sched/cpupri: Add CPUPRI_HIGHER
[linux-block.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb 24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 27 *
21805085 28 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
bf0f6f24 32 *
d274a4ce
IM
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 */
2b4d5b25 38unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 39static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
1983a922
CE
43 *
44 * Options are:
2b4d5b25
IM
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 51 */
2b4d5b25 52enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 56 *
864616ee 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 58 */
ed8885a1
MS
59unsigned int sysctl_sched_min_granularity = 750000ULL;
60static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
61
62/*
2b4d5b25 63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 64 */
0bf377bb 65static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
66
67/*
2bba22c5 68 * After fork, child runs first. If set to 0 (default) then
b2be5e96 69 * parent will (try to) run first.
21805085 70 */
2bba22c5 71unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 72
bf0f6f24
IM
73/*
74 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
79 *
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 81 */
ed8885a1
MS
82unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 84
2b4d5b25 85const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 86
05289b90
TG
87int sched_thermal_decay_shift;
88static int __init setup_sched_thermal_decay_shift(char *str)
89{
90 int _shift = 0;
91
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 return 1;
97}
98__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99
afe06efd
TC
100#ifdef CONFIG_SMP
101/*
97fb7a0a 102 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
103 */
104int __weak arch_asym_cpu_priority(int cpu)
105{
106 return -cpu;
107}
6d101ba6
OJ
108
109/*
60e17f5c 110 * The margin used when comparing utilization with CPU capacity.
6d101ba6
OJ
111 *
112 * (default: ~20%)
113 */
60e17f5c
VK
114#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
115
afe06efd
TC
116#endif
117
ec12cb7f
PT
118#ifdef CONFIG_CFS_BANDWIDTH
119/*
120 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
121 * each time a cfs_rq requests quota.
122 *
123 * Note: in the case that the slice exceeds the runtime remaining (either due
124 * to consumption or the quota being specified to be smaller than the slice)
125 * we will always only issue the remaining available time.
126 *
2b4d5b25
IM
127 * (default: 5 msec, units: microseconds)
128 */
129unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
130#endif
131
8527632d
PG
132static inline void update_load_add(struct load_weight *lw, unsigned long inc)
133{
134 lw->weight += inc;
135 lw->inv_weight = 0;
136}
137
138static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
139{
140 lw->weight -= dec;
141 lw->inv_weight = 0;
142}
143
144static inline void update_load_set(struct load_weight *lw, unsigned long w)
145{
146 lw->weight = w;
147 lw->inv_weight = 0;
148}
149
029632fb
PZ
150/*
151 * Increase the granularity value when there are more CPUs,
152 * because with more CPUs the 'effective latency' as visible
153 * to users decreases. But the relationship is not linear,
154 * so pick a second-best guess by going with the log2 of the
155 * number of CPUs.
156 *
157 * This idea comes from the SD scheduler of Con Kolivas:
158 */
58ac93e4 159static unsigned int get_update_sysctl_factor(void)
029632fb 160{
58ac93e4 161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
162 unsigned int factor;
163
164 switch (sysctl_sched_tunable_scaling) {
165 case SCHED_TUNABLESCALING_NONE:
166 factor = 1;
167 break;
168 case SCHED_TUNABLESCALING_LINEAR:
169 factor = cpus;
170 break;
171 case SCHED_TUNABLESCALING_LOG:
172 default:
173 factor = 1 + ilog2(cpus);
174 break;
175 }
176
177 return factor;
178}
179
180static void update_sysctl(void)
181{
182 unsigned int factor = get_update_sysctl_factor();
183
184#define SET_SYSCTL(name) \
185 (sysctl_##name = (factor) * normalized_sysctl_##name)
186 SET_SYSCTL(sched_min_granularity);
187 SET_SYSCTL(sched_latency);
188 SET_SYSCTL(sched_wakeup_granularity);
189#undef SET_SYSCTL
190}
191
f38f12d1 192void __init sched_init_granularity(void)
029632fb
PZ
193{
194 update_sysctl();
195}
196
9dbdb155 197#define WMULT_CONST (~0U)
029632fb
PZ
198#define WMULT_SHIFT 32
199
9dbdb155
PZ
200static void __update_inv_weight(struct load_weight *lw)
201{
202 unsigned long w;
203
204 if (likely(lw->inv_weight))
205 return;
206
207 w = scale_load_down(lw->weight);
208
209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 lw->inv_weight = 1;
211 else if (unlikely(!w))
212 lw->inv_weight = WMULT_CONST;
213 else
214 lw->inv_weight = WMULT_CONST / w;
215}
029632fb
PZ
216
217/*
9dbdb155
PZ
218 * delta_exec * weight / lw.weight
219 * OR
220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
221 *
1c3de5e1 222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
225 *
226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 228 */
9dbdb155 229static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 230{
9dbdb155
PZ
231 u64 fact = scale_load_down(weight);
232 int shift = WMULT_SHIFT;
029632fb 233
9dbdb155 234 __update_inv_weight(lw);
029632fb 235
9dbdb155
PZ
236 if (unlikely(fact >> 32)) {
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
029632fb
PZ
241 }
242
2eeb01a2 243 fact = mul_u32_u32(fact, lw->inv_weight);
029632fb 244
9dbdb155
PZ
245 while (fact >> 32) {
246 fact >>= 1;
247 shift--;
248 }
029632fb 249
9dbdb155 250 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
251}
252
253
254const struct sched_class fair_sched_class;
a4c2f00f 255
bf0f6f24
IM
256/**************************************************************
257 * CFS operations on generic schedulable entities:
258 */
259
62160e3f 260#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
261static inline struct task_struct *task_of(struct sched_entity *se)
262{
9148a3a1 263 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
264 return container_of(se, struct task_struct, se);
265}
266
b758149c
PZ
267/* Walk up scheduling entities hierarchy */
268#define for_each_sched_entity(se) \
269 for (; se; se = se->parent)
270
271static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
272{
273 return p->se.cfs_rq;
274}
275
276/* runqueue on which this entity is (to be) queued */
277static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
278{
279 return se->cfs_rq;
280}
281
282/* runqueue "owned" by this group */
283static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
284{
285 return grp->my_q;
286}
287
3c93a0c0
QY
288static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
289{
290 if (!path)
291 return;
292
293 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
294 autogroup_path(cfs_rq->tg, path, len);
295 else if (cfs_rq && cfs_rq->tg->css.cgroup)
296 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
297 else
298 strlcpy(path, "(null)", len);
299}
300
f6783319 301static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 302{
5d299eab
PZ
303 struct rq *rq = rq_of(cfs_rq);
304 int cpu = cpu_of(rq);
305
306 if (cfs_rq->on_list)
f6783319 307 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
308
309 cfs_rq->on_list = 1;
310
311 /*
312 * Ensure we either appear before our parent (if already
313 * enqueued) or force our parent to appear after us when it is
314 * enqueued. The fact that we always enqueue bottom-up
315 * reduces this to two cases and a special case for the root
316 * cfs_rq. Furthermore, it also means that we will always reset
317 * tmp_alone_branch either when the branch is connected
318 * to a tree or when we reach the top of the tree
319 */
320 if (cfs_rq->tg->parent &&
321 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 322 /*
5d299eab
PZ
323 * If parent is already on the list, we add the child
324 * just before. Thanks to circular linked property of
325 * the list, this means to put the child at the tail
326 * of the list that starts by parent.
67e86250 327 */
5d299eab
PZ
328 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
329 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
330 /*
331 * The branch is now connected to its tree so we can
332 * reset tmp_alone_branch to the beginning of the
333 * list.
334 */
335 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 336 return true;
5d299eab 337 }
3d4b47b4 338
5d299eab
PZ
339 if (!cfs_rq->tg->parent) {
340 /*
341 * cfs rq without parent should be put
342 * at the tail of the list.
343 */
344 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
345 &rq->leaf_cfs_rq_list);
346 /*
347 * We have reach the top of a tree so we can reset
348 * tmp_alone_branch to the beginning of the list.
349 */
350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 351 return true;
3d4b47b4 352 }
5d299eab
PZ
353
354 /*
355 * The parent has not already been added so we want to
356 * make sure that it will be put after us.
357 * tmp_alone_branch points to the begin of the branch
358 * where we will add parent.
359 */
360 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
361 /*
362 * update tmp_alone_branch to points to the new begin
363 * of the branch
364 */
365 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 366 return false;
3d4b47b4
PZ
367}
368
369static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
370{
371 if (cfs_rq->on_list) {
31bc6aea
VG
372 struct rq *rq = rq_of(cfs_rq);
373
374 /*
375 * With cfs_rq being unthrottled/throttled during an enqueue,
376 * it can happen the tmp_alone_branch points the a leaf that
377 * we finally want to del. In this case, tmp_alone_branch moves
378 * to the prev element but it will point to rq->leaf_cfs_rq_list
379 * at the end of the enqueue.
380 */
381 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
382 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
383
3d4b47b4
PZ
384 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
385 cfs_rq->on_list = 0;
386 }
387}
388
5d299eab
PZ
389static inline void assert_list_leaf_cfs_rq(struct rq *rq)
390{
391 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
392}
393
039ae8bc
VG
394/* Iterate thr' all leaf cfs_rq's on a runqueue */
395#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
396 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
397 leaf_cfs_rq_list)
b758149c
PZ
398
399/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 400static inline struct cfs_rq *
b758149c
PZ
401is_same_group(struct sched_entity *se, struct sched_entity *pse)
402{
403 if (se->cfs_rq == pse->cfs_rq)
fed14d45 404 return se->cfs_rq;
b758149c 405
fed14d45 406 return NULL;
b758149c
PZ
407}
408
409static inline struct sched_entity *parent_entity(struct sched_entity *se)
410{
411 return se->parent;
412}
413
464b7527
PZ
414static void
415find_matching_se(struct sched_entity **se, struct sched_entity **pse)
416{
417 int se_depth, pse_depth;
418
419 /*
420 * preemption test can be made between sibling entities who are in the
421 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
422 * both tasks until we find their ancestors who are siblings of common
423 * parent.
424 */
425
426 /* First walk up until both entities are at same depth */
fed14d45
PZ
427 se_depth = (*se)->depth;
428 pse_depth = (*pse)->depth;
464b7527
PZ
429
430 while (se_depth > pse_depth) {
431 se_depth--;
432 *se = parent_entity(*se);
433 }
434
435 while (pse_depth > se_depth) {
436 pse_depth--;
437 *pse = parent_entity(*pse);
438 }
439
440 while (!is_same_group(*se, *pse)) {
441 *se = parent_entity(*se);
442 *pse = parent_entity(*pse);
443 }
444}
445
8f48894f
PZ
446#else /* !CONFIG_FAIR_GROUP_SCHED */
447
448static inline struct task_struct *task_of(struct sched_entity *se)
449{
450 return container_of(se, struct task_struct, se);
451}
bf0f6f24 452
b758149c
PZ
453#define for_each_sched_entity(se) \
454 for (; se; se = NULL)
bf0f6f24 455
b758149c 456static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 457{
b758149c 458 return &task_rq(p)->cfs;
bf0f6f24
IM
459}
460
b758149c
PZ
461static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
462{
463 struct task_struct *p = task_of(se);
464 struct rq *rq = task_rq(p);
465
466 return &rq->cfs;
467}
468
469/* runqueue "owned" by this group */
470static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
471{
472 return NULL;
473}
474
3c93a0c0
QY
475static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
476{
477 if (path)
478 strlcpy(path, "(null)", len);
479}
480
f6783319 481static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 482{
f6783319 483 return true;
3d4b47b4
PZ
484}
485
486static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
487{
488}
489
5d299eab
PZ
490static inline void assert_list_leaf_cfs_rq(struct rq *rq)
491{
492}
493
039ae8bc
VG
494#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
495 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 496
b758149c
PZ
497static inline struct sched_entity *parent_entity(struct sched_entity *se)
498{
499 return NULL;
500}
501
464b7527
PZ
502static inline void
503find_matching_se(struct sched_entity **se, struct sched_entity **pse)
504{
505}
506
b758149c
PZ
507#endif /* CONFIG_FAIR_GROUP_SCHED */
508
6c16a6dc 509static __always_inline
9dbdb155 510void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
511
512/**************************************************************
513 * Scheduling class tree data structure manipulation methods:
514 */
515
1bf08230 516static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 517{
1bf08230 518 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 519 if (delta > 0)
1bf08230 520 max_vruntime = vruntime;
02e0431a 521
1bf08230 522 return max_vruntime;
02e0431a
PZ
523}
524
0702e3eb 525static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
526{
527 s64 delta = (s64)(vruntime - min_vruntime);
528 if (delta < 0)
529 min_vruntime = vruntime;
530
531 return min_vruntime;
532}
533
54fdc581
FC
534static inline int entity_before(struct sched_entity *a,
535 struct sched_entity *b)
536{
537 return (s64)(a->vruntime - b->vruntime) < 0;
538}
539
1af5f730
PZ
540static void update_min_vruntime(struct cfs_rq *cfs_rq)
541{
b60205c7 542 struct sched_entity *curr = cfs_rq->curr;
bfb06889 543 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 544
1af5f730
PZ
545 u64 vruntime = cfs_rq->min_vruntime;
546
b60205c7
PZ
547 if (curr) {
548 if (curr->on_rq)
549 vruntime = curr->vruntime;
550 else
551 curr = NULL;
552 }
1af5f730 553
bfb06889
DB
554 if (leftmost) { /* non-empty tree */
555 struct sched_entity *se;
556 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 557
b60205c7 558 if (!curr)
1af5f730
PZ
559 vruntime = se->vruntime;
560 else
561 vruntime = min_vruntime(vruntime, se->vruntime);
562 }
563
1bf08230 564 /* ensure we never gain time by being placed backwards. */
1af5f730 565 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
566#ifndef CONFIG_64BIT
567 smp_wmb();
568 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
569#endif
1af5f730
PZ
570}
571
bf0f6f24
IM
572/*
573 * Enqueue an entity into the rb-tree:
574 */
0702e3eb 575static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 576{
bfb06889 577 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
578 struct rb_node *parent = NULL;
579 struct sched_entity *entry;
bfb06889 580 bool leftmost = true;
bf0f6f24
IM
581
582 /*
583 * Find the right place in the rbtree:
584 */
585 while (*link) {
586 parent = *link;
587 entry = rb_entry(parent, struct sched_entity, run_node);
588 /*
589 * We dont care about collisions. Nodes with
590 * the same key stay together.
591 */
2bd2d6f2 592 if (entity_before(se, entry)) {
bf0f6f24
IM
593 link = &parent->rb_left;
594 } else {
595 link = &parent->rb_right;
bfb06889 596 leftmost = false;
bf0f6f24
IM
597 }
598 }
599
bf0f6f24 600 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
601 rb_insert_color_cached(&se->run_node,
602 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
603}
604
0702e3eb 605static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 606{
bfb06889 607 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
608}
609
029632fb 610struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 611{
bfb06889 612 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
613
614 if (!left)
615 return NULL;
616
617 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
618}
619
ac53db59
RR
620static struct sched_entity *__pick_next_entity(struct sched_entity *se)
621{
622 struct rb_node *next = rb_next(&se->run_node);
623
624 if (!next)
625 return NULL;
626
627 return rb_entry(next, struct sched_entity, run_node);
628}
629
630#ifdef CONFIG_SCHED_DEBUG
029632fb 631struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 632{
bfb06889 633 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 634
70eee74b
BS
635 if (!last)
636 return NULL;
7eee3e67
IM
637
638 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
639}
640
bf0f6f24
IM
641/**************************************************************
642 * Scheduling class statistics methods:
643 */
644
acb4a848 645int sched_proc_update_handler(struct ctl_table *table, int write,
32927393 646 void *buffer, size_t *lenp, loff_t *ppos)
b2be5e96 647{
8d65af78 648 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 649 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
650
651 if (ret || !write)
652 return ret;
653
654 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
655 sysctl_sched_min_granularity);
656
acb4a848
CE
657#define WRT_SYSCTL(name) \
658 (normalized_sysctl_##name = sysctl_##name / (factor))
659 WRT_SYSCTL(sched_min_granularity);
660 WRT_SYSCTL(sched_latency);
661 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
662#undef WRT_SYSCTL
663
b2be5e96
PZ
664 return 0;
665}
666#endif
647e7cac 667
a7be37ac 668/*
f9c0b095 669 * delta /= w
a7be37ac 670 */
9dbdb155 671static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 672{
f9c0b095 673 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 674 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
675
676 return delta;
677}
678
647e7cac
IM
679/*
680 * The idea is to set a period in which each task runs once.
681 *
532b1858 682 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
683 * this period because otherwise the slices get too small.
684 *
685 * p = (nr <= nl) ? l : l*nr/nl
686 */
4d78e7b6
PZ
687static u64 __sched_period(unsigned long nr_running)
688{
8e2b0bf3
BF
689 if (unlikely(nr_running > sched_nr_latency))
690 return nr_running * sysctl_sched_min_granularity;
691 else
692 return sysctl_sched_latency;
4d78e7b6
PZ
693}
694
647e7cac
IM
695/*
696 * We calculate the wall-time slice from the period by taking a part
697 * proportional to the weight.
698 *
f9c0b095 699 * s = p*P[w/rw]
647e7cac 700 */
6d0f0ebd 701static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 702{
0a582440 703 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 704
0a582440 705 for_each_sched_entity(se) {
6272d68c 706 struct load_weight *load;
3104bf03 707 struct load_weight lw;
6272d68c
LM
708
709 cfs_rq = cfs_rq_of(se);
710 load = &cfs_rq->load;
f9c0b095 711
0a582440 712 if (unlikely(!se->on_rq)) {
3104bf03 713 lw = cfs_rq->load;
0a582440
MG
714
715 update_load_add(&lw, se->load.weight);
716 load = &lw;
717 }
9dbdb155 718 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
719 }
720 return slice;
bf0f6f24
IM
721}
722
647e7cac 723/*
660cc00f 724 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 725 *
f9c0b095 726 * vs = s/w
647e7cac 727 */
f9c0b095 728static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 729{
f9c0b095 730 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
731}
732
c0796298 733#include "pelt.h"
23127296 734#ifdef CONFIG_SMP
283e2ed3 735
772bd008 736static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 737static unsigned long task_h_load(struct task_struct *p);
3b1baa64 738static unsigned long capacity_of(int cpu);
fb13c7ee 739
540247fb
YD
740/* Give new sched_entity start runnable values to heavy its load in infant time */
741void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 742{
540247fb 743 struct sched_avg *sa = &se->avg;
a75cdaa9 744
f207934f
PZ
745 memset(sa, 0, sizeof(*sa));
746
b5a9b340 747 /*
dfcb245e 748 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 749 * they get a chance to stabilize to their real load level.
dfcb245e 750 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
751 * nothing has been attached to the task group yet.
752 */
753 if (entity_is_task(se))
0dacee1b 754 sa->load_avg = scale_load_down(se->load.weight);
f207934f 755
9d89c257 756 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 757}
7ea241af 758
df217913 759static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 760
2b8c41da
YD
761/*
762 * With new tasks being created, their initial util_avgs are extrapolated
763 * based on the cfs_rq's current util_avg:
764 *
765 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
766 *
767 * However, in many cases, the above util_avg does not give a desired
768 * value. Moreover, the sum of the util_avgs may be divergent, such
769 * as when the series is a harmonic series.
770 *
771 * To solve this problem, we also cap the util_avg of successive tasks to
772 * only 1/2 of the left utilization budget:
773 *
8fe5c5a9 774 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 775 *
8fe5c5a9 776 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 777 *
8fe5c5a9
QP
778 * For example, for a CPU with 1024 of capacity, a simplest series from
779 * the beginning would be like:
2b8c41da
YD
780 *
781 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
783 *
784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
785 * if util_avg > util_avg_cap.
786 */
d0fe0b9c 787void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 788{
d0fe0b9c 789 struct sched_entity *se = &p->se;
2b8c41da
YD
790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
791 struct sched_avg *sa = &se->avg;
8ec59c0f 792 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
8fe5c5a9 793 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
794
795 if (cap > 0) {
796 if (cfs_rq->avg.util_avg != 0) {
797 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
798 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
799
800 if (sa->util_avg > cap)
801 sa->util_avg = cap;
802 } else {
803 sa->util_avg = cap;
804 }
2b8c41da 805 }
7dc603c9 806
e21cf434 807 sa->runnable_avg = sa->util_avg;
9f683953 808
d0fe0b9c
DE
809 if (p->sched_class != &fair_sched_class) {
810 /*
811 * For !fair tasks do:
812 *
813 update_cfs_rq_load_avg(now, cfs_rq);
a4f9a0e5 814 attach_entity_load_avg(cfs_rq, se);
d0fe0b9c
DE
815 switched_from_fair(rq, p);
816 *
817 * such that the next switched_to_fair() has the
818 * expected state.
819 */
820 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
821 return;
7dc603c9
PZ
822 }
823
df217913 824 attach_entity_cfs_rq(se);
2b8c41da
YD
825}
826
7dc603c9 827#else /* !CONFIG_SMP */
540247fb 828void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
829{
830}
d0fe0b9c 831void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
832{
833}
fe749158 834static void update_tg_load_avg(struct cfs_rq *cfs_rq)
3d30544f
PZ
835{
836}
7dc603c9 837#endif /* CONFIG_SMP */
a75cdaa9 838
bf0f6f24 839/*
9dbdb155 840 * Update the current task's runtime statistics.
bf0f6f24 841 */
b7cc0896 842static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 843{
429d43bc 844 struct sched_entity *curr = cfs_rq->curr;
78becc27 845 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 846 u64 delta_exec;
bf0f6f24
IM
847
848 if (unlikely(!curr))
849 return;
850
9dbdb155
PZ
851 delta_exec = now - curr->exec_start;
852 if (unlikely((s64)delta_exec <= 0))
34f28ecd 853 return;
bf0f6f24 854
8ebc91d9 855 curr->exec_start = now;
d842de87 856
9dbdb155
PZ
857 schedstat_set(curr->statistics.exec_max,
858 max(delta_exec, curr->statistics.exec_max));
859
860 curr->sum_exec_runtime += delta_exec;
ae92882e 861 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
862
863 curr->vruntime += calc_delta_fair(delta_exec, curr);
864 update_min_vruntime(cfs_rq);
865
d842de87
SV
866 if (entity_is_task(curr)) {
867 struct task_struct *curtask = task_of(curr);
868
f977bb49 869 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 870 cgroup_account_cputime(curtask, delta_exec);
f06febc9 871 account_group_exec_runtime(curtask, delta_exec);
d842de87 872 }
ec12cb7f
PT
873
874 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
875}
876
6e998916
SG
877static void update_curr_fair(struct rq *rq)
878{
879 update_curr(cfs_rq_of(&rq->curr->se));
880}
881
bf0f6f24 882static inline void
5870db5b 883update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 884{
4fa8d299
JP
885 u64 wait_start, prev_wait_start;
886
887 if (!schedstat_enabled())
888 return;
889
890 wait_start = rq_clock(rq_of(cfs_rq));
891 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
892
893 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
894 likely(wait_start > prev_wait_start))
895 wait_start -= prev_wait_start;
3ea94de1 896
2ed41a55 897 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
898}
899
4fa8d299 900static inline void
3ea94de1
JP
901update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
902{
903 struct task_struct *p;
cb251765
MG
904 u64 delta;
905
4fa8d299
JP
906 if (!schedstat_enabled())
907 return;
908
b9c88f75 909 /*
910 * When the sched_schedstat changes from 0 to 1, some sched se
911 * maybe already in the runqueue, the se->statistics.wait_start
912 * will be 0.So it will let the delta wrong. We need to avoid this
913 * scenario.
914 */
915 if (unlikely(!schedstat_val(se->statistics.wait_start)))
916 return;
917
4fa8d299 918 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
919
920 if (entity_is_task(se)) {
921 p = task_of(se);
922 if (task_on_rq_migrating(p)) {
923 /*
924 * Preserve migrating task's wait time so wait_start
925 * time stamp can be adjusted to accumulate wait time
926 * prior to migration.
927 */
2ed41a55 928 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
929 return;
930 }
931 trace_sched_stat_wait(p, delta);
932 }
933
2ed41a55 934 __schedstat_set(se->statistics.wait_max,
4fa8d299 935 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
936 __schedstat_inc(se->statistics.wait_count);
937 __schedstat_add(se->statistics.wait_sum, delta);
938 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 939}
3ea94de1 940
4fa8d299 941static inline void
1a3d027c
JP
942update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
943{
944 struct task_struct *tsk = NULL;
4fa8d299
JP
945 u64 sleep_start, block_start;
946
947 if (!schedstat_enabled())
948 return;
949
950 sleep_start = schedstat_val(se->statistics.sleep_start);
951 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
952
953 if (entity_is_task(se))
954 tsk = task_of(se);
955
4fa8d299
JP
956 if (sleep_start) {
957 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
958
959 if ((s64)delta < 0)
960 delta = 0;
961
4fa8d299 962 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 963 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 964
2ed41a55
PZ
965 __schedstat_set(se->statistics.sleep_start, 0);
966 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
967
968 if (tsk) {
969 account_scheduler_latency(tsk, delta >> 10, 1);
970 trace_sched_stat_sleep(tsk, delta);
971 }
972 }
4fa8d299
JP
973 if (block_start) {
974 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
975
976 if ((s64)delta < 0)
977 delta = 0;
978
4fa8d299 979 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 980 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 981
2ed41a55
PZ
982 __schedstat_set(se->statistics.block_start, 0);
983 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
984
985 if (tsk) {
986 if (tsk->in_iowait) {
2ed41a55
PZ
987 __schedstat_add(se->statistics.iowait_sum, delta);
988 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
989 trace_sched_stat_iowait(tsk, delta);
990 }
991
992 trace_sched_stat_blocked(tsk, delta);
993
994 /*
995 * Blocking time is in units of nanosecs, so shift by
996 * 20 to get a milliseconds-range estimation of the
997 * amount of time that the task spent sleeping:
998 */
999 if (unlikely(prof_on == SLEEP_PROFILING)) {
1000 profile_hits(SLEEP_PROFILING,
1001 (void *)get_wchan(tsk),
1002 delta >> 20);
1003 }
1004 account_scheduler_latency(tsk, delta >> 10, 0);
1005 }
1006 }
3ea94de1 1007}
3ea94de1 1008
bf0f6f24
IM
1009/*
1010 * Task is being enqueued - update stats:
1011 */
cb251765 1012static inline void
1a3d027c 1013update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1014{
4fa8d299
JP
1015 if (!schedstat_enabled())
1016 return;
1017
bf0f6f24
IM
1018 /*
1019 * Are we enqueueing a waiting task? (for current tasks
1020 * a dequeue/enqueue event is a NOP)
1021 */
429d43bc 1022 if (se != cfs_rq->curr)
5870db5b 1023 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
1024
1025 if (flags & ENQUEUE_WAKEUP)
1026 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
1027}
1028
bf0f6f24 1029static inline void
cb251765 1030update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1031{
4fa8d299
JP
1032
1033 if (!schedstat_enabled())
1034 return;
1035
bf0f6f24
IM
1036 /*
1037 * Mark the end of the wait period if dequeueing a
1038 * waiting task:
1039 */
429d43bc 1040 if (se != cfs_rq->curr)
9ef0a961 1041 update_stats_wait_end(cfs_rq, se);
cb251765 1042
4fa8d299
JP
1043 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1044 struct task_struct *tsk = task_of(se);
cb251765 1045
4fa8d299 1046 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1047 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1048 rq_clock(rq_of(cfs_rq)));
1049 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1050 __schedstat_set(se->statistics.block_start,
4fa8d299 1051 rq_clock(rq_of(cfs_rq)));
cb251765 1052 }
cb251765
MG
1053}
1054
bf0f6f24
IM
1055/*
1056 * We are picking a new current task - update its stats:
1057 */
1058static inline void
79303e9e 1059update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1060{
1061 /*
1062 * We are starting a new run period:
1063 */
78becc27 1064 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1065}
1066
bf0f6f24
IM
1067/**************************************************
1068 * Scheduling class queueing methods:
1069 */
1070
cbee9f88
PZ
1071#ifdef CONFIG_NUMA_BALANCING
1072/*
598f0ec0
MG
1073 * Approximate time to scan a full NUMA task in ms. The task scan period is
1074 * calculated based on the tasks virtual memory size and
1075 * numa_balancing_scan_size.
cbee9f88 1076 */
598f0ec0
MG
1077unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1078unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1079
1080/* Portion of address space to scan in MB */
1081unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1082
4b96a29b
PZ
1083/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1084unsigned int sysctl_numa_balancing_scan_delay = 1000;
1085
b5dd77c8 1086struct numa_group {
c45a7795 1087 refcount_t refcount;
b5dd77c8
RR
1088
1089 spinlock_t lock; /* nr_tasks, tasks */
1090 int nr_tasks;
1091 pid_t gid;
1092 int active_nodes;
1093
1094 struct rcu_head rcu;
1095 unsigned long total_faults;
1096 unsigned long max_faults_cpu;
1097 /*
1098 * Faults_cpu is used to decide whether memory should move
1099 * towards the CPU. As a consequence, these stats are weighted
1100 * more by CPU use than by memory faults.
1101 */
1102 unsigned long *faults_cpu;
04f5c362 1103 unsigned long faults[];
b5dd77c8
RR
1104};
1105
cb361d8c
JH
1106/*
1107 * For functions that can be called in multiple contexts that permit reading
1108 * ->numa_group (see struct task_struct for locking rules).
1109 */
1110static struct numa_group *deref_task_numa_group(struct task_struct *p)
1111{
1112 return rcu_dereference_check(p->numa_group, p == current ||
1113 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1114}
1115
1116static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1117{
1118 return rcu_dereference_protected(p->numa_group, p == current);
1119}
1120
b5dd77c8
RR
1121static inline unsigned long group_faults_priv(struct numa_group *ng);
1122static inline unsigned long group_faults_shared(struct numa_group *ng);
1123
598f0ec0
MG
1124static unsigned int task_nr_scan_windows(struct task_struct *p)
1125{
1126 unsigned long rss = 0;
1127 unsigned long nr_scan_pages;
1128
1129 /*
1130 * Calculations based on RSS as non-present and empty pages are skipped
1131 * by the PTE scanner and NUMA hinting faults should be trapped based
1132 * on resident pages
1133 */
1134 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1135 rss = get_mm_rss(p->mm);
1136 if (!rss)
1137 rss = nr_scan_pages;
1138
1139 rss = round_up(rss, nr_scan_pages);
1140 return rss / nr_scan_pages;
1141}
1142
1143/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1144#define MAX_SCAN_WINDOW 2560
1145
1146static unsigned int task_scan_min(struct task_struct *p)
1147{
316c1608 1148 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1149 unsigned int scan, floor;
1150 unsigned int windows = 1;
1151
64192658
KT
1152 if (scan_size < MAX_SCAN_WINDOW)
1153 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1154 floor = 1000 / windows;
1155
1156 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1157 return max_t(unsigned int, floor, scan);
1158}
1159
b5dd77c8
RR
1160static unsigned int task_scan_start(struct task_struct *p)
1161{
1162 unsigned long smin = task_scan_min(p);
1163 unsigned long period = smin;
cb361d8c 1164 struct numa_group *ng;
b5dd77c8
RR
1165
1166 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1167 rcu_read_lock();
1168 ng = rcu_dereference(p->numa_group);
1169 if (ng) {
b5dd77c8
RR
1170 unsigned long shared = group_faults_shared(ng);
1171 unsigned long private = group_faults_priv(ng);
1172
c45a7795 1173 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1174 period *= shared + 1;
1175 period /= private + shared + 1;
1176 }
cb361d8c 1177 rcu_read_unlock();
b5dd77c8
RR
1178
1179 return max(smin, period);
1180}
1181
598f0ec0
MG
1182static unsigned int task_scan_max(struct task_struct *p)
1183{
b5dd77c8
RR
1184 unsigned long smin = task_scan_min(p);
1185 unsigned long smax;
cb361d8c 1186 struct numa_group *ng;
598f0ec0
MG
1187
1188 /* Watch for min being lower than max due to floor calculations */
1189 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1190
1191 /* Scale the maximum scan period with the amount of shared memory. */
cb361d8c
JH
1192 ng = deref_curr_numa_group(p);
1193 if (ng) {
b5dd77c8
RR
1194 unsigned long shared = group_faults_shared(ng);
1195 unsigned long private = group_faults_priv(ng);
1196 unsigned long period = smax;
1197
c45a7795 1198 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1199 period *= shared + 1;
1200 period /= private + shared + 1;
1201
1202 smax = max(smax, period);
1203 }
1204
598f0ec0
MG
1205 return max(smin, smax);
1206}
1207
0ec8aa00
PZ
1208static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1209{
98fa15f3 1210 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1211 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1212}
1213
1214static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1215{
98fa15f3 1216 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
0ec8aa00
PZ
1217 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1218}
1219
be1e4e76
RR
1220/* Shared or private faults. */
1221#define NR_NUMA_HINT_FAULT_TYPES 2
1222
1223/* Memory and CPU locality */
1224#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1225
1226/* Averaged statistics, and temporary buffers. */
1227#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1228
e29cf08b
MG
1229pid_t task_numa_group_id(struct task_struct *p)
1230{
cb361d8c
JH
1231 struct numa_group *ng;
1232 pid_t gid = 0;
1233
1234 rcu_read_lock();
1235 ng = rcu_dereference(p->numa_group);
1236 if (ng)
1237 gid = ng->gid;
1238 rcu_read_unlock();
1239
1240 return gid;
e29cf08b
MG
1241}
1242
44dba3d5 1243/*
97fb7a0a 1244 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1245 * occupy the first half of the array. The second half of the
1246 * array is for current counters, which are averaged into the
1247 * first set by task_numa_placement.
1248 */
1249static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1250{
44dba3d5 1251 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1252}
1253
1254static inline unsigned long task_faults(struct task_struct *p, int nid)
1255{
44dba3d5 1256 if (!p->numa_faults)
ac8e895b
MG
1257 return 0;
1258
44dba3d5
IM
1259 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1260 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1261}
1262
83e1d2cd
MG
1263static inline unsigned long group_faults(struct task_struct *p, int nid)
1264{
cb361d8c
JH
1265 struct numa_group *ng = deref_task_numa_group(p);
1266
1267 if (!ng)
83e1d2cd
MG
1268 return 0;
1269
cb361d8c
JH
1270 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1271 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1272}
1273
20e07dea
RR
1274static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1275{
44dba3d5
IM
1276 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1277 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1278}
1279
b5dd77c8
RR
1280static inline unsigned long group_faults_priv(struct numa_group *ng)
1281{
1282 unsigned long faults = 0;
1283 int node;
1284
1285 for_each_online_node(node) {
1286 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1287 }
1288
1289 return faults;
1290}
1291
1292static inline unsigned long group_faults_shared(struct numa_group *ng)
1293{
1294 unsigned long faults = 0;
1295 int node;
1296
1297 for_each_online_node(node) {
1298 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1299 }
1300
1301 return faults;
1302}
1303
4142c3eb
RR
1304/*
1305 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1306 * considered part of a numa group's pseudo-interleaving set. Migrations
1307 * between these nodes are slowed down, to allow things to settle down.
1308 */
1309#define ACTIVE_NODE_FRACTION 3
1310
1311static bool numa_is_active_node(int nid, struct numa_group *ng)
1312{
1313 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1314}
1315
6c6b1193
RR
1316/* Handle placement on systems where not all nodes are directly connected. */
1317static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1318 int maxdist, bool task)
1319{
1320 unsigned long score = 0;
1321 int node;
1322
1323 /*
1324 * All nodes are directly connected, and the same distance
1325 * from each other. No need for fancy placement algorithms.
1326 */
1327 if (sched_numa_topology_type == NUMA_DIRECT)
1328 return 0;
1329
1330 /*
1331 * This code is called for each node, introducing N^2 complexity,
1332 * which should be ok given the number of nodes rarely exceeds 8.
1333 */
1334 for_each_online_node(node) {
1335 unsigned long faults;
1336 int dist = node_distance(nid, node);
1337
1338 /*
1339 * The furthest away nodes in the system are not interesting
1340 * for placement; nid was already counted.
1341 */
1342 if (dist == sched_max_numa_distance || node == nid)
1343 continue;
1344
1345 /*
1346 * On systems with a backplane NUMA topology, compare groups
1347 * of nodes, and move tasks towards the group with the most
1348 * memory accesses. When comparing two nodes at distance
1349 * "hoplimit", only nodes closer by than "hoplimit" are part
1350 * of each group. Skip other nodes.
1351 */
1352 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1353 dist >= maxdist)
6c6b1193
RR
1354 continue;
1355
1356 /* Add up the faults from nearby nodes. */
1357 if (task)
1358 faults = task_faults(p, node);
1359 else
1360 faults = group_faults(p, node);
1361
1362 /*
1363 * On systems with a glueless mesh NUMA topology, there are
1364 * no fixed "groups of nodes". Instead, nodes that are not
1365 * directly connected bounce traffic through intermediate
1366 * nodes; a numa_group can occupy any set of nodes.
1367 * The further away a node is, the less the faults count.
1368 * This seems to result in good task placement.
1369 */
1370 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1371 faults *= (sched_max_numa_distance - dist);
1372 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1373 }
1374
1375 score += faults;
1376 }
1377
1378 return score;
1379}
1380
83e1d2cd
MG
1381/*
1382 * These return the fraction of accesses done by a particular task, or
1383 * task group, on a particular numa node. The group weight is given a
1384 * larger multiplier, in order to group tasks together that are almost
1385 * evenly spread out between numa nodes.
1386 */
7bd95320
RR
1387static inline unsigned long task_weight(struct task_struct *p, int nid,
1388 int dist)
83e1d2cd 1389{
7bd95320 1390 unsigned long faults, total_faults;
83e1d2cd 1391
44dba3d5 1392 if (!p->numa_faults)
83e1d2cd
MG
1393 return 0;
1394
1395 total_faults = p->total_numa_faults;
1396
1397 if (!total_faults)
1398 return 0;
1399
7bd95320 1400 faults = task_faults(p, nid);
6c6b1193
RR
1401 faults += score_nearby_nodes(p, nid, dist, true);
1402
7bd95320 1403 return 1000 * faults / total_faults;
83e1d2cd
MG
1404}
1405
7bd95320
RR
1406static inline unsigned long group_weight(struct task_struct *p, int nid,
1407 int dist)
83e1d2cd 1408{
cb361d8c 1409 struct numa_group *ng = deref_task_numa_group(p);
7bd95320
RR
1410 unsigned long faults, total_faults;
1411
cb361d8c 1412 if (!ng)
7bd95320
RR
1413 return 0;
1414
cb361d8c 1415 total_faults = ng->total_faults;
7bd95320
RR
1416
1417 if (!total_faults)
83e1d2cd
MG
1418 return 0;
1419
7bd95320 1420 faults = group_faults(p, nid);
6c6b1193
RR
1421 faults += score_nearby_nodes(p, nid, dist, false);
1422
7bd95320 1423 return 1000 * faults / total_faults;
83e1d2cd
MG
1424}
1425
10f39042
RR
1426bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1427 int src_nid, int dst_cpu)
1428{
cb361d8c 1429 struct numa_group *ng = deref_curr_numa_group(p);
10f39042
RR
1430 int dst_nid = cpu_to_node(dst_cpu);
1431 int last_cpupid, this_cpupid;
1432
1433 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1434 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1435
1436 /*
1437 * Allow first faults or private faults to migrate immediately early in
1438 * the lifetime of a task. The magic number 4 is based on waiting for
1439 * two full passes of the "multi-stage node selection" test that is
1440 * executed below.
1441 */
98fa15f3 1442 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
37355bdc
MG
1443 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1444 return true;
10f39042
RR
1445
1446 /*
1447 * Multi-stage node selection is used in conjunction with a periodic
1448 * migration fault to build a temporal task<->page relation. By using
1449 * a two-stage filter we remove short/unlikely relations.
1450 *
1451 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1452 * a task's usage of a particular page (n_p) per total usage of this
1453 * page (n_t) (in a given time-span) to a probability.
1454 *
1455 * Our periodic faults will sample this probability and getting the
1456 * same result twice in a row, given these samples are fully
1457 * independent, is then given by P(n)^2, provided our sample period
1458 * is sufficiently short compared to the usage pattern.
1459 *
1460 * This quadric squishes small probabilities, making it less likely we
1461 * act on an unlikely task<->page relation.
1462 */
10f39042
RR
1463 if (!cpupid_pid_unset(last_cpupid) &&
1464 cpupid_to_nid(last_cpupid) != dst_nid)
1465 return false;
1466
1467 /* Always allow migrate on private faults */
1468 if (cpupid_match_pid(p, last_cpupid))
1469 return true;
1470
1471 /* A shared fault, but p->numa_group has not been set up yet. */
1472 if (!ng)
1473 return true;
1474
1475 /*
4142c3eb
RR
1476 * Destination node is much more heavily used than the source
1477 * node? Allow migration.
10f39042 1478 */
4142c3eb
RR
1479 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1480 ACTIVE_NODE_FRACTION)
10f39042
RR
1481 return true;
1482
1483 /*
4142c3eb
RR
1484 * Distribute memory according to CPU & memory use on each node,
1485 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1486 *
1487 * faults_cpu(dst) 3 faults_cpu(src)
1488 * --------------- * - > ---------------
1489 * faults_mem(dst) 4 faults_mem(src)
10f39042 1490 */
4142c3eb
RR
1491 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1492 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1493}
1494
6499b1b2
VG
1495/*
1496 * 'numa_type' describes the node at the moment of load balancing.
1497 */
1498enum numa_type {
1499 /* The node has spare capacity that can be used to run more tasks. */
1500 node_has_spare = 0,
1501 /*
1502 * The node is fully used and the tasks don't compete for more CPU
1503 * cycles. Nevertheless, some tasks might wait before running.
1504 */
1505 node_fully_busy,
1506 /*
1507 * The node is overloaded and can't provide expected CPU cycles to all
1508 * tasks.
1509 */
1510 node_overloaded
1511};
58d081b5 1512
fb13c7ee 1513/* Cached statistics for all CPUs within a node */
58d081b5
MG
1514struct numa_stats {
1515 unsigned long load;
8e0e0eda 1516 unsigned long runnable;
6499b1b2 1517 unsigned long util;
fb13c7ee 1518 /* Total compute capacity of CPUs on a node */
5ef20ca1 1519 unsigned long compute_capacity;
6499b1b2
VG
1520 unsigned int nr_running;
1521 unsigned int weight;
1522 enum numa_type node_type;
ff7db0bf 1523 int idle_cpu;
58d081b5 1524};
e6628d5b 1525
ff7db0bf
MG
1526static inline bool is_core_idle(int cpu)
1527{
1528#ifdef CONFIG_SCHED_SMT
1529 int sibling;
1530
1531 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1532 if (cpu == sibling)
1533 continue;
1534
1535 if (!idle_cpu(cpu))
1536 return false;
1537 }
1538#endif
1539
1540 return true;
1541}
1542
58d081b5
MG
1543struct task_numa_env {
1544 struct task_struct *p;
e6628d5b 1545
58d081b5
MG
1546 int src_cpu, src_nid;
1547 int dst_cpu, dst_nid;
e6628d5b 1548
58d081b5 1549 struct numa_stats src_stats, dst_stats;
e6628d5b 1550
40ea2b42 1551 int imbalance_pct;
7bd95320 1552 int dist;
fb13c7ee
MG
1553
1554 struct task_struct *best_task;
1555 long best_imp;
58d081b5
MG
1556 int best_cpu;
1557};
1558
6499b1b2 1559static unsigned long cpu_load(struct rq *rq);
8e0e0eda 1560static unsigned long cpu_runnable(struct rq *rq);
6499b1b2 1561static unsigned long cpu_util(int cpu);
233e7aca 1562static inline long adjust_numa_imbalance(int imbalance, int nr_running);
6499b1b2
VG
1563
1564static inline enum
1565numa_type numa_classify(unsigned int imbalance_pct,
1566 struct numa_stats *ns)
1567{
1568 if ((ns->nr_running > ns->weight) &&
8e0e0eda
VG
1569 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1570 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
6499b1b2
VG
1571 return node_overloaded;
1572
1573 if ((ns->nr_running < ns->weight) ||
8e0e0eda
VG
1574 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1575 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
6499b1b2
VG
1576 return node_has_spare;
1577
1578 return node_fully_busy;
1579}
1580
76c389ab
VS
1581#ifdef CONFIG_SCHED_SMT
1582/* Forward declarations of select_idle_sibling helpers */
1583static inline bool test_idle_cores(int cpu, bool def);
ff7db0bf
MG
1584static inline int numa_idle_core(int idle_core, int cpu)
1585{
ff7db0bf
MG
1586 if (!static_branch_likely(&sched_smt_present) ||
1587 idle_core >= 0 || !test_idle_cores(cpu, false))
1588 return idle_core;
1589
1590 /*
1591 * Prefer cores instead of packing HT siblings
1592 * and triggering future load balancing.
1593 */
1594 if (is_core_idle(cpu))
1595 idle_core = cpu;
ff7db0bf
MG
1596
1597 return idle_core;
1598}
76c389ab
VS
1599#else
1600static inline int numa_idle_core(int idle_core, int cpu)
1601{
1602 return idle_core;
1603}
1604#endif
ff7db0bf 1605
6499b1b2 1606/*
ff7db0bf
MG
1607 * Gather all necessary information to make NUMA balancing placement
1608 * decisions that are compatible with standard load balancer. This
1609 * borrows code and logic from update_sg_lb_stats but sharing a
1610 * common implementation is impractical.
