sched, numa, mm: Count WS scanning against present PTEs, not virtual memory ranges
[linux-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88
PZ
29#include <linux/mempolicy.h>
30#include <linux/task_work.h>
029632fb
PZ
31
32#include <trace/events/sched.h>
33
34#include "sched.h"
9745512c 35
bf0f6f24 36/*
21805085 37 * Targeted preemption latency for CPU-bound tasks:
864616ee 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 *
21805085 40 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
41 * 'timeslice length' - timeslices in CFS are of variable length
42 * and have no persistent notion like in traditional, time-slice
43 * based scheduling concepts.
bf0f6f24 44 *
d274a4ce
IM
45 * (to see the precise effective timeslice length of your workload,
46 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 47 */
21406928
MG
48unsigned int sysctl_sched_latency = 6000000ULL;
49unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 50
1983a922
CE
51/*
52 * The initial- and re-scaling of tunables is configurable
53 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
54 *
55 * Options are:
56 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
57 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
58 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
59 */
60enum sched_tunable_scaling sysctl_sched_tunable_scaling
61 = SCHED_TUNABLESCALING_LOG;
62
2bd8e6d4 63/*
b2be5e96 64 * Minimal preemption granularity for CPU-bound tasks:
864616ee 65 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 66 */
0bf377bb
IM
67unsigned int sysctl_sched_min_granularity = 750000ULL;
68unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
69
70/*
b2be5e96
PZ
71 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
72 */
0bf377bb 73static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
74
75/*
2bba22c5 76 * After fork, child runs first. If set to 0 (default) then
b2be5e96 77 * parent will (try to) run first.
21805085 78 */
2bba22c5 79unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 80
bf0f6f24
IM
81/*
82 * SCHED_OTHER wake-up granularity.
172e082a 83 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
84 *
85 * This option delays the preemption effects of decoupled workloads
86 * and reduces their over-scheduling. Synchronous workloads will still
87 * have immediate wakeup/sleep latencies.
88 */
172e082a 89unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 90unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 91
da84d961
IM
92const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
93
a7a4f8a7
PT
94/*
95 * The exponential sliding window over which load is averaged for shares
96 * distribution.
97 * (default: 10msec)
98 */
99unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
100
ec12cb7f
PT
101#ifdef CONFIG_CFS_BANDWIDTH
102/*
103 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
104 * each time a cfs_rq requests quota.
105 *
106 * Note: in the case that the slice exceeds the runtime remaining (either due
107 * to consumption or the quota being specified to be smaller than the slice)
108 * we will always only issue the remaining available time.
109 *
110 * default: 5 msec, units: microseconds
111 */
112unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
113#endif
114
029632fb
PZ
115/*
116 * Increase the granularity value when there are more CPUs,
117 * because with more CPUs the 'effective latency' as visible
118 * to users decreases. But the relationship is not linear,
119 * so pick a second-best guess by going with the log2 of the
120 * number of CPUs.
121 *
122 * This idea comes from the SD scheduler of Con Kolivas:
123 */
124static int get_update_sysctl_factor(void)
125{
126 unsigned int cpus = min_t(int, num_online_cpus(), 8);
127 unsigned int factor;
128
129 switch (sysctl_sched_tunable_scaling) {
130 case SCHED_TUNABLESCALING_NONE:
131 factor = 1;
132 break;
133 case SCHED_TUNABLESCALING_LINEAR:
134 factor = cpus;
135 break;
136 case SCHED_TUNABLESCALING_LOG:
137 default:
138 factor = 1 + ilog2(cpus);
139 break;
140 }
141
142 return factor;
143}
144
145static void update_sysctl(void)
146{
147 unsigned int factor = get_update_sysctl_factor();
148
149#define SET_SYSCTL(name) \
150 (sysctl_##name = (factor) * normalized_sysctl_##name)
151 SET_SYSCTL(sched_min_granularity);
152 SET_SYSCTL(sched_latency);
153 SET_SYSCTL(sched_wakeup_granularity);
154#undef SET_SYSCTL
155}
156
157void sched_init_granularity(void)
158{
159 update_sysctl();
160}
161
162#if BITS_PER_LONG == 32
163# define WMULT_CONST (~0UL)
164#else
165# define WMULT_CONST (1UL << 32)
166#endif
167
168#define WMULT_SHIFT 32
169
170/*
171 * Shift right and round:
172 */
173#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
174
175/*
176 * delta *= weight / lw
177 */
178static unsigned long
179calc_delta_mine(unsigned long delta_exec, unsigned long weight,
180 struct load_weight *lw)
181{
182 u64 tmp;
183
184 /*
185 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
186 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
187 * 2^SCHED_LOAD_RESOLUTION.
188 */
189 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
190 tmp = (u64)delta_exec * scale_load_down(weight);
191 else
192 tmp = (u64)delta_exec;
193
194 if (!lw->inv_weight) {
195 unsigned long w = scale_load_down(lw->weight);
196
197 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
198 lw->inv_weight = 1;
199 else if (unlikely(!w))
200 lw->inv_weight = WMULT_CONST;
201 else
202 lw->inv_weight = WMULT_CONST / w;
203 }
204
205 /*
206 * Check whether we'd overflow the 64-bit multiplication:
207 */
208 if (unlikely(tmp > WMULT_CONST))
209 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
210 WMULT_SHIFT/2);
211 else
212 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
213
214 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
215}
216
217
218const struct sched_class fair_sched_class;
a4c2f00f 219
bf0f6f24
IM
220/**************************************************************
221 * CFS operations on generic schedulable entities:
222 */
223
62160e3f 224#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 225
62160e3f 226/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
227static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
228{
62160e3f 229 return cfs_rq->rq;
bf0f6f24
IM
230}
231
62160e3f
IM
232/* An entity is a task if it doesn't "own" a runqueue */
233#define entity_is_task(se) (!se->my_q)
bf0f6f24 234
8f48894f
PZ
235static inline struct task_struct *task_of(struct sched_entity *se)
236{
237#ifdef CONFIG_SCHED_DEBUG
238 WARN_ON_ONCE(!entity_is_task(se));
239#endif
240 return container_of(se, struct task_struct, se);
241}
242
b758149c
PZ
243/* Walk up scheduling entities hierarchy */
244#define for_each_sched_entity(se) \
245 for (; se; se = se->parent)
246
247static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
248{
249 return p->se.cfs_rq;
250}
251
252/* runqueue on which this entity is (to be) queued */
253static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
254{
255 return se->cfs_rq;
256}
257
258/* runqueue "owned" by this group */
259static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
260{
261 return grp->my_q;
262}
263
3d4b47b4
PZ
264static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
265{
266 if (!cfs_rq->on_list) {
67e86250
PT
267 /*
268 * Ensure we either appear before our parent (if already
269 * enqueued) or force our parent to appear after us when it is
270 * enqueued. The fact that we always enqueue bottom-up
271 * reduces this to two cases.
272 */
273 if (cfs_rq->tg->parent &&
274 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
275 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
276 &rq_of(cfs_rq)->leaf_cfs_rq_list);
277 } else {
278 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 279 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 280 }
3d4b47b4
PZ
281
282 cfs_rq->on_list = 1;
283 }
284}
285
286static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (cfs_rq->on_list) {
289 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
290 cfs_rq->on_list = 0;
291 }
292}
293
b758149c
PZ
294/* Iterate thr' all leaf cfs_rq's on a runqueue */
295#define for_each_leaf_cfs_rq(rq, cfs_rq) \
296 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
297
298/* Do the two (enqueued) entities belong to the same group ? */
299static inline int
300is_same_group(struct sched_entity *se, struct sched_entity *pse)
301{
302 if (se->cfs_rq == pse->cfs_rq)
303 return 1;
304
305 return 0;
306}
307
308static inline struct sched_entity *parent_entity(struct sched_entity *se)
309{
310 return se->parent;
311}
312
464b7527
PZ
313/* return depth at which a sched entity is present in the hierarchy */
314static inline int depth_se(struct sched_entity *se)
315{
316 int depth = 0;
317
318 for_each_sched_entity(se)
319 depth++;
320
321 return depth;
322}
323
324static void
325find_matching_se(struct sched_entity **se, struct sched_entity **pse)
326{
327 int se_depth, pse_depth;
328
329 /*
330 * preemption test can be made between sibling entities who are in the
331 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
332 * both tasks until we find their ancestors who are siblings of common
333 * parent.
334 */
335
336 /* First walk up until both entities are at same depth */
337 se_depth = depth_se(*se);
338 pse_depth = depth_se(*pse);
339
340 while (se_depth > pse_depth) {
341 se_depth--;
342 *se = parent_entity(*se);
343 }
344
345 while (pse_depth > se_depth) {
346 pse_depth--;
347 *pse = parent_entity(*pse);
348 }
349
350 while (!is_same_group(*se, *pse)) {
351 *se = parent_entity(*se);
352 *pse = parent_entity(*pse);
353 }
354}
355
8f48894f
PZ
356#else /* !CONFIG_FAIR_GROUP_SCHED */
357
358static inline struct task_struct *task_of(struct sched_entity *se)
359{
360 return container_of(se, struct task_struct, se);
361}
bf0f6f24 362
62160e3f
IM
363static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
364{
365 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
366}
367
368#define entity_is_task(se) 1
369
b758149c
PZ
370#define for_each_sched_entity(se) \
371 for (; se; se = NULL)
bf0f6f24 372
b758149c 373static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 374{
b758149c 375 return &task_rq(p)->cfs;
bf0f6f24
IM
376}
377
b758149c
PZ
378static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
379{
380 struct task_struct *p = task_of(se);
381 struct rq *rq = task_rq(p);
382
383 return &rq->cfs;
384}
385
386/* runqueue "owned" by this group */
387static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
388{
389 return NULL;
390}
391
3d4b47b4
PZ
392static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
393{
394}
395
396static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
397{
398}
399
b758149c
PZ
400#define for_each_leaf_cfs_rq(rq, cfs_rq) \
401 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
402
403static inline int
404is_same_group(struct sched_entity *se, struct sched_entity *pse)
405{
406 return 1;
407}
408
409static inline struct sched_entity *parent_entity(struct sched_entity *se)
410{
411 return NULL;
412}
413
464b7527
PZ
414static inline void
415find_matching_se(struct sched_entity **se, struct sched_entity **pse)
416{
417}
418
b758149c
PZ
419#endif /* CONFIG_FAIR_GROUP_SCHED */
420
6c16a6dc
PZ
421static __always_inline
422void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
423
424/**************************************************************
425 * Scheduling class tree data structure manipulation methods:
426 */
427
0702e3eb 428static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 429{
368059a9
PZ
430 s64 delta = (s64)(vruntime - min_vruntime);
431 if (delta > 0)
02e0431a
PZ
432 min_vruntime = vruntime;
433
434 return min_vruntime;
435}
436
0702e3eb 437static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
438{
439 s64 delta = (s64)(vruntime - min_vruntime);
440 if (delta < 0)
441 min_vruntime = vruntime;
442
443 return min_vruntime;
444}
445
54fdc581
FC
446static inline int entity_before(struct sched_entity *a,
447 struct sched_entity *b)
448{
449 return (s64)(a->vruntime - b->vruntime) < 0;
450}
451
1af5f730
PZ
452static void update_min_vruntime(struct cfs_rq *cfs_rq)
453{
454 u64 vruntime = cfs_rq->min_vruntime;
455
456 if (cfs_rq->curr)
457 vruntime = cfs_rq->curr->vruntime;
458
459 if (cfs_rq->rb_leftmost) {
460 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
461 struct sched_entity,
462 run_node);
463
e17036da 464 if (!cfs_rq->curr)
1af5f730
PZ
465 vruntime = se->vruntime;
466 else
467 vruntime = min_vruntime(vruntime, se->vruntime);
468 }
469
470 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
471#ifndef CONFIG_64BIT
472 smp_wmb();
473 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
474#endif
1af5f730
PZ
475}
476
bf0f6f24
IM
477/*
478 * Enqueue an entity into the rb-tree:
479 */
0702e3eb 480static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
481{
482 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
483 struct rb_node *parent = NULL;
484 struct sched_entity *entry;
bf0f6f24
IM
485 int leftmost = 1;
486
487 /*
488 * Find the right place in the rbtree:
489 */
490 while (*link) {
491 parent = *link;
492 entry = rb_entry(parent, struct sched_entity, run_node);
493 /*
494 * We dont care about collisions. Nodes with
495 * the same key stay together.
496 */
2bd2d6f2 497 if (entity_before(se, entry)) {
bf0f6f24
IM
498 link = &parent->rb_left;
499 } else {
500 link = &parent->rb_right;
501 leftmost = 0;
502 }
503 }
504
505 /*
506 * Maintain a cache of leftmost tree entries (it is frequently
507 * used):
508 */
1af5f730 509 if (leftmost)
57cb499d 510 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
511
512 rb_link_node(&se->run_node, parent, link);
513 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
514}
515
0702e3eb 516static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 517{
3fe69747
PZ
518 if (cfs_rq->rb_leftmost == &se->run_node) {
519 struct rb_node *next_node;
3fe69747
PZ
520
521 next_node = rb_next(&se->run_node);
522 cfs_rq->rb_leftmost = next_node;
3fe69747 523 }
e9acbff6 524
bf0f6f24 525 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
526}
527
029632fb 528struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 529{
f4b6755f
PZ
530 struct rb_node *left = cfs_rq->rb_leftmost;
531
532 if (!left)
533 return NULL;
534
535 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
536}
537
ac53db59
RR
538static struct sched_entity *__pick_next_entity(struct sched_entity *se)
539{
540 struct rb_node *next = rb_next(&se->run_node);
541
542 if (!next)
543 return NULL;
544
545 return rb_entry(next, struct sched_entity, run_node);
546}
547
548#ifdef CONFIG_SCHED_DEBUG
029632fb 549struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 550{
7eee3e67 551 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 552
70eee74b
BS
553 if (!last)
554 return NULL;
7eee3e67
IM
555
556 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
557}
558
bf0f6f24
IM
559/**************************************************************
560 * Scheduling class statistics methods:
561 */
562
acb4a848 563int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 564 void __user *buffer, size_t *lenp,
b2be5e96
PZ
565 loff_t *ppos)
566{
8d65af78 567 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 568 int factor = get_update_sysctl_factor();
b2be5e96
PZ
569
570 if (ret || !write)
571 return ret;
572
573 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
574 sysctl_sched_min_granularity);
575
acb4a848
CE
576#define WRT_SYSCTL(name) \
577 (normalized_sysctl_##name = sysctl_##name / (factor))
578 WRT_SYSCTL(sched_min_granularity);
579 WRT_SYSCTL(sched_latency);
580 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
581#undef WRT_SYSCTL
582
b2be5e96
PZ
583 return 0;
584}
585#endif
647e7cac 586
a7be37ac 587/*
f9c0b095 588 * delta /= w
a7be37ac
PZ
589 */
590static inline unsigned long
591calc_delta_fair(unsigned long delta, struct sched_entity *se)
592{
f9c0b095
PZ
593 if (unlikely(se->load.weight != NICE_0_LOAD))
594 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
595
596 return delta;
597}
598
647e7cac
IM
599/*
600 * The idea is to set a period in which each task runs once.
601 *
532b1858 602 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
603 * this period because otherwise the slices get too small.
604 *
605 * p = (nr <= nl) ? l : l*nr/nl
606 */
4d78e7b6
PZ
607static u64 __sched_period(unsigned long nr_running)
608{
609 u64 period = sysctl_sched_latency;
b2be5e96 610 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
611
612 if (unlikely(nr_running > nr_latency)) {
4bf0b771 613 period = sysctl_sched_min_granularity;
4d78e7b6 614 period *= nr_running;
4d78e7b6
PZ
615 }
616
617 return period;
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
643 slice = calc_delta_mine(slice, se->load.weight, load);
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
ac884dec 649 * We calculate the vruntime slice of a to be inserted task
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
d6b55918 658static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 659static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 660
bf0f6f24
IM
661/*
662 * Update the current task's runtime statistics. Skip current tasks that
663 * are not in our scheduling class.
664 */
665static inline void
8ebc91d9
IM
666__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
667 unsigned long delta_exec)
bf0f6f24 668{
bbdba7c0 669 unsigned long delta_exec_weighted;
bf0f6f24 670
41acab88
LDM
671 schedstat_set(curr->statistics.exec_max,
672 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
673
674 curr->sum_exec_runtime += delta_exec;
7a62eabc 675 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 676 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 677
e9acbff6 678 curr->vruntime += delta_exec_weighted;
1af5f730 679 update_min_vruntime(cfs_rq);
3b3d190e 680
70caf8a6 681#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 682 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 683#endif
bf0f6f24
IM
684}
685
b7cc0896 686static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 687{
429d43bc 688 struct sched_entity *curr = cfs_rq->curr;
305e6835 689 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
690 unsigned long delta_exec;
691
692 if (unlikely(!curr))
693 return;
694
695 /*
696 * Get the amount of time the current task was running
697 * since the last time we changed load (this cannot
698 * overflow on 32 bits):
699 */
8ebc91d9 700 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
701 if (!delta_exec)
702 return;
bf0f6f24 703
8ebc91d9
IM
704 __update_curr(cfs_rq, curr, delta_exec);
705 curr->exec_start = now;
d842de87
SV
706
707 if (entity_is_task(curr)) {
708 struct task_struct *curtask = task_of(curr);
709
f977bb49 710 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 711 cpuacct_charge(curtask, delta_exec);
f06febc9 712 account_group_exec_runtime(curtask, delta_exec);
d842de87 713 }
ec12cb7f
PT
714
715 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
716}
717
718static inline void
5870db5b 719update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 720{
41acab88 721 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
722}
723
bf0f6f24
IM
724/*
725 * Task is being enqueued - update stats:
726 */
d2417e5a 727static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 728{
bf0f6f24
IM
729 /*
730 * Are we enqueueing a waiting task? (for current tasks
731 * a dequeue/enqueue event is a NOP)
732 */
429d43bc 733 if (se != cfs_rq->curr)
5870db5b 734 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
735}
736
bf0f6f24 737static void
9ef0a961 738update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 739{
41acab88
LDM
740 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
741 rq_of(cfs_rq)->clock - se->statistics.wait_start));
742 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
743 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
744 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
745#ifdef CONFIG_SCHEDSTATS
746 if (entity_is_task(se)) {
747 trace_sched_stat_wait(task_of(se),
41acab88 748 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
749 }
750#endif
41acab88 751 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
752}
753
754static inline void
19b6a2e3 755update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 756{
bf0f6f24
IM
757 /*
758 * Mark the end of the wait period if dequeueing a
759 * waiting task:
760 */
429d43bc 761 if (se != cfs_rq->curr)
9ef0a961 762 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
763}
764
765/*
766 * We are picking a new current task - update its stats:
767 */
768static inline void
79303e9e 769update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
770{
771 /*
772 * We are starting a new run period:
773 */
305e6835 774 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
775}
776
bf0f6f24
IM
777/**************************************************
778 * Scheduling class queueing methods:
779 */
780
cbee9f88
PZ
781#ifdef CONFIG_NUMA_BALANCING
782/*
6e5fb223 783 * numa task sample period in ms
cbee9f88 784 */
6e5fb223
PZ
785unsigned int sysctl_numa_balancing_scan_period_min = 100;
786unsigned int sysctl_numa_balancing_scan_period_max = 100*16;
787
788/* Portion of address space to scan in MB */
789unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88
PZ
790
791static void task_numa_placement(struct task_struct *p)
792{
793 int seq = ACCESS_ONCE(p->mm->numa_scan_seq);
794
795 if (p->numa_scan_seq == seq)
796 return;
797 p->numa_scan_seq = seq;
798
799 /* FIXME: Scheduling placement policy hints go here */
800}
801
802/*
803 * Got a PROT_NONE fault for a page on @node.
