of(cfs_rq);
2274 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2275 struct sched_entity *se;
2276 long task_delta, dequeue = 1;
2277
2278 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2279
f1b17280 2280 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2281 rcu_read_lock();
2282 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2283 rcu_read_unlock();
85dac906
PT
2284
2285 task_delta = cfs_rq->h_nr_running;
2286 for_each_sched_entity(se) {
2287 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2288 /* throttled entity or throttle-on-deactivate */
2289 if (!se->on_rq)
2290 break;
2291
2292 if (dequeue)
2293 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2294 qcfs_rq->h_nr_running -= task_delta;
2295
2296 if (qcfs_rq->load.weight)
2297 dequeue = 0;
2298 }
2299
2300 if (!se)
2301 rq->nr_running -= task_delta;
2302
2303 cfs_rq->throttled = 1;
78becc27 2304 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
2305 raw_spin_lock(&cfs_b->lock);
2306 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2307 raw_spin_unlock(&cfs_b->lock);
2308}
2309
029632fb 2310void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2311{
2312 struct rq *rq = rq_of(cfs_rq);
2313 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2314 struct sched_entity *se;
2315 int enqueue = 1;
2316 long task_delta;
2317
22b958d8 2318 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
2319
2320 cfs_rq->throttled = 0;
1a55af2e
FW
2321
2322 update_rq_clock(rq);
2323
671fd9da 2324 raw_spin_lock(&cfs_b->lock);
78becc27 2325 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
2326 list_del_rcu(&cfs_rq->throttled_list);
2327 raw_spin_unlock(&cfs_b->lock);
2328
64660c86
PT
2329 /* update hierarchical throttle state */
2330 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2331
671fd9da
PT
2332 if (!cfs_rq->load.weight)
2333 return;
2334
2335 task_delta = cfs_rq->h_nr_running;
2336 for_each_sched_entity(se) {
2337 if (se->on_rq)
2338 enqueue = 0;
2339
2340 cfs_rq = cfs_rq_of(se);
2341 if (enqueue)
2342 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2343 cfs_rq->h_nr_running += task_delta;
2344
2345 if (cfs_rq_throttled(cfs_rq))
2346 break;
2347 }
2348
2349 if (!se)
2350 rq->nr_running += task_delta;
2351
2352 /* determine whether we need to wake up potentially idle cpu */
2353 if (rq->curr == rq->idle && rq->cfs.nr_running)
2354 resched_task(rq->curr);
2355}
2356
2357static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2358 u64 remaining, u64 expires)
2359{
2360 struct cfs_rq *cfs_rq;
2361 u64 runtime = remaining;
2362
2363 rcu_read_lock();
2364 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2365 throttled_list) {
2366 struct rq *rq = rq_of(cfs_rq);
2367
2368 raw_spin_lock(&rq->lock);
2369 if (!cfs_rq_throttled(cfs_rq))
2370 goto next;
2371
2372 runtime = -cfs_rq->runtime_remaining + 1;
2373 if (runtime > remaining)
2374 runtime = remaining;
2375 remaining -= runtime;
2376
2377 cfs_rq->runtime_remaining += runtime;
2378 cfs_rq->runtime_expires = expires;
2379
2380 /* we check whether we're throttled above */
2381 if (cfs_rq->runtime_remaining > 0)
2382 unthrottle_cfs_rq(cfs_rq);
2383
2384next:
2385 raw_spin_unlock(&rq->lock);
2386
2387 if (!remaining)
2388 break;
2389 }
2390 rcu_read_unlock();
2391
2392 return remaining;
2393}
2394
58088ad0
PT
2395/*
2396 * Responsible for refilling a task_group's bandwidth and unthrottling its
2397 * cfs_rqs as appropriate. If there has been no activity within the last
2398 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2399 * used to track this state.
2400 */
2401static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2402{
671fd9da
PT
2403 u64 runtime, runtime_expires;
2404 int idle = 1, throttled;
58088ad0
PT
2405
2406 raw_spin_lock(&cfs_b->lock);
2407 /* no need to continue the timer with no bandwidth constraint */
2408 if (cfs_b->quota == RUNTIME_INF)
2409 goto out_unlock;
2410
671fd9da
PT
2411 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2412 /* idle depends on !throttled (for the case of a large deficit) */
2413 idle = cfs_b->idle && !throttled;
e8da1b18 2414 cfs_b->nr_periods += overrun;
671fd9da 2415
a9cf55b2
PT
2416 /* if we're going inactive then everything else can be deferred */
2417 if (idle)
2418 goto out_unlock;
2419
2420 __refill_cfs_bandwidth_runtime(cfs_b);
2421
671fd9da
PT
2422 if (!throttled) {
2423 /* mark as potentially idle for the upcoming period */
2424 cfs_b->idle = 1;
2425 goto out_unlock;
2426 }
2427
e8da1b18
NR
2428 /* account preceding periods in which throttling occurred */
2429 cfs_b->nr_throttled += overrun;
2430
671fd9da
PT
2431 /*
2432 * There are throttled entities so we must first use the new bandwidth
2433 * to unthrottle them before making it generally available. This
2434 * ensures that all existing debts will be paid before a new cfs_rq is
2435 * allowed to run.
2436 */
2437 runtime = cfs_b->runtime;
2438 runtime_expires = cfs_b->runtime_expires;
2439 cfs_b->runtime = 0;
2440
2441 /*
2442 * This check is repeated as we are holding onto the new bandwidth
2443 * while we unthrottle. This can potentially race with an unthrottled
2444 * group trying to acquire new bandwidth from the global pool.
2445 */
2446 while (throttled && runtime > 0) {
2447 raw_spin_unlock(&cfs_b->lock);
2448 /* we can't nest cfs_b->lock while distributing bandwidth */
2449 runtime = distribute_cfs_runtime(cfs_b, runtime,
2450 runtime_expires);
2451 raw_spin_lock(&cfs_b->lock);
2452
2453 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2454 }
58088ad0 2455
671fd9da
PT
2456 /* return (any) remaining runtime */
2457 cfs_b->runtime = runtime;
2458 /*
2459 * While we are ensured activity in the period following an
2460 * unthrottle, this also covers the case in which the new bandwidth is
2461 * insufficient to cover the existing bandwidth deficit. (Forcing the
2462 * timer to remain active while there are any throttled entities.)
2463 */
2464 cfs_b->idle = 0;
58088ad0
PT
2465out_unlock:
2466 if (idle)
2467 cfs_b->timer_active = 0;
2468 raw_spin_unlock(&cfs_b->lock);
2469
2470 return idle;
2471}
d3d9dc33 2472
d8b4986d
PT
2473/* a cfs_rq won't donate quota below this amount */
2474static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2475/* minimum remaining period time to redistribute slack quota */
2476static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2477/* how long we wait to gather additional slack before distributing */
2478static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2479
2480/* are we near the end of the current quota period? */
2481static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2482{
2483 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2484 u64 remaining;
2485
2486 /* if the call-back is running a quota refresh is already occurring */
2487 if (hrtimer_callback_running(refresh_timer))
2488 return 1;
2489
2490 /* is a quota refresh about to occur? */
2491 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2492 if (remaining < min_expire)
2493 return 1;
2494
2495 return 0;
2496}
2497
2498static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2499{
2500 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2501
2502 /* if there's a quota refresh soon don't bother with slack */
2503 if (runtime_refresh_within(cfs_b, min_left))
2504 return;
2505
2506 start_bandwidth_timer(&cfs_b->slack_timer,
2507 ns_to_ktime(cfs_bandwidth_slack_period));
2508}
2509
2510/* we know any runtime found here is valid as update_curr() precedes return */
2511static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2512{
2513 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2514 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2515
2516 if (slack_runtime <= 0)
2517 return;
2518
2519 raw_spin_lock(&cfs_b->lock);
2520 if (cfs_b->quota != RUNTIME_INF &&
2521 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2522 cfs_b->runtime += slack_runtime;
2523
2524 /* we are under rq->lock, defer unthrottling using a timer */
2525 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2526 !list_empty(&cfs_b->throttled_cfs_rq))
2527 start_cfs_slack_bandwidth(cfs_b);
2528 }
2529 raw_spin_unlock(&cfs_b->lock);
2530
2531 /* even if it's not valid for return we don't want to try again */
2532 cfs_rq->runtime_remaining -= slack_runtime;
2533}
2534
2535static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2536{
56f570e5
PT
2537 if (!cfs_bandwidth_used())
2538 return;
2539
fccfdc6f 2540 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2541 return;
2542
2543 __return_cfs_rq_runtime(cfs_rq);
2544}
2545
2546/*
2547 * This is done with a timer (instead of inline with bandwidth return) since
2548 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2549 */
2550static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2551{
2552 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2553 u64 expires;
2554
2555 /* confirm we're still not at a refresh boundary */
2556 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2557 return;
2558
2559 raw_spin_lock(&cfs_b->lock);
2560 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2561 runtime = cfs_b->runtime;
2562 cfs_b->runtime = 0;
2563 }
2564 expires = cfs_b->runtime_expires;
2565 raw_spin_unlock(&cfs_b->lock);
2566
2567 if (!runtime)
2568 return;
2569
2570 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2571
2572 raw_spin_lock(&cfs_b->lock);
2573 if (expires == cfs_b->runtime_expires)
2574 cfs_b->runtime = runtime;
2575 raw_spin_unlock(&cfs_b->lock);
2576}
2577
d3d9dc33
PT
2578/*
2579 * When a group wakes up we want to make sure that its quota is not already
2580 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2581 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2582 */
2583static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2584{
56f570e5
PT
2585 if (!cfs_bandwidth_used())
2586 return;
2587
d3d9dc33
PT
2588 /* an active group must be handled by the update_curr()->put() path */
2589 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2590 return;
2591
2592 /* ensure the group is not already throttled */
2593 if (cfs_rq_throttled(cfs_rq))
2594 return;
2595
2596 /* update runtime allocation */
2597 account_cfs_rq_runtime(cfs_rq, 0);
2598 if (cfs_rq->runtime_remaining <= 0)
2599 throttle_cfs_rq(cfs_rq);
2600}
2601
2602/* conditionally throttle active cfs_rq's from put_prev_entity() */
2603static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2604{
56f570e5
PT
2605 if (!cfs_bandwidth_used())
2606 return;
2607
d3d9dc33
PT
2608 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2609 return;
2610
2611 /*
2612 * it's possible for a throttled entity to be forced into a running
2613 * state (e.g. set_curr_task), in this case we're finished.
2614 */
2615 if (cfs_rq_throttled(cfs_rq))
2616 return;
2617
2618 throttle_cfs_rq(cfs_rq);
2619}
029632fb 2620
029632fb
PZ
2621static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2622{
2623 struct cfs_bandwidth *cfs_b =
2624 container_of(timer, struct cfs_bandwidth, slack_timer);
2625 do_sched_cfs_slack_timer(cfs_b);
2626
2627 return HRTIMER_NORESTART;
2628}
2629
2630static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2631{
2632 struct cfs_bandwidth *cfs_b =
2633 container_of(timer, struct cfs_bandwidth, period_timer);
2634 ktime_t now;
2635 int overrun;
2636 int idle = 0;
2637
2638 for (;;) {
2639 now = hrtimer_cb_get_time(timer);
2640 overrun = hrtimer_forward(timer, now, cfs_b->period);
2641
2642 if (!overrun)
2643 break;
2644
2645 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2646 }
2647
2648 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2649}
2650
2651void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2652{
2653 raw_spin_lock_init(&cfs_b->lock);
2654 cfs_b->runtime = 0;
2655 cfs_b->quota = RUNTIME_INF;
2656 cfs_b->period = ns_to_ktime(default_cfs_period());
2657
2658 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2659 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2660 cfs_b->period_timer.function = sched_cfs_period_timer;
2661 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2662 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2663}
2664
2665static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2666{
2667 cfs_rq->runtime_enabled = 0;
2668 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2669}
2670
2671/* requires cfs_b->lock, may release to reprogram timer */
2672void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2673{
2674 /*
2675 * The timer may be active because we're trying to set a new bandwidth
2676 * period or because we're racing with the tear-down path
2677 * (timer_active==0 becomes visible before the hrtimer call-back
2678 * terminates). In either case we ensure that it's re-programmed
2679 */
2680 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2681 raw_spin_unlock(&cfs_b->lock);
2682 /* ensure cfs_b->lock is available while we wait */
2683 hrtimer_cancel(&cfs_b->period_timer);
2684
2685 raw_spin_lock(&cfs_b->lock);
2686 /* if someone else restarted the timer then we're done */
2687 if (cfs_b->timer_active)
2688 return;
2689 }
2690
2691 cfs_b->timer_active = 1;
2692 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2693}
2694
2695static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2696{
2697 hrtimer_cancel(&cfs_b->period_timer);
2698 hrtimer_cancel(&cfs_b->slack_timer);
2699}
2700
38dc3348 2701static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2702{
2703 struct cfs_rq *cfs_rq;
2704
2705 for_each_leaf_cfs_rq(rq, cfs_rq) {
2706 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2707
2708 if (!cfs_rq->runtime_enabled)
2709 continue;
2710
2711 /*
2712 * clock_task is not advancing so we just need to make sure
2713 * there's some valid quota amount
2714 */
2715 cfs_rq->runtime_remaining = cfs_b->quota;
2716 if (cfs_rq_throttled(cfs_rq))
2717 unthrottle_cfs_rq(cfs_rq);
2718 }
2719}
2720
2721#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2722static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2723{
78becc27 2724 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
2725}
2726
2727static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2728 unsigned long delta_exec) {}
d3d9dc33
PT
2729static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2730static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2731static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2732
2733static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2734{
2735 return 0;
2736}
64660c86
PT
2737
2738static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2739{
2740 return 0;
2741}
2742
2743static inline int throttled_lb_pair(struct task_group *tg,
2744 int src_cpu, int dest_cpu)
2745{
2746 return 0;
2747}
029632fb
PZ
2748
2749void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2750
2751#ifdef CONFIG_FAIR_GROUP_SCHED
2752static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2753#endif
2754
029632fb
PZ
2755static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2756{
2757 return NULL;
2758}
2759static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2760static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2761
2762#endif /* CONFIG_CFS_BANDWIDTH */
2763
bf0f6f24
IM
2764/**************************************************
2765 * CFS operations on tasks:
2766 */
2767
8f4d37ec
PZ
2768#ifdef CONFIG_SCHED_HRTICK
2769static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2770{
8f4d37ec
PZ
2771 struct sched_entity *se = &p->se;
2772 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2773
2774 WARN_ON(task_rq(p) != rq);
2775
b39e66ea 2776 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2777 u64 slice = sched_slice(cfs_rq, se);
2778 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2779 s64 delta = slice - ran;
2780
2781 if (delta < 0) {
2782 if (rq->curr == p)
2783 resched_task(p);
2784 return;
2785 }
2786
2787 /*
2788 * Don't schedule slices shorter than 10000ns, that just
2789 * doesn't make sense. Rely on vruntime for fairness.
2790 */
31656519 2791 if (rq->curr != p)
157124c1 2792 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2793
31656519 2794 hrtick_start(rq, delta);
8f4d37ec
PZ
2795 }
2796}
a4c2f00f
PZ
2797
2798/*
2799 * called from enqueue/dequeue and updates the hrtick when the
2800 * current task is from our class and nr_running is low enough
2801 * to matter.