6499b1b2
VG
1611 */
1612static void update_numa_stats(struct task_numa_env *env,
ff7db0bf
MG
1613 struct numa_stats *ns, int nid,
1614 bool find_idle)
6499b1b2 1615{
ff7db0bf 1616 int cpu, idle_core = -1;
6499b1b2
VG
1617
1618 memset(ns, 0, sizeof(*ns));
ff7db0bf
MG
1619 ns->idle_cpu = -1;
1620
0621df31 1621 rcu_read_lock();
6499b1b2
VG
1622 for_each_cpu(cpu, cpumask_of_node(nid)) {
1623 struct rq *rq = cpu_rq(cpu);
1624
1625 ns->load += cpu_load(rq);
8e0e0eda 1626 ns->runnable += cpu_runnable(rq);
6499b1b2
VG
1627 ns->util += cpu_util(cpu);
1628 ns->nr_running += rq->cfs.h_nr_running;
1629 ns->compute_capacity += capacity_of(cpu);
ff7db0bf
MG
1630
1631 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1632 if (READ_ONCE(rq->numa_migrate_on) ||
1633 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1634 continue;
1635
1636 if (ns->idle_cpu == -1)
1637 ns->idle_cpu = cpu;
1638
1639 idle_core = numa_idle_core(idle_core, cpu);
1640 }
6499b1b2 1641 }
0621df31 1642 rcu_read_unlock();
6499b1b2
VG
1643
1644 ns->weight = cpumask_weight(cpumask_of_node(nid));
1645
1646 ns->node_type = numa_classify(env->imbalance_pct, ns);
ff7db0bf
MG
1647
1648 if (idle_core >= 0)
1649 ns->idle_cpu = idle_core;
6499b1b2
VG
1650}
1651
fb13c7ee
MG
1652static void task_numa_assign(struct task_numa_env *env,
1653 struct task_struct *p, long imp)
1654{
a4739eca
SD
1655 struct rq *rq = cpu_rq(env->dst_cpu);
1656
5fb52dd9
MG
1657 /* Check if run-queue part of active NUMA balance. */
1658 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1659 int cpu;
1660 int start = env->dst_cpu;
1661
1662 /* Find alternative idle CPU. */
1663 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1664 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1665 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1666 continue;
1667 }
1668
1669 env->dst_cpu = cpu;
1670 rq = cpu_rq(env->dst_cpu);
1671 if (!xchg(&rq->numa_migrate_on, 1))
1672 goto assign;
1673 }
1674
1675 /* Failed to find an alternative idle CPU */
a4739eca 1676 return;
5fb52dd9 1677 }
a4739eca 1678
5fb52dd9 1679assign:
a4739eca
SD
1680 /*
1681 * Clear previous best_cpu/rq numa-migrate flag, since task now
1682 * found a better CPU to move/swap.
1683 */
5fb52dd9 1684 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
a4739eca
SD
1685 rq = cpu_rq(env->best_cpu);
1686 WRITE_ONCE(rq->numa_migrate_on, 0);
1687 }
1688
fb13c7ee
MG
1689 if (env->best_task)
1690 put_task_struct(env->best_task);
bac78573
ON
1691 if (p)
1692 get_task_struct(p);
fb13c7ee
MG
1693
1694 env->best_task = p;
1695 env->best_imp = imp;
1696 env->best_cpu = env->dst_cpu;
1697}
1698
28a21745 1699static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1700 struct task_numa_env *env)
1701{
e4991b24
RR
1702 long imb, old_imb;
1703 long orig_src_load, orig_dst_load;
28a21745
RR
1704 long src_capacity, dst_capacity;
1705
1706 /*
1707 * The load is corrected for the CPU capacity available on each node.
1708 *
1709 * src_load dst_load
1710 * ------------ vs ---------
1711 * src_capacity dst_capacity
1712 */
1713 src_capacity = env->src_stats.compute_capacity;
1714 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1715
5f95ba7a 1716 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1717
28a21745 1718 orig_src_load = env->src_stats.load;
e4991b24 1719 orig_dst_load = env->dst_stats.load;
28a21745 1720
5f95ba7a 1721 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1722
1723 /* Would this change make things worse? */
1724 return (imb > old_imb);
e63da036
RR
1725}
1726
6fd98e77
SD
1727/*
1728 * Maximum NUMA importance can be 1998 (2*999);
1729 * SMALLIMP @ 30 would be close to 1998/64.
1730 * Used to deter task migration.
1731 */
1732#define SMALLIMP 30
1733
fb13c7ee
MG
1734/*
1735 * This checks if the overall compute and NUMA accesses of the system would
1736 * be improved if the source tasks was migrated to the target dst_cpu taking
1737 * into account that it might be best if task running on the dst_cpu should
1738 * be exchanged with the source task
1739 */
a0f03b61 1740static bool task_numa_compare(struct task_numa_env *env,
305c1fac 1741 long taskimp, long groupimp, bool maymove)
fb13c7ee 1742{
cb361d8c 1743 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
fb13c7ee 1744 struct rq *dst_rq = cpu_rq(env->dst_cpu);
cb361d8c 1745 long imp = p_ng ? groupimp : taskimp;
fb13c7ee 1746 struct task_struct *cur;
28a21745 1747 long src_load, dst_load;
7bd95320 1748 int dist = env->dist;
cb361d8c
JH
1749 long moveimp = imp;
1750 long load;
a0f03b61 1751 bool stopsearch = false;
fb13c7ee 1752
a4739eca 1753 if (READ_ONCE(dst_rq->numa_migrate_on))
a0f03b61 1754 return false;
a4739eca 1755
fb13c7ee 1756 rcu_read_lock();
154abafc 1757 cur = rcu_dereference(dst_rq->curr);
bac78573 1758 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1759 cur = NULL;
1760
7af68335
PZ
1761 /*
1762 * Because we have preemption enabled we can get migrated around and
1763 * end try selecting ourselves (current == env->p) as a swap candidate.
1764 */
a0f03b61
MG
1765 if (cur == env->p) {
1766 stopsearch = true;
7af68335 1767 goto unlock;
a0f03b61 1768 }
7af68335 1769
305c1fac 1770 if (!cur) {
6fd98e77 1771 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1772 goto assign;
1773 else
1774 goto unlock;
1775 }
1776
88cca72c
MG
1777 /* Skip this swap candidate if cannot move to the source cpu. */
1778 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1779 goto unlock;
1780
1781 /*
1782 * Skip this swap candidate if it is not moving to its preferred
1783 * node and the best task is.
1784 */
1785 if (env->best_task &&
1786 env->best_task->numa_preferred_nid == env->src_nid &&
1787 cur->numa_preferred_nid != env->src_nid) {
1788 goto unlock;
1789 }
1790
fb13c7ee
MG
1791 /*
1792 * "imp" is the fault differential for the source task between the
1793 * source and destination node. Calculate the total differential for
1794 * the source task and potential destination task. The more negative
305c1fac 1795 * the value is, the more remote accesses that would be expected to
fb13c7ee 1796 * be incurred if the tasks were swapped.
88cca72c 1797 *
305c1fac
SD
1798 * If dst and source tasks are in the same NUMA group, or not
1799 * in any group then look only at task weights.
1800 */
cb361d8c
JH
1801 cur_ng = rcu_dereference(cur->numa_group);
1802 if (cur_ng == p_ng) {
305c1fac
SD
1803 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1804 task_weight(cur, env->dst_nid, dist);
887c290e 1805 /*
305c1fac
SD
1806 * Add some hysteresis to prevent swapping the
1807 * tasks within a group over tiny differences.
887c290e 1808 */
cb361d8c 1809 if (cur_ng)
305c1fac
SD
1810 imp -= imp / 16;
1811 } else {
1812 /*
1813 * Compare the group weights. If a task is all by itself
1814 * (not part of a group), use the task weight instead.
1815 */
cb361d8c 1816 if (cur_ng && p_ng)
305c1fac
SD
1817 imp += group_weight(cur, env->src_nid, dist) -
1818 group_weight(cur, env->dst_nid, dist);
1819 else
1820 imp += task_weight(cur, env->src_nid, dist) -
1821 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1822 }
1823
88cca72c
MG
1824 /* Discourage picking a task already on its preferred node */
1825 if (cur->numa_preferred_nid == env->dst_nid)
1826 imp -= imp / 16;
1827
1828 /*
1829 * Encourage picking a task that moves to its preferred node.
1830 * This potentially makes imp larger than it's maximum of
1831 * 1998 (see SMALLIMP and task_weight for why) but in this
1832 * case, it does not matter.
1833 */
1834 if (cur->numa_preferred_nid == env->src_nid)
1835 imp += imp / 8;
1836
305c1fac 1837 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1838 imp = moveimp;
305c1fac 1839 cur = NULL;
fb13c7ee 1840 goto assign;
305c1fac 1841 }
fb13c7ee 1842
88cca72c
MG
1843 /*
1844 * Prefer swapping with a task moving to its preferred node over a
1845 * task that is not.
1846 */
1847 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1848 env->best_task->numa_preferred_nid != env->src_nid) {
1849 goto assign;
1850 }
1851
6fd98e77
SD
1852 /*
1853 * If the NUMA importance is less than SMALLIMP,
1854 * task migration might only result in ping pong
1855 * of tasks and also hurt performance due to cache
1856 * misses.
1857 */
1858 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1859 goto unlock;
1860
fb13c7ee
MG
1861 /*
1862 * In the overloaded case, try and keep the load balanced.
1863 */
305c1fac
SD
1864 load = task_h_load(env->p) - task_h_load(cur);
1865 if (!load)
1866 goto assign;
1867
e720fff6
PZ
1868 dst_load = env->dst_stats.load + load;
1869 src_load = env->src_stats.load - load;
fb13c7ee 1870
28a21745 1871 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1872 goto unlock;
1873
305c1fac 1874assign:
ff7db0bf 1875 /* Evaluate an idle CPU for a task numa move. */
10e2f1ac 1876 if (!cur) {
ff7db0bf
MG
1877 int cpu = env->dst_stats.idle_cpu;
1878
1879 /* Nothing cached so current CPU went idle since the search. */
1880 if (cpu < 0)
1881 cpu = env->dst_cpu;
1882
10e2f1ac 1883 /*
ff7db0bf
MG
1884 * If the CPU is no longer truly idle and the previous best CPU
1885 * is, keep using it.
10e2f1ac 1886 */
ff7db0bf
MG
1887 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1888 idle_cpu(env->best_cpu)) {
1889 cpu = env->best_cpu;
1890 }
1891
ff7db0bf 1892 env->dst_cpu = cpu;
10e2f1ac 1893 }
ba7e5a27 1894
fb13c7ee 1895 task_numa_assign(env, cur, imp);
a0f03b61
MG
1896
1897 /*
1898 * If a move to idle is allowed because there is capacity or load
1899 * balance improves then stop the search. While a better swap
1900 * candidate may exist, a search is not free.
1901 */
1902 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1903 stopsearch = true;
1904
1905 /*
1906 * If a swap candidate must be identified and the current best task
1907 * moves its preferred node then stop the search.
1908 */
1909 if (!maymove && env->best_task &&
1910 env->best_task->numa_preferred_nid == env->src_nid) {
1911 stopsearch = true;
1912 }
fb13c7ee
MG
1913unlock:
1914 rcu_read_unlock();
a0f03b61
MG
1915
1916 return stopsearch;
fb13c7ee
MG
1917}
1918
887c290e
RR
1919static void task_numa_find_cpu(struct task_numa_env *env,
1920 long taskimp, long groupimp)
2c8a50aa 1921{
305c1fac 1922 bool maymove = false;
2c8a50aa
MG
1923 int cpu;
1924
305c1fac 1925 /*
fb86f5b2
MG
1926 * If dst node has spare capacity, then check if there is an
1927 * imbalance that would be overruled by the load balancer.
305c1fac 1928 */
fb86f5b2
MG
1929 if (env->dst_stats.node_type == node_has_spare) {
1930 unsigned int imbalance;
1931 int src_running, dst_running;
1932
1933 /*
1934 * Would movement cause an imbalance? Note that if src has
1935 * more running tasks that the imbalance is ignored as the
1936 * move improves the imbalance from the perspective of the
1937 * CPU load balancer.
1938 * */
1939 src_running = env->src_stats.nr_running - 1;
1940 dst_running = env->dst_stats.nr_running + 1;
1941 imbalance = max(0, dst_running - src_running);
233e7aca 1942 imbalance = adjust_numa_imbalance(imbalance, dst_running);
fb86f5b2
MG
1943
1944 /* Use idle CPU if there is no imbalance */
ff7db0bf 1945 if (!imbalance) {
fb86f5b2 1946 maymove = true;
ff7db0bf
MG
1947 if (env->dst_stats.idle_cpu >= 0) {
1948 env->dst_cpu = env->dst_stats.idle_cpu;
1949 task_numa_assign(env, NULL, 0);
1950 return;
1951 }
1952 }
fb86f5b2
MG
1953 } else {
1954 long src_load, dst_load, load;
1955 /*
1956 * If the improvement from just moving env->p direction is better
1957 * than swapping tasks around, check if a move is possible.
1958 */
1959 load = task_h_load(env->p);
1960 dst_load = env->dst_stats.load + load;
1961 src_load = env->src_stats.load - load;
1962 maymove = !load_too_imbalanced(src_load, dst_load, env);
1963 }
305c1fac 1964
2c8a50aa
MG
1965 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1966 /* Skip this CPU if the source task cannot migrate */
3bd37062 1967 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2c8a50aa
MG
1968 continue;
1969
1970 env->dst_cpu = cpu;
a0f03b61
MG
1971 if (task_numa_compare(env, taskimp, groupimp, maymove))
1972 break;
2c8a50aa
MG
1973 }
1974}
1975
58d081b5
MG
1976static int task_numa_migrate(struct task_struct *p)
1977{
58d081b5
MG
1978 struct task_numa_env env = {
1979 .p = p,
fb13c7ee 1980
58d081b5 1981 .src_cpu = task_cpu(p),
b32e86b4 1982 .src_nid = task_node(p),
fb13c7ee
MG
1983
1984 .imbalance_pct = 112,
1985
1986 .best_task = NULL,
1987 .best_imp = 0,
4142c3eb 1988 .best_cpu = -1,
58d081b5 1989 };
cb361d8c 1990 unsigned long taskweight, groupweight;
58d081b5 1991 struct sched_domain *sd;
cb361d8c
JH
1992 long taskimp, groupimp;
1993 struct numa_group *ng;
a4739eca 1994 struct rq *best_rq;
7bd95320 1995 int nid, ret, dist;
e6628d5b 1996
58d081b5 1997 /*
fb13c7ee
MG
1998 * Pick the lowest SD_NUMA domain, as that would have the smallest
1999 * imbalance and would be the first to start moving tasks about.
2000 *
2001 * And we want to avoid any moving of tasks about, as that would create
2002 * random movement of tasks -- counter the numa conditions we're trying
2003 * to satisfy here.
58d081b5
MG
2004 */
2005 rcu_read_lock();
fb13c7ee 2006 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
2007 if (sd)
2008 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
2009 rcu_read_unlock();
2010
46a73e8a
RR
2011 /*
2012 * Cpusets can break the scheduler domain tree into smaller
2013 * balance domains, some of which do not cross NUMA boundaries.
2014 * Tasks that are "trapped" in such domains cannot be migrated
2015 * elsewhere, so there is no point in (re)trying.
2016 */
2017 if (unlikely(!sd)) {
8cd45eee 2018 sched_setnuma(p, task_node(p));
46a73e8a
RR
2019 return -EINVAL;
2020 }
2021
2c8a50aa 2022 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
2023 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2024 taskweight = task_weight(p, env.src_nid, dist);
2025 groupweight = group_weight(p, env.src_nid, dist);
ff7db0bf 2026 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
7bd95320
RR
2027 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2028 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
ff7db0bf 2029 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
58d081b5 2030
a43455a1 2031 /* Try to find a spot on the preferred nid. */
2d4056fa 2032 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 2033
9de05d48
RR
2034 /*
2035 * Look at other nodes in these cases:
2036 * - there is no space available on the preferred_nid
2037 * - the task is part of a numa_group that is interleaved across
2038 * multiple NUMA nodes; in order to better consolidate the group,
2039 * we need to check other locations.
2040 */
cb361d8c
JH
2041 ng = deref_curr_numa_group(p);
2042 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2c8a50aa
MG
2043 for_each_online_node(nid) {
2044 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2045 continue;
58d081b5 2046
7bd95320 2047 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
2048 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2049 dist != env.dist) {
2050 taskweight = task_weight(p, env.src_nid, dist);
2051 groupweight = group_weight(p, env.src_nid, dist);
2052 }
7bd95320 2053
83e1d2cd 2054 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
2055 taskimp = task_weight(p, nid, dist) - taskweight;
2056 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 2057 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
2058 continue;
2059
7bd95320 2060 env.dist = dist;
2c8a50aa 2061 env.dst_nid = nid;
ff7db0bf 2062 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2d4056fa 2063 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
2064 }
2065 }
2066
68d1b02a
RR
2067 /*
2068 * If the task is part of a workload that spans multiple NUMA nodes,
2069 * and is migrating into one of the workload's active nodes, remember
2070 * this node as the task's preferred numa node, so the workload can
2071 * settle down.
2072 * A task that migrated to a second choice node will be better off
2073 * trying for a better one later. Do not set the preferred node here.
2074 */
cb361d8c 2075 if (ng) {
db015dae
RR
2076 if (env.best_cpu == -1)
2077 nid = env.src_nid;
2078 else
8cd45eee 2079 nid = cpu_to_node(env.best_cpu);
db015dae 2080
8cd45eee
SD
2081 if (nid != p->numa_preferred_nid)
2082 sched_setnuma(p, nid);
db015dae
RR
2083 }
2084
2085 /* No better CPU than the current one was found. */
f22aef4a 2086 if (env.best_cpu == -1) {
b2b2042b 2087 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
db015dae 2088 return -EAGAIN;
f22aef4a 2089 }
0ec8aa00 2090
a4739eca 2091 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 2092 if (env.best_task == NULL) {
286549dc 2093 ret = migrate_task_to(p, env.best_cpu);
a4739eca 2094 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc 2095 if (ret != 0)
b2b2042b 2096 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
fb13c7ee
MG
2097 return ret;
2098 }
2099
0ad4e3df 2100 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 2101 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 2102
286549dc 2103 if (ret != 0)
b2b2042b 2104 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
fb13c7ee
MG
2105 put_task_struct(env.best_task);
2106 return ret;
e6628d5b
MG
2107}
2108
6b9a7460
MG
2109/* Attempt to migrate a task to a CPU on the preferred node. */
2110static void numa_migrate_preferred(struct task_struct *p)
2111{
5085e2a3
RR
2112 unsigned long interval = HZ;
2113
2739d3ee 2114 /* This task has no NUMA fault statistics yet */
98fa15f3 2115 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
6b9a7460
MG
2116 return;
2117
2739d3ee 2118 /* Periodically retry migrating the task to the preferred node */
5085e2a3 2119 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 2120 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
2121
2122 /* Success if task is already running on preferred CPU */
de1b301a 2123 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
2124 return;
2125
2126 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 2127 task_numa_migrate(p);
6b9a7460
MG
2128}
2129
20e07dea 2130/*
4142c3eb 2131 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
2132 * tracking the nodes from which NUMA hinting faults are triggered. This can
2133 * be different from the set of nodes where the workload's memory is currently
2134 * located.
20e07dea 2135 */
4142c3eb 2136static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
2137{
2138 unsigned long faults, max_faults = 0;
4142c3eb 2139 int nid, active_nodes = 0;
20e07dea
RR
2140
2141 for_each_online_node(nid) {
2142 faults = group_faults_cpu(numa_group, nid);
2143 if (faults > max_faults)
2144 max_faults = faults;
2145 }
2146
2147 for_each_online_node(nid) {
2148 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
2149 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2150 active_nodes++;
20e07dea 2151 }
4142c3eb
RR
2152
2153 numa_group->max_faults_cpu = max_faults;
2154 numa_group->active_nodes = active_nodes;
20e07dea
RR
2155}
2156
04bb2f94
RR
2157/*
2158 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2159 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
2160 * period will be for the next scan window. If local/(local+remote) ratio is
2161 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2162 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
2163 */
2164#define NUMA_PERIOD_SLOTS 10
a22b4b01 2165#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
2166
2167/*
2168 * Increase the scan period (slow down scanning) if the majority of
2169 * our memory is already on our local node, or if the majority of
2170 * the page accesses are shared with other processes.
2171 * Otherwise, decrease the scan period.
2172 */
2173static void update_task_scan_period(struct task_struct *p,
2174 unsigned long shared, unsigned long private)
2175{
2176 unsigned int period_slot;
37ec97de 2177 int lr_ratio, ps_ratio;
04bb2f94
RR
2178 int diff;
2179
2180 unsigned long remote = p->numa_faults_locality[0];
2181 unsigned long local = p->numa_faults_locality[1];
2182
2183 /*
2184 * If there were no record hinting faults then either the task is
2185 * completely idle or all activity is areas that are not of interest
074c2381
MG
2186 * to automatic numa balancing. Related to that, if there were failed
2187 * migration then it implies we are migrating too quickly or the local
2188 * node is overloaded. In either case, scan slower
04bb2f94 2189 */
074c2381 2190 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
2191 p->numa_scan_period = min(p->numa_scan_period_max,
2192 p->numa_scan_period << 1);
2193
2194 p->mm->numa_next_scan = jiffies +
2195 msecs_to_jiffies(p->numa_scan_period);
2196
2197 return;
2198 }
2199
2200 /*
2201 * Prepare to scale scan period relative to the current period.
2202 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2203 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2204 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2205 */
2206 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
2207 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2208 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2209
2210 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2211 /*
2212 * Most memory accesses are local. There is no need to
2213 * do fast NUMA scanning, since memory is already local.
2214 */
2215 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2216 if (!slot)
2217 slot = 1;
2218 diff = slot * period_slot;
2219 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2220 /*
2221 * Most memory accesses are shared with other tasks.
2222 * There is no point in continuing fast NUMA scanning,
2223 * since other tasks may just move the memory elsewhere.
2224 */
2225 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
2226 if (!slot)
2227 slot = 1;
2228 diff = slot * period_slot;
2229 } else {
04bb2f94 2230 /*
37ec97de
RR
2231 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2232 * yet they are not on the local NUMA node. Speed up
2233 * NUMA scanning to get the memory moved over.
04bb2f94 2234 */
37ec97de
RR
2235 int ratio = max(lr_ratio, ps_ratio);
2236 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
2237 }
2238
2239 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2240 task_scan_min(p), task_scan_max(p));
2241 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2242}
2243
7e2703e6
RR
2244/*
2245 * Get the fraction of time the task has been running since the last
2246 * NUMA placement cycle. The scheduler keeps similar statistics, but
2247 * decays those on a 32ms period, which is orders of magnitude off
2248 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2249 * stats only if the task is so new there are no NUMA statistics yet.
2250 */
2251static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2252{
2253 u64 runtime, delta, now;
2254 /* Use the start of this time slice to avoid calculations. */
2255 now = p->se.exec_start;
2256 runtime = p->se.sum_exec_runtime;
2257
2258 if (p->last_task_numa_placement) {
2259 delta = runtime - p->last_sum_exec_runtime;
2260 *period = now - p->last_task_numa_placement;
a860fa7b
XX
2261
2262 /* Avoid time going backwards, prevent potential divide error: */
2263 if (unlikely((s64)*period < 0))
2264 *period = 0;
7e2703e6 2265 } else {
c7b50216 2266 delta = p->se.avg.load_sum;
9d89c257 2267 *period = LOAD_AVG_MAX;
7e2703e6
RR
2268 }
2269
2270 p->last_sum_exec_runtime = runtime;
2271 p->last_task_numa_placement = now;
2272
2273 return delta;
2274}
2275
54009416
RR
2276/*
2277 * Determine the preferred nid for a task in a numa_group. This needs to
2278 * be done in a way that produces consistent results with group_weight,
2279 * otherwise workloads might not converge.
2280 */
2281static int preferred_group_nid(struct task_struct *p, int nid)
2282{
2283 nodemask_t nodes;
2284 int dist;
2285
2286 /* Direct connections between all NUMA nodes. */
2287 if (sched_numa_topology_type == NUMA_DIRECT)
2288 return nid;
2289
2290 /*
2291 * On a system with glueless mesh NUMA topology, group_weight
2292 * scores nodes according to the number of NUMA hinting faults on
2293 * both the node itself, and on nearby nodes.
2294 */
2295 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2296 unsigned long score, max_score = 0;
2297 int node, max_node = nid;
2298
2299 dist = sched_max_numa_distance;
2300
2301 for_each_online_node(node) {
2302 score = group_weight(p, node, dist);
2303 if (score > max_score) {
2304 max_score = score;
2305 max_node = node;
2306 }
2307 }
2308 return max_node;
2309 }
2310
2311 /*
2312 * Finding the preferred nid in a system with NUMA backplane
2313 * interconnect topology is more involved. The goal is to locate
2314 * tasks from numa_groups near each other in the system, and
2315 * untangle workloads from different sides of the system. This requires
2316 * searching down the hierarchy of node groups, recursively searching
2317 * inside the highest scoring group of nodes. The nodemask tricks
2318 * keep the complexity of the search down.
2319 */
2320 nodes = node_online_map;
2321 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2322 unsigned long max_faults = 0;
81907478 2323 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2324 int a, b;
2325
2326 /* Are there nodes at this distance from each other? */
2327 if (!find_numa_distance(dist))
2328 continue;
2329
2330 for_each_node_mask(a, nodes) {
2331 unsigned long faults = 0;
2332 nodemask_t this_group;
2333 nodes_clear(this_group);
2334
2335 /* Sum group's NUMA faults; includes a==b case. */
2336 for_each_node_mask(b, nodes) {
2337 if (node_distance(a, b) < dist) {
2338 faults += group_faults(p, b);
2339 node_set(b, this_group);
2340 node_clear(b, nodes);
2341 }
2342 }
2343
2344 /* Remember the top group. */
2345 if (faults > max_faults) {
2346 max_faults = faults;
2347 max_group = this_group;
2348 /*
2349 * subtle: at the smallest distance there is
2350 * just one node left in each "group", the
2351 * winner is the preferred nid.
2352 */
2353 nid = a;
2354 }
2355 }
2356 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2357 if (!max_faults)
2358 break;
54009416
RR
2359 nodes = max_group;
2360 }
2361 return nid;
2362}
2363
cbee9f88
PZ
2364static void task_numa_placement(struct task_struct *p)
2365{
98fa15f3 2366 int seq, nid, max_nid = NUMA_NO_NODE;
f03bb676 2367 unsigned long max_faults = 0;
04bb2f94 2368 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2369 unsigned long total_faults;
2370 u64 runtime, period;
7dbd13ed 2371 spinlock_t *group_lock = NULL;
cb361d8c 2372 struct numa_group *ng;
cbee9f88 2373
7e5a2c17
JL
2374 /*
2375 * The p->mm->numa_scan_seq field gets updated without
2376 * exclusive access. Use READ_ONCE() here to ensure
2377 * that the field is read in a single access:
2378 */
316c1608 2379 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2380 if (p->numa_scan_seq == seq)
2381 return;
2382 p->numa_scan_seq = seq;
598f0ec0 2383 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2384
7e2703e6
RR
2385 total_faults = p->numa_faults_locality[0] +
2386 p->numa_faults_locality[1];
2387 runtime = numa_get_avg_runtime(p, &period);
2388
7dbd13ed 2389 /* If the task is part of a group prevent parallel updates to group stats */
cb361d8c
JH
2390 ng = deref_curr_numa_group(p);
2391 if (ng) {
2392 group_lock = &ng->lock;
60e69eed 2393 spin_lock_irq(group_lock);
7dbd13ed
MG
2394 }
2395
688b7585
MG
2396 /* Find the node with the highest number of faults */
2397 for_each_online_node(nid) {
44dba3d5
IM
2398 /* Keep track of the offsets in numa_faults array */
2399 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2400 unsigned long faults = 0, group_faults = 0;
44dba3d5 2401 int priv;
745d6147 2402
be1e4e76 2403 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2404 long diff, f_diff, f_weight;
8c8a743c 2405
44dba3d5
IM
2406 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2407 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2408 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2409 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2410
ac8e895b 2411 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2412 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2413 fault_types[priv] += p->numa_faults[membuf_idx];
2414 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2415
7e2703e6
RR
2416 /*
2417 * Normalize the faults_from, so all tasks in a group
2418 * count according to CPU use, instead of by the raw
2419 * number of faults. Tasks with little runtime have
2420 * little over-all impact on throughput, and thus their
2421 * faults are less important.
2422 */
2423 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2424 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2425 (total_faults + 1);
44dba3d5
IM
2426 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2427 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2428
44dba3d5
IM
2429 p->numa_faults[mem_idx] += diff;
2430 p->numa_faults[cpu_idx] += f_diff;
2431 faults += p->numa_faults[mem_idx];
83e1d2cd 2432 p->total_numa_faults += diff;
cb361d8c 2433 if (ng) {
44dba3d5
IM
2434 /*
2435 * safe because we can only change our own group
2436 *
2437 * mem_idx represents the offset for a given
2438 * nid and priv in a specific region because it
2439 * is at the beginning of the numa_faults array.
2440 */
cb361d8c
JH
2441 ng->faults[mem_idx] += diff;
2442 ng->faults_cpu[mem_idx] += f_diff;
2443 ng->total_faults += diff;
2444 group_faults += ng->faults[mem_idx];
8c8a743c 2445 }
ac8e895b
MG
2446 }
2447
cb361d8c 2448 if (!ng) {
f03bb676
SD
2449 if (faults > max_faults) {
2450 max_faults = faults;
2451 max_nid = nid;
2452 }
2453 } else if (group_faults > max_faults) {
2454 max_faults = group_faults;
688b7585
MG
2455 max_nid = nid;
2456 }
83e1d2cd
MG
2457 }
2458
cb361d8c
JH
2459 if (ng) {
2460 numa_group_count_active_nodes(ng);
60e69eed 2461 spin_unlock_irq(group_lock);
f03bb676 2462 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2463 }
2464
bb97fc31
RR
2465 if (max_faults) {
2466 /* Set the new preferred node */
2467 if (max_nid != p->numa_preferred_nid)
2468 sched_setnuma(p, max_nid);
3a7053b3 2469 }
30619c89
SD
2470
2471 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2472}
2473
8c8a743c
PZ
2474static inline int get_numa_group(struct numa_group *grp)
2475{
c45a7795 2476 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2477}
2478
2479static inline void put_numa_group(struct numa_group *grp)
2480{
c45a7795 2481 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2482 kfree_rcu(grp, rcu);
2483}
2484
3e6a9418
MG
2485static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2486 int *priv)
8c8a743c
PZ
2487{
2488 struct numa_group *grp, *my_grp;
2489 struct task_struct *tsk;
2490 bool join = false;
2491 int cpu = cpupid_to_cpu(cpupid);
2492 int i;
2493
cb361d8c 2494 if (unlikely(!deref_curr_numa_group(p))) {
8c8a743c 2495 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2496 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2497
2498 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2499 if (!grp)
2500 return;
2501
c45a7795 2502 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2503 grp->active_nodes = 1;
2504 grp->max_faults_cpu = 0;
8c8a743c 2505 spin_lock_init(&grp->lock);
e29cf08b 2506 grp->gid = p->pid;
50ec8a40 2507 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2508 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2509 nr_node_ids;
8c8a743c 2510
be1e4e76 2511 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2512 grp->faults[i] = p->numa_faults[i];
8c8a743c 2513
989348b5 2514 grp->total_faults = p->total_numa_faults;
83e1d2cd 2515
8c8a743c
PZ
2516 grp->nr_tasks++;
2517 rcu_assign_pointer(p->numa_group, grp);
2518 }
2519
2520 rcu_read_lock();
316c1608 2521 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2522
2523 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2524 goto no_join;
8c8a743c
PZ
2525
2526 grp = rcu_dereference(tsk->numa_group);
2527 if (!grp)
3354781a 2528 goto no_join;
8c8a743c 2529
cb361d8c 2530 my_grp = deref_curr_numa_group(p);
8c8a743c 2531 if (grp == my_grp)
3354781a 2532 goto no_join;
8c8a743c
PZ
2533
2534 /*
2535 * Only join the other group if its bigger; if we're the bigger group,
2536 * the other task will join us.
2537 */
2538 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2539 goto no_join;
8c8a743c
PZ
2540
2541 /*
2542 * Tie-break on the grp address.
2543 */
2544 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2545 goto no_join;
8c8a743c 2546
dabe1d99
RR
2547 /* Always join threads in the same process. */
2548 if (tsk->mm == current->mm)
2549 join = true;
2550
2551 /* Simple filter to avoid false positives due to PID collisions */
2552 if (flags & TNF_SHARED)
2553 join = true;
8c8a743c 2554
3e6a9418
MG
2555 /* Update priv based on whether false sharing was detected */
2556 *priv = !join;
2557
dabe1d99 2558 if (join && !get_numa_group(grp))
3354781a 2559 goto no_join;
8c8a743c 2560
8c8a743c
PZ
2561 rcu_read_unlock();
2562
2563 if (!join)
2564 return;
2565
60e69eed
MG
2566 BUG_ON(irqs_disabled());
2567 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2568
be1e4e76 2569 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2570 my_grp->faults[i] -= p->numa_faults[i];
2571 grp->faults[i] += p->numa_faults[i];
8c8a743c 2572 }
989348b5
MG
2573 my_grp->total_faults -= p->total_numa_faults;
2574 grp->total_faults += p->total_numa_faults;
8c8a743c 2575
8c8a743c
PZ
2576 my_grp->nr_tasks--;
2577 grp->nr_tasks++;
2578
2579 spin_unlock(&my_grp->lock);
60e69eed 2580 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2581
2582 rcu_assign_pointer(p->numa_group, grp);
2583
2584 put_numa_group(my_grp);
3354781a
PZ
2585 return;
2586
2587no_join:
2588 rcu_read_unlock();
2589 return;
8c8a743c
PZ
2590}
2591
16d51a59
JH
2592/*
2593 * Get rid of NUMA staticstics associated with a task (either current or dead).
2594 * If @final is set, the task is dead and has reached refcount zero, so we can
2595 * safely free all relevant data structures. Otherwise, there might be
2596 * concurrent reads from places like load balancing and procfs, and we should
2597 * reset the data back to default state without freeing ->numa_faults.
2598 */
2599void task_numa_free(struct task_struct *p, bool final)
8c8a743c 2600{
cb361d8c
JH
2601 /* safe: p either is current or is being freed by current */
2602 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
16d51a59 2603 unsigned long *numa_faults = p->numa_faults;
e9dd685c
SR
2604 unsigned long flags;
2605 int i;
8c8a743c 2606
16d51a59
JH
2607 if (!numa_faults)
2608 return;
2609
8c8a743c 2610 if (grp) {
e9dd685c 2611 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2612 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2613 grp->faults[i] -= p->numa_faults[i];
989348b5 2614 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2615
8c8a743c 2616 grp->nr_tasks--;
e9dd685c 2617 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2618 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2619 put_numa_group(grp);
2620 }
2621
16d51a59
JH
2622 if (final) {
2623 p->numa_faults = NULL;
2624 kfree(numa_faults);
2625 } else {
2626 p->total_numa_faults = 0;
2627 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2628 numa_faults[i] = 0;
2629 }
8c8a743c
PZ
2630}
2631
cbee9f88
PZ
2632/*
2633 * Got a PROT_NONE fault for a page on @node.
2634 */
58b46da3 2635void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2636{
2637 struct task_struct *p = current;
6688cc05 2638 bool migrated = flags & TNF_MIGRATED;
58b46da3 2639 int cpu_node = task_node(current);
792568ec 2640 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2641 struct numa_group *ng;
ac8e895b 2642 int priv;
cbee9f88 2643
2a595721 2644 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2645 return;
2646
9ff1d9ff
MG
2647 /* for example, ksmd faulting in a user's mm */
2648 if (!p->mm)
2649 return;
2650
f809ca9a 2651 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2652 if (unlikely(!p->numa_faults)) {
2653 int size = sizeof(*p->numa_faults) *
be1e4e76 2654 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2655
44dba3d5
IM
2656 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2657 if (!p->numa_faults)
f809ca9a 2658 return;
745d6147 2659
83e1d2cd 2660 p->total_numa_faults = 0;
04bb2f94 2661 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2662 }
cbee9f88 2663
8c8a743c
PZ
2664 /*
2665 * First accesses are treated as private, otherwise consider accesses
2666 * to be private if the accessing pid has not changed
2667 */
2668 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2669 priv = 1;
2670 } else {
2671 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2672 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2673 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2674 }
2675
792568ec
RR
2676 /*
2677 * If a workload spans multiple NUMA nodes, a shared fault that
2678 * occurs wholly within the set of nodes that the workload is
2679 * actively using should be counted as local. This allows the
2680 * scan rate to slow down when a workload has settled down.
2681 */
cb361d8c 2682 ng = deref_curr_numa_group(p);
4142c3eb
RR
2683 if (!priv && !local && ng && ng->active_nodes > 1 &&
2684 numa_is_active_node(cpu_node, ng) &&
2685 numa_is_active_node(mem_node, ng))
792568ec
RR
2686 local = 1;
2687
2739d3ee 2688 /*
e1ff516a
YW
2689 * Retry to migrate task to preferred node periodically, in case it
2690 * previously failed, or the scheduler moved us.
2739d3ee 2691 */
b6a60cf3
SD
2692 if (time_after(jiffies, p->numa_migrate_retry)) {
2693 task_numa_placement(p);
6b9a7460 2694 numa_migrate_preferred(p);
b6a60cf3 2695 }
6b9a7460 2696
b32e86b4
IM
2697 if (migrated)
2698 p->numa_pages_migrated += pages;
074c2381
MG
2699 if (flags & TNF_MIGRATE_FAIL)
2700 p->numa_faults_locality[2] += pages;
b32e86b4 2701
44dba3d5
IM
2702 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2703 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2704 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2705}
2706
6e5fb223
PZ
2707static void reset_ptenuma_scan(struct task_struct *p)
2708{
7e5a2c17
JL
2709 /*
2710 * We only did a read acquisition of the mmap sem, so
2711 * p->mm->numa_scan_seq is written to without exclusive access
2712 * and the update is not guaranteed to be atomic. That's not
2713 * much of an issue though, since this is just used for
2714 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2715 * expensive, to avoid any form of compiler optimizations:
2716 */
316c1608 2717 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2718 p->mm->numa_scan_offset = 0;
2719}
2720
cbee9f88
PZ
2721/*
2722 * The expensive part of numa migration is done from task_work context.
2723 * Triggered from task_tick_numa().
2724 */
9434f9f5 2725static void task_numa_work(struct callback_head *work)
cbee9f88
PZ
2726{
2727 unsigned long migrate, next_scan, now = jiffies;
2728 struct task_struct *p = current;
2729 struct mm_struct *mm = p->mm;
51170840 2730 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2731 struct vm_area_struct *vma;
9f40604c 2732 unsigned long start, end;
598f0ec0 2733 unsigned long nr_pte_updates = 0;
4620f8c1 2734 long pages, virtpages;
cbee9f88 2735
9148a3a1 2736 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88 2737
b34920d4 2738 work->next = work;
cbee9f88
PZ
2739 /*
2740 * Who cares about NUMA placement when they're dying.
2741 *
2742 * NOTE: make sure not to dereference p->mm before this check,
2743 * exit_task_work() happens _after_ exit_mm() so we could be called
2744 * without p->mm even though we still had it when we enqueued this
2745 * work.
2746 */
2747 if (p->flags & PF_EXITING)
2748 return;
2749
930aa174 2750 if (!mm->numa_next_scan) {
7e8d16b6
MG
2751 mm->numa_next_scan = now +
2752 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2753 }
2754
cbee9f88
PZ
2755 /*
2756 * Enforce maximal scan/migration frequency..
2757 */
2758 migrate = mm->numa_next_scan;
2759 if (time_before(now, migrate))
2760 return;
2761
598f0ec0
MG
2762 if (p->numa_scan_period == 0) {
2763 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2764 p->numa_scan_period = task_scan_start(p);
598f0ec0 2765 }
cbee9f88 2766
fb003b80 2767 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2768 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2769 return;
2770
19a78d11
PZ
2771 /*
2772 * Delay this task enough that another task of this mm will likely win
2773 * the next time around.
2774 */
2775 p->node_stamp += 2 * TICK_NSEC;
2776
9f40604c
MG
2777 start = mm->numa_scan_offset;
2778 pages = sysctl_numa_balancing_scan_size;
2779 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2780 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2781 if (!pages)
2782 return;
cbee9f88 2783
4620f8c1 2784
d8ed45c5 2785 if (!mmap_read_trylock(mm))
8655d549 2786 return;
9f40604c 2787 vma = find_vma(mm, start);
6e5fb223
PZ
2788 if (!vma) {
2789 reset_ptenuma_scan(p);
9f40604c 2790 start = 0;
6e5fb223
PZ
2791 vma = mm->mmap;
2792 }
9f40604c 2793 for (; vma; vma = vma->vm_next) {
6b79c57b 2794 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2795 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2796 continue;
6b79c57b 2797 }
6e5fb223 2798
4591ce4f
MG
2799 /*
2800 * Shared library pages mapped by multiple processes are not
2801 * migrated as it is expected they are cache replicated. Avoid
2802 * hinting faults in read-only file-backed mappings or the vdso
2803 * as migrating the pages will be of marginal benefit.
2804 */
2805 if (!vma->vm_mm ||
2806 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2807 continue;
2808
3c67f474
MG
2809 /*
2810 * Skip inaccessible VMAs to avoid any confusion between
2811 * PROT_NONE and NUMA hinting ptes
2812 */
3122e80e 2813 if (!vma_is_accessible(vma))
3c67f474 2814 continue;
4591ce4f 2815
9f40604c
MG
2816 do {
2817 start = max(start, vma->vm_start);
2818 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2819 end = min(end, vma->vm_end);
4620f8c1 2820 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2821
2822 /*
4620f8c1
RR
2823 * Try to scan sysctl_numa_balancing_size worth of
2824 * hpages that have at least one present PTE that
2825 * is not already pte-numa. If the VMA contains
2826 * areas that are unused or already full of prot_numa
2827 * PTEs, scan up to virtpages, to skip through those
2828 * areas faster.
598f0ec0
MG
2829 */
2830 if (nr_pte_updates)
2831 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2832 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2833
9f40604c 2834 start = end;
4620f8c1 2835 if (pages <= 0 || virtpages <= 0)
9f40604c 2836 goto out;
3cf1962c
RR
2837
2838 cond_resched();
9f40604c 2839 } while (end != vma->vm_end);
cbee9f88 2840 }
6e5fb223 2841
9f40604c 2842out:
6e5fb223 2843 /*
c69307d5
PZ
2844 * It is possible to reach the end of the VMA list but the last few
2845 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2846 * would find the !migratable VMA on the next scan but not reset the
2847 * scanner to the start so check it now.
6e5fb223
PZ
2848 */
2849 if (vma)
9f40604c 2850 mm->numa_scan_offset = start;
6e5fb223
PZ
2851 else
2852 reset_ptenuma_scan(p);
d8ed45c5 2853 mmap_read_unlock(mm);
51170840
RR
2854
2855 /*
2856 * Make sure tasks use at least 32x as much time to run other code
2857 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2858 * Usually update_task_scan_period slows down scanning enough; on an
2859 * overloaded system we need to limit overhead on a per task basis.
2860 */
2861 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2862 u64 diff = p->se.sum_exec_runtime - runtime;
2863 p->node_stamp += 32 * diff;
2864 }
cbee9f88
PZ
2865}
2866
d35927a1
VS
2867void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2868{
2869 int mm_users = 0;
2870 struct mm_struct *mm = p->mm;
2871
2872 if (mm) {
2873 mm_users = atomic_read(&mm->mm_users);
2874 if (mm_users == 1) {
2875 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2876 mm->numa_scan_seq = 0;
2877 }
2878 }
2879 p->node_stamp = 0;
2880 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2881 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
b34920d4 2882 /* Protect against double add, see task_tick_numa and task_numa_work */
d35927a1
VS
2883 p->numa_work.next = &p->numa_work;
2884 p->numa_faults = NULL;
2885 RCU_INIT_POINTER(p->numa_group, NULL);
2886 p->last_task_numa_placement = 0;
2887 p->last_sum_exec_runtime = 0;
2888
b34920d4
VS
2889 init_task_work(&p->numa_work, task_numa_work);
2890
d35927a1
VS
2891 /* New address space, reset the preferred nid */
2892 if (!(clone_flags & CLONE_VM)) {
2893 p->numa_preferred_nid = NUMA_NO_NODE;
2894 return;
2895 }
2896
2897 /*
2898 * New thread, keep existing numa_preferred_nid which should be copied
2899 * already by arch_dup_task_struct but stagger when scans start.
2900 */
2901 if (mm) {
2902 unsigned int delay;
2903
2904 delay = min_t(unsigned int, task_scan_max(current),
2905 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2906 delay += 2 * TICK_NSEC;
2907 p->node_stamp = delay;
2908 }
2909}
2910
cbee9f88
PZ
2911/*
2912 * Drive the periodic memory faults..
2913 */
b1546edc 2914static void task_tick_numa(struct rq *rq, struct task_struct *curr)
cbee9f88
PZ
2915{
2916 struct callback_head *work = &curr->numa_work;
2917 u64 period, now;
2918
2919 /*
2920 * We don't care about NUMA placement if we don't have memory.
2921 */
18f855e5 2922 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
cbee9f88
PZ
2923 return;
2924
2925 /*
2926 * Using runtime rather than walltime has the dual advantage that
2927 * we (mostly) drive the selection from busy threads and that the
2928 * task needs to have done some actual work before we bother with
2929 * NUMA placement.