804 */
805void task_numa_fault(int node, int pages)
806{
807 struct task_struct *p = current;
808
809 /* FIXME: Allocate task-specific structure for placement policy here */
810
811 task_numa_placement(p);
812}
813
6e5fb223
PZ
814static void reset_ptenuma_scan(struct task_struct *p)
815{
816 ACCESS_ONCE(p->mm->numa_scan_seq)++;
817 p->mm->numa_scan_offset = 0;
818}
819
cbee9f88
PZ
820/*
821 * The expensive part of numa migration is done from task_work context.
822 * Triggered from task_tick_numa().
823 */
824void task_numa_work(struct callback_head *work)
825{
826 unsigned long migrate, next_scan, now = jiffies;
827 struct task_struct *p = current;
828 struct mm_struct *mm = p->mm;
6e5fb223 829 struct vm_area_struct *vma;
9f40604c
MG
830 unsigned long start, end;
831 long pages;
cbee9f88
PZ
832
833 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
834
835 work->next = work; /* protect against double add */
836 /*
837 * Who cares about NUMA placement when they're dying.
838 *
839 * NOTE: make sure not to dereference p->mm before this check,
840 * exit_task_work() happens _after_ exit_mm() so we could be called
841 * without p->mm even though we still had it when we enqueued this
842 * work.
843 */
844 if (p->flags & PF_EXITING)
845 return;
846
847 /*
848 * Enforce maximal scan/migration frequency..
849 */
850 migrate = mm->numa_next_scan;
851 if (time_before(now, migrate))
852 return;
853
854 if (p->numa_scan_period == 0)
855 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
856
857 next_scan = now + 2*msecs_to_jiffies(p->numa_scan_period);
858 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
859 return;
860
9f40604c
MG
861 start = mm->numa_scan_offset;
862 pages = sysctl_numa_balancing_scan_size;
863 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
864 if (!pages)
865 return;
cbee9f88 866
6e5fb223 867 down_read(&mm->mmap_sem);
9f40604c 868 vma = find_vma(mm, start);
6e5fb223
PZ
869 if (!vma) {
870 reset_ptenuma_scan(p);
9f40604c 871 start = 0;
6e5fb223
PZ
872 vma = mm->mmap;
873 }
9f40604c 874 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
875 if (!vma_migratable(vma))
876 continue;
877
878 /* Skip small VMAs. They are not likely to be of relevance */
879 if (((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) < HPAGE_PMD_NR)
880 continue;
881
9f40604c
MG
882 do {
883 start = max(start, vma->vm_start);
884 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
885 end = min(end, vma->vm_end);
886 pages -= change_prot_numa(vma, start, end);
6e5fb223 887
9f40604c
MG
888 start = end;
889 if (pages <= 0)
890 goto out;
891 } while (end != vma->vm_end);
cbee9f88 892 }
6e5fb223 893
9f40604c 894out:
6e5fb223
PZ
895 /*
896 * It is possible to reach the end of the VMA list but the last few VMAs are
897 * not guaranteed to the vma_migratable. If they are not, we would find the
898 * !migratable VMA on the next scan but not reset the scanner to the start
899 * so check it now.
900 */
901 if (vma)
9f40604c 902 mm->numa_scan_offset = start;
6e5fb223
PZ
903 else
904 reset_ptenuma_scan(p);
905 up_read(&mm->mmap_sem);
cbee9f88
PZ
906}
907
908/*
909 * Drive the periodic memory faults..
910 */
911void task_tick_numa(struct rq *rq, struct task_struct *curr)
912{
913 struct callback_head *work = &curr->numa_work;
914 u64 period, now;
915
916 /*
917 * We don't care about NUMA placement if we don't have memory.
918 */
919 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
920 return;
921
922 /*
923 * Using runtime rather than walltime has the dual advantage that
924 * we (mostly) drive the selection from busy threads and that the
925 * task needs to have done some actual work before we bother with
926 * NUMA placement.
927 */
928 now = curr->se.sum_exec_runtime;
929 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
930
931 if (now - curr->node_stamp > period) {
932 curr->node_stamp = now;
933
934 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
935 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
936 task_work_add(curr, work, true);
937 }
938 }
939}
940#else
941static void task_tick_numa(struct rq *rq, struct task_struct *curr)
942{
943}
944#endif /* CONFIG_NUMA_BALANCING */
945
30cfdcfc
DA
946static void
947account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
948{
949 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 950 if (!parent_entity(se))
029632fb 951 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
952#ifdef CONFIG_SMP
953 if (entity_is_task(se))
eb95308e 954 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 955#endif
30cfdcfc 956 cfs_rq->nr_running++;
30cfdcfc
DA
957}
958
959static void
960account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
961{
962 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 963 if (!parent_entity(se))
029632fb 964 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 965 if (entity_is_task(se))
b87f1724 966 list_del_init(&se->group_node);
30cfdcfc 967 cfs_rq->nr_running--;
30cfdcfc
DA
968}
969
3ff6dcac 970#ifdef CONFIG_FAIR_GROUP_SCHED
64660c86
PT
971/* we need this in update_cfs_load and load-balance functions below */
972static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3ff6dcac 973# ifdef CONFIG_SMP
d6b55918
PT
974static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
975 int global_update)
976{
977 struct task_group *tg = cfs_rq->tg;
978 long load_avg;
979
980 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
981 load_avg -= cfs_rq->load_contribution;
982
983 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
984 atomic_add(load_avg, &tg->load_weight);
985 cfs_rq->load_contribution += load_avg;
986 }
987}
988
989static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 990{
a7a4f8a7 991 u64 period = sysctl_sched_shares_window;
2069dd75 992 u64 now, delta;
e33078ba 993 unsigned long load = cfs_rq->load.weight;
2069dd75 994
64660c86 995 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
2069dd75
PZ
996 return;
997
05ca62c6 998 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
999 delta = now - cfs_rq->load_stamp;
1000
e33078ba
PT
1001 /* truncate load history at 4 idle periods */
1002 if (cfs_rq->load_stamp > cfs_rq->load_last &&
1003 now - cfs_rq->load_last > 4 * period) {
1004 cfs_rq->load_period = 0;
1005 cfs_rq->load_avg = 0;
f07333bf 1006 delta = period - 1;
e33078ba
PT
1007 }
1008
2069dd75 1009 cfs_rq->load_stamp = now;
3b3d190e 1010 cfs_rq->load_unacc_exec_time = 0;
2069dd75 1011 cfs_rq->load_period += delta;
e33078ba
PT
1012 if (load) {
1013 cfs_rq->load_last = now;
1014 cfs_rq->load_avg += delta * load;
1015 }
2069dd75 1016
d6b55918
PT
1017 /* consider updating load contribution on each fold or truncate */
1018 if (global_update || cfs_rq->load_period > period
1019 || !cfs_rq->load_period)
1020 update_cfs_rq_load_contribution(cfs_rq, global_update);
1021
2069dd75
PZ
1022 while (cfs_rq->load_period > period) {
1023 /*
1024 * Inline assembly required to prevent the compiler
1025 * optimising this loop into a divmod call.
1026 * See __iter_div_u64_rem() for another example of this.
1027 */
1028 asm("" : "+rm" (cfs_rq->load_period));
1029 cfs_rq->load_period /= 2;
1030 cfs_rq->load_avg /= 2;
1031 }
3d4b47b4 1032
e33078ba
PT
1033 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
1034 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
1035}
1036
cf5f0acf
PZ
1037static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1038{
1039 long tg_weight;
1040
1041 /*
1042 * Use this CPU's actual weight instead of the last load_contribution
1043 * to gain a more accurate current total weight. See
1044 * update_cfs_rq_load_contribution().
1045 */
1046 tg_weight = atomic_read(&tg->load_weight);
1047 tg_weight -= cfs_rq->load_contribution;
1048 tg_weight += cfs_rq->load.weight;
1049
1050 return tg_weight;
1051}
1052
6d5ab293 1053static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1054{
cf5f0acf 1055 long tg_weight, load, shares;
3ff6dcac 1056
cf5f0acf 1057 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1058 load = cfs_rq->load.weight;
3ff6dcac 1059
3ff6dcac 1060 shares = (tg->shares * load);
cf5f0acf
PZ
1061 if (tg_weight)
1062 shares /= tg_weight;
3ff6dcac
YZ
1063
1064 if (shares < MIN_SHARES)
1065 shares = MIN_SHARES;
1066 if (shares > tg->shares)
1067 shares = tg->shares;
1068
1069 return shares;
1070}
1071
1072static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
1073{
1074 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
1075 update_cfs_load(cfs_rq, 0);
6d5ab293 1076 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
1077 }
1078}
1079# else /* CONFIG_SMP */
1080static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
1081{
1082}
1083
6d5ab293 1084static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1085{
1086 return tg->shares;
1087}
1088
1089static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
1090{
1091}
1092# endif /* CONFIG_SMP */
2069dd75
PZ
1093static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1094 unsigned long weight)
1095{
19e5eebb
PT
1096 if (se->on_rq) {
1097 /* commit outstanding execution time */
1098 if (cfs_rq->curr == se)
1099 update_curr(cfs_rq);
2069dd75 1100 account_entity_dequeue(cfs_rq, se);
19e5eebb 1101 }
2069dd75
PZ
1102
1103 update_load_set(&se->load, weight);
1104
1105 if (se->on_rq)
1106 account_entity_enqueue(cfs_rq, se);
1107}
1108
6d5ab293 1109static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1110{
1111 struct task_group *tg;
1112 struct sched_entity *se;
3ff6dcac 1113 long shares;
2069dd75 1114
2069dd75
PZ
1115 tg = cfs_rq->tg;
1116 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1117 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1118 return;
3ff6dcac
YZ
1119#ifndef CONFIG_SMP
1120 if (likely(se->load.weight == tg->shares))
1121 return;
1122#endif
6d5ab293 1123 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1124
1125 reweight_entity(cfs_rq_of(se), se, shares);
1126}
1127#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 1128static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
1129{
1130}
1131
6d5ab293 1132static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1133{
1134}
43365bd7
PT
1135
1136static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
1137{
1138}
2069dd75
PZ
1139#endif /* CONFIG_FAIR_GROUP_SCHED */
1140
2396af69 1141static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1142{
bf0f6f24 1143#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1144 struct task_struct *tsk = NULL;
1145
1146 if (entity_is_task(se))
1147 tsk = task_of(se);
1148
41acab88
LDM
1149 if (se->statistics.sleep_start) {
1150 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
1151
1152 if ((s64)delta < 0)
1153 delta = 0;
1154
41acab88
LDM
1155 if (unlikely(delta > se->statistics.sleep_max))
1156 se->statistics.sleep_max = delta;
bf0f6f24 1157
8c79a045 1158 se->statistics.sleep_start = 0;
41acab88 1159 se->statistics.sum_sleep_runtime += delta;
9745512c 1160
768d0c27 1161 if (tsk) {
e414314c 1162 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1163 trace_sched_stat_sleep(tsk, delta);
1164 }
bf0f6f24 1165 }
41acab88
LDM
1166 if (se->statistics.block_start) {
1167 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1168
1169 if ((s64)delta < 0)
1170 delta = 0;
1171
41acab88
LDM
1172 if (unlikely(delta > se->statistics.block_max))
1173 se->statistics.block_max = delta;
bf0f6f24 1174
8c79a045 1175 se->statistics.block_start = 0;
41acab88 1176 se->statistics.sum_sleep_runtime += delta;
30084fbd 1177
e414314c 1178 if (tsk) {
8f0dfc34 1179 if (tsk->in_iowait) {
41acab88
LDM
1180 se->statistics.iowait_sum += delta;
1181 se->statistics.iowait_count++;
768d0c27 1182 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1183 }
1184
b781a602
AV
1185 trace_sched_stat_blocked(tsk, delta);
1186
e414314c
PZ
1187 /*
1188 * Blocking time is in units of nanosecs, so shift by
1189 * 20 to get a milliseconds-range estimation of the
1190 * amount of time that the task spent sleeping:
1191 */
1192 if (unlikely(prof_on == SLEEP_PROFILING)) {
1193 profile_hits(SLEEP_PROFILING,
1194 (void *)get_wchan(tsk),
1195 delta >> 20);
1196 }
1197 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1198 }
bf0f6f24
IM
1199 }
1200#endif
1201}
1202
ddc97297
PZ
1203static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1204{
1205#ifdef CONFIG_SCHED_DEBUG
1206 s64 d = se->vruntime - cfs_rq->min_vruntime;
1207
1208 if (d < 0)
1209 d = -d;
1210
1211 if (d > 3*sysctl_sched_latency)
1212 schedstat_inc(cfs_rq, nr_spread_over);
1213#endif
1214}
1215
aeb73b04
PZ
1216static void
1217place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1218{
1af5f730 1219 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1220
2cb8600e
PZ
1221 /*
1222 * The 'current' period is already promised to the current tasks,
1223 * however the extra weight of the new task will slow them down a
1224 * little, place the new task so that it fits in the slot that
1225 * stays open at the end.
1226 */
94dfb5e7 1227 if (initial && sched_feat(START_DEBIT))
f9c0b095 1228 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1229
a2e7a7eb 1230 /* sleeps up to a single latency don't count. */
5ca9880c 1231 if (!initial) {
a2e7a7eb 1232 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1233
a2e7a7eb
MG
1234 /*
1235 * Halve their sleep time's effect, to allow
1236 * for a gentler effect of sleepers:
1237 */
1238 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1239 thresh >>= 1;
51e0304c 1240
a2e7a7eb 1241 vruntime -= thresh;
aeb73b04
PZ
1242 }
1243
b5d9d734
MG
1244 /* ensure we never gain time by being placed backwards. */
1245 vruntime = max_vruntime(se->vruntime, vruntime);
1246
67e9fb2a 1247 se->vruntime = vruntime;
aeb73b04
PZ
1248}
1249
d3d9dc33
PT
1250static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1251
bf0f6f24 1252static void
88ec22d3 1253enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1254{
88ec22d3
PZ
1255 /*
1256 * Update the normalized vruntime before updating min_vruntime
1257 * through callig update_curr().
1258 */
371fd7e7 1259 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1260 se->vruntime += cfs_rq->min_vruntime;
1261
bf0f6f24 1262 /*
a2a2d680 1263 * Update run-time statistics of the 'current'.
bf0f6f24 1264 */
b7cc0896 1265 update_curr(cfs_rq);
d6b55918 1266 update_cfs_load(cfs_rq, 0);
a992241d 1267 account_entity_enqueue(cfs_rq, se);
6d5ab293 1268 update_cfs_shares(cfs_rq);
bf0f6f24 1269
88ec22d3 1270 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1271 place_entity(cfs_rq, se, 0);
2396af69 1272 enqueue_sleeper(cfs_rq, se);
e9acbff6 1273 }
bf0f6f24 1274
d2417e5a 1275 update_stats_enqueue(cfs_rq, se);
ddc97297 1276 check_spread(cfs_rq, se);
83b699ed
SV
1277 if (se != cfs_rq->curr)
1278 __enqueue_entity(cfs_rq, se);
2069dd75 1279 se->on_rq = 1;
3d4b47b4 1280
d3d9dc33 1281 if (cfs_rq->nr_running == 1) {
3d4b47b4 1282 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1283 check_enqueue_throttle(cfs_rq);
1284 }
bf0f6f24
IM
1285}
1286
2c13c919 1287static void __clear_buddies_last(struct sched_entity *se)
2002c695 1288{
2c13c919
RR
1289 for_each_sched_entity(se) {
1290 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1291 if (cfs_rq->last == se)
1292 cfs_rq->last = NULL;
1293 else
1294 break;
1295 }
1296}
2002c695 1297
2c13c919
RR
1298static void __clear_buddies_next(struct sched_entity *se)
1299{
1300 for_each_sched_entity(se) {
1301 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1302 if (cfs_rq->next == se)
1303 cfs_rq->next = NULL;
1304 else
1305 break;
1306 }
2002c695
PZ
1307}
1308
ac53db59
RR
1309static void __clear_buddies_skip(struct sched_entity *se)
1310{
1311 for_each_sched_entity(se) {
1312 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1313 if (cfs_rq->skip == se)
1314 cfs_rq->skip = NULL;
1315 else
1316 break;
1317 }
1318}
1319
a571bbea
PZ
1320static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1321{
2c13c919
RR
1322 if (cfs_rq->last == se)
1323 __clear_buddies_last(se);
1324
1325 if (cfs_rq->next == se)
1326 __clear_buddies_next(se);
ac53db59
RR
1327
1328 if (cfs_rq->skip == se)
1329 __clear_buddies_skip(se);
a571bbea
PZ
1330}
1331
6c16a6dc 1332static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1333
bf0f6f24 1334static void
371fd7e7 1335dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1336{
a2a2d680
DA
1337 /*
1338 * Update run-time statistics of the 'current'.