2802 */
2803static void hrtick_update(struct rq *rq)
2804{
2805 struct task_struct *curr = rq->curr;
2806
b39e66ea 2807 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2808 return;
2809
2810 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2811 hrtick_start_fair(rq, curr);
2812}
55e12e5e 2813#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2814static inline void
2815hrtick_start_fair(struct rq *rq, struct task_struct *p)
2816{
2817}
a4c2f00f
PZ
2818
2819static inline void hrtick_update(struct rq *rq)
2820{
2821}
8f4d37ec
PZ
2822#endif
2823
bf0f6f24
IM
2824/*
2825 * The enqueue_task method is called before nr_running is
2826 * increased. Here we update the fair scheduling stats and
2827 * then put the task into the rbtree:
2828 */
ea87bb78 2829static void
371fd7e7 2830enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2831{
2832 struct cfs_rq *cfs_rq;
62fb1851 2833 struct sched_entity *se = &p->se;
bf0f6f24
IM
2834
2835 for_each_sched_entity(se) {
62fb1851 2836 if (se->on_rq)
bf0f6f24
IM
2837 break;
2838 cfs_rq = cfs_rq_of(se);
88ec22d3 2839 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2840
2841 /*
2842 * end evaluation on encountering a throttled cfs_rq
2843 *
2844 * note: in the case of encountering a throttled cfs_rq we will
2845 * post the final h_nr_running increment below.
2846 */
2847 if (cfs_rq_throttled(cfs_rq))
2848 break;
953bfcd1 2849 cfs_rq->h_nr_running++;
85dac906 2850
88ec22d3 2851 flags = ENQUEUE_WAKEUP;
bf0f6f24 2852 }
8f4d37ec 2853
2069dd75 2854 for_each_sched_entity(se) {
0f317143 2855 cfs_rq = cfs_rq_of(se);
953bfcd1 2856 cfs_rq->h_nr_running++;
2069dd75 2857
85dac906
PT
2858 if (cfs_rq_throttled(cfs_rq))
2859 break;
2860
17bc14b7 2861 update_cfs_shares(cfs_rq);
9ee474f5 2862 update_entity_load_avg(se, 1);
2069dd75
PZ
2863 }
2864
18bf2805
BS
2865 if (!se) {
2866 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2867 inc_nr_running(rq);
18bf2805 2868 }
a4c2f00f 2869 hrtick_update(rq);
bf0f6f24
IM
2870}
2871
2f36825b
VP
2872static void set_next_buddy(struct sched_entity *se);
2873
bf0f6f24
IM
2874/*
2875 * The dequeue_task method is called before nr_running is
2876 * decreased. We remove the task from the rbtree and
2877 * update the fair scheduling stats:
2878 */
371fd7e7 2879static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2880{
2881 struct cfs_rq *cfs_rq;
62fb1851 2882 struct sched_entity *se = &p->se;
2f36825b 2883 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2884
2885 for_each_sched_entity(se) {
2886 cfs_rq = cfs_rq_of(se);
371fd7e7 2887 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2888
2889 /*
2890 * end evaluation on encountering a throttled cfs_rq
2891 *
2892 * note: in the case of encountering a throttled cfs_rq we will
2893 * post the final h_nr_running decrement below.
2894 */
2895 if (cfs_rq_throttled(cfs_rq))
2896 break;
953bfcd1 2897 cfs_rq->h_nr_running--;
2069dd75 2898
bf0f6f24 2899 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2900 if (cfs_rq->load.weight) {
2901 /*
2902 * Bias pick_next to pick a task from this cfs_rq, as
2903 * p is sleeping when it is within its sched_slice.
2904 */
2905 if (task_sleep && parent_entity(se))
2906 set_next_buddy(parent_entity(se));
9598c82d
PT
2907
2908 /* avoid re-evaluating load for this entity */
2909 se = parent_entity(se);
bf0f6f24 2910 break;
2f36825b 2911 }
371fd7e7 2912 flags |= DEQUEUE_SLEEP;
bf0f6f24 2913 }
8f4d37ec 2914
2069dd75 2915 for_each_sched_entity(se) {
0f317143 2916 cfs_rq = cfs_rq_of(se);
953bfcd1 2917 cfs_rq->h_nr_running--;
2069dd75 2918
85dac906
PT
2919 if (cfs_rq_throttled(cfs_rq))
2920 break;
2921
17bc14b7 2922 update_cfs_shares(cfs_rq);
9ee474f5 2923 update_entity_load_avg(se, 1);
2069dd75
PZ
2924 }
2925
18bf2805 2926 if (!se) {
85dac906 2927 dec_nr_running(rq);
18bf2805
BS
2928 update_rq_runnable_avg(rq, 1);
2929 }
a4c2f00f 2930 hrtick_update(rq);
bf0f6f24
IM
2931}
2932
e7693a36 2933#ifdef CONFIG_SMP
029632fb
PZ
2934/* Used instead of source_load when we know the type == 0 */
2935static unsigned long weighted_cpuload(const int cpu)
2936{
2937 return cpu_rq(cpu)->load.weight;
2938}
2939
2940/*
2941 * Return a low guess at the load of a migration-source cpu weighted
2942 * according to the scheduling class and "nice" value.
2943 *
2944 * We want to under-estimate the load of migration sources, to
2945 * balance conservatively.
2946 */
2947static unsigned long source_load(int cpu, int type)
2948{
2949 struct rq *rq = cpu_rq(cpu);
2950 unsigned long total = weighted_cpuload(cpu);
2951
2952 if (type == 0 || !sched_feat(LB_BIAS))
2953 return total;
2954
2955 return min(rq->cpu_load[type-1], total);
2956}
2957
2958/*
2959 * Return a high guess at the load of a migration-target cpu weighted
2960 * according to the scheduling class and "nice" value.
2961 */
2962static unsigned long target_load(int cpu, int type)
2963{
2964 struct rq *rq = cpu_rq(cpu);
2965 unsigned long total = weighted_cpuload(cpu);
2966
2967 if (type == 0 || !sched_feat(LB_BIAS))
2968 return total;
2969
2970 return max(rq->cpu_load[type-1], total);
2971}
2972
2973static unsigned long power_of(int cpu)
2974{
2975 return cpu_rq(cpu)->cpu_power;
2976}
2977
2978static unsigned long cpu_avg_load_per_task(int cpu)
2979{
2980 struct rq *rq = cpu_rq(cpu);
2981 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2982
2983 if (nr_running)
2984 return rq->load.weight / nr_running;
2985
2986 return 0;
2987}
2988
098fb9db 2989
74f8e4b2 2990static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2991{
2992 struct sched_entity *se = &p->se;
2993 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2994 u64 min_vruntime;
2995
2996#ifndef CONFIG_64BIT
2997 u64 min_vruntime_copy;
88ec22d3 2998
3fe1698b
PZ
2999 do {
3000 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3001 smp_rmb();
3002 min_vruntime = cfs_rq->min_vruntime;
3003 } while (min_vruntime != min_vruntime_copy);
3004#else
3005 min_vruntime = cfs_rq->min_vruntime;
3006#endif
88ec22d3 3007
3fe1698b 3008 se->vruntime -= min_vruntime;
88ec22d3
PZ
3009}
3010
bb3469ac 3011#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3012/*
3013 * effective_load() calculates the load change as seen from the root_task_group
3014 *
3015 * Adding load to a group doesn't make a group heavier, but can cause movement
3016 * of group shares between cpus. Assuming the shares were perfectly aligned one
3017 * can calculate the shift in shares.
cf5f0acf
PZ
3018 *
3019 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3020 * on this @cpu and results in a total addition (subtraction) of @wg to the
3021 * total group weight.
3022 *
3023 * Given a runqueue weight distribution (rw_i) we can compute a shares
3024 * distribution (s_i) using:
3025 *
3026 * s_i = rw_i / \Sum rw_j (1)
3027 *
3028 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3029 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3030 * shares distribution (s_i):
3031 *
3032 * rw_i = { 2, 4, 1, 0 }
3033 * s_i = { 2/7, 4/7, 1/7, 0 }
3034 *
3035 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3036 * task used to run on and the CPU the waker is running on), we need to
3037 * compute the effect of waking a task on either CPU and, in case of a sync
3038 * wakeup, compute the effect of the current task going to sleep.
3039 *
3040 * So for a change of @wl to the local @cpu with an overall group weight change
3041 * of @wl we can compute the new shares distribution (s'_i) using:
3042 *
3043 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3044 *
3045 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3046 * differences in waking a task to CPU 0. The additional task changes the
3047 * weight and shares distributions like:
3048 *
3049 * rw'_i = { 3, 4, 1, 0 }
3050 * s'_i = { 3/8, 4/8, 1/8, 0 }
3051 *
3052 * We can then compute the difference in effective weight by using:
3053 *
3054 * dw_i = S * (s'_i - s_i) (3)
3055 *
3056 * Where 'S' is the group weight as seen by its parent.
3057 *
3058 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3059 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3060 * 4/7) times the weight of the group.
f5bfb7d9 3061 */
2069dd75 3062static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3063{
4be9daaa 3064 struct sched_entity *se = tg->se[cpu];
f1d239f7 3065
cf5f0acf 3066 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3067 return wl;
3068
4be9daaa 3069 for_each_sched_entity(se) {
cf5f0acf 3070 long w, W;
4be9daaa 3071
977dda7c 3072 tg = se->my_q->tg;
bb3469ac 3073
cf5f0acf
PZ
3074 /*
3075 * W = @wg + \Sum rw_j
3076 */
3077 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3078
cf5f0acf
PZ
3079 /*
3080 * w = rw_i + @wl
3081 */
3082 w = se->my_q->load.weight + wl;
940959e9 3083
cf5f0acf
PZ
3084 /*
3085 * wl = S * s'_i; see (2)
3086 */
3087 if (W > 0 && w < W)
3088 wl = (w * tg->shares) / W;
977dda7c
PT
3089 else
3090 wl = tg->shares;
940959e9 3091
cf5f0acf
PZ
3092 /*
3093 * Per the above, wl is the new se->load.weight value; since
3094 * those are clipped to [MIN_SHARES, ...) do so now. See
3095 * calc_cfs_shares().
3096 */
977dda7c
PT
3097 if (wl < MIN_SHARES)
3098 wl = MIN_SHARES;
cf5f0acf
PZ
3099
3100 /*
3101 * wl = dw_i = S * (s'_i - s_i); see (3)
3102 */
977dda7c 3103 wl -= se->load.weight;
cf5f0acf
PZ
3104
3105 /*
3106 * Recursively apply this logic to all parent groups to compute
3107 * the final effective load change on the root group. Since
3108 * only the @tg group gets extra weight, all parent groups can
3109 * only redistribute existing shares. @wl is the shift in shares
3110 * resulting from this level per the above.
3111 */
4be9daaa 3112 wg = 0;
4be9daaa 3113 }
bb3469ac 3114
4be9daaa 3115 return wl;
bb3469ac
PZ
3116}
3117#else
4be9daaa 3118
83378269
PZ
3119static inline unsigned long effective_load(struct task_group *tg, int cpu,
3120 unsigned long wl, unsigned long wg)
4be9daaa 3121{
83378269 3122 return wl;
bb3469ac 3123}
4be9daaa 3124
bb3469ac
PZ
3125#endif
3126
c88d5910 3127static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3128{
e37b6a7b 3129 s64 this_load, load;
c88d5910 3130 int idx, this_cpu, prev_cpu;
098fb9db 3131 unsigned long tl_per_task;
c88d5910 3132 struct task_group *tg;
83378269 3133 unsigned long weight;
b3137bc8 3134 int balanced;
098fb9db 3135
c88d5910
PZ
3136 idx = sd->wake_idx;
3137 this_cpu = smp_processor_id();
3138 prev_cpu = task_cpu(p);
3139 load = source_load(prev_cpu, idx);
3140 this_load = target_load(this_cpu, idx);
098fb9db 3141
b3137bc8
MG
3142 /*
3143 * If sync wakeup then subtract the (maximum possible)
3144 * effect of the currently running task from the load
3145 * of the current CPU:
3146 */
83378269
PZ
3147 if (sync) {
3148 tg = task_group(current);
3149 weight = current->se.load.weight;
3150
c88d5910 3151 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3152 load += effective_load(tg, prev_cpu, 0, -weight);
3153 }
b3137bc8 3154
83378269
PZ
3155 tg = task_group(p);
3156 weight = p->se.load.weight;
b3137bc8 3157
71a29aa7
PZ
3158 /*
3159 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3160 * due to the sync cause above having dropped this_load to 0, we'll
3161 * always have an imbalance, but there's really nothing you can do
3162 * about that, so that's good too.
71a29aa7
PZ
3163 *
3164 * Otherwise check if either cpus are near enough in load to allow this
3165 * task to be woken on this_cpu.
3166 */
e37b6a7b
PT
3167 if (this_load > 0) {
3168 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3169
3170 this_eff_load = 100;
3171 this_eff_load *= power_of(prev_cpu);
3172 this_eff_load *= this_load +
3173 effective_load(tg, this_cpu, weight, weight);
3174
3175 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3176 prev_eff_load *= power_of(this_cpu);
3177 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3178
3179 balanced = this_eff_load <= prev_eff_load;
3180 } else
3181 balanced = true;
b3137bc8 3182
098fb9db 3183 /*
4ae7d5ce
IM
3184 * If the currently running task will sleep within
3185 * a reasonable amount of time then attract this newly
3186 * woken task:
098fb9db 3187 */
2fb7635c
PZ
3188 if (sync && balanced)
3189 return 1;
098fb9db 3190
41acab88 3191 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3192 tl_per_task = cpu_avg_load_per_task(this_cpu);
3193
c88d5910
PZ
3194 if (balanced ||
3195 (this_load <= load &&
3196 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3197 /*
3198 * This domain has SD_WAKE_AFFINE and
3199 * p is cache cold in this domain, and
3200 * there is no bad imbalance.
3201 */
c88d5910 3202 schedstat_inc(sd, ttwu_move_affine);
41acab88 3203 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3204
3205 return 1;
3206 }
3207 return 0;
3208}
3209
aaee1203
PZ
3210/*
3211 * find_idlest_group finds and returns the least busy CPU group within the
3212 * domain.
3213 */
3214static struct sched_group *
78e7ed53 3215find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3216 int this_cpu, int load_idx)
e7693a36 3217{
b3bd3de6 3218 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3219 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3220 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3221
aaee1203
PZ
3222 do {
3223 unsigned long load, avg_load;
3224 int local_group;
3225 int i;
e7693a36 3226
aaee1203
PZ
3227 /* Skip over this group if it has no CPUs allowed */
3228 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3229 tsk_cpus_allowed(p)))
aaee1203
PZ
3230 continue;
3231
3232 local_group = cpumask_test_cpu(this_cpu,
3233 sched_group_cpus(group));
3234
3235 /* Tally up the load of all CPUs in the group */
3236 avg_load = 0;
3237
3238 for_each_cpu(i, sched_group_cpus(group)) {
3239 /* Bias balancing toward cpus of our domain */
3240 if (local_group)
3241 load = source_load(i, load_idx);
3242 else
3243 load = target_load(i, load_idx);
3244
3245 avg_load += load;
3246 }
3247
3248 /* Adjust by relative CPU power of the group */
9c3f75cb 3249 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3250
3251 if (local_group) {
3252 this_load = avg_load;
aaee1203
PZ
3253 } else if (avg_load < min_load) {
3254 min_load = avg_load;
3255 idlest = group;
3256 }
3257 } while (group = group->next, group != sd->groups);
3258
3259 if (!idlest || 100*this_load < imbalance*min_load)
3260 return NULL;
3261 return idlest;
3262}
3263
3264/*
3265 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3266 */
3267static int
3268find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3269{
3270 unsigned long load, min_load = ULONG_MAX;
3271 int idlest = -1;
3272 int i;
3273
3274 /* Traverse only the allowed CPUs */
fa17b507 3275 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3276 load = weighted_cpuload(i);
3277
3278 if (load < min_load || (load == min_load && i == this_cpu)) {
3279 min_load = load;
3280 idlest = i;
e7693a36
GH
3281 }
3282 }
3283
aaee1203
PZ
3284 return idlest;
3285}
e7693a36 3286
a50bde51
PZ
3287/*
3288 * Try and locate an idle CPU in the sched_domain.