2930 */
2931 now = curr->se.sum_exec_runtime;
2932 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2933
25b3e5a3 2934 if (now > curr->node_stamp + period) {
4b96a29b 2935 if (!curr->node_stamp)
b5dd77c8 2936 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2937 curr->node_stamp += period;
cbee9f88 2938
b34920d4 2939 if (!time_before(jiffies, curr->mm->numa_next_scan))
91989c70 2940 task_work_add(curr, work, TWA_RESUME);
cbee9f88
PZ
2941 }
2942}
3fed382b 2943
3f9672ba
SD
2944static void update_scan_period(struct task_struct *p, int new_cpu)
2945{
2946 int src_nid = cpu_to_node(task_cpu(p));
2947 int dst_nid = cpu_to_node(new_cpu);
2948
05cbdf4f
MG
2949 if (!static_branch_likely(&sched_numa_balancing))
2950 return;
2951
3f9672ba
SD
2952 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2953 return;
2954
05cbdf4f
MG
2955 if (src_nid == dst_nid)
2956 return;
2957
2958 /*
2959 * Allow resets if faults have been trapped before one scan
2960 * has completed. This is most likely due to a new task that
2961 * is pulled cross-node due to wakeups or load balancing.
2962 */
2963 if (p->numa_scan_seq) {
2964 /*
2965 * Avoid scan adjustments if moving to the preferred
2966 * node or if the task was not previously running on
2967 * the preferred node.
2968 */
2969 if (dst_nid == p->numa_preferred_nid ||
98fa15f3
AK
2970 (p->numa_preferred_nid != NUMA_NO_NODE &&
2971 src_nid != p->numa_preferred_nid))
05cbdf4f
MG
2972 return;
2973 }
2974
2975 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2976}
2977
cbee9f88
PZ
2978#else
2979static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2980{
2981}
0ec8aa00
PZ
2982
2983static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2984{
2985}
2986
2987static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2988{
2989}
3fed382b 2990
3f9672ba
SD
2991static inline void update_scan_period(struct task_struct *p, int new_cpu)
2992{
2993}
2994
cbee9f88
PZ
2995#endif /* CONFIG_NUMA_BALANCING */
2996
30cfdcfc
DA
2997static void
2998account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2999{
3000 update_load_add(&cfs_rq->load, se->load.weight);
367456c7 3001#ifdef CONFIG_SMP
0ec8aa00
PZ
3002 if (entity_is_task(se)) {
3003 struct rq *rq = rq_of(cfs_rq);
3004
3005 account_numa_enqueue(rq, task_of(se));
3006 list_add(&se->group_node, &rq->cfs_tasks);
3007 }
367456c7 3008#endif
30cfdcfc 3009 cfs_rq->nr_running++;
30cfdcfc
DA
3010}
3011
3012static void
3013account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3014{
3015 update_load_sub(&cfs_rq->load, se->load.weight);
bfdb198c 3016#ifdef CONFIG_SMP
0ec8aa00
PZ
3017 if (entity_is_task(se)) {
3018 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 3019 list_del_init(&se->group_node);
0ec8aa00 3020 }
bfdb198c 3021#endif
30cfdcfc 3022 cfs_rq->nr_running--;
30cfdcfc
DA
3023}
3024
8d5b9025
PZ
3025/*
3026 * Signed add and clamp on underflow.
3027 *
3028 * Explicitly do a load-store to ensure the intermediate value never hits
3029 * memory. This allows lockless observations without ever seeing the negative
3030 * values.
3031 */
3032#define add_positive(_ptr, _val) do { \
3033 typeof(_ptr) ptr = (_ptr); \
3034 typeof(_val) val = (_val); \
3035 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3036 \
3037 res = var + val; \
3038 \
3039 if (val < 0 && res > var) \
3040 res = 0; \
3041 \
3042 WRITE_ONCE(*ptr, res); \
3043} while (0)
3044
3045/*
3046 * Unsigned subtract and clamp on underflow.
3047 *
3048 * Explicitly do a load-store to ensure the intermediate value never hits
3049 * memory. This allows lockless observations without ever seeing the negative
3050 * values.
3051 */
3052#define sub_positive(_ptr, _val) do { \
3053 typeof(_ptr) ptr = (_ptr); \
3054 typeof(*ptr) val = (_val); \
3055 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3056 res = var - val; \
3057 if (res > var) \
3058 res = 0; \
3059 WRITE_ONCE(*ptr, res); \
3060} while (0)
3061
b5c0ce7b
PB
3062/*
3063 * Remove and clamp on negative, from a local variable.
3064 *
3065 * A variant of sub_positive(), which does not use explicit load-store
3066 * and is thus optimized for local variable updates.
3067 */
3068#define lsub_positive(_ptr, _val) do { \
3069 typeof(_ptr) ptr = (_ptr); \
3070 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3071} while (0)
3072
8d5b9025 3073#ifdef CONFIG_SMP
8d5b9025
PZ
3074static inline void
3075enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3076{
3077 cfs_rq->avg.load_avg += se->avg.load_avg;
3078 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3079}
3080
3081static inline void
3082dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3083{
3084 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3085 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3086}
3087#else
3088static inline void
8d5b9025
PZ
3089enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3090static inline void
3091dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3092#endif
3093
9059393e 3094static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
0dacee1b 3095 unsigned long weight)
9059393e
VG
3096{
3097 if (se->on_rq) {
3098 /* commit outstanding execution time */
3099 if (cfs_rq->curr == se)
3100 update_curr(cfs_rq);
1724b95b 3101 update_load_sub(&cfs_rq->load, se->load.weight);
9059393e
VG
3102 }
3103 dequeue_load_avg(cfs_rq, se);
3104
3105 update_load_set(&se->load, weight);
3106
3107#ifdef CONFIG_SMP
1ea6c46a 3108 do {
87e867b4 3109 u32 divider = get_pelt_divider(&se->avg);
1ea6c46a
PZ
3110
3111 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
1ea6c46a 3112 } while (0);
9059393e
VG
3113#endif
3114
3115 enqueue_load_avg(cfs_rq, se);
0dacee1b 3116 if (se->on_rq)
1724b95b 3117 update_load_add(&cfs_rq->load, se->load.weight);
0dacee1b 3118
9059393e
VG
3119}
3120
3121void reweight_task(struct task_struct *p, int prio)
3122{
3123 struct sched_entity *se = &p->se;
3124 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3125 struct load_weight *load = &se->load;
3126 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3127
0dacee1b 3128 reweight_entity(cfs_rq, se, weight);
9059393e
VG
3129 load->inv_weight = sched_prio_to_wmult[prio];
3130}
3131
3ff6dcac 3132#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 3133#ifdef CONFIG_SMP
cef27403
PZ
3134/*
3135 * All this does is approximate the hierarchical proportion which includes that
3136 * global sum we all love to hate.
3137 *
3138 * That is, the weight of a group entity, is the proportional share of the
3139 * group weight based on the group runqueue weights. That is:
3140 *
3141 * tg->weight * grq->load.weight
3142 * ge->load.weight = ----------------------------- (1)
3143 * \Sum grq->load.weight
3144 *
3145 * Now, because computing that sum is prohibitively expensive to compute (been
3146 * there, done that) we approximate it with this average stuff. The average
3147 * moves slower and therefore the approximation is cheaper and more stable.
3148 *
3149 * So instead of the above, we substitute:
3150 *
3151 * grq->load.weight -> grq->avg.load_avg (2)
3152 *
3153 * which yields the following:
3154 *
3155 * tg->weight * grq->avg.load_avg
3156 * ge->load.weight = ------------------------------ (3)
3157 * tg->load_avg
3158 *
3159 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3160 *
3161 * That is shares_avg, and it is right (given the approximation (2)).
3162 *
3163 * The problem with it is that because the average is slow -- it was designed
3164 * to be exactly that of course -- this leads to transients in boundary
3165 * conditions. In specific, the case where the group was idle and we start the
3166 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3167 * yielding bad latency etc..
3168 *
3169 * Now, in that special case (1) reduces to:
3170 *
3171 * tg->weight * grq->load.weight
17de4ee0 3172 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
3173 * grp->load.weight
3174 *
3175 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3176 *
3177 * So what we do is modify our approximation (3) to approach (4) in the (near)
3178 * UP case, like:
3179 *
3180 * ge->load.weight =
3181 *
3182 * tg->weight * grq->load.weight
3183 * --------------------------------------------------- (5)
3184 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3185 *
17de4ee0
PZ
3186 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3187 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3188 *
3189 *
3190 * tg->weight * grq->load.weight
3191 * ge->load.weight = ----------------------------- (6)
3192 * tg_load_avg'
3193 *
3194 * Where:
3195 *
3196 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3197 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
3198 *
3199 * And that is shares_weight and is icky. In the (near) UP case it approaches
3200 * (4) while in the normal case it approaches (3). It consistently
3201 * overestimates the ge->load.weight and therefore:
3202 *
3203 * \Sum ge->load.weight >= tg->weight
3204 *
3205 * hence icky!
3206 */
2c8e4dce 3207static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 3208{
7c80cfc9
PZ
3209 long tg_weight, tg_shares, load, shares;
3210 struct task_group *tg = cfs_rq->tg;
3211
3212 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 3213
3d4b60d3 3214 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 3215
ea1dc6fc 3216 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 3217
ea1dc6fc
PZ
3218 /* Ensure tg_weight >= load */
3219 tg_weight -= cfs_rq->tg_load_avg_contrib;
3220 tg_weight += load;
3ff6dcac 3221
7c80cfc9 3222 shares = (tg_shares * load);
cf5f0acf
PZ
3223 if (tg_weight)
3224 shares /= tg_weight;
3ff6dcac 3225
b8fd8423
DE
3226 /*
3227 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3228 * of a group with small tg->shares value. It is a floor value which is
3229 * assigned as a minimum load.weight to the sched_entity representing
3230 * the group on a CPU.
3231 *
3232 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3233 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3234 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3235 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3236 * instead of 0.
3237 */
7c80cfc9 3238 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 3239}
387f77cc 3240#endif /* CONFIG_SMP */
ea1dc6fc 3241
82958366
PT
3242static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3243
1ea6c46a
PZ
3244/*
3245 * Recomputes the group entity based on the current state of its group
3246 * runqueue.
3247 */
3248static void update_cfs_group(struct sched_entity *se)
2069dd75 3249{
1ea6c46a 3250 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
0dacee1b 3251 long shares;
2069dd75 3252
1ea6c46a 3253 if (!gcfs_rq)
89ee048f
VG
3254 return;
3255
1ea6c46a 3256 if (throttled_hierarchy(gcfs_rq))
2069dd75 3257 return;
89ee048f 3258
3ff6dcac 3259#ifndef CONFIG_SMP
0dacee1b 3260 shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3261
3262 if (likely(se->load.weight == shares))
3ff6dcac 3263 return;
7c80cfc9 3264#else
2c8e4dce 3265 shares = calc_group_shares(gcfs_rq);
3ff6dcac 3266#endif
2069dd75 3267
0dacee1b 3268 reweight_entity(cfs_rq_of(se), se, shares);
2069dd75 3269}
89ee048f 3270
2069dd75 3271#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3272static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3273{
3274}
3275#endif /* CONFIG_FAIR_GROUP_SCHED */
3276
ea14b57e 3277static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3278{
43964409
LT
3279 struct rq *rq = rq_of(cfs_rq);
3280
a4f9a0e5 3281 if (&rq->cfs == cfs_rq) {
a030d738
VK
3282 /*
3283 * There are a few boundary cases this might miss but it should
3284 * get called often enough that that should (hopefully) not be
9783be2c 3285 * a real problem.
a030d738
VK
3286 *
3287 * It will not get called when we go idle, because the idle
3288 * thread is a different class (!fair), nor will the utilization
3289 * number include things like RT tasks.
3290 *
3291 * As is, the util number is not freq-invariant (we'd have to
3292 * implement arch_scale_freq_capacity() for that).
3293 *
3294 * See cpu_util().
3295 */
ea14b57e 3296 cpufreq_update_util(rq, flags);
a030d738
VK
3297 }
3298}
3299
141965c7 3300#ifdef CONFIG_SMP
c566e8e9 3301#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3302/**
3303 * update_tg_load_avg - update the tg's load avg
3304 * @cfs_rq: the cfs_rq whose avg changed
7c3edd2c
PZ
3305 *
3306 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3307 * However, because tg->load_avg is a global value there are performance
3308 * considerations.
3309 *
3310 * In order to avoid having to look at the other cfs_rq's, we use a
3311 * differential update where we store the last value we propagated. This in
3312 * turn allows skipping updates if the differential is 'small'.
3313 *
815abf5a 3314 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3315 */
fe749158 3316static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
bb17f655 3317{
9d89c257 3318 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3319
aa0b7ae0
WL
3320 /*
3321 * No need to update load_avg for root_task_group as it is not used.
3322 */
3323 if (cfs_rq->tg == &root_task_group)
3324 return;
3325
fe749158 3326 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
9d89c257
YD
3327 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3328 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3329 }
8165e145 3330}
f5f9739d 3331
ad936d86 3332/*
97fb7a0a 3333 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3334 * caller only guarantees p->pi_lock is held; no other assumptions,
3335 * including the state of rq->lock, should be made.
3336 */
3337void set_task_rq_fair(struct sched_entity *se,
3338 struct cfs_rq *prev, struct cfs_rq *next)
3339{
0ccb977f
PZ
3340 u64 p_last_update_time;
3341 u64 n_last_update_time;
3342
ad936d86
BP
3343 if (!sched_feat(ATTACH_AGE_LOAD))
3344 return;
3345
3346 /*
3347 * We are supposed to update the task to "current" time, then its up to
3348 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3349 * getting what current time is, so simply throw away the out-of-date
3350 * time. This will result in the wakee task is less decayed, but giving
3351 * the wakee more load sounds not bad.
3352 */
0ccb977f
PZ
3353 if (!(se->avg.last_update_time && prev))
3354 return;
ad936d86
BP
3355
3356#ifndef CONFIG_64BIT
0ccb977f 3357 {
ad936d86
BP
3358 u64 p_last_update_time_copy;
3359 u64 n_last_update_time_copy;
3360
3361 do {
3362 p_last_update_time_copy = prev->load_last_update_time_copy;
3363 n_last_update_time_copy = next->load_last_update_time_copy;
3364
3365 smp_rmb();
3366
3367 p_last_update_time = prev->avg.last_update_time;
3368 n_last_update_time = next->avg.last_update_time;
3369
3370 } while (p_last_update_time != p_last_update_time_copy ||
3371 n_last_update_time != n_last_update_time_copy);
0ccb977f 3372 }
ad936d86 3373#else
0ccb977f
PZ
3374 p_last_update_time = prev->avg.last_update_time;
3375 n_last_update_time = next->avg.last_update_time;
ad936d86 3376#endif
23127296 3377 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3378 se->avg.last_update_time = n_last_update_time;
ad936d86 3379}
09a43ace 3380
0e2d2aaa
PZ
3381
3382/*
3383 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3384 * propagate its contribution. The key to this propagation is the invariant
3385 * that for each group:
3386 *
3387 * ge->avg == grq->avg (1)
3388 *
3389 * _IFF_ we look at the pure running and runnable sums. Because they
3390 * represent the very same entity, just at different points in the hierarchy.
3391 *
9f683953
VG
3392 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3393 * and simply copies the running/runnable sum over (but still wrong, because
3394 * the group entity and group rq do not have their PELT windows aligned).
0e2d2aaa 3395 *
0dacee1b 3396 * However, update_tg_cfs_load() is more complex. So we have:
0e2d2aaa
PZ
3397 *
3398 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3399 *
3400 * And since, like util, the runnable part should be directly transferable,
3401 * the following would _appear_ to be the straight forward approach:
3402 *
a4c3c049 3403 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3404 *
3405 * And per (1) we have:
3406 *
a4c3c049 3407 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3408 *
3409 * Which gives:
3410 *
3411 * ge->load.weight * grq->avg.load_avg
3412 * ge->avg.load_avg = ----------------------------------- (4)
3413 * grq->load.weight
3414 *
3415 * Except that is wrong!
3416 *
3417 * Because while for entities historical weight is not important and we
3418 * really only care about our future and therefore can consider a pure
3419 * runnable sum, runqueues can NOT do this.
3420 *
3421 * We specifically want runqueues to have a load_avg that includes
3422 * historical weights. Those represent the blocked load, the load we expect
3423 * to (shortly) return to us. This only works by keeping the weights as
3424 * integral part of the sum. We therefore cannot decompose as per (3).
3425 *
a4c3c049
VG
3426 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3427 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3428 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3429 * runnable section of these tasks overlap (or not). If they were to perfectly
3430 * align the rq as a whole would be runnable 2/3 of the time. If however we
3431 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3432 *
a4c3c049 3433 * So we'll have to approximate.. :/
0e2d2aaa 3434 *
a4c3c049 3435 * Given the constraint:
0e2d2aaa 3436 *
a4c3c049 3437 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3438 *
a4c3c049
VG
3439 * We can construct a rule that adds runnable to a rq by assuming minimal
3440 * overlap.
0e2d2aaa 3441 *
a4c3c049 3442 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3443 *
a4c3c049 3444 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3445 *
a4c3c049 3446 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3447 *
0e2d2aaa
PZ
3448 */
3449
09a43ace 3450static inline void
0e2d2aaa 3451update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3452{
09a43ace 3453 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
87e867b4 3454 u32 divider;
09a43ace
VG
3455
3456 /* Nothing to update */
3457 if (!delta)
3458 return;
3459
87e867b4
VG
3460 /*
3461 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3462 * See ___update_load_avg() for details.
3463 */
3464 divider = get_pelt_divider(&cfs_rq->avg);
3465
09a43ace
VG
3466 /* Set new sched_entity's utilization */
3467 se->avg.util_avg = gcfs_rq->avg.util_avg;
95d68593 3468 se->avg.util_sum = se->avg.util_avg * divider;
09a43ace
VG
3469
3470 /* Update parent cfs_rq utilization */
3471 add_positive(&cfs_rq->avg.util_avg, delta);
95d68593 3472 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
09a43ace
VG
3473}
3474
9f683953
VG
3475static inline void
3476update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3477{
3478 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
87e867b4 3479 u32 divider;
9f683953
VG
3480
3481 /* Nothing to update */
3482 if (!delta)
3483 return;
3484
87e867b4
VG
3485 /*
3486 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3487 * See ___update_load_avg() for details.
3488 */
3489 divider = get_pelt_divider(&cfs_rq->avg);
3490
9f683953
VG
3491 /* Set new sched_entity's runnable */
3492 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
95d68593 3493 se->avg.runnable_sum = se->avg.runnable_avg * divider;
9f683953
VG
3494
3495 /* Update parent cfs_rq runnable */
3496 add_positive(&cfs_rq->avg.runnable_avg, delta);
95d68593 3497 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
9f683953
VG
3498}
3499
09a43ace 3500static inline void
0dacee1b 3501update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3502{
a4c3c049 3503 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
0dacee1b
VG
3504 unsigned long load_avg;
3505 u64 load_sum = 0;
a4c3c049 3506 s64 delta_sum;
95d68593 3507 u32 divider;
09a43ace 3508
0e2d2aaa
PZ
3509 if (!runnable_sum)
3510 return;
09a43ace 3511
0e2d2aaa 3512 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3513
95d68593
VG
3514 /*
3515 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3516 * See ___update_load_avg() for details.
3517 */
87e867b4 3518 divider = get_pelt_divider(&cfs_rq->avg);
95d68593 3519
a4c3c049
VG
3520 if (runnable_sum >= 0) {
3521 /*
3522 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3523 * the CPU is saturated running == runnable.
3524 */
3525 runnable_sum += se->avg.load_sum;
95d68593 3526 runnable_sum = min_t(long, runnable_sum, divider);
a4c3c049
VG
3527 } else {
3528 /*
3529 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3530 * assuming all tasks are equally runnable.
3531 */
3532 if (scale_load_down(gcfs_rq->load.weight)) {
3533 load_sum = div_s64(gcfs_rq->avg.load_sum,
3534 scale_load_down(gcfs_rq->load.weight));
3535 }
3536
3537 /* But make sure to not inflate se's runnable */
3538 runnable_sum = min(se->avg.load_sum, load_sum);
3539 }
3540
3541 /*
3542 * runnable_sum can't be lower than running_sum
23127296
VG
3543 * Rescale running sum to be in the same range as runnable sum
3544 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3545 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3546 */
23127296 3547 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3548 runnable_sum = max(runnable_sum, running_sum);
3549
0e2d2aaa 3550 load_sum = (s64)se_weight(se) * runnable_sum;
95d68593 3551 load_avg = div_s64(load_sum, divider);
09a43ace 3552
a4c3c049
VG
3553 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3554 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3555
a4c3c049
VG
3556 se->avg.load_sum = runnable_sum;
3557 se->avg.load_avg = load_avg;
3558 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3559 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace
VG
3560}
3561
0e2d2aaa 3562static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3563{
0e2d2aaa
PZ
3564 cfs_rq->propagate = 1;
3565 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3566}
3567
3568/* Update task and its cfs_rq load average */
3569static inline int propagate_entity_load_avg(struct sched_entity *se)
3570{
0e2d2aaa 3571 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3572
3573 if (entity_is_task(se))
3574 return 0;
3575
0e2d2aaa
PZ
3576 gcfs_rq = group_cfs_rq(se);
3577 if (!gcfs_rq->propagate)
09a43ace
VG
3578 return 0;
3579
0e2d2aaa
PZ
3580 gcfs_rq->propagate = 0;
3581
09a43ace
VG
3582 cfs_rq = cfs_rq_of(se);
3583
0e2d2aaa 3584 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3585
0e2d2aaa 3586 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
9f683953 3587 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
0dacee1b 3588 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
09a43ace 3589
ba19f51f 3590 trace_pelt_cfs_tp(cfs_rq);
8de6242c 3591 trace_pelt_se_tp(se);
ba19f51f 3592
09a43ace
VG
3593 return 1;
3594}
3595
bc427898
VG
3596/*
3597 * Check if we need to update the load and the utilization of a blocked
3598 * group_entity:
3599 */
3600static inline bool skip_blocked_update(struct sched_entity *se)
3601{
3602 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3603
3604 /*
3605 * If sched_entity still have not zero load or utilization, we have to
3606 * decay it:
3607 */
3608 if (se->avg.load_avg || se->avg.util_avg)
3609 return false;
3610
3611 /*
3612 * If there is a pending propagation, we have to update the load and
3613 * the utilization of the sched_entity:
3614 */
0e2d2aaa 3615 if (gcfs_rq->propagate)
bc427898
VG
3616 return false;
3617
3618 /*
3619 * Otherwise, the load and the utilization of the sched_entity is
3620 * already zero and there is no pending propagation, so it will be a
3621 * waste of time to try to decay it:
3622 */
3623 return true;
3624}
3625
6e83125c 3626#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3627
fe749158 3628static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
09a43ace
VG
3629
3630static inline int propagate_entity_load_avg(struct sched_entity *se)
3631{
3632 return 0;
3633}
3634
0e2d2aaa 3635static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3636
6e83125c 3637#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3638
3d30544f
PZ
3639/**
3640 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3641 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3642 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3643 *
3644 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3645 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3646 * post_init_entity_util_avg().
3647 *
3648 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3649 *
7c3edd2c
PZ
3650 * Returns true if the load decayed or we removed load.
3651 *
3652 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3653 * call update_tg_load_avg() when this function returns true.
3d30544f 3654 */
a2c6c91f 3655static inline int
3a123bbb 3656update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3657{
9f683953 3658 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
9d89c257 3659 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3660 int decayed = 0;
2dac754e 3661
2a2f5d4e
PZ
3662 if (cfs_rq->removed.nr) {
3663 unsigned long r;
87e867b4 3664 u32 divider = get_pelt_divider(&cfs_rq->avg);
2a2f5d4e
PZ
3665
3666 raw_spin_lock(&cfs_rq->removed.lock);
3667 swap(cfs_rq->removed.util_avg, removed_util);
3668 swap(cfs_rq->removed.load_avg, removed_load);
9f683953 3669 swap(cfs_rq->removed.runnable_avg, removed_runnable);
2a2f5d4e
PZ
3670 cfs_rq->removed.nr = 0;
3671 raw_spin_unlock(&cfs_rq->removed.lock);
3672
2a2f5d4e 3673 r = removed_load;
89741892 3674 sub_positive(&sa->load_avg, r);
9a2dd585 3675 sub_positive(&sa->load_sum, r * divider);
2dac754e 3676
2a2f5d4e 3677 r = removed_util;
89741892 3678 sub_positive(&sa->util_avg, r);
9a2dd585 3679 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3680
9f683953
VG
3681 r = removed_runnable;
3682 sub_positive(&sa->runnable_avg, r);
3683 sub_positive(&sa->runnable_sum, r * divider);
3684
3685 /*
3686 * removed_runnable is the unweighted version of removed_load so we
3687 * can use it to estimate removed_load_sum.
3688 */
3689 add_tg_cfs_propagate(cfs_rq,
3690 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
2a2f5d4e
PZ
3691
3692 decayed = 1;
9d89c257 3693 }
36ee28e4 3694
23127296 3695 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3696
9d89c257
YD
3697#ifndef CONFIG_64BIT
3698 smp_wmb();
3699 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3700#endif
36ee28e4 3701
2a2f5d4e 3702 return decayed;
21e96f88
SM
3703}
3704
3d30544f
PZ
3705/**
3706 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3707 * @cfs_rq: cfs_rq to attach to
3708 * @se: sched_entity to attach
3709 *
3710 * Must call update_cfs_rq_load_avg() before this, since we rely on
3711 * cfs_rq->avg.last_update_time being current.
3712 */
a4f9a0e5 3713static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
a05e8c51 3714{
95d68593
VG
3715 /*
3716 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3717 * See ___update_load_avg() for details.
3718 */
87e867b4 3719 u32 divider = get_pelt_divider(&cfs_rq->avg);
f207934f
PZ
3720
3721 /*
3722 * When we attach the @se to the @cfs_rq, we must align the decay
3723 * window because without that, really weird and wonderful things can
3724 * happen.
3725 *
3726 * XXX illustrate
3727 */
a05e8c51 3728 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3729 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3730
3731 /*
3732 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3733 * period_contrib. This isn't strictly correct, but since we're
3734 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3735 * _sum a little.
3736 */
3737 se->avg.util_sum = se->avg.util_avg * divider;
3738
9f683953
VG
3739 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3740
f207934f
PZ
3741 se->avg.load_sum = divider;
3742 if (se_weight(se)) {
3743 se->avg.load_sum =
3744 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3745 }
3746
8d5b9025 3747 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3748 cfs_rq->avg.util_avg += se->avg.util_avg;
3749 cfs_rq->avg.util_sum += se->avg.util_sum;
9f683953
VG
3750 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3751 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
0e2d2aaa
PZ
3752
3753 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3754
a4f9a0e5 3755 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3756
3757 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3758}
3759
3d30544f
PZ
3760/**
3761 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3762 * @cfs_rq: cfs_rq to detach from
3763 * @se: sched_entity to detach
3764 *
3765 * Must call update_cfs_rq_load_avg() before this, since we rely on
3766 * cfs_rq->avg.last_update_time being current.
3767 */
a05e8c51
BP
3768static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3769{
8d5b9025 3770 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3771 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3772 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
9f683953
VG
3773 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3774 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
0e2d2aaa
PZ
3775
3776 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3777
ea14b57e 3778 cfs_rq_util_change(cfs_rq, 0);
ba19f51f
QY
3779
3780 trace_pelt_cfs_tp(cfs_rq);
a05e8c51
BP
3781}
3782
b382a531
PZ
3783/*
3784 * Optional action to be done while updating the load average
3785 */
3786#define UPDATE_TG 0x1
3787#define SKIP_AGE_LOAD 0x2
3788#define DO_ATTACH 0x4
3789
3790/* Update task and its cfs_rq load average */
3791static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3792{
23127296 3793 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3794 int decayed;
3795
3796 /*
3797 * Track task load average for carrying it to new CPU after migrated, and
3798 * track group sched_entity load average for task_h_load calc in migration
3799 */
3800 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3801 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3802
3803 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3804 decayed |= propagate_entity_load_avg(se);
3805
3806 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3807
ea14b57e
PZ
3808 /*
3809 * DO_ATTACH means we're here from enqueue_entity().
3810 * !last_update_time means we've passed through
3811 * migrate_task_rq_fair() indicating we migrated.
3812 *
3813 * IOW we're enqueueing a task on a new CPU.
3814 */
a4f9a0e5 3815 attach_entity_load_avg(cfs_rq, se);
fe749158 3816 update_tg_load_avg(cfs_rq);
b382a531 3817
bef69dd8
VG
3818 } else if (decayed) {
3819 cfs_rq_util_change(cfs_rq, 0);
3820
3821 if (flags & UPDATE_TG)
fe749158 3822 update_tg_load_avg(cfs_rq);
bef69dd8 3823 }
b382a531
PZ
3824}
3825
9d89c257 3826#ifndef CONFIG_64BIT
0905f04e
YD
3827static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3828{
9d89c257 3829 u64 last_update_time_copy;
0905f04e 3830 u64 last_update_time;
9ee474f5 3831
9d89c257
YD
3832 do {
3833 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3834 smp_rmb();
3835 last_update_time = cfs_rq->avg.last_update_time;
3836 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3837
3838 return last_update_time;
3839}
9d89c257 3840#else
0905f04e
YD
3841static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3842{
3843 return cfs_rq->avg.last_update_time;
3844}
9d89c257
YD
3845#endif
3846
104cb16d
MR
3847/*
3848 * Synchronize entity load avg of dequeued entity without locking
3849 * the previous rq.
3850 */
71b47eaf 3851static void sync_entity_load_avg(struct sched_entity *se)
104cb16d
MR
3852{
3853 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3854 u64 last_update_time;
3855
3856 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3857 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3858}
3859
0905f04e
YD
3860/*
3861 * Task first catches up with cfs_rq, and then subtract
3862 * itself from the cfs_rq (task must be off the queue now).
3863 */
71b47eaf 3864static void remove_entity_load_avg(struct sched_entity *se)
0905f04e
YD
3865{
3866 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3867 unsigned long flags;
0905f04e
YD
3868
3869 /*
7dc603c9
PZ
3870 * tasks cannot exit without having gone through wake_up_new_task() ->
3871 * post_init_entity_util_avg() which will have added things to the
3872 * cfs_rq, so we can remove unconditionally.
0905f04e 3873 */
0905f04e 3874
104cb16d 3875 sync_entity_load_avg(se);
2a2f5d4e
PZ
3876
3877 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3878 ++cfs_rq->removed.nr;
3879 cfs_rq->removed.util_avg += se->avg.util_avg;
3880 cfs_rq->removed.load_avg += se->avg.load_avg;
9f683953 3881 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
2a2f5d4e 3882 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3883}
642dbc39 3884
9f683953
VG
3885static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3886{
3887 return cfs_rq->avg.runnable_avg;
3888}
3889
7ea241af
YD
3890static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3891{
3892 return cfs_rq->avg.load_avg;
3893}
3894
d91cecc1
CY
3895static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3896
7f65ea42
PB
3897static inline unsigned long task_util(struct task_struct *p)
3898{
3899 return READ_ONCE(p->se.avg.util_avg);
3900}
3901
3902static inline unsigned long _task_util_est(struct task_struct *p)
3903{
3904 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3905
92a801e5 3906 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3907}
3908
3909static inline unsigned long task_util_est(struct task_struct *p)
3910{
3911 return max(task_util(p), _task_util_est(p));
3912}
3913
a7008c07
VS
3914#ifdef CONFIG_UCLAMP_TASK
3915static inline unsigned long uclamp_task_util(struct task_struct *p)
3916{
3917 return clamp(task_util_est(p),
3918 uclamp_eff_value(p, UCLAMP_MIN),
3919 uclamp_eff_value(p, UCLAMP_MAX));
3920}
3921#else
3922static inline unsigned long uclamp_task_util(struct task_struct *p)
3923{
3924 return task_util_est(p);
3925}
3926#endif
3927
7f65ea42
PB
3928static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3929 struct task_struct *p)
3930{
3931 unsigned int enqueued;
3932
3933 if (!sched_feat(UTIL_EST))
3934 return;
3935
3936 /* Update root cfs_rq's estimated utilization */
3937 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3938 enqueued += _task_util_est(p);
7f65ea42 3939 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4581bea8
VD
3940
3941 trace_sched_util_est_cfs_tp(cfs_rq);
7f65ea42
PB
3942}
3943
3944/*
3945 * Check if a (signed) value is within a specified (unsigned) margin,
3946 * based on the observation that:
3947 *
3948 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3949 *
3950 * NOTE: this only works when value + maring < INT_MAX.
3951 */
3952static inline bool within_margin(int value, int margin)
3953{
3954 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3955}
3956
3957static void
3958util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3959{
3960 long last_ewma_diff;
3961 struct util_est ue;
10a35e68 3962 int cpu;
7f65ea42
PB
3963
3964 if (!sched_feat(UTIL_EST))
3965 return;
3966
3482d98b
VG
3967 /* Update root cfs_rq's estimated utilization */
3968 ue.enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3969 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
7f65ea42
PB
3970 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3971
4581bea8
VD
3972 trace_sched_util_est_cfs_tp(cfs_rq);
3973
7f65ea42
PB
3974 /*
3975 * Skip update of task's estimated utilization when the task has not
3976 * yet completed an activation, e.g. being migrated.
3977 */
3978 if (!task_sleep)
3979 return;
3980
d519329f
PB
3981 /*
3982 * If the PELT values haven't changed since enqueue time,
3983 * skip the util_est update.
3984 */
3985 ue = p->se.avg.util_est;
3986 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3987 return;
3988
b8c96361
PB
3989 /*
3990 * Reset EWMA on utilization increases, the moving average is used only
3991 * to smooth utilization decreases.
3992 */
3993 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3994 if (sched_feat(UTIL_EST_FASTUP)) {
3995 if (ue.ewma < ue.enqueued) {
3996 ue.ewma = ue.enqueued;
3997 goto done;
3998 }
3999 }
4000
7f65ea42
PB
4001 /*
4002 * Skip update of task's estimated utilization when its EWMA is
4003 * already ~1% close to its last activation value.
4004 */
7f65ea42
PB
4005 last_ewma_diff = ue.enqueued - ue.ewma;
4006 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
4007 return;
4008
10a35e68
VG
4009 /*
4010 * To avoid overestimation of actual task utilization, skip updates if
4011 * we cannot grant there is idle time in this CPU.
4012 */
4013 cpu = cpu_of(rq_of(cfs_rq));
4014 if (task_util(p) > capacity_orig_of(cpu))
4015 return;
4016
7f65ea42
PB
4017 /*
4018 * Update Task's estimated utilization
4019 *
4020 * When *p completes an activation we can consolidate another sample
4021 * of the task size. This is done by storing the current PELT value
4022 * as ue.enqueued and by using this value to update the Exponential
4023 * Weighted Moving Average (EWMA):
4024 *
4025 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4026 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4027 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4028 * = w * ( last_ewma_diff ) + ewma(t-1)
4029 * = w * (last_ewma_diff + ewma(t-1) / w)
4030 *
4031 * Where 'w' is the weight of new samples, which is configured to be
4032 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4033 */
4034 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4035 ue.ewma += last_ewma_diff;
4036 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
b8c96361 4037done:
7f65ea42 4038 WRITE_ONCE(p->se.avg.util_est, ue);
4581bea8
VD
4039
4040 trace_sched_util_est_se_tp(&p->se);
7f65ea42
PB
4041}
4042
3b1baa64
MR
4043static inline int task_fits_capacity(struct task_struct *p, long capacity)
4044{
a7008c07 4045 return fits_capacity(uclamp_task_util(p), capacity);
3b1baa64
MR
4046}
4047
4048static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4049{
4050 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4051 return;
4052
4053 if (!p) {
4054 rq->misfit_task_load = 0;
4055 return;
4056 }
4057
4058 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4059 rq->misfit_task_load = 0;
4060 return;
4061 }
4062
01cfcde9
VG
4063 /*
4064 * Make sure that misfit_task_load will not be null even if
4065 * task_h_load() returns 0.
4066 */
4067 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
3b1baa64
MR
4068}
4069
38033c37
PZ
4070#else /* CONFIG_SMP */
4071
d31b1a66
VG
4072#define UPDATE_TG 0x0
4073#define SKIP_AGE_LOAD 0x0
b382a531 4074#define DO_ATTACH 0x0
d31b1a66 4075
88c0616e 4076static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 4077{
ea14b57e 4078 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
4079}
4080
9d89c257 4081static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 4082
a05e8c51 4083static inline void
a4f9a0e5 4084attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
a05e8c51
BP
4085static inline void
4086detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4087
d91cecc1 4088static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
4089{
4090 return 0;
4091}
4092
7f65ea42
PB
4093static inline void
4094util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4095
4096static inline void
4097util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4098 bool task_sleep) {}
3b1baa64 4099static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 4100
38033c37 4101#endif /* CONFIG_SMP */
9d85f21c 4102
ddc97297
PZ
4103static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4104{
4105#ifdef CONFIG_SCHED_DEBUG
4106 s64 d = se->vruntime - cfs_rq->min_vruntime;
4107
4108 if (d < 0)
4109 d = -d;
4110
4111 if (d > 3*sysctl_sched_latency)
ae92882e 4112 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
4113#endif
4114}
4115
aeb73b04
PZ
4116static void
4117place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4118{
1af5f730 4119 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 4120
2cb8600e
PZ
4121 /*
4122 * The 'current' period is already promised to the current tasks,
4123 * however the extra weight of the new task will slow them down a
4124 * little, place the new task so that it fits in the slot that
4125 * stays open at the end.
4126 */
94dfb5e7 4127 if (initial && sched_feat(START_DEBIT))
f9c0b095 4128 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 4129
a2e7a7eb 4130 /* sleeps up to a single latency don't count. */
5ca9880c 4131 if (!initial) {
a2e7a7eb 4132 unsigned long thresh = sysctl_sched_latency;
a7be37ac 4133
a2e7a7eb
MG
4134 /*
4135 * Halve their sleep time's effect, to allow
4136 * for a gentler effect of sleepers:
4137 */
4138 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4139 thresh >>= 1;
51e0304c 4140
a2e7a7eb 4141 vruntime -= thresh;
aeb73b04
PZ
4142 }
4143
b5d9d734 4144 /* ensure we never gain time by being placed backwards. */
16c8f1c7 4145 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
4146}
4147
d3d9dc33
PT
4148static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4149
cb251765
MG
4150static inline void check_schedstat_required(void)
4151{
4152#ifdef CONFIG_SCHEDSTATS
4153 if (schedstat_enabled())
4154 return;
4155
4156 /* Force schedstat enabled if a dependent tracepoint is active */
4157 if (trace_sched_stat_wait_enabled() ||
4158 trace_sched_stat_sleep_enabled() ||
4159 trace_sched_stat_iowait_enabled() ||
4160 trace_sched_stat_blocked_enabled() ||
4161 trace_sched_stat_runtime_enabled()) {
eda8dca5 4162 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 4163 "stat_blocked and stat_runtime require the "
f67abed5 4164 "kernel parameter schedstats=enable or "
cb251765
MG
4165 "kernel.sched_schedstats=1\n");
4166 }
4167#endif
4168}
4169
fe61468b 4170static inline bool cfs_bandwidth_used(void);
b5179ac7
PZ
4171
4172/*
4173 * MIGRATION
4174 *
4175 * dequeue
4176 * update_curr()
4177 * update_min_vruntime()
4178 * vruntime -= min_vruntime
4179 *
4180 * enqueue
4181 * update_curr()
4182 * update_min_vruntime()
4183 * vruntime += min_vruntime
4184 *
4185 * this way the vruntime transition between RQs is done when both
4186 * min_vruntime are up-to-date.
4187 *
4188 * WAKEUP (remote)
4189 *
59efa0ba 4190 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
4191 * vruntime -= min_vruntime
4192 *
4193 * enqueue
4194 * update_curr()
4195 * update_min_vruntime()
4196 * vruntime += min_vruntime
4197 *
4198 * this way we don't have the most up-to-date min_vruntime on the originating
4199 * CPU and an up-to-date min_vruntime on the destination CPU.
4200 */
4201
bf0f6f24 4202static void
88ec22d3 4203enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4204{
2f950354
PZ
4205 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4206 bool curr = cfs_rq->curr == se;
4207
88ec22d3 4208 /*
2f950354
PZ
4209 * If we're the current task, we must renormalise before calling
4210 * update_curr().
88ec22d3 4211 */
2f950354 4212 if (renorm && curr)
88ec22d3
PZ
4213 se->vruntime += cfs_rq->min_vruntime;
4214
2f950354
PZ
4215 update_curr(cfs_rq);
4216
bf0f6f24 4217 /*
2f950354
PZ
4218 * Otherwise, renormalise after, such that we're placed at the current
4219 * moment in time, instead of some random moment in the past. Being
4220 * placed in the past could significantly boost this task to the
4221 * fairness detriment of existing tasks.
bf0f6f24 4222 */
2f950354
PZ
4223 if (renorm && !curr)
4224 se->vruntime += cfs_rq->min_vruntime;
4225
89ee048f
VG
4226 /*
4227 * When enqueuing a sched_entity, we must:
4228 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4229 * - Add its load to cfs_rq->runnable_avg
89ee048f
VG
4230 * - For group_entity, update its weight to reflect the new share of
4231 * its group cfs_rq
4232 * - Add its new weight to cfs_rq->load.weight
4233 */
b382a531 4234 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
9f683953 4235 se_update_runnable(se);
1ea6c46a 4236 update_cfs_group(se);
17bc14b7 4237 account_entity_enqueue(cfs_rq, se);
bf0f6f24 4238
1a3d027c 4239 if (flags & ENQUEUE_WAKEUP)
aeb73b04 4240 place_entity(cfs_rq, se, 0);
bf0f6f24 4241
cb251765 4242 check_schedstat_required();
4fa8d299
JP
4243 update_stats_enqueue(cfs_rq, se, flags);
4244 check_spread(cfs_rq, se);
2f950354 4245 if (!curr)
83b699ed 4246 __enqueue_entity(cfs_rq, se);
2069dd75 4247 se->on_rq = 1;
3d4b47b4 4248
fe61468b
VG
4249 /*
4250 * When bandwidth control is enabled, cfs might have been removed
4251 * because of a parent been throttled but cfs->nr_running > 1. Try to
4252 * add it unconditionnally.
4253 */
4254 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
3d4b47b4 4255 list_add_leaf_cfs_rq(cfs_rq);
fe61468b
VG
4256
4257 if (cfs_rq->nr_running == 1)
d3d9dc33 4258 check_enqueue_throttle(cfs_rq);
bf0f6f24
IM
4259}
4260
2c13c919 4261static void __clear_buddies_last(struct sched_entity *se)
2002c695 4262{
2c13c919
RR
4263 for_each_sched_entity(se) {
4264 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4265 if (cfs_rq->last != se)
2c13c919 4266 break;
f1044799
PZ
4267
4268 cfs_rq->last = NULL;
2c13c919
RR
4269 }
4270}
2002c695 4271
2c13c919
RR
4272static void __clear_buddies_next(struct sched_entity *se)
4273{
4274 for_each_sched_entity(se) {
4275 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4276 if (cfs_rq->next != se)
2c13c919 4277 break;
f1044799
PZ
4278
4279 cfs_rq->next = NULL;
2c13c919 4280 }
2002c695
PZ
4281}
4282
ac53db59
RR
4283static void __clear_buddies_skip(struct sched_entity *se)
4284{
4285 for_each_sched_entity(se) {
4286 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 4287 if (cfs_rq->skip != se)
ac53db59 4288 break;
f1044799
PZ
4289
4290 cfs_rq->skip = NULL;
ac53db59
RR
4291 }
4292}
4293
a571bbea
PZ
4294static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4295{
2c13c919
RR
4296 if (cfs_rq->last == se)
4297 __clear_buddies_last(se);
4298
4299 if (cfs_rq->next == se)
4300 __clear_buddies_next(se);
ac53db59
RR
4301
4302 if (cfs_rq->skip == se)
4303 __clear_buddies_skip(se);
a571bbea
PZ
4304}
4305
6c16a6dc 4306static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 4307
bf0f6f24 4308static void
371fd7e7 4309dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 4310{
a2a2d680
DA
4311 /*
4312 * Update run-time statistics of the 'current'.
4313 */
4314 update_curr(cfs_rq);
89ee048f
VG
4315
4316 /*
4317 * When dequeuing a sched_entity, we must:
4318 * - Update loads to have both entity and cfs_rq synced with now.
9f683953 4319 * - Subtract its load from the cfs_rq->runnable_avg.
dfcb245e 4320 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
4321 * - For group entity, update its weight to reflect the new share
4322 * of its group cfs_rq.
4323 */
88c0616e 4324 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 4325 se_update_runnable(se);
a2a2d680 4326
4fa8d299 4327 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4328
2002c695 4329 clear_buddies(cfs_rq, se);
4793241b 4330
83b699ed 4331 if (se != cfs_rq->curr)
30cfdcfc 4332 __dequeue_entity(cfs_rq, se);
17bc14b7 4333 se->on_rq = 0;
30cfdcfc 4334 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4335
4336 /*
b60205c7
PZ
4337 * Normalize after update_curr(); which will also have moved
4338 * min_vruntime if @se is the one holding it back. But before doing
4339 * update_min_vruntime() again, which will discount @se's position and
4340 * can move min_vruntime forward still more.
88ec22d3 4341 */
371fd7e7 4342 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4343 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4344
d8b4986d
PT
4345 /* return excess runtime on last dequeue */
4346 return_cfs_rq_runtime(cfs_rq);
4347
1ea6c46a 4348 update_cfs_group(se);
b60205c7
PZ
4349
4350 /*
4351 * Now advance min_vruntime if @se was the entity holding it back,
4352 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4353 * put back on, and if we advance min_vruntime, we'll be placed back
4354 * further than we started -- ie. we'll be penalized.
4355 */
9845c49c 4356 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4357 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4358}
4359
4360/*
4361 * Preempt the current task with a newly woken task if needed:
4362 */
7c92e54f 4363static void
2e09bf55 4364check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4365{
11697830 4366 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4367 struct sched_entity *se;
4368 s64 delta;
11697830 4369
6d0f0ebd 4370 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4371 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4372 if (delta_exec > ideal_runtime) {
8875125e 4373 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4374 /*
4375 * The current task ran long enough, ensure it doesn't get
4376 * re-elected due to buddy favours.