1339 */
1340 update_curr(cfs_rq);
1341
19b6a2e3 1342 update_stats_dequeue(cfs_rq, se);
371fd7e7 1343 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1344#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1345 if (entity_is_task(se)) {
1346 struct task_struct *tsk = task_of(se);
1347
1348 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1349 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1350 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1351 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1352 }
db36cc7d 1353#endif
67e9fb2a
PZ
1354 }
1355
2002c695 1356 clear_buddies(cfs_rq, se);
4793241b 1357
83b699ed 1358 if (se != cfs_rq->curr)
30cfdcfc 1359 __dequeue_entity(cfs_rq, se);
2069dd75 1360 se->on_rq = 0;
d6b55918 1361 update_cfs_load(cfs_rq, 0);
30cfdcfc 1362 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1363
1364 /*
1365 * Normalize the entity after updating the min_vruntime because the
1366 * update can refer to the ->curr item and we need to reflect this
1367 * movement in our normalized position.
1368 */
371fd7e7 1369 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1370 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1371
d8b4986d
PT
1372 /* return excess runtime on last dequeue */
1373 return_cfs_rq_runtime(cfs_rq);
1374
1e876231
PZ
1375 update_min_vruntime(cfs_rq);
1376 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1377}
1378
1379/*
1380 * Preempt the current task with a newly woken task if needed:
1381 */
7c92e54f 1382static void
2e09bf55 1383check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1384{
11697830 1385 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1386 struct sched_entity *se;
1387 s64 delta;
11697830 1388
6d0f0ebd 1389 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1390 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1391 if (delta_exec > ideal_runtime) {
bf0f6f24 1392 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1393 /*
1394 * The current task ran long enough, ensure it doesn't get
1395 * re-elected due to buddy favours.
1396 */
1397 clear_buddies(cfs_rq, curr);
f685ceac
MG
1398 return;
1399 }
1400
1401 /*
1402 * Ensure that a task that missed wakeup preemption by a
1403 * narrow margin doesn't have to wait for a full slice.
1404 * This also mitigates buddy induced latencies under load.
1405 */
f685ceac
MG
1406 if (delta_exec < sysctl_sched_min_granularity)
1407 return;
1408
f4cfb33e
WX
1409 se = __pick_first_entity(cfs_rq);
1410 delta = curr->vruntime - se->vruntime;
f685ceac 1411
f4cfb33e
WX
1412 if (delta < 0)
1413 return;
d7d82944 1414
f4cfb33e
WX
1415 if (delta > ideal_runtime)
1416 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1417}
1418
83b699ed 1419static void
8494f412 1420set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1421{
83b699ed
SV
1422 /* 'current' is not kept within the tree. */
1423 if (se->on_rq) {
1424 /*
1425 * Any task has to be enqueued before it get to execute on
1426 * a CPU. So account for the time it spent waiting on the
1427 * runqueue.
1428 */
1429 update_stats_wait_end(cfs_rq, se);
1430 __dequeue_entity(cfs_rq, se);
1431 }
1432
79303e9e 1433 update_stats_curr_start(cfs_rq, se);
429d43bc 1434 cfs_rq->curr = se;
eba1ed4b
IM
1435#ifdef CONFIG_SCHEDSTATS
1436 /*
1437 * Track our maximum slice length, if the CPU's load is at
1438 * least twice that of our own weight (i.e. dont track it
1439 * when there are only lesser-weight tasks around):
1440 */
495eca49 1441 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1442 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1443 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1444 }
1445#endif
4a55b450 1446 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1447}
1448
3f3a4904
PZ
1449static int
1450wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1451
ac53db59
RR
1452/*
1453 * Pick the next process, keeping these things in mind, in this order:
1454 * 1) keep things fair between processes/task groups
1455 * 2) pick the "next" process, since someone really wants that to run
1456 * 3) pick the "last" process, for cache locality
1457 * 4) do not run the "skip" process, if something else is available
1458 */
f4b6755f 1459static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1460{
ac53db59 1461 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1462 struct sched_entity *left = se;
f4b6755f 1463
ac53db59
RR
1464 /*
1465 * Avoid running the skip buddy, if running something else can
1466 * be done without getting too unfair.
1467 */
1468 if (cfs_rq->skip == se) {
1469 struct sched_entity *second = __pick_next_entity(se);
1470 if (second && wakeup_preempt_entity(second, left) < 1)
1471 se = second;
1472 }
aa2ac252 1473
f685ceac
MG
1474 /*
1475 * Prefer last buddy, try to return the CPU to a preempted task.
1476 */
1477 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1478 se = cfs_rq->last;
1479
ac53db59
RR
1480 /*
1481 * Someone really wants this to run. If it's not unfair, run it.
1482 */
1483 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1484 se = cfs_rq->next;
1485
f685ceac 1486 clear_buddies(cfs_rq, se);
4793241b
PZ
1487
1488 return se;
aa2ac252
PZ
1489}
1490
d3d9dc33
PT
1491static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1492
ab6cde26 1493static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1494{
1495 /*
1496 * If still on the runqueue then deactivate_task()
1497 * was not called and update_curr() has to be done:
1498 */
1499 if (prev->on_rq)
b7cc0896 1500 update_curr(cfs_rq);
bf0f6f24 1501
d3d9dc33
PT
1502 /* throttle cfs_rqs exceeding runtime */
1503 check_cfs_rq_runtime(cfs_rq);
1504
ddc97297 1505 check_spread(cfs_rq, prev);
30cfdcfc 1506 if (prev->on_rq) {
5870db5b 1507 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1508 /* Put 'current' back into the tree. */
1509 __enqueue_entity(cfs_rq, prev);
1510 }
429d43bc 1511 cfs_rq->curr = NULL;
bf0f6f24
IM
1512}
1513
8f4d37ec
PZ
1514static void
1515entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1516{
bf0f6f24 1517 /*
30cfdcfc 1518 * Update run-time statistics of the 'current'.
bf0f6f24 1519 */
30cfdcfc 1520 update_curr(cfs_rq);
bf0f6f24 1521
43365bd7
PT
1522 /*
1523 * Update share accounting for long-running entities.
1524 */
1525 update_entity_shares_tick(cfs_rq);
1526
8f4d37ec
PZ
1527#ifdef CONFIG_SCHED_HRTICK
1528 /*
1529 * queued ticks are scheduled to match the slice, so don't bother
1530 * validating it and just reschedule.
1531 */
983ed7a6
HH
1532 if (queued) {
1533 resched_task(rq_of(cfs_rq)->curr);
1534 return;
1535 }
8f4d37ec
PZ
1536 /*
1537 * don't let the period tick interfere with the hrtick preemption
1538 */
1539 if (!sched_feat(DOUBLE_TICK) &&
1540 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1541 return;
1542#endif
1543
2c2efaed 1544 if (cfs_rq->nr_running > 1)
2e09bf55 1545 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1546}
1547
ab84d31e
PT
1548
1549/**************************************************
1550 * CFS bandwidth control machinery
1551 */
1552
1553#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1554
1555#ifdef HAVE_JUMP_LABEL
c5905afb 1556static struct static_key __cfs_bandwidth_used;
029632fb
PZ
1557
1558static inline bool cfs_bandwidth_used(void)
1559{
c5905afb 1560 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
1561}
1562
1563void account_cfs_bandwidth_used(int enabled, int was_enabled)
1564{
1565 /* only need to count groups transitioning between enabled/!enabled */
1566 if (enabled && !was_enabled)
c5905afb 1567 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 1568 else if (!enabled && was_enabled)
c5905afb 1569 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
1570}
1571#else /* HAVE_JUMP_LABEL */
1572static bool cfs_bandwidth_used(void)
1573{
1574 return true;
1575}
1576
1577void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1578#endif /* HAVE_JUMP_LABEL */
1579
ab84d31e
PT
1580/*
1581 * default period for cfs group bandwidth.
1582 * default: 0.1s, units: nanoseconds
1583 */
1584static inline u64 default_cfs_period(void)
1585{
1586 return 100000000ULL;
1587}
ec12cb7f
PT
1588
1589static inline u64 sched_cfs_bandwidth_slice(void)
1590{
1591 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1592}
1593
a9cf55b2
PT
1594/*
1595 * Replenish runtime according to assigned quota and update expiration time.
1596 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1597 * additional synchronization around rq->lock.
1598 *
1599 * requires cfs_b->lock
1600 */
029632fb 1601void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
1602{
1603 u64 now;
1604
1605 if (cfs_b->quota == RUNTIME_INF)
1606 return;
1607
1608 now = sched_clock_cpu(smp_processor_id());
1609 cfs_b->runtime = cfs_b->quota;
1610 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1611}
1612
029632fb
PZ
1613static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1614{
1615 return &tg->cfs_bandwidth;
1616}
1617
85dac906
PT
1618/* returns 0 on failure to allocate runtime */
1619static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1620{
1621 struct task_group *tg = cfs_rq->tg;
1622 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1623 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1624
1625 /* note: this is a positive sum as runtime_remaining <= 0 */
1626 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1627
1628 raw_spin_lock(&cfs_b->lock);
1629 if (cfs_b->quota == RUNTIME_INF)
1630 amount = min_amount;
58088ad0 1631 else {
a9cf55b2
PT
1632 /*
1633 * If the bandwidth pool has become inactive, then at least one
1634 * period must have elapsed since the last consumption.
1635 * Refresh the global state and ensure bandwidth timer becomes
1636 * active.
1637 */
1638 if (!cfs_b->timer_active) {
1639 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1640 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1641 }
58088ad0
PT
1642
1643 if (cfs_b->runtime > 0) {
1644 amount = min(cfs_b->runtime, min_amount);
1645 cfs_b->runtime -= amount;
1646 cfs_b->idle = 0;
1647 }
ec12cb7f 1648 }
a9cf55b2 1649 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1650 raw_spin_unlock(&cfs_b->lock);
1651
1652 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1653 /*
1654 * we may have advanced our local expiration to account for allowed
1655 * spread between our sched_clock and the one on which runtime was
1656 * issued.
1657 */
1658 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1659 cfs_rq->runtime_expires = expires;
85dac906
PT
1660
1661 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1662}
1663
a9cf55b2
PT
1664/*
1665 * Note: This depends on the synchronization provided by sched_clock and the
1666 * fact that rq->clock snapshots this value.
1667 */
1668static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1669{
a9cf55b2
PT
1670 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1671 struct rq *rq = rq_of(cfs_rq);
1672
1673 /* if the deadline is ahead of our clock, nothing to do */
1674 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1675 return;
1676
a9cf55b2
PT
1677 if (cfs_rq->runtime_remaining < 0)
1678 return;
1679
1680 /*
1681 * If the local deadline has passed we have to consider the
1682 * possibility that our sched_clock is 'fast' and the global deadline
1683 * has not truly expired.
1684 *
1685 * Fortunately we can check determine whether this the case by checking
1686 * whether the global deadline has advanced.
1687 */
1688
1689 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1690 /* extend local deadline, drift is bounded above by 2 ticks */
1691 cfs_rq->runtime_expires += TICK_NSEC;
1692 } else {
1693 /* global deadline is ahead, expiration has passed */
1694 cfs_rq->runtime_remaining = 0;
1695 }
1696}
1697
1698static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1699 unsigned long delta_exec)
1700{
1701 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1702 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1703 expire_cfs_rq_runtime(cfs_rq);
1704
1705 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1706 return;
1707
85dac906
PT
1708 /*
1709 * if we're unable to extend our runtime we resched so that the active
1710 * hierarchy can be throttled
1711 */
1712 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1713 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1714}
1715
6c16a6dc
PZ
1716static __always_inline
1717void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 1718{
56f570e5 1719 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
1720 return;
1721
1722 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1723}
1724
85dac906
PT
1725static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1726{
56f570e5 1727 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
1728}
1729
64660c86
PT
1730/* check whether cfs_rq, or any parent, is throttled */
1731static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1732{
56f570e5 1733 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
1734}
1735
1736/*
1737 * Ensure that neither of the group entities corresponding to src_cpu or
1738 * dest_cpu are members of a throttled hierarchy when performing group
1739 * load-balance operations.
1740 */
1741static inline int throttled_lb_pair(struct task_group *tg,
1742 int src_cpu, int dest_cpu)
1743{
1744 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1745
1746 src_cfs_rq = tg->cfs_rq[src_cpu];
1747 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1748
1749 return throttled_hierarchy(src_cfs_rq) ||
1750 throttled_hierarchy(dest_cfs_rq);
1751}
1752
1753/* updated child weight may affect parent so we have to do this bottom up */
1754static int tg_unthrottle_up(struct task_group *tg, void *data)
1755{
1756 struct rq *rq = data;
1757 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1758
1759 cfs_rq->throttle_count--;
1760#ifdef CONFIG_SMP
1761 if (!cfs_rq->throttle_count) {
1762 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1763
1764 /* leaving throttled state, advance shares averaging windows */
1765 cfs_rq->load_stamp += delta;
1766 cfs_rq->load_last += delta;
1767
1768 /* update entity weight now that we are on_rq again */
1769 update_cfs_shares(cfs_rq);
1770 }
1771#endif
1772
1773 return 0;
1774}
1775
1776static int tg_throttle_down(struct task_group *tg, void *data)
1777{
1778 struct rq *rq = data;
1779 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1780
1781 /* group is entering throttled state, record last load */
1782 if (!cfs_rq->throttle_count)
1783 update_cfs_load(cfs_rq, 0);
1784 cfs_rq->throttle_count++;
1785
1786 return 0;
1787}
1788
d3d9dc33 1789static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
1790{
1791 struct rq *rq = rq_of(cfs_rq);
1792 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1793 struct sched_entity *se;
1794 long task_delta, dequeue = 1;
1795
1796 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1797
1798 /* account load preceding throttle */
64660c86
PT
1799 rcu_read_lock();
1800 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1801 rcu_read_unlock();
85dac906
PT
1802
1803 task_delta = cfs_rq->h_nr_running;
1804 for_each_sched_entity(se) {
1805 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1806 /* throttled entity or throttle-on-deactivate */
1807 if (!se->on_rq)
1808 break;
1809
1810 if (dequeue)
1811 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1812 qcfs_rq->h_nr_running -= task_delta;
1813
1814 if (qcfs_rq->load.weight)
1815 dequeue = 0;
1816 }
1817
1818 if (!se)
1819 rq->nr_running -= task_delta;
1820
1821 cfs_rq->throttled = 1;
e8da1b18 1822 cfs_rq->throttled_timestamp = rq->clock;
85dac906
PT
1823 raw_spin_lock(&cfs_b->lock);
1824 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1825 raw_spin_unlock(&cfs_b->lock);
1826}
1827
029632fb 1828void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
1829{
1830 struct rq *rq = rq_of(cfs_rq);
1831 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1832 struct sched_entity *se;
1833 int enqueue = 1;
1834 long task_delta;
1835
1836 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1837
1838 cfs_rq->throttled = 0;
1839 raw_spin_lock(&cfs_b->lock);
e8da1b18 1840 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
671fd9da
PT
1841 list_del_rcu(&cfs_rq->throttled_list);
1842 raw_spin_unlock(&cfs_b->lock);
e8da1b18 1843 cfs_rq->throttled_timestamp = 0;
671fd9da 1844
64660c86
PT
1845 update_rq_clock(rq);
1846 /* update hierarchical throttle state */
1847 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1848
671fd9da
PT
1849 if (!cfs_rq->load.weight)
1850 return;
1851
1852 task_delta = cfs_rq->h_nr_running;
1853 for_each_sched_entity(se) {
1854 if (se->on_rq)
1855 enqueue = 0;
1856
1857 cfs_rq = cfs_rq_of(se);
1858 if (enqueue)
1859 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1860 cfs_rq->h_nr_running += task_delta;
1861
1862 if (cfs_rq_throttled(cfs_rq))
1863 break;
1864 }
1865
1866 if (!se)
1867 rq->nr_running += task_delta;
1868
1869 /* determine whether we need to wake up potentially idle cpu */
1870 if (rq->curr == rq->idle && rq->cfs.nr_running)
1871 resched_task(rq->curr);
1872}
1873
1874static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1875 u64 remaining, u64 expires)
1876{
1877 struct cfs_rq *cfs_rq;
1878 u64 runtime = remaining;
1879
1880 rcu_read_lock();
1881 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1882 throttled_list) {
1883 struct rq *rq = rq_of(cfs_rq);
1884
1885 raw_spin_lock(&rq->lock);
1886 if (!cfs_rq_throttled(cfs_rq))
1887 goto next;
1888
1889 runtime = -cfs_rq->runtime_remaining + 1;
1890 if (runtime > remaining)
1891 runtime = remaining;
1892 remaining -= runtime;
1893
1894 cfs_rq->runtime_remaining += runtime;
1895 cfs_rq->runtime_expires = expires;
1896
1897 /* we check whether we're throttled above */
1898 if (cfs_rq->runtime_remaining > 0)
1899 unthrottle_cfs_rq(cfs_rq);
1900
1901next:
1902 raw_spin_unlock(&rq->lock);
1903
1904 if (!remaining)
1905 break;
1906 }
1907 rcu_read_unlock();
1908
1909 return remaining;
1910}
1911
58088ad0
PT
1912/*
1913 * Responsible for refilling a task_group's bandwidth and unthrottling its
1914 * cfs_rqs as appropriate. If there has been no activity within the last
1915 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1916 * used to track this state.