3289 */
99bd5e2f 3290static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3291{
99bd5e2f 3292 struct sched_domain *sd;
37407ea7 3293 struct sched_group *sg;
e0a79f52 3294 int i = task_cpu(p);
a50bde51 3295
e0a79f52
MG
3296 if (idle_cpu(target))
3297 return target;
99bd5e2f
SS
3298
3299 /*
e0a79f52 3300 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3301 */
e0a79f52
MG
3302 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3303 return i;
a50bde51
PZ
3304
3305 /*
37407ea7 3306 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3307 */
518cd623 3308 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3309 for_each_lower_domain(sd) {
37407ea7
LT
3310 sg = sd->groups;
3311 do {
3312 if (!cpumask_intersects(sched_group_cpus(sg),
3313 tsk_cpus_allowed(p)))
3314 goto next;
3315
3316 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3317 if (i == target || !idle_cpu(i))
37407ea7
LT
3318 goto next;
3319 }
970e1789 3320
37407ea7
LT
3321 target = cpumask_first_and(sched_group_cpus(sg),
3322 tsk_cpus_allowed(p));
3323 goto done;
3324next:
3325 sg = sg->next;
3326 } while (sg != sd->groups);
3327 }
3328done:
a50bde51
PZ
3329 return target;
3330}
3331
aaee1203
PZ
3332/*
3333 * sched_balance_self: balance the current task (running on cpu) in domains
3334 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3335 * SD_BALANCE_EXEC.
3336 *
3337 * Balance, ie. select the least loaded group.
3338 *
3339 * Returns the target CPU number, or the same CPU if no balancing is needed.
3340 *
3341 * preempt must be disabled.
3342 */
0017d735 3343static int
7608dec2 3344select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3345{
29cd8bae 3346 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3347 int cpu = smp_processor_id();
3348 int prev_cpu = task_cpu(p);
3349 int new_cpu = cpu;
99bd5e2f 3350 int want_affine = 0;
5158f4e4 3351 int sync = wake_flags & WF_SYNC;
c88d5910 3352
29baa747 3353 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3354 return prev_cpu;
3355
0763a660 3356 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3357 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3358 want_affine = 1;
3359 new_cpu = prev_cpu;
3360 }
aaee1203 3361
dce840a0 3362 rcu_read_lock();
aaee1203 3363 for_each_domain(cpu, tmp) {
e4f42888
PZ
3364 if (!(tmp->flags & SD_LOAD_BALANCE))
3365 continue;
3366
fe3bcfe1 3367 /*
99bd5e2f
SS
3368 * If both cpu and prev_cpu are part of this domain,
3369 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3370 */
99bd5e2f
SS
3371 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3372 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3373 affine_sd = tmp;
29cd8bae 3374 break;
f03542a7 3375 }
29cd8bae 3376
f03542a7 3377 if (tmp->flags & sd_flag)
29cd8bae
PZ
3378 sd = tmp;
3379 }
3380
8b911acd 3381 if (affine_sd) {
f03542a7 3382 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3383 prev_cpu = cpu;
3384
3385 new_cpu = select_idle_sibling(p, prev_cpu);
3386 goto unlock;
8b911acd 3387 }
e7693a36 3388
aaee1203 3389 while (sd) {
5158f4e4 3390 int load_idx = sd->forkexec_idx;
aaee1203 3391 struct sched_group *group;
c88d5910 3392 int weight;
098fb9db 3393
0763a660 3394 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3395 sd = sd->child;
3396 continue;
3397 }
098fb9db 3398
5158f4e4
PZ
3399 if (sd_flag & SD_BALANCE_WAKE)
3400 load_idx = sd->wake_idx;
098fb9db 3401
5158f4e4 3402 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3403 if (!group) {
3404 sd = sd->child;
3405 continue;
3406 }
4ae7d5ce 3407
d7c33c49 3408 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3409 if (new_cpu == -1 || new_cpu == cpu) {
3410 /* Now try balancing at a lower domain level of cpu */
3411 sd = sd->child;
3412 continue;
e7693a36 3413 }
aaee1203
PZ
3414
3415 /* Now try balancing at a lower domain level of new_cpu */
3416 cpu = new_cpu;
669c55e9 3417 weight = sd->span_weight;
aaee1203
PZ
3418 sd = NULL;
3419 for_each_domain(cpu, tmp) {
669c55e9 3420 if (weight <= tmp->span_weight)
aaee1203 3421 break;
0763a660 3422 if (tmp->flags & sd_flag)
aaee1203
PZ
3423 sd = tmp;
3424 }
3425 /* while loop will break here if sd == NULL */
e7693a36 3426 }
dce840a0
PZ
3427unlock:
3428 rcu_read_unlock();
e7693a36 3429
c88d5910 3430 return new_cpu;
e7693a36 3431}
0a74bef8 3432
f4e26b12
PT
3433/*
3434 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3435 * removed when useful for applications beyond shares distribution (e.g.
3436 * load-balance).
3437 */
3438#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8
PT
3439/*
3440 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3441 * cfs_rq_of(p) references at time of call are still valid and identify the
3442 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3443 * other assumptions, including the state of rq->lock, should be made.
3444 */
3445static void
3446migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3447{
aff3e498
PT
3448 struct sched_entity *se = &p->se;
3449 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3450
3451 /*
3452 * Load tracking: accumulate removed load so that it can be processed
3453 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3454 * to blocked load iff they have a positive decay-count. It can never
3455 * be negative here since on-rq tasks have decay-count == 0.
3456 */
3457 if (se->avg.decay_count) {
3458 se->avg.decay_count = -__synchronize_entity_decay(se);
3459 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3460 }
0a74bef8 3461}
f4e26b12 3462#endif
e7693a36
GH
3463#endif /* CONFIG_SMP */
3464
e52fb7c0
PZ
3465static unsigned long
3466wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3467{
3468 unsigned long gran = sysctl_sched_wakeup_granularity;
3469
3470 /*
e52fb7c0
PZ
3471 * Since its curr running now, convert the gran from real-time
3472 * to virtual-time in his units.
13814d42
MG
3473 *
3474 * By using 'se' instead of 'curr' we penalize light tasks, so
3475 * they get preempted easier. That is, if 'se' < 'curr' then
3476 * the resulting gran will be larger, therefore penalizing the
3477 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3478 * be smaller, again penalizing the lighter task.
3479 *
3480 * This is especially important for buddies when the leftmost
3481 * task is higher priority than the buddy.
0bbd3336 3482 */
f4ad9bd2 3483 return calc_delta_fair(gran, se);
0bbd3336
PZ
3484}
3485
464b7527
PZ
3486/*
3487 * Should 'se' preempt 'curr'.
3488 *
3489 * |s1
3490 * |s2
3491 * |s3
3492 * g
3493 * |<--->|c
3494 *
3495 * w(c, s1) = -1
3496 * w(c, s2) = 0
3497 * w(c, s3) = 1
3498 *
3499 */
3500static int
3501wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3502{
3503 s64 gran, vdiff = curr->vruntime - se->vruntime;
3504
3505 if (vdiff <= 0)
3506 return -1;
3507
e52fb7c0 3508 gran = wakeup_gran(curr, se);
464b7527
PZ
3509 if (vdiff > gran)
3510 return 1;
3511
3512 return 0;
3513}
3514
02479099
PZ
3515static void set_last_buddy(struct sched_entity *se)
3516{
69c80f3e
VP
3517 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3518 return;
3519
3520 for_each_sched_entity(se)
3521 cfs_rq_of(se)->last = se;
02479099
PZ
3522}
3523
3524static void set_next_buddy(struct sched_entity *se)
3525{
69c80f3e
VP
3526 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3527 return;
3528
3529 for_each_sched_entity(se)
3530 cfs_rq_of(se)->next = se;
02479099
PZ
3531}
3532
ac53db59
RR
3533static void set_skip_buddy(struct sched_entity *se)
3534{
69c80f3e
VP
3535 for_each_sched_entity(se)
3536 cfs_rq_of(se)->skip = se;
ac53db59
RR
3537}
3538
bf0f6f24
IM
3539/*
3540 * Preempt the current task with a newly woken task if needed:
3541 */
5a9b86f6 3542static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3543{
3544 struct task_struct *curr = rq->curr;
8651a86c 3545 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3546 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3547 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3548 int next_buddy_marked = 0;
bf0f6f24 3549
4ae7d5ce
IM
3550 if (unlikely(se == pse))
3551 return;
3552
5238cdd3 3553 /*
ddcdf6e7 3554 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3555 * unconditionally check_prempt_curr() after an enqueue (which may have
3556 * lead to a throttle). This both saves work and prevents false
3557 * next-buddy nomination below.
3558 */
3559 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3560 return;
3561
2f36825b 3562 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3563 set_next_buddy(pse);
2f36825b
VP
3564 next_buddy_marked = 1;
3565 }
57fdc26d 3566
aec0a514
BR
3567 /*
3568 * We can come here with TIF_NEED_RESCHED already set from new task
3569 * wake up path.
5238cdd3
PT
3570 *
3571 * Note: this also catches the edge-case of curr being in a throttled
3572 * group (e.g. via set_curr_task), since update_curr() (in the
3573 * enqueue of curr) will have resulted in resched being set. This
3574 * prevents us from potentially nominating it as a false LAST_BUDDY
3575 * below.
aec0a514
BR
3576 */
3577 if (test_tsk_need_resched(curr))
3578 return;
3579
a2f5c9ab
DH
3580 /* Idle tasks are by definition preempted by non-idle tasks. */
3581 if (unlikely(curr->policy == SCHED_IDLE) &&
3582 likely(p->policy != SCHED_IDLE))
3583 goto preempt;
3584
91c234b4 3585 /*
a2f5c9ab
DH
3586 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3587 * is driven by the tick):
91c234b4 3588 */
8ed92e51 3589 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3590 return;
bf0f6f24 3591
464b7527 3592 find_matching_se(&se, &pse);
9bbd7374 3593 update_curr(cfs_rq_of(se));
002f128b 3594 BUG_ON(!pse);
2f36825b
VP
3595 if (wakeup_preempt_entity(se, pse) == 1) {
3596 /*
3597 * Bias pick_next to pick the sched entity that is
3598 * triggering this preemption.
3599 */
3600 if (!next_buddy_marked)
3601 set_next_buddy(pse);
3a7e73a2 3602 goto preempt;
2f36825b 3603 }
464b7527 3604
3a7e73a2 3605 return;
a65ac745 3606
3a7e73a2
PZ
3607preempt:
3608 resched_task(curr);
3609 /*
3610 * Only set the backward buddy when the current task is still
3611 * on the rq. This can happen when a wakeup gets interleaved
3612 * with schedule on the ->pre_schedule() or idle_balance()
3613 * point, either of which can * drop the rq lock.
3614 *
3615 * Also, during early boot the idle thread is in the fair class,
3616 * for obvious reasons its a bad idea to schedule back to it.
3617 */
3618 if (unlikely(!se->on_rq || curr == rq->idle))
3619 return;
3620
3621 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3622 set_last_buddy(se);
bf0f6f24
IM
3623}
3624
fb8d4724 3625static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3626{
8f4d37ec 3627 struct task_struct *p;
bf0f6f24
IM
3628 struct cfs_rq *cfs_rq = &rq->cfs;
3629 struct sched_entity *se;
3630
36ace27e 3631 if (!cfs_rq->nr_running)
bf0f6f24
IM
3632 return NULL;
3633
3634 do {
9948f4b2 3635 se = pick_next_entity(cfs_rq);
f4b6755f 3636 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3637 cfs_rq = group_cfs_rq(se);
3638 } while (cfs_rq);
3639
8f4d37ec 3640 p = task_of(se);
b39e66ea
MG
3641 if (hrtick_enabled(rq))
3642 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3643
3644 return p;
bf0f6f24
IM
3645}
3646
3647/*
3648 * Account for a descheduled task:
3649 */
31ee529c 3650static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3651{
3652 struct sched_entity *se = &prev->se;
3653 struct cfs_rq *cfs_rq;
3654
3655 for_each_sched_entity(se) {
3656 cfs_rq = cfs_rq_of(se);
ab6cde26 3657 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3658 }
3659}
3660
ac53db59
RR
3661/*
3662 * sched_yield() is very simple
3663 *
3664 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3665 */
3666static void yield_task_fair(struct rq *rq)
3667{
3668 struct task_struct *curr = rq->curr;
3669 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3670 struct sched_entity *se = &curr->se;
3671
3672 /*
3673 * Are we the only task in the tree?
3674 */
3675 if (unlikely(rq->nr_running == 1))
3676 return;
3677
3678 clear_buddies(cfs_rq, se);
3679
3680 if (curr->policy != SCHED_BATCH) {
3681 update_rq_clock(rq);
3682 /*
3683 * Update run-time statistics of the 'current'.
3684 */
3685 update_curr(cfs_rq);
916671c0
MG
3686 /*
3687 * Tell update_rq_clock() that we've just updated,
3688 * so we don't do microscopic update in schedule()
3689 * and double the fastpath cost.
3690 */
3691 rq->skip_clock_update = 1;
ac53db59
RR
3692 }
3693
3694 set_skip_buddy(se);
3695}
3696
d95f4122
MG
3697static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3698{
3699 struct sched_entity *se = &p->se;
3700
5238cdd3
PT
3701 /* throttled hierarchies are not runnable */
3702 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3703 return false;
3704
3705 /* Tell the scheduler that we'd really like pse to run next. */
3706 set_next_buddy(se);
3707
d95f4122
MG
3708 yield_task_fair(rq);
3709
3710 return true;
3711}
3712
681f3e68 3713#ifdef CONFIG_SMP
bf0f6f24 3714/**************************************************
e9c84cb8
PZ
3715 * Fair scheduling class load-balancing methods.
3716 *
3717 * BASICS
3718 *
3719 * The purpose of load-balancing is to achieve the same basic fairness the
3720 * per-cpu scheduler provides, namely provide a proportional amount of compute
3721 * time to each task. This is expressed in the following equation:
3722 *
3723 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3724 *
3725 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3726 * W_i,0 is defined as:
3727 *
3728 * W_i,0 = \Sum_j w_i,j (2)
3729 *
3730 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3731 * is derived from the nice value as per prio_to_weight[].
3732 *
3733 * The weight average is an exponential decay average of the instantaneous
3734 * weight:
3735 *
3736 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3737 *
3738 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3739 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3740 * can also include other factors [XXX].
3741 *
3742 * To achieve this balance we define a measure of imbalance which follows
3743 * directly from (1):
3744 *
3745 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3746 *
3747 * We them move tasks around to minimize the imbalance. In the continuous
3748 * function space it is obvious this converges, in the discrete case we get
3749 * a few fun cases generally called infeasible weight scenarios.
3750 *
3751 * [XXX expand on:
3752 * - infeasible weights;
3753 * - local vs global optima in the discrete case. ]
3754 *
3755 *
3756 * SCHED DOMAINS
3757 *
3758 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3759 * for all i,j solution, we create a tree of cpus that follows the hardware
3760 * topology where each level pairs two lower groups (or better). This results
3761 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3762 * tree to only the first of the previous level and we decrease the frequency
3763 * of load-balance at each level inv. proportional to the number of cpus in
3764 * the groups.