4377 */
4378 clear_buddies(cfs_rq, curr);
f685ceac
MG
4379 return;
4380 }
4381
4382 /*
4383 * Ensure that a task that missed wakeup preemption by a
4384 * narrow margin doesn't have to wait for a full slice.
4385 * This also mitigates buddy induced latencies under load.
4386 */
f685ceac
MG
4387 if (delta_exec < sysctl_sched_min_granularity)
4388 return;
4389
f4cfb33e
WX
4390 se = __pick_first_entity(cfs_rq);
4391 delta = curr->vruntime - se->vruntime;
f685ceac 4392
f4cfb33e
WX
4393 if (delta < 0)
4394 return;
d7d82944 4395
f4cfb33e 4396 if (delta > ideal_runtime)
8875125e 4397 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4398}
4399
83b699ed 4400static void
8494f412 4401set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4402{
83b699ed
SV
4403 /* 'current' is not kept within the tree. */
4404 if (se->on_rq) {
4405 /*
4406 * Any task has to be enqueued before it get to execute on
4407 * a CPU. So account for the time it spent waiting on the
4408 * runqueue.
4409 */
4fa8d299 4410 update_stats_wait_end(cfs_rq, se);
83b699ed 4411 __dequeue_entity(cfs_rq, se);
88c0616e 4412 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4413 }
4414
79303e9e 4415 update_stats_curr_start(cfs_rq, se);
429d43bc 4416 cfs_rq->curr = se;
4fa8d299 4417
eba1ed4b
IM
4418 /*
4419 * Track our maximum slice length, if the CPU's load is at
4420 * least twice that of our own weight (i.e. dont track it
4421 * when there are only lesser-weight tasks around):
4422 */
f2bedc47
DE
4423 if (schedstat_enabled() &&
4424 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4fa8d299
JP
4425 schedstat_set(se->statistics.slice_max,
4426 max((u64)schedstat_val(se->statistics.slice_max),
4427 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4428 }
4fa8d299 4429
4a55b450 4430 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4431}
4432
3f3a4904
PZ
4433static int
4434wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4435
ac53db59
RR
4436/*
4437 * Pick the next process, keeping these things in mind, in this order:
4438 * 1) keep things fair between processes/task groups
4439 * 2) pick the "next" process, since someone really wants that to run
4440 * 3) pick the "last" process, for cache locality
4441 * 4) do not run the "skip" process, if something else is available
4442 */
678d5718
PZ
4443static struct sched_entity *
4444pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4445{
678d5718
PZ
4446 struct sched_entity *left = __pick_first_entity(cfs_rq);
4447 struct sched_entity *se;
4448
4449 /*
4450 * If curr is set we have to see if its left of the leftmost entity
4451 * still in the tree, provided there was anything in the tree at all.
4452 */
4453 if (!left || (curr && entity_before(curr, left)))
4454 left = curr;
4455
4456 se = left; /* ideally we run the leftmost entity */
f4b6755f 4457
ac53db59
RR
4458 /*
4459 * Avoid running the skip buddy, if running something else can
4460 * be done without getting too unfair.
4461 */
4462 if (cfs_rq->skip == se) {
678d5718
PZ
4463 struct sched_entity *second;
4464
4465 if (se == curr) {
4466 second = __pick_first_entity(cfs_rq);
4467 } else {
4468 second = __pick_next_entity(se);
4469 if (!second || (curr && entity_before(curr, second)))
4470 second = curr;
4471 }
4472
ac53db59
RR
4473 if (second && wakeup_preempt_entity(second, left) < 1)
4474 se = second;
4475 }
aa2ac252 4476
9abb8973
PO
4477 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4478 /*
4479 * Someone really wants this to run. If it's not unfair, run it.
4480 */
ac53db59 4481 se = cfs_rq->next;
9abb8973
PO
4482 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4483 /*
4484 * Prefer last buddy, try to return the CPU to a preempted task.
4485 */
4486 se = cfs_rq->last;
4487 }
ac53db59 4488
f685ceac 4489 clear_buddies(cfs_rq, se);
4793241b
PZ
4490
4491 return se;
aa2ac252
PZ
4492}
4493
678d5718 4494static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4495
ab6cde26 4496static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4497{
4498 /*
4499 * If still on the runqueue then deactivate_task()
4500 * was not called and update_curr() has to be done:
4501 */
4502 if (prev->on_rq)
b7cc0896 4503 update_curr(cfs_rq);
bf0f6f24 4504
d3d9dc33
PT
4505 /* throttle cfs_rqs exceeding runtime */
4506 check_cfs_rq_runtime(cfs_rq);
4507
4fa8d299 4508 check_spread(cfs_rq, prev);
cb251765 4509
30cfdcfc 4510 if (prev->on_rq) {
4fa8d299 4511 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4512 /* Put 'current' back into the tree. */
4513 __enqueue_entity(cfs_rq, prev);
9d85f21c 4514 /* in !on_rq case, update occurred at dequeue */
88c0616e 4515 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4516 }
429d43bc 4517 cfs_rq->curr = NULL;
bf0f6f24
IM
4518}
4519
8f4d37ec
PZ
4520static void
4521entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4522{
bf0f6f24 4523 /*
30cfdcfc 4524 * Update run-time statistics of the 'current'.
bf0f6f24 4525 */
30cfdcfc 4526 update_curr(cfs_rq);
bf0f6f24 4527
9d85f21c
PT
4528 /*
4529 * Ensure that runnable average is periodically updated.
4530 */
88c0616e 4531 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4532 update_cfs_group(curr);
9d85f21c 4533
8f4d37ec
PZ
4534#ifdef CONFIG_SCHED_HRTICK
4535 /*
4536 * queued ticks are scheduled to match the slice, so don't bother
4537 * validating it and just reschedule.
4538 */
983ed7a6 4539 if (queued) {
8875125e 4540 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4541 return;
4542 }
8f4d37ec
PZ
4543 /*
4544 * don't let the period tick interfere with the hrtick preemption
4545 */
4546 if (!sched_feat(DOUBLE_TICK) &&
4547 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4548 return;
4549#endif
4550
2c2efaed 4551 if (cfs_rq->nr_running > 1)
2e09bf55 4552 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4553}
4554
ab84d31e
PT
4555
4556/**************************************************
4557 * CFS bandwidth control machinery
4558 */
4559
4560#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4561
e9666d10 4562#ifdef CONFIG_JUMP_LABEL
c5905afb 4563static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4564
4565static inline bool cfs_bandwidth_used(void)
4566{
c5905afb 4567 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4568}
4569
1ee14e6c 4570void cfs_bandwidth_usage_inc(void)
029632fb 4571{
ce48c146 4572 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4573}
4574
4575void cfs_bandwidth_usage_dec(void)
4576{
ce48c146 4577 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4578}
e9666d10 4579#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4580static bool cfs_bandwidth_used(void)
4581{
4582 return true;
4583}
4584
1ee14e6c
BS
4585void cfs_bandwidth_usage_inc(void) {}
4586void cfs_bandwidth_usage_dec(void) {}
e9666d10 4587#endif /* CONFIG_JUMP_LABEL */
029632fb 4588
ab84d31e
PT
4589/*
4590 * default period for cfs group bandwidth.
4591 * default: 0.1s, units: nanoseconds
4592 */
4593static inline u64 default_cfs_period(void)
4594{
4595 return 100000000ULL;
4596}
ec12cb7f
PT
4597
4598static inline u64 sched_cfs_bandwidth_slice(void)
4599{
4600 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4601}
4602
a9cf55b2 4603/*
763a9ec0
QC
4604 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4605 * directly instead of rq->clock to avoid adding additional synchronization
4606 * around rq->lock.
a9cf55b2
PT
4607 *
4608 * requires cfs_b->lock
4609 */
029632fb 4610void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2 4611{
763a9ec0
QC
4612 if (cfs_b->quota != RUNTIME_INF)
4613 cfs_b->runtime = cfs_b->quota;
a9cf55b2
PT
4614}
4615
029632fb
PZ
4616static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4617{
4618 return &tg->cfs_bandwidth;
4619}
4620
85dac906 4621/* returns 0 on failure to allocate runtime */
e98fa02c
PT
4622static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4623 struct cfs_rq *cfs_rq, u64 target_runtime)
ec12cb7f 4624{
e98fa02c
PT
4625 u64 min_amount, amount = 0;
4626
4627 lockdep_assert_held(&cfs_b->lock);
ec12cb7f
PT
4628
4629 /* note: this is a positive sum as runtime_remaining <= 0 */
e98fa02c 4630 min_amount = target_runtime - cfs_rq->runtime_remaining;
ec12cb7f 4631
ec12cb7f
PT
4632 if (cfs_b->quota == RUNTIME_INF)
4633 amount = min_amount;
58088ad0 4634 else {
77a4d1a1 4635 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4636
4637 if (cfs_b->runtime > 0) {
4638 amount = min(cfs_b->runtime, min_amount);
4639 cfs_b->runtime -= amount;
4640 cfs_b->idle = 0;
4641 }
ec12cb7f 4642 }
ec12cb7f
PT
4643
4644 cfs_rq->runtime_remaining += amount;
85dac906
PT
4645
4646 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4647}
4648
e98fa02c
PT
4649/* returns 0 on failure to allocate runtime */
4650static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4651{
4652 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4653 int ret;
4654
4655 raw_spin_lock(&cfs_b->lock);
4656 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4657 raw_spin_unlock(&cfs_b->lock);
4658
4659 return ret;
4660}
4661
9dbdb155 4662static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4663{
4664 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4665 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4666
4667 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4668 return;
4669
5e2d2cc2
L
4670 if (cfs_rq->throttled)
4671 return;
85dac906
PT
4672 /*
4673 * if we're unable to extend our runtime we resched so that the active
4674 * hierarchy can be throttled
4675 */
4676 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4677 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4678}
4679
6c16a6dc 4680static __always_inline
9dbdb155 4681void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4682{
56f570e5 4683 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4684 return;
4685
4686 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4687}
4688
85dac906
PT
4689static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4690{
56f570e5 4691 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4692}
4693
64660c86
PT
4694/* check whether cfs_rq, or any parent, is throttled */
4695static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4696{
56f570e5 4697 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4698}
4699
4700/*
4701 * Ensure that neither of the group entities corresponding to src_cpu or
4702 * dest_cpu are members of a throttled hierarchy when performing group
4703 * load-balance operations.
4704 */
4705static inline int throttled_lb_pair(struct task_group *tg,
4706 int src_cpu, int dest_cpu)
4707{
4708 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4709
4710 src_cfs_rq = tg->cfs_rq[src_cpu];
4711 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4712
4713 return throttled_hierarchy(src_cfs_rq) ||
4714 throttled_hierarchy(dest_cfs_rq);
4715}
4716
64660c86
PT
4717static int tg_unthrottle_up(struct task_group *tg, void *data)
4718{
4719 struct rq *rq = data;
4720 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4721
4722 cfs_rq->throttle_count--;
64660c86 4723 if (!cfs_rq->throttle_count) {
78becc27 4724 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4725 cfs_rq->throttled_clock_task;
31bc6aea
VG
4726
4727 /* Add cfs_rq with already running entity in the list */
4728 if (cfs_rq->nr_running >= 1)
4729 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4730 }
64660c86
PT
4731
4732 return 0;
4733}
4734
4735static int tg_throttle_down(struct task_group *tg, void *data)
4736{
4737 struct rq *rq = data;
4738 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4739
82958366 4740 /* group is entering throttled state, stop time */
31bc6aea 4741 if (!cfs_rq->throttle_count) {
78becc27 4742 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4743 list_del_leaf_cfs_rq(cfs_rq);
4744 }
64660c86
PT
4745 cfs_rq->throttle_count++;
4746
4747 return 0;
4748}
4749
e98fa02c 4750static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4751{
4752 struct rq *rq = rq_of(cfs_rq);
4753 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4754 struct sched_entity *se;
43e9f7f2 4755 long task_delta, idle_task_delta, dequeue = 1;
e98fa02c
PT
4756
4757 raw_spin_lock(&cfs_b->lock);
4758 /* This will start the period timer if necessary */
4759 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4760 /*
4761 * We have raced with bandwidth becoming available, and if we
4762 * actually throttled the timer might not unthrottle us for an
4763 * entire period. We additionally needed to make sure that any
4764 * subsequent check_cfs_rq_runtime calls agree not to throttle
4765 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4766 * for 1ns of runtime rather than just check cfs_b.
4767 */
4768 dequeue = 0;
4769 } else {
4770 list_add_tail_rcu(&cfs_rq->throttled_list,
4771 &cfs_b->throttled_cfs_rq);
4772 }
4773 raw_spin_unlock(&cfs_b->lock);
4774
4775 if (!dequeue)
4776 return false; /* Throttle no longer required. */
85dac906
PT
4777
4778 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4779
f1b17280 4780 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4781 rcu_read_lock();
4782 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4783 rcu_read_unlock();
85dac906
PT
4784
4785 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4786 idle_task_delta = cfs_rq->idle_h_nr_running;
85dac906
PT
4787 for_each_sched_entity(se) {
4788 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4789 /* throttled entity or throttle-on-deactivate */
4790 if (!se->on_rq)
4791 break;
4792
6212437f 4793 if (dequeue) {
85dac906 4794 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
6212437f
VG
4795 } else {
4796 update_load_avg(qcfs_rq, se, 0);
4797 se_update_runnable(se);
4798 }
4799
85dac906 4800 qcfs_rq->h_nr_running -= task_delta;
43e9f7f2 4801 qcfs_rq->idle_h_nr_running -= idle_task_delta;
85dac906
PT
4802
4803 if (qcfs_rq->load.weight)
4804 dequeue = 0;
4805 }
4806
4807 if (!se)
72465447 4808 sub_nr_running(rq, task_delta);
85dac906 4809
c06f04c7 4810 /*
e98fa02c
PT
4811 * Note: distribution will already see us throttled via the
4812 * throttled-list. rq->lock protects completion.
c06f04c7 4813 */
e98fa02c
PT
4814 cfs_rq->throttled = 1;
4815 cfs_rq->throttled_clock = rq_clock(rq);
4816 return true;
85dac906
PT
4817}
4818
029632fb 4819void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4820{
4821 struct rq *rq = rq_of(cfs_rq);
4822 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4823 struct sched_entity *se;
43e9f7f2 4824 long task_delta, idle_task_delta;
671fd9da 4825
22b958d8 4826 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4827
4828 cfs_rq->throttled = 0;
1a55af2e
FW
4829
4830 update_rq_clock(rq);
4831
671fd9da 4832 raw_spin_lock(&cfs_b->lock);
78becc27 4833 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4834 list_del_rcu(&cfs_rq->throttled_list);
4835 raw_spin_unlock(&cfs_b->lock);
4836
64660c86
PT
4837 /* update hierarchical throttle state */
4838 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4839
671fd9da
PT
4840 if (!cfs_rq->load.weight)
4841 return;
4842
4843 task_delta = cfs_rq->h_nr_running;
43e9f7f2 4844 idle_task_delta = cfs_rq->idle_h_nr_running;
671fd9da
PT
4845 for_each_sched_entity(se) {
4846 if (se->on_rq)
39f23ce0
VG
4847 break;
4848 cfs_rq = cfs_rq_of(se);
4849 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4850
4851 cfs_rq->h_nr_running += task_delta;
4852 cfs_rq->idle_h_nr_running += idle_task_delta;
4853
4854 /* end evaluation on encountering a throttled cfs_rq */
4855 if (cfs_rq_throttled(cfs_rq))
4856 goto unthrottle_throttle;
4857 }
671fd9da 4858
39f23ce0 4859 for_each_sched_entity(se) {
671fd9da 4860 cfs_rq = cfs_rq_of(se);
39f23ce0
VG
4861
4862 update_load_avg(cfs_rq, se, UPDATE_TG);
4863 se_update_runnable(se);
6212437f 4864
671fd9da 4865 cfs_rq->h_nr_running += task_delta;
43e9f7f2 4866 cfs_rq->idle_h_nr_running += idle_task_delta;
671fd9da 4867
39f23ce0
VG
4868
4869 /* end evaluation on encountering a throttled cfs_rq */
671fd9da 4870 if (cfs_rq_throttled(cfs_rq))
39f23ce0
VG
4871 goto unthrottle_throttle;
4872
4873 /*
4874 * One parent has been throttled and cfs_rq removed from the
4875 * list. Add it back to not break the leaf list.
4876 */
4877 if (throttled_hierarchy(cfs_rq))
4878 list_add_leaf_cfs_rq(cfs_rq);
671fd9da
PT
4879 }
4880
39f23ce0
VG
4881 /* At this point se is NULL and we are at root level*/
4882 add_nr_running(rq, task_delta);
671fd9da 4883
39f23ce0 4884unthrottle_throttle:
fe61468b
VG
4885 /*
4886 * The cfs_rq_throttled() breaks in the above iteration can result in
4887 * incomplete leaf list maintenance, resulting in triggering the
4888 * assertion below.
4889 */
4890 for_each_sched_entity(se) {
4891 cfs_rq = cfs_rq_of(se);
4892
39f23ce0
VG
4893 if (list_add_leaf_cfs_rq(cfs_rq))
4894 break;
fe61468b
VG
4895 }
4896
4897 assert_list_leaf_cfs_rq(rq);
4898
97fb7a0a 4899 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4900 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4901 resched_curr(rq);
671fd9da
PT
4902}
4903
26a8b127 4904static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
671fd9da
PT
4905{
4906 struct cfs_rq *cfs_rq;
26a8b127 4907 u64 runtime, remaining = 1;
671fd9da
PT
4908
4909 rcu_read_lock();
4910 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4911 throttled_list) {
4912 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4913 struct rq_flags rf;
671fd9da 4914
c0ad4aa4 4915 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4916 if (!cfs_rq_throttled(cfs_rq))
4917 goto next;
4918
5e2d2cc2
L
4919 /* By the above check, this should never be true */
4920 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4921
26a8b127 4922 raw_spin_lock(&cfs_b->lock);
671fd9da 4923 runtime = -cfs_rq->runtime_remaining + 1;
26a8b127
HC
4924 if (runtime > cfs_b->runtime)
4925 runtime = cfs_b->runtime;
4926 cfs_b->runtime -= runtime;
4927 remaining = cfs_b->runtime;
4928 raw_spin_unlock(&cfs_b->lock);
671fd9da
PT
4929
4930 cfs_rq->runtime_remaining += runtime;
671fd9da
PT
4931
4932 /* we check whether we're throttled above */
4933 if (cfs_rq->runtime_remaining > 0)
4934 unthrottle_cfs_rq(cfs_rq);
4935
4936next:
c0ad4aa4 4937 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4938
4939 if (!remaining)
4940 break;
4941 }
4942 rcu_read_unlock();
671fd9da
PT
4943}
4944
58088ad0
PT
4945/*
4946 * Responsible for refilling a task_group's bandwidth and unthrottling its
4947 * cfs_rqs as appropriate. If there has been no activity within the last
4948 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4949 * used to track this state.
4950 */
c0ad4aa4 4951static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4952{
51f2176d 4953 int throttled;
58088ad0 4954
58088ad0
PT
4955 /* no need to continue the timer with no bandwidth constraint */
4956 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4957 goto out_deactivate;
58088ad0 4958
671fd9da 4959 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4960 cfs_b->nr_periods += overrun;
671fd9da 4961
51f2176d
BS
4962 /*
4963 * idle depends on !throttled (for the case of a large deficit), and if
4964 * we're going inactive then everything else can be deferred
4965 */
4966 if (cfs_b->idle && !throttled)
4967 goto out_deactivate;
a9cf55b2
PT
4968
4969 __refill_cfs_bandwidth_runtime(cfs_b);
4970
671fd9da
PT
4971 if (!throttled) {
4972 /* mark as potentially idle for the upcoming period */
4973 cfs_b->idle = 1;
51f2176d 4974 return 0;
671fd9da
PT
4975 }
4976
e8da1b18
NR
4977 /* account preceding periods in which throttling occurred */
4978 cfs_b->nr_throttled += overrun;
4979
671fd9da 4980 /*
26a8b127 4981 * This check is repeated as we release cfs_b->lock while we unthrottle.
671fd9da 4982 */
ab93a4bc 4983 while (throttled && cfs_b->runtime > 0) {
c0ad4aa4 4984 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da 4985 /* we can't nest cfs_b->lock while distributing bandwidth */
26a8b127 4986 distribute_cfs_runtime(cfs_b);
c0ad4aa4 4987 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da
PT
4988
4989 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4990 }
58088ad0 4991
671fd9da
PT
4992 /*
4993 * While we are ensured activity in the period following an
4994 * unthrottle, this also covers the case in which the new bandwidth is
4995 * insufficient to cover the existing bandwidth deficit. (Forcing the
4996 * timer to remain active while there are any throttled entities.)
4997 */
4998 cfs_b->idle = 0;
58088ad0 4999
51f2176d
BS
5000 return 0;
5001
5002out_deactivate:
51f2176d 5003 return 1;
58088ad0 5004}
d3d9dc33 5005
d8b4986d
PT
5006/* a cfs_rq won't donate quota below this amount */
5007static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5008/* minimum remaining period time to redistribute slack quota */
5009static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5010/* how long we wait to gather additional slack before distributing */
5011static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5012
db06e78c
BS
5013/*
5014 * Are we near the end of the current quota period?
5015 *
5016 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 5017 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
5018 * migrate_hrtimers, base is never cleared, so we are fine.
5019 */
d8b4986d
PT
5020static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5021{
5022 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5023 u64 remaining;
5024
5025 /* if the call-back is running a quota refresh is already occurring */
5026 if (hrtimer_callback_running(refresh_timer))
5027 return 1;
5028
5029 /* is a quota refresh about to occur? */
5030 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5031 if (remaining < min_expire)
5032 return 1;
5033
5034 return 0;
5035}
5036
5037static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5038{
5039 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5040
5041 /* if there's a quota refresh soon don't bother with slack */
5042 if (runtime_refresh_within(cfs_b, min_left))
5043 return;
5044
66567fcb 5045 /* don't push forwards an existing deferred unthrottle */
5046 if (cfs_b->slack_started)
5047 return;
5048 cfs_b->slack_started = true;
5049
4cfafd30
PZ
5050 hrtimer_start(&cfs_b->slack_timer,
5051 ns_to_ktime(cfs_bandwidth_slack_period),
5052 HRTIMER_MODE_REL);
d8b4986d
PT
5053}
5054
5055/* we know any runtime found here is valid as update_curr() precedes return */
5056static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5057{
5058 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5059 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5060
5061 if (slack_runtime <= 0)
5062 return;
5063
5064 raw_spin_lock(&cfs_b->lock);
de53fd7a 5065 if (cfs_b->quota != RUNTIME_INF) {
d8b4986d
PT
5066 cfs_b->runtime += slack_runtime;
5067
5068 /* we are under rq->lock, defer unthrottling using a timer */
5069 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5070 !list_empty(&cfs_b->throttled_cfs_rq))
5071 start_cfs_slack_bandwidth(cfs_b);
5072 }
5073 raw_spin_unlock(&cfs_b->lock);
5074
5075 /* even if it's not valid for return we don't want to try again */
5076 cfs_rq->runtime_remaining -= slack_runtime;
5077}
5078
5079static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5080{
56f570e5
PT
5081 if (!cfs_bandwidth_used())
5082 return;
5083
fccfdc6f 5084 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
5085 return;
5086
5087 __return_cfs_rq_runtime(cfs_rq);
5088}
5089
5090/*
5091 * This is done with a timer (instead of inline with bandwidth return) since
5092 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5093 */
5094static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5095{
5096 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 5097 unsigned long flags;
d8b4986d
PT
5098
5099 /* confirm we're still not at a refresh boundary */
c0ad4aa4 5100 raw_spin_lock_irqsave(&cfs_b->lock, flags);
66567fcb 5101 cfs_b->slack_started = false;
baa9be4f 5102
db06e78c 5103 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 5104 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 5105 return;
db06e78c 5106 }
d8b4986d 5107
c06f04c7 5108 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 5109 runtime = cfs_b->runtime;
c06f04c7 5110
c0ad4aa4 5111 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5112
5113 if (!runtime)
5114 return;
5115
26a8b127 5116 distribute_cfs_runtime(cfs_b);
d8b4986d 5117
c0ad4aa4 5118 raw_spin_lock_irqsave(&cfs_b->lock, flags);
c0ad4aa4 5119 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
5120}
5121
d3d9dc33
PT
5122/*
5123 * When a group wakes up we want to make sure that its quota is not already
5124 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5125 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5126 */
5127static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5128{
56f570e5
PT
5129 if (!cfs_bandwidth_used())
5130 return;
5131
d3d9dc33
PT
5132 /* an active group must be handled by the update_curr()->put() path */
5133 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5134 return;
5135
5136 /* ensure the group is not already throttled */
5137 if (cfs_rq_throttled(cfs_rq))
5138 return;
5139
5140 /* update runtime allocation */
5141 account_cfs_rq_runtime(cfs_rq, 0);
5142 if (cfs_rq->runtime_remaining <= 0)
5143 throttle_cfs_rq(cfs_rq);
5144}
5145
55e16d30
PZ
5146static void sync_throttle(struct task_group *tg, int cpu)
5147{
5148 struct cfs_rq *pcfs_rq, *cfs_rq;
5149
5150 if (!cfs_bandwidth_used())
5151 return;
5152
5153 if (!tg->parent)
5154 return;
5155
5156 cfs_rq = tg->cfs_rq[cpu];
5157 pcfs_rq = tg->parent->cfs_rq[cpu];
5158
5159 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 5160 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
5161}
5162
d3d9dc33 5163/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 5164static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 5165{
56f570e5 5166 if (!cfs_bandwidth_used())
678d5718 5167 return false;
56f570e5 5168
d3d9dc33 5169 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 5170 return false;
d3d9dc33
PT
5171
5172 /*
5173 * it's possible for a throttled entity to be forced into a running
5174 * state (e.g. set_curr_task), in this case we're finished.
5175 */
5176 if (cfs_rq_throttled(cfs_rq))
678d5718 5177 return true;
d3d9dc33 5178
e98fa02c 5179 return throttle_cfs_rq(cfs_rq);
d3d9dc33 5180}
029632fb 5181
029632fb
PZ
5182static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5183{
5184 struct cfs_bandwidth *cfs_b =
5185 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 5186
029632fb
PZ
5187 do_sched_cfs_slack_timer(cfs_b);
5188
5189 return HRTIMER_NORESTART;
5190}
5191
2e8e1922
PA
5192extern const u64 max_cfs_quota_period;
5193
029632fb
PZ
5194static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5195{
5196 struct cfs_bandwidth *cfs_b =
5197 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 5198 unsigned long flags;
029632fb
PZ
5199 int overrun;
5200 int idle = 0;
2e8e1922 5201 int count = 0;
029632fb 5202
c0ad4aa4 5203 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 5204 for (;;) {
77a4d1a1 5205 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
5206 if (!overrun)
5207 break;
5208
5a6d6a6c
HC
5209 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5210
2e8e1922
PA
5211 if (++count > 3) {
5212 u64 new, old = ktime_to_ns(cfs_b->period);
5213
4929a4e6
XZ
5214 /*
5215 * Grow period by a factor of 2 to avoid losing precision.
5216 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5217 * to fail.
5218 */
5219 new = old * 2;
5220 if (new < max_cfs_quota_period) {
5221 cfs_b->period = ns_to_ktime(new);
5222 cfs_b->quota *= 2;
5223
5224 pr_warn_ratelimited(
5225 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5226 smp_processor_id(),
5227 div_u64(new, NSEC_PER_USEC),
5228 div_u64(cfs_b->quota, NSEC_PER_USEC));
5229 } else {
5230 pr_warn_ratelimited(
5231 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5232 smp_processor_id(),
5233 div_u64(old, NSEC_PER_USEC),
5234 div_u64(cfs_b->quota, NSEC_PER_USEC));
5235 }
2e8e1922
PA
5236
5237 /* reset count so we don't come right back in here */
5238 count = 0;
5239 }
029632fb 5240 }
4cfafd30
PZ
5241 if (idle)
5242 cfs_b->period_active = 0;
c0ad4aa4 5243 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
5244
5245 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5246}
5247
5248void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5249{
5250 raw_spin_lock_init(&cfs_b->lock);
5251 cfs_b->runtime = 0;
5252 cfs_b->quota = RUNTIME_INF;
5253 cfs_b->period = ns_to_ktime(default_cfs_period());
5254
5255 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 5256 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5257 cfs_b->period_timer.function = sched_cfs_period_timer;
5258 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5259 cfs_b->slack_timer.function = sched_cfs_slack_timer;
66567fcb 5260 cfs_b->slack_started = false;
029632fb
PZ
5261}
5262
5263static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5264{
5265 cfs_rq->runtime_enabled = 0;
5266 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5267}
5268
77a4d1a1 5269void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 5270{
4cfafd30 5271 lockdep_assert_held(&cfs_b->lock);
029632fb 5272
f1d1be8a
XP
5273 if (cfs_b->period_active)
5274 return;
5275
5276 cfs_b->period_active = 1;
763a9ec0 5277 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
f1d1be8a 5278 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
5279}
5280
5281static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5282{
7f1a169b
TH
5283 /* init_cfs_bandwidth() was not called */
5284 if (!cfs_b->throttled_cfs_rq.next)
5285 return;
5286
029632fb
PZ
5287 hrtimer_cancel(&cfs_b->period_timer);
5288 hrtimer_cancel(&cfs_b->slack_timer);
5289}
5290
502ce005 5291/*
97fb7a0a 5292 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
5293 *
5294 * The race is harmless, since modifying bandwidth settings of unhooked group
5295 * bits doesn't do much.
5296 */
5297
5298/* cpu online calback */
0e59bdae
KT
5299static void __maybe_unused update_runtime_enabled(struct rq *rq)
5300{
502ce005 5301 struct task_group *tg;
0e59bdae 5302
502ce005
PZ
5303 lockdep_assert_held(&rq->lock);
5304
5305 rcu_read_lock();
5306 list_for_each_entry_rcu(tg, &task_groups, list) {
5307 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5308 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
5309
5310 raw_spin_lock(&cfs_b->lock);
5311 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5312 raw_spin_unlock(&cfs_b->lock);
5313 }
502ce005 5314 rcu_read_unlock();
0e59bdae
KT
5315}
5316
502ce005 5317/* cpu offline callback */
38dc3348 5318static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 5319{
502ce005
PZ
5320 struct task_group *tg;
5321
5322 lockdep_assert_held(&rq->lock);
5323
5324 rcu_read_lock();
5325 list_for_each_entry_rcu(tg, &task_groups, list) {
5326 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 5327
029632fb
PZ
5328 if (!cfs_rq->runtime_enabled)
5329 continue;
5330
5331 /*
5332 * clock_task is not advancing so we just need to make sure
5333 * there's some valid quota amount
5334 */
51f2176d 5335 cfs_rq->runtime_remaining = 1;
0e59bdae 5336 /*
97fb7a0a 5337 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5338 * in take_cpu_down(), so we prevent new cfs throttling here.
5339 */
5340 cfs_rq->runtime_enabled = 0;
5341
029632fb
PZ
5342 if (cfs_rq_throttled(cfs_rq))
5343 unthrottle_cfs_rq(cfs_rq);
5344 }
502ce005 5345 rcu_read_unlock();
029632fb
PZ
5346}
5347
5348#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5349
5350static inline bool cfs_bandwidth_used(void)
5351{
5352 return false;
5353}
5354
9dbdb155 5355static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5356static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5357static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5358static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5359static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5360
5361static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5362{
5363 return 0;
5364}
64660c86
PT
5365
5366static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5367{
5368 return 0;
5369}
5370
5371static inline int throttled_lb_pair(struct task_group *tg,
5372 int src_cpu, int dest_cpu)
5373{
5374 return 0;
5375}
029632fb
PZ
5376
5377void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5378
5379#ifdef CONFIG_FAIR_GROUP_SCHED
5380static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5381#endif
5382
029632fb
PZ
5383static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5384{
5385 return NULL;
5386}
5387static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5388static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5389static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5390
5391#endif /* CONFIG_CFS_BANDWIDTH */
5392
bf0f6f24
IM
5393/**************************************************
5394 * CFS operations on tasks:
5395 */
5396
8f4d37ec
PZ
5397#ifdef CONFIG_SCHED_HRTICK
5398static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5399{
8f4d37ec
PZ
5400 struct sched_entity *se = &p->se;
5401 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5402
9148a3a1 5403 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5404
8bf46a39 5405 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5406 u64 slice = sched_slice(cfs_rq, se);
5407 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5408 s64 delta = slice - ran;
5409
5410 if (delta < 0) {
5411 if (rq->curr == p)
8875125e 5412 resched_curr(rq);
8f4d37ec
PZ
5413 return;
5414 }
31656519 5415 hrtick_start(rq, delta);
8f4d37ec
PZ
5416 }
5417}
a4c2f00f
PZ
5418
5419/*
5420 * called from enqueue/dequeue and updates the hrtick when the
5421 * current task is from our class and nr_running is low enough
5422 * to matter.
5423 */
5424static void hrtick_update(struct rq *rq)
5425{
5426 struct task_struct *curr = rq->curr;
5427
b39e66ea 5428 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5429 return;
5430
5431 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5432 hrtick_start_fair(rq, curr);
5433}
55e12e5e 5434#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5435static inline void
5436hrtick_start_fair(struct rq *rq, struct task_struct *p)
5437{
5438}
a4c2f00f
PZ
5439
5440static inline void hrtick_update(struct rq *rq)
5441{
5442}
8f4d37ec
PZ
5443#endif
5444
2802bf3c
MR
5445#ifdef CONFIG_SMP
5446static inline unsigned long cpu_util(int cpu);
2802bf3c
MR
5447
5448static inline bool cpu_overutilized(int cpu)
5449{
60e17f5c 5450 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
2802bf3c
MR
5451}
5452
5453static inline void update_overutilized_status(struct rq *rq)
5454{
f9f240f9 5455 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
2802bf3c 5456 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
f9f240f9
QY
5457 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5458 }
2802bf3c
MR
5459}
5460#else
5461static inline void update_overutilized_status(struct rq *rq) { }
5462#endif
5463
323af6de
VK
5464/* Runqueue only has SCHED_IDLE tasks enqueued */
5465static int sched_idle_rq(struct rq *rq)
5466{
5467 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5468 rq->nr_running);
5469}
5470
afa70d94 5471#ifdef CONFIG_SMP
323af6de
VK
5472static int sched_idle_cpu(int cpu)
5473{
5474 return sched_idle_rq(cpu_rq(cpu));
5475}
afa70d94 5476#endif
323af6de 5477
bf0f6f24
IM
5478/*
5479 * The enqueue_task method is called before nr_running is
5480 * increased. Here we update the fair scheduling stats and
5481 * then put the task into the rbtree:
5482 */
ea87bb78 5483static void
371fd7e7 5484enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5485{
5486 struct cfs_rq *cfs_rq;
62fb1851 5487 struct sched_entity *se = &p->se;
43e9f7f2 5488 int idle_h_nr_running = task_has_idle_policy(p);
bf0f6f24 5489
2539fc82
PB
5490 /*
5491 * The code below (indirectly) updates schedutil which looks at
5492 * the cfs_rq utilization to select a frequency.
5493 * Let's add the task's estimated utilization to the cfs_rq's
5494 * estimated utilization, before we update schedutil.
5495 */
5496 util_est_enqueue(&rq->cfs, p);
5497
8c34ab19
RW
5498 /*
5499 * If in_iowait is set, the code below may not trigger any cpufreq
5500 * utilization updates, so do it here explicitly with the IOWAIT flag
5501 * passed.
5502 */
5503 if (p->in_iowait)
674e7541 5504 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5505
bf0f6f24 5506 for_each_sched_entity(se) {
62fb1851 5507 if (se->on_rq)
bf0f6f24
IM
5508 break;
5509 cfs_rq = cfs_rq_of(se);
88ec22d3 5510 enqueue_entity(cfs_rq, se, flags);
85dac906 5511
953bfcd1 5512 cfs_rq->h_nr_running++;
43e9f7f2 5513 cfs_rq->idle_h_nr_running += idle_h_nr_running;
85dac906 5514
6d4d2246
VG
5515 /* end evaluation on encountering a throttled cfs_rq */
5516 if (cfs_rq_throttled(cfs_rq))
5517 goto enqueue_throttle;
5518
88ec22d3 5519 flags = ENQUEUE_WAKEUP;
bf0f6f24 5520 }
8f4d37ec 5521
2069dd75 5522 for_each_sched_entity(se) {
0f317143 5523 cfs_rq = cfs_rq_of(se);
2069dd75 5524
88c0616e 5525 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5526 se_update_runnable(se);
1ea6c46a 5527 update_cfs_group(se);
6d4d2246
VG
5528
5529 cfs_rq->h_nr_running++;
5530 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5ab297ba
VG
5531
5532 /* end evaluation on encountering a throttled cfs_rq */
5533 if (cfs_rq_throttled(cfs_rq))
5534 goto enqueue_throttle;
b34cb07d
PA
5535
5536 /*
5537 * One parent has been throttled and cfs_rq removed from the
5538 * list. Add it back to not break the leaf list.
5539 */
5540 if (throttled_hierarchy(cfs_rq))
5541 list_add_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
5542 }
5543
7d148be6
VG
5544 /* At this point se is NULL and we are at root level*/
5545 add_nr_running(rq, 1);
2802bf3c 5546
7d148be6
VG
5547 /*
5548 * Since new tasks are assigned an initial util_avg equal to
5549 * half of the spare capacity of their CPU, tiny tasks have the
5550 * ability to cross the overutilized threshold, which will
5551 * result in the load balancer ruining all the task placement
5552 * done by EAS. As a way to mitigate that effect, do not account
5553 * for the first enqueue operation of new tasks during the
5554 * overutilized flag detection.
5555 *
5556 * A better way of solving this problem would be to wait for
5557 * the PELT signals of tasks to converge before taking them
5558 * into account, but that is not straightforward to implement,
5559 * and the following generally works well enough in practice.
5560 */
5561 if (flags & ENQUEUE_WAKEUP)
5562 update_overutilized_status(rq);
cd126afe 5563
7d148be6 5564enqueue_throttle:
f6783319
VG
5565 if (cfs_bandwidth_used()) {
5566 /*
5567 * When bandwidth control is enabled; the cfs_rq_throttled()
5568 * breaks in the above iteration can result in incomplete
5569 * leaf list maintenance, resulting in triggering the assertion
5570 * below.
5571 */
5572 for_each_sched_entity(se) {
5573 cfs_rq = cfs_rq_of(se);
5574
5575 if (list_add_leaf_cfs_rq(cfs_rq))
5576 break;
5577 }
5578 }
5579
5d299eab
PZ
5580 assert_list_leaf_cfs_rq(rq);
5581
a4c2f00f 5582 hrtick_update(rq);
bf0f6f24
IM
5583}
5584
2f36825b
VP
5585static void set_next_buddy(struct sched_entity *se);
5586
bf0f6f24
IM
5587/*
5588 * The dequeue_task method is called before nr_running is
5589 * decreased. We remove the task from the rbtree and
5590 * update the fair scheduling stats:
5591 */
371fd7e7 5592static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5593{
5594 struct cfs_rq *cfs_rq;
62fb1851 5595 struct sched_entity *se = &p->se;
2f36825b 5596 int task_sleep = flags & DEQUEUE_SLEEP;
43e9f7f2 5597 int idle_h_nr_running = task_has_idle_policy(p);
323af6de 5598 bool was_sched_idle = sched_idle_rq(rq);
bf0f6f24
IM
5599
5600 for_each_sched_entity(se) {
5601 cfs_rq = cfs_rq_of(se);
371fd7e7 5602 dequeue_entity(cfs_rq, se, flags);
85dac906 5603
953bfcd1 5604 cfs_rq->h_nr_running--;
43e9f7f2 5605 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
2069dd75 5606
6d4d2246
VG
5607 /* end evaluation on encountering a throttled cfs_rq */
5608 if (cfs_rq_throttled(cfs_rq))
5609 goto dequeue_throttle;
5610
bf0f6f24 5611 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5612 if (cfs_rq->load.weight) {
754bd598
KK
5613 /* Avoid re-evaluating load for this entity: */
5614 se = parent_entity(se);
2f36825b
VP
5615 /*
5616 * Bias pick_next to pick a task from this cfs_rq, as
5617 * p is sleeping when it is within its sched_slice.
5618 */
754bd598
KK
5619 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5620 set_next_buddy(se);
bf0f6f24 5621 break;
2f36825b 5622 }
371fd7e7 5623 flags |= DEQUEUE_SLEEP;
bf0f6f24 5624 }
8f4d37ec 5625
2069dd75 5626 for_each_sched_entity(se) {
0f317143 5627 cfs_rq = cfs_rq_of(se);
2069dd75 5628
88c0616e 5629 update_load_avg(cfs_rq, se, UPDATE_TG);
9f683953 5630 se_update_runnable(se);
1ea6c46a 5631 update_cfs_group(se);
6d4d2246
VG
5632
5633 cfs_rq->h_nr_running--;
5634 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5ab297ba
VG
5635
5636 /* end evaluation on encountering a throttled cfs_rq */
5637 if (cfs_rq_throttled(cfs_rq))
5638 goto dequeue_throttle;
5639
2069dd75
PZ
5640 }
5641
423d02e1
PW
5642 /* At this point se is NULL and we are at root level*/
5643 sub_nr_running(rq, 1);
cd126afe 5644
323af6de
VK
5645 /* balance early to pull high priority tasks */
5646 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5647 rq->next_balance = jiffies;
5648
423d02e1 5649dequeue_throttle:
7f65ea42 5650 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5651 hrtick_update(rq);
bf0f6f24
IM
5652}
5653
e7693a36 5654#ifdef CONFIG_SMP
10e2f1ac
PZ
5655
5656/* Working cpumask for: load_balance, load_balance_newidle. */
5657DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5658DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5659
9fd81dd5 5660#ifdef CONFIG_NO_HZ_COMMON
e022e0d3
PZ
5661
5662static struct {
5663 cpumask_var_t idle_cpus_mask;
5664 atomic_t nr_cpus;
f643ea22 5665 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5666 unsigned long next_balance; /* in jiffy units */
f643ea22 5667 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5668} nohz ____cacheline_aligned;
5669
9fd81dd5 5670#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5671
b0fb1eb4
VG
5672static unsigned long cpu_load(struct rq *rq)
5673{
5674 return cfs_rq_load_avg(&rq->cfs);
5675}
5676
3318544b
VG
5677/*
5678 * cpu_load_without - compute CPU load without any contributions from *p
5679 * @cpu: the CPU which load is requested
5680 * @p: the task which load should be discounted
5681 *
5682 * The load of a CPU is defined by the load of tasks currently enqueued on that
5683 * CPU as well as tasks which are currently sleeping after an execution on that
5684 * CPU.
5685 *
5686 * This method returns the load of the specified CPU by discounting the load of
5687 * the specified task, whenever the task is currently contributing to the CPU
5688 * load.
5689 */
5690static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5691{
5692 struct cfs_rq *cfs_rq;
5693 unsigned int load;
5694
5695 /* Task has no contribution or is new */
5696 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5697 return cpu_load(rq);
5698
5699 cfs_rq = &rq->cfs;
5700 load = READ_ONCE(cfs_rq->avg.load_avg);
5701
5702 /* Discount task's util from CPU's util */
5703 lsub_positive(&load, task_h_load(p));
5704
5705 return load;
5706}
5707
9f683953
VG
5708static unsigned long cpu_runnable(struct rq *rq)
5709{
5710 return cfs_rq_runnable_avg(&rq->cfs);
5711}
5712
070f5e86
VG
5713static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5714{
5715 struct cfs_rq *cfs_rq;
5716 unsigned int runnable;
5717
5718 /* Task has no contribution or is new */
5719 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5720 return cpu_runnable(rq);
5721
5722 cfs_rq = &rq->cfs;
5723 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5724
5725 /* Discount task's runnable from CPU's runnable */
5726 lsub_positive(&runnable, p->se.avg.runnable_avg);
5727
5728 return runnable;
5729}
5730
ced549fa 5731static unsigned long capacity_of(int cpu)
029632fb 5732{
ced549fa 5733 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5734}
5735
c58d25f3
PZ
5736static void record_wakee(struct task_struct *p)
5737{
5738 /*
5739 * Only decay a single time; tasks that have less then 1 wakeup per
5740 * jiffy will not have built up many flips.
5741 */
5742 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5743 current->wakee_flips >>= 1;
5744 current->wakee_flip_decay_ts = jiffies;
5745 }
5746
5747 if (current->last_wakee != p) {
5748 current->last_wakee = p;
5749 current->wakee_flips++;
5750 }
5751}
5752
63b0e9ed
MG
5753/*
5754 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5755 *
63b0e9ed 5756 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5757 * at a frequency roughly N times higher than one of its wakees.
5758 *
5759 * In order to determine whether we should let the load spread vs consolidating
5760 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5761 * partner, and a factor of lls_size higher frequency in the other.
5762 *
5763 * With both conditions met, we can be relatively sure that the relationship is
5764 * non-monogamous, with partner count exceeding socket size.
5765 *
5766 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5767 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5768 * socket size.
63b0e9ed 5769 */
62470419
MW
5770static int wake_wide(struct task_struct *p)
5771{
63b0e9ed
MG
5772 unsigned int master = current->wakee_flips;
5773 unsigned int slave = p->wakee_flips;
17c891ab 5774 int factor = __this_cpu_read(sd_llc_size);
62470419 5775
63b0e9ed
MG
5776 if (master < slave)
5777 swap(master, slave);
5778 if (slave < factor || master < slave * factor)
5779 return 0;
5780 return 1;
62470419
MW
5781}
5782
90001d67 5783/*
d153b153
PZ
5784 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5785 * soonest. For the purpose of speed we only consider the waking and previous
5786 * CPU.
90001d67 5787 *
7332dec0
MG
5788 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5789 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5790 *
5791 * wake_affine_weight() - considers the weight to reflect the average
5792 * scheduling latency of the CPUs. This seems to work
5793 * for the overloaded case.