1917 */
1918static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1919{
671fd9da
PT
1920 u64 runtime, runtime_expires;
1921 int idle = 1, throttled;
58088ad0
PT
1922
1923 raw_spin_lock(&cfs_b->lock);
1924 /* no need to continue the timer with no bandwidth constraint */
1925 if (cfs_b->quota == RUNTIME_INF)
1926 goto out_unlock;
1927
671fd9da
PT
1928 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1929 /* idle depends on !throttled (for the case of a large deficit) */
1930 idle = cfs_b->idle && !throttled;
e8da1b18 1931 cfs_b->nr_periods += overrun;
671fd9da 1932
a9cf55b2
PT
1933 /* if we're going inactive then everything else can be deferred */
1934 if (idle)
1935 goto out_unlock;
1936
1937 __refill_cfs_bandwidth_runtime(cfs_b);
1938
671fd9da
PT
1939 if (!throttled) {
1940 /* mark as potentially idle for the upcoming period */
1941 cfs_b->idle = 1;
1942 goto out_unlock;
1943 }
1944
e8da1b18
NR
1945 /* account preceding periods in which throttling occurred */
1946 cfs_b->nr_throttled += overrun;
1947
671fd9da
PT
1948 /*
1949 * There are throttled entities so we must first use the new bandwidth
1950 * to unthrottle them before making it generally available. This
1951 * ensures that all existing debts will be paid before a new cfs_rq is
1952 * allowed to run.
1953 */
1954 runtime = cfs_b->runtime;
1955 runtime_expires = cfs_b->runtime_expires;
1956 cfs_b->runtime = 0;
1957
1958 /*
1959 * This check is repeated as we are holding onto the new bandwidth
1960 * while we unthrottle. This can potentially race with an unthrottled
1961 * group trying to acquire new bandwidth from the global pool.
1962 */
1963 while (throttled && runtime > 0) {
1964 raw_spin_unlock(&cfs_b->lock);
1965 /* we can't nest cfs_b->lock while distributing bandwidth */
1966 runtime = distribute_cfs_runtime(cfs_b, runtime,
1967 runtime_expires);
1968 raw_spin_lock(&cfs_b->lock);
1969
1970 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1971 }
58088ad0 1972
671fd9da
PT
1973 /* return (any) remaining runtime */
1974 cfs_b->runtime = runtime;
1975 /*
1976 * While we are ensured activity in the period following an
1977 * unthrottle, this also covers the case in which the new bandwidth is
1978 * insufficient to cover the existing bandwidth deficit. (Forcing the
1979 * timer to remain active while there are any throttled entities.)
1980 */
1981 cfs_b->idle = 0;
58088ad0
PT
1982out_unlock:
1983 if (idle)
1984 cfs_b->timer_active = 0;
1985 raw_spin_unlock(&cfs_b->lock);
1986
1987 return idle;
1988}
d3d9dc33 1989
d8b4986d
PT
1990/* a cfs_rq won't donate quota below this amount */
1991static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1992/* minimum remaining period time to redistribute slack quota */
1993static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1994/* how long we wait to gather additional slack before distributing */
1995static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1996
1997/* are we near the end of the current quota period? */
1998static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1999{
2000 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2001 u64 remaining;
2002
2003 /* if the call-back is running a quota refresh is already occurring */
2004 if (hrtimer_callback_running(refresh_timer))
2005 return 1;
2006
2007 /* is a quota refresh about to occur? */
2008 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2009 if (remaining < min_expire)
2010 return 1;
2011
2012 return 0;
2013}
2014
2015static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2016{
2017 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2018
2019 /* if there's a quota refresh soon don't bother with slack */
2020 if (runtime_refresh_within(cfs_b, min_left))
2021 return;
2022
2023 start_bandwidth_timer(&cfs_b->slack_timer,
2024 ns_to_ktime(cfs_bandwidth_slack_period));
2025}
2026
2027/* we know any runtime found here is valid as update_curr() precedes return */
2028static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2029{
2030 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2031 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2032
2033 if (slack_runtime <= 0)
2034 return;
2035
2036 raw_spin_lock(&cfs_b->lock);
2037 if (cfs_b->quota != RUNTIME_INF &&
2038 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2039 cfs_b->runtime += slack_runtime;
2040
2041 /* we are under rq->lock, defer unthrottling using a timer */
2042 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2043 !list_empty(&cfs_b->throttled_cfs_rq))
2044 start_cfs_slack_bandwidth(cfs_b);
2045 }
2046 raw_spin_unlock(&cfs_b->lock);
2047
2048 /* even if it's not valid for return we don't want to try again */
2049 cfs_rq->runtime_remaining -= slack_runtime;
2050}
2051
2052static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2053{
56f570e5
PT
2054 if (!cfs_bandwidth_used())
2055 return;
2056
fccfdc6f 2057 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2058 return;
2059
2060 __return_cfs_rq_runtime(cfs_rq);
2061}
2062
2063/*
2064 * This is done with a timer (instead of inline with bandwidth return) since
2065 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2066 */
2067static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2068{
2069 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2070 u64 expires;
2071
2072 /* confirm we're still not at a refresh boundary */
2073 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2074 return;
2075
2076 raw_spin_lock(&cfs_b->lock);
2077 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2078 runtime = cfs_b->runtime;
2079 cfs_b->runtime = 0;
2080 }
2081 expires = cfs_b->runtime_expires;
2082 raw_spin_unlock(&cfs_b->lock);
2083
2084 if (!runtime)
2085 return;
2086
2087 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2088
2089 raw_spin_lock(&cfs_b->lock);
2090 if (expires == cfs_b->runtime_expires)
2091 cfs_b->runtime = runtime;
2092 raw_spin_unlock(&cfs_b->lock);
2093}
2094
d3d9dc33
PT
2095/*
2096 * When a group wakes up we want to make sure that its quota is not already
2097 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2098 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2099 */
2100static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2101{
56f570e5
PT
2102 if (!cfs_bandwidth_used())
2103 return;
2104
d3d9dc33
PT
2105 /* an active group must be handled by the update_curr()->put() path */
2106 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2107 return;
2108
2109 /* ensure the group is not already throttled */
2110 if (cfs_rq_throttled(cfs_rq))
2111 return;
2112
2113 /* update runtime allocation */
2114 account_cfs_rq_runtime(cfs_rq, 0);
2115 if (cfs_rq->runtime_remaining <= 0)
2116 throttle_cfs_rq(cfs_rq);
2117}
2118
2119/* conditionally throttle active cfs_rq's from put_prev_entity() */
2120static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2121{
56f570e5
PT
2122 if (!cfs_bandwidth_used())
2123 return;
2124
d3d9dc33
PT
2125 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2126 return;
2127
2128 /*
2129 * it's possible for a throttled entity to be forced into a running
2130 * state (e.g. set_curr_task), in this case we're finished.
2131 */
2132 if (cfs_rq_throttled(cfs_rq))
2133 return;
2134
2135 throttle_cfs_rq(cfs_rq);
2136}
029632fb
PZ
2137
2138static inline u64 default_cfs_period(void);
2139static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2140static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2141
2142static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2143{
2144 struct cfs_bandwidth *cfs_b =
2145 container_of(timer, struct cfs_bandwidth, slack_timer);
2146 do_sched_cfs_slack_timer(cfs_b);
2147
2148 return HRTIMER_NORESTART;
2149}
2150
2151static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2152{
2153 struct cfs_bandwidth *cfs_b =
2154 container_of(timer, struct cfs_bandwidth, period_timer);
2155 ktime_t now;
2156 int overrun;
2157 int idle = 0;
2158
2159 for (;;) {
2160 now = hrtimer_cb_get_time(timer);
2161 overrun = hrtimer_forward(timer, now, cfs_b->period);
2162
2163 if (!overrun)
2164 break;
2165
2166 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2167 }
2168
2169 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2170}
2171
2172void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2173{
2174 raw_spin_lock_init(&cfs_b->lock);
2175 cfs_b->runtime = 0;
2176 cfs_b->quota = RUNTIME_INF;
2177 cfs_b->period = ns_to_ktime(default_cfs_period());
2178
2179 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2180 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2181 cfs_b->period_timer.function = sched_cfs_period_timer;
2182 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2183 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2184}
2185
2186static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2187{
2188 cfs_rq->runtime_enabled = 0;
2189 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2190}
2191
2192/* requires cfs_b->lock, may release to reprogram timer */
2193void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2194{
2195 /*
2196 * The timer may be active because we're trying to set a new bandwidth
2197 * period or because we're racing with the tear-down path
2198 * (timer_active==0 becomes visible before the hrtimer call-back
2199 * terminates). In either case we ensure that it's re-programmed
2200 */
2201 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2202 raw_spin_unlock(&cfs_b->lock);
2203 /* ensure cfs_b->lock is available while we wait */
2204 hrtimer_cancel(&cfs_b->period_timer);
2205
2206 raw_spin_lock(&cfs_b->lock);
2207 /* if someone else restarted the timer then we're done */
2208 if (cfs_b->timer_active)
2209 return;
2210 }
2211
2212 cfs_b->timer_active = 1;
2213 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2214}
2215
2216static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2217{
2218 hrtimer_cancel(&cfs_b->period_timer);
2219 hrtimer_cancel(&cfs_b->slack_timer);
2220}
2221
a4c96ae3 2222static void unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2223{
2224 struct cfs_rq *cfs_rq;
2225
2226 for_each_leaf_cfs_rq(rq, cfs_rq) {
2227 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2228
2229 if (!cfs_rq->runtime_enabled)
2230 continue;
2231
2232 /*
2233 * clock_task is not advancing so we just need to make sure
2234 * there's some valid quota amount
2235 */
2236 cfs_rq->runtime_remaining = cfs_b->quota;
2237 if (cfs_rq_throttled(cfs_rq))
2238 unthrottle_cfs_rq(cfs_rq);
2239 }
2240}
2241
2242#else /* CONFIG_CFS_BANDWIDTH */
6c16a6dc
PZ
2243static __always_inline
2244void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
d3d9dc33
PT
2245static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2246static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2247static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2248
2249static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2250{
2251 return 0;
2252}
64660c86
PT
2253
2254static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2255{
2256 return 0;
2257}
2258
2259static inline int throttled_lb_pair(struct task_group *tg,
2260 int src_cpu, int dest_cpu)
2261{
2262 return 0;
2263}
029632fb
PZ
2264
2265void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2266
2267#ifdef CONFIG_FAIR_GROUP_SCHED
2268static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2269#endif
2270
029632fb
PZ
2271static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2272{
2273 return NULL;
2274}
2275static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2276static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2277
2278#endif /* CONFIG_CFS_BANDWIDTH */
2279
bf0f6f24
IM
2280/**************************************************
2281 * CFS operations on tasks:
2282 */
2283
8f4d37ec
PZ
2284#ifdef CONFIG_SCHED_HRTICK
2285static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2286{
8f4d37ec
PZ
2287 struct sched_entity *se = &p->se;
2288 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2289
2290 WARN_ON(task_rq(p) != rq);
2291
b39e66ea 2292 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2293 u64 slice = sched_slice(cfs_rq, se);
2294 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2295 s64 delta = slice - ran;
2296
2297 if (delta < 0) {
2298 if (rq->curr == p)
2299 resched_task(p);
2300 return;
2301 }
2302
2303 /*
2304 * Don't schedule slices shorter than 10000ns, that just
2305 * doesn't make sense. Rely on vruntime for fairness.
2306 */
31656519 2307 if (rq->curr != p)
157124c1 2308 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2309
31656519 2310 hrtick_start(rq, delta);
8f4d37ec
PZ
2311 }
2312}
a4c2f00f
PZ
2313
2314/*
2315 * called from enqueue/dequeue and updates the hrtick when the
2316 * current task is from our class and nr_running is low enough
2317 * to matter.
2318 */
2319static void hrtick_update(struct rq *rq)
2320{
2321 struct task_struct *curr = rq->curr;
2322
b39e66ea 2323 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2324 return;
2325
2326 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2327 hrtick_start_fair(rq, curr);
2328}
55e12e5e 2329#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2330static inline void
2331hrtick_start_fair(struct rq *rq, struct task_struct *p)
2332{
2333}
a4c2f00f
PZ
2334
2335static inline void hrtick_update(struct rq *rq)
2336{
2337}
8f4d37ec
PZ
2338#endif
2339
bf0f6f24
IM
2340/*
2341 * The enqueue_task method is called before nr_running is
2342 * increased. Here we update the fair scheduling stats and
2343 * then put the task into the rbtree:
2344 */
ea87bb78 2345static void
371fd7e7 2346enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2347{
2348 struct cfs_rq *cfs_rq;
62fb1851 2349 struct sched_entity *se = &p->se;
bf0f6f24
IM
2350
2351 for_each_sched_entity(se) {
62fb1851 2352 if (se->on_rq)
bf0f6f24
IM
2353 break;
2354 cfs_rq = cfs_rq_of(se);
88ec22d3 2355 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2356
2357 /*
2358 * end evaluation on encountering a throttled cfs_rq
2359 *
2360 * note: in the case of encountering a throttled cfs_rq we will
2361 * post the final h_nr_running increment below.
2362 */
2363 if (cfs_rq_throttled(cfs_rq))
2364 break;
953bfcd1 2365 cfs_rq->h_nr_running++;
85dac906 2366
88ec22d3 2367 flags = ENQUEUE_WAKEUP;
bf0f6f24 2368 }
8f4d37ec 2369
2069dd75 2370 for_each_sched_entity(se) {
0f317143 2371 cfs_rq = cfs_rq_of(se);
953bfcd1 2372 cfs_rq->h_nr_running++;
2069dd75 2373
85dac906
PT
2374 if (cfs_rq_throttled(cfs_rq))
2375 break;
2376
d6b55918 2377 update_cfs_load(cfs_rq, 0);
6d5ab293 2378 update_cfs_shares(cfs_rq);
2069dd75
PZ
2379 }
2380
85dac906
PT
2381 if (!se)
2382 inc_nr_running(rq);
a4c2f00f 2383 hrtick_update(rq);
bf0f6f24
IM
2384}
2385
2f36825b
VP
2386static void set_next_buddy(struct sched_entity *se);
2387
bf0f6f24
IM
2388/*
2389 * The dequeue_task method is called before nr_running is
2390 * decreased. We remove the task from the rbtree and
2391 * update the fair scheduling stats:
2392 */
371fd7e7 2393static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2394{
2395 struct cfs_rq *cfs_rq;
62fb1851 2396 struct sched_entity *se = &p->se;
2f36825b 2397 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2398
2399 for_each_sched_entity(se) {
2400 cfs_rq = cfs_rq_of(se);
371fd7e7 2401 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2402
2403 /*
2404 * end evaluation on encountering a throttled cfs_rq
2405 *
2406 * note: in the case of encountering a throttled cfs_rq we will
2407 * post the final h_nr_running decrement below.
2408 */
2409 if (cfs_rq_throttled(cfs_rq))
2410 break;
953bfcd1 2411 cfs_rq->h_nr_running--;
2069dd75 2412
bf0f6f24 2413 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2414 if (cfs_rq->load.weight) {
2415 /*
2416 * Bias pick_next to pick a task from this cfs_rq, as
2417 * p is sleeping when it is within its sched_slice.
2418 */
2419 if (task_sleep && parent_entity(se))
2420 set_next_buddy(parent_entity(se));
9598c82d
PT
2421
2422 /* avoid re-evaluating load for this entity */
2423 se = parent_entity(se);
bf0f6f24 2424 break;
2f36825b 2425 }
371fd7e7 2426 flags |= DEQUEUE_SLEEP;
bf0f6f24 2427 }
8f4d37ec 2428
2069dd75 2429 for_each_sched_entity(se) {
0f317143 2430 cfs_rq = cfs_rq_of(se);
953bfcd1 2431 cfs_rq->h_nr_running--;
2069dd75 2432
85dac906
PT
2433 if (cfs_rq_throttled(cfs_rq))
2434 break;
2435
d6b55918 2436 update_cfs_load(cfs_rq, 0);
6d5ab293 2437 update_cfs_shares(cfs_rq);
2069dd75
PZ
2438 }
2439
85dac906
PT
2440 if (!se)
2441 dec_nr_running(rq);
a4c2f00f 2442 hrtick_update(rq);
bf0f6f24
IM
2443}
2444
e7693a36 2445#ifdef CONFIG_SMP
029632fb
PZ
2446/* Used instead of source_load when we know the type == 0 */
2447static unsigned long weighted_cpuload(const int cpu)
2448{
2449 return cpu_rq(cpu)->load.weight;
2450}
2451
2452/*
2453 * Return a low guess at the load of a migration-source cpu weighted
2454 * according to the scheduling class and "nice" value.
2455 *
2456 * We want to under-estimate the load of migration sources, to
2457 * balance conservatively.
2458 */
2459static unsigned long source_load(int cpu, int type)
2460{
2461 struct rq *rq = cpu_rq(cpu);
2462 unsigned long total = weighted_cpuload(cpu);
2463
2464 if (type == 0 || !sched_feat(LB_BIAS))
2465 return total;
2466
2467 return min(rq->cpu_load[type-1], total);
2468}
2469
2470/*
2471 * Return a high guess at the load of a migration-target cpu weighted
2472 * according to the scheduling class and "nice" value.