3765 *
3766 * This yields:
3767 *
3768 * log_2 n 1 n
3769 * \Sum { --- * --- * 2^i } = O(n) (5)
3770 * i = 0 2^i 2^i
3771 * `- size of each group
3772 * | | `- number of cpus doing load-balance
3773 * | `- freq
3774 * `- sum over all levels
3775 *
3776 * Coupled with a limit on how many tasks we can migrate every balance pass,
3777 * this makes (5) the runtime complexity of the balancer.
3778 *
3779 * An important property here is that each CPU is still (indirectly) connected
3780 * to every other cpu in at most O(log n) steps:
3781 *
3782 * The adjacency matrix of the resulting graph is given by:
3783 *
3784 * log_2 n
3785 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3786 * k = 0
3787 *
3788 * And you'll find that:
3789 *
3790 * A^(log_2 n)_i,j != 0 for all i,j (7)
3791 *
3792 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3793 * The task movement gives a factor of O(m), giving a convergence complexity
3794 * of:
3795 *
3796 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3797 *
3798 *
3799 * WORK CONSERVING
3800 *
3801 * In order to avoid CPUs going idle while there's still work to do, new idle
3802 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3803 * tree itself instead of relying on other CPUs to bring it work.
3804 *
3805 * This adds some complexity to both (5) and (8) but it reduces the total idle
3806 * time.
3807 *
3808 * [XXX more?]
3809 *
3810 *
3811 * CGROUPS
3812 *
3813 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3814 *
3815 * s_k,i
3816 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3817 * S_k
3818 *
3819 * Where
3820 *
3821 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3822 *
3823 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3824 *
3825 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3826 * property.
3827 *
3828 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3829 * rewrite all of this once again.]
3830 */
bf0f6f24 3831
ed387b78
HS
3832static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3833
ddcdf6e7 3834#define LBF_ALL_PINNED 0x01
367456c7 3835#define LBF_NEED_BREAK 0x02
88b8dac0 3836#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3837
3838struct lb_env {
3839 struct sched_domain *sd;
3840
ddcdf6e7 3841 struct rq *src_rq;
85c1e7da 3842 int src_cpu;
ddcdf6e7
PZ
3843
3844 int dst_cpu;
3845 struct rq *dst_rq;
3846
88b8dac0
SV
3847 struct cpumask *dst_grpmask;
3848 int new_dst_cpu;
ddcdf6e7 3849 enum cpu_idle_type idle;
bd939f45 3850 long imbalance;
b9403130
MW
3851 /* The set of CPUs under consideration for load-balancing */
3852 struct cpumask *cpus;
3853
ddcdf6e7 3854 unsigned int flags;
367456c7
PZ
3855
3856 unsigned int loop;
3857 unsigned int loop_break;
3858 unsigned int loop_max;
ddcdf6e7
PZ
3859};
3860
1e3c88bd 3861/*
ddcdf6e7 3862 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3863 * Both runqueues must be locked.
3864 */
ddcdf6e7 3865static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3866{
ddcdf6e7
PZ
3867 deactivate_task(env->src_rq, p, 0);
3868 set_task_cpu(p, env->dst_cpu);
3869 activate_task(env->dst_rq, p, 0);
3870 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3871}
3872
029632fb
PZ
3873/*
3874 * Is this task likely cache-hot:
3875 */
3876static int
3877task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3878{
3879 s64 delta;
3880
3881 if (p->sched_class != &fair_sched_class)
3882 return 0;
3883
3884 if (unlikely(p->policy == SCHED_IDLE))
3885 return 0;
3886
3887 /*
3888 * Buddy candidates are cache hot:
3889 */
3890 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3891 (&p->se == cfs_rq_of(&p->se)->next ||
3892 &p->se == cfs_rq_of(&p->se)->last))
3893 return 1;
3894
3895 if (sysctl_sched_migration_cost == -1)
3896 return 1;
3897 if (sysctl_sched_migration_cost == 0)
3898 return 0;
3899
3900 delta = now - p->se.exec_start;
3901
3902 return delta < (s64)sysctl_sched_migration_cost;
3903}
3904
1e3c88bd
PZ
3905/*
3906 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3907 */
3908static
8e45cb54 3909int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3910{
3911 int tsk_cache_hot = 0;
3912 /*
3913 * We do not migrate tasks that are:
d3198084 3914 * 1) throttled_lb_pair, or
1e3c88bd 3915 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
3916 * 3) running (obviously), or
3917 * 4) are cache-hot on their current CPU.
1e3c88bd 3918 */
d3198084
JK
3919 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3920 return 0;
3921
ddcdf6e7 3922 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 3923 int cpu;
88b8dac0 3924
41acab88 3925 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3926
3927 /*
3928 * Remember if this task can be migrated to any other cpu in
3929 * our sched_group. We may want to revisit it if we couldn't
3930 * meet load balance goals by pulling other tasks on src_cpu.
3931 *
3932 * Also avoid computing new_dst_cpu if we have already computed
3933 * one in current iteration.
3934 */
3935 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3936 return 0;
3937
e02e60c1
JK
3938 /* Prevent to re-select dst_cpu via env's cpus */
3939 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3940 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3941 env->flags |= LBF_SOME_PINNED;
3942 env->new_dst_cpu = cpu;
3943 break;
3944 }
88b8dac0 3945 }
e02e60c1 3946
1e3c88bd
PZ
3947 return 0;
3948 }
88b8dac0
SV
3949
3950 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3951 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3952
ddcdf6e7 3953 if (task_running(env->src_rq, p)) {
41acab88 3954 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3955 return 0;
3956 }
3957
3958 /*
3959 * Aggressive migration if:
3960 * 1) task is cache cold, or
3961 * 2) too many balance attempts have failed.
3962 */
3963
78becc27 3964 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
1e3c88bd 3965 if (!tsk_cache_hot ||
8e45cb54 3966 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 3967
1e3c88bd 3968 if (tsk_cache_hot) {
8e45cb54 3969 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3970 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 3971 }
4e2dcb73 3972
1e3c88bd
PZ
3973 return 1;
3974 }
3975
4e2dcb73
ZH
3976 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3977 return 0;
1e3c88bd
PZ
3978}
3979
897c395f
PZ
3980/*
3981 * move_one_task tries to move exactly one task from busiest to this_rq, as
3982 * part of active balancing operations within "domain".
3983 * Returns 1 if successful and 0 otherwise.
3984 *
3985 * Called with both runqueues locked.
3986 */
8e45cb54 3987static int move_one_task(struct lb_env *env)
897c395f
PZ
3988{
3989 struct task_struct *p, *n;
897c395f 3990
367456c7 3991 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
3992 if (!can_migrate_task(p, env))
3993 continue;
897c395f 3994
367456c7
PZ
3995 move_task(p, env);
3996 /*
3997 * Right now, this is only the second place move_task()
3998 * is called, so we can safely collect move_task()
3999 * stats here rather than inside move_task().
4000 */
4001 schedstat_inc(env->sd, lb_gained[env->idle]);
4002 return 1;
897c395f 4003 }
897c395f
PZ
4004 return 0;
4005}
4006
367456c7
PZ
4007static unsigned long task_h_load(struct task_struct *p);
4008
eb95308e
PZ
4009static const unsigned int sched_nr_migrate_break = 32;
4010
5d6523eb 4011/*
bd939f45 4012 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4013 * this_rq, as part of a balancing operation within domain "sd".
4014 * Returns 1 if successful and 0 otherwise.
4015 *
4016 * Called with both runqueues locked.
4017 */
4018static int move_tasks(struct lb_env *env)
1e3c88bd 4019{
5d6523eb
PZ
4020 struct list_head *tasks = &env->src_rq->cfs_tasks;
4021 struct task_struct *p;
367456c7
PZ
4022 unsigned long load;
4023 int pulled = 0;
1e3c88bd 4024
bd939f45 4025 if (env->imbalance <= 0)
5d6523eb 4026 return 0;
1e3c88bd 4027
5d6523eb
PZ
4028 while (!list_empty(tasks)) {
4029 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4030
367456c7
PZ
4031 env->loop++;
4032 /* We've more or less seen every task there is, call it quits */
5d6523eb 4033 if (env->loop > env->loop_max)
367456c7 4034 break;
5d6523eb
PZ
4035
4036 /* take a breather every nr_migrate tasks */
367456c7 4037 if (env->loop > env->loop_break) {
eb95308e 4038 env->loop_break += sched_nr_migrate_break;
8e45cb54 4039 env->flags |= LBF_NEED_BREAK;
ee00e66f 4040 break;
a195f004 4041 }
1e3c88bd 4042
d3198084 4043 if (!can_migrate_task(p, env))
367456c7
PZ
4044 goto next;
4045
4046 load = task_h_load(p);
5d6523eb 4047
eb95308e 4048 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4049 goto next;
4050
bd939f45 4051 if ((load / 2) > env->imbalance)
367456c7 4052 goto next;
1e3c88bd 4053
ddcdf6e7 4054 move_task(p, env);
ee00e66f 4055 pulled++;
bd939f45 4056 env->imbalance -= load;
1e3c88bd
PZ
4057
4058#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4059 /*
4060 * NEWIDLE balancing is a source of latency, so preemptible
4061 * kernels will stop after the first task is pulled to minimize
4062 * the critical section.
4063 */
5d6523eb 4064 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4065 break;
1e3c88bd
PZ
4066#endif
4067
ee00e66f
PZ
4068 /*
4069 * We only want to steal up to the prescribed amount of
4070 * weighted load.
4071 */
bd939f45 4072 if (env->imbalance <= 0)
ee00e66f 4073 break;
367456c7
PZ
4074
4075 continue;
4076next:
5d6523eb 4077 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4078 }
5d6523eb 4079
1e3c88bd 4080 /*
ddcdf6e7
PZ
4081 * Right now, this is one of only two places move_task() is called,
4082 * so we can safely collect move_task() stats here rather than
4083 * inside move_task().
1e3c88bd 4084 */
8e45cb54 4085 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4086
5d6523eb 4087 return pulled;
1e3c88bd
PZ
4088}
4089
230059de 4090#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4091/*
4092 * update tg->load_weight by folding this cpu's load_avg
4093 */
48a16753 4094static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4095{
48a16753
PT
4096 struct sched_entity *se = tg->se[cpu];
4097 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4098
48a16753
PT
4099 /* throttled entities do not contribute to load */
4100 if (throttled_hierarchy(cfs_rq))
4101 return;
9e3081ca 4102
aff3e498 4103 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4104
82958366
PT
4105 if (se) {
4106 update_entity_load_avg(se, 1);
4107 /*
4108 * We pivot on our runnable average having decayed to zero for
4109 * list removal. This generally implies that all our children
4110 * have also been removed (modulo rounding error or bandwidth
4111 * control); however, such cases are rare and we can fix these
4112 * at enqueue.
4113 *
4114 * TODO: fix up out-of-order children on enqueue.
4115 */
4116 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4117 list_del_leaf_cfs_rq(cfs_rq);
4118 } else {
48a16753 4119 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4120 update_rq_runnable_avg(rq, rq->nr_running);
4121 }
9e3081ca
PZ
4122}
4123
48a16753 4124static void update_blocked_averages(int cpu)
9e3081ca 4125{
9e3081ca 4126 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4127 struct cfs_rq *cfs_rq;
4128 unsigned long flags;
9e3081ca 4129
48a16753
PT
4130 raw_spin_lock_irqsave(&rq->lock, flags);
4131 update_rq_clock(rq);
9763b67f
PZ
4132 /*
4133 * Iterates the task_group tree in a bottom up fashion, see
4134 * list_add_leaf_cfs_rq() for details.
4135 */
64660c86 4136 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4137 /*
4138 * Note: We may want to consider periodically releasing
4139 * rq->lock about these updates so that creating many task
4140 * groups does not result in continually extending hold time.
4141 */
4142 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4143 }
48a16753
PT
4144
4145 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4146}
4147
9763b67f
PZ
4148/*
4149 * Compute the cpu's hierarchical load factor for each task group.
4150 * This needs to be done in a top-down fashion because the load of a child
4151 * group is a fraction of its parents load.
4152 */
4153static int tg_load_down(struct task_group *tg, void *data)
4154{
4155 unsigned long load;
4156 long cpu = (long)data;
4157
4158 if (!tg->parent) {
4159 load = cpu_rq(cpu)->load.weight;
4160 } else {
4161 load = tg->parent->cfs_rq[cpu]->h_load;
4162 load *= tg->se[cpu]->load.weight;
4163 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4164 }
4165
4166 tg->cfs_rq[cpu]->h_load = load;
4167
4168 return 0;
4169}
4170
4171static void update_h_load(long cpu)
4172{
a35b6466
PZ
4173 struct rq *rq = cpu_rq(cpu);
4174 unsigned long now = jiffies;
4175
4176 if (rq->h_load_throttle == now)
4177 return;
4178
4179 rq->h_load_throttle = now;
4180
367456c7 4181 rcu_read_lock();
9763b67f 4182 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 4183 rcu_read_unlock();
9763b67f
PZ
4184}
4185
367456c7 4186static unsigned long task_h_load(struct task_struct *p)
230059de 4187{
367456c7
PZ
4188 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4189 unsigned long load;
230059de 4190
367456c7
PZ
4191 load = p->se.load.weight;
4192 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 4193
367456c7 4194 return load;
230059de
PZ
4195}
4196#else
48a16753 4197static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4198{
4199}
4200
367456c7 4201static inline void update_h_load(long cpu)
230059de 4202{
230059de 4203}
230059de 4204
367456c7 4205static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4206{
367456c7 4207 return p->se.load.weight;
1e3c88bd 4208}
230059de 4209#endif
1e3c88bd 4210
1e3c88bd
PZ
4211/********** Helpers for find_busiest_group ************************/
4212/*
4213 * sd_lb_stats - Structure to store the statistics of a sched_domain
4214 * during load balancing.
4215 */
4216struct sd_lb_stats {
4217 struct sched_group *busiest; /* Busiest group in this sd */
4218 struct sched_group *this; /* Local group in this sd */
4219 unsigned long total_load; /* Total load of all groups in sd */
4220 unsigned long total_pwr; /* Total power of all groups in sd */
4221 unsigned long avg_load; /* Average load across all groups in sd */
4222
4223 /** Statistics of this group */
4224 unsigned long this_load;
4225 unsigned long this_load_per_task;
4226 unsigned long this_nr_running;
fab47622 4227 unsigned long this_has_capacity;
aae6d3dd 4228 unsigned int this_idle_cpus;
1e3c88bd
PZ
4229
4230 /* Statistics of the busiest group */
aae6d3dd 4231 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
4232 unsigned long max_load;
4233 unsigned long busiest_load_per_task;
4234 unsigned long busiest_nr_running;
dd5feea1 4235 unsigned long busiest_group_capacity;
fab47622 4236 unsigned long busiest_has_capacity;
aae6d3dd 4237 unsigned int busiest_group_weight;
1e3c88bd
PZ
4238
4239 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
4240};
4241
4242/*
4243 * sg_lb_stats - stats of a sched_group required for load_balancing
4244 */
4245struct sg_lb_stats {
4246 unsigned long avg_load; /*Avg load across the CPUs of the group */
4247 unsigned long group_load; /* Total load over the CPUs of the group */
4248 unsigned long sum_nr_running; /* Nr tasks running in the group */
4249 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4250 unsigned long group_capacity;
aae6d3dd
SS
4251 unsigned long idle_cpus;
4252 unsigned long group_weight;
1e3c88bd 4253 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4254 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4255};
4256
1e3c88bd
PZ
4257/**
4258 * get_sd_load_idx - Obtain the load index for a given sched domain.
4259 * @sd: The sched_domain whose load_idx is to be obtained.