90001d67 5794 */
3b76c4a3 5795static int
89a55f56 5796wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5797{
7332dec0
MG
5798 /*
5799 * If this_cpu is idle, it implies the wakeup is from interrupt
5800 * context. Only allow the move if cache is shared. Otherwise an
5801 * interrupt intensive workload could force all tasks onto one
5802 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5803 *
5804 * If the prev_cpu is idle and cache affine then avoid a migration.
5805 * There is no guarantee that the cache hot data from an interrupt
5806 * is more important than cache hot data on the prev_cpu and from
5807 * a cpufreq perspective, it's better to have higher utilisation
5808 * on one CPU.
7332dec0 5809 */
943d355d
RJ
5810 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5811 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5812
d153b153 5813 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5814 return this_cpu;
90001d67 5815
3b76c4a3 5816 return nr_cpumask_bits;
90001d67
PZ
5817}
5818
3b76c4a3 5819static int
f2cdd9cc
PZ
5820wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5821 int this_cpu, int prev_cpu, int sync)
90001d67 5822{
90001d67
PZ
5823 s64 this_eff_load, prev_eff_load;
5824 unsigned long task_load;
5825
11f10e54 5826 this_eff_load = cpu_load(cpu_rq(this_cpu));
90001d67 5827
90001d67
PZ
5828 if (sync) {
5829 unsigned long current_load = task_h_load(current);
5830
f2cdd9cc 5831 if (current_load > this_eff_load)
3b76c4a3 5832 return this_cpu;
90001d67 5833
f2cdd9cc 5834 this_eff_load -= current_load;
90001d67
PZ
5835 }
5836
90001d67
PZ
5837 task_load = task_h_load(p);
5838
f2cdd9cc
PZ
5839 this_eff_load += task_load;
5840 if (sched_feat(WA_BIAS))
5841 this_eff_load *= 100;
5842 this_eff_load *= capacity_of(prev_cpu);
90001d67 5843
11f10e54 5844 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
f2cdd9cc
PZ
5845 prev_eff_load -= task_load;
5846 if (sched_feat(WA_BIAS))
5847 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5848 prev_eff_load *= capacity_of(this_cpu);
90001d67 5849
082f764a
MG
5850 /*
5851 * If sync, adjust the weight of prev_eff_load such that if
5852 * prev_eff == this_eff that select_idle_sibling() will consider
5853 * stacking the wakee on top of the waker if no other CPU is
5854 * idle.
5855 */
5856 if (sync)
5857 prev_eff_load += 1;
5858
5859 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5860}
5861
772bd008 5862static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5863 int this_cpu, int prev_cpu, int sync)
098fb9db 5864{
3b76c4a3 5865 int target = nr_cpumask_bits;
098fb9db 5866
89a55f56 5867 if (sched_feat(WA_IDLE))
3b76c4a3 5868 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5869
3b76c4a3
MG
5870 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5871 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5872
ae92882e 5873 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5874 if (target == nr_cpumask_bits)
5875 return prev_cpu;
098fb9db 5876
3b76c4a3
MG
5877 schedstat_inc(sd->ttwu_move_affine);
5878 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5879 return target;
098fb9db
IM
5880}
5881
aaee1203 5882static struct sched_group *
45da2773 5883find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
aaee1203
PZ
5884
5885/*
97fb7a0a 5886 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5887 */
5888static int
18bd1b4b 5889find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5890{
5891 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5892 unsigned int min_exit_latency = UINT_MAX;
5893 u64 latest_idle_timestamp = 0;
5894 int least_loaded_cpu = this_cpu;
17346452 5895 int shallowest_idle_cpu = -1;
aaee1203
PZ
5896 int i;
5897
eaecf41f
MR
5898 /* Check if we have any choice: */
5899 if (group->group_weight == 1)
ae4df9d6 5900 return cpumask_first(sched_group_span(group));
eaecf41f 5901
aaee1203 5902 /* Traverse only the allowed CPUs */
3bd37062 5903 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
17346452
VK
5904 if (sched_idle_cpu(i))
5905 return i;
5906
943d355d 5907 if (available_idle_cpu(i)) {
83a0a96a
NP
5908 struct rq *rq = cpu_rq(i);
5909 struct cpuidle_state *idle = idle_get_state(rq);
5910 if (idle && idle->exit_latency < min_exit_latency) {
5911 /*
5912 * We give priority to a CPU whose idle state
5913 * has the smallest exit latency irrespective
5914 * of any idle timestamp.
5915 */
5916 min_exit_latency = idle->exit_latency;
5917 latest_idle_timestamp = rq->idle_stamp;
5918 shallowest_idle_cpu = i;
5919 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5920 rq->idle_stamp > latest_idle_timestamp) {
5921 /*
5922 * If equal or no active idle state, then
5923 * the most recently idled CPU might have
5924 * a warmer cache.
5925 */
5926 latest_idle_timestamp = rq->idle_stamp;
5927 shallowest_idle_cpu = i;
5928 }
17346452 5929 } else if (shallowest_idle_cpu == -1) {
11f10e54 5930 load = cpu_load(cpu_rq(i));
18cec7e0 5931 if (load < min_load) {
83a0a96a
NP
5932 min_load = load;
5933 least_loaded_cpu = i;
5934 }
e7693a36
GH
5935 }
5936 }
5937
17346452 5938 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5939}
e7693a36 5940
18bd1b4b
BJ
5941static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5942 int cpu, int prev_cpu, int sd_flag)
5943{
93f50f90 5944 int new_cpu = cpu;
18bd1b4b 5945
3bd37062 5946 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6fee85cc
BJ
5947 return prev_cpu;
5948
c976a862 5949 /*
57abff06 5950 * We need task's util for cpu_util_without, sync it up to
c469933e 5951 * prev_cpu's last_update_time.
c976a862
VK
5952 */
5953 if (!(sd_flag & SD_BALANCE_FORK))
5954 sync_entity_load_avg(&p->se);
5955
18bd1b4b
BJ
5956 while (sd) {
5957 struct sched_group *group;
5958 struct sched_domain *tmp;
5959 int weight;
5960
5961 if (!(sd->flags & sd_flag)) {
5962 sd = sd->child;
5963 continue;
5964 }
5965
45da2773 5966 group = find_idlest_group(sd, p, cpu);
18bd1b4b
BJ
5967 if (!group) {
5968 sd = sd->child;
5969 continue;
5970 }
5971
5972 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 5973 if (new_cpu == cpu) {
97fb7a0a 5974 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
5975 sd = sd->child;
5976 continue;
5977 }
5978
97fb7a0a 5979 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
5980 cpu = new_cpu;
5981 weight = sd->span_weight;
5982 sd = NULL;
5983 for_each_domain(cpu, tmp) {
5984 if (weight <= tmp->span_weight)
5985 break;
5986 if (tmp->flags & sd_flag)
5987 sd = tmp;
5988 }
18bd1b4b
BJ
5989 }
5990
5991 return new_cpu;
5992}
5993
10e2f1ac 5994#ifdef CONFIG_SCHED_SMT
ba2591a5 5995DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 5996EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
5997
5998static inline void set_idle_cores(int cpu, int val)
5999{
6000 struct sched_domain_shared *sds;
6001
6002 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6003 if (sds)
6004 WRITE_ONCE(sds->has_idle_cores, val);
6005}
6006
6007static inline bool test_idle_cores(int cpu, bool def)
6008{
6009 struct sched_domain_shared *sds;
6010
6011 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6012 if (sds)
6013 return READ_ONCE(sds->has_idle_cores);
6014
6015 return def;
6016}
6017
6018/*
6019 * Scans the local SMT mask to see if the entire core is idle, and records this
6020 * information in sd_llc_shared->has_idle_cores.
6021 *
6022 * Since SMT siblings share all cache levels, inspecting this limited remote
6023 * state should be fairly cheap.
6024 */
1b568f0a 6025void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6026{
6027 int core = cpu_of(rq);
6028 int cpu;
6029
6030 rcu_read_lock();
6031 if (test_idle_cores(core, true))
6032 goto unlock;
6033
6034 for_each_cpu(cpu, cpu_smt_mask(core)) {
6035 if (cpu == core)
6036 continue;
6037
943d355d 6038 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6039 goto unlock;
6040 }
6041
6042 set_idle_cores(core, 1);
6043unlock:
6044 rcu_read_unlock();
6045}
6046
6047/*
6048 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6049 * there are no idle cores left in the system; tracked through
6050 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6051 */
6052static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6053{
6054 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 6055 int core, cpu;
10e2f1ac 6056
1b568f0a
PZ
6057 if (!static_branch_likely(&sched_smt_present))
6058 return -1;
6059
10e2f1ac
PZ
6060 if (!test_idle_cores(target, false))
6061 return -1;
6062
3bd37062 6063 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
10e2f1ac 6064
c743f0a5 6065 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
6066 bool idle = true;
6067
6068 for_each_cpu(cpu, cpu_smt_mask(core)) {
bec2860a 6069 if (!available_idle_cpu(cpu)) {
10e2f1ac 6070 idle = false;
bec2860a
SD
6071 break;
6072 }
10e2f1ac 6073 }
bec2860a 6074 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
10e2f1ac
PZ
6075
6076 if (idle)
6077 return core;
6078 }
6079
6080 /*
6081 * Failed to find an idle core; stop looking for one.
6082 */
6083 set_idle_cores(target, 0);
6084
6085 return -1;
6086}
6087
6088/*
6089 * Scan the local SMT mask for idle CPUs.
6090 */
df3cb4ea 6091static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
10e2f1ac 6092{
17346452 6093 int cpu;
10e2f1ac 6094
1b568f0a
PZ
6095 if (!static_branch_likely(&sched_smt_present))
6096 return -1;
6097
10e2f1ac 6098 for_each_cpu(cpu, cpu_smt_mask(target)) {
df3cb4ea
XP
6099 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6100 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
10e2f1ac 6101 continue;
17346452 6102 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
10e2f1ac
PZ
6103 return cpu;
6104 }
6105
17346452 6106 return -1;
10e2f1ac
PZ
6107}
6108
6109#else /* CONFIG_SCHED_SMT */
6110
6111static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6112{
6113 return -1;
6114}
6115
df3cb4ea 6116static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
10e2f1ac
PZ
6117{
6118 return -1;
6119}
6120
6121#endif /* CONFIG_SCHED_SMT */
6122
6123/*
6124 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6125 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6126 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6127 */
10e2f1ac
PZ
6128static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6129{
60588bfa 6130 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
9cfb38a7 6131 struct sched_domain *this_sd;
1ad3aaf3 6132 u64 avg_cost, avg_idle;
d76343c6 6133 u64 time;
8dc2d993 6134 int this = smp_processor_id();
17346452 6135 int cpu, nr = INT_MAX;
10e2f1ac 6136
9cfb38a7
WL
6137 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6138 if (!this_sd)
6139 return -1;
6140
10e2f1ac
PZ
6141 /*
6142 * Due to large variance we need a large fuzz factor; hackbench in
6143 * particularly is sensitive here.
6144 */
1ad3aaf3
PZ
6145 avg_idle = this_rq()->avg_idle / 512;
6146 avg_cost = this_sd->avg_scan_cost + 1;
6147
6148 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
6149 return -1;
6150
1ad3aaf3
PZ
6151 if (sched_feat(SIS_PROP)) {
6152 u64 span_avg = sd->span_weight * avg_idle;
6153 if (span_avg > 4*avg_cost)
6154 nr = div_u64(span_avg, avg_cost);
6155 else
6156 nr = 4;
6157 }
6158
8dc2d993 6159 time = cpu_clock(this);
10e2f1ac 6160
60588bfa
CJ
6161 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6162
6163 for_each_cpu_wrap(cpu, cpus, target) {
1ad3aaf3 6164 if (!--nr)
17346452
VK
6165 return -1;
6166 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
10e2f1ac
PZ
6167 break;
6168 }
6169
8dc2d993 6170 time = cpu_clock(this) - time;
d76343c6 6171 update_avg(&this_sd->avg_scan_cost, time);
10e2f1ac
PZ
6172
6173 return cpu;
6174}
6175
b7a33161
MR
6176/*
6177 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6178 * the task fits. If no CPU is big enough, but there are idle ones, try to
6179 * maximize capacity.
6180 */
6181static int
6182select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6183{
6184 unsigned long best_cap = 0;
6185 int cpu, best_cpu = -1;
6186 struct cpumask *cpus;
6187
6188 sync_entity_load_avg(&p->se);
6189
6190 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6191 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6192
6193 for_each_cpu_wrap(cpu, cpus, target) {
6194 unsigned long cpu_cap = capacity_of(cpu);
6195
6196 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6197 continue;
6198 if (task_fits_capacity(p, cpu_cap))
6199 return cpu;
6200
6201 if (cpu_cap > best_cap) {
6202 best_cap = cpu_cap;
6203 best_cpu = cpu;
6204 }
6205 }
6206
6207 return best_cpu;
6208}
6209
10e2f1ac
PZ
6210/*
6211 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6212 */
772bd008 6213static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6214{
99bd5e2f 6215 struct sched_domain *sd;
32e839dd 6216 int i, recent_used_cpu;
a50bde51 6217
b7a33161
MR
6218 /*
6219 * For asymmetric CPU capacity systems, our domain of interest is
6220 * sd_asym_cpucapacity rather than sd_llc.
6221 */
6222 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6223 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6224 /*
6225 * On an asymmetric CPU capacity system where an exclusive
6226 * cpuset defines a symmetric island (i.e. one unique
6227 * capacity_orig value through the cpuset), the key will be set
6228 * but the CPUs within that cpuset will not have a domain with
6229 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6230 * capacity path.
6231 */
6232 if (!sd)
6233 goto symmetric;
6234
6235 i = select_idle_capacity(p, sd, target);
6236 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6237 }
6238
6239symmetric:
3c29e651 6240 if (available_idle_cpu(target) || sched_idle_cpu(target))
e0a79f52 6241 return target;
99bd5e2f
SS
6242
6243 /*
97fb7a0a 6244 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6245 */
3c29e651
VK
6246 if (prev != target && cpus_share_cache(prev, target) &&
6247 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
772bd008 6248 return prev;
a50bde51 6249
52262ee5
MG
6250 /*
6251 * Allow a per-cpu kthread to stack with the wakee if the
6252 * kworker thread and the tasks previous CPUs are the same.
6253 * The assumption is that the wakee queued work for the
6254 * per-cpu kthread that is now complete and the wakeup is
6255 * essentially a sync wakeup. An obvious example of this
6256 * pattern is IO completions.
6257 */
6258 if (is_per_cpu_kthread(current) &&
6259 prev == smp_processor_id() &&
6260 this_rq()->nr_running <= 1) {
6261 return prev;
6262 }
6263
97fb7a0a 6264 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6265 recent_used_cpu = p->recent_used_cpu;
6266 if (recent_used_cpu != prev &&
6267 recent_used_cpu != target &&
6268 cpus_share_cache(recent_used_cpu, target) &&
3c29e651 6269 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
3bd37062 6270 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
32e839dd
MG
6271 /*
6272 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6273 * candidate for the next wake:
32e839dd
MG
6274 */
6275 p->recent_used_cpu = prev;
6276 return recent_used_cpu;
6277 }
6278
518cd623 6279 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6280 if (!sd)
6281 return target;
772bd008 6282
10e2f1ac
PZ
6283 i = select_idle_core(p, sd, target);
6284 if ((unsigned)i < nr_cpumask_bits)
6285 return i;
37407ea7 6286
10e2f1ac
PZ
6287 i = select_idle_cpu(p, sd, target);
6288 if ((unsigned)i < nr_cpumask_bits)
6289 return i;
6290
df3cb4ea 6291 i = select_idle_smt(p, sd, target);
10e2f1ac
PZ
6292 if ((unsigned)i < nr_cpumask_bits)
6293 return i;
970e1789 6294
a50bde51
PZ
6295 return target;
6296}
231678b7 6297
f9be3e59
PB
6298/**
6299 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6300 * @cpu: the CPU to get the utilization of
6301 *
6302 * The unit of the return value must be the one of capacity so we can compare
6303 * the utilization with the capacity of the CPU that is available for CFS task
6304 * (ie cpu_capacity).
231678b7
DE
6305 *
6306 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6307 * recent utilization of currently non-runnable tasks on a CPU. It represents
6308 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6309 * capacity_orig is the cpu_capacity available at the highest frequency
6310 * (arch_scale_freq_capacity()).
6311 * The utilization of a CPU converges towards a sum equal to or less than the
6312 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6313 * the running time on this CPU scaled by capacity_curr.
6314 *
f9be3e59
PB
6315 * The estimated utilization of a CPU is defined to be the maximum between its
6316 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6317 * currently RUNNABLE on that CPU.
6318 * This allows to properly represent the expected utilization of a CPU which
6319 * has just got a big task running since a long sleep period. At the same time
6320 * however it preserves the benefits of the "blocked utilization" in
6321 * describing the potential for other tasks waking up on the same CPU.
6322 *
231678b7
DE
6323 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6324 * higher than capacity_orig because of unfortunate rounding in
6325 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6326 * the average stabilizes with the new running time. We need to check that the
6327 * utilization stays within the range of [0..capacity_orig] and cap it if
6328 * necessary. Without utilization capping, a group could be seen as overloaded
6329 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6330 * available capacity. We allow utilization to overshoot capacity_curr (but not
6331 * capacity_orig) as it useful for predicting the capacity required after task
6332 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6333 *
6334 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6335 */
f9be3e59 6336static inline unsigned long cpu_util(int cpu)
8bb5b00c 6337{
f9be3e59
PB
6338 struct cfs_rq *cfs_rq;
6339 unsigned int util;
6340
6341 cfs_rq = &cpu_rq(cpu)->cfs;
6342 util = READ_ONCE(cfs_rq->avg.util_avg);
6343
6344 if (sched_feat(UTIL_EST))
6345 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6346
f9be3e59 6347 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6348}
a50bde51 6349
104cb16d 6350/*
c469933e
PB
6351 * cpu_util_without: compute cpu utilization without any contributions from *p
6352 * @cpu: the CPU which utilization is requested
6353 * @p: the task which utilization should be discounted
6354 *
6355 * The utilization of a CPU is defined by the utilization of tasks currently
6356 * enqueued on that CPU as well as tasks which are currently sleeping after an
6357 * execution on that CPU.
6358 *
6359 * This method returns the utilization of the specified CPU by discounting the
6360 * utilization of the specified task, whenever the task is currently
6361 * contributing to the CPU utilization.
104cb16d 6362 */
c469933e 6363static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6364{
f9be3e59
PB
6365 struct cfs_rq *cfs_rq;
6366 unsigned int util;
104cb16d
MR
6367
6368 /* Task has no contribution or is new */
f9be3e59 6369 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6370 return cpu_util(cpu);
6371
f9be3e59
PB
6372 cfs_rq = &cpu_rq(cpu)->cfs;
6373 util = READ_ONCE(cfs_rq->avg.util_avg);
6374
c469933e 6375 /* Discount task's util from CPU's util */
b5c0ce7b 6376 lsub_positive(&util, task_util(p));
104cb16d 6377
f9be3e59
PB
6378 /*
6379 * Covered cases:
6380 *
6381 * a) if *p is the only task sleeping on this CPU, then:
6382 * cpu_util (== task_util) > util_est (== 0)
6383 * and thus we return:
c469933e 6384 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6385 *
6386 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6387 * IDLE, then:
6388 * cpu_util >= task_util
6389 * cpu_util > util_est (== 0)
6390 * and thus we discount *p's blocked utilization to return:
c469933e 6391 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6392 *
6393 * c) if other tasks are RUNNABLE on that CPU and
6394 * util_est > cpu_util
6395 * then we use util_est since it returns a more restrictive
6396 * estimation of the spare capacity on that CPU, by just
6397 * considering the expected utilization of tasks already
6398 * runnable on that CPU.
6399 *
6400 * Cases a) and b) are covered by the above code, while case c) is
6401 * covered by the following code when estimated utilization is
6402 * enabled.
6403 */
c469933e
PB
6404 if (sched_feat(UTIL_EST)) {
6405 unsigned int estimated =
6406 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6407
6408 /*
6409 * Despite the following checks we still have a small window
6410 * for a possible race, when an execl's select_task_rq_fair()
6411 * races with LB's detach_task():
6412 *
6413 * detach_task()
6414 * p->on_rq = TASK_ON_RQ_MIGRATING;
6415 * ---------------------------------- A
6416 * deactivate_task() \
6417 * dequeue_task() + RaceTime
6418 * util_est_dequeue() /
6419 * ---------------------------------- B
6420 *
6421 * The additional check on "current == p" it's required to
6422 * properly fix the execl regression and it helps in further
6423 * reducing the chances for the above race.
6424 */
b5c0ce7b
PB
6425 if (unlikely(task_on_rq_queued(p) || current == p))
6426 lsub_positive(&estimated, _task_util_est(p));
6427
c469933e
PB
6428 util = max(util, estimated);
6429 }
f9be3e59
PB
6430
6431 /*
6432 * Utilization (estimated) can exceed the CPU capacity, thus let's
6433 * clamp to the maximum CPU capacity to ensure consistency with
6434 * the cpu_util call.
6435 */
6436 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6437}
6438
390031e4
QP
6439/*
6440 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6441 * to @dst_cpu.
6442 */
6443static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6444{
6445 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6446 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6447
6448 /*
6449 * If @p migrates from @cpu to another, remove its contribution. Or,
6450 * if @p migrates from another CPU to @cpu, add its contribution. In
6451 * the other cases, @cpu is not impacted by the migration, so the
6452 * util_avg should already be correct.
6453 */
6454 if (task_cpu(p) == cpu && dst_cpu != cpu)
6455 sub_positive(&util, task_util(p));
6456 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6457 util += task_util(p);
6458
6459 if (sched_feat(UTIL_EST)) {
6460 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6461
6462 /*
6463 * During wake-up, the task isn't enqueued yet and doesn't
6464 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6465 * so just add it (if needed) to "simulate" what will be
6466 * cpu_util() after the task has been enqueued.
6467 */
6468 if (dst_cpu == cpu)
6469 util_est += _task_util_est(p);
6470
6471 util = max(util, util_est);
6472 }
6473
6474 return min(util, capacity_orig_of(cpu));
6475}
6476
6477/*
eb92692b 6478 * compute_energy(): Estimates the energy that @pd would consume if @p was
390031e4 6479 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
eb92692b 6480 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
390031e4
QP
6481 * to compute what would be the energy if we decided to actually migrate that
6482 * task.
6483 */
6484static long
6485compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6486{
eb92692b
QP
6487 struct cpumask *pd_mask = perf_domain_span(pd);
6488 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6489 unsigned long max_util = 0, sum_util = 0;
390031e4
QP
6490 int cpu;
6491
eb92692b
QP
6492 /*
6493 * The capacity state of CPUs of the current rd can be driven by CPUs
6494 * of another rd if they belong to the same pd. So, account for the
6495 * utilization of these CPUs too by masking pd with cpu_online_mask
6496 * instead of the rd span.
6497 *
6498 * If an entire pd is outside of the current rd, it will not appear in
6499 * its pd list and will not be accounted by compute_energy().
6500 */
6501 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6502 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6503 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
af24bde8
PB
6504
6505 /*
eb92692b
QP
6506 * Busy time computation: utilization clamping is not
6507 * required since the ratio (sum_util / cpu_capacity)
6508 * is already enough to scale the EM reported power
6509 * consumption at the (eventually clamped) cpu_capacity.
af24bde8 6510 */
eb92692b
QP
6511 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6512 ENERGY_UTIL, NULL);
af24bde8 6513
390031e4 6514 /*
eb92692b
QP
6515 * Performance domain frequency: utilization clamping
6516 * must be considered since it affects the selection
6517 * of the performance domain frequency.
6518 * NOTE: in case RT tasks are running, by default the
6519 * FREQUENCY_UTIL's utilization can be max OPP.
390031e4 6520 */
eb92692b
QP
6521 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6522 FREQUENCY_UTIL, tsk);
6523 max_util = max(max_util, cpu_util);
390031e4
QP
6524 }
6525
f0b56947 6526 return em_cpu_energy(pd->em_pd, max_util, sum_util);
390031e4
QP
6527}
6528
732cd75b
QP
6529/*
6530 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6531 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6532 * spare capacity in each performance domain and uses it as a potential
6533 * candidate to execute the task. Then, it uses the Energy Model to figure
6534 * out which of the CPU candidates is the most energy-efficient.
6535 *
6536 * The rationale for this heuristic is as follows. In a performance domain,
6537 * all the most energy efficient CPU candidates (according to the Energy
6538 * Model) are those for which we'll request a low frequency. When there are
6539 * several CPUs for which the frequency request will be the same, we don't
6540 * have enough data to break the tie between them, because the Energy Model
6541 * only includes active power costs. With this model, if we assume that
6542 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6543 * the maximum spare capacity in a performance domain is guaranteed to be among
6544 * the best candidates of the performance domain.
6545 *
6546 * In practice, it could be preferable from an energy standpoint to pack
6547 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6548 * but that could also hurt our chances to go cluster idle, and we have no
6549 * ways to tell with the current Energy Model if this is actually a good
6550 * idea or not. So, find_energy_efficient_cpu() basically favors
6551 * cluster-packing, and spreading inside a cluster. That should at least be
6552 * a good thing for latency, and this is consistent with the idea that most
6553 * of the energy savings of EAS come from the asymmetry of the system, and
6554 * not so much from breaking the tie between identical CPUs. That's also the
6555 * reason why EAS is enabled in the topology code only for systems where
6556 * SD_ASYM_CPUCAPACITY is set.
6557 *
6558 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6559 * they don't have any useful utilization data yet and it's not possible to
6560 * forecast their impact on energy consumption. Consequently, they will be
6561 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6562 * to be energy-inefficient in some use-cases. The alternative would be to
6563 * bias new tasks towards specific types of CPUs first, or to try to infer
6564 * their util_avg from the parent task, but those heuristics could hurt
6565 * other use-cases too. So, until someone finds a better way to solve this,
6566 * let's keep things simple by re-using the existing slow path.
6567 */
732cd75b
QP
6568static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6569{
eb92692b 6570 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
732cd75b 6571 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
eb92692b 6572 unsigned long cpu_cap, util, base_energy = 0;
732cd75b 6573 int cpu, best_energy_cpu = prev_cpu;
732cd75b 6574 struct sched_domain *sd;
eb92692b 6575 struct perf_domain *pd;
732cd75b
QP
6576
6577 rcu_read_lock();
6578 pd = rcu_dereference(rd->pd);
6579 if (!pd || READ_ONCE(rd->overutilized))
6580 goto fail;
732cd75b
QP
6581
6582 /*
6583 * Energy-aware wake-up happens on the lowest sched_domain starting
6584 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6585 */
6586 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6587 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6588 sd = sd->parent;
6589 if (!sd)
6590 goto fail;
6591
6592 sync_entity_load_avg(&p->se);
6593 if (!task_util_est(p))
6594 goto unlock;
6595
6596 for (; pd; pd = pd->next) {
eb92692b
QP
6597 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6598 unsigned long base_energy_pd;
732cd75b
QP
6599 int max_spare_cap_cpu = -1;
6600
eb92692b
QP
6601 /* Compute the 'base' energy of the pd, without @p */
6602 base_energy_pd = compute_energy(p, -1, pd);
6603 base_energy += base_energy_pd;
6604
732cd75b 6605 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
3bd37062 6606 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
732cd75b
QP
6607 continue;
6608
732cd75b
QP
6609 util = cpu_util_next(cpu, p, cpu);
6610 cpu_cap = capacity_of(cpu);
da0777d3
LL
6611 spare_cap = cpu_cap;
6612 lsub_positive(&spare_cap, util);
1d42509e
VS
6613
6614 /*
6615 * Skip CPUs that cannot satisfy the capacity request.
6616 * IOW, placing the task there would make the CPU
6617 * overutilized. Take uclamp into account to see how
6618 * much capacity we can get out of the CPU; this is
6619 * aligned with schedutil_cpu_util().
6620 */
6621 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
60e17f5c 6622 if (!fits_capacity(util, cpu_cap))
732cd75b
QP
6623 continue;
6624
6625 /* Always use prev_cpu as a candidate. */
6626 if (cpu == prev_cpu) {
eb92692b
QP
6627 prev_delta = compute_energy(p, prev_cpu, pd);
6628 prev_delta -= base_energy_pd;
6629 best_delta = min(best_delta, prev_delta);
732cd75b
QP
6630 }
6631
6632 /*
6633 * Find the CPU with the maximum spare capacity in
6634 * the performance domain
6635 */
732cd75b
QP
6636 if (spare_cap > max_spare_cap) {
6637 max_spare_cap = spare_cap;
6638 max_spare_cap_cpu = cpu;
6639 }
6640 }
6641
6642 /* Evaluate the energy impact of using this CPU. */
4892f51a 6643 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
eb92692b
QP
6644 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6645 cur_delta -= base_energy_pd;
6646 if (cur_delta < best_delta) {
6647 best_delta = cur_delta;
732cd75b
QP
6648 best_energy_cpu = max_spare_cap_cpu;
6649 }
6650 }
6651 }
6652unlock:
6653 rcu_read_unlock();
6654
6655 /*
6656 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6657 * least 6% of the energy used by prev_cpu.
6658 */
eb92692b 6659 if (prev_delta == ULONG_MAX)
732cd75b
QP
6660 return best_energy_cpu;
6661
eb92692b 6662 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
732cd75b
QP
6663 return best_energy_cpu;
6664
6665 return prev_cpu;
6666
6667fail:
6668 rcu_read_unlock();
6669
6670 return -1;
6671}
6672
aaee1203 6673/*
de91b9cb
MR
6674 * select_task_rq_fair: Select target runqueue for the waking task in domains
6675 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6676 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6677 *
97fb7a0a
IM
6678 * Balances load by selecting the idlest CPU in the idlest group, or under
6679 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6680 *
97fb7a0a 6681 * Returns the target CPU number.
aaee1203
PZ
6682 *
6683 * preempt must be disabled.
6684 */
0017d735 6685static int
ac66f547 6686select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6687{
f1d88b44 6688 struct sched_domain *tmp, *sd = NULL;
c88d5910 6689 int cpu = smp_processor_id();
63b0e9ed 6690 int new_cpu = prev_cpu;
99bd5e2f 6691 int want_affine = 0;
24d0c1d6 6692 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6693
c58d25f3
PZ
6694 if (sd_flag & SD_BALANCE_WAKE) {
6695 record_wakee(p);
732cd75b 6696
f8a696f2 6697 if (sched_energy_enabled()) {
732cd75b
QP
6698 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6699 if (new_cpu >= 0)
6700 return new_cpu;
6701 new_cpu = prev_cpu;
6702 }
6703
00061968 6704 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
c58d25f3 6705 }
aaee1203 6706
dce840a0 6707 rcu_read_lock();
aaee1203 6708 for_each_domain(cpu, tmp) {
fe3bcfe1 6709 /*
97fb7a0a 6710 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6711 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6712 */
99bd5e2f
SS
6713 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6714 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6715 if (cpu != prev_cpu)
6716 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6717
6718 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6719 break;
f03542a7 6720 }
29cd8bae 6721
f03542a7 6722 if (tmp->flags & sd_flag)
29cd8bae 6723 sd = tmp;
63b0e9ed
MG
6724 else if (!want_affine)
6725 break;
29cd8bae
PZ
6726 }
6727
f1d88b44
VK
6728 if (unlikely(sd)) {
6729 /* Slow path */
18bd1b4b 6730 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6731 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6732 /* Fast path */
6733
6734 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6735
6736 if (want_affine)
6737 current->recent_used_cpu = cpu;
e7693a36 6738 }
dce840a0 6739 rcu_read_unlock();
e7693a36 6740
c88d5910 6741 return new_cpu;
e7693a36 6742}
0a74bef8 6743
144d8487
PZ
6744static void detach_entity_cfs_rq(struct sched_entity *se);
6745
0a74bef8 6746/*
97fb7a0a 6747 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6748 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6749 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6750 */
3f9672ba 6751static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6752{
59efa0ba
PZ
6753 /*
6754 * As blocked tasks retain absolute vruntime the migration needs to
6755 * deal with this by subtracting the old and adding the new
6756 * min_vruntime -- the latter is done by enqueue_entity() when placing
6757 * the task on the new runqueue.
6758 */
6759 if (p->state == TASK_WAKING) {
6760 struct sched_entity *se = &p->se;
6761 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6762 u64 min_vruntime;
6763
6764#ifndef CONFIG_64BIT
6765 u64 min_vruntime_copy;
6766
6767 do {
6768 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6769 smp_rmb();
6770 min_vruntime = cfs_rq->min_vruntime;
6771 } while (min_vruntime != min_vruntime_copy);
6772#else
6773 min_vruntime = cfs_rq->min_vruntime;
6774#endif
6775
6776 se->vruntime -= min_vruntime;
6777 }
6778
144d8487
PZ
6779 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6780 /*
6781 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6782 * rq->lock and can modify state directly.
6783 */
6784 lockdep_assert_held(&task_rq(p)->lock);
6785 detach_entity_cfs_rq(&p->se);
6786
6787 } else {
6788 /*
6789 * We are supposed to update the task to "current" time, then
6790 * its up to date and ready to go to new CPU/cfs_rq. But we
6791 * have difficulty in getting what current time is, so simply
6792 * throw away the out-of-date time. This will result in the
6793 * wakee task is less decayed, but giving the wakee more load
6794 * sounds not bad.
6795 */
6796 remove_entity_load_avg(&p->se);
6797 }
9d89c257
YD
6798
6799 /* Tell new CPU we are migrated */
6800 p->se.avg.last_update_time = 0;
3944a927
BS
6801
6802 /* We have migrated, no longer consider this task hot */
9d89c257 6803 p->se.exec_start = 0;
3f9672ba
SD
6804
6805 update_scan_period(p, new_cpu);
0a74bef8 6806}
12695578
YD
6807
6808static void task_dead_fair(struct task_struct *p)
6809{
6810 remove_entity_load_avg(&p->se);
6811}
6e2df058
PZ
6812
6813static int
6814balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6815{
6816 if (rq->nr_running)
6817 return 1;
6818
6819 return newidle_balance(rq, rf) != 0;
6820}
e7693a36
GH
6821#endif /* CONFIG_SMP */
6822
a555e9d8 6823static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6824{
6825 unsigned long gran = sysctl_sched_wakeup_granularity;
6826
6827 /*
e52fb7c0
PZ
6828 * Since its curr running now, convert the gran from real-time
6829 * to virtual-time in his units.
13814d42
MG
6830 *
6831 * By using 'se' instead of 'curr' we penalize light tasks, so
6832 * they get preempted easier. That is, if 'se' < 'curr' then
6833 * the resulting gran will be larger, therefore penalizing the
6834 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6835 * be smaller, again penalizing the lighter task.
6836 *
6837 * This is especially important for buddies when the leftmost
6838 * task is higher priority than the buddy.
0bbd3336 6839 */
f4ad9bd2 6840 return calc_delta_fair(gran, se);
0bbd3336
PZ
6841}
6842
464b7527
PZ
6843/*
6844 * Should 'se' preempt 'curr'.
6845 *
6846 * |s1
6847 * |s2
6848 * |s3
6849 * g
6850 * |<--->|c
6851 *
6852 * w(c, s1) = -1
6853 * w(c, s2) = 0
6854 * w(c, s3) = 1
6855 *
6856 */
6857static int
6858wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6859{
6860 s64 gran, vdiff = curr->vruntime - se->vruntime;
6861
6862 if (vdiff <= 0)
6863 return -1;
6864
a555e9d8 6865 gran = wakeup_gran(se);
464b7527
PZ
6866 if (vdiff > gran)
6867 return 1;
6868
6869 return 0;
6870}
6871
02479099
PZ
6872static void set_last_buddy(struct sched_entity *se)
6873{
1da1843f 6874 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6875 return;
6876
c5ae366e
DA
6877 for_each_sched_entity(se) {
6878 if (SCHED_WARN_ON(!se->on_rq))
6879 return;
69c80f3e 6880 cfs_rq_of(se)->last = se;
c5ae366e 6881 }
02479099
PZ
6882}
6883
6884static void set_next_buddy(struct sched_entity *se)
6885{
1da1843f 6886 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6887 return;
6888
c5ae366e
DA
6889 for_each_sched_entity(se) {
6890 if (SCHED_WARN_ON(!se->on_rq))
6891 return;
69c80f3e 6892 cfs_rq_of(se)->next = se;
c5ae366e 6893 }
02479099
PZ
6894}
6895
ac53db59
RR
6896static void set_skip_buddy(struct sched_entity *se)
6897{
69c80f3e
VP
6898 for_each_sched_entity(se)
6899 cfs_rq_of(se)->skip = se;
ac53db59
RR
6900}
6901
bf0f6f24
IM
6902/*
6903 * Preempt the current task with a newly woken task if needed:
6904 */
5a9b86f6 6905static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6906{
6907 struct task_struct *curr = rq->curr;
8651a86c 6908 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6909 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6910 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6911 int next_buddy_marked = 0;
bf0f6f24 6912
4ae7d5ce
IM
6913 if (unlikely(se == pse))
6914 return;
6915
5238cdd3 6916 /*
163122b7 6917 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6918 * unconditionally check_prempt_curr() after an enqueue (which may have
6919 * lead to a throttle). This both saves work and prevents false
6920 * next-buddy nomination below.
6921 */
6922 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6923 return;
6924
2f36825b 6925 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6926 set_next_buddy(pse);
2f36825b
VP
6927 next_buddy_marked = 1;
6928 }
57fdc26d 6929
aec0a514
BR
6930 /*
6931 * We can come here with TIF_NEED_RESCHED already set from new task
6932 * wake up path.
5238cdd3
PT
6933 *
6934 * Note: this also catches the edge-case of curr being in a throttled
6935 * group (e.g. via set_curr_task), since update_curr() (in the
6936 * enqueue of curr) will have resulted in resched being set. This
6937 * prevents us from potentially nominating it as a false LAST_BUDDY
6938 * below.
aec0a514
BR
6939 */
6940 if (test_tsk_need_resched(curr))
6941 return;
6942
a2f5c9ab 6943 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6944 if (unlikely(task_has_idle_policy(curr)) &&
6945 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6946 goto preempt;
6947
91c234b4 6948 /*
a2f5c9ab
DH
6949 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6950 * is driven by the tick):
91c234b4 6951 */
8ed92e51 6952 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6953 return;
bf0f6f24 6954
464b7527 6955 find_matching_se(&se, &pse);
9bbd7374 6956 update_curr(cfs_rq_of(se));
002f128b 6957 BUG_ON(!pse);
2f36825b
VP
6958 if (wakeup_preempt_entity(se, pse) == 1) {
6959 /*
6960 * Bias pick_next to pick the sched entity that is
6961 * triggering this preemption.
6962 */
6963 if (!next_buddy_marked)
6964 set_next_buddy(pse);
3a7e73a2 6965 goto preempt;
2f36825b 6966 }
464b7527 6967
3a7e73a2 6968 return;
a65ac745 6969
3a7e73a2 6970preempt:
8875125e 6971 resched_curr(rq);
3a7e73a2
PZ
6972 /*
6973 * Only set the backward buddy when the current task is still
6974 * on the rq. This can happen when a wakeup gets interleaved
6975 * with schedule on the ->pre_schedule() or idle_balance()
6976 * point, either of which can * drop the rq lock.
6977 *
6978 * Also, during early boot the idle thread is in the fair class,
6979 * for obvious reasons its a bad idea to schedule back to it.
6980 */
6981 if (unlikely(!se->on_rq || curr == rq->idle))
6982 return;
6983
6984 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6985 set_last_buddy(se);
bf0f6f24
IM
6986}
6987
5d7d6056 6988struct task_struct *
d8ac8971 6989pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6990{
6991 struct cfs_rq *cfs_rq = &rq->cfs;
6992 struct sched_entity *se;
678d5718 6993 struct task_struct *p;
37e117c0 6994 int new_tasks;
678d5718 6995
6e83125c 6996again:
6e2df058 6997 if (!sched_fair_runnable(rq))
38033c37 6998 goto idle;
678d5718 6999
9674f5ca 7000#ifdef CONFIG_FAIR_GROUP_SCHED
67692435 7001 if (!prev || prev->sched_class != &fair_sched_class)
678d5718
PZ
7002 goto simple;
7003
7004 /*
7005 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7006 * likely that a next task is from the same cgroup as the current.
7007 *
7008 * Therefore attempt to avoid putting and setting the entire cgroup
7009 * hierarchy, only change the part that actually changes.
7010 */
7011
7012 do {
7013 struct sched_entity *curr = cfs_rq->curr;
7014
7015 /*
7016 * Since we got here without doing put_prev_entity() we also
7017 * have to consider cfs_rq->curr. If it is still a runnable
7018 * entity, update_curr() will update its vruntime, otherwise
7019 * forget we've ever seen it.
7020 */
54d27365
BS
7021 if (curr) {
7022 if (curr->on_rq)
7023 update_curr(cfs_rq);
7024 else
7025 curr = NULL;
678d5718 7026
54d27365
BS
7027 /*
7028 * This call to check_cfs_rq_runtime() will do the
7029 * throttle and dequeue its entity in the parent(s).
9674f5ca 7030 * Therefore the nr_running test will indeed
54d27365
BS
7031 * be correct.
7032 */
9674f5ca
VK
7033 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7034 cfs_rq = &rq->cfs;
7035
7036 if (!cfs_rq->nr_running)
7037 goto idle;
7038
54d27365 7039 goto simple;
9674f5ca 7040 }
54d27365 7041 }
678d5718
PZ
7042
7043 se = pick_next_entity(cfs_rq, curr);
7044 cfs_rq = group_cfs_rq(se);
7045 } while (cfs_rq);
7046
7047 p = task_of(se);
7048
7049 /*
7050 * Since we haven't yet done put_prev_entity and if the selected task
7051 * is a different task than we started out with, try and touch the
7052 * least amount of cfs_rqs.
7053 */
7054 if (prev != p) {
7055 struct sched_entity *pse = &prev->se;
7056
7057 while (!(cfs_rq = is_same_group(se, pse))) {
7058 int se_depth = se->depth;
7059 int pse_depth = pse->depth;
7060
7061 if (se_depth <= pse_depth) {
7062 put_prev_entity(cfs_rq_of(pse), pse);
7063 pse = parent_entity(pse);
7064 }
7065 if (se_depth >= pse_depth) {
7066 set_next_entity(cfs_rq_of(se), se);
7067 se = parent_entity(se);
7068 }
7069 }
7070
7071 put_prev_entity(cfs_rq, pse);
7072 set_next_entity(cfs_rq, se);
7073 }
7074
93824900 7075 goto done;
678d5718 7076simple:
678d5718 7077#endif
67692435
PZ
7078 if (prev)
7079 put_prev_task(rq, prev);
606dba2e 7080
bf0f6f24 7081 do {
678d5718 7082 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 7083 set_next_entity(cfs_rq, se);
bf0f6f24
IM
7084 cfs_rq = group_cfs_rq(se);
7085 } while (cfs_rq);
7086
8f4d37ec 7087 p = task_of(se);
678d5718 7088
13a453c2 7089done: __maybe_unused;
93824900
UR
7090#ifdef CONFIG_SMP
7091 /*
7092 * Move the next running task to the front of
7093 * the list, so our cfs_tasks list becomes MRU
7094 * one.
7095 */
7096 list_move(&p->se.group_node, &rq->cfs_tasks);
7097#endif
7098
b39e66ea
MG
7099 if (hrtick_enabled(rq))
7100 hrtick_start_fair(rq, p);
8f4d37ec 7101
3b1baa64
MR
7102 update_misfit_status(p, rq);
7103
8f4d37ec 7104 return p;
38033c37
PZ
7105
7106idle:
67692435
PZ
7107 if (!rf)
7108 return NULL;
7109
5ba553ef 7110 new_tasks = newidle_balance(rq, rf);
46f69fa3 7111
37e117c0 7112 /*
5ba553ef 7113 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
37e117c0
PZ
7114 * possible for any higher priority task to appear. In that case we
7115 * must re-start the pick_next_entity() loop.
7116 */
e4aa358b 7117 if (new_tasks < 0)
37e117c0
PZ
7118 return RETRY_TASK;
7119
e4aa358b 7120 if (new_tasks > 0)
38033c37 7121 goto again;
38033c37 7122
23127296
VG
7123 /*
7124 * rq is about to be idle, check if we need to update the
7125 * lost_idle_time of clock_pelt
7126 */
7127 update_idle_rq_clock_pelt(rq);
7128
38033c37 7129 return NULL;
bf0f6f24
IM
7130}
7131
98c2f700
PZ
7132static struct task_struct *__pick_next_task_fair(struct rq *rq)
7133{
7134 return pick_next_task_fair(rq, NULL, NULL);
7135}
7136
bf0f6f24
IM
7137/*
7138 * Account for a descheduled task:
7139 */
6e2df058 7140static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7141{
7142 struct sched_entity *se = &prev->se;
7143 struct cfs_rq *cfs_rq;
7144
7145 for_each_sched_entity(se) {
7146 cfs_rq = cfs_rq_of(se);
ab6cde26 7147 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7148 }
7149}
7150
ac53db59
RR
7151/*
7152 * sched_yield() is very simple
7153 *
7154 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7155 */
7156static void yield_task_fair(struct rq *rq)
7157{
7158 struct task_struct *curr = rq->curr;
7159 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7160 struct sched_entity *se = &curr->se;
7161
7162 /*
7163 * Are we the only task in the tree?
7164 */
7165 if (unlikely(rq->nr_running == 1))
7166 return;
7167
7168 clear_buddies(cfs_rq, se);
7169
7170 if (curr->policy != SCHED_BATCH) {
7171 update_rq_clock(rq);
7172 /*
7173 * Update run-time statistics of the 'current'.
7174 */
7175 update_curr(cfs_rq);
916671c0
MG
7176 /*
7177 * Tell update_rq_clock() that we've just updated,
7178 * so we don't do microscopic update in schedule()
7179 * and double the fastpath cost.