2473 */
2474static unsigned long target_load(int cpu, int type)
2475{
2476 struct rq *rq = cpu_rq(cpu);
2477 unsigned long total = weighted_cpuload(cpu);
2478
2479 if (type == 0 || !sched_feat(LB_BIAS))
2480 return total;
2481
2482 return max(rq->cpu_load[type-1], total);
2483}
2484
2485static unsigned long power_of(int cpu)
2486{
2487 return cpu_rq(cpu)->cpu_power;
2488}
2489
2490static unsigned long cpu_avg_load_per_task(int cpu)
2491{
2492 struct rq *rq = cpu_rq(cpu);
2493 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2494
2495 if (nr_running)
2496 return rq->load.weight / nr_running;
2497
2498 return 0;
2499}
2500
098fb9db 2501
74f8e4b2 2502static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2503{
2504 struct sched_entity *se = &p->se;
2505 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2506 u64 min_vruntime;
2507
2508#ifndef CONFIG_64BIT
2509 u64 min_vruntime_copy;
88ec22d3 2510
3fe1698b
PZ
2511 do {
2512 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2513 smp_rmb();
2514 min_vruntime = cfs_rq->min_vruntime;
2515 } while (min_vruntime != min_vruntime_copy);
2516#else
2517 min_vruntime = cfs_rq->min_vruntime;
2518#endif
88ec22d3 2519
3fe1698b 2520 se->vruntime -= min_vruntime;
88ec22d3
PZ
2521}
2522
bb3469ac 2523#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2524/*
2525 * effective_load() calculates the load change as seen from the root_task_group
2526 *
2527 * Adding load to a group doesn't make a group heavier, but can cause movement
2528 * of group shares between cpus. Assuming the shares were perfectly aligned one
2529 * can calculate the shift in shares.
cf5f0acf
PZ
2530 *
2531 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2532 * on this @cpu and results in a total addition (subtraction) of @wg to the
2533 * total group weight.
2534 *
2535 * Given a runqueue weight distribution (rw_i) we can compute a shares
2536 * distribution (s_i) using:
2537 *
2538 * s_i = rw_i / \Sum rw_j (1)
2539 *
2540 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2541 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2542 * shares distribution (s_i):
2543 *
2544 * rw_i = { 2, 4, 1, 0 }
2545 * s_i = { 2/7, 4/7, 1/7, 0 }
2546 *
2547 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2548 * task used to run on and the CPU the waker is running on), we need to
2549 * compute the effect of waking a task on either CPU and, in case of a sync
2550 * wakeup, compute the effect of the current task going to sleep.
2551 *
2552 * So for a change of @wl to the local @cpu with an overall group weight change
2553 * of @wl we can compute the new shares distribution (s'_i) using:
2554 *
2555 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2556 *
2557 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2558 * differences in waking a task to CPU 0. The additional task changes the
2559 * weight and shares distributions like:
2560 *
2561 * rw'_i = { 3, 4, 1, 0 }
2562 * s'_i = { 3/8, 4/8, 1/8, 0 }
2563 *
2564 * We can then compute the difference in effective weight by using:
2565 *
2566 * dw_i = S * (s'_i - s_i) (3)
2567 *
2568 * Where 'S' is the group weight as seen by its parent.
2569 *
2570 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2571 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2572 * 4/7) times the weight of the group.
f5bfb7d9 2573 */
2069dd75 2574static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 2575{
4be9daaa 2576 struct sched_entity *se = tg->se[cpu];
f1d239f7 2577
cf5f0acf 2578 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
2579 return wl;
2580
4be9daaa 2581 for_each_sched_entity(se) {
cf5f0acf 2582 long w, W;
4be9daaa 2583
977dda7c 2584 tg = se->my_q->tg;
bb3469ac 2585
cf5f0acf
PZ
2586 /*
2587 * W = @wg + \Sum rw_j
2588 */
2589 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 2590
cf5f0acf
PZ
2591 /*
2592 * w = rw_i + @wl
2593 */
2594 w = se->my_q->load.weight + wl;
940959e9 2595
cf5f0acf
PZ
2596 /*
2597 * wl = S * s'_i; see (2)
2598 */
2599 if (W > 0 && w < W)
2600 wl = (w * tg->shares) / W;
977dda7c
PT
2601 else
2602 wl = tg->shares;
940959e9 2603
cf5f0acf
PZ
2604 /*
2605 * Per the above, wl is the new se->load.weight value; since
2606 * those are clipped to [MIN_SHARES, ...) do so now. See
2607 * calc_cfs_shares().
2608 */
977dda7c
PT
2609 if (wl < MIN_SHARES)
2610 wl = MIN_SHARES;
cf5f0acf
PZ
2611
2612 /*
2613 * wl = dw_i = S * (s'_i - s_i); see (3)
2614 */
977dda7c 2615 wl -= se->load.weight;
cf5f0acf
PZ
2616
2617 /*
2618 * Recursively apply this logic to all parent groups to compute
2619 * the final effective load change on the root group. Since
2620 * only the @tg group gets extra weight, all parent groups can
2621 * only redistribute existing shares. @wl is the shift in shares
2622 * resulting from this level per the above.
2623 */
4be9daaa 2624 wg = 0;
4be9daaa 2625 }
bb3469ac 2626
4be9daaa 2627 return wl;
bb3469ac
PZ
2628}
2629#else
4be9daaa 2630
83378269
PZ
2631static inline unsigned long effective_load(struct task_group *tg, int cpu,
2632 unsigned long wl, unsigned long wg)
4be9daaa 2633{
83378269 2634 return wl;
bb3469ac 2635}
4be9daaa 2636
bb3469ac
PZ
2637#endif
2638
c88d5910 2639static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 2640{
e37b6a7b 2641 s64 this_load, load;
c88d5910 2642 int idx, this_cpu, prev_cpu;
098fb9db 2643 unsigned long tl_per_task;
c88d5910 2644 struct task_group *tg;
83378269 2645 unsigned long weight;
b3137bc8 2646 int balanced;
098fb9db 2647
c88d5910
PZ
2648 idx = sd->wake_idx;
2649 this_cpu = smp_processor_id();
2650 prev_cpu = task_cpu(p);
2651 load = source_load(prev_cpu, idx);
2652 this_load = target_load(this_cpu, idx);
098fb9db 2653
b3137bc8
MG
2654 /*
2655 * If sync wakeup then subtract the (maximum possible)
2656 * effect of the currently running task from the load
2657 * of the current CPU:
2658 */
83378269
PZ
2659 if (sync) {
2660 tg = task_group(current);
2661 weight = current->se.load.weight;
2662
c88d5910 2663 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
2664 load += effective_load(tg, prev_cpu, 0, -weight);
2665 }
b3137bc8 2666
83378269
PZ
2667 tg = task_group(p);
2668 weight = p->se.load.weight;
b3137bc8 2669
71a29aa7
PZ
2670 /*
2671 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
2672 * due to the sync cause above having dropped this_load to 0, we'll
2673 * always have an imbalance, but there's really nothing you can do
2674 * about that, so that's good too.
71a29aa7
PZ
2675 *
2676 * Otherwise check if either cpus are near enough in load to allow this
2677 * task to be woken on this_cpu.
2678 */
e37b6a7b
PT
2679 if (this_load > 0) {
2680 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
2681
2682 this_eff_load = 100;
2683 this_eff_load *= power_of(prev_cpu);
2684 this_eff_load *= this_load +
2685 effective_load(tg, this_cpu, weight, weight);
2686
2687 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2688 prev_eff_load *= power_of(this_cpu);
2689 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2690
2691 balanced = this_eff_load <= prev_eff_load;
2692 } else
2693 balanced = true;
b3137bc8 2694
098fb9db 2695 /*
4ae7d5ce
IM
2696 * If the currently running task will sleep within
2697 * a reasonable amount of time then attract this newly
2698 * woken task:
098fb9db 2699 */
2fb7635c
PZ
2700 if (sync && balanced)
2701 return 1;
098fb9db 2702
41acab88 2703 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
2704 tl_per_task = cpu_avg_load_per_task(this_cpu);
2705
c88d5910
PZ
2706 if (balanced ||
2707 (this_load <= load &&
2708 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
2709 /*
2710 * This domain has SD_WAKE_AFFINE and
2711 * p is cache cold in this domain, and
2712 * there is no bad imbalance.
2713 */
c88d5910 2714 schedstat_inc(sd, ttwu_move_affine);
41acab88 2715 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
2716
2717 return 1;
2718 }
2719 return 0;
2720}
2721
aaee1203
PZ
2722/*
2723 * find_idlest_group finds and returns the least busy CPU group within the
2724 * domain.
2725 */
2726static struct sched_group *
78e7ed53 2727find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2728 int this_cpu, int load_idx)
e7693a36 2729{
b3bd3de6 2730 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2731 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2732 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2733
aaee1203
PZ
2734 do {
2735 unsigned long load, avg_load;
2736 int local_group;
2737 int i;
e7693a36 2738
aaee1203
PZ
2739 /* Skip over this group if it has no CPUs allowed */
2740 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 2741 tsk_cpus_allowed(p)))
aaee1203
PZ
2742 continue;
2743
2744 local_group = cpumask_test_cpu(this_cpu,
2745 sched_group_cpus(group));
2746
2747 /* Tally up the load of all CPUs in the group */
2748 avg_load = 0;
2749
2750 for_each_cpu(i, sched_group_cpus(group)) {
2751 /* Bias balancing toward cpus of our domain */
2752 if (local_group)
2753 load = source_load(i, load_idx);
2754 else
2755 load = target_load(i, load_idx);
2756
2757 avg_load += load;
2758 }
2759
2760 /* Adjust by relative CPU power of the group */
9c3f75cb 2761 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2762
2763 if (local_group) {
2764 this_load = avg_load;
aaee1203
PZ
2765 } else if (avg_load < min_load) {
2766 min_load = avg_load;
2767 idlest = group;
2768 }
2769 } while (group = group->next, group != sd->groups);
2770
2771 if (!idlest || 100*this_load < imbalance*min_load)
2772 return NULL;
2773 return idlest;
2774}
2775
2776/*
2777 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2778 */
2779static int
2780find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2781{
2782 unsigned long load, min_load = ULONG_MAX;
2783 int idlest = -1;
2784 int i;
2785
2786 /* Traverse only the allowed CPUs */
fa17b507 2787 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
2788 load = weighted_cpuload(i);
2789
2790 if (load < min_load || (load == min_load && i == this_cpu)) {
2791 min_load = load;
2792 idlest = i;
e7693a36
GH
2793 }
2794 }
2795
aaee1203
PZ
2796 return idlest;
2797}
e7693a36 2798
a50bde51
PZ
2799/*
2800 * Try and locate an idle CPU in the sched_domain.
2801 */
99bd5e2f 2802static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
2803{
2804 int cpu = smp_processor_id();
2805 int prev_cpu = task_cpu(p);
99bd5e2f 2806 struct sched_domain *sd;
37407ea7
LT
2807 struct sched_group *sg;
2808 int i;
a50bde51
PZ
2809
2810 /*
99bd5e2f
SS
2811 * If the task is going to be woken-up on this cpu and if it is
2812 * already idle, then it is the right target.
a50bde51 2813 */
99bd5e2f
SS
2814 if (target == cpu && idle_cpu(cpu))
2815 return cpu;
2816
2817 /*
2818 * If the task is going to be woken-up on the cpu where it previously
2819 * ran and if it is currently idle, then it the right target.
2820 */
2821 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 2822 return prev_cpu;
a50bde51
PZ
2823
2824 /*
37407ea7 2825 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 2826 */
518cd623 2827 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 2828 for_each_lower_domain(sd) {
37407ea7
LT
2829 sg = sd->groups;
2830 do {
2831 if (!cpumask_intersects(sched_group_cpus(sg),
2832 tsk_cpus_allowed(p)))
2833 goto next;
2834
2835 for_each_cpu(i, sched_group_cpus(sg)) {
2836 if (!idle_cpu(i))
2837 goto next;
2838 }
970e1789 2839
37407ea7
LT
2840 target = cpumask_first_and(sched_group_cpus(sg),
2841 tsk_cpus_allowed(p));
2842 goto done;
2843next:
2844 sg = sg->next;
2845 } while (sg != sd->groups);
2846 }
2847done:
a50bde51
PZ
2848 return target;
2849}
2850
aaee1203
PZ
2851/*
2852 * sched_balance_self: balance the current task (running on cpu) in domains
2853 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2854 * SD_BALANCE_EXEC.
2855 *
2856 * Balance, ie. select the least loaded group.
2857 *
2858 * Returns the target CPU number, or the same CPU if no balancing is needed.
2859 *
2860 * preempt must be disabled.
2861 */
0017d735 2862static int
7608dec2 2863select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 2864{
29cd8bae 2865 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
2866 int cpu = smp_processor_id();
2867 int prev_cpu = task_cpu(p);
2868 int new_cpu = cpu;
99bd5e2f 2869 int want_affine = 0;
5158f4e4 2870 int sync = wake_flags & WF_SYNC;
c88d5910 2871
29baa747 2872 if (p->nr_cpus_allowed == 1)
76854c7e
MG
2873 return prev_cpu;
2874
0763a660 2875 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 2876 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
2877 want_affine = 1;
2878 new_cpu = prev_cpu;
2879 }
aaee1203 2880
dce840a0 2881 rcu_read_lock();
aaee1203 2882 for_each_domain(cpu, tmp) {
e4f42888
PZ
2883 if (!(tmp->flags & SD_LOAD_BALANCE))
2884 continue;
2885
fe3bcfe1 2886 /*
99bd5e2f
SS
2887 * If both cpu and prev_cpu are part of this domain,
2888 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 2889 */
99bd5e2f
SS
2890 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2891 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2892 affine_sd = tmp;
29cd8bae 2893 break;
f03542a7 2894 }
29cd8bae 2895
f03542a7 2896 if (tmp->flags & sd_flag)
29cd8bae
PZ
2897 sd = tmp;
2898 }
2899
8b911acd 2900 if (affine_sd) {
f03542a7 2901 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
2902 prev_cpu = cpu;
2903
2904 new_cpu = select_idle_sibling(p, prev_cpu);
2905 goto unlock;
8b911acd 2906 }
e7693a36 2907
aaee1203 2908 while (sd) {
5158f4e4 2909 int load_idx = sd->forkexec_idx;
aaee1203 2910 struct sched_group *group;
c88d5910 2911 int weight;
098fb9db 2912
0763a660 2913 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
2914 sd = sd->child;
2915 continue;
2916 }
098fb9db 2917
5158f4e4
PZ
2918 if (sd_flag & SD_BALANCE_WAKE)
2919 load_idx = sd->wake_idx;
098fb9db 2920
5158f4e4 2921 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
2922 if (!group) {
2923 sd = sd->child;
2924 continue;
2925 }
4ae7d5ce 2926
d7c33c49 2927 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
2928 if (new_cpu == -1 || new_cpu == cpu) {
2929 /* Now try balancing at a lower domain level of cpu */
2930 sd = sd->child;
2931 continue;
e7693a36 2932 }
aaee1203
PZ
2933
2934 /* Now try balancing at a lower domain level of new_cpu */
2935 cpu = new_cpu;
669c55e9 2936 weight = sd->span_weight;
aaee1203
PZ
2937 sd = NULL;
2938 for_each_domain(cpu, tmp) {
669c55e9 2939 if (weight <= tmp->span_weight)
aaee1203 2940 break;
0763a660 2941 if (tmp->flags & sd_flag)
aaee1203
PZ
2942 sd = tmp;
2943 }
2944 /* while loop will break here if sd == NULL */
e7693a36 2945 }
dce840a0
PZ
2946unlock:
2947 rcu_read_unlock();
e7693a36 2948
c88d5910 2949 return new_cpu;
e7693a36
GH
2950}
2951#endif /* CONFIG_SMP */
2952
e52fb7c0
PZ
2953static unsigned long
2954wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
2955{
2956 unsigned long gran = sysctl_sched_wakeup_granularity;
2957
2958 /*
e52fb7c0
PZ
2959 * Since its curr running now, convert the gran from real-time
2960 * to virtual-time in his units.
13814d42
MG
2961 *
2962 * By using 'se' instead of 'curr' we penalize light tasks, so
2963 * they get preempted easier. That is, if 'se' < 'curr' then
2964 * the resulting gran will be larger, therefore penalizing the
2965 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2966 * be smaller, again penalizing the lighter task.
2967 *
2968 * This is especially important for buddies when the leftmost
2969 * task is higher priority than the buddy.
0bbd3336 2970 */
f4ad9bd2 2971 return calc_delta_fair(gran, se);
0bbd3336
PZ
2972}
2973
464b7527
PZ
2974/*
2975 * Should 'se' preempt 'curr'.
2976 *
2977 * |s1
2978 * |s2
2979 * |s3
2980 * g
2981 * |<--->|c
2982 *
2983 * w(c, s1) = -1
2984 * w(c, s2) = 0
2985 * w(c, s3) = 1
2986 *
2987 */
2988static int
2989wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2990{
2991 s64 gran, vdiff = curr->vruntime - se->vruntime;
2992
2993 if (vdiff <= 0)
2994 return -1;
2995
e52fb7c0 2996 gran = wakeup_gran(curr, se);
464b7527
PZ
2997 if (vdiff > gran)
2998 return 1;
2999
3000 return 0;
3001}
3002
02479099
PZ
3003static void set_last_buddy(struct sched_entity *se)
3004{
69c80f3e
VP
3005 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3006 return;
3007
3008 for_each_sched_entity(se)
3009 cfs_rq_of(se)->last = se;
02479099
PZ
3010}
3011
3012static void set_next_buddy(struct sched_entity *se)
3013{
69c80f3e
VP
3014 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3015 return;
3016
3017 for_each_sched_entity(se)
3018 cfs_rq_of(se)->next = se;
02479099
PZ
3019}
3020
ac53db59
RR
3021static void set_skip_buddy(struct sched_entity *se)
3022{
69c80f3e
VP
3023 for_each_sched_entity(se)
3024 cfs_rq_of(se)->skip = se;
ac53db59
RR
3025}
3026
bf0f6f24
IM
3027/*
3028 * Preempt the current task with a newly woken task if needed:
3029 */
5a9b86f6 3030static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3031{
3032 struct task_struct *curr = rq->curr;
8651a86c 3033 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3034 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3035 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3036 int next_buddy_marked = 0;
bf0f6f24 3037
4ae7d5ce
IM
3038 if (unlikely(se == pse))
3039 return;
3040
5238cdd3 3041 /*
ddcdf6e7 3042 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3043 * unconditionally check_prempt_curr() after an enqueue (which may have
3044 * lead to a throttle). This both saves work and prevents false
3045 * next-buddy nomination below.