4260 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4261 */
4262static inline int get_sd_load_idx(struct sched_domain *sd,
4263 enum cpu_idle_type idle)
4264{
4265 int load_idx;
4266
4267 switch (idle) {
4268 case CPU_NOT_IDLE:
4269 load_idx = sd->busy_idx;
4270 break;
4271
4272 case CPU_NEWLY_IDLE:
4273 load_idx = sd->newidle_idx;
4274 break;
4275 default:
4276 load_idx = sd->idle_idx;
4277 break;
4278 }
4279
4280 return load_idx;
4281}
4282
15f803c9 4283static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 4284{
1399fa78 4285 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4286}
4287
4288unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4289{
4290 return default_scale_freq_power(sd, cpu);
4291}
4292
15f803c9 4293static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 4294{
669c55e9 4295 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4296 unsigned long smt_gain = sd->smt_gain;
4297
4298 smt_gain /= weight;
4299
4300 return smt_gain;
4301}
4302
4303unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4304{
4305 return default_scale_smt_power(sd, cpu);
4306}
4307
15f803c9 4308static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
4309{
4310 struct rq *rq = cpu_rq(cpu);
b654f7de 4311 u64 total, available, age_stamp, avg;
1e3c88bd 4312
b654f7de
PZ
4313 /*
4314 * Since we're reading these variables without serialization make sure
4315 * we read them once before doing sanity checks on them.
4316 */
4317 age_stamp = ACCESS_ONCE(rq->age_stamp);
4318 avg = ACCESS_ONCE(rq->rt_avg);
4319
78becc27 4320 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 4321
b654f7de 4322 if (unlikely(total < avg)) {
aa483808
VP
4323 /* Ensures that power won't end up being negative */
4324 available = 0;
4325 } else {
b654f7de 4326 available = total - avg;
aa483808 4327 }
1e3c88bd 4328
1399fa78
NR
4329 if (unlikely((s64)total < SCHED_POWER_SCALE))
4330 total = SCHED_POWER_SCALE;
1e3c88bd 4331
1399fa78 4332 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4333
4334 return div_u64(available, total);
4335}
4336
4337static void update_cpu_power(struct sched_domain *sd, int cpu)
4338{
669c55e9 4339 unsigned long weight = sd->span_weight;
1399fa78 4340 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4341 struct sched_group *sdg = sd->groups;
4342
1e3c88bd
PZ
4343 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4344 if (sched_feat(ARCH_POWER))
4345 power *= arch_scale_smt_power(sd, cpu);
4346 else
4347 power *= default_scale_smt_power(sd, cpu);
4348
1399fa78 4349 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4350 }
4351
9c3f75cb 4352 sdg->sgp->power_orig = power;
9d5efe05
SV
4353
4354 if (sched_feat(ARCH_POWER))
4355 power *= arch_scale_freq_power(sd, cpu);
4356 else
4357 power *= default_scale_freq_power(sd, cpu);
4358
1399fa78 4359 power >>= SCHED_POWER_SHIFT;
9d5efe05 4360
1e3c88bd 4361 power *= scale_rt_power(cpu);
1399fa78 4362 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4363
4364 if (!power)
4365 power = 1;
4366
e51fd5e2 4367 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4368 sdg->sgp->power = power;
1e3c88bd
PZ
4369}
4370
029632fb 4371void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4372{
4373 struct sched_domain *child = sd->child;
4374 struct sched_group *group, *sdg = sd->groups;
4375 unsigned long power;
4ec4412e
VG
4376 unsigned long interval;
4377
4378 interval = msecs_to_jiffies(sd->balance_interval);
4379 interval = clamp(interval, 1UL, max_load_balance_interval);
4380 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4381
4382 if (!child) {
4383 update_cpu_power(sd, cpu);
4384 return;
4385 }
4386
4387 power = 0;
4388
74a5ce20
PZ
4389 if (child->flags & SD_OVERLAP) {
4390 /*
4391 * SD_OVERLAP domains cannot assume that child groups
4392 * span the current group.
4393 */
4394
4395 for_each_cpu(cpu, sched_group_cpus(sdg))
4396 power += power_of(cpu);
4397 } else {
4398 /*
4399 * !SD_OVERLAP domains can assume that child groups
4400 * span the current group.
4401 */
4402
4403 group = child->groups;
4404 do {
4405 power += group->sgp->power;
4406 group = group->next;
4407 } while (group != child->groups);
4408 }
1e3c88bd 4409
c3decf0d 4410 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
4411}
4412
9d5efe05
SV
4413/*
4414 * Try and fix up capacity for tiny siblings, this is needed when
4415 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4416 * which on its own isn't powerful enough.
4417 *
4418 * See update_sd_pick_busiest() and check_asym_packing().
4419 */
4420static inline int
4421fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4422{
4423 /*
1399fa78 4424 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4425 */
a6c75f2f 4426 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4427 return 0;
4428
4429 /*
4430 * If ~90% of the cpu_power is still there, we're good.
4431 */
9c3f75cb 4432 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4433 return 1;
4434
4435 return 0;
4436}
4437
1e3c88bd
PZ
4438/**
4439 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4440 * @env: The load balancing environment.
1e3c88bd 4441 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4442 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4443 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4444 * @balance: Should we balance.
4445 * @sgs: variable to hold the statistics for this group.
4446 */
bd939f45
PZ
4447static inline void update_sg_lb_stats(struct lb_env *env,
4448 struct sched_group *group, int load_idx,
b9403130 4449 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 4450{
e44bc5c5
PZ
4451 unsigned long nr_running, max_nr_running, min_nr_running;
4452 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 4453 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 4454 unsigned long avg_load_per_task = 0;
bd939f45 4455 int i;
1e3c88bd 4456
871e35bc 4457 if (local_group)
c1174876 4458 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
4459
4460 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
4461 max_cpu_load = 0;
4462 min_cpu_load = ~0UL;
2582f0eb 4463 max_nr_running = 0;
e44bc5c5 4464 min_nr_running = ~0UL;
1e3c88bd 4465
b9403130 4466 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4467 struct rq *rq = cpu_rq(i);
4468
e44bc5c5
PZ
4469 nr_running = rq->nr_running;
4470
1e3c88bd
PZ
4471 /* Bias balancing toward cpus of our domain */
4472 if (local_group) {
c1174876
PZ
4473 if (idle_cpu(i) && !first_idle_cpu &&
4474 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 4475 first_idle_cpu = 1;
1e3c88bd
PZ
4476 balance_cpu = i;
4477 }
04f733b4
PZ
4478
4479 load = target_load(i, load_idx);
1e3c88bd
PZ
4480 } else {
4481 load = source_load(i, load_idx);
e44bc5c5 4482 if (load > max_cpu_load)
1e3c88bd
PZ
4483 max_cpu_load = load;
4484 if (min_cpu_load > load)
4485 min_cpu_load = load;
e44bc5c5
PZ
4486
4487 if (nr_running > max_nr_running)
4488 max_nr_running = nr_running;
4489 if (min_nr_running > nr_running)
4490 min_nr_running = nr_running;
1e3c88bd
PZ
4491 }
4492
4493 sgs->group_load += load;
e44bc5c5 4494 sgs->sum_nr_running += nr_running;
1e3c88bd 4495 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4496 if (idle_cpu(i))
4497 sgs->idle_cpus++;
1e3c88bd
PZ
4498 }
4499
4500 /*
4501 * First idle cpu or the first cpu(busiest) in this sched group
4502 * is eligible for doing load balancing at this and above
4503 * domains. In the newly idle case, we will allow all the cpu's
4504 * to do the newly idle load balance.
4505 */
4ec4412e 4506 if (local_group) {
bd939f45 4507 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 4508 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
4509 *balance = 0;
4510 return;
4511 }
bd939f45 4512 update_group_power(env->sd, env->dst_cpu);
4ec4412e 4513 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 4514 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
4515 }
4516
4517 /* Adjust by relative CPU power of the group */
9c3f75cb 4518 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 4519
1e3c88bd
PZ
4520 /*
4521 * Consider the group unbalanced when the imbalance is larger
866ab43e 4522 * than the average weight of a task.
1e3c88bd
PZ
4523 *
4524 * APZ: with cgroup the avg task weight can vary wildly and
4525 * might not be a suitable number - should we keep a
4526 * normalized nr_running number somewhere that negates
4527 * the hierarchy?
4528 */
dd5feea1
SS
4529 if (sgs->sum_nr_running)
4530 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4531
e44bc5c5
PZ
4532 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4533 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
4534 sgs->group_imb = 1;
4535
9c3f75cb 4536 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 4537 SCHED_POWER_SCALE);
9d5efe05 4538 if (!sgs->group_capacity)
bd939f45 4539 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 4540 sgs->group_weight = group->group_weight;
fab47622
NR
4541
4542 if (sgs->group_capacity > sgs->sum_nr_running)
4543 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4544}
4545
532cb4c4
MN
4546/**
4547 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4548 * @env: The load balancing environment.
532cb4c4
MN
4549 * @sds: sched_domain statistics
4550 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4551 * @sgs: sched_group statistics
532cb4c4
MN
4552 *
4553 * Determine if @sg is a busier group than the previously selected
4554 * busiest group.
4555 */
bd939f45 4556static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4557 struct sd_lb_stats *sds,
4558 struct sched_group *sg,
bd939f45 4559 struct sg_lb_stats *sgs)
532cb4c4
MN
4560{
4561 if (sgs->avg_load <= sds->max_load)
4562 return false;
4563
4564 if (sgs->sum_nr_running > sgs->group_capacity)
4565 return true;
4566
4567 if (sgs->group_imb)
4568 return true;
4569
4570 /*
4571 * ASYM_PACKING needs to move all the work to the lowest
4572 * numbered CPUs in the group, therefore mark all groups
4573 * higher than ourself as busy.
4574 */
bd939f45
PZ
4575 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4576 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4577 if (!sds->busiest)
4578 return true;
4579
4580 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4581 return true;
4582 }
4583
4584 return false;
4585}
4586
1e3c88bd 4587/**
461819ac 4588 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4589 * @env: The load balancing environment.
1e3c88bd
PZ
4590 * @balance: Should we balance.
4591 * @sds: variable to hold the statistics for this sched_domain.
4592 */
bd939f45 4593static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 4594 int *balance, struct sd_lb_stats *sds)
1e3c88bd 4595{
bd939f45
PZ
4596 struct sched_domain *child = env->sd->child;
4597 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
4598 struct sg_lb_stats sgs;
4599 int load_idx, prefer_sibling = 0;
4600
4601 if (child && child->flags & SD_PREFER_SIBLING)
4602 prefer_sibling = 1;
4603
bd939f45 4604 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4605
4606 do {
4607 int local_group;
4608
bd939f45 4609 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 4610 memset(&sgs, 0, sizeof(sgs));
b9403130 4611 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 4612
8f190fb3 4613 if (local_group && !(*balance))
1e3c88bd
PZ
4614 return;
4615
4616 sds->total_load += sgs.group_load;
9c3f75cb 4617 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4618
4619 /*
4620 * In case the child domain prefers tasks go to siblings
532cb4c4 4621 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4622 * and move all the excess tasks away. We lower the capacity
4623 * of a group only if the local group has the capacity to fit
4624 * these excess tasks, i.e. nr_running < group_capacity. The
4625 * extra check prevents the case where you always pull from the
4626 * heaviest group when it is already under-utilized (possible
4627 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4628 */
75dd321d 4629 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4630 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4631
4632 if (local_group) {
4633 sds->this_load = sgs.avg_load;
532cb4c4 4634 sds->this = sg;
1e3c88bd
PZ
4635 sds->this_nr_running = sgs.sum_nr_running;
4636 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4637 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4638 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 4639 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 4640 sds->max_load = sgs.avg_load;
532cb4c4 4641 sds->busiest = sg;
1e3c88bd 4642 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4643 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4644 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4645 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4646 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4647 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4648 sds->group_imb = sgs.group_imb;
4649 }
4650
532cb4c4 4651 sg = sg->next;
bd939f45 4652 } while (sg != env->sd->groups);
532cb4c4
MN
4653}
4654
532cb4c4
MN
4655/**
4656 * check_asym_packing - Check to see if the group is packed into the
4657 * sched doman.
4658 *
4659 * This is primarily intended to used at the sibling level. Some
4660 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4661 * case of POWER7, it can move to lower SMT modes only when higher
4662 * threads are idle. When in lower SMT modes, the threads will
4663 * perform better since they share less core resources. Hence when we
4664 * have idle threads, we want them to be the higher ones.
4665 *
4666 * This packing function is run on idle threads. It checks to see if
4667 * the busiest CPU in this domain (core in the P7 case) has a higher
4668 * CPU number than the packing function is being run on. Here we are
4669 * assuming lower CPU number will be equivalent to lower a SMT thread
4670 * number.
4671 *
b6b12294
MN
4672 * Returns 1 when packing is required and a task should be moved to
4673 * this CPU. The amount of the imbalance is returned in *imbalance.
4674 *
cd96891d 4675 * @env: The load balancing environment.
532cb4c4 4676 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4677 */
bd939f45 4678static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4679{
4680 int busiest_cpu;
4681
bd939f45 4682 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4683 return 0;
4684
4685 if (!sds->busiest)
4686 return 0;
4687
4688 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4689 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4690 return 0;
4691
bd939f45
PZ
4692 env->imbalance = DIV_ROUND_CLOSEST(
4693 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4694
532cb4c4 4695 return 1;
1e3c88bd
PZ
4696}
4697
4698/**
4699 * fix_small_imbalance - Calculate the minor imbalance that exists
4700 * amongst the groups of a sched_domain, during
4701 * load balancing.
cd96891d 4702 * @env: The load balancing environment.
1e3c88bd 4703 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4704 */
bd939f45
PZ
4705static inline
4706void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4707{
4708 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4709 unsigned int imbn = 2;
dd5feea1 4710 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4711
4712 if (sds->this_nr_running) {
4713 sds->this_load_per_task /= sds->this_nr_running;
4714 if (sds->busiest_load_per_task >
4715 sds->this_load_per_task)
4716 imbn = 1;
bd939f45 4717 } else {
1e3c88bd 4718 sds->this_load_per_task =
bd939f45
PZ
4719 cpu_avg_load_per_task(env->dst_cpu);
4720 }
1e3c88bd 4721
dd5feea1 4722 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4723 * SCHED_POWER_SCALE;
9c3f75cb 4724 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4725
4726 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4727 (scaled_busy_load_per_task * imbn)) {
bd939f45 4728 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4729 return;
4730 }
4731
4732 /*
4733 * OK, we don't have enough imbalance to justify moving tasks,
4734 * however we may be able to increase total CPU power used by
4735 * moving them.
4736 */
4737
9c3f75cb 4738 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4739 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4740 pwr_now += sds->this->sgp->power *
1e3c88bd 4741 min(sds->this_load_per_task, sds->this_load);
1399fa78 4742 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4743
4744 /* Amount of load we'd subtract */
1399fa78 4745 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4746 sds->busiest->sgp->power;
1e3c88bd 4747 if (sds->max_load > tmp)
9c3f75cb 4748 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4749 min(sds->busiest_load_per_task, sds->max_load - tmp);
4750
4751 /* Amount of load we'd add */
9c3f75cb 4752 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4753 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4754 tmp = (sds->max_load * sds->busiest->sgp->power) /
4755 sds->this->sgp->power;
1e3c88bd 4756 else
1399fa78 4757 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4758 sds->this->sgp->power;
4759 pwr_move += sds->this->sgp->power *
1e3c88bd 4760 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4761 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4762
4763 /* Move if we gain throughput */
4764 if (pwr_move > pwr_now)
bd939f45 4765 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4766}
4767
4768/**
4769 * calculate_imbalance - Calculate the amount of imbalance present within the
4770 * groups of a given sched_domain during load balance.
bd939f45 4771 * @env: load balance environment
1e3c88bd 4772 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4773 */
bd939f45 4774static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4775{
dd5feea1
SS
4776 unsigned long max_pull, load_above_capacity = ~0UL;
4777
4778 sds->busiest_load_per_task /= sds->busiest_nr_running;
4779 if (sds->group_imb) {
4780 sds->busiest_load_per_task =
4781 min(sds->busiest_load_per_task, sds->avg_load);
4782 }
4783
1e3c88bd
PZ
4784 /*
4785 * In the presence of smp nice balancing, certain scenarios can have
4786 * max load less than avg load(as we skip the groups at or below
4787 * its cpu_power, while calculating max_load..)