7180 */
adcc8da8 7181 rq_clock_skip_update(rq);
ac53db59
RR
7182 }
7183
7184 set_skip_buddy(se);
7185}
7186
0900acf2 7187static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
d95f4122
MG
7188{
7189 struct sched_entity *se = &p->se;
7190
5238cdd3
PT
7191 /* throttled hierarchies are not runnable */
7192 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7193 return false;
7194
7195 /* Tell the scheduler that we'd really like pse to run next. */
7196 set_next_buddy(se);
7197
d95f4122
MG
7198 yield_task_fair(rq);
7199
7200 return true;
7201}
7202
681f3e68 7203#ifdef CONFIG_SMP
bf0f6f24 7204/**************************************************
e9c84cb8
PZ
7205 * Fair scheduling class load-balancing methods.
7206 *
7207 * BASICS
7208 *
7209 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7210 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7211 * time to each task. This is expressed in the following equation:
7212 *
7213 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7214 *
97fb7a0a 7215 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7216 * W_i,0 is defined as:
7217 *
7218 * W_i,0 = \Sum_j w_i,j (2)
7219 *
97fb7a0a 7220 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7221 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7222 *
7223 * The weight average is an exponential decay average of the instantaneous
7224 * weight:
7225 *
7226 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7227 *
97fb7a0a 7228 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7229 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7230 * can also include other factors [XXX].
7231 *
7232 * To achieve this balance we define a measure of imbalance which follows
7233 * directly from (1):
7234 *
ced549fa 7235 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7236 *
7237 * We them move tasks around to minimize the imbalance. In the continuous
7238 * function space it is obvious this converges, in the discrete case we get
7239 * a few fun cases generally called infeasible weight scenarios.
7240 *
7241 * [XXX expand on:
7242 * - infeasible weights;
7243 * - local vs global optima in the discrete case. ]
7244 *
7245 *
7246 * SCHED DOMAINS
7247 *
7248 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7249 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7250 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7251 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7252 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7253 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7254 * the groups.
7255 *
7256 * This yields:
7257 *
7258 * log_2 n 1 n
7259 * \Sum { --- * --- * 2^i } = O(n) (5)
7260 * i = 0 2^i 2^i
7261 * `- size of each group
97fb7a0a 7262 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7263 * | `- freq
7264 * `- sum over all levels
7265 *
7266 * Coupled with a limit on how many tasks we can migrate every balance pass,
7267 * this makes (5) the runtime complexity of the balancer.
7268 *
7269 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7270 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7271 *
7272 * The adjacency matrix of the resulting graph is given by:
7273 *
97a7142f 7274 * log_2 n
e9c84cb8
PZ
7275 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7276 * k = 0
7277 *
7278 * And you'll find that:
7279 *
7280 * A^(log_2 n)_i,j != 0 for all i,j (7)
7281 *
97fb7a0a 7282 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7283 * The task movement gives a factor of O(m), giving a convergence complexity
7284 * of:
7285 *
7286 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7287 *
7288 *
7289 * WORK CONSERVING
7290 *
7291 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7292 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7293 * tree itself instead of relying on other CPUs to bring it work.
7294 *
7295 * This adds some complexity to both (5) and (8) but it reduces the total idle
7296 * time.
7297 *
7298 * [XXX more?]
7299 *
7300 *
7301 * CGROUPS
7302 *
7303 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7304 *
7305 * s_k,i
7306 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7307 * S_k
7308 *
7309 * Where
7310 *
7311 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7312 *
97fb7a0a 7313 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7314 *
7315 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7316 * property.
7317 *
7318 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7319 * rewrite all of this once again.]
97a7142f 7320 */
bf0f6f24 7321
ed387b78
HS
7322static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7323
0ec8aa00
PZ
7324enum fbq_type { regular, remote, all };
7325
0b0695f2 7326/*
a9723389
VG
7327 * 'group_type' describes the group of CPUs at the moment of load balancing.
7328 *
0b0695f2 7329 * The enum is ordered by pulling priority, with the group with lowest priority
a9723389
VG
7330 * first so the group_type can simply be compared when selecting the busiest
7331 * group. See update_sd_pick_busiest().
0b0695f2 7332 */
3b1baa64 7333enum group_type {
a9723389 7334 /* The group has spare capacity that can be used to run more tasks. */
0b0695f2 7335 group_has_spare = 0,
a9723389
VG
7336 /*
7337 * The group is fully used and the tasks don't compete for more CPU
7338 * cycles. Nevertheless, some tasks might wait before running.
7339 */
0b0695f2 7340 group_fully_busy,
a9723389
VG
7341 /*
7342 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7343 * and must be migrated to a more powerful CPU.
7344 */
3b1baa64 7345 group_misfit_task,
a9723389
VG
7346 /*
7347 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7348 * and the task should be migrated to it instead of running on the
7349 * current CPU.
7350 */
0b0695f2 7351 group_asym_packing,
a9723389
VG
7352 /*
7353 * The tasks' affinity constraints previously prevented the scheduler
7354 * from balancing the load across the system.
7355 */
3b1baa64 7356 group_imbalanced,
a9723389
VG
7357 /*
7358 * The CPU is overloaded and can't provide expected CPU cycles to all
7359 * tasks.
7360 */
0b0695f2
VG
7361 group_overloaded
7362};
7363
7364enum migration_type {
7365 migrate_load = 0,
7366 migrate_util,
7367 migrate_task,
7368 migrate_misfit
3b1baa64
MR
7369};
7370
ddcdf6e7 7371#define LBF_ALL_PINNED 0x01
367456c7 7372#define LBF_NEED_BREAK 0x02
6263322c
PZ
7373#define LBF_DST_PINNED 0x04
7374#define LBF_SOME_PINNED 0x08
e022e0d3 7375#define LBF_NOHZ_STATS 0x10
f643ea22 7376#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7377
7378struct lb_env {
7379 struct sched_domain *sd;
7380
ddcdf6e7 7381 struct rq *src_rq;
85c1e7da 7382 int src_cpu;
ddcdf6e7
PZ
7383
7384 int dst_cpu;
7385 struct rq *dst_rq;
7386
88b8dac0
SV
7387 struct cpumask *dst_grpmask;
7388 int new_dst_cpu;
ddcdf6e7 7389 enum cpu_idle_type idle;
bd939f45 7390 long imbalance;
b9403130
MW
7391 /* The set of CPUs under consideration for load-balancing */
7392 struct cpumask *cpus;
7393
ddcdf6e7 7394 unsigned int flags;
367456c7
PZ
7395
7396 unsigned int loop;
7397 unsigned int loop_break;
7398 unsigned int loop_max;
0ec8aa00
PZ
7399
7400 enum fbq_type fbq_type;
0b0695f2 7401 enum migration_type migration_type;
163122b7 7402 struct list_head tasks;
ddcdf6e7
PZ
7403};
7404
029632fb
PZ
7405/*
7406 * Is this task likely cache-hot:
7407 */
5d5e2b1b 7408static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7409{
7410 s64 delta;
7411
e5673f28
KT
7412 lockdep_assert_held(&env->src_rq->lock);
7413
029632fb
PZ
7414 if (p->sched_class != &fair_sched_class)
7415 return 0;
7416
1da1843f 7417 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7418 return 0;
7419
ec73240b
JD
7420 /* SMT siblings share cache */
7421 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7422 return 0;
7423
029632fb
PZ
7424 /*
7425 * Buddy candidates are cache hot:
7426 */
5d5e2b1b 7427 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7428 (&p->se == cfs_rq_of(&p->se)->next ||
7429 &p->se == cfs_rq_of(&p->se)->last))
7430 return 1;
7431
7432 if (sysctl_sched_migration_cost == -1)
7433 return 1;
7434 if (sysctl_sched_migration_cost == 0)
7435 return 0;
7436
5d5e2b1b 7437 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7438
7439 return delta < (s64)sysctl_sched_migration_cost;
7440}
7441
3a7053b3 7442#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7443/*
2a1ed24c
SD
7444 * Returns 1, if task migration degrades locality
7445 * Returns 0, if task migration improves locality i.e migration preferred.
7446 * Returns -1, if task migration is not affected by locality.
c1ceac62 7447 */
2a1ed24c 7448static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7449{
b1ad065e 7450 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7451 unsigned long src_weight, dst_weight;
7452 int src_nid, dst_nid, dist;
3a7053b3 7453
2a595721 7454 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7455 return -1;
7456
c3b9bc5b 7457 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7458 return -1;
7a0f3083
MG
7459
7460 src_nid = cpu_to_node(env->src_cpu);
7461 dst_nid = cpu_to_node(env->dst_cpu);
7462
83e1d2cd 7463 if (src_nid == dst_nid)
2a1ed24c 7464 return -1;
7a0f3083 7465
2a1ed24c
SD
7466 /* Migrating away from the preferred node is always bad. */
7467 if (src_nid == p->numa_preferred_nid) {
7468 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7469 return 1;
7470 else
7471 return -1;
7472 }
b1ad065e 7473
c1ceac62
RR
7474 /* Encourage migration to the preferred node. */
7475 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7476 return 0;
b1ad065e 7477
739294fb 7478 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7479 if (env->idle == CPU_IDLE)
739294fb
RR
7480 return -1;
7481
f35678b6 7482 dist = node_distance(src_nid, dst_nid);
c1ceac62 7483 if (numa_group) {
f35678b6
SD
7484 src_weight = group_weight(p, src_nid, dist);
7485 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7486 } else {
f35678b6
SD
7487 src_weight = task_weight(p, src_nid, dist);
7488 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7489 }
7490
f35678b6 7491 return dst_weight < src_weight;
7a0f3083
MG
7492}
7493
3a7053b3 7494#else
2a1ed24c 7495static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7496 struct lb_env *env)
7497{
2a1ed24c 7498 return -1;
7a0f3083 7499}
3a7053b3
MG
7500#endif
7501
1e3c88bd
PZ
7502/*
7503 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7504 */
7505static
8e45cb54 7506int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7507{
2a1ed24c 7508 int tsk_cache_hot;
e5673f28
KT
7509
7510 lockdep_assert_held(&env->src_rq->lock);
7511
1e3c88bd
PZ
7512 /*
7513 * We do not migrate tasks that are:
d3198084 7514 * 1) throttled_lb_pair, or
3bd37062 7515 * 2) cannot be migrated to this CPU due to cpus_ptr, or
d3198084
JK
7516 * 3) running (obviously), or
7517 * 4) are cache-hot on their current CPU.
1e3c88bd 7518 */
d3198084
JK
7519 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7520 return 0;
7521
3bd37062 7522 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
e02e60c1 7523 int cpu;
88b8dac0 7524
ae92882e 7525 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7526
6263322c
PZ
7527 env->flags |= LBF_SOME_PINNED;
7528
88b8dac0 7529 /*
97fb7a0a 7530 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7531 * our sched_group. We may want to revisit it if we couldn't
7532 * meet load balance goals by pulling other tasks on src_cpu.
7533 *
65a4433a
JH
7534 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7535 * already computed one in current iteration.
88b8dac0 7536 */
65a4433a 7537 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7538 return 0;
7539
97fb7a0a 7540 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7541 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3bd37062 7542 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
6263322c 7543 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7544 env->new_dst_cpu = cpu;
7545 break;
7546 }
88b8dac0 7547 }
e02e60c1 7548
1e3c88bd
PZ
7549 return 0;
7550 }
88b8dac0
SV
7551
7552 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7553 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7554
ddcdf6e7 7555 if (task_running(env->src_rq, p)) {
ae92882e 7556 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7557 return 0;
7558 }
7559
7560 /*
7561 * Aggressive migration if:
3a7053b3
MG
7562 * 1) destination numa is preferred
7563 * 2) task is cache cold, or
7564 * 3) too many balance attempts have failed.
1e3c88bd 7565 */
2a1ed24c
SD
7566 tsk_cache_hot = migrate_degrades_locality(p, env);
7567 if (tsk_cache_hot == -1)
7568 tsk_cache_hot = task_hot(p, env);
3a7053b3 7569
2a1ed24c 7570 if (tsk_cache_hot <= 0 ||
7a96c231 7571 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7572 if (tsk_cache_hot == 1) {
ae92882e
JP
7573 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7574 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7575 }
1e3c88bd
PZ
7576 return 1;
7577 }
7578
ae92882e 7579 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7580 return 0;
1e3c88bd
PZ
7581}
7582
897c395f 7583/*
163122b7
KT
7584 * detach_task() -- detach the task for the migration specified in env
7585 */
7586static void detach_task(struct task_struct *p, struct lb_env *env)
7587{
7588 lockdep_assert_held(&env->src_rq->lock);
7589
5704ac0a 7590 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7591 set_task_cpu(p, env->dst_cpu);
7592}
7593
897c395f 7594/*
e5673f28 7595 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7596 * part of active balancing operations within "domain".
897c395f 7597 *
e5673f28 7598 * Returns a task if successful and NULL otherwise.
897c395f 7599 */
e5673f28 7600static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7601{
93824900 7602 struct task_struct *p;
897c395f 7603
e5673f28
KT
7604 lockdep_assert_held(&env->src_rq->lock);
7605
93824900
UR
7606 list_for_each_entry_reverse(p,
7607 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7608 if (!can_migrate_task(p, env))
7609 continue;
897c395f 7610
163122b7 7611 detach_task(p, env);
e5673f28 7612
367456c7 7613 /*
e5673f28 7614 * Right now, this is only the second place where
163122b7 7615 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7616 * so we can safely collect stats here rather than
163122b7 7617 * inside detach_tasks().
367456c7 7618 */
ae92882e 7619 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7620 return p;
897c395f 7621 }
e5673f28 7622 return NULL;
897c395f
PZ
7623}
7624
eb95308e
PZ
7625static const unsigned int sched_nr_migrate_break = 32;
7626
5d6523eb 7627/*
0b0695f2 7628 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
163122b7 7629 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7630 *
163122b7 7631 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7632 */
163122b7 7633static int detach_tasks(struct lb_env *env)
1e3c88bd 7634{
5d6523eb 7635 struct list_head *tasks = &env->src_rq->cfs_tasks;
0b0695f2 7636 unsigned long util, load;
5d6523eb 7637 struct task_struct *p;
163122b7
KT
7638 int detached = 0;
7639
7640 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7641
bd939f45 7642 if (env->imbalance <= 0)
5d6523eb 7643 return 0;
1e3c88bd 7644
5d6523eb 7645 while (!list_empty(tasks)) {
985d3a4c
YD
7646 /*
7647 * We don't want to steal all, otherwise we may be treated likewise,
7648 * which could at worst lead to a livelock crash.
7649 */
7650 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7651 break;
7652
93824900 7653 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7654
367456c7
PZ
7655 env->loop++;
7656 /* We've more or less seen every task there is, call it quits */
5d6523eb 7657 if (env->loop > env->loop_max)
367456c7 7658 break;
5d6523eb
PZ
7659
7660 /* take a breather every nr_migrate tasks */
367456c7 7661 if (env->loop > env->loop_break) {
eb95308e 7662 env->loop_break += sched_nr_migrate_break;
8e45cb54 7663 env->flags |= LBF_NEED_BREAK;
ee00e66f 7664 break;
a195f004 7665 }
1e3c88bd 7666
d3198084 7667 if (!can_migrate_task(p, env))
367456c7
PZ
7668 goto next;
7669
0b0695f2
VG
7670 switch (env->migration_type) {
7671 case migrate_load:
01cfcde9
VG
7672 /*
7673 * Depending of the number of CPUs and tasks and the
7674 * cgroup hierarchy, task_h_load() can return a null
7675 * value. Make sure that env->imbalance decreases
7676 * otherwise detach_tasks() will stop only after
7677 * detaching up to loop_max tasks.
7678 */
7679 load = max_t(unsigned long, task_h_load(p), 1);
5d6523eb 7680
0b0695f2
VG
7681 if (sched_feat(LB_MIN) &&
7682 load < 16 && !env->sd->nr_balance_failed)
7683 goto next;
367456c7 7684
6cf82d55
VG
7685 /*
7686 * Make sure that we don't migrate too much load.
7687 * Nevertheless, let relax the constraint if
7688 * scheduler fails to find a good waiting task to
7689 * migrate.
7690 */
5a7f5559
VG
7691
7692 if ((load >> env->sd->nr_balance_failed) > env->imbalance)
0b0695f2
VG
7693 goto next;
7694
7695 env->imbalance -= load;
7696 break;
7697
7698 case migrate_util:
7699 util = task_util_est(p);
7700
7701 if (util > env->imbalance)
7702 goto next;
7703
7704 env->imbalance -= util;
7705 break;
7706
7707 case migrate_task:
7708 env->imbalance--;
7709 break;
7710
7711 case migrate_misfit:
c63be7be
VG
7712 /* This is not a misfit task */
7713 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
0b0695f2
VG
7714 goto next;
7715
7716 env->imbalance = 0;
7717 break;
7718 }
1e3c88bd 7719
163122b7
KT
7720 detach_task(p, env);
7721 list_add(&p->se.group_node, &env->tasks);
7722
7723 detached++;
1e3c88bd 7724
c1a280b6 7725#ifdef CONFIG_PREEMPTION
ee00e66f
PZ
7726 /*
7727 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7728 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7729 * the critical section.
7730 */
5d6523eb 7731 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7732 break;
1e3c88bd
PZ
7733#endif
7734
ee00e66f
PZ
7735 /*
7736 * We only want to steal up to the prescribed amount of
0b0695f2 7737 * load/util/tasks.
ee00e66f 7738 */
bd939f45 7739 if (env->imbalance <= 0)
ee00e66f 7740 break;
367456c7
PZ
7741
7742 continue;
7743next:
93824900 7744 list_move(&p->se.group_node, tasks);
1e3c88bd 7745 }
5d6523eb 7746
1e3c88bd 7747 /*
163122b7
KT
7748 * Right now, this is one of only two places we collect this stat
7749 * so we can safely collect detach_one_task() stats here rather
7750 * than inside detach_one_task().
1e3c88bd 7751 */
ae92882e 7752 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7753
163122b7
KT
7754 return detached;
7755}
7756
7757/*
7758 * attach_task() -- attach the task detached by detach_task() to its new rq.
7759 */
7760static void attach_task(struct rq *rq, struct task_struct *p)
7761{
7762 lockdep_assert_held(&rq->lock);
7763
7764 BUG_ON(task_rq(p) != rq);
5704ac0a 7765 activate_task(rq, p, ENQUEUE_NOCLOCK);
163122b7
KT
7766 check_preempt_curr(rq, p, 0);
7767}
7768
7769/*
7770 * attach_one_task() -- attaches the task returned from detach_one_task() to
7771 * its new rq.
7772 */
7773static void attach_one_task(struct rq *rq, struct task_struct *p)
7774{
8a8c69c3
PZ
7775 struct rq_flags rf;
7776
7777 rq_lock(rq, &rf);
5704ac0a 7778 update_rq_clock(rq);
163122b7 7779 attach_task(rq, p);
8a8c69c3 7780 rq_unlock(rq, &rf);
163122b7
KT
7781}
7782
7783/*
7784 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7785 * new rq.
7786 */
7787static void attach_tasks(struct lb_env *env)
7788{
7789 struct list_head *tasks = &env->tasks;
7790 struct task_struct *p;
8a8c69c3 7791 struct rq_flags rf;
163122b7 7792
8a8c69c3 7793 rq_lock(env->dst_rq, &rf);
5704ac0a 7794 update_rq_clock(env->dst_rq);
163122b7
KT
7795
7796 while (!list_empty(tasks)) {
7797 p = list_first_entry(tasks, struct task_struct, se.group_node);
7798 list_del_init(&p->se.group_node);
1e3c88bd 7799
163122b7
KT
7800 attach_task(env->dst_rq, p);
7801 }
7802
8a8c69c3 7803 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7804}
7805
b0c79224 7806#ifdef CONFIG_NO_HZ_COMMON
1936c53c
VG
7807static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7808{
7809 if (cfs_rq->avg.load_avg)
7810 return true;
7811
7812 if (cfs_rq->avg.util_avg)
7813 return true;
7814
7815 return false;
7816}
7817
91c27493 7818static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7819{
7820 if (READ_ONCE(rq->avg_rt.util_avg))
7821 return true;
7822
3727e0e1
VG
7823 if (READ_ONCE(rq->avg_dl.util_avg))
7824 return true;
7825
b4eccf5f
TG
7826 if (thermal_load_avg(rq))
7827 return true;
7828
11d4afd4 7829#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7830 if (READ_ONCE(rq->avg_irq.util_avg))
7831 return true;
7832#endif
7833
371bf427
VG
7834 return false;
7835}
7836
b0c79224
VS
7837static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7838{
7839 rq->last_blocked_load_update_tick = jiffies;
7840
7841 if (!has_blocked)
7842 rq->has_blocked_load = 0;
7843}
7844#else
7845static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7846static inline bool others_have_blocked(struct rq *rq) { return false; }
7847static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7848#endif
7849
bef69dd8
VG
7850static bool __update_blocked_others(struct rq *rq, bool *done)
7851{
7852 const struct sched_class *curr_class;
7853 u64 now = rq_clock_pelt(rq);
b4eccf5f 7854 unsigned long thermal_pressure;
bef69dd8
VG
7855 bool decayed;
7856
7857 /*
7858 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7859 * DL and IRQ signals have been updated before updating CFS.
7860 */
7861 curr_class = rq->curr->sched_class;
7862
b4eccf5f
TG
7863 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7864
bef69dd8
VG
7865 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7866 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
05289b90 7867 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
bef69dd8
VG
7868 update_irq_load_avg(rq, 0);
7869
7870 if (others_have_blocked(rq))
7871 *done = false;
7872
7873 return decayed;
7874}
7875
1936c53c
VG
7876#ifdef CONFIG_FAIR_GROUP_SCHED
7877
039ae8bc
VG
7878static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7879{
7880 if (cfs_rq->load.weight)
7881 return false;
7882
7883 if (cfs_rq->avg.load_sum)
7884 return false;
7885
7886 if (cfs_rq->avg.util_sum)
7887 return false;
7888
9f683953
VG
7889 if (cfs_rq->avg.runnable_sum)
7890 return false;
7891
039ae8bc
VG
7892 return true;
7893}
7894
bef69dd8 7895static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 7896{
039ae8bc 7897 struct cfs_rq *cfs_rq, *pos;
bef69dd8
VG
7898 bool decayed = false;
7899 int cpu = cpu_of(rq);
b90f7c9d 7900
9763b67f
PZ
7901 /*
7902 * Iterates the task_group tree in a bottom up fashion, see
7903 * list_add_leaf_cfs_rq() for details.
7904 */
039ae8bc 7905 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7906 struct sched_entity *se;
7907
bef69dd8 7908 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
fe749158 7909 update_tg_load_avg(cfs_rq);
4e516076 7910
bef69dd8
VG
7911 if (cfs_rq == &rq->cfs)
7912 decayed = true;
7913 }
7914
bc427898
VG
7915 /* Propagate pending load changes to the parent, if any: */
7916 se = cfs_rq->tg->se[cpu];
7917 if (se && !skip_blocked_update(se))
88c0616e 7918 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7919
039ae8bc
VG
7920 /*
7921 * There can be a lot of idle CPU cgroups. Don't let fully
7922 * decayed cfs_rqs linger on the list.
7923 */
7924 if (cfs_rq_is_decayed(cfs_rq))
7925 list_del_leaf_cfs_rq(cfs_rq);
7926
1936c53c
VG
7927 /* Don't need periodic decay once load/util_avg are null */
7928 if (cfs_rq_has_blocked(cfs_rq))
bef69dd8 7929 *done = false;
9d89c257 7930 }
12b04875 7931
bef69dd8 7932 return decayed;
9e3081ca
PZ
7933}
7934
9763b67f 7935/*
68520796 7936 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7937 * This needs to be done in a top-down fashion because the load of a child
7938 * group is a fraction of its parents load.
7939 */
68520796 7940static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7941{
68520796
VD
7942 struct rq *rq = rq_of(cfs_rq);
7943 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7944 unsigned long now = jiffies;
68520796 7945 unsigned long load;
a35b6466 7946
68520796 7947 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7948 return;
7949
0e9f0245 7950 WRITE_ONCE(cfs_rq->h_load_next, NULL);
68520796
VD
7951 for_each_sched_entity(se) {
7952 cfs_rq = cfs_rq_of(se);
0e9f0245 7953 WRITE_ONCE(cfs_rq->h_load_next, se);
68520796
VD
7954 if (cfs_rq->last_h_load_update == now)
7955 break;
7956 }
a35b6466 7957
68520796 7958 if (!se) {
7ea241af 7959 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7960 cfs_rq->last_h_load_update = now;
7961 }
7962
0e9f0245 7963 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
68520796 7964 load = cfs_rq->h_load;
7ea241af
YD
7965 load = div64_ul(load * se->avg.load_avg,
7966 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7967 cfs_rq = group_cfs_rq(se);
7968 cfs_rq->h_load = load;
7969 cfs_rq->last_h_load_update = now;
7970 }
9763b67f
PZ
7971}
7972
367456c7 7973static unsigned long task_h_load(struct task_struct *p)
230059de 7974{
367456c7 7975 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7976
68520796 7977 update_cfs_rq_h_load(cfs_rq);
9d89c257 7978 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7979 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7980}
7981#else
bef69dd8 7982static bool __update_blocked_fair(struct rq *rq, bool *done)
9e3081ca 7983{
6c1d47c0 7984 struct cfs_rq *cfs_rq = &rq->cfs;
bef69dd8 7985 bool decayed;
b90f7c9d 7986
bef69dd8
VG
7987 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7988 if (cfs_rq_has_blocked(cfs_rq))
7989 *done = false;
b90f7c9d 7990
bef69dd8 7991 return decayed;
9e3081ca
PZ
7992}
7993
367456c7 7994static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7995{
9d89c257 7996 return p->se.avg.load_avg;
1e3c88bd 7997}
230059de 7998#endif
1e3c88bd 7999
bef69dd8
VG
8000static void update_blocked_averages(int cpu)
8001{
8002 bool decayed = false, done = true;
8003 struct rq *rq = cpu_rq(cpu);
8004 struct rq_flags rf;
8005
8006 rq_lock_irqsave(rq, &rf);
8007 update_rq_clock(rq);
8008
8009 decayed |= __update_blocked_others(rq, &done);
8010 decayed |= __update_blocked_fair(rq, &done);
8011
8012 update_blocked_load_status(rq, !done);
8013 if (decayed)
8014 cpufreq_update_util(rq, 0);
8015 rq_unlock_irqrestore(rq, &rf);
8016}
8017
1e3c88bd 8018/********** Helpers for find_busiest_group ************************/
caeb178c 8019
1e3c88bd
PZ
8020/*
8021 * sg_lb_stats - stats of a sched_group required for load_balancing
8022 */
8023struct sg_lb_stats {
8024 unsigned long avg_load; /*Avg load across the CPUs of the group */
8025 unsigned long group_load; /* Total load over the CPUs of the group */
63b2ca30 8026 unsigned long group_capacity;
070f5e86
VG
8027 unsigned long group_util; /* Total utilization over the CPUs of the group */
8028 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
5e23e474 8029 unsigned int sum_nr_running; /* Nr of tasks running in the group */
a3498347 8030 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
147c5fc2
PZ
8031 unsigned int idle_cpus;
8032 unsigned int group_weight;
caeb178c 8033 enum group_type group_type;
490ba971 8034 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
3b1baa64 8035 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
8036#ifdef CONFIG_NUMA_BALANCING
8037 unsigned int nr_numa_running;
8038 unsigned int nr_preferred_running;
8039#endif
1e3c88bd
PZ
8040};
8041
56cf515b
JK
8042/*
8043 * sd_lb_stats - Structure to store the statistics of a sched_domain
8044 * during load balancing.
8045 */
8046struct sd_lb_stats {
8047 struct sched_group *busiest; /* Busiest group in this sd */
8048 struct sched_group *local; /* Local group in this sd */
8049 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 8050 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b 8051 unsigned long avg_load; /* Average load across all groups in sd */
0b0695f2 8052 unsigned int prefer_sibling; /* tasks should go to sibling first */
56cf515b 8053
56cf515b 8054 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 8055 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
8056};
8057
147c5fc2
PZ
8058static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8059{
8060 /*
8061 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8062 * local_stat because update_sg_lb_stats() does a full clear/assignment.
0b0695f2
VG
8063 * We must however set busiest_stat::group_type and
8064 * busiest_stat::idle_cpus to the worst busiest group because
8065 * update_sd_pick_busiest() reads these before assignment.
147c5fc2
PZ
8066 */
8067 *sds = (struct sd_lb_stats){
8068 .busiest = NULL,
8069 .local = NULL,
8070 .total_load = 0UL,
63b2ca30 8071 .total_capacity = 0UL,
147c5fc2 8072 .busiest_stat = {
0b0695f2
VG
8073 .idle_cpus = UINT_MAX,
8074 .group_type = group_has_spare,
147c5fc2
PZ
8075 },
8076 };
8077}
8078
1ca2034e 8079static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
8080{
8081 struct rq *rq = cpu_rq(cpu);
8ec59c0f 8082 unsigned long max = arch_scale_cpu_capacity(cpu);
523e979d 8083 unsigned long used, free;
523e979d 8084 unsigned long irq;
b654f7de 8085
2e62c474 8086 irq = cpu_util_irq(rq);
cadefd3d 8087
523e979d
VG
8088 if (unlikely(irq >= max))
8089 return 1;
aa483808 8090
467b7d01
TG
8091 /*
8092 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8093 * (running and not running) with weights 0 and 1024 respectively.
8094 * avg_thermal.load_avg tracks thermal pressure and the weighted
8095 * average uses the actual delta max capacity(load).
8096 */
523e979d
VG
8097 used = READ_ONCE(rq->avg_rt.util_avg);
8098 used += READ_ONCE(rq->avg_dl.util_avg);
467b7d01 8099 used += thermal_load_avg(rq);
1e3c88bd 8100
523e979d
VG
8101 if (unlikely(used >= max))
8102 return 1;
1e3c88bd 8103
523e979d 8104 free = max - used;
2e62c474
VG
8105
8106 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
8107}
8108
ced549fa 8109static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 8110{
1ca2034e 8111 unsigned long capacity = scale_rt_capacity(cpu);
1e3c88bd
PZ
8112 struct sched_group *sdg = sd->groups;
8113
8ec59c0f 8114 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
1e3c88bd 8115
ced549fa
NP
8116 if (!capacity)
8117 capacity = 1;
1e3c88bd 8118
ced549fa 8119 cpu_rq(cpu)->cpu_capacity = capacity;
51cf18c9
VD
8120 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8121
ced549fa 8122 sdg->sgc->capacity = capacity;
bf475ce0 8123 sdg->sgc->min_capacity = capacity;
e3d6d0cb 8124 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
8125}
8126
63b2ca30 8127void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
8128{
8129 struct sched_domain *child = sd->child;
8130 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 8131 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
8132 unsigned long interval;
8133
8134 interval = msecs_to_jiffies(sd->balance_interval);
8135 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 8136 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
8137
8138 if (!child) {
ced549fa 8139 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
8140 return;
8141 }
8142
dc7ff76e 8143 capacity = 0;
bf475ce0 8144 min_capacity = ULONG_MAX;
e3d6d0cb 8145 max_capacity = 0;
1e3c88bd 8146
74a5ce20
PZ
8147 if (child->flags & SD_OVERLAP) {
8148 /*
8149 * SD_OVERLAP domains cannot assume that child groups
8150 * span the current group.
8151 */
8152
ae4df9d6 8153 for_each_cpu(cpu, sched_group_span(sdg)) {
4c58f57f 8154 unsigned long cpu_cap = capacity_of(cpu);
863bffc8 8155
4c58f57f
PL
8156 capacity += cpu_cap;
8157 min_capacity = min(cpu_cap, min_capacity);
8158 max_capacity = max(cpu_cap, max_capacity);
863bffc8 8159 }
74a5ce20
PZ
8160 } else {
8161 /*
8162 * !SD_OVERLAP domains can assume that child groups
8163 * span the current group.
97a7142f 8164 */
74a5ce20
PZ
8165
8166 group = child->groups;
8167 do {
bf475ce0
MR
8168 struct sched_group_capacity *sgc = group->sgc;
8169
8170 capacity += sgc->capacity;
8171 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 8172 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
8173 group = group->next;
8174 } while (group != child->groups);
8175 }
1e3c88bd 8176
63b2ca30 8177 sdg->sgc->capacity = capacity;
bf475ce0 8178 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 8179 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
8180}
8181
9d5efe05 8182/*
ea67821b
VG
8183 * Check whether the capacity of the rq has been noticeably reduced by side
8184 * activity. The imbalance_pct is used for the threshold.
8185 * Return true is the capacity is reduced
9d5efe05
SV
8186 */
8187static inline int
ea67821b 8188check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 8189{
ea67821b
VG
8190 return ((rq->cpu_capacity * sd->imbalance_pct) <
8191 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
8192}
8193
a0fe2cf0
VS
8194/*
8195 * Check whether a rq has a misfit task and if it looks like we can actually
8196 * help that task: we can migrate the task to a CPU of higher capacity, or
8197 * the task's current CPU is heavily pressured.
8198 */
8199static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8200{
8201 return rq->misfit_task_load &&
8202 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8203 check_cpu_capacity(rq, sd));
8204}
8205
30ce5dab
PZ
8206/*
8207 * Group imbalance indicates (and tries to solve) the problem where balancing
3bd37062 8208 * groups is inadequate due to ->cpus_ptr constraints.
30ce5dab 8209 *
97fb7a0a
IM
8210 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8211 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
8212 * Something like:
8213 *
2b4d5b25
IM
8214 * { 0 1 2 3 } { 4 5 6 7 }
8215 * * * * *
30ce5dab
PZ
8216 *
8217 * If we were to balance group-wise we'd place two tasks in the first group and
8218 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8219 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8220 *
8221 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8222 * by noticing the lower domain failed to reach balance and had difficulty
8223 * moving tasks due to affinity constraints.
30ce5dab
PZ
8224 *
8225 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8226 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8227 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8228 * to create an effective group imbalance.
8229 *
8230 * This is a somewhat tricky proposition since the next run might not find the
8231 * group imbalance and decide the groups need to be balanced again. A most
8232 * subtle and fragile situation.
8233 */
8234
6263322c 8235static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8236{
63b2ca30 8237 return group->sgc->imbalance;
30ce5dab
PZ
8238}
8239
b37d9316 8240/*
ea67821b
VG
8241 * group_has_capacity returns true if the group has spare capacity that could
8242 * be used by some tasks.
8243 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
8244 * smaller than the number of CPUs or if the utilization is lower than the
8245 * available capacity for CFS tasks.
ea67821b
VG
8246 * For the latter, we use a threshold to stabilize the state, to take into
8247 * account the variance of the tasks' load and to return true if the available
8248 * capacity in meaningful for the load balancer.
8249 * As an example, an available capacity of 1% can appear but it doesn't make
8250 * any benefit for the load balance.
b37d9316 8251 */
ea67821b 8252static inline bool
57abff06 8253group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
b37d9316 8254{
5e23e474 8255 if (sgs->sum_nr_running < sgs->group_weight)
ea67821b 8256 return true;
c61037e9 8257
070f5e86
VG
8258 if ((sgs->group_capacity * imbalance_pct) <
8259 (sgs->group_runnable * 100))
8260 return false;
8261
ea67821b 8262 if ((sgs->group_capacity * 100) >
57abff06 8263 (sgs->group_util * imbalance_pct))
ea67821b 8264 return true;
b37d9316 8265
ea67821b
VG
8266 return false;
8267}
8268
8269/*
8270 * group_is_overloaded returns true if the group has more tasks than it can
8271 * handle.
8272 * group_is_overloaded is not equals to !group_has_capacity because a group
8273 * with the exact right number of tasks, has no more spare capacity but is not
8274 * overloaded so both group_has_capacity and group_is_overloaded return
8275 * false.
8276 */
8277static inline bool
57abff06 8278group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
ea67821b 8279{
5e23e474 8280 if (sgs->sum_nr_running <= sgs->group_weight)
ea67821b 8281 return false;
b37d9316 8282
ea67821b 8283 if ((sgs->group_capacity * 100) <
57abff06 8284 (sgs->group_util * imbalance_pct))
ea67821b 8285 return true;
b37d9316 8286
070f5e86
VG
8287 if ((sgs->group_capacity * imbalance_pct) <
8288 (sgs->group_runnable * 100))
8289 return true;
8290
ea67821b 8291 return false;
b37d9316
PZ
8292}
8293
9e0994c0 8294/*
e3d6d0cb 8295 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
8296 * per-CPU capacity than sched_group ref.
8297 */
8298static inline bool
e3d6d0cb 8299group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0 8300{
60e17f5c 8301 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
9e0994c0
MR
8302}
8303
e3d6d0cb
MR
8304/*
8305 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8306 * per-CPU capacity_orig than sched_group ref.
8307 */
8308static inline bool
8309group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8310{
60e17f5c 8311 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
e3d6d0cb
MR
8312}
8313
79a89f92 8314static inline enum
57abff06 8315group_type group_classify(unsigned int imbalance_pct,
0b0695f2 8316 struct sched_group *group,
79a89f92 8317 struct sg_lb_stats *sgs)
caeb178c 8318{
57abff06 8319 if (group_is_overloaded(imbalance_pct, sgs))
caeb178c
RR
8320 return group_overloaded;
8321
8322 if (sg_imbalanced(group))
8323 return group_imbalanced;
8324
0b0695f2
VG
8325 if (sgs->group_asym_packing)
8326 return group_asym_packing;
8327
3b1baa64
MR
8328 if (sgs->group_misfit_task_load)
8329 return group_misfit_task;
8330
57abff06 8331 if (!group_has_capacity(imbalance_pct, sgs))
0b0695f2
VG
8332 return group_fully_busy;
8333
8334 return group_has_spare;
caeb178c
RR
8335}
8336
63928384 8337static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
8338{
8339#ifdef CONFIG_NO_HZ_COMMON
8340 unsigned int cpu = rq->cpu;
8341
f643ea22
VG
8342 if (!rq->has_blocked_load)
8343 return false;
8344
e022e0d3 8345 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 8346 return false;
e022e0d3 8347
63928384 8348 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 8349 return true;
e022e0d3
PZ
8350
8351 update_blocked_averages(cpu);
f643ea22
VG
8352
8353 return rq->has_blocked_load;
8354#else
8355 return false;
e022e0d3
PZ
8356#endif
8357}
8358
1e3c88bd
PZ
8359/**
8360 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8361 * @env: The load balancing environment.
1e3c88bd 8362 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8363 * @sgs: variable to hold the statistics for this group.
630246a0 8364 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8365 */
bd939f45 8366static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8367 struct sched_group *group,
8368 struct sg_lb_stats *sgs,
8369 int *sg_status)
1e3c88bd 8370{
0b0695f2 8371 int i, nr_running, local_group;
1e3c88bd 8372
b72ff13c
PZ
8373 memset(sgs, 0, sizeof(*sgs));
8374
0b0695f2
VG
8375 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8376
ae4df9d6 8377 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8378 struct rq *rq = cpu_rq(i);
8379
63928384 8380 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8381 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8382
b0fb1eb4 8383 sgs->group_load += cpu_load(rq);
9e91d61d 8384 sgs->group_util += cpu_util(i);
070f5e86 8385 sgs->group_runnable += cpu_runnable(rq);
a3498347 8386 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
4486edd1 8387
a426f99c 8388 nr_running = rq->nr_running;
5e23e474
VG
8389 sgs->sum_nr_running += nr_running;
8390
a426f99c 8391 if (nr_running > 1)
630246a0 8392 *sg_status |= SG_OVERLOAD;
4486edd1 8393
2802bf3c
MR
8394 if (cpu_overutilized(i))
8395 *sg_status |= SG_OVERUTILIZED;
4486edd1 8396
0ec8aa00
PZ
8397#ifdef CONFIG_NUMA_BALANCING
8398 sgs->nr_numa_running += rq->nr_numa_running;
8399 sgs->nr_preferred_running += rq->nr_preferred_running;
8400#endif
a426f99c
WL
8401 /*
8402 * No need to call idle_cpu() if nr_running is not 0
8403 */
0b0695f2 8404 if (!nr_running && idle_cpu(i)) {
aae6d3dd 8405 sgs->idle_cpus++;
0b0695f2
VG
8406 /* Idle cpu can't have misfit task */
8407 continue;
8408 }
8409
8410 if (local_group)
8411 continue;
3b1baa64 8412
0b0695f2 8413 /* Check for a misfit task on the cpu */
3b1baa64 8414 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8415 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8416 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8417 *sg_status |= SG_OVERLOAD;
757ffdd7 8418 }
1e3c88bd
PZ
8419 }
8420
0b0695f2
VG
8421 /* Check if dst CPU is idle and preferred to this group */
8422 if (env->sd->flags & SD_ASYM_PACKING &&
8423 env->idle != CPU_NOT_IDLE &&
8424 sgs->sum_h_nr_running &&
8425 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8426 sgs->group_asym_packing = 1;
8427 }
8428
63b2ca30 8429 sgs->group_capacity = group->sgc->capacity;
1e3c88bd 8430
aae6d3dd 8431 sgs->group_weight = group->group_weight;
b37d9316 8432
57abff06 8433 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
0b0695f2
VG
8434
8435 /* Computing avg_load makes sense only when group is overloaded */
8436 if (sgs->group_type == group_overloaded)
8437 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8438 sgs->group_capacity;
1e3c88bd
PZ
8439}
8440
532cb4c4
MN
8441/**
8442 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8443 * @env: The load balancing environment.
532cb4c4
MN
8444 * @sds: sched_domain statistics
8445 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8446 * @sgs: sched_group statistics
532cb4c4
MN
8447 *
8448 * Determine if @sg is a busier group than the previously selected
8449 * busiest group.
e69f6186
YB
8450 *
8451 * Return: %true if @sg is a busier group than the previously selected
8452 * busiest group. %false otherwise.
532cb4c4 8453 */
bd939f45 8454static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8455 struct sd_lb_stats *sds,
8456 struct sched_group *sg,
bd939f45 8457 struct sg_lb_stats *sgs)
532cb4c4 8458{
caeb178c 8459 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8460
0b0695f2
VG
8461 /* Make sure that there is at least one task to pull */
8462 if (!sgs->sum_h_nr_running)
8463 return false;
8464
cad68e55
MR
8465 /*
8466 * Don't try to pull misfit tasks we can't help.
8467 * We can use max_capacity here as reduction in capacity on some
8468 * CPUs in the group should either be possible to resolve
8469 * internally or be covered by avg_load imbalance (eventually).
8470 */
8471 if (sgs->group_type == group_misfit_task &&
8472 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
0b0695f2 8473 sds->local_stat.group_type != group_has_spare))
cad68e55
MR
8474 return false;
8475
caeb178c 8476 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8477 return true;
8478
caeb178c
RR
8479 if (sgs->group_type < busiest->group_type)
8480 return false;
8481
9e0994c0 8482 /*
0b0695f2
VG
8483 * The candidate and the current busiest group are the same type of
8484 * group. Let check which one is the busiest according to the type.
9e0994c0 8485 */
9e0994c0 8486
0b0695f2
VG
8487 switch (sgs->group_type) {
8488 case group_overloaded:
8489 /* Select the overloaded group with highest avg_load. */
8490 if (sgs->avg_load <= busiest->avg_load)
8491 return false;
8492 break;
8493
8494 case group_imbalanced:
8495 /*
8496 * Select the 1st imbalanced group as we don't have any way to
8497 * choose one more than another.
8498 */
9e0994c0
MR
8499 return false;
8500
0b0695f2
VG
8501 case group_asym_packing:
8502 /* Prefer to move from lowest priority CPU's work */
8503 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8504 return false;
8505 break;
532cb4c4 8506
0b0695f2
VG
8507 case group_misfit_task:
8508 /*
8509 * If we have more than one misfit sg go with the biggest
8510 * misfit.
8511 */
8512 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8513 return false;
8514 break;
532cb4c4 8515
0b0695f2
VG
8516 case group_fully_busy:
8517 /*
8518 * Select the fully busy group with highest avg_load. In
8519 * theory, there is no need to pull task from such kind of
8520 * group because tasks have all compute capacity that they need
8521 * but we can still improve the overall throughput by reducing
8522 * contention when accessing shared HW resources.
8523 *
8524 * XXX for now avg_load is not computed and always 0 so we
8525 * select the 1st one.
8526 */
8527 if (sgs->avg_load <= busiest->avg_load)
8528 return false;
8529 break;
8530
8531 case group_has_spare:
8532 /*
5f68eb19
VG
8533 * Select not overloaded group with lowest number of idle cpus
8534 * and highest number of running tasks. We could also compare
8535 * the spare capacity which is more stable but it can end up
8536 * that the group has less spare capacity but finally more idle
0b0695f2
VG
8537 * CPUs which means less opportunity to pull tasks.
8538 */
5f68eb19 8539 if (sgs->idle_cpus > busiest->idle_cpus)
0b0695f2 8540 return false;
5f68eb19
VG
8541 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8542 (sgs->sum_nr_running <= busiest->sum_nr_running))
8543 return false;
8544
0b0695f2 8545 break;
532cb4c4
MN
8546 }
8547
0b0695f2
VG
8548 /*
8549 * Candidate sg has no more than one task per CPU and has higher
8550 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8551 * throughput. Maximize throughput, power/energy consequences are not
8552 * considered.
8553 */
8554 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8555 (sgs->group_type <= group_fully_busy) &&
8556 (group_smaller_min_cpu_capacity(sds->local, sg)))
8557 return false;
8558
8559 return true;
532cb4c4
MN
8560}
8561
0ec8aa00
PZ
8562#ifdef CONFIG_NUMA_BALANCING
8563static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8564{
a3498347 8565 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
0ec8aa00 8566 return regular;
a3498347 8567 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
0ec8aa00
PZ
8568 return remote;
8569 return all;
8570}
8571
8572static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8573{
8574 if (rq->nr_running > rq->nr_numa_running)
8575 return regular;
8576 if (rq->nr_running > rq->nr_preferred_running)
8577 return remote;
8578 return all;
8579}
8580#else
8581static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8582{
8583 return all;
8584}
8585
8586static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8587{
8588 return regular;
8589}
8590#endif /* CONFIG_NUMA_BALANCING */
8591
57abff06
VG
8592
8593struct sg_lb_stats;
8594
3318544b
VG
8595/*
8596 * task_running_on_cpu - return 1 if @p is running on @cpu.