3046 */
3047 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3048 return;
3049
2f36825b 3050 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3051 set_next_buddy(pse);
2f36825b
VP
3052 next_buddy_marked = 1;
3053 }
57fdc26d 3054
aec0a514
BR
3055 /*
3056 * We can come here with TIF_NEED_RESCHED already set from new task
3057 * wake up path.
5238cdd3
PT
3058 *
3059 * Note: this also catches the edge-case of curr being in a throttled
3060 * group (e.g. via set_curr_task), since update_curr() (in the
3061 * enqueue of curr) will have resulted in resched being set. This
3062 * prevents us from potentially nominating it as a false LAST_BUDDY
3063 * below.
aec0a514
BR
3064 */
3065 if (test_tsk_need_resched(curr))
3066 return;
3067
a2f5c9ab
DH
3068 /* Idle tasks are by definition preempted by non-idle tasks. */
3069 if (unlikely(curr->policy == SCHED_IDLE) &&
3070 likely(p->policy != SCHED_IDLE))
3071 goto preempt;
3072
91c234b4 3073 /*
a2f5c9ab
DH
3074 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3075 * is driven by the tick):
91c234b4 3076 */
6bc912b7 3077 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 3078 return;
bf0f6f24 3079
464b7527 3080 find_matching_se(&se, &pse);
9bbd7374 3081 update_curr(cfs_rq_of(se));
002f128b 3082 BUG_ON(!pse);
2f36825b
VP
3083 if (wakeup_preempt_entity(se, pse) == 1) {
3084 /*
3085 * Bias pick_next to pick the sched entity that is
3086 * triggering this preemption.
3087 */
3088 if (!next_buddy_marked)
3089 set_next_buddy(pse);
3a7e73a2 3090 goto preempt;
2f36825b 3091 }
464b7527 3092
3a7e73a2 3093 return;
a65ac745 3094
3a7e73a2
PZ
3095preempt:
3096 resched_task(curr);
3097 /*
3098 * Only set the backward buddy when the current task is still
3099 * on the rq. This can happen when a wakeup gets interleaved
3100 * with schedule on the ->pre_schedule() or idle_balance()
3101 * point, either of which can * drop the rq lock.
3102 *
3103 * Also, during early boot the idle thread is in the fair class,
3104 * for obvious reasons its a bad idea to schedule back to it.
3105 */
3106 if (unlikely(!se->on_rq || curr == rq->idle))
3107 return;
3108
3109 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3110 set_last_buddy(se);
bf0f6f24
IM
3111}
3112
fb8d4724 3113static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3114{
8f4d37ec 3115 struct task_struct *p;
bf0f6f24
IM
3116 struct cfs_rq *cfs_rq = &rq->cfs;
3117 struct sched_entity *se;
3118
36ace27e 3119 if (!cfs_rq->nr_running)
bf0f6f24
IM
3120 return NULL;
3121
3122 do {
9948f4b2 3123 se = pick_next_entity(cfs_rq);
f4b6755f 3124 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3125 cfs_rq = group_cfs_rq(se);
3126 } while (cfs_rq);
3127
8f4d37ec 3128 p = task_of(se);
b39e66ea
MG
3129 if (hrtick_enabled(rq))
3130 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3131
3132 return p;
bf0f6f24
IM
3133}
3134
3135/*
3136 * Account for a descheduled task:
3137 */
31ee529c 3138static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3139{
3140 struct sched_entity *se = &prev->se;
3141 struct cfs_rq *cfs_rq;
3142
3143 for_each_sched_entity(se) {
3144 cfs_rq = cfs_rq_of(se);
ab6cde26 3145 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3146 }
3147}
3148
ac53db59
RR
3149/*
3150 * sched_yield() is very simple
3151 *
3152 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3153 */
3154static void yield_task_fair(struct rq *rq)
3155{
3156 struct task_struct *curr = rq->curr;
3157 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3158 struct sched_entity *se = &curr->se;
3159
3160 /*
3161 * Are we the only task in the tree?
3162 */
3163 if (unlikely(rq->nr_running == 1))
3164 return;
3165
3166 clear_buddies(cfs_rq, se);
3167
3168 if (curr->policy != SCHED_BATCH) {
3169 update_rq_clock(rq);
3170 /*
3171 * Update run-time statistics of the 'current'.
3172 */
3173 update_curr(cfs_rq);
916671c0
MG
3174 /*
3175 * Tell update_rq_clock() that we've just updated,
3176 * so we don't do microscopic update in schedule()
3177 * and double the fastpath cost.
3178 */
3179 rq->skip_clock_update = 1;
ac53db59
RR
3180 }
3181
3182 set_skip_buddy(se);
3183}
3184
d95f4122
MG
3185static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3186{
3187 struct sched_entity *se = &p->se;
3188
5238cdd3
PT
3189 /* throttled hierarchies are not runnable */
3190 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3191 return false;
3192
3193 /* Tell the scheduler that we'd really like pse to run next. */
3194 set_next_buddy(se);
3195
d95f4122
MG
3196 yield_task_fair(rq);
3197
3198 return true;
3199}
3200
681f3e68 3201#ifdef CONFIG_SMP
bf0f6f24
IM
3202/**************************************************
3203 * Fair scheduling class load-balancing methods:
3204 */
3205
ed387b78
HS
3206static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3207
ddcdf6e7 3208#define LBF_ALL_PINNED 0x01
367456c7 3209#define LBF_NEED_BREAK 0x02
88b8dac0 3210#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3211
3212struct lb_env {
3213 struct sched_domain *sd;
3214
ddcdf6e7 3215 struct rq *src_rq;
85c1e7da 3216 int src_cpu;
ddcdf6e7
PZ
3217
3218 int dst_cpu;
3219 struct rq *dst_rq;
3220
88b8dac0
SV
3221 struct cpumask *dst_grpmask;
3222 int new_dst_cpu;
ddcdf6e7 3223 enum cpu_idle_type idle;
bd939f45 3224 long imbalance;
b9403130
MW
3225 /* The set of CPUs under consideration for load-balancing */
3226 struct cpumask *cpus;
3227
ddcdf6e7 3228 unsigned int flags;
367456c7
PZ
3229
3230 unsigned int loop;
3231 unsigned int loop_break;
3232 unsigned int loop_max;
ddcdf6e7
PZ
3233};
3234
1e3c88bd 3235/*
ddcdf6e7 3236 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3237 * Both runqueues must be locked.
3238 */
ddcdf6e7 3239static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3240{
ddcdf6e7
PZ
3241 deactivate_task(env->src_rq, p, 0);
3242 set_task_cpu(p, env->dst_cpu);
3243 activate_task(env->dst_rq, p, 0);
3244 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3245}
3246
029632fb
PZ
3247/*
3248 * Is this task likely cache-hot:
3249 */
3250static int
3251task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3252{
3253 s64 delta;
3254
3255 if (p->sched_class != &fair_sched_class)
3256 return 0;
3257
3258 if (unlikely(p->policy == SCHED_IDLE))
3259 return 0;
3260
3261 /*
3262 * Buddy candidates are cache hot:
3263 */
3264 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3265 (&p->se == cfs_rq_of(&p->se)->next ||
3266 &p->se == cfs_rq_of(&p->se)->last))
3267 return 1;
3268
3269 if (sysctl_sched_migration_cost == -1)
3270 return 1;
3271 if (sysctl_sched_migration_cost == 0)
3272 return 0;
3273
3274 delta = now - p->se.exec_start;
3275
3276 return delta < (s64)sysctl_sched_migration_cost;
3277}
3278
1e3c88bd
PZ
3279/*
3280 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3281 */
3282static
8e45cb54 3283int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3284{
3285 int tsk_cache_hot = 0;
3286 /*
3287 * We do not migrate tasks that are:
3288 * 1) running (obviously), or
3289 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3290 * 3) are cache-hot on their current CPU.
3291 */
ddcdf6e7 3292 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
88b8dac0
SV
3293 int new_dst_cpu;
3294
41acab88 3295 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3296
3297 /*
3298 * Remember if this task can be migrated to any other cpu in
3299 * our sched_group. We may want to revisit it if we couldn't
3300 * meet load balance goals by pulling other tasks on src_cpu.
3301 *
3302 * Also avoid computing new_dst_cpu if we have already computed
3303 * one in current iteration.
3304 */
3305 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3306 return 0;
3307
3308 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3309 tsk_cpus_allowed(p));
3310 if (new_dst_cpu < nr_cpu_ids) {
3311 env->flags |= LBF_SOME_PINNED;
3312 env->new_dst_cpu = new_dst_cpu;
3313 }
1e3c88bd
PZ
3314 return 0;
3315 }
88b8dac0
SV
3316
3317 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3318 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3319
ddcdf6e7 3320 if (task_running(env->src_rq, p)) {
41acab88 3321 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3322 return 0;
3323 }
3324
3325 /*
3326 * Aggressive migration if:
3327 * 1) task is cache cold, or
3328 * 2) too many balance attempts have failed.
3329 */
3330
ddcdf6e7 3331 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
1e3c88bd 3332 if (!tsk_cache_hot ||
8e45cb54 3333 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
1e3c88bd
PZ
3334#ifdef CONFIG_SCHEDSTATS
3335 if (tsk_cache_hot) {
8e45cb54 3336 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3337 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
3338 }
3339#endif
3340 return 1;
3341 }
3342
3343 if (tsk_cache_hot) {
41acab88 3344 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
3345 return 0;
3346 }
3347 return 1;
3348}
3349
897c395f
PZ
3350/*
3351 * move_one_task tries to move exactly one task from busiest to this_rq, as
3352 * part of active balancing operations within "domain".
3353 * Returns 1 if successful and 0 otherwise.
3354 *
3355 * Called with both runqueues locked.
3356 */
8e45cb54 3357static int move_one_task(struct lb_env *env)
897c395f
PZ
3358{
3359 struct task_struct *p, *n;
897c395f 3360
367456c7
PZ
3361 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3362 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3363 continue;
897c395f 3364
367456c7
PZ
3365 if (!can_migrate_task(p, env))
3366 continue;
897c395f 3367
367456c7
PZ
3368 move_task(p, env);
3369 /*
3370 * Right now, this is only the second place move_task()
3371 * is called, so we can safely collect move_task()
3372 * stats here rather than inside move_task().
3373 */
3374 schedstat_inc(env->sd, lb_gained[env->idle]);
3375 return 1;
897c395f 3376 }
897c395f
PZ
3377 return 0;
3378}
3379
367456c7
PZ
3380static unsigned long task_h_load(struct task_struct *p);
3381
eb95308e
PZ
3382static const unsigned int sched_nr_migrate_break = 32;
3383
5d6523eb 3384/*
bd939f45 3385 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
3386 * this_rq, as part of a balancing operation within domain "sd".
3387 * Returns 1 if successful and 0 otherwise.
3388 *
3389 * Called with both runqueues locked.
3390 */
3391static int move_tasks(struct lb_env *env)
1e3c88bd 3392{
5d6523eb
PZ
3393 struct list_head *tasks = &env->src_rq->cfs_tasks;
3394 struct task_struct *p;
367456c7
PZ
3395 unsigned long load;
3396 int pulled = 0;
1e3c88bd 3397
bd939f45 3398 if (env->imbalance <= 0)
5d6523eb 3399 return 0;
1e3c88bd 3400
5d6523eb
PZ
3401 while (!list_empty(tasks)) {
3402 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 3403
367456c7
PZ
3404 env->loop++;
3405 /* We've more or less seen every task there is, call it quits */
5d6523eb 3406 if (env->loop > env->loop_max)
367456c7 3407 break;
5d6523eb
PZ
3408
3409 /* take a breather every nr_migrate tasks */
367456c7 3410 if (env->loop > env->loop_break) {
eb95308e 3411 env->loop_break += sched_nr_migrate_break;
8e45cb54 3412 env->flags |= LBF_NEED_BREAK;
ee00e66f 3413 break;
a195f004 3414 }
1e3c88bd 3415
5d6523eb 3416 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
367456c7
PZ
3417 goto next;
3418
3419 load = task_h_load(p);
5d6523eb 3420
eb95308e 3421 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
3422 goto next;
3423
bd939f45 3424 if ((load / 2) > env->imbalance)
367456c7 3425 goto next;
1e3c88bd 3426
367456c7
PZ
3427 if (!can_migrate_task(p, env))
3428 goto next;
1e3c88bd 3429
ddcdf6e7 3430 move_task(p, env);
ee00e66f 3431 pulled++;
bd939f45 3432 env->imbalance -= load;
1e3c88bd
PZ
3433
3434#ifdef CONFIG_PREEMPT
ee00e66f
PZ
3435 /*
3436 * NEWIDLE balancing is a source of latency, so preemptible
3437 * kernels will stop after the first task is pulled to minimize
3438 * the critical section.
3439 */
5d6523eb 3440 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 3441 break;
1e3c88bd
PZ
3442#endif
3443
ee00e66f
PZ
3444 /*
3445 * We only want to steal up to the prescribed amount of
3446 * weighted load.
3447 */
bd939f45 3448 if (env->imbalance <= 0)
ee00e66f 3449 break;
367456c7
PZ
3450
3451 continue;
3452next:
5d6523eb 3453 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 3454 }
5d6523eb 3455
1e3c88bd 3456 /*
ddcdf6e7
PZ
3457 * Right now, this is one of only two places move_task() is called,
3458 * so we can safely collect move_task() stats here rather than
3459 * inside move_task().
1e3c88bd 3460 */
8e45cb54 3461 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 3462
5d6523eb 3463 return pulled;
1e3c88bd
PZ
3464}
3465
230059de 3466#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
3467/*
3468 * update tg->load_weight by folding this cpu's load_avg
3469 */
67e86250 3470static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
3471{
3472 struct cfs_rq *cfs_rq;
3473 unsigned long flags;
3474 struct rq *rq;
9e3081ca
PZ
3475
3476 if (!tg->se[cpu])
3477 return 0;
3478
3479 rq = cpu_rq(cpu);
3480 cfs_rq = tg->cfs_rq[cpu];
3481
3482 raw_spin_lock_irqsave(&rq->lock, flags);
3483
3484 update_rq_clock(rq);
d6b55918 3485 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
3486
3487 /*
3488 * We need to update shares after updating tg->load_weight in
3489 * order to adjust the weight of groups with long running tasks.
3490 */
6d5ab293 3491 update_cfs_shares(cfs_rq);
9e3081ca
PZ
3492
3493 raw_spin_unlock_irqrestore(&rq->lock, flags);
3494
3495 return 0;
3496}
3497
3498static void update_shares(int cpu)
3499{
3500 struct cfs_rq *cfs_rq;
3501 struct rq *rq = cpu_rq(cpu);
3502
3503 rcu_read_lock();
9763b67f
PZ
3504 /*
3505 * Iterates the task_group tree in a bottom up fashion, see
3506 * list_add_leaf_cfs_rq() for details.
3507 */
64660c86
PT
3508 for_each_leaf_cfs_rq(rq, cfs_rq) {
3509 /* throttled entities do not contribute to load */
3510 if (throttled_hierarchy(cfs_rq))
3511 continue;
3512
67e86250 3513 update_shares_cpu(cfs_rq->tg, cpu);
64660c86 3514 }
9e3081ca
PZ
3515 rcu_read_unlock();
3516}
3517
9763b67f
PZ
3518/*
3519 * Compute the cpu's hierarchical load factor for each task group.
3520 * This needs to be done in a top-down fashion because the load of a child
3521 * group is a fraction of its parents load.
3522 */
3523static int tg_load_down(struct task_group *tg, void *data)
3524{
3525 unsigned long load;
3526 long cpu = (long)data;
3527
3528 if (!tg->parent) {
3529 load = cpu_rq(cpu)->load.weight;
3530 } else {
3531 load = tg->parent->cfs_rq[cpu]->h_load;
3532 load *= tg->se[cpu]->load.weight;
3533 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3534 }
3535
3536 tg->cfs_rq[cpu]->h_load = load;
3537
3538 return 0;
3539}
3540
3541static void update_h_load(long cpu)
3542{
a35b6466
PZ
3543 struct rq *rq = cpu_rq(cpu);
3544 unsigned long now = jiffies;
3545
3546 if (rq->h_load_throttle == now)
3547 return;
3548
3549 rq->h_load_throttle = now;
3550
367456c7 3551 rcu_read_lock();
9763b67f 3552 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 3553 rcu_read_unlock();
9763b67f
PZ
3554}
3555
367456c7 3556static unsigned long task_h_load(struct task_struct *p)
230059de 3557{
367456c7
PZ
3558 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3559 unsigned long load;
230059de 3560
367456c7
PZ
3561 load = p->se.load.weight;
3562 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 3563
367456c7 3564 return load;
230059de
PZ
3565}
3566#else
9e3081ca
PZ
3567static inline void update_shares(int cpu)
3568{
3569}
3570
367456c7 3571static inline void update_h_load(long cpu)
230059de 3572{
230059de 3573}
230059de 3574
367456c7 3575static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 3576{
367456c7 3577 return p->se.load.weight;
1e3c88bd 3578}
230059de 3579#endif
1e3c88bd 3580
1e3c88bd
PZ
3581/********** Helpers for find_busiest_group ************************/
3582/*
3583 * sd_lb_stats - Structure to store the statistics of a sched_domain
3584 * during load balancing.