4788 */
4789 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4790 env->imbalance = 0;
4791 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4792 }
4793
dd5feea1
SS
4794 if (!sds->group_imb) {
4795 /*
4796 * Don't want to pull so many tasks that a group would go idle.
4797 */
4798 load_above_capacity = (sds->busiest_nr_running -
4799 sds->busiest_group_capacity);
4800
1399fa78 4801 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4802
9c3f75cb 4803 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4804 }
4805
4806 /*
4807 * We're trying to get all the cpus to the average_load, so we don't
4808 * want to push ourselves above the average load, nor do we wish to
4809 * reduce the max loaded cpu below the average load. At the same time,
4810 * we also don't want to reduce the group load below the group capacity
4811 * (so that we can implement power-savings policies etc). Thus we look
4812 * for the minimum possible imbalance.
4813 * Be careful of negative numbers as they'll appear as very large values
4814 * with unsigned longs.
4815 */
4816 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4817
4818 /* How much load to actually move to equalise the imbalance */
bd939f45 4819 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4820 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4821 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4822
4823 /*
4824 * if *imbalance is less than the average load per runnable task
25985edc 4825 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4826 * a think about bumping its value to force at least one task to be
4827 * moved
4828 */
bd939f45
PZ
4829 if (env->imbalance < sds->busiest_load_per_task)
4830 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4831
4832}
fab47622 4833
1e3c88bd
PZ
4834/******* find_busiest_group() helpers end here *********************/
4835
4836/**
4837 * find_busiest_group - Returns the busiest group within the sched_domain
4838 * if there is an imbalance. If there isn't an imbalance, and
4839 * the user has opted for power-savings, it returns a group whose
4840 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4841 * such a group exists.
4842 *
4843 * Also calculates the amount of weighted load which should be moved
4844 * to restore balance.
4845 *
cd96891d 4846 * @env: The load balancing environment.
1e3c88bd
PZ
4847 * @balance: Pointer to a variable indicating if this_cpu
4848 * is the appropriate cpu to perform load balancing at this_level.
4849 *
4850 * Returns: - the busiest group if imbalance exists.
4851 * - If no imbalance and user has opted for power-savings balance,
4852 * return the least loaded group whose CPUs can be
4853 * put to idle by rebalancing its tasks onto our group.
4854 */
4855static struct sched_group *
b9403130 4856find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4857{
4858 struct sd_lb_stats sds;
4859
4860 memset(&sds, 0, sizeof(sds));
4861
4862 /*
4863 * Compute the various statistics relavent for load balancing at
4864 * this level.
4865 */
b9403130 4866 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4867
cc57aa8f
PZ
4868 /*
4869 * this_cpu is not the appropriate cpu to perform load balancing at
4870 * this level.
1e3c88bd 4871 */
8f190fb3 4872 if (!(*balance))
1e3c88bd
PZ
4873 goto ret;
4874
bd939f45
PZ
4875 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4876 check_asym_packing(env, &sds))
532cb4c4
MN
4877 return sds.busiest;
4878
cc57aa8f 4879 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4880 if (!sds.busiest || sds.busiest_nr_running == 0)
4881 goto out_balanced;
4882
1399fa78 4883 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4884
866ab43e
PZ
4885 /*
4886 * If the busiest group is imbalanced the below checks don't
4887 * work because they assumes all things are equal, which typically
4888 * isn't true due to cpus_allowed constraints and the like.
4889 */
4890 if (sds.group_imb)
4891 goto force_balance;
4892
cc57aa8f 4893 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4894 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4895 !sds.busiest_has_capacity)
4896 goto force_balance;
4897
cc57aa8f
PZ
4898 /*
4899 * If the local group is more busy than the selected busiest group
4900 * don't try and pull any tasks.
4901 */
1e3c88bd
PZ
4902 if (sds.this_load >= sds.max_load)
4903 goto out_balanced;
4904
cc57aa8f
PZ
4905 /*
4906 * Don't pull any tasks if this group is already above the domain
4907 * average load.
4908 */
1e3c88bd
PZ
4909 if (sds.this_load >= sds.avg_load)
4910 goto out_balanced;
4911
bd939f45 4912 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4913 /*
4914 * This cpu is idle. If the busiest group load doesn't
4915 * have more tasks than the number of available cpu's and
4916 * there is no imbalance between this and busiest group
4917 * wrt to idle cpu's, it is balanced.
4918 */
c186fafe 4919 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4920 sds.busiest_nr_running <= sds.busiest_group_weight)
4921 goto out_balanced;
c186fafe
PZ
4922 } else {
4923 /*
4924 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4925 * imbalance_pct to be conservative.
4926 */
bd939f45 4927 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4928 goto out_balanced;
aae6d3dd 4929 }
1e3c88bd 4930
fab47622 4931force_balance:
1e3c88bd 4932 /* Looks like there is an imbalance. Compute it */
bd939f45 4933 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4934 return sds.busiest;
4935
4936out_balanced:
1e3c88bd 4937ret:
bd939f45 4938 env->imbalance = 0;
1e3c88bd
PZ
4939 return NULL;
4940}
4941
4942/*
4943 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4944 */
bd939f45 4945static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4946 struct sched_group *group)
1e3c88bd
PZ
4947{
4948 struct rq *busiest = NULL, *rq;
4949 unsigned long max_load = 0;
4950 int i;
4951
4952 for_each_cpu(i, sched_group_cpus(group)) {
4953 unsigned long power = power_of(i);
1399fa78
NR
4954 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4955 SCHED_POWER_SCALE);
1e3c88bd
PZ
4956 unsigned long wl;
4957
9d5efe05 4958 if (!capacity)
bd939f45 4959 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4960
b9403130 4961 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4962 continue;
4963
4964 rq = cpu_rq(i);
6e40f5bb 4965 wl = weighted_cpuload(i);
1e3c88bd 4966
6e40f5bb
TG
4967 /*
4968 * When comparing with imbalance, use weighted_cpuload()
4969 * which is not scaled with the cpu power.
4970 */
bd939f45 4971 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4972 continue;
4973
6e40f5bb
TG
4974 /*
4975 * For the load comparisons with the other cpu's, consider
4976 * the weighted_cpuload() scaled with the cpu power, so that
4977 * the load can be moved away from the cpu that is potentially
4978 * running at a lower capacity.
4979 */
1399fa78 4980 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4981
1e3c88bd
PZ
4982 if (wl > max_load) {
4983 max_load = wl;
4984 busiest = rq;
4985 }
4986 }
4987
4988 return busiest;
4989}
4990
4991/*
4992 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4993 * so long as it is large enough.
4994 */
4995#define MAX_PINNED_INTERVAL 512
4996
4997/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 4998DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 4999
bd939f45 5000static int need_active_balance(struct lb_env *env)
1af3ed3d 5001{
bd939f45
PZ
5002 struct sched_domain *sd = env->sd;
5003
5004 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
5005
5006 /*
5007 * ASYM_PACKING needs to force migrate tasks from busy but
5008 * higher numbered CPUs in order to pack all tasks in the
5009 * lowest numbered CPUs.
5010 */
bd939f45 5011 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5012 return 1;
1af3ed3d
PZ
5013 }
5014
5015 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5016}
5017
969c7921
TH
5018static int active_load_balance_cpu_stop(void *data);
5019
1e3c88bd
PZ
5020/*
5021 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5022 * tasks if there is an imbalance.
5023 */
5024static int load_balance(int this_cpu, struct rq *this_rq,
5025 struct sched_domain *sd, enum cpu_idle_type idle,
5026 int *balance)
5027{
88b8dac0 5028 int ld_moved, cur_ld_moved, active_balance = 0;
1e3c88bd 5029 struct sched_group *group;
1e3c88bd
PZ
5030 struct rq *busiest;
5031 unsigned long flags;
e6252c3e 5032 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5033
8e45cb54
PZ
5034 struct lb_env env = {
5035 .sd = sd,
ddcdf6e7
PZ
5036 .dst_cpu = this_cpu,
5037 .dst_rq = this_rq,
88b8dac0 5038 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5039 .idle = idle,
eb95308e 5040 .loop_break = sched_nr_migrate_break,
b9403130 5041 .cpus = cpus,
8e45cb54
PZ
5042 };
5043
cfc03118
JK
5044 /*
5045 * For NEWLY_IDLE load_balancing, we don't need to consider
5046 * other cpus in our group
5047 */
e02e60c1 5048 if (idle == CPU_NEWLY_IDLE)
cfc03118 5049 env.dst_grpmask = NULL;
cfc03118 5050
1e3c88bd
PZ
5051 cpumask_copy(cpus, cpu_active_mask);
5052
1e3c88bd
PZ
5053 schedstat_inc(sd, lb_count[idle]);
5054
5055redo:
b9403130 5056 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
5057
5058 if (*balance == 0)
5059 goto out_balanced;
5060
5061 if (!group) {
5062 schedstat_inc(sd, lb_nobusyg[idle]);
5063 goto out_balanced;
5064 }
5065
b9403130 5066 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5067 if (!busiest) {
5068 schedstat_inc(sd, lb_nobusyq[idle]);
5069 goto out_balanced;
5070 }
5071
78feefc5 5072 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5073
bd939f45 5074 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5075
5076 ld_moved = 0;
5077 if (busiest->nr_running > 1) {
5078 /*
5079 * Attempt to move tasks. If find_busiest_group has found
5080 * an imbalance but busiest->nr_running <= 1, the group is
5081 * still unbalanced. ld_moved simply stays zero, so it is
5082 * correctly treated as an imbalance.
5083 */
8e45cb54 5084 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5085 env.src_cpu = busiest->cpu;
5086 env.src_rq = busiest;
5087 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5088
a35b6466 5089 update_h_load(env.src_cpu);
5d6523eb 5090more_balance:
1e3c88bd 5091 local_irq_save(flags);
78feefc5 5092 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5093
5094 /*
5095 * cur_ld_moved - load moved in current iteration
5096 * ld_moved - cumulative load moved across iterations
5097 */
5098 cur_ld_moved = move_tasks(&env);
5099 ld_moved += cur_ld_moved;
78feefc5 5100 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5101 local_irq_restore(flags);
5102
5103 /*
5104 * some other cpu did the load balance for us.
5105 */
88b8dac0
SV
5106 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5107 resched_cpu(env.dst_cpu);
5108
f1cd0858
JK
5109 if (env.flags & LBF_NEED_BREAK) {
5110 env.flags &= ~LBF_NEED_BREAK;
5111 goto more_balance;
5112 }
5113
88b8dac0
SV
5114 /*
5115 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5116 * us and move them to an alternate dst_cpu in our sched_group
5117 * where they can run. The upper limit on how many times we
5118 * iterate on same src_cpu is dependent on number of cpus in our
5119 * sched_group.
5120 *
5121 * This changes load balance semantics a bit on who can move
5122 * load to a given_cpu. In addition to the given_cpu itself
5123 * (or a ilb_cpu acting on its behalf where given_cpu is
5124 * nohz-idle), we now have balance_cpu in a position to move
5125 * load to given_cpu. In rare situations, this may cause
5126 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5127 * _independently_ and at _same_ time to move some load to
5128 * given_cpu) causing exceess load to be moved to given_cpu.
5129 * This however should not happen so much in practice and
5130 * moreover subsequent load balance cycles should correct the
5131 * excess load moved.
5132 */
e02e60c1 5133 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
88b8dac0 5134
78feefc5 5135 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
5136 env.dst_cpu = env.new_dst_cpu;
5137 env.flags &= ~LBF_SOME_PINNED;
5138 env.loop = 0;
5139 env.loop_break = sched_nr_migrate_break;
e02e60c1
JK
5140
5141 /* Prevent to re-select dst_cpu via env's cpus */
5142 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5143
88b8dac0
SV
5144 /*
5145 * Go back to "more_balance" rather than "redo" since we
5146 * need to continue with same src_cpu.
5147 */
5148 goto more_balance;
5149 }
1e3c88bd
PZ
5150
5151 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5152 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5153 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5154 if (!cpumask_empty(cpus)) {
5155 env.loop = 0;
5156 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5157 goto redo;
bbf18b19 5158 }
1e3c88bd
PZ
5159 goto out_balanced;
5160 }
5161 }
5162
5163 if (!ld_moved) {
5164 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5165 /*
5166 * Increment the failure counter only on periodic balance.
5167 * We do not want newidle balance, which can be very
5168 * frequent, pollute the failure counter causing
5169 * excessive cache_hot migrations and active balances.
5170 */
5171 if (idle != CPU_NEWLY_IDLE)
5172 sd->nr_balance_failed++;
1e3c88bd 5173
bd939f45 5174 if (need_active_balance(&env)) {
1e3c88bd
PZ
5175 raw_spin_lock_irqsave(&busiest->lock, flags);
5176
969c7921
TH
5177 /* don't kick the active_load_balance_cpu_stop,
5178 * if the curr task on busiest cpu can't be
5179 * moved to this_cpu
1e3c88bd
PZ
5180 */
5181 if (!cpumask_test_cpu(this_cpu,
fa17b507 5182 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5183 raw_spin_unlock_irqrestore(&busiest->lock,
5184 flags);
8e45cb54 5185 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5186 goto out_one_pinned;
5187 }
5188
969c7921
TH
5189 /*
5190 * ->active_balance synchronizes accesses to
5191 * ->active_balance_work. Once set, it's cleared
5192 * only after active load balance is finished.
5193 */
1e3c88bd
PZ
5194 if (!busiest->active_balance) {
5195 busiest->active_balance = 1;
5196 busiest->push_cpu = this_cpu;
5197 active_balance = 1;
5198 }
5199 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5200
bd939f45 5201 if (active_balance) {
969c7921
TH
5202 stop_one_cpu_nowait(cpu_of(busiest),
5203 active_load_balance_cpu_stop, busiest,
5204 &busiest->active_balance_work);
bd939f45 5205 }
1e3c88bd
PZ
5206
5207 /*
5208 * We've kicked active balancing, reset the failure
5209 * counter.
5210 */
5211 sd->nr_balance_failed = sd->cache_nice_tries+1;
5212 }
5213 } else
5214 sd->nr_balance_failed = 0;
5215
5216 if (likely(!active_balance)) {
5217 /* We were unbalanced, so reset the balancing interval */
5218 sd->balance_interval = sd->min_interval;
5219 } else {
5220 /*
5221 * If we've begun active balancing, start to back off. This
5222 * case may not be covered by the all_pinned logic if there
5223 * is only 1 task on the busy runqueue (because we don't call
5224 * move_tasks).
5225 */
5226 if (sd->balance_interval < sd->max_interval)
5227 sd->balance_interval *= 2;
5228 }
5229
1e3c88bd
PZ
5230 goto out;
5231
5232out_balanced:
5233 schedstat_inc(sd, lb_balanced[idle]);
5234
5235 sd->nr_balance_failed = 0;
5236
5237out_one_pinned:
5238 /* tune up the balancing interval */
8e45cb54 5239 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5240 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5241 (sd->balance_interval < sd->max_interval))
5242 sd->balance_interval *= 2;
5243
46e49b38 5244 ld_moved = 0;
1e3c88bd 5245out:
1e3c88bd
PZ
5246 return ld_moved;
5247}
5248
1e3c88bd
PZ
5249/*
5250 * idle_balance is called by schedule() if this_cpu is about to become
5251 * idle. Attempts to pull tasks from other CPUs.