8597 */
8598
8599static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8600{
8601 /* Task has no contribution or is new */
8602 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8603 return 0;
8604
8605 if (task_on_rq_queued(p))
8606 return 1;
8607
8608 return 0;
8609}
8610
8611/**
8612 * idle_cpu_without - would a given CPU be idle without p ?
8613 * @cpu: the processor on which idleness is tested.
8614 * @p: task which should be ignored.
8615 *
8616 * Return: 1 if the CPU would be idle. 0 otherwise.
8617 */
8618static int idle_cpu_without(int cpu, struct task_struct *p)
8619{
8620 struct rq *rq = cpu_rq(cpu);
8621
8622 if (rq->curr != rq->idle && rq->curr != p)
8623 return 0;
8624
8625 /*
8626 * rq->nr_running can't be used but an updated version without the
8627 * impact of p on cpu must be used instead. The updated nr_running
8628 * be computed and tested before calling idle_cpu_without().
8629 */
8630
8631#ifdef CONFIG_SMP
126c2092 8632 if (rq->ttwu_pending)
3318544b
VG
8633 return 0;
8634#endif
8635
8636 return 1;
8637}
8638
57abff06
VG
8639/*
8640 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
3318544b 8641 * @sd: The sched_domain level to look for idlest group.
57abff06
VG
8642 * @group: sched_group whose statistics are to be updated.
8643 * @sgs: variable to hold the statistics for this group.
3318544b 8644 * @p: The task for which we look for the idlest group/CPU.
57abff06
VG
8645 */
8646static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8647 struct sched_group *group,
8648 struct sg_lb_stats *sgs,
8649 struct task_struct *p)
8650{
8651 int i, nr_running;
8652
8653 memset(sgs, 0, sizeof(*sgs));
8654
8655 for_each_cpu(i, sched_group_span(group)) {
8656 struct rq *rq = cpu_rq(i);
3318544b 8657 unsigned int local;
57abff06 8658
3318544b 8659 sgs->group_load += cpu_load_without(rq, p);
57abff06 8660 sgs->group_util += cpu_util_without(i, p);
070f5e86 8661 sgs->group_runnable += cpu_runnable_without(rq, p);
3318544b
VG
8662 local = task_running_on_cpu(i, p);
8663 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
57abff06 8664
3318544b 8665 nr_running = rq->nr_running - local;
57abff06
VG
8666 sgs->sum_nr_running += nr_running;
8667
8668 /*
3318544b 8669 * No need to call idle_cpu_without() if nr_running is not 0
57abff06 8670 */
3318544b 8671 if (!nr_running && idle_cpu_without(i, p))
57abff06
VG
8672 sgs->idle_cpus++;
8673
57abff06
VG
8674 }
8675
8676 /* Check if task fits in the group */
8677 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8678 !task_fits_capacity(p, group->sgc->max_capacity)) {
8679 sgs->group_misfit_task_load = 1;
8680 }
8681
8682 sgs->group_capacity = group->sgc->capacity;
8683
289de359
VG
8684 sgs->group_weight = group->group_weight;
8685
57abff06
VG
8686 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8687
8688 /*
8689 * Computing avg_load makes sense only when group is fully busy or
8690 * overloaded
8691 */
6c8116c9
TZ
8692 if (sgs->group_type == group_fully_busy ||
8693 sgs->group_type == group_overloaded)
57abff06
VG
8694 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8695 sgs->group_capacity;
8696}
8697
8698static bool update_pick_idlest(struct sched_group *idlest,
8699 struct sg_lb_stats *idlest_sgs,
8700 struct sched_group *group,
8701 struct sg_lb_stats *sgs)
8702{
8703 if (sgs->group_type < idlest_sgs->group_type)
8704 return true;
8705
8706 if (sgs->group_type > idlest_sgs->group_type)
8707 return false;
8708
8709 /*
8710 * The candidate and the current idlest group are the same type of
8711 * group. Let check which one is the idlest according to the type.
8712 */
8713
8714 switch (sgs->group_type) {
8715 case group_overloaded:
8716 case group_fully_busy:
8717 /* Select the group with lowest avg_load. */
8718 if (idlest_sgs->avg_load <= sgs->avg_load)
8719 return false;
8720 break;
8721
8722 case group_imbalanced:
8723 case group_asym_packing:
8724 /* Those types are not used in the slow wakeup path */
8725 return false;
8726
8727 case group_misfit_task:
8728 /* Select group with the highest max capacity */
8729 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8730 return false;
8731 break;
8732
8733 case group_has_spare:
8734 /* Select group with most idle CPUs */
3edecfef 8735 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
57abff06 8736 return false;
3edecfef
PP
8737
8738 /* Select group with lowest group_util */
8739 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8740 idlest_sgs->group_util <= sgs->group_util)
8741 return false;
8742
57abff06
VG
8743 break;
8744 }
8745
8746 return true;
8747}
8748
8749/*
8750 * find_idlest_group() finds and returns the least busy CPU group within the
8751 * domain.
8752 *
8753 * Assumes p is allowed on at least one CPU in sd.
8754 */
8755static struct sched_group *
45da2773 8756find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
57abff06
VG
8757{
8758 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8759 struct sg_lb_stats local_sgs, tmp_sgs;
8760 struct sg_lb_stats *sgs;
8761 unsigned long imbalance;
8762 struct sg_lb_stats idlest_sgs = {
8763 .avg_load = UINT_MAX,
8764 .group_type = group_overloaded,
8765 };
8766
8767 imbalance = scale_load_down(NICE_0_LOAD) *
8768 (sd->imbalance_pct-100) / 100;
8769
8770 do {
8771 int local_group;
8772
8773 /* Skip over this group if it has no CPUs allowed */
8774 if (!cpumask_intersects(sched_group_span(group),
8775 p->cpus_ptr))
8776 continue;
8777
8778 local_group = cpumask_test_cpu(this_cpu,
8779 sched_group_span(group));
8780
8781 if (local_group) {
8782 sgs = &local_sgs;
8783 local = group;
8784 } else {
8785 sgs = &tmp_sgs;
8786 }
8787
8788 update_sg_wakeup_stats(sd, group, sgs, p);
8789
8790 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8791 idlest = group;
8792 idlest_sgs = *sgs;
8793 }
8794
8795 } while (group = group->next, group != sd->groups);
8796
8797
8798 /* There is no idlest group to push tasks to */
8799 if (!idlest)
8800 return NULL;
8801
7ed735c3
VG
8802 /* The local group has been skipped because of CPU affinity */
8803 if (!local)
8804 return idlest;
8805
57abff06
VG
8806 /*
8807 * If the local group is idler than the selected idlest group
8808 * don't try and push the task.
8809 */
8810 if (local_sgs.group_type < idlest_sgs.group_type)
8811 return NULL;
8812
8813 /*
8814 * If the local group is busier than the selected idlest group
8815 * try and push the task.
8816 */
8817 if (local_sgs.group_type > idlest_sgs.group_type)
8818 return idlest;
8819
8820 switch (local_sgs.group_type) {
8821 case group_overloaded:
8822 case group_fully_busy:
8823 /*
8824 * When comparing groups across NUMA domains, it's possible for
8825 * the local domain to be very lightly loaded relative to the
8826 * remote domains but "imbalance" skews the comparison making
8827 * remote CPUs look much more favourable. When considering
8828 * cross-domain, add imbalance to the load on the remote node
8829 * and consider staying local.
8830 */
8831
8832 if ((sd->flags & SD_NUMA) &&
8833 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8834 return NULL;
8835
8836 /*
8837 * If the local group is less loaded than the selected
8838 * idlest group don't try and push any tasks.
8839 */
8840 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8841 return NULL;
8842
8843 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8844 return NULL;
8845 break;
8846
8847 case group_imbalanced:
8848 case group_asym_packing:
8849 /* Those type are not used in the slow wakeup path */
8850 return NULL;
8851
8852 case group_misfit_task:
8853 /* Select group with the highest max capacity */
8854 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8855 return NULL;
8856 break;
8857
8858 case group_has_spare:
8859 if (sd->flags & SD_NUMA) {
8860#ifdef CONFIG_NUMA_BALANCING
8861 int idlest_cpu;
8862 /*
8863 * If there is spare capacity at NUMA, try to select
8864 * the preferred node
8865 */
8866 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8867 return NULL;
8868
8869 idlest_cpu = cpumask_first(sched_group_span(idlest));
8870 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8871 return idlest;
8872#endif
8873 /*
8874 * Otherwise, keep the task on this node to stay close
8875 * its wakeup source and improve locality. If there is
8876 * a real need of migration, periodic load balance will
8877 * take care of it.
8878 */
8879 if (local_sgs.idle_cpus)
8880 return NULL;
8881 }
8882
8883 /*
8884 * Select group with highest number of idle CPUs. We could also
8885 * compare the utilization which is more stable but it can end
8886 * up that the group has less spare capacity but finally more
8887 * idle CPUs which means more opportunity to run task.
8888 */
8889 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8890 return NULL;
8891 break;
8892 }
8893
8894 return idlest;
8895}
8896
1e3c88bd 8897/**
461819ac 8898 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8899 * @env: The load balancing environment.
1e3c88bd
PZ
8900 * @sds: variable to hold the statistics for this sched_domain.
8901 */
0b0695f2 8902
0ec8aa00 8903static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8904{
bd939f45
PZ
8905 struct sched_domain *child = env->sd->child;
8906 struct sched_group *sg = env->sd->groups;
05b40e05 8907 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8908 struct sg_lb_stats tmp_sgs;
630246a0 8909 int sg_status = 0;
1e3c88bd 8910
e022e0d3 8911#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8912 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8913 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8914#endif
8915
1e3c88bd 8916 do {
56cf515b 8917 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8918 int local_group;
8919
ae4df9d6 8920 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8921 if (local_group) {
8922 sds->local = sg;
05b40e05 8923 sgs = local;
b72ff13c
PZ
8924
8925 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8926 time_after_eq(jiffies, sg->sgc->next_update))
8927 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8928 }
1e3c88bd 8929
630246a0 8930 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8931
b72ff13c
PZ
8932 if (local_group)
8933 goto next_group;
8934
1e3c88bd 8935
b72ff13c 8936 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8937 sds->busiest = sg;
56cf515b 8938 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8939 }
8940
b72ff13c
PZ
8941next_group:
8942 /* Now, start updating sd_lb_stats */
8943 sds->total_load += sgs->group_load;
63b2ca30 8944 sds->total_capacity += sgs->group_capacity;
b72ff13c 8945
532cb4c4 8946 sg = sg->next;
bd939f45 8947 } while (sg != env->sd->groups);
0ec8aa00 8948
0b0695f2
VG
8949 /* Tag domain that child domain prefers tasks go to siblings first */
8950 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8951
f643ea22
VG
8952#ifdef CONFIG_NO_HZ_COMMON
8953 if ((env->flags & LBF_NOHZ_AGAIN) &&
8954 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8955
8956 WRITE_ONCE(nohz.next_blocked,
8957 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8958 }
8959#endif
8960
0ec8aa00
PZ
8961 if (env->sd->flags & SD_NUMA)
8962 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8963
8964 if (!env->sd->parent) {
2802bf3c
MR
8965 struct root_domain *rd = env->dst_rq->rd;
8966
4486edd1 8967 /* update overload indicator if we are at root domain */
2802bf3c
MR
8968 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8969
8970 /* Update over-utilization (tipping point, U >= 0) indicator */
8971 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
f9f240f9 8972 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
2802bf3c 8973 } else if (sg_status & SG_OVERUTILIZED) {
f9f240f9
QY
8974 struct root_domain *rd = env->dst_rq->rd;
8975
8976 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8977 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
4486edd1 8978 }
532cb4c4
MN
8979}
8980
233e7aca 8981static inline long adjust_numa_imbalance(int imbalance, int nr_running)
fb86f5b2
MG
8982{
8983 unsigned int imbalance_min;
8984
8985 /*
8986 * Allow a small imbalance based on a simple pair of communicating
8987 * tasks that remain local when the source domain is almost idle.
8988 */
8989 imbalance_min = 2;
233e7aca 8990 if (nr_running <= imbalance_min)
fb86f5b2
MG
8991 return 0;
8992
8993 return imbalance;
8994}
8995
1e3c88bd
PZ
8996/**
8997 * calculate_imbalance - Calculate the amount of imbalance present within the
8998 * groups of a given sched_domain during load balance.
bd939f45 8999 * @env: load balance environment
1e3c88bd 9000 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 9001 */
bd939f45 9002static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 9003{
56cf515b
JK
9004 struct sg_lb_stats *local, *busiest;
9005
9006 local = &sds->local_stat;
56cf515b 9007 busiest = &sds->busiest_stat;
dd5feea1 9008
0b0695f2
VG
9009 if (busiest->group_type == group_misfit_task) {
9010 /* Set imbalance to allow misfit tasks to be balanced. */
9011 env->migration_type = migrate_misfit;
c63be7be 9012 env->imbalance = 1;
0b0695f2
VG
9013 return;
9014 }
9015
9016 if (busiest->group_type == group_asym_packing) {
9017 /*
9018 * In case of asym capacity, we will try to migrate all load to
9019 * the preferred CPU.
9020 */
9021 env->migration_type = migrate_task;
9022 env->imbalance = busiest->sum_h_nr_running;
9023 return;
9024 }
9025
9026 if (busiest->group_type == group_imbalanced) {
9027 /*
9028 * In the group_imb case we cannot rely on group-wide averages
9029 * to ensure CPU-load equilibrium, try to move any task to fix
9030 * the imbalance. The next load balance will take care of
9031 * balancing back the system.
9032 */
9033 env->migration_type = migrate_task;
9034 env->imbalance = 1;
490ba971
VG
9035 return;
9036 }
9037
1e3c88bd 9038 /*
0b0695f2 9039 * Try to use spare capacity of local group without overloading it or
a9723389 9040 * emptying busiest.
1e3c88bd 9041 */
0b0695f2
VG
9042 if (local->group_type == group_has_spare) {
9043 if (busiest->group_type > group_fully_busy) {
9044 /*
9045 * If busiest is overloaded, try to fill spare
9046 * capacity. This might end up creating spare capacity
9047 * in busiest or busiest still being overloaded but
9048 * there is no simple way to directly compute the
9049 * amount of load to migrate in order to balance the
9050 * system.
9051 */
9052 env->migration_type = migrate_util;
9053 env->imbalance = max(local->group_capacity, local->group_util) -
9054 local->group_util;
9055
9056 /*
9057 * In some cases, the group's utilization is max or even
9058 * higher than capacity because of migrations but the
9059 * local CPU is (newly) idle. There is at least one
9060 * waiting task in this overloaded busiest group. Let's
9061 * try to pull it.
9062 */
9063 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9064 env->migration_type = migrate_task;
9065 env->imbalance = 1;
9066 }
9067
9068 return;
9069 }
9070
9071 if (busiest->group_weight == 1 || sds->prefer_sibling) {
5e23e474 9072 unsigned int nr_diff = busiest->sum_nr_running;
0b0695f2
VG
9073 /*
9074 * When prefer sibling, evenly spread running tasks on
9075 * groups.
9076 */
9077 env->migration_type = migrate_task;
5e23e474 9078 lsub_positive(&nr_diff, local->sum_nr_running);
0b0695f2 9079 env->imbalance = nr_diff >> 1;
b396f523 9080 } else {
0b0695f2 9081
b396f523
MG
9082 /*
9083 * If there is no overload, we just want to even the number of
9084 * idle cpus.
9085 */
9086 env->migration_type = migrate_task;
9087 env->imbalance = max_t(long, 0, (local->idle_cpus -
0b0695f2 9088 busiest->idle_cpus) >> 1);
b396f523
MG
9089 }
9090
9091 /* Consider allowing a small imbalance between NUMA groups */
fb86f5b2
MG
9092 if (env->sd->flags & SD_NUMA)
9093 env->imbalance = adjust_numa_imbalance(env->imbalance,
9094 busiest->sum_nr_running);
b396f523 9095
fcf0553d 9096 return;
1e3c88bd
PZ
9097 }
9098
9a5d9ba6 9099 /*
0b0695f2
VG
9100 * Local is fully busy but has to take more load to relieve the
9101 * busiest group
9a5d9ba6 9102 */
0b0695f2
VG
9103 if (local->group_type < group_overloaded) {
9104 /*
9105 * Local will become overloaded so the avg_load metrics are
9106 * finally needed.
9107 */
9108
9109 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9110 local->group_capacity;
9111
9112 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9113 sds->total_capacity;
111688ca
AL
9114 /*
9115 * If the local group is more loaded than the selected
9116 * busiest group don't try to pull any tasks.
9117 */
9118 if (local->avg_load >= busiest->avg_load) {
9119 env->imbalance = 0;
9120 return;
9121 }
dd5feea1
SS
9122 }
9123
9124 /*
0b0695f2
VG
9125 * Both group are or will become overloaded and we're trying to get all
9126 * the CPUs to the average_load, so we don't want to push ourselves
9127 * above the average load, nor do we wish to reduce the max loaded CPU
9128 * below the average load. At the same time, we also don't want to
9129 * reduce the group load below the group capacity. Thus we look for
9130 * the minimum possible imbalance.
dd5feea1 9131 */
0b0695f2 9132 env->migration_type = migrate_load;
56cf515b 9133 env->imbalance = min(
0b0695f2 9134 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
63b2ca30 9135 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 9136 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 9137}
fab47622 9138
1e3c88bd
PZ
9139/******* find_busiest_group() helpers end here *********************/
9140
0b0695f2
VG
9141/*
9142 * Decision matrix according to the local and busiest group type:
9143 *
9144 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9145 * has_spare nr_idle balanced N/A N/A balanced balanced
9146 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9147 * misfit_task force N/A N/A N/A force force
9148 * asym_packing force force N/A N/A force force
9149 * imbalanced force force N/A N/A force force
9150 * overloaded force force N/A N/A force avg_load
9151 *
9152 * N/A : Not Applicable because already filtered while updating
9153 * statistics.
9154 * balanced : The system is balanced for these 2 groups.
9155 * force : Calculate the imbalance as load migration is probably needed.
9156 * avg_load : Only if imbalance is significant enough.
9157 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9158 * different in groups.
9159 */
9160
1e3c88bd
PZ
9161/**
9162 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 9163 * if there is an imbalance.
1e3c88bd 9164 *
a3df0679 9165 * Also calculates the amount of runnable load which should be moved
1e3c88bd
PZ
9166 * to restore balance.
9167 *
cd96891d 9168 * @env: The load balancing environment.
1e3c88bd 9169 *
e69f6186 9170 * Return: - The busiest group if imbalance exists.
1e3c88bd 9171 */
56cf515b 9172static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 9173{
56cf515b 9174 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
9175 struct sd_lb_stats sds;
9176
147c5fc2 9177 init_sd_lb_stats(&sds);
1e3c88bd
PZ
9178
9179 /*
b0fb1eb4 9180 * Compute the various statistics relevant for load balancing at
1e3c88bd
PZ
9181 * this level.
9182 */
23f0d209 9183 update_sd_lb_stats(env, &sds);
2802bf3c 9184
f8a696f2 9185 if (sched_energy_enabled()) {
2802bf3c
MR
9186 struct root_domain *rd = env->dst_rq->rd;
9187
9188 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9189 goto out_balanced;
9190 }
9191
56cf515b
JK
9192 local = &sds.local_stat;
9193 busiest = &sds.busiest_stat;
1e3c88bd 9194
cc57aa8f 9195 /* There is no busy sibling group to pull tasks from */
0b0695f2 9196 if (!sds.busiest)
1e3c88bd
PZ
9197 goto out_balanced;
9198
0b0695f2
VG
9199 /* Misfit tasks should be dealt with regardless of the avg load */
9200 if (busiest->group_type == group_misfit_task)
9201 goto force_balance;
9202
9203 /* ASYM feature bypasses nice load balance check */
9204 if (busiest->group_type == group_asym_packing)
9205 goto force_balance;
b0432d8f 9206
866ab43e
PZ
9207 /*
9208 * If the busiest group is imbalanced the below checks don't
30ce5dab 9209 * work because they assume all things are equal, which typically
3bd37062 9210 * isn't true due to cpus_ptr constraints and the like.
866ab43e 9211 */
caeb178c 9212 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
9213 goto force_balance;
9214
cc57aa8f 9215 /*
9c58c79a 9216 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
9217 * don't try and pull any tasks.
9218 */
0b0695f2 9219 if (local->group_type > busiest->group_type)
1e3c88bd
PZ
9220 goto out_balanced;
9221
cc57aa8f 9222 /*
0b0695f2
VG
9223 * When groups are overloaded, use the avg_load to ensure fairness
9224 * between tasks.
cc57aa8f 9225 */
0b0695f2
VG
9226 if (local->group_type == group_overloaded) {
9227 /*
9228 * If the local group is more loaded than the selected
9229 * busiest group don't try to pull any tasks.
9230 */
9231 if (local->avg_load >= busiest->avg_load)
9232 goto out_balanced;
9233
9234 /* XXX broken for overlapping NUMA groups */
9235 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9236 sds.total_capacity;
1e3c88bd 9237
aae6d3dd 9238 /*
0b0695f2
VG
9239 * Don't pull any tasks if this group is already above the
9240 * domain average load.
aae6d3dd 9241 */
0b0695f2 9242 if (local->avg_load >= sds.avg_load)
aae6d3dd 9243 goto out_balanced;
0b0695f2 9244
c186fafe 9245 /*
0b0695f2
VG
9246 * If the busiest group is more loaded, use imbalance_pct to be
9247 * conservative.
c186fafe 9248 */
56cf515b
JK
9249 if (100 * busiest->avg_load <=
9250 env->sd->imbalance_pct * local->avg_load)
c186fafe 9251 goto out_balanced;
aae6d3dd 9252 }
1e3c88bd 9253
0b0695f2
VG
9254 /* Try to move all excess tasks to child's sibling domain */
9255 if (sds.prefer_sibling && local->group_type == group_has_spare &&
5e23e474 9256 busiest->sum_nr_running > local->sum_nr_running + 1)
0b0695f2
VG
9257 goto force_balance;
9258
2ab4092f
VG
9259 if (busiest->group_type != group_overloaded) {
9260 if (env->idle == CPU_NOT_IDLE)
9261 /*
9262 * If the busiest group is not overloaded (and as a
9263 * result the local one too) but this CPU is already
9264 * busy, let another idle CPU try to pull task.
9265 */
9266 goto out_balanced;
9267
9268 if (busiest->group_weight > 1 &&
9269 local->idle_cpus <= (busiest->idle_cpus + 1))
9270 /*
9271 * If the busiest group is not overloaded
9272 * and there is no imbalance between this and busiest
9273 * group wrt idle CPUs, it is balanced. The imbalance
9274 * becomes significant if the diff is greater than 1
9275 * otherwise we might end up to just move the imbalance
9276 * on another group. Of course this applies only if
9277 * there is more than 1 CPU per group.
9278 */
9279 goto out_balanced;
9280
9281 if (busiest->sum_h_nr_running == 1)
9282 /*
9283 * busiest doesn't have any tasks waiting to run
9284 */
9285 goto out_balanced;
9286 }
0b0695f2 9287
fab47622 9288force_balance:
1e3c88bd 9289 /* Looks like there is an imbalance. Compute it */
bd939f45 9290 calculate_imbalance(env, &sds);
bb3485c8 9291 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
9292
9293out_balanced:
bd939f45 9294 env->imbalance = 0;
1e3c88bd
PZ
9295 return NULL;
9296}
9297
9298/*
97fb7a0a 9299 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 9300 */
bd939f45 9301static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 9302 struct sched_group *group)
1e3c88bd
PZ
9303{
9304 struct rq *busiest = NULL, *rq;
0b0695f2
VG
9305 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9306 unsigned int busiest_nr = 0;
1e3c88bd
PZ
9307 int i;
9308
ae4df9d6 9309 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
0b0695f2
VG
9310 unsigned long capacity, load, util;
9311 unsigned int nr_running;
0ec8aa00
PZ
9312 enum fbq_type rt;
9313
9314 rq = cpu_rq(i);
9315 rt = fbq_classify_rq(rq);
1e3c88bd 9316
0ec8aa00
PZ
9317 /*
9318 * We classify groups/runqueues into three groups:
9319 * - regular: there are !numa tasks
9320 * - remote: there are numa tasks that run on the 'wrong' node
9321 * - all: there is no distinction
9322 *
9323 * In order to avoid migrating ideally placed numa tasks,
9324 * ignore those when there's better options.
9325 *
9326 * If we ignore the actual busiest queue to migrate another
9327 * task, the next balance pass can still reduce the busiest
9328 * queue by moving tasks around inside the node.
9329 *
9330 * If we cannot move enough load due to this classification
9331 * the next pass will adjust the group classification and
9332 * allow migration of more tasks.
9333 *
9334 * Both cases only affect the total convergence complexity.
9335 */
9336 if (rt > env->fbq_type)
9337 continue;
9338
ced549fa 9339 capacity = capacity_of(i);
0b0695f2 9340 nr_running = rq->cfs.h_nr_running;
9d5efe05 9341
4ad3831a
CR
9342 /*
9343 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9344 * eventually lead to active_balancing high->low capacity.
9345 * Higher per-CPU capacity is considered better than balancing
9346 * average load.
9347 */
9348 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9349 capacity_of(env->dst_cpu) < capacity &&
0b0695f2 9350 nr_running == 1)
4ad3831a
CR
9351 continue;
9352
0b0695f2
VG
9353 switch (env->migration_type) {
9354 case migrate_load:
9355 /*
b0fb1eb4
VG
9356 * When comparing with load imbalance, use cpu_load()
9357 * which is not scaled with the CPU capacity.
0b0695f2 9358 */
b0fb1eb4 9359 load = cpu_load(rq);
1e3c88bd 9360
0b0695f2
VG
9361 if (nr_running == 1 && load > env->imbalance &&
9362 !check_cpu_capacity(rq, env->sd))
9363 break;
ea67821b 9364
0b0695f2
VG
9365 /*
9366 * For the load comparisons with the other CPUs,
b0fb1eb4
VG
9367 * consider the cpu_load() scaled with the CPU
9368 * capacity, so that the load can be moved away
9369 * from the CPU that is potentially running at a
9370 * lower capacity.
0b0695f2
VG
9371 *
9372 * Thus we're looking for max(load_i / capacity_i),
9373 * crosswise multiplication to rid ourselves of the
9374 * division works out to:
9375 * load_i * capacity_j > load_j * capacity_i;
9376 * where j is our previous maximum.
9377 */
9378 if (load * busiest_capacity > busiest_load * capacity) {
9379 busiest_load = load;
9380 busiest_capacity = capacity;
9381 busiest = rq;
9382 }
9383 break;
9384
9385 case migrate_util:
9386 util = cpu_util(cpu_of(rq));
9387
c32b4308
VG
9388 /*
9389 * Don't try to pull utilization from a CPU with one
9390 * running task. Whatever its utilization, we will fail
9391 * detach the task.
9392 */
9393 if (nr_running <= 1)
9394 continue;
9395
0b0695f2
VG
9396 if (busiest_util < util) {
9397 busiest_util = util;
9398 busiest = rq;
9399 }
9400 break;
9401
9402 case migrate_task:
9403 if (busiest_nr < nr_running) {
9404 busiest_nr = nr_running;
9405 busiest = rq;
9406 }
9407 break;
9408
9409 case migrate_misfit:
9410 /*
9411 * For ASYM_CPUCAPACITY domains with misfit tasks we
9412 * simply seek the "biggest" misfit task.
9413 */
9414 if (rq->misfit_task_load > busiest_load) {
9415 busiest_load = rq->misfit_task_load;
9416 busiest = rq;
9417 }
9418
9419 break;
1e3c88bd 9420
1e3c88bd
PZ
9421 }
9422 }
9423
9424 return busiest;
9425}
9426
9427/*
9428 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9429 * so long as it is large enough.
9430 */
9431#define MAX_PINNED_INTERVAL 512
9432
46a745d9
VG
9433static inline bool
9434asym_active_balance(struct lb_env *env)
1af3ed3d 9435{
46a745d9
VG
9436 /*
9437 * ASYM_PACKING needs to force migrate tasks from busy but
9438 * lower priority CPUs in order to pack all tasks in the
9439 * highest priority CPUs.
9440 */
9441 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9442 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9443}
bd939f45 9444
46a745d9
VG
9445static inline bool
9446voluntary_active_balance(struct lb_env *env)
9447{
9448 struct sched_domain *sd = env->sd;
532cb4c4 9449
46a745d9
VG
9450 if (asym_active_balance(env))
9451 return 1;
1af3ed3d 9452
1aaf90a4
VG
9453 /*
9454 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9455 * It's worth migrating the task if the src_cpu's capacity is reduced
9456 * because of other sched_class or IRQs if more capacity stays
9457 * available on dst_cpu.
9458 */
9459 if ((env->idle != CPU_NOT_IDLE) &&
9460 (env->src_rq->cfs.h_nr_running == 1)) {
9461 if ((check_cpu_capacity(env->src_rq, sd)) &&
9462 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9463 return 1;
9464 }
9465
0b0695f2 9466 if (env->migration_type == migrate_misfit)
cad68e55
MR
9467 return 1;
9468
46a745d9
VG
9469 return 0;
9470}
9471
9472static int need_active_balance(struct lb_env *env)
9473{
9474 struct sched_domain *sd = env->sd;
9475
9476 if (voluntary_active_balance(env))
9477 return 1;
9478
1af3ed3d
PZ
9479 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9480}
9481
969c7921
TH
9482static int active_load_balance_cpu_stop(void *data);
9483
23f0d209
JK
9484static int should_we_balance(struct lb_env *env)
9485{
9486 struct sched_group *sg = env->sd->groups;
64297f2b 9487 int cpu;
23f0d209 9488
024c9d2f
PZ
9489 /*
9490 * Ensure the balancing environment is consistent; can happen
9491 * when the softirq triggers 'during' hotplug.
9492 */
9493 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9494 return 0;
9495
23f0d209 9496 /*
97fb7a0a 9497 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
9498 * to do the newly idle load balance.
9499 */
9500 if (env->idle == CPU_NEWLY_IDLE)
9501 return 1;
9502
97fb7a0a 9503 /* Try to find first idle CPU */
e5c14b1f 9504 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 9505 if (!idle_cpu(cpu))
23f0d209
JK
9506 continue;
9507
64297f2b
PW
9508 /* Are we the first idle CPU? */
9509 return cpu == env->dst_cpu;
23f0d209
JK
9510 }
9511
64297f2b
PW
9512 /* Are we the first CPU of this group ? */
9513 return group_balance_cpu(sg) == env->dst_cpu;
23f0d209
JK
9514}
9515
1e3c88bd
PZ
9516/*
9517 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9518 * tasks if there is an imbalance.
9519 */
9520static int load_balance(int this_cpu, struct rq *this_rq,
9521 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 9522 int *continue_balancing)
1e3c88bd 9523{
88b8dac0 9524 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 9525 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 9526 struct sched_group *group;
1e3c88bd 9527 struct rq *busiest;
8a8c69c3 9528 struct rq_flags rf;
4ba29684 9529 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 9530
8e45cb54
PZ
9531 struct lb_env env = {
9532 .sd = sd,
ddcdf6e7
PZ
9533 .dst_cpu = this_cpu,
9534 .dst_rq = this_rq,
ae4df9d6 9535 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 9536 .idle = idle,
eb95308e 9537 .loop_break = sched_nr_migrate_break,
b9403130 9538 .cpus = cpus,
0ec8aa00 9539 .fbq_type = all,
163122b7 9540 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
9541 };
9542
65a4433a 9543 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 9544
ae92882e 9545 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
9546
9547redo:
23f0d209
JK
9548 if (!should_we_balance(&env)) {
9549 *continue_balancing = 0;
1e3c88bd 9550 goto out_balanced;
23f0d209 9551 }
1e3c88bd 9552
23f0d209 9553 group = find_busiest_group(&env);
1e3c88bd 9554 if (!group) {
ae92882e 9555 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
9556 goto out_balanced;
9557 }
9558
b9403130 9559 busiest = find_busiest_queue(&env, group);
1e3c88bd 9560 if (!busiest) {
ae92882e 9561 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
9562 goto out_balanced;
9563 }
9564
78feefc5 9565 BUG_ON(busiest == env.dst_rq);
1e3c88bd 9566
ae92882e 9567 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 9568
1aaf90a4
VG
9569 env.src_cpu = busiest->cpu;
9570 env.src_rq = busiest;
9571
1e3c88bd
PZ
9572 ld_moved = 0;
9573 if (busiest->nr_running > 1) {
9574 /*
9575 * Attempt to move tasks. If find_busiest_group has found
9576 * an imbalance but busiest->nr_running <= 1, the group is
9577 * still unbalanced. ld_moved simply stays zero, so it is
9578 * correctly treated as an imbalance.
9579 */
8e45cb54 9580 env.flags |= LBF_ALL_PINNED;
c82513e5 9581 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 9582
5d6523eb 9583more_balance:
8a8c69c3 9584 rq_lock_irqsave(busiest, &rf);
3bed5e21 9585 update_rq_clock(busiest);
88b8dac0
SV
9586
9587 /*
9588 * cur_ld_moved - load moved in current iteration
9589 * ld_moved - cumulative load moved across iterations
9590 */
163122b7 9591 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
9592
9593 /*
163122b7
KT
9594 * We've detached some tasks from busiest_rq. Every
9595 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9596 * unlock busiest->lock, and we are able to be sure
9597 * that nobody can manipulate the tasks in parallel.
9598 * See task_rq_lock() family for the details.
1e3c88bd 9599 */
163122b7 9600
8a8c69c3 9601 rq_unlock(busiest, &rf);
163122b7
KT
9602
9603 if (cur_ld_moved) {
9604 attach_tasks(&env);
9605 ld_moved += cur_ld_moved;
9606 }
9607
8a8c69c3 9608 local_irq_restore(rf.flags);
88b8dac0 9609
f1cd0858
JK
9610 if (env.flags & LBF_NEED_BREAK) {
9611 env.flags &= ~LBF_NEED_BREAK;
9612 goto more_balance;
9613 }
9614
88b8dac0
SV
9615 /*
9616 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9617 * us and move them to an alternate dst_cpu in our sched_group
9618 * where they can run. The upper limit on how many times we
97fb7a0a 9619 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9620 * sched_group.
9621 *
9622 * This changes load balance semantics a bit on who can move
9623 * load to a given_cpu. In addition to the given_cpu itself
9624 * (or a ilb_cpu acting on its behalf where given_cpu is
9625 * nohz-idle), we now have balance_cpu in a position to move
9626 * load to given_cpu. In rare situations, this may cause
9627 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9628 * _independently_ and at _same_ time to move some load to
9629 * given_cpu) causing exceess load to be moved to given_cpu.
9630 * This however should not happen so much in practice and
9631 * moreover subsequent load balance cycles should correct the
9632 * excess load moved.
9633 */
6263322c 9634 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9635
97fb7a0a 9636 /* Prevent to re-select dst_cpu via env's CPUs */
c89d92ed 9637 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
7aff2e3a 9638
78feefc5 9639 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9640 env.dst_cpu = env.new_dst_cpu;
6263322c 9641 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9642 env.loop = 0;
9643 env.loop_break = sched_nr_migrate_break;
e02e60c1 9644
88b8dac0
SV
9645 /*
9646 * Go back to "more_balance" rather than "redo" since we
9647 * need to continue with same src_cpu.
9648 */
9649 goto more_balance;
9650 }
1e3c88bd 9651
6263322c
PZ
9652 /*
9653 * We failed to reach balance because of affinity.
9654 */
9655 if (sd_parent) {
63b2ca30 9656 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9657
afdeee05 9658 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9659 *group_imbalance = 1;
6263322c
PZ
9660 }
9661
1e3c88bd 9662 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9663 if (unlikely(env.flags & LBF_ALL_PINNED)) {
c89d92ed 9664 __cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9665 /*
9666 * Attempting to continue load balancing at the current
9667 * sched_domain level only makes sense if there are
9668 * active CPUs remaining as possible busiest CPUs to
9669 * pull load from which are not contained within the
9670 * destination group that is receiving any migrated
9671 * load.
9672 */
9673 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9674 env.loop = 0;
9675 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9676 goto redo;
bbf18b19 9677 }
afdeee05 9678 goto out_all_pinned;
1e3c88bd
PZ
9679 }
9680 }
9681
9682 if (!ld_moved) {
ae92882e 9683 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9684 /*
9685 * Increment the failure counter only on periodic balance.
9686 * We do not want newidle balance, which can be very
9687 * frequent, pollute the failure counter causing
9688 * excessive cache_hot migrations and active balances.
9689 */
9690 if (idle != CPU_NEWLY_IDLE)
9691 sd->nr_balance_failed++;
1e3c88bd 9692
bd939f45 9693 if (need_active_balance(&env)) {
8a8c69c3
PZ
9694 unsigned long flags;
9695
1e3c88bd
PZ
9696 raw_spin_lock_irqsave(&busiest->lock, flags);
9697
97fb7a0a
IM
9698 /*
9699 * Don't kick the active_load_balance_cpu_stop,
9700 * if the curr task on busiest CPU can't be
9701 * moved to this_cpu:
1e3c88bd 9702 */
3bd37062 9703 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
1e3c88bd
PZ
9704 raw_spin_unlock_irqrestore(&busiest->lock,
9705 flags);
8e45cb54 9706 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9707 goto out_one_pinned;
9708 }
9709
969c7921
TH
9710 /*
9711 * ->active_balance synchronizes accesses to
9712 * ->active_balance_work. Once set, it's cleared
9713 * only after active load balance is finished.
9714 */
1e3c88bd
PZ
9715 if (!busiest->active_balance) {
9716 busiest->active_balance = 1;
9717 busiest->push_cpu = this_cpu;
9718 active_balance = 1;
9719 }
9720 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9721
bd939f45 9722 if (active_balance) {
969c7921
TH
9723 stop_one_cpu_nowait(cpu_of(busiest),
9724 active_load_balance_cpu_stop, busiest,
9725 &busiest->active_balance_work);
bd939f45 9726 }
1e3c88bd 9727
d02c0711 9728 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
9729 sd->nr_balance_failed = sd->cache_nice_tries+1;
9730 }
9731 } else
9732 sd->nr_balance_failed = 0;
9733
46a745d9 9734 if (likely(!active_balance) || voluntary_active_balance(&env)) {
1e3c88bd
PZ
9735 /* We were unbalanced, so reset the balancing interval */
9736 sd->balance_interval = sd->min_interval;
9737 } else {
9738 /*
9739 * If we've begun active balancing, start to back off. This
9740 * case may not be covered by the all_pinned logic if there
9741 * is only 1 task on the busy runqueue (because we don't call
163122b7 9742 * detach_tasks).
1e3c88bd
PZ
9743 */
9744 if (sd->balance_interval < sd->max_interval)
9745 sd->balance_interval *= 2;
9746 }
9747
1e3c88bd
PZ
9748 goto out;
9749
9750out_balanced:
afdeee05
VG
9751 /*
9752 * We reach balance although we may have faced some affinity
f6cad8df
VG
9753 * constraints. Clear the imbalance flag only if other tasks got
9754 * a chance to move and fix the imbalance.
afdeee05 9755 */
f6cad8df 9756 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
afdeee05
VG
9757 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9758
9759 if (*group_imbalance)
9760 *group_imbalance = 0;
9761 }
9762
9763out_all_pinned:
9764 /*
9765 * We reach balance because all tasks are pinned at this level so
9766 * we can't migrate them. Let the imbalance flag set so parent level
9767 * can try to migrate them.
9768 */
ae92882e 9769 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9770
9771 sd->nr_balance_failed = 0;
9772
9773out_one_pinned:
3f130a37
VS
9774 ld_moved = 0;
9775
9776 /*
5ba553ef
PZ
9777 * newidle_balance() disregards balance intervals, so we could
9778 * repeatedly reach this code, which would lead to balance_interval
9779 * skyrocketting in a short amount of time. Skip the balance_interval
9780 * increase logic to avoid that.
3f130a37
VS
9781 */
9782 if (env.idle == CPU_NEWLY_IDLE)
9783 goto out;
9784
1e3c88bd 9785 /* tune up the balancing interval */
47b7aee1
VS
9786 if ((env.flags & LBF_ALL_PINNED &&
9787 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9788 sd->balance_interval < sd->max_interval)
1e3c88bd 9789 sd->balance_interval *= 2;
1e3c88bd 9790out:
1e3c88bd
PZ
9791 return ld_moved;
9792}
9793
52a08ef1
JL
9794static inline unsigned long
9795get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9796{
9797 unsigned long interval = sd->balance_interval;
9798
9799 if (cpu_busy)
9800 interval *= sd->busy_factor;
9801
9802 /* scale ms to jiffies */
9803 interval = msecs_to_jiffies(interval);
e4d32e4d
VG
9804
9805 /*
9806 * Reduce likelihood of busy balancing at higher domains racing with
9807 * balancing at lower domains by preventing their balancing periods
9808 * from being multiples of each other.
9809 */
9810 if (cpu_busy)
9811 interval -= 1;
9812
52a08ef1
JL
9813 interval = clamp(interval, 1UL, max_load_balance_interval);
9814
9815 return interval;
9816}
9817
9818static inline void
31851a98 9819update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9820{
9821 unsigned long interval, next;
9822
31851a98
LY
9823 /* used by idle balance, so cpu_busy = 0 */
9824 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9825 next = sd->last_balance + interval;
9826
9827 if (time_after(*next_balance, next))
9828 *next_balance = next;
9829}
9830
1e3c88bd 9831/*
97fb7a0a 9832 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9833 * running tasks off the busiest CPU onto idle CPUs. It requires at
9834 * least 1 task to be running on each physical CPU where possible, and
9835 * avoids physical / logical imbalances.
1e3c88bd 9836 */
969c7921 9837static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9838{
969c7921
TH
9839 struct rq *busiest_rq = data;
9840 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9841 int target_cpu = busiest_rq->push_cpu;
969c7921 9842 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9843 struct sched_domain *sd;
e5673f28 9844 struct task_struct *p = NULL;
8a8c69c3 9845 struct rq_flags rf;
969c7921 9846
8a8c69c3 9847 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9848 /*
9849 * Between queueing the stop-work and running it is a hole in which
9850 * CPUs can become inactive. We should not move tasks from or to
9851 * inactive CPUs.
9852 */
9853 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9854 goto out_unlock;
969c7921 9855
97fb7a0a 9856 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9857 if (unlikely(busiest_cpu != smp_processor_id() ||
9858 !busiest_rq->active_balance))
9859 goto out_unlock;
1e3c88bd
PZ
9860
9861 /* Is there any task to move? */
9862 if (busiest_rq->nr_running <= 1)
969c7921 9863 goto out_unlock;
1e3c88bd
PZ
9864
9865 /*
9866 * This condition is "impossible", if it occurs
9867 * we need to fix it. Originally reported by
97fb7a0a 9868 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9869 */
9870 BUG_ON(busiest_rq == target_rq);
9871
1e3c88bd 9872 /* Search for an sd spanning us and the target CPU. */
dce840a0 9873 rcu_read_lock();
1e3c88bd 9874 for_each_domain(target_cpu, sd) {
e669ac8a
VS
9875 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9876 break;
1e3c88bd
PZ
9877 }
9878
9879 if (likely(sd)) {
8e45cb54
PZ
9880 struct lb_env env = {
9881 .sd = sd,
ddcdf6e7
PZ
9882 .dst_cpu = target_cpu,
9883 .dst_rq = target_rq,
9884 .src_cpu = busiest_rq->cpu,
9885 .src_rq = busiest_rq,
8e45cb54 9886 .idle = CPU_IDLE,
65a4433a
JH
9887 /*
9888 * can_migrate_task() doesn't need to compute new_dst_cpu
9889 * for active balancing. Since we have CPU_IDLE, but no
9890 * @dst_grpmask we need to make that test go away with lying
9891 * about DST_PINNED.
9892 */
9893 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9894 };
9895
ae92882e 9896 schedstat_inc(sd->alb_count);
3bed5e21 9897 update_rq_clock(busiest_rq);
1e3c88bd 9898
e5673f28 9899 p = detach_one_task(&env);
d02c0711 9900 if (p) {
ae92882e 9901 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9902 /* Active balancing done, reset the failure counter. */
9903 sd->nr_balance_failed = 0;
9904 } else {
ae92882e 9905 schedstat_inc(sd->alb_failed);
d02c0711 9906 }
1e3c88bd 9907 }
dce840a0 9908 rcu_read_unlock();
969c7921
TH
9909out_unlock:
9910 busiest_rq->active_balance = 0;
8a8c69c3 9911 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9912
9913 if (p)
9914 attach_one_task(target_rq, p);
9915
9916 local_irq_enable();
9917
969c7921 9918 return 0;
1e3c88bd
PZ
9919}
9920
af3fe03c
PZ
9921static DEFINE_SPINLOCK(balancing);
9922
9923/*
9924 * Scale the max load_balance interval with the number of CPUs in the system.
9925 * This trades load-balance latency on larger machines for less cross talk.
9926 */
9927void update_max_interval(void)
9928{
9929 max_load_balance_interval = HZ*num_online_cpus()/10;
9930}
9931
9932/*
9933 * It checks each scheduling domain to see if it is due to be balanced,
9934 * and initiates a balancing operation if so.
9935 *
9936 * Balancing parameters are set up in init_sched_domains.