3585 */
3586struct sd_lb_stats {
3587 struct sched_group *busiest; /* Busiest group in this sd */
3588 struct sched_group *this; /* Local group in this sd */
3589 unsigned long total_load; /* Total load of all groups in sd */
3590 unsigned long total_pwr; /* Total power of all groups in sd */
3591 unsigned long avg_load; /* Average load across all groups in sd */
3592
3593 /** Statistics of this group */
3594 unsigned long this_load;
3595 unsigned long this_load_per_task;
3596 unsigned long this_nr_running;
fab47622 3597 unsigned long this_has_capacity;
aae6d3dd 3598 unsigned int this_idle_cpus;
1e3c88bd
PZ
3599
3600 /* Statistics of the busiest group */
aae6d3dd 3601 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
3602 unsigned long max_load;
3603 unsigned long busiest_load_per_task;
3604 unsigned long busiest_nr_running;
dd5feea1 3605 unsigned long busiest_group_capacity;
fab47622 3606 unsigned long busiest_has_capacity;
aae6d3dd 3607 unsigned int busiest_group_weight;
1e3c88bd
PZ
3608
3609 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
3610};
3611
3612/*
3613 * sg_lb_stats - stats of a sched_group required for load_balancing
3614 */
3615struct sg_lb_stats {
3616 unsigned long avg_load; /*Avg load across the CPUs of the group */
3617 unsigned long group_load; /* Total load over the CPUs of the group */
3618 unsigned long sum_nr_running; /* Nr tasks running in the group */
3619 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3620 unsigned long group_capacity;
aae6d3dd
SS
3621 unsigned long idle_cpus;
3622 unsigned long group_weight;
1e3c88bd 3623 int group_imb; /* Is there an imbalance in the group ? */
fab47622 3624 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
3625};
3626
1e3c88bd
PZ
3627/**
3628 * get_sd_load_idx - Obtain the load index for a given sched domain.
3629 * @sd: The sched_domain whose load_idx is to be obtained.
3630 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3631 */
3632static inline int get_sd_load_idx(struct sched_domain *sd,
3633 enum cpu_idle_type idle)
3634{
3635 int load_idx;
3636
3637 switch (idle) {
3638 case CPU_NOT_IDLE:
3639 load_idx = sd->busy_idx;
3640 break;
3641
3642 case CPU_NEWLY_IDLE:
3643 load_idx = sd->newidle_idx;
3644 break;
3645 default:
3646 load_idx = sd->idle_idx;
3647 break;
3648 }
3649
3650 return load_idx;
3651}
3652
1e3c88bd
PZ
3653unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3654{
1399fa78 3655 return SCHED_POWER_SCALE;
1e3c88bd
PZ
3656}
3657
3658unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3659{
3660 return default_scale_freq_power(sd, cpu);
3661}
3662
3663unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3664{
669c55e9 3665 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
3666 unsigned long smt_gain = sd->smt_gain;
3667
3668 smt_gain /= weight;
3669
3670 return smt_gain;
3671}
3672
3673unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3674{
3675 return default_scale_smt_power(sd, cpu);
3676}
3677
3678unsigned long scale_rt_power(int cpu)
3679{
3680 struct rq *rq = cpu_rq(cpu);
b654f7de 3681 u64 total, available, age_stamp, avg;
1e3c88bd 3682
b654f7de
PZ
3683 /*
3684 * Since we're reading these variables without serialization make sure
3685 * we read them once before doing sanity checks on them.
3686 */
3687 age_stamp = ACCESS_ONCE(rq->age_stamp);
3688 avg = ACCESS_ONCE(rq->rt_avg);
3689
3690 total = sched_avg_period() + (rq->clock - age_stamp);
aa483808 3691
b654f7de 3692 if (unlikely(total < avg)) {
aa483808
VP
3693 /* Ensures that power won't end up being negative */
3694 available = 0;
3695 } else {
b654f7de 3696 available = total - avg;
aa483808 3697 }
1e3c88bd 3698
1399fa78
NR
3699 if (unlikely((s64)total < SCHED_POWER_SCALE))
3700 total = SCHED_POWER_SCALE;
1e3c88bd 3701
1399fa78 3702 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3703
3704 return div_u64(available, total);
3705}
3706
3707static void update_cpu_power(struct sched_domain *sd, int cpu)
3708{
669c55e9 3709 unsigned long weight = sd->span_weight;
1399fa78 3710 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
3711 struct sched_group *sdg = sd->groups;
3712
1e3c88bd
PZ
3713 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3714 if (sched_feat(ARCH_POWER))
3715 power *= arch_scale_smt_power(sd, cpu);
3716 else
3717 power *= default_scale_smt_power(sd, cpu);
3718
1399fa78 3719 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3720 }
3721
9c3f75cb 3722 sdg->sgp->power_orig = power;
9d5efe05
SV
3723
3724 if (sched_feat(ARCH_POWER))
3725 power *= arch_scale_freq_power(sd, cpu);
3726 else
3727 power *= default_scale_freq_power(sd, cpu);
3728
1399fa78 3729 power >>= SCHED_POWER_SHIFT;
9d5efe05 3730
1e3c88bd 3731 power *= scale_rt_power(cpu);
1399fa78 3732 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3733
3734 if (!power)
3735 power = 1;
3736
e51fd5e2 3737 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 3738 sdg->sgp->power = power;
1e3c88bd
PZ
3739}
3740
029632fb 3741void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
3742{
3743 struct sched_domain *child = sd->child;
3744 struct sched_group *group, *sdg = sd->groups;
3745 unsigned long power;
4ec4412e
VG
3746 unsigned long interval;
3747
3748 interval = msecs_to_jiffies(sd->balance_interval);
3749 interval = clamp(interval, 1UL, max_load_balance_interval);
3750 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
3751
3752 if (!child) {
3753 update_cpu_power(sd, cpu);
3754 return;
3755 }
3756
3757 power = 0;
3758
74a5ce20
PZ
3759 if (child->flags & SD_OVERLAP) {
3760 /*
3761 * SD_OVERLAP domains cannot assume that child groups
3762 * span the current group.
3763 */
3764
3765 for_each_cpu(cpu, sched_group_cpus(sdg))
3766 power += power_of(cpu);
3767 } else {
3768 /*
3769 * !SD_OVERLAP domains can assume that child groups
3770 * span the current group.
3771 */
3772
3773 group = child->groups;
3774 do {
3775 power += group->sgp->power;
3776 group = group->next;
3777 } while (group != child->groups);
3778 }
1e3c88bd 3779
c3decf0d 3780 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
3781}
3782
9d5efe05
SV
3783/*
3784 * Try and fix up capacity for tiny siblings, this is needed when
3785 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3786 * which on its own isn't powerful enough.
3787 *
3788 * See update_sd_pick_busiest() and check_asym_packing().
3789 */
3790static inline int
3791fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3792{
3793 /*
1399fa78 3794 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 3795 */
a6c75f2f 3796 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
3797 return 0;
3798
3799 /*
3800 * If ~90% of the cpu_power is still there, we're good.
3801 */
9c3f75cb 3802 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
3803 return 1;
3804
3805 return 0;
3806}
3807
1e3c88bd
PZ
3808/**
3809 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 3810 * @env: The load balancing environment.
1e3c88bd 3811 * @group: sched_group whose statistics are to be updated.
1e3c88bd 3812 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 3813 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
3814 * @balance: Should we balance.
3815 * @sgs: variable to hold the statistics for this group.
3816 */
bd939f45
PZ
3817static inline void update_sg_lb_stats(struct lb_env *env,
3818 struct sched_group *group, int load_idx,
b9403130 3819 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 3820{
e44bc5c5
PZ
3821 unsigned long nr_running, max_nr_running, min_nr_running;
3822 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 3823 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 3824 unsigned long avg_load_per_task = 0;
bd939f45 3825 int i;
1e3c88bd 3826
871e35bc 3827 if (local_group)
c1174876 3828 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
3829
3830 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
3831 max_cpu_load = 0;
3832 min_cpu_load = ~0UL;
2582f0eb 3833 max_nr_running = 0;
e44bc5c5 3834 min_nr_running = ~0UL;
1e3c88bd 3835
b9403130 3836 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
3837 struct rq *rq = cpu_rq(i);
3838
e44bc5c5
PZ
3839 nr_running = rq->nr_running;
3840
1e3c88bd
PZ
3841 /* Bias balancing toward cpus of our domain */
3842 if (local_group) {
c1174876
PZ
3843 if (idle_cpu(i) && !first_idle_cpu &&
3844 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 3845 first_idle_cpu = 1;
1e3c88bd
PZ
3846 balance_cpu = i;
3847 }
04f733b4
PZ
3848
3849 load = target_load(i, load_idx);
1e3c88bd
PZ
3850 } else {
3851 load = source_load(i, load_idx);
e44bc5c5 3852 if (load > max_cpu_load)
1e3c88bd
PZ
3853 max_cpu_load = load;
3854 if (min_cpu_load > load)
3855 min_cpu_load = load;
e44bc5c5
PZ
3856
3857 if (nr_running > max_nr_running)
3858 max_nr_running = nr_running;
3859 if (min_nr_running > nr_running)
3860 min_nr_running = nr_running;
1e3c88bd
PZ
3861 }
3862
3863 sgs->group_load += load;
e44bc5c5 3864 sgs->sum_nr_running += nr_running;
1e3c88bd 3865 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
3866 if (idle_cpu(i))
3867 sgs->idle_cpus++;
1e3c88bd
PZ
3868 }
3869
3870 /*
3871 * First idle cpu or the first cpu(busiest) in this sched group
3872 * is eligible for doing load balancing at this and above
3873 * domains. In the newly idle case, we will allow all the cpu's
3874 * to do the newly idle load balance.
3875 */
4ec4412e 3876 if (local_group) {
bd939f45 3877 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 3878 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
3879 *balance = 0;
3880 return;
3881 }
bd939f45 3882 update_group_power(env->sd, env->dst_cpu);
4ec4412e 3883 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 3884 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
3885 }
3886
3887 /* Adjust by relative CPU power of the group */
9c3f75cb 3888 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 3889
1e3c88bd
PZ
3890 /*
3891 * Consider the group unbalanced when the imbalance is larger
866ab43e 3892 * than the average weight of a task.
1e3c88bd
PZ
3893 *
3894 * APZ: with cgroup the avg task weight can vary wildly and
3895 * might not be a suitable number - should we keep a
3896 * normalized nr_running number somewhere that negates
3897 * the hierarchy?
3898 */
dd5feea1
SS
3899 if (sgs->sum_nr_running)
3900 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 3901
e44bc5c5
PZ
3902 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
3903 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
3904 sgs->group_imb = 1;
3905
9c3f75cb 3906 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 3907 SCHED_POWER_SCALE);
9d5efe05 3908 if (!sgs->group_capacity)
bd939f45 3909 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 3910 sgs->group_weight = group->group_weight;
fab47622
NR
3911
3912 if (sgs->group_capacity > sgs->sum_nr_running)
3913 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3914}
3915
532cb4c4
MN
3916/**
3917 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 3918 * @env: The load balancing environment.
532cb4c4
MN
3919 * @sds: sched_domain statistics
3920 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 3921 * @sgs: sched_group statistics
532cb4c4
MN
3922 *
3923 * Determine if @sg is a busier group than the previously selected
3924 * busiest group.
3925 */
bd939f45 3926static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
3927 struct sd_lb_stats *sds,
3928 struct sched_group *sg,
bd939f45 3929 struct sg_lb_stats *sgs)
532cb4c4
MN
3930{
3931 if (sgs->avg_load <= sds->max_load)
3932 return false;
3933
3934 if (sgs->sum_nr_running > sgs->group_capacity)
3935 return true;
3936
3937 if (sgs->group_imb)
3938 return true;
3939
3940 /*
3941 * ASYM_PACKING needs to move all the work to the lowest
3942 * numbered CPUs in the group, therefore mark all groups
3943 * higher than ourself as busy.
3944 */
bd939f45
PZ
3945 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3946 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
3947 if (!sds->busiest)
3948 return true;
3949
3950 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3951 return true;
3952 }
3953
3954 return false;
3955}
3956
1e3c88bd 3957/**
461819ac 3958 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 3959 * @env: The load balancing environment.
1e3c88bd
PZ
3960 * @balance: Should we balance.
3961 * @sds: variable to hold the statistics for this sched_domain.
3962 */
bd939f45 3963static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 3964 int *balance, struct sd_lb_stats *sds)
1e3c88bd 3965{
bd939f45
PZ
3966 struct sched_domain *child = env->sd->child;
3967 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
3968 struct sg_lb_stats sgs;
3969 int load_idx, prefer_sibling = 0;
3970
3971 if (child && child->flags & SD_PREFER_SIBLING)
3972 prefer_sibling = 1;
3973
bd939f45 3974 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
3975
3976 do {
3977 int local_group;
3978
bd939f45 3979 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 3980 memset(&sgs, 0, sizeof(sgs));
b9403130 3981 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 3982
8f190fb3 3983 if (local_group && !(*balance))
1e3c88bd
PZ
3984 return;
3985
3986 sds->total_load += sgs.group_load;
9c3f75cb 3987 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
3988
3989 /*
3990 * In case the child domain prefers tasks go to siblings
532cb4c4 3991 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
3992 * and move all the excess tasks away. We lower the capacity
3993 * of a group only if the local group has the capacity to fit
3994 * these excess tasks, i.e. nr_running < group_capacity. The
3995 * extra check prevents the case where you always pull from the
3996 * heaviest group when it is already under-utilized (possible
3997 * with a large weight task outweighs the tasks on the system).
1e3c88bd 3998 */
75dd321d 3999 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4000 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4001
4002 if (local_group) {
4003 sds->this_load = sgs.avg_load;
532cb4c4 4004 sds->this = sg;
1e3c88bd
PZ
4005 sds->this_nr_running = sgs.sum_nr_running;
4006 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4007 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4008 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 4009 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 4010 sds->max_load = sgs.avg_load;
532cb4c4 4011 sds->busiest = sg;
1e3c88bd 4012 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4013 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4014 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4015 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4016 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4017 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4018 sds->group_imb = sgs.group_imb;
4019 }
4020
532cb4c4 4021 sg = sg->next;
bd939f45 4022 } while (sg != env->sd->groups);
532cb4c4
MN
4023}
4024
532cb4c4
MN
4025/**
4026 * check_asym_packing - Check to see if the group is packed into the
4027 * sched doman.
4028 *
4029 * This is primarily intended to used at the sibling level. Some
4030 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4031 * case of POWER7, it can move to lower SMT modes only when higher
4032 * threads are idle. When in lower SMT modes, the threads will
4033 * perform better since they share less core resources. Hence when we
4034 * have idle threads, we want them to be the higher ones.
4035 *
4036 * This packing function is run on idle threads. It checks to see if
4037 * the busiest CPU in this domain (core in the P7 case) has a higher
4038 * CPU number than the packing function is being run on. Here we are
4039 * assuming lower CPU number will be equivalent to lower a SMT thread
4040 * number.
4041 *
b6b12294
MN
4042 * Returns 1 when packing is required and a task should be moved to
4043 * this CPU. The amount of the imbalance is returned in *imbalance.
4044 *
cd96891d 4045 * @env: The load balancing environment.
532cb4c4 4046 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4047 */
bd939f45 4048static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4049{
4050 int busiest_cpu;
4051
bd939f45 4052 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4053 return 0;
4054
4055 if (!sds->busiest)
4056 return 0;
4057
4058 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4059 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4060 return 0;
4061
bd939f45
PZ
4062 env->imbalance = DIV_ROUND_CLOSEST(
4063 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4064
532cb4c4 4065 return 1;
1e3c88bd
PZ
4066}
4067
4068/**
4069 * fix_small_imbalance - Calculate the minor imbalance that exists
4070 * amongst the groups of a sched_domain, during
4071 * load balancing.
cd96891d 4072 * @env: The load balancing environment.
1e3c88bd 4073 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4074 */
bd939f45
PZ
4075static inline
4076void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4077{
4078 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4079 unsigned int imbn = 2;
dd5feea1 4080 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4081
4082 if (sds->this_nr_running) {
4083 sds->this_load_per_task /= sds->this_nr_running;
4084 if (sds->busiest_load_per_task >
4085 sds->this_load_per_task)
4086 imbn = 1;
bd939f45 4087 } else {
1e3c88bd 4088 sds->this_load_per_task =
bd939f45
PZ
4089 cpu_avg_load_per_task(env->dst_cpu);
4090 }
1e3c88bd 4091
dd5feea1 4092 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4093 * SCHED_POWER_SCALE;
9c3f75cb 4094 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4095
4096 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4097 (scaled_busy_load_per_task * imbn)) {
bd939f45 4098 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4099 return;
4100 }
4101
4102 /*
4103 * OK, we don't have enough imbalance to justify moving tasks,
4104 * however we may be able to increase total CPU power used by
4105 * moving them.
4106 */
4107
9c3f75cb 4108 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4109 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4110 pwr_now += sds->this->sgp->power *
1e3c88bd 4111 min(sds->this_load_per_task, sds->this_load);
1399fa78 4112 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4113
4114 /* Amount of load we'd subtract */
1399fa78 4115 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4116 sds->busiest->sgp->power;
1e3c88bd 4117 if (sds->max_load > tmp)
9c3f75cb 4118 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4119 min(sds->busiest_load_per_task, sds->max_load - tmp);
4120
4121 /* Amount of load we'd add */
9c3f75cb 4122 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4123 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4124 tmp = (sds->max_load * sds->busiest->sgp->power) /
4125 sds->this->sgp->power;
1e3c88bd 4126 else
1399fa78 4127 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4128 sds->this->sgp->power;
4129 pwr_move += sds->this->sgp->power *
1e3c88bd 4130 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4131 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4132
4133 /* Move if we gain throughput */
4134 if (pwr_move > pwr_now)
bd939f45 4135 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4136}
4137
4138/**
4139 * calculate_imbalance - Calculate the amount of imbalance present within the
4140 * groups of a given sched_domain during load balance.
bd939f45 4141 * @env: load balance environment
1e3c88bd 4142 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4143 */
bd939f45 4144static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4145{
dd5feea1
SS
4146 unsigned long max_pull, load_above_capacity = ~0UL;
4147
4148 sds->busiest_load_per_task /= sds->busiest_nr_running;
4149 if (sds->group_imb) {
4150 sds->busiest_load_per_task =
4151 min(sds->busiest_load_per_task, sds->avg_load);
4152 }
4153
1e3c88bd
PZ
4154 /*
4155 * In the presence of smp nice balancing, certain scenarios can have
4156 * max load less than avg load(as we skip the groups at or below
4157 * its cpu_power, while calculating max_load..)