5252 */
029632fb 5253void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5254{
5255 struct sched_domain *sd;
5256 int pulled_task = 0;
5257 unsigned long next_balance = jiffies + HZ;
5258
78becc27 5259 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
5260
5261 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5262 return;
5263
f492e12e
PZ
5264 /*
5265 * Drop the rq->lock, but keep IRQ/preempt disabled.
5266 */
5267 raw_spin_unlock(&this_rq->lock);
5268
48a16753 5269 update_blocked_averages(this_cpu);
dce840a0 5270 rcu_read_lock();
1e3c88bd
PZ
5271 for_each_domain(this_cpu, sd) {
5272 unsigned long interval;
f492e12e 5273 int balance = 1;
1e3c88bd
PZ
5274
5275 if (!(sd->flags & SD_LOAD_BALANCE))
5276 continue;
5277
f492e12e 5278 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 5279 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
5280 pulled_task = load_balance(this_cpu, this_rq,
5281 sd, CPU_NEWLY_IDLE, &balance);
5282 }
1e3c88bd
PZ
5283
5284 interval = msecs_to_jiffies(sd->balance_interval);
5285 if (time_after(next_balance, sd->last_balance + interval))
5286 next_balance = sd->last_balance + interval;
d5ad140b
NR
5287 if (pulled_task) {
5288 this_rq->idle_stamp = 0;
1e3c88bd 5289 break;
d5ad140b 5290 }
1e3c88bd 5291 }
dce840a0 5292 rcu_read_unlock();
f492e12e
PZ
5293
5294 raw_spin_lock(&this_rq->lock);
5295
1e3c88bd
PZ
5296 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5297 /*
5298 * We are going idle. next_balance may be set based on
5299 * a busy processor. So reset next_balance.
5300 */
5301 this_rq->next_balance = next_balance;
5302 }
5303}
5304
5305/*
969c7921
TH
5306 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5307 * running tasks off the busiest CPU onto idle CPUs. It requires at
5308 * least 1 task to be running on each physical CPU where possible, and
5309 * avoids physical / logical imbalances.
1e3c88bd 5310 */
969c7921 5311static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5312{
969c7921
TH
5313 struct rq *busiest_rq = data;
5314 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5315 int target_cpu = busiest_rq->push_cpu;
969c7921 5316 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5317 struct sched_domain *sd;
969c7921
TH
5318
5319 raw_spin_lock_irq(&busiest_rq->lock);
5320
5321 /* make sure the requested cpu hasn't gone down in the meantime */
5322 if (unlikely(busiest_cpu != smp_processor_id() ||
5323 !busiest_rq->active_balance))
5324 goto out_unlock;
1e3c88bd
PZ
5325
5326 /* Is there any task to move? */
5327 if (busiest_rq->nr_running <= 1)
969c7921 5328 goto out_unlock;
1e3c88bd
PZ
5329
5330 /*
5331 * This condition is "impossible", if it occurs
5332 * we need to fix it. Originally reported by
5333 * Bjorn Helgaas on a 128-cpu setup.
5334 */
5335 BUG_ON(busiest_rq == target_rq);
5336
5337 /* move a task from busiest_rq to target_rq */
5338 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5339
5340 /* Search for an sd spanning us and the target CPU. */
dce840a0 5341 rcu_read_lock();
1e3c88bd
PZ
5342 for_each_domain(target_cpu, sd) {
5343 if ((sd->flags & SD_LOAD_BALANCE) &&
5344 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5345 break;
5346 }
5347
5348 if (likely(sd)) {
8e45cb54
PZ
5349 struct lb_env env = {
5350 .sd = sd,
ddcdf6e7
PZ
5351 .dst_cpu = target_cpu,
5352 .dst_rq = target_rq,
5353 .src_cpu = busiest_rq->cpu,
5354 .src_rq = busiest_rq,
8e45cb54
PZ
5355 .idle = CPU_IDLE,
5356 };
5357
1e3c88bd
PZ
5358 schedstat_inc(sd, alb_count);
5359
8e45cb54 5360 if (move_one_task(&env))
1e3c88bd
PZ
5361 schedstat_inc(sd, alb_pushed);
5362 else
5363 schedstat_inc(sd, alb_failed);
5364 }
dce840a0 5365 rcu_read_unlock();
1e3c88bd 5366 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5367out_unlock:
5368 busiest_rq->active_balance = 0;
5369 raw_spin_unlock_irq(&busiest_rq->lock);
5370 return 0;
1e3c88bd
PZ
5371}
5372
3451d024 5373#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
5374/*
5375 * idle load balancing details
83cd4fe2
VP
5376 * - When one of the busy CPUs notice that there may be an idle rebalancing
5377 * needed, they will kick the idle load balancer, which then does idle
5378 * load balancing for all the idle CPUs.
5379 */
1e3c88bd 5380static struct {
83cd4fe2 5381 cpumask_var_t idle_cpus_mask;
0b005cf5 5382 atomic_t nr_cpus;
83cd4fe2
VP
5383 unsigned long next_balance; /* in jiffy units */
5384} nohz ____cacheline_aligned;
1e3c88bd 5385
8e7fbcbc 5386static inline int find_new_ilb(int call_cpu)
1e3c88bd 5387{
0b005cf5 5388 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5389
786d6dc7
SS
5390 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5391 return ilb;
5392
5393 return nr_cpu_ids;
1e3c88bd 5394}
1e3c88bd 5395
83cd4fe2
VP
5396/*
5397 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5398 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5399 * CPU (if there is one).
5400 */
5401static void nohz_balancer_kick(int cpu)
5402{
5403 int ilb_cpu;
5404
5405 nohz.next_balance++;
5406
0b005cf5 5407 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5408
0b005cf5
SS
5409 if (ilb_cpu >= nr_cpu_ids)
5410 return;
83cd4fe2 5411
cd490c5b 5412 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5413 return;
5414 /*
5415 * Use smp_send_reschedule() instead of resched_cpu().
5416 * This way we generate a sched IPI on the target cpu which
5417 * is idle. And the softirq performing nohz idle load balance
5418 * will be run before returning from the IPI.
5419 */
5420 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5421 return;
5422}
5423
c1cc017c 5424static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5425{
5426 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5427 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5428 atomic_dec(&nohz.nr_cpus);
5429 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5430 }
5431}
5432
69e1e811
SS
5433static inline void set_cpu_sd_state_busy(void)
5434{
5435 struct sched_domain *sd;
69e1e811 5436
69e1e811 5437 rcu_read_lock();
424c93fe 5438 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5439
5440 if (!sd || !sd->nohz_idle)
5441 goto unlock;
5442 sd->nohz_idle = 0;
5443
5444 for (; sd; sd = sd->parent)
69e1e811 5445 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5446unlock:
69e1e811
SS
5447 rcu_read_unlock();
5448}
5449
5450void set_cpu_sd_state_idle(void)
5451{
5452 struct sched_domain *sd;
69e1e811 5453
69e1e811 5454 rcu_read_lock();
424c93fe 5455 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5456
5457 if (!sd || sd->nohz_idle)
5458 goto unlock;
5459 sd->nohz_idle = 1;
5460
5461 for (; sd; sd = sd->parent)
69e1e811 5462 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5463unlock:
69e1e811
SS
5464 rcu_read_unlock();
5465}
5466
1e3c88bd 5467/*
c1cc017c 5468 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5469 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5470 */
c1cc017c 5471void nohz_balance_enter_idle(int cpu)
1e3c88bd 5472{
71325960
SS
5473 /*
5474 * If this cpu is going down, then nothing needs to be done.
5475 */
5476 if (!cpu_active(cpu))
5477 return;
5478
c1cc017c
AS
5479 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5480 return;
1e3c88bd 5481
c1cc017c
AS
5482 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5483 atomic_inc(&nohz.nr_cpus);
5484 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5485}
71325960
SS
5486
5487static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5488 unsigned long action, void *hcpu)
5489{
5490 switch (action & ~CPU_TASKS_FROZEN) {
5491 case CPU_DYING:
c1cc017c 5492 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5493 return NOTIFY_OK;
5494 default:
5495 return NOTIFY_DONE;
5496 }
5497}
1e3c88bd
PZ
5498#endif
5499
5500static DEFINE_SPINLOCK(balancing);
5501
49c022e6
PZ
5502/*
5503 * Scale the max load_balance interval with the number of CPUs in the system.
5504 * This trades load-balance latency on larger machines for less cross talk.
5505 */
029632fb 5506void update_max_interval(void)
49c022e6
PZ
5507{
5508 max_load_balance_interval = HZ*num_online_cpus()/10;
5509}
5510
1e3c88bd
PZ
5511/*
5512 * It checks each scheduling domain to see if it is due to be balanced,
5513 * and initiates a balancing operation if so.
5514 *
b9b0853a 5515 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
5516 */
5517static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5518{
5519 int balance = 1;
5520 struct rq *rq = cpu_rq(cpu);
5521 unsigned long interval;
04f733b4 5522 struct sched_domain *sd;
1e3c88bd
PZ
5523 /* Earliest time when we have to do rebalance again */
5524 unsigned long next_balance = jiffies + 60*HZ;
5525 int update_next_balance = 0;
5526 int need_serialize;
5527
48a16753 5528 update_blocked_averages(cpu);
2069dd75 5529
dce840a0 5530 rcu_read_lock();
1e3c88bd
PZ
5531 for_each_domain(cpu, sd) {
5532 if (!(sd->flags & SD_LOAD_BALANCE))
5533 continue;
5534
5535 interval = sd->balance_interval;
5536 if (idle != CPU_IDLE)
5537 interval *= sd->busy_factor;
5538
5539 /* scale ms to jiffies */
5540 interval = msecs_to_jiffies(interval);
49c022e6 5541 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5542
5543 need_serialize = sd->flags & SD_SERIALIZE;
5544
5545 if (need_serialize) {
5546 if (!spin_trylock(&balancing))
5547 goto out;
5548 }
5549
5550 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5551 if (load_balance(cpu, rq, sd, idle, &balance)) {
5552 /*
de5eb2dd
JK
5553 * The LBF_SOME_PINNED logic could have changed
5554 * env->dst_cpu, so we can't know our idle
5555 * state even if we migrated tasks. Update it.
1e3c88bd 5556 */
de5eb2dd 5557 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
5558 }
5559 sd->last_balance = jiffies;
5560 }
5561 if (need_serialize)
5562 spin_unlock(&balancing);
5563out:
5564 if (time_after(next_balance, sd->last_balance + interval)) {
5565 next_balance = sd->last_balance + interval;
5566 update_next_balance = 1;
5567 }
5568
5569 /*
5570 * Stop the load balance at this level. There is another
5571 * CPU in our sched group which is doing load balancing more
5572 * actively.
5573 */
5574 if (!balance)
5575 break;
5576 }
dce840a0 5577 rcu_read_unlock();
1e3c88bd
PZ
5578
5579 /*
5580 * next_balance will be updated only when there is a need.
5581 * When the cpu is attached to null domain for ex, it will not be
5582 * updated.
5583 */
5584 if (likely(update_next_balance))
5585 rq->next_balance = next_balance;
5586}
5587
3451d024 5588#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 5589/*
3451d024 5590 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
5591 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5592 */
83cd4fe2
VP
5593static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5594{
5595 struct rq *this_rq = cpu_rq(this_cpu);
5596 struct rq *rq;
5597 int balance_cpu;
5598
1c792db7
SS
5599 if (idle != CPU_IDLE ||
5600 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5601 goto end;
83cd4fe2
VP
5602
5603 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5604 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5605 continue;
5606
5607 /*
5608 * If this cpu gets work to do, stop the load balancing
5609 * work being done for other cpus. Next load
5610 * balancing owner will pick it up.
5611 */
1c792db7 5612 if (need_resched())
83cd4fe2 5613 break;
83cd4fe2 5614
5ed4f1d9
VG
5615 rq = cpu_rq(balance_cpu);
5616
5617 raw_spin_lock_irq(&rq->lock);
5618 update_rq_clock(rq);
5619 update_idle_cpu_load(rq);
5620 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5621
5622 rebalance_domains(balance_cpu, CPU_IDLE);
5623
83cd4fe2
VP
5624 if (time_after(this_rq->next_balance, rq->next_balance))
5625 this_rq->next_balance = rq->next_balance;
5626 }
5627 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5628end:
5629 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5630}
5631
5632/*
0b005cf5
SS
5633 * Current heuristic for kicking the idle load balancer in the presence
5634 * of an idle cpu is the system.
5635 * - This rq has more than one task.
5636 * - At any scheduler domain level, this cpu's scheduler group has multiple
5637 * busy cpu's exceeding the group's power.
5638 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5639 * domain span are idle.
83cd4fe2
VP
5640 */
5641static inline int nohz_kick_needed(struct rq *rq, int cpu)
5642{
5643 unsigned long now = jiffies;
0b005cf5 5644 struct sched_domain *sd;
83cd4fe2 5645
1c792db7 5646 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5647 return 0;
5648
1c792db7
SS
5649 /*
5650 * We may be recently in ticked or tickless idle mode. At the first
5651 * busy tick after returning from idle, we will update the busy stats.
5652 */
69e1e811 5653 set_cpu_sd_state_busy();
c1cc017c 5654 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5655
5656 /*
5657 * None are in tickless mode and hence no need for NOHZ idle load
5658 * balancing.
5659 */
5660 if (likely(!atomic_read(&nohz.nr_cpus)))
5661 return 0;
1c792db7
SS
5662
5663 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5664 return 0;
5665
0b005cf5
SS
5666 if (rq->nr_running >= 2)
5667 goto need_kick;
83cd4fe2 5668
067491b7 5669 rcu_read_lock();
0b005cf5
SS
5670 for_each_domain(cpu, sd) {
5671 struct sched_group *sg = sd->groups;
5672 struct sched_group_power *sgp = sg->sgp;
5673 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5674
0b005cf5 5675 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5676 goto need_kick_unlock;
0b005cf5
SS
5677
5678 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5679 && (cpumask_first_and(nohz.idle_cpus_mask,
5680 sched_domain_span(sd)) < cpu))
067491b7 5681 goto need_kick_unlock;
0b005cf5
SS
5682
5683 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5684 break;
83cd4fe2 5685 }
067491b7 5686 rcu_read_unlock();
83cd4fe2 5687 return 0;
067491b7
PZ
5688
5689need_kick_unlock:
5690 rcu_read_unlock();
0b005cf5
SS
5691need_kick:
5692 return 1;
83cd4fe2
VP
5693}
5694#else
5695static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5696#endif
5697
5698/*
5699 * run_rebalance_domains is triggered when needed from the scheduler tick.
5700 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5701 */
1e3c88bd
PZ
5702static void run_rebalance_domains(struct softirq_action *h)
5703{
5704 int this_cpu = smp_processor_id();
5705 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5706 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5707 CPU_IDLE : CPU_NOT_IDLE;
5708
5709 rebalance_domains(this_cpu, idle);
5710
1e3c88bd 5711 /*
83cd4fe2 5712 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5713 * balancing on behalf of the other idle cpus whose ticks are
5714 * stopped.