9937 */
9938static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9939{
9940 int continue_balancing = 1;
9941 int cpu = rq->cpu;
323af6de 9942 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
9943 unsigned long interval;
9944 struct sched_domain *sd;
9945 /* Earliest time when we have to do rebalance again */
9946 unsigned long next_balance = jiffies + 60*HZ;
9947 int update_next_balance = 0;
9948 int need_serialize, need_decay = 0;
9949 u64 max_cost = 0;
9950
9951 rcu_read_lock();
9952 for_each_domain(cpu, sd) {
9953 /*
9954 * Decay the newidle max times here because this is a regular
9955 * visit to all the domains. Decay ~1% per second.
9956 */
9957 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9958 sd->max_newidle_lb_cost =
9959 (sd->max_newidle_lb_cost * 253) / 256;
9960 sd->next_decay_max_lb_cost = jiffies + HZ;
9961 need_decay = 1;
9962 }
9963 max_cost += sd->max_newidle_lb_cost;
9964
af3fe03c
PZ
9965 /*
9966 * Stop the load balance at this level. There is another
9967 * CPU in our sched group which is doing load balancing more
9968 * actively.
9969 */
9970 if (!continue_balancing) {
9971 if (need_decay)
9972 continue;
9973 break;
9974 }
9975
323af6de 9976 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
9977
9978 need_serialize = sd->flags & SD_SERIALIZE;
9979 if (need_serialize) {
9980 if (!spin_trylock(&balancing))
9981 goto out;
9982 }
9983
9984 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9985 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9986 /*
9987 * The LBF_DST_PINNED logic could have changed
9988 * env->dst_cpu, so we can't know our idle
9989 * state even if we migrated tasks. Update it.
9990 */
9991 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
323af6de 9992 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
af3fe03c
PZ
9993 }
9994 sd->last_balance = jiffies;
323af6de 9995 interval = get_sd_balance_interval(sd, busy);
af3fe03c
PZ
9996 }
9997 if (need_serialize)
9998 spin_unlock(&balancing);
9999out:
10000 if (time_after(next_balance, sd->last_balance + interval)) {
10001 next_balance = sd->last_balance + interval;
10002 update_next_balance = 1;
10003 }
10004 }
10005 if (need_decay) {
10006 /*
10007 * Ensure the rq-wide value also decays but keep it at a
10008 * reasonable floor to avoid funnies with rq->avg_idle.
10009 */
10010 rq->max_idle_balance_cost =
10011 max((u64)sysctl_sched_migration_cost, max_cost);
10012 }
10013 rcu_read_unlock();
10014
10015 /*
10016 * next_balance will be updated only when there is a need.
10017 * When the cpu is attached to null domain for ex, it will not be
10018 * updated.
10019 */
10020 if (likely(update_next_balance)) {
10021 rq->next_balance = next_balance;
10022
10023#ifdef CONFIG_NO_HZ_COMMON
10024 /*
10025 * If this CPU has been elected to perform the nohz idle
10026 * balance. Other idle CPUs have already rebalanced with
10027 * nohz_idle_balance() and nohz.next_balance has been
10028 * updated accordingly. This CPU is now running the idle load
10029 * balance for itself and we need to update the
10030 * nohz.next_balance accordingly.
10031 */
10032 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10033 nohz.next_balance = rq->next_balance;
10034#endif
10035 }
10036}
10037
d987fc7f
MG
10038static inline int on_null_domain(struct rq *rq)
10039{
10040 return unlikely(!rcu_dereference_sched(rq->sd));
10041}
10042
3451d024 10043#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
10044/*
10045 * idle load balancing details
83cd4fe2
VP
10046 * - When one of the busy CPUs notice that there may be an idle rebalancing
10047 * needed, they will kick the idle load balancer, which then does idle
10048 * load balancing for all the idle CPUs.
9b019acb
NP
10049 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10050 * anywhere yet.
83cd4fe2 10051 */
1e3c88bd 10052
3dd0337d 10053static inline int find_new_ilb(void)
1e3c88bd 10054{
9b019acb 10055 int ilb;
1e3c88bd 10056
9b019acb
NP
10057 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10058 housekeeping_cpumask(HK_FLAG_MISC)) {
10059 if (idle_cpu(ilb))
10060 return ilb;
10061 }
786d6dc7
SS
10062
10063 return nr_cpu_ids;
1e3c88bd 10064}
1e3c88bd 10065
83cd4fe2 10066/*
9b019acb
NP
10067 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10068 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
83cd4fe2 10069 */
a4064fb6 10070static void kick_ilb(unsigned int flags)
83cd4fe2
VP
10071{
10072 int ilb_cpu;
10073
3ea2f097
VG
10074 /*
10075 * Increase nohz.next_balance only when if full ilb is triggered but
10076 * not if we only update stats.
10077 */
10078 if (flags & NOHZ_BALANCE_KICK)
10079 nohz.next_balance = jiffies+1;
83cd4fe2 10080
3dd0337d 10081 ilb_cpu = find_new_ilb();
83cd4fe2 10082
0b005cf5
SS
10083 if (ilb_cpu >= nr_cpu_ids)
10084 return;
83cd4fe2 10085
19a1f5ec
PZ
10086 /*
10087 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10088 * the first flag owns it; cleared by nohz_csd_func().
10089 */
a4064fb6 10090 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 10091 if (flags & NOHZ_KICK_MASK)
1c792db7 10092 return;
4550487a 10093
1c792db7 10094 /*
90b5363a 10095 * This way we generate an IPI on the target CPU which
1c792db7
SS
10096 * is idle. And the softirq performing nohz idle load balance
10097 * will be run before returning from the IPI.
10098 */
90b5363a 10099 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
4550487a
PZ
10100}
10101
10102/*
9f132742
VS
10103 * Current decision point for kicking the idle load balancer in the presence
10104 * of idle CPUs in the system.
4550487a
PZ
10105 */
10106static void nohz_balancer_kick(struct rq *rq)
10107{
10108 unsigned long now = jiffies;
10109 struct sched_domain_shared *sds;
10110 struct sched_domain *sd;
10111 int nr_busy, i, cpu = rq->cpu;
a4064fb6 10112 unsigned int flags = 0;
4550487a
PZ
10113
10114 if (unlikely(rq->idle_balance))
10115 return;
10116
10117 /*
10118 * We may be recently in ticked or tickless idle mode. At the first
10119 * busy tick after returning from idle, we will update the busy stats.
10120 */
00357f5e 10121 nohz_balance_exit_idle(rq);
4550487a
PZ
10122
10123 /*
10124 * None are in tickless mode and hence no need for NOHZ idle load
10125 * balancing.
10126 */
10127 if (likely(!atomic_read(&nohz.nr_cpus)))
10128 return;
10129
f643ea22
VG
10130 if (READ_ONCE(nohz.has_blocked) &&
10131 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
10132 flags = NOHZ_STATS_KICK;
10133
4550487a 10134 if (time_before(now, nohz.next_balance))
a4064fb6 10135 goto out;
4550487a 10136
a0fe2cf0 10137 if (rq->nr_running >= 2) {
a4064fb6 10138 flags = NOHZ_KICK_MASK;
4550487a
PZ
10139 goto out;
10140 }
10141
10142 rcu_read_lock();
4550487a
PZ
10143
10144 sd = rcu_dereference(rq->sd);
10145 if (sd) {
e25a7a94
VS
10146 /*
10147 * If there's a CFS task and the current CPU has reduced
10148 * capacity; kick the ILB to see if there's a better CPU to run
10149 * on.
10150 */
10151 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
a4064fb6 10152 flags = NOHZ_KICK_MASK;
4550487a
PZ
10153 goto unlock;
10154 }
10155 }
10156
011b27bb 10157 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a 10158 if (sd) {
b9a7b883
VS
10159 /*
10160 * When ASYM_PACKING; see if there's a more preferred CPU
10161 * currently idle; in which case, kick the ILB to move tasks
10162 * around.
10163 */
7edab78d 10164 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
4550487a 10165 if (sched_asym_prefer(i, cpu)) {
a4064fb6 10166 flags = NOHZ_KICK_MASK;
4550487a
PZ
10167 goto unlock;
10168 }
10169 }
10170 }
b9a7b883 10171
a0fe2cf0
VS
10172 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10173 if (sd) {
10174 /*
10175 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10176 * to run the misfit task on.
10177 */
10178 if (check_misfit_status(rq, sd)) {
10179 flags = NOHZ_KICK_MASK;
10180 goto unlock;
10181 }
b9a7b883
VS
10182
10183 /*
10184 * For asymmetric systems, we do not want to nicely balance
10185 * cache use, instead we want to embrace asymmetry and only
10186 * ensure tasks have enough CPU capacity.
10187 *
10188 * Skip the LLC logic because it's not relevant in that case.
10189 */
10190 goto unlock;
a0fe2cf0
VS
10191 }
10192
b9a7b883
VS
10193 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10194 if (sds) {
e25a7a94 10195 /*
b9a7b883
VS
10196 * If there is an imbalance between LLC domains (IOW we could
10197 * increase the overall cache use), we need some less-loaded LLC
10198 * domain to pull some load. Likewise, we may need to spread
10199 * load within the current LLC domain (e.g. packed SMT cores but
10200 * other CPUs are idle). We can't really know from here how busy
10201 * the others are - so just get a nohz balance going if it looks
10202 * like this LLC domain has tasks we could move.
e25a7a94 10203 */
b9a7b883
VS
10204 nr_busy = atomic_read(&sds->nr_busy_cpus);
10205 if (nr_busy > 1) {
10206 flags = NOHZ_KICK_MASK;
10207 goto unlock;
4550487a
PZ
10208 }
10209 }
10210unlock:
10211 rcu_read_unlock();
10212out:
a4064fb6
PZ
10213 if (flags)
10214 kick_ilb(flags);
83cd4fe2
VP
10215}
10216
00357f5e 10217static void set_cpu_sd_state_busy(int cpu)
71325960 10218{
00357f5e 10219 struct sched_domain *sd;
a22e47a4 10220
00357f5e
PZ
10221 rcu_read_lock();
10222 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 10223
00357f5e
PZ
10224 if (!sd || !sd->nohz_idle)
10225 goto unlock;
10226 sd->nohz_idle = 0;
10227
10228 atomic_inc(&sd->shared->nr_busy_cpus);
10229unlock:
10230 rcu_read_unlock();
71325960
SS
10231}
10232
00357f5e
PZ
10233void nohz_balance_exit_idle(struct rq *rq)
10234{
10235 SCHED_WARN_ON(rq != this_rq());
10236
10237 if (likely(!rq->nohz_tick_stopped))
10238 return;
10239
10240 rq->nohz_tick_stopped = 0;
10241 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10242 atomic_dec(&nohz.nr_cpus);
10243
10244 set_cpu_sd_state_busy(rq->cpu);
10245}
10246
10247static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
10248{
10249 struct sched_domain *sd;
69e1e811 10250
69e1e811 10251 rcu_read_lock();
0e369d75 10252 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
10253
10254 if (!sd || sd->nohz_idle)
10255 goto unlock;
10256 sd->nohz_idle = 1;
10257
0e369d75 10258 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 10259unlock:
69e1e811
SS
10260 rcu_read_unlock();
10261}
10262
1e3c88bd 10263/*
97fb7a0a 10264 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 10265 * This info will be used in performing idle load balancing in the future.
1e3c88bd 10266 */
c1cc017c 10267void nohz_balance_enter_idle(int cpu)
1e3c88bd 10268{
00357f5e
PZ
10269 struct rq *rq = cpu_rq(cpu);
10270
10271 SCHED_WARN_ON(cpu != smp_processor_id());
10272
97fb7a0a 10273 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
10274 if (!cpu_active(cpu))
10275 return;
10276
387bc8b5 10277 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 10278 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
10279 return;
10280
f643ea22
VG
10281 /*
10282 * Can be set safely without rq->lock held
10283 * If a clear happens, it will have evaluated last additions because
10284 * rq->lock is held during the check and the clear
10285 */
10286 rq->has_blocked_load = 1;
10287
10288 /*
10289 * The tick is still stopped but load could have been added in the
10290 * meantime. We set the nohz.has_blocked flag to trig a check of the
10291 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10292 * of nohz.has_blocked can only happen after checking the new load
10293 */
00357f5e 10294 if (rq->nohz_tick_stopped)
f643ea22 10295 goto out;
1e3c88bd 10296
97fb7a0a 10297 /* If we're a completely isolated CPU, we don't play: */
00357f5e 10298 if (on_null_domain(rq))
d987fc7f
MG
10299 return;
10300
00357f5e
PZ
10301 rq->nohz_tick_stopped = 1;
10302
c1cc017c
AS
10303 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10304 atomic_inc(&nohz.nr_cpus);
00357f5e 10305
f643ea22
VG
10306 /*
10307 * Ensures that if nohz_idle_balance() fails to observe our
10308 * @idle_cpus_mask store, it must observe the @has_blocked
10309 * store.
10310 */
10311 smp_mb__after_atomic();
10312
00357f5e 10313 set_cpu_sd_state_idle(cpu);
f643ea22
VG
10314
10315out:
10316 /*
10317 * Each time a cpu enter idle, we assume that it has blocked load and
10318 * enable the periodic update of the load of idle cpus
10319 */
10320 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 10321}
1e3c88bd 10322
1e3c88bd 10323/*
31e77c93
VG
10324 * Internal function that runs load balance for all idle cpus. The load balance
10325 * can be a simple update of blocked load or a complete load balance with
10326 * tasks movement depending of flags.
10327 * The function returns false if the loop has stopped before running
10328 * through all idle CPUs.
1e3c88bd 10329 */
31e77c93
VG
10330static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10331 enum cpu_idle_type idle)
83cd4fe2 10332{
c5afb6a8 10333 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
10334 unsigned long now = jiffies;
10335 unsigned long next_balance = now + 60*HZ;
f643ea22 10336 bool has_blocked_load = false;
c5afb6a8 10337 int update_next_balance = 0;
b7031a02 10338 int this_cpu = this_rq->cpu;
b7031a02 10339 int balance_cpu;
31e77c93 10340 int ret = false;
b7031a02 10341 struct rq *rq;
83cd4fe2 10342
b7031a02 10343 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 10344
f643ea22
VG
10345 /*
10346 * We assume there will be no idle load after this update and clear
10347 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10348 * set the has_blocked flag and trig another update of idle load.
10349 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10350 * setting the flag, we are sure to not clear the state and not
10351 * check the load of an idle cpu.
10352 */
10353 WRITE_ONCE(nohz.has_blocked, 0);
10354
10355 /*
10356 * Ensures that if we miss the CPU, we must see the has_blocked
10357 * store from nohz_balance_enter_idle().
10358 */
10359 smp_mb();
10360
83cd4fe2 10361 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 10362 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
10363 continue;
10364
10365 /*
97fb7a0a
IM
10366 * If this CPU gets work to do, stop the load balancing
10367 * work being done for other CPUs. Next load
83cd4fe2
VP
10368 * balancing owner will pick it up.
10369 */
f643ea22
VG
10370 if (need_resched()) {
10371 has_blocked_load = true;
10372 goto abort;
10373 }
83cd4fe2 10374
5ed4f1d9
VG
10375 rq = cpu_rq(balance_cpu);
10376
63928384 10377 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 10378
ed61bbc6
TC
10379 /*
10380 * If time for next balance is due,
10381 * do the balance.
10382 */
10383 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
10384 struct rq_flags rf;
10385
31e77c93 10386 rq_lock_irqsave(rq, &rf);
ed61bbc6 10387 update_rq_clock(rq);
31e77c93 10388 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 10389
b7031a02
PZ
10390 if (flags & NOHZ_BALANCE_KICK)
10391 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 10392 }
83cd4fe2 10393
c5afb6a8
VG
10394 if (time_after(next_balance, rq->next_balance)) {
10395 next_balance = rq->next_balance;
10396 update_next_balance = 1;
10397 }
83cd4fe2 10398 }
c5afb6a8 10399
3ea2f097
VG
10400 /*
10401 * next_balance will be updated only when there is a need.
10402 * When the CPU is attached to null domain for ex, it will not be
10403 * updated.
10404 */
10405 if (likely(update_next_balance))
10406 nohz.next_balance = next_balance;
10407
31e77c93
VG
10408 /* Newly idle CPU doesn't need an update */
10409 if (idle != CPU_NEWLY_IDLE) {
10410 update_blocked_averages(this_cpu);
10411 has_blocked_load |= this_rq->has_blocked_load;
10412 }
10413
b7031a02
PZ
10414 if (flags & NOHZ_BALANCE_KICK)
10415 rebalance_domains(this_rq, CPU_IDLE);
10416
f643ea22
VG
10417 WRITE_ONCE(nohz.next_blocked,
10418 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10419
31e77c93
VG
10420 /* The full idle balance loop has been done */
10421 ret = true;
10422
f643ea22
VG
10423abort:
10424 /* There is still blocked load, enable periodic update */
10425 if (has_blocked_load)
10426 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 10427
31e77c93
VG
10428 return ret;
10429}
10430
10431/*
10432 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10433 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10434 */
10435static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10436{
19a1f5ec 10437 unsigned int flags = this_rq->nohz_idle_balance;
31e77c93 10438
19a1f5ec 10439 if (!flags)
31e77c93
VG
10440 return false;
10441
19a1f5ec 10442 this_rq->nohz_idle_balance = 0;
31e77c93 10443
19a1f5ec 10444 if (idle != CPU_IDLE)
31e77c93
VG
10445 return false;
10446
10447 _nohz_idle_balance(this_rq, flags, idle);
10448
b7031a02 10449 return true;
83cd4fe2 10450}
31e77c93
VG
10451
10452static void nohz_newidle_balance(struct rq *this_rq)
10453{
10454 int this_cpu = this_rq->cpu;
10455
10456 /*
10457 * This CPU doesn't want to be disturbed by scheduler
10458 * housekeeping
10459 */
10460 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10461 return;
10462
10463 /* Will wake up very soon. No time for doing anything else*/
10464 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10465 return;
10466
10467 /* Don't need to update blocked load of idle CPUs*/
10468 if (!READ_ONCE(nohz.has_blocked) ||
10469 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10470 return;
10471
10472 raw_spin_unlock(&this_rq->lock);
10473 /*
10474 * This CPU is going to be idle and blocked load of idle CPUs
10475 * need to be updated. Run the ilb locally as it is a good
10476 * candidate for ilb instead of waking up another idle CPU.
10477 * Kick an normal ilb if we failed to do the update.
10478 */
10479 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10480 kick_ilb(NOHZ_STATS_KICK);
10481 raw_spin_lock(&this_rq->lock);
10482}
10483
dd707247
PZ
10484#else /* !CONFIG_NO_HZ_COMMON */
10485static inline void nohz_balancer_kick(struct rq *rq) { }
10486
31e77c93 10487static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
10488{
10489 return false;
10490}
31e77c93
VG
10491
10492static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 10493#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 10494
47ea5412
PZ
10495/*
10496 * idle_balance is called by schedule() if this_cpu is about to become
10497 * idle. Attempts to pull tasks from other CPUs.
7277a34c
PZ
10498 *
10499 * Returns:
10500 * < 0 - we released the lock and there are !fair tasks present
10501 * 0 - failed, no new tasks
10502 * > 0 - success, new (fair) tasks present
47ea5412 10503 */
d91cecc1 10504static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
47ea5412
PZ
10505{
10506 unsigned long next_balance = jiffies + HZ;
10507 int this_cpu = this_rq->cpu;
10508 struct sched_domain *sd;
10509 int pulled_task = 0;
10510 u64 curr_cost = 0;
10511
5ba553ef 10512 update_misfit_status(NULL, this_rq);
47ea5412
PZ
10513 /*
10514 * We must set idle_stamp _before_ calling idle_balance(), such that we
10515 * measure the duration of idle_balance() as idle time.
10516 */
10517 this_rq->idle_stamp = rq_clock(this_rq);
10518
10519 /*
10520 * Do not pull tasks towards !active CPUs...
10521 */
10522 if (!cpu_active(this_cpu))
10523 return 0;
10524
10525 /*
10526 * This is OK, because current is on_cpu, which avoids it being picked
10527 * for load-balance and preemption/IRQs are still disabled avoiding
10528 * further scheduler activity on it and we're being very careful to
10529 * re-start the picking loop.
10530 */
10531 rq_unpin_lock(this_rq, rf);
10532
10533 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 10534 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 10535
47ea5412
PZ
10536 rcu_read_lock();
10537 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10538 if (sd)
10539 update_next_balance(sd, &next_balance);
10540 rcu_read_unlock();
10541
31e77c93
VG
10542 nohz_newidle_balance(this_rq);
10543
47ea5412
PZ
10544 goto out;
10545 }
10546
10547 raw_spin_unlock(&this_rq->lock);
10548
10549 update_blocked_averages(this_cpu);
10550 rcu_read_lock();
10551 for_each_domain(this_cpu, sd) {
10552 int continue_balancing = 1;
10553 u64 t0, domain_cost;
10554
47ea5412
PZ
10555 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10556 update_next_balance(sd, &next_balance);
10557 break;
10558 }
10559
10560 if (sd->flags & SD_BALANCE_NEWIDLE) {
10561 t0 = sched_clock_cpu(this_cpu);
10562
10563 pulled_task = load_balance(this_cpu, this_rq,
10564 sd, CPU_NEWLY_IDLE,
10565 &continue_balancing);
10566
10567 domain_cost = sched_clock_cpu(this_cpu) - t0;
10568 if (domain_cost > sd->max_newidle_lb_cost)
10569 sd->max_newidle_lb_cost = domain_cost;
10570
10571 curr_cost += domain_cost;
10572 }
10573
10574 update_next_balance(sd, &next_balance);
10575
10576 /*
10577 * Stop searching for tasks to pull if there are
10578 * now runnable tasks on this rq.
10579 */
10580 if (pulled_task || this_rq->nr_running > 0)
10581 break;
10582 }
10583 rcu_read_unlock();
10584
10585 raw_spin_lock(&this_rq->lock);
10586
10587 if (curr_cost > this_rq->max_idle_balance_cost)
10588 this_rq->max_idle_balance_cost = curr_cost;
10589
457be908 10590out:
47ea5412
PZ
10591 /*
10592 * While browsing the domains, we released the rq lock, a task could
10593 * have been enqueued in the meantime. Since we're not going idle,
10594 * pretend we pulled a task.
10595 */
10596 if (this_rq->cfs.h_nr_running && !pulled_task)
10597 pulled_task = 1;
10598
47ea5412
PZ
10599 /* Move the next balance forward */
10600 if (time_after(this_rq->next_balance, next_balance))
10601 this_rq->next_balance = next_balance;
10602
10603 /* Is there a task of a high priority class? */
10604 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10605 pulled_task = -1;
10606
10607 if (pulled_task)
10608 this_rq->idle_stamp = 0;
10609
10610 rq_repin_lock(this_rq, rf);
10611
10612 return pulled_task;
10613}
10614
83cd4fe2
VP
10615/*
10616 * run_rebalance_domains is triggered when needed from the scheduler tick.
10617 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10618 */
0766f788 10619static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 10620{
208cb16b 10621 struct rq *this_rq = this_rq();
6eb57e0d 10622 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
10623 CPU_IDLE : CPU_NOT_IDLE;
10624
1e3c88bd 10625 /*
97fb7a0a
IM
10626 * If this CPU has a pending nohz_balance_kick, then do the
10627 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 10628 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 10629 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
10630 * load balance only within the local sched_domain hierarchy
10631 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 10632 */
b7031a02
PZ
10633 if (nohz_idle_balance(this_rq, idle))
10634 return;
10635
10636 /* normal load balance */
10637 update_blocked_averages(this_rq->cpu);
d4573c3e 10638 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10639}
10640
1e3c88bd
PZ
10641/*
10642 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10643 */
7caff66f 10644void trigger_load_balance(struct rq *rq)
1e3c88bd 10645{
1e3c88bd 10646 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
10647 if (unlikely(on_null_domain(rq)))
10648 return;
10649
10650 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10651 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
10652
10653 nohz_balancer_kick(rq);
1e3c88bd
PZ
10654}
10655
0bcdcf28
CE
10656static void rq_online_fair(struct rq *rq)
10657{
10658 update_sysctl();
0e59bdae
KT
10659
10660 update_runtime_enabled(rq);
0bcdcf28
CE
10661}
10662
10663static void rq_offline_fair(struct rq *rq)
10664{
10665 update_sysctl();
a4c96ae3
PB
10666
10667 /* Ensure any throttled groups are reachable by pick_next_task */
10668 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
10669}
10670
55e12e5e 10671#endif /* CONFIG_SMP */
e1d1484f 10672
bf0f6f24 10673/*
d84b3131
FW
10674 * scheduler tick hitting a task of our scheduling class.
10675 *
10676 * NOTE: This function can be called remotely by the tick offload that
10677 * goes along full dynticks. Therefore no local assumption can be made
10678 * and everything must be accessed through the @rq and @curr passed in
10679 * parameters.
bf0f6f24 10680 */
8f4d37ec 10681static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
10682{
10683 struct cfs_rq *cfs_rq;
10684 struct sched_entity *se = &curr->se;
10685
10686 for_each_sched_entity(se) {
10687 cfs_rq = cfs_rq_of(se);
8f4d37ec 10688 entity_tick(cfs_rq, se, queued);
bf0f6f24 10689 }
18bf2805 10690
b52da86e 10691 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 10692 task_tick_numa(rq, curr);
3b1baa64
MR
10693
10694 update_misfit_status(curr, rq);
2802bf3c 10695 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
10696}
10697
10698/*
cd29fe6f
PZ
10699 * called on fork with the child task as argument from the parent's context
10700 * - child not yet on the tasklist
10701 * - preemption disabled
bf0f6f24 10702 */
cd29fe6f 10703static void task_fork_fair(struct task_struct *p)
bf0f6f24 10704{
4fc420c9
DN
10705 struct cfs_rq *cfs_rq;
10706 struct sched_entity *se = &p->se, *curr;
cd29fe6f 10707 struct rq *rq = this_rq();
8a8c69c3 10708 struct rq_flags rf;
bf0f6f24 10709
8a8c69c3 10710 rq_lock(rq, &rf);
861d034e
PZ
10711 update_rq_clock(rq);
10712
4fc420c9
DN
10713 cfs_rq = task_cfs_rq(current);
10714 curr = cfs_rq->curr;
e210bffd
PZ
10715 if (curr) {
10716 update_curr(cfs_rq);
b5d9d734 10717 se->vruntime = curr->vruntime;
e210bffd 10718 }
aeb73b04 10719 place_entity(cfs_rq, se, 1);
4d78e7b6 10720
cd29fe6f 10721 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 10722 /*
edcb60a3
IM
10723 * Upon rescheduling, sched_class::put_prev_task() will place
10724 * 'current' within the tree based on its new key value.
10725 */
4d78e7b6 10726 swap(curr->vruntime, se->vruntime);
8875125e 10727 resched_curr(rq);
4d78e7b6 10728 }
bf0f6f24 10729
88ec22d3 10730 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10731 rq_unlock(rq, &rf);
bf0f6f24
IM
10732}
10733
cb469845
SR
10734/*
10735 * Priority of the task has changed. Check to see if we preempt
10736 * the current task.
10737 */
da7a735e
PZ
10738static void
10739prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10740{
da0c1e65 10741 if (!task_on_rq_queued(p))
da7a735e
PZ
10742 return;
10743
7c2e8bbd
FW
10744 if (rq->cfs.nr_running == 1)
10745 return;
10746
cb469845
SR
10747 /*
10748 * Reschedule if we are currently running on this runqueue and
10749 * our priority decreased, or if we are not currently running on
10750 * this runqueue and our priority is higher than the current's
10751 */
da7a735e 10752 if (rq->curr == p) {
cb469845 10753 if (p->prio > oldprio)
8875125e 10754 resched_curr(rq);
cb469845 10755 } else
15afe09b 10756 check_preempt_curr(rq, p, 0);
cb469845
SR
10757}
10758
daa59407 10759static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10760{
10761 struct sched_entity *se = &p->se;
da7a735e
PZ
10762
10763 /*
daa59407
BP
10764 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10765 * the dequeue_entity(.flags=0) will already have normalized the
10766 * vruntime.
10767 */
10768 if (p->on_rq)
10769 return true;
10770
10771 /*
10772 * When !on_rq, vruntime of the task has usually NOT been normalized.
10773 * But there are some cases where it has already been normalized:
da7a735e 10774 *
daa59407
BP
10775 * - A forked child which is waiting for being woken up by
10776 * wake_up_new_task().
10777 * - A task which has been woken up by try_to_wake_up() and
10778 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10779 */
d0cdb3ce
SM
10780 if (!se->sum_exec_runtime ||
10781 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10782 return true;
10783
10784 return false;
10785}
10786
09a43ace
VG
10787#ifdef CONFIG_FAIR_GROUP_SCHED
10788/*
10789 * Propagate the changes of the sched_entity across the tg tree to make it
10790 * visible to the root
10791 */
10792static void propagate_entity_cfs_rq(struct sched_entity *se)
10793{
10794 struct cfs_rq *cfs_rq;
10795
10796 /* Start to propagate at parent */
10797 se = se->parent;
10798
10799 for_each_sched_entity(se) {
10800 cfs_rq = cfs_rq_of(se);
10801
10802 if (cfs_rq_throttled(cfs_rq))
10803 break;
10804
88c0616e 10805 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10806 }
10807}
10808#else
10809static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10810#endif
10811
df217913 10812static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10813{
daa59407
BP
10814 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10815
9d89c257 10816 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10817 update_load_avg(cfs_rq, se, 0);
a05e8c51 10818 detach_entity_load_avg(cfs_rq, se);
fe749158 10819 update_tg_load_avg(cfs_rq);
09a43ace 10820 propagate_entity_cfs_rq(se);
da7a735e
PZ
10821}
10822
df217913 10823static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10824{
daa59407 10825 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10826
10827#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10828 /*
10829 * Since the real-depth could have been changed (only FAIR
10830 * class maintain depth value), reset depth properly.
10831 */
10832 se->depth = se->parent ? se->parent->depth + 1 : 0;
10833#endif
7855a35a 10834
df217913 10835 /* Synchronize entity with its cfs_rq */
88c0616e 10836 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
a4f9a0e5 10837 attach_entity_load_avg(cfs_rq, se);
fe749158 10838 update_tg_load_avg(cfs_rq);
09a43ace 10839 propagate_entity_cfs_rq(se);
df217913
VG
10840}
10841
10842static void detach_task_cfs_rq(struct task_struct *p)
10843{
10844 struct sched_entity *se = &p->se;
10845 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10846
10847 if (!vruntime_normalized(p)) {
10848 /*
10849 * Fix up our vruntime so that the current sleep doesn't
10850 * cause 'unlimited' sleep bonus.
10851 */
10852 place_entity(cfs_rq, se, 0);
10853 se->vruntime -= cfs_rq->min_vruntime;
10854 }
10855
10856 detach_entity_cfs_rq(se);
10857}
10858
10859static void attach_task_cfs_rq(struct task_struct *p)
10860{
10861 struct sched_entity *se = &p->se;
10862 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10863
10864 attach_entity_cfs_rq(se);
daa59407
BP
10865
10866 if (!vruntime_normalized(p))
10867 se->vruntime += cfs_rq->min_vruntime;
10868}
6efdb105 10869
daa59407
BP
10870static void switched_from_fair(struct rq *rq, struct task_struct *p)
10871{
10872 detach_task_cfs_rq(p);
10873}
10874
10875static void switched_to_fair(struct rq *rq, struct task_struct *p)
10876{
10877 attach_task_cfs_rq(p);
7855a35a 10878
daa59407 10879 if (task_on_rq_queued(p)) {
7855a35a 10880 /*
daa59407
BP
10881 * We were most likely switched from sched_rt, so
10882 * kick off the schedule if running, otherwise just see
10883 * if we can still preempt the current task.
7855a35a 10884 */
daa59407
BP
10885 if (rq->curr == p)
10886 resched_curr(rq);
10887 else
10888 check_preempt_curr(rq, p, 0);
7855a35a 10889 }
cb469845
SR
10890}
10891
83b699ed
SV
10892/* Account for a task changing its policy or group.
10893 *
10894 * This routine is mostly called to set cfs_rq->curr field when a task
10895 * migrates between groups/classes.
10896 */
a0e813f2 10897static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
83b699ed 10898{
03b7fad1
PZ
10899 struct sched_entity *se = &p->se;
10900
10901#ifdef CONFIG_SMP
10902 if (task_on_rq_queued(p)) {
10903 /*
10904 * Move the next running task to the front of the list, so our
10905 * cfs_tasks list becomes MRU one.
10906 */
10907 list_move(&se->group_node, &rq->cfs_tasks);
10908 }
10909#endif
83b699ed 10910
ec12cb7f
PT
10911 for_each_sched_entity(se) {
10912 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10913
10914 set_next_entity(cfs_rq, se);
10915 /* ensure bandwidth has been allocated on our new cfs_rq */
10916 account_cfs_rq_runtime(cfs_rq, 0);
10917 }
83b699ed
SV
10918}
10919
029632fb
PZ
10920void init_cfs_rq(struct cfs_rq *cfs_rq)
10921{
bfb06889 10922 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10923 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10924#ifndef CONFIG_64BIT
10925 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10926#endif
141965c7 10927#ifdef CONFIG_SMP
2a2f5d4e 10928 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10929#endif
029632fb
PZ
10930}
10931
810b3817 10932#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10933static void task_set_group_fair(struct task_struct *p)
10934{
10935 struct sched_entity *se = &p->se;
10936
10937 set_task_rq(p, task_cpu(p));
10938 se->depth = se->parent ? se->parent->depth + 1 : 0;
10939}
10940
bc54da21 10941static void task_move_group_fair(struct task_struct *p)
810b3817 10942{
daa59407 10943 detach_task_cfs_rq(p);
b2b5ce02 10944 set_task_rq(p, task_cpu(p));
6efdb105
BP
10945
10946#ifdef CONFIG_SMP
10947 /* Tell se's cfs_rq has been changed -- migrated */
10948 p->se.avg.last_update_time = 0;
10949#endif
daa59407 10950 attach_task_cfs_rq(p);
810b3817 10951}
029632fb 10952
ea86cb4b
VG
10953static void task_change_group_fair(struct task_struct *p, int type)
10954{
10955 switch (type) {
10956 case TASK_SET_GROUP:
10957 task_set_group_fair(p);
10958 break;
10959
10960 case TASK_MOVE_GROUP:
10961 task_move_group_fair(p);
10962 break;
10963 }
10964}
10965
029632fb
PZ
10966void free_fair_sched_group(struct task_group *tg)
10967{
10968 int i;
10969
10970 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10971
10972 for_each_possible_cpu(i) {
10973 if (tg->cfs_rq)
10974 kfree(tg->cfs_rq[i]);
6fe1f348 10975 if (tg->se)
029632fb
PZ
10976 kfree(tg->se[i]);
10977 }
10978
10979 kfree(tg->cfs_rq);
10980 kfree(tg->se);
10981}
10982
10983int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10984{
029632fb 10985 struct sched_entity *se;
b7fa30c9 10986 struct cfs_rq *cfs_rq;
029632fb
PZ
10987 int i;
10988
6396bb22 10989 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
10990 if (!tg->cfs_rq)
10991 goto err;
6396bb22 10992 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
10993 if (!tg->se)
10994 goto err;
10995
10996 tg->shares = NICE_0_LOAD;
10997
10998 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10999
11000 for_each_possible_cpu(i) {
11001 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11002 GFP_KERNEL, cpu_to_node(i));
11003 if (!cfs_rq)
11004 goto err;
11005
11006 se = kzalloc_node(sizeof(struct sched_entity),
11007 GFP_KERNEL, cpu_to_node(i));
11008 if (!se)
11009 goto err_free_rq;
11010
11011 init_cfs_rq(cfs_rq);
11012 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 11013 init_entity_runnable_average(se);
029632fb
PZ
11014 }
11015
11016 return 1;
11017
11018err_free_rq:
11019 kfree(cfs_rq);
11020err:
11021 return 0;
11022}
11023
8663e24d
PZ
11024void online_fair_sched_group(struct task_group *tg)
11025{
11026 struct sched_entity *se;
a46d14ec 11027 struct rq_flags rf;
8663e24d
PZ
11028 struct rq *rq;
11029 int i;
11030
11031 for_each_possible_cpu(i) {
11032 rq = cpu_rq(i);
11033 se = tg->se[i];
a46d14ec 11034 rq_lock_irq(rq, &rf);
4126bad6 11035 update_rq_clock(rq);
d0326691 11036 attach_entity_cfs_rq(se);
55e16d30 11037 sync_throttle(tg, i);
a46d14ec 11038 rq_unlock_irq(rq, &rf);
8663e24d
PZ
11039 }
11040}
11041
6fe1f348 11042void unregister_fair_sched_group(struct task_group *tg)
029632fb 11043{
029632fb 11044 unsigned long flags;
6fe1f348
PZ
11045 struct rq *rq;
11046 int cpu;
029632fb 11047
6fe1f348
PZ
11048 for_each_possible_cpu(cpu) {
11049 if (tg->se[cpu])
11050 remove_entity_load_avg(tg->se[cpu]);
029632fb 11051
6fe1f348
PZ
11052 /*
11053 * Only empty task groups can be destroyed; so we can speculatively
11054 * check on_list without danger of it being re-added.
11055 */
11056 if (!tg->cfs_rq[cpu]->on_list)
11057 continue;
11058
11059 rq = cpu_rq(cpu);
11060
11061 raw_spin_lock_irqsave(&rq->lock, flags);
11062 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11063 raw_spin_unlock_irqrestore(&rq->lock, flags);
11064 }
029632fb
PZ
11065}
11066
11067void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11068 struct sched_entity *se, int cpu,
11069 struct sched_entity *parent)
11070{
11071 struct rq *rq = cpu_rq(cpu);
11072
11073 cfs_rq->tg = tg;
11074 cfs_rq->rq = rq;
029632fb
PZ
11075 init_cfs_rq_runtime(cfs_rq);
11076
11077 tg->cfs_rq[cpu] = cfs_rq;
11078 tg->se[cpu] = se;
11079
11080 /* se could be NULL for root_task_group */
11081 if (!se)
11082 return;
11083
fed14d45 11084 if (!parent) {
029632fb 11085 se->cfs_rq = &rq->cfs;
fed14d45
PZ
11086 se->depth = 0;
11087 } else {
029632fb 11088 se->cfs_rq = parent->my_q;
fed14d45
PZ
11089 se->depth = parent->depth + 1;
11090 }
029632fb
PZ
11091
11092 se->my_q = cfs_rq;
0ac9b1c2
PT
11093 /* guarantee group entities always have weight */
11094 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
11095 se->parent = parent;
11096}
11097
11098static DEFINE_MUTEX(shares_mutex);
11099
11100int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11101{
11102 int i;
029632fb
PZ
11103
11104 /*
11105 * We can't change the weight of the root cgroup.
11106 */
11107 if (!tg->se[0])
11108 return -EINVAL;
11109
11110 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11111
11112 mutex_lock(&shares_mutex);
11113 if (tg->shares == shares)
11114 goto done;
11115
11116 tg->shares = shares;
11117 for_each_possible_cpu(i) {
11118 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
11119 struct sched_entity *se = tg->se[i];
11120 struct rq_flags rf;
029632fb 11121
029632fb 11122 /* Propagate contribution to hierarchy */
8a8c69c3 11123 rq_lock_irqsave(rq, &rf);
71b1da46 11124 update_rq_clock(rq);
89ee048f 11125 for_each_sched_entity(se) {
88c0616e 11126 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 11127 update_cfs_group(se);
89ee048f 11128 }
8a8c69c3 11129 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
11130 }
11131
11132done:
11133 mutex_unlock(&shares_mutex);
11134 return 0;
11135}
11136#else /* CONFIG_FAIR_GROUP_SCHED */
11137
11138void free_fair_sched_group(struct task_group *tg) { }
11139
11140int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11141{
11142 return 1;
11143}
11144
8663e24d
PZ
11145void online_fair_sched_group(struct task_group *tg) { }
11146
6fe1f348 11147void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
11148
11149#endif /* CONFIG_FAIR_GROUP_SCHED */
11150
810b3817 11151
6d686f45 11152static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
11153{
11154 struct sched_entity *se = &task->se;
0d721cea
PW
11155 unsigned int rr_interval = 0;
11156
11157 /*
11158 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11159 * idle runqueue:
11160 */
0d721cea 11161 if (rq->cfs.load.weight)
a59f4e07 11162 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
11163
11164 return rr_interval;
11165}
11166
bf0f6f24
IM
11167/*
11168 * All the scheduling class methods:
11169 */
590d6979 11170const struct sched_class fair_sched_class
33def849 11171 __section("__fair_sched_class") = {
bf0f6f24
IM
11172 .enqueue_task = enqueue_task_fair,
11173 .dequeue_task = dequeue_task_fair,
11174 .yield_task = yield_task_fair,
d95f4122 11175 .yield_to_task = yield_to_task_fair,
bf0f6f24 11176
2e09bf55 11177 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24 11178
98c2f700 11179 .pick_next_task = __pick_next_task_fair,
bf0f6f24 11180 .put_prev_task = put_prev_task_fair,
03b7fad1 11181 .set_next_task = set_next_task_fair,
bf0f6f24 11182
681f3e68 11183#ifdef CONFIG_SMP
6e2df058 11184 .balance = balance_fair,
4ce72a2c 11185 .select_task_rq = select_task_rq_fair,
0a74bef8 11186 .migrate_task_rq = migrate_task_rq_fair,
141965c7 11187
0bcdcf28
CE
11188 .rq_online = rq_online_fair,
11189 .rq_offline = rq_offline_fair,
88ec22d3 11190
12695578 11191 .task_dead = task_dead_fair,
c5b28038 11192 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 11193#endif
bf0f6f24 11194
bf0f6f24 11195 .task_tick = task_tick_fair,
cd29fe6f 11196 .task_fork = task_fork_fair,
cb469845
SR
11197
11198 .prio_changed = prio_changed_fair,
da7a735e 11199 .switched_from = switched_from_fair,
cb469845 11200 .switched_to = switched_to_fair,
810b3817 11201
0d721cea
PW
11202 .get_rr_interval = get_rr_interval_fair,
11203
6e998916
SG
11204 .update_curr = update_curr_fair,
11205
810b3817 11206#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 11207 .task_change_group = task_change_group_fair,
810b3817 11208#endif
982d9cdc
PB
11209
11210#ifdef CONFIG_UCLAMP_TASK
11211 .uclamp_enabled = 1,
11212#endif
bf0f6f24
IM
11213};
11214
11215#ifdef CONFIG_SCHED_DEBUG
029632fb 11216void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 11217{
039ae8bc 11218 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 11219
5973e5b9 11220 rcu_read_lock();
039ae8bc 11221 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 11222 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 11223 rcu_read_unlock();
bf0f6f24 11224}
397f2378
SD
11225
11226#ifdef CONFIG_NUMA_BALANCING
11227void show_numa_stats(struct task_struct *p, struct seq_file *m)
11228{
11229 int node;
11230 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
cb361d8c 11231 struct numa_group *ng;
397f2378 11232
cb361d8c
JH
11233 rcu_read_lock();
11234 ng = rcu_dereference(p->numa_group);
397f2378
SD
11235 for_each_online_node(node) {
11236 if (p->numa_faults) {
11237 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11238 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11239 }
cb361d8c
JH
11240 if (ng) {
11241 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11242 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
397f2378
SD
11243 }
11244 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11245 }
cb361d8c 11246 rcu_read_unlock();
397f2378
SD
11247}
11248#endif /* CONFIG_NUMA_BALANCING */
11249#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
11250
11251__init void init_sched_fair_class(void)
11252{
11253#ifdef CONFIG_SMP
11254 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11255
3451d024 11256#ifdef CONFIG_NO_HZ_COMMON
554cecaf 11257 nohz.next_balance = jiffies;
f643ea22 11258 nohz.next_blocked = jiffies;
029632fb 11259 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
11260#endif
11261#endif /* SMP */
11262
11263}
3c93a0c0
QY
11264
11265/*
11266 * Helper functions to facilitate extracting info from tracepoints.
11267 */
11268
11269const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11270{
11271#ifdef CONFIG_SMP
11272 return cfs_rq ? &cfs_rq->avg : NULL;
11273#else
11274 return NULL;
11275#endif
11276}
11277EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11278
11279char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11280{
11281 if (!cfs_rq) {
11282 if (str)
11283 strlcpy(str, "(null)", len);
11284 else
11285 return NULL;
11286 }
11287
11288 cfs_rq_tg_path(cfs_rq, str, len);
11289 return str;
11290}
11291EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11292
11293int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11294{
11295 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11296}
11297EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11298
11299const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11300{
11301#ifdef CONFIG_SMP
11302 return rq ? &rq->avg_rt : NULL;
11303#else
11304 return NULL;
11305#endif
11306}
11307EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11308
11309const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11310{
11311#ifdef CONFIG_SMP
11312 return rq ? &rq->avg_dl : NULL;
11313#else
11314 return NULL;
11315#endif
11316}
11317EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11318
11319const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11320{
11321#if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11322 return rq ? &rq->avg_irq : NULL;
11323#else
11324 return NULL;
11325#endif
11326}
11327EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11328
11329int sched_trace_rq_cpu(struct rq *rq)
11330{
11331 return rq ? cpu_of(rq) : -1;
11332}
11333EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11334
51cf18c9
VD
11335int sched_trace_rq_cpu_capacity(struct rq *rq)
11336{
11337 return rq ?
11338#ifdef CONFIG_SMP
11339 rq->cpu_capacity
11340#else
11341 SCHED_CAPACITY_SCALE
11342#endif
11343 : -1;
11344}
11345EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11346
3c93a0c0
QY
11347const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11348{
11349#ifdef CONFIG_SMP
11350 return rd ? rd->span : NULL;
11351#else
11352 return NULL;
11353#endif
11354}
11355EXPORT_SYMBOL_GPL(sched_trace_rd_span);
9d246053
PA
11356
11357int sched_trace_rq_nr_running(struct rq *rq)
11358{
11359 return rq ? rq->nr_running : -1;
11360}
11361EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);