5715 */
83cd4fe2 5716 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5717}
5718
5719static inline int on_null_domain(int cpu)
5720{
90a6501f 5721 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5722}
5723
5724/*
5725 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5726 */
029632fb 5727void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5728{
1e3c88bd
PZ
5729 /* Don't need to rebalance while attached to NULL domain */
5730 if (time_after_eq(jiffies, rq->next_balance) &&
5731 likely(!on_null_domain(cpu)))
5732 raise_softirq(SCHED_SOFTIRQ);
3451d024 5733#ifdef CONFIG_NO_HZ_COMMON
1c792db7 5734 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5735 nohz_balancer_kick(cpu);
5736#endif
1e3c88bd
PZ
5737}
5738
0bcdcf28
CE
5739static void rq_online_fair(struct rq *rq)
5740{
5741 update_sysctl();
5742}
5743
5744static void rq_offline_fair(struct rq *rq)
5745{
5746 update_sysctl();
a4c96ae3
PB
5747
5748 /* Ensure any throttled groups are reachable by pick_next_task */
5749 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5750}
5751
55e12e5e 5752#endif /* CONFIG_SMP */
e1d1484f 5753
bf0f6f24
IM
5754/*
5755 * scheduler tick hitting a task of our scheduling class:
5756 */
8f4d37ec 5757static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5758{
5759 struct cfs_rq *cfs_rq;
5760 struct sched_entity *se = &curr->se;
5761
5762 for_each_sched_entity(se) {
5763 cfs_rq = cfs_rq_of(se);
8f4d37ec 5764 entity_tick(cfs_rq, se, queued);
bf0f6f24 5765 }
18bf2805 5766
cbee9f88
PZ
5767 if (sched_feat_numa(NUMA))
5768 task_tick_numa(rq, curr);
3d59eebc 5769
18bf2805 5770 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
5771}
5772
5773/*
cd29fe6f
PZ
5774 * called on fork with the child task as argument from the parent's context
5775 * - child not yet on the tasklist
5776 * - preemption disabled
bf0f6f24 5777 */
cd29fe6f 5778static void task_fork_fair(struct task_struct *p)
bf0f6f24 5779{
4fc420c9
DN
5780 struct cfs_rq *cfs_rq;
5781 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5782 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5783 struct rq *rq = this_rq();
5784 unsigned long flags;
5785
05fa785c 5786 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5787
861d034e
PZ
5788 update_rq_clock(rq);
5789
4fc420c9
DN
5790 cfs_rq = task_cfs_rq(current);
5791 curr = cfs_rq->curr;
5792
b0a0f667
PM
5793 if (unlikely(task_cpu(p) != this_cpu)) {
5794 rcu_read_lock();
cd29fe6f 5795 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5796 rcu_read_unlock();
5797 }
bf0f6f24 5798
7109c442 5799 update_curr(cfs_rq);
cd29fe6f 5800
b5d9d734
MG
5801 if (curr)
5802 se->vruntime = curr->vruntime;
aeb73b04 5803 place_entity(cfs_rq, se, 1);
4d78e7b6 5804
cd29fe6f 5805 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5806 /*
edcb60a3
IM
5807 * Upon rescheduling, sched_class::put_prev_task() will place
5808 * 'current' within the tree based on its new key value.
5809 */
4d78e7b6 5810 swap(curr->vruntime, se->vruntime);
aec0a514 5811 resched_task(rq->curr);
4d78e7b6 5812 }
bf0f6f24 5813
88ec22d3
PZ
5814 se->vruntime -= cfs_rq->min_vruntime;
5815
05fa785c 5816 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5817}
5818
cb469845
SR
5819/*
5820 * Priority of the task has changed. Check to see if we preempt
5821 * the current task.
5822 */
da7a735e
PZ
5823static void
5824prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5825{
da7a735e
PZ
5826 if (!p->se.on_rq)
5827 return;
5828
cb469845
SR
5829 /*
5830 * Reschedule if we are currently running on this runqueue and
5831 * our priority decreased, or if we are not currently running on
5832 * this runqueue and our priority is higher than the current's
5833 */
da7a735e 5834 if (rq->curr == p) {
cb469845
SR
5835 if (p->prio > oldprio)
5836 resched_task(rq->curr);
5837 } else
15afe09b 5838 check_preempt_curr(rq, p, 0);
cb469845
SR
5839}
5840
da7a735e
PZ
5841static void switched_from_fair(struct rq *rq, struct task_struct *p)
5842{
5843 struct sched_entity *se = &p->se;
5844 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5845
5846 /*
5847 * Ensure the task's vruntime is normalized, so that when its
5848 * switched back to the fair class the enqueue_entity(.flags=0) will
5849 * do the right thing.
5850 *
5851 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5852 * have normalized the vruntime, if it was !on_rq, then only when
5853 * the task is sleeping will it still have non-normalized vruntime.
5854 */
5855 if (!se->on_rq && p->state != TASK_RUNNING) {
5856 /*
5857 * Fix up our vruntime so that the current sleep doesn't
5858 * cause 'unlimited' sleep bonus.
5859 */
5860 place_entity(cfs_rq, se, 0);
5861 se->vruntime -= cfs_rq->min_vruntime;
5862 }
9ee474f5
PT
5863
5864#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5865 /*
5866 * Remove our load from contribution when we leave sched_fair
5867 * and ensure we don't carry in an old decay_count if we
5868 * switch back.
5869 */
5870 if (p->se.avg.decay_count) {
5871 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5872 __synchronize_entity_decay(&p->se);
5873 subtract_blocked_load_contrib(cfs_rq,
5874 p->se.avg.load_avg_contrib);
5875 }
5876#endif
da7a735e
PZ
5877}
5878
cb469845
SR
5879/*
5880 * We switched to the sched_fair class.
5881 */
da7a735e 5882static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5883{
da7a735e
PZ
5884 if (!p->se.on_rq)
5885 return;
5886
cb469845
SR
5887 /*
5888 * We were most likely switched from sched_rt, so
5889 * kick off the schedule if running, otherwise just see
5890 * if we can still preempt the current task.
5891 */
da7a735e 5892 if (rq->curr == p)
cb469845
SR
5893 resched_task(rq->curr);
5894 else
15afe09b 5895 check_preempt_curr(rq, p, 0);
cb469845
SR
5896}
5897
83b699ed
SV
5898/* Account for a task changing its policy or group.
5899 *
5900 * This routine is mostly called to set cfs_rq->curr field when a task
5901 * migrates between groups/classes.
5902 */
5903static void set_curr_task_fair(struct rq *rq)
5904{
5905 struct sched_entity *se = &rq->curr->se;
5906
ec12cb7f
PT
5907 for_each_sched_entity(se) {
5908 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5909
5910 set_next_entity(cfs_rq, se);
5911 /* ensure bandwidth has been allocated on our new cfs_rq */
5912 account_cfs_rq_runtime(cfs_rq, 0);
5913 }
83b699ed
SV
5914}
5915
029632fb
PZ
5916void init_cfs_rq(struct cfs_rq *cfs_rq)
5917{
5918 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5919 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5920#ifndef CONFIG_64BIT
5921 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5922#endif
9ee474f5
PT
5923#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5924 atomic64_set(&cfs_rq->decay_counter, 1);
aff3e498 5925 atomic64_set(&cfs_rq->removed_load, 0);
9ee474f5 5926#endif
029632fb
PZ
5927}
5928
810b3817 5929#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5930static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5931{
aff3e498 5932 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
5933 /*
5934 * If the task was not on the rq at the time of this cgroup movement
5935 * it must have been asleep, sleeping tasks keep their ->vruntime
5936 * absolute on their old rq until wakeup (needed for the fair sleeper
5937 * bonus in place_entity()).
5938 *
5939 * If it was on the rq, we've just 'preempted' it, which does convert
5940 * ->vruntime to a relative base.
5941 *
5942 * Make sure both cases convert their relative position when migrating
5943 * to another cgroup's rq. This does somewhat interfere with the
5944 * fair sleeper stuff for the first placement, but who cares.
5945 */
7ceff013
DN
5946 /*
5947 * When !on_rq, vruntime of the task has usually NOT been normalized.
5948 * But there are some cases where it has already been normalized:
5949 *
5950 * - Moving a forked child which is waiting for being woken up by
5951 * wake_up_new_task().
62af3783
DN
5952 * - Moving a task which has been woken up by try_to_wake_up() and
5953 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5954 *
5955 * To prevent boost or penalty in the new cfs_rq caused by delta
5956 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5957 */
62af3783 5958 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5959 on_rq = 1;
5960
b2b5ce02
PZ
5961 if (!on_rq)
5962 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5963 set_task_rq(p, task_cpu(p));
aff3e498
PT
5964 if (!on_rq) {
5965 cfs_rq = cfs_rq_of(&p->se);
5966 p->se.vruntime += cfs_rq->min_vruntime;
5967#ifdef CONFIG_SMP
5968 /*
5969 * migrate_task_rq_fair() will have removed our previous
5970 * contribution, but we must synchronize for ongoing future
5971 * decay.
5972 */
5973 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5974 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5975#endif
5976 }
810b3817 5977}
029632fb
PZ
5978
5979void free_fair_sched_group(struct task_group *tg)
5980{
5981 int i;
5982
5983 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5984
5985 for_each_possible_cpu(i) {
5986 if (tg->cfs_rq)
5987 kfree(tg->cfs_rq[i]);
5988 if (tg->se)
5989 kfree(tg->se[i]);
5990 }
5991
5992 kfree(tg->cfs_rq);
5993 kfree(tg->se);
5994}
5995
5996int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5997{
5998 struct cfs_rq *cfs_rq;
5999 struct sched_entity *se;
6000 int i;
6001
6002 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6003 if (!tg->cfs_rq)
6004 goto err;
6005 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6006 if (!tg->se)
6007 goto err;
6008
6009 tg->shares = NICE_0_LOAD;
6010
6011 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6012
6013 for_each_possible_cpu(i) {
6014 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6015 GFP_KERNEL, cpu_to_node(i));
6016 if (!cfs_rq)
6017 goto err;
6018
6019 se = kzalloc_node(sizeof(struct sched_entity),
6020 GFP_KERNEL, cpu_to_node(i));
6021 if (!se)
6022 goto err_free_rq;
6023
6024 init_cfs_rq(cfs_rq);
6025 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6026 }
6027
6028 return 1;
6029
6030err_free_rq:
6031 kfree(cfs_rq);
6032err:
6033 return 0;
6034}
6035
6036void unregister_fair_sched_group(struct task_group *tg, int cpu)
6037{
6038 struct rq *rq = cpu_rq(cpu);
6039 unsigned long flags;
6040
6041 /*
6042 * Only empty task groups can be destroyed; so we can speculatively
6043 * check on_list without danger of it being re-added.
6044 */
6045 if (!tg->cfs_rq[cpu]->on_list)
6046 return;
6047
6048 raw_spin_lock_irqsave(&rq->lock, flags);
6049 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6050 raw_spin_unlock_irqrestore(&rq->lock, flags);
6051}
6052
6053void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6054 struct sched_entity *se, int cpu,
6055 struct sched_entity *parent)
6056{
6057 struct rq *rq = cpu_rq(cpu);
6058
6059 cfs_rq->tg = tg;
6060 cfs_rq->rq = rq;
029632fb
PZ
6061 init_cfs_rq_runtime(cfs_rq);
6062
6063 tg->cfs_rq[cpu] = cfs_rq;
6064 tg->se[cpu] = se;
6065
6066 /* se could be NULL for root_task_group */
6067 if (!se)
6068 return;
6069
6070 if (!parent)
6071 se->cfs_rq = &rq->cfs;
6072 else
6073 se->cfs_rq = parent->my_q;
6074
6075 se->my_q = cfs_rq;
6076 update_load_set(&se->load, 0);
6077 se->parent = parent;
6078}
6079
6080static DEFINE_MUTEX(shares_mutex);
6081
6082int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6083{
6084 int i;
6085 unsigned long flags;
6086
6087 /*
6088 * We can't change the weight of the root cgroup.
6089 */
6090 if (!tg->se[0])
6091 return -EINVAL;
6092
6093 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6094
6095 mutex_lock(&shares_mutex);
6096 if (tg->shares == shares)
6097 goto done;
6098
6099 tg->shares = shares;
6100 for_each_possible_cpu(i) {
6101 struct rq *rq = cpu_rq(i);
6102 struct sched_entity *se;
6103
6104 se = tg->se[i];
6105 /* Propagate contribution to hierarchy */
6106 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
6107
6108 /* Possible calls to update_curr() need rq clock */
6109 update_rq_clock(rq);
17bc14b7 6110 for_each_sched_entity(se)
029632fb
PZ
6111 update_cfs_shares(group_cfs_rq(se));
6112 raw_spin_unlock_irqrestore(&rq->lock, flags);
6113 }
6114
6115done:
6116 mutex_unlock(&shares_mutex);
6117 return 0;
6118}
6119#else /* CONFIG_FAIR_GROUP_SCHED */
6120
6121void free_fair_sched_group(struct task_group *tg) { }
6122
6123int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6124{
6125 return 1;
6126}
6127
6128void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6129
6130#endif /* CONFIG_FAIR_GROUP_SCHED */
6131
810b3817 6132
6d686f45 6133static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6134{
6135 struct sched_entity *se = &task->se;
0d721cea
PW
6136 unsigned int rr_interval = 0;
6137
6138 /*
6139 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6140 * idle runqueue:
6141 */
0d721cea 6142 if (rq->cfs.load.weight)
a59f4e07 6143 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6144
6145 return rr_interval;
6146}
6147
bf0f6f24
IM
6148/*
6149 * All the scheduling class methods:
6150 */
029632fb 6151const struct sched_class fair_sched_class = {
5522d5d5 6152 .next = &idle_sched_class,
bf0f6f24
IM
6153 .enqueue_task = enqueue_task_fair,
6154 .dequeue_task = dequeue_task_fair,
6155 .yield_task = yield_task_fair,
d95f4122 6156 .yield_to_task = yield_to_task_fair,
bf0f6f24 6157
2e09bf55 6158 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6159
6160 .pick_next_task = pick_next_task_fair,
6161 .put_prev_task = put_prev_task_fair,
6162
681f3e68 6163#ifdef CONFIG_SMP
4ce72a2c 6164 .select_task_rq = select_task_rq_fair,
f4e26b12 6165#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8 6166 .migrate_task_rq = migrate_task_rq_fair,
f4e26b12 6167#endif
0bcdcf28
CE
6168 .rq_online = rq_online_fair,
6169 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6170
6171 .task_waking = task_waking_fair,
681f3e68 6172#endif
bf0f6f24 6173
83b699ed 6174 .set_curr_task = set_curr_task_fair,
bf0f6f24 6175 .task_tick = task_tick_fair,
cd29fe6f 6176 .task_fork = task_fork_fair,
cb469845
SR
6177
6178 .prio_changed = prio_changed_fair,
da7a735e 6179 .switched_from = switched_from_fair,
cb469845 6180 .switched_to = switched_to_fair,
810b3817 6181
0d721cea
PW
6182 .get_rr_interval = get_rr_interval_fair,
6183
810b3817 6184#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6185 .task_move_group = task_move_group_fair,
810b3817 6186#endif
bf0f6f24
IM
6187};
6188
6189#ifdef CONFIG_SCHED_DEBUG
029632fb 6190void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6191{
bf0f6f24
IM
6192 struct cfs_rq *cfs_rq;
6193
5973e5b9 6194 rcu_read_lock();
c3b64f1e 6195 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6196 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6197 rcu_read_unlock();
bf0f6f24
IM
6198}
6199#endif
029632fb
PZ
6200
6201__init void init_sched_fair_class(void)
6202{
6203#ifdef CONFIG_SMP
6204 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6205
3451d024 6206#ifdef CONFIG_NO_HZ_COMMON
554cecaf 6207 nohz.next_balance = jiffies;
029632fb 6208 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6209 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6210#endif
6211#endif /* SMP */
6212
6213}