4158 */
4159 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4160 env->imbalance = 0;
4161 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4162 }
4163
dd5feea1
SS
4164 if (!sds->group_imb) {
4165 /*
4166 * Don't want to pull so many tasks that a group would go idle.
4167 */
4168 load_above_capacity = (sds->busiest_nr_running -
4169 sds->busiest_group_capacity);
4170
1399fa78 4171 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4172
9c3f75cb 4173 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4174 }
4175
4176 /*
4177 * We're trying to get all the cpus to the average_load, so we don't
4178 * want to push ourselves above the average load, nor do we wish to
4179 * reduce the max loaded cpu below the average load. At the same time,
4180 * we also don't want to reduce the group load below the group capacity
4181 * (so that we can implement power-savings policies etc). Thus we look
4182 * for the minimum possible imbalance.
4183 * Be careful of negative numbers as they'll appear as very large values
4184 * with unsigned longs.
4185 */
4186 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4187
4188 /* How much load to actually move to equalise the imbalance */
bd939f45 4189 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4190 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4191 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4192
4193 /*
4194 * if *imbalance is less than the average load per runnable task
25985edc 4195 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4196 * a think about bumping its value to force at least one task to be
4197 * moved
4198 */
bd939f45
PZ
4199 if (env->imbalance < sds->busiest_load_per_task)
4200 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4201
4202}
fab47622 4203
1e3c88bd
PZ
4204/******* find_busiest_group() helpers end here *********************/
4205
4206/**
4207 * find_busiest_group - Returns the busiest group within the sched_domain
4208 * if there is an imbalance. If there isn't an imbalance, and
4209 * the user has opted for power-savings, it returns a group whose
4210 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4211 * such a group exists.
4212 *
4213 * Also calculates the amount of weighted load which should be moved
4214 * to restore balance.
4215 *
cd96891d 4216 * @env: The load balancing environment.
1e3c88bd
PZ
4217 * @balance: Pointer to a variable indicating if this_cpu
4218 * is the appropriate cpu to perform load balancing at this_level.
4219 *
4220 * Returns: - the busiest group if imbalance exists.
4221 * - If no imbalance and user has opted for power-savings balance,
4222 * return the least loaded group whose CPUs can be
4223 * put to idle by rebalancing its tasks onto our group.
4224 */
4225static struct sched_group *
b9403130 4226find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4227{
4228 struct sd_lb_stats sds;
4229
4230 memset(&sds, 0, sizeof(sds));
4231
4232 /*
4233 * Compute the various statistics relavent for load balancing at
4234 * this level.
4235 */
b9403130 4236 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4237
cc57aa8f
PZ
4238 /*
4239 * this_cpu is not the appropriate cpu to perform load balancing at
4240 * this level.
1e3c88bd 4241 */
8f190fb3 4242 if (!(*balance))
1e3c88bd
PZ
4243 goto ret;
4244
bd939f45
PZ
4245 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4246 check_asym_packing(env, &sds))
532cb4c4
MN
4247 return sds.busiest;
4248
cc57aa8f 4249 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4250 if (!sds.busiest || sds.busiest_nr_running == 0)
4251 goto out_balanced;
4252
1399fa78 4253 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4254
866ab43e
PZ
4255 /*
4256 * If the busiest group is imbalanced the below checks don't
4257 * work because they assumes all things are equal, which typically
4258 * isn't true due to cpus_allowed constraints and the like.
4259 */
4260 if (sds.group_imb)
4261 goto force_balance;
4262
cc57aa8f 4263 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4264 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4265 !sds.busiest_has_capacity)
4266 goto force_balance;
4267
cc57aa8f
PZ
4268 /*
4269 * If the local group is more busy than the selected busiest group
4270 * don't try and pull any tasks.
4271 */
1e3c88bd
PZ
4272 if (sds.this_load >= sds.max_load)
4273 goto out_balanced;
4274
cc57aa8f
PZ
4275 /*
4276 * Don't pull any tasks if this group is already above the domain
4277 * average load.
4278 */
1e3c88bd
PZ
4279 if (sds.this_load >= sds.avg_load)
4280 goto out_balanced;
4281
bd939f45 4282 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4283 /*
4284 * This cpu is idle. If the busiest group load doesn't
4285 * have more tasks than the number of available cpu's and
4286 * there is no imbalance between this and busiest group
4287 * wrt to idle cpu's, it is balanced.
4288 */
c186fafe 4289 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4290 sds.busiest_nr_running <= sds.busiest_group_weight)
4291 goto out_balanced;
c186fafe
PZ
4292 } else {
4293 /*
4294 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4295 * imbalance_pct to be conservative.
4296 */
bd939f45 4297 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4298 goto out_balanced;
aae6d3dd 4299 }
1e3c88bd 4300
fab47622 4301force_balance:
1e3c88bd 4302 /* Looks like there is an imbalance. Compute it */
bd939f45 4303 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4304 return sds.busiest;
4305
4306out_balanced:
1e3c88bd 4307ret:
bd939f45 4308 env->imbalance = 0;
1e3c88bd
PZ
4309 return NULL;
4310}
4311
4312/*
4313 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4314 */
bd939f45 4315static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4316 struct sched_group *group)
1e3c88bd
PZ
4317{
4318 struct rq *busiest = NULL, *rq;
4319 unsigned long max_load = 0;
4320 int i;
4321
4322 for_each_cpu(i, sched_group_cpus(group)) {
4323 unsigned long power = power_of(i);
1399fa78
NR
4324 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4325 SCHED_POWER_SCALE);
1e3c88bd
PZ
4326 unsigned long wl;
4327
9d5efe05 4328 if (!capacity)
bd939f45 4329 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4330
b9403130 4331 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4332 continue;
4333
4334 rq = cpu_rq(i);
6e40f5bb 4335 wl = weighted_cpuload(i);
1e3c88bd 4336
6e40f5bb
TG
4337 /*
4338 * When comparing with imbalance, use weighted_cpuload()
4339 * which is not scaled with the cpu power.
4340 */
bd939f45 4341 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4342 continue;
4343
6e40f5bb
TG
4344 /*
4345 * For the load comparisons with the other cpu's, consider
4346 * the weighted_cpuload() scaled with the cpu power, so that
4347 * the load can be moved away from the cpu that is potentially
4348 * running at a lower capacity.
4349 */
1399fa78 4350 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4351
1e3c88bd
PZ
4352 if (wl > max_load) {
4353 max_load = wl;
4354 busiest = rq;
4355 }
4356 }
4357
4358 return busiest;
4359}
4360
4361/*
4362 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4363 * so long as it is large enough.
4364 */
4365#define MAX_PINNED_INTERVAL 512
4366
4367/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4368DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4369
bd939f45 4370static int need_active_balance(struct lb_env *env)
1af3ed3d 4371{
bd939f45
PZ
4372 struct sched_domain *sd = env->sd;
4373
4374 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4375
4376 /*
4377 * ASYM_PACKING needs to force migrate tasks from busy but
4378 * higher numbered CPUs in order to pack all tasks in the
4379 * lowest numbered CPUs.
4380 */
bd939f45 4381 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 4382 return 1;
1af3ed3d
PZ
4383 }
4384
4385 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4386}
4387
969c7921
TH
4388static int active_load_balance_cpu_stop(void *data);
4389
1e3c88bd
PZ
4390/*
4391 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4392 * tasks if there is an imbalance.
4393 */
4394static int load_balance(int this_cpu, struct rq *this_rq,
4395 struct sched_domain *sd, enum cpu_idle_type idle,
4396 int *balance)
4397{
88b8dac0
SV
4398 int ld_moved, cur_ld_moved, active_balance = 0;
4399 int lb_iterations, max_lb_iterations;
1e3c88bd 4400 struct sched_group *group;
1e3c88bd
PZ
4401 struct rq *busiest;
4402 unsigned long flags;
4403 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4404
8e45cb54
PZ
4405 struct lb_env env = {
4406 .sd = sd,
ddcdf6e7
PZ
4407 .dst_cpu = this_cpu,
4408 .dst_rq = this_rq,
88b8dac0 4409 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 4410 .idle = idle,
eb95308e 4411 .loop_break = sched_nr_migrate_break,
b9403130 4412 .cpus = cpus,
8e45cb54
PZ
4413 };
4414
1e3c88bd 4415 cpumask_copy(cpus, cpu_active_mask);
88b8dac0 4416 max_lb_iterations = cpumask_weight(env.dst_grpmask);
1e3c88bd 4417
1e3c88bd
PZ
4418 schedstat_inc(sd, lb_count[idle]);
4419
4420redo:
b9403130 4421 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
4422
4423 if (*balance == 0)
4424 goto out_balanced;
4425
4426 if (!group) {
4427 schedstat_inc(sd, lb_nobusyg[idle]);
4428 goto out_balanced;
4429 }
4430
b9403130 4431 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
4432 if (!busiest) {
4433 schedstat_inc(sd, lb_nobusyq[idle]);
4434 goto out_balanced;
4435 }
4436
78feefc5 4437 BUG_ON(busiest == env.dst_rq);
1e3c88bd 4438
bd939f45 4439 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
4440
4441 ld_moved = 0;
88b8dac0 4442 lb_iterations = 1;
1e3c88bd
PZ
4443 if (busiest->nr_running > 1) {
4444 /*
4445 * Attempt to move tasks. If find_busiest_group has found
4446 * an imbalance but busiest->nr_running <= 1, the group is
4447 * still unbalanced. ld_moved simply stays zero, so it is
4448 * correctly treated as an imbalance.
4449 */
8e45cb54 4450 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
4451 env.src_cpu = busiest->cpu;
4452 env.src_rq = busiest;
4453 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 4454
a35b6466 4455 update_h_load(env.src_cpu);
5d6523eb 4456more_balance:
1e3c88bd 4457 local_irq_save(flags);
78feefc5 4458 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
4459
4460 /*
4461 * cur_ld_moved - load moved in current iteration
4462 * ld_moved - cumulative load moved across iterations
4463 */
4464 cur_ld_moved = move_tasks(&env);
4465 ld_moved += cur_ld_moved;
78feefc5 4466 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
4467 local_irq_restore(flags);
4468
5d6523eb
PZ
4469 if (env.flags & LBF_NEED_BREAK) {
4470 env.flags &= ~LBF_NEED_BREAK;
4471 goto more_balance;
4472 }
4473
1e3c88bd
PZ
4474 /*
4475 * some other cpu did the load balance for us.
4476 */
88b8dac0
SV
4477 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
4478 resched_cpu(env.dst_cpu);
4479
4480 /*
4481 * Revisit (affine) tasks on src_cpu that couldn't be moved to
4482 * us and move them to an alternate dst_cpu in our sched_group
4483 * where they can run. The upper limit on how many times we
4484 * iterate on same src_cpu is dependent on number of cpus in our
4485 * sched_group.
4486 *
4487 * This changes load balance semantics a bit on who can move
4488 * load to a given_cpu. In addition to the given_cpu itself
4489 * (or a ilb_cpu acting on its behalf where given_cpu is
4490 * nohz-idle), we now have balance_cpu in a position to move
4491 * load to given_cpu. In rare situations, this may cause
4492 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
4493 * _independently_ and at _same_ time to move some load to
4494 * given_cpu) causing exceess load to be moved to given_cpu.
4495 * This however should not happen so much in practice and
4496 * moreover subsequent load balance cycles should correct the
4497 * excess load moved.
4498 */
4499 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
4500 lb_iterations++ < max_lb_iterations) {
4501
78feefc5 4502 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
4503 env.dst_cpu = env.new_dst_cpu;
4504 env.flags &= ~LBF_SOME_PINNED;
4505 env.loop = 0;
4506 env.loop_break = sched_nr_migrate_break;
4507 /*
4508 * Go back to "more_balance" rather than "redo" since we
4509 * need to continue with same src_cpu.
4510 */
4511 goto more_balance;
4512 }
1e3c88bd
PZ
4513
4514 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 4515 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 4516 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
4517 if (!cpumask_empty(cpus)) {
4518 env.loop = 0;
4519 env.loop_break = sched_nr_migrate_break;
1e3c88bd 4520 goto redo;
bbf18b19 4521 }
1e3c88bd
PZ
4522 goto out_balanced;
4523 }
4524 }
4525
4526 if (!ld_moved) {
4527 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
4528 /*
4529 * Increment the failure counter only on periodic balance.
4530 * We do not want newidle balance, which can be very
4531 * frequent, pollute the failure counter causing
4532 * excessive cache_hot migrations and active balances.
4533 */
4534 if (idle != CPU_NEWLY_IDLE)
4535 sd->nr_balance_failed++;
1e3c88bd 4536
bd939f45 4537 if (need_active_balance(&env)) {
1e3c88bd
PZ
4538 raw_spin_lock_irqsave(&busiest->lock, flags);
4539
969c7921
TH
4540 /* don't kick the active_load_balance_cpu_stop,
4541 * if the curr task on busiest cpu can't be
4542 * moved to this_cpu
1e3c88bd
PZ
4543 */
4544 if (!cpumask_test_cpu(this_cpu,
fa17b507 4545 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
4546 raw_spin_unlock_irqrestore(&busiest->lock,
4547 flags);
8e45cb54 4548 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
4549 goto out_one_pinned;
4550 }
4551
969c7921
TH
4552 /*
4553 * ->active_balance synchronizes accesses to
4554 * ->active_balance_work. Once set, it's cleared
4555 * only after active load balance is finished.
4556 */
1e3c88bd
PZ
4557 if (!busiest->active_balance) {
4558 busiest->active_balance = 1;
4559 busiest->push_cpu = this_cpu;
4560 active_balance = 1;
4561 }
4562 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 4563
bd939f45 4564 if (active_balance) {
969c7921
TH
4565 stop_one_cpu_nowait(cpu_of(busiest),
4566 active_load_balance_cpu_stop, busiest,
4567 &busiest->active_balance_work);
bd939f45 4568 }
1e3c88bd
PZ
4569
4570 /*
4571 * We've kicked active balancing, reset the failure
4572 * counter.
4573 */
4574 sd->nr_balance_failed = sd->cache_nice_tries+1;
4575 }
4576 } else
4577 sd->nr_balance_failed = 0;
4578
4579 if (likely(!active_balance)) {
4580 /* We were unbalanced, so reset the balancing interval */
4581 sd->balance_interval = sd->min_interval;
4582 } else {
4583 /*
4584 * If we've begun active balancing, start to back off. This
4585 * case may not be covered by the all_pinned logic if there
4586 * is only 1 task on the busy runqueue (because we don't call
4587 * move_tasks).
4588 */
4589 if (sd->balance_interval < sd->max_interval)
4590 sd->balance_interval *= 2;
4591 }
4592
1e3c88bd
PZ
4593 goto out;
4594
4595out_balanced:
4596 schedstat_inc(sd, lb_balanced[idle]);
4597
4598 sd->nr_balance_failed = 0;
4599
4600out_one_pinned:
4601 /* tune up the balancing interval */
8e45cb54 4602 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 4603 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
4604 (sd->balance_interval < sd->max_interval))
4605 sd->balance_interval *= 2;
4606
46e49b38 4607 ld_moved = 0;
1e3c88bd 4608out:
1e3c88bd
PZ
4609 return ld_moved;
4610}
4611
1e3c88bd
PZ
4612/*
4613 * idle_balance is called by schedule() if this_cpu is about to become
4614 * idle. Attempts to pull tasks from other CPUs.
4615 */
029632fb 4616void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
4617{
4618 struct sched_domain *sd;
4619 int pulled_task = 0;
4620 unsigned long next_balance = jiffies + HZ;
4621
4622 this_rq->idle_stamp = this_rq->clock;
4623
4624 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4625 return;
4626
f492e12e
PZ
4627 /*
4628 * Drop the rq->lock, but keep IRQ/preempt disabled.
4629 */
4630 raw_spin_unlock(&this_rq->lock);
4631
c66eaf61 4632 update_shares(this_cpu);
dce840a0 4633 rcu_read_lock();
1e3c88bd
PZ
4634 for_each_domain(this_cpu, sd) {
4635 unsigned long interval;
f492e12e 4636 int balance = 1;
1e3c88bd
PZ
4637
4638 if (!(sd->flags & SD_LOAD_BALANCE))
4639 continue;
4640
f492e12e 4641 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 4642 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
4643 pulled_task = load_balance(this_cpu, this_rq,
4644 sd, CPU_NEWLY_IDLE, &balance);
4645 }
1e3c88bd
PZ
4646
4647 interval = msecs_to_jiffies(sd->balance_interval);
4648 if (time_after(next_balance, sd->last_balance + interval))
4649 next_balance = sd->last_balance + interval;
d5ad140b
NR
4650 if (pulled_task) {
4651 this_rq->idle_stamp = 0;
1e3c88bd 4652 break;
d5ad140b 4653 }
1e3c88bd 4654 }
dce840a0 4655 rcu_read_unlock();
f492e12e
PZ
4656
4657 raw_spin_lock(&this_rq->lock);
4658
1e3c88bd
PZ
4659 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4660 /*
4661 * We are going idle. next_balance may be set based on
4662 * a busy processor. So reset next_balance.
4663 */
4664 this_rq->next_balance = next_balance;
4665 }
4666}
4667
4668/*
969c7921
TH
4669 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4670 * running tasks off the busiest CPU onto idle CPUs. It requires at
4671 * least 1 task to be running on each physical CPU where possible, and
4672 * avoids physical / logical imbalances.
1e3c88bd 4673 */
969c7921 4674static int active_load_balance_cpu_stop(void *data)
1e3c88bd 4675{
969c7921
TH
4676 struct rq *busiest_rq = data;
4677 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 4678 int target_cpu = busiest_rq->push_cpu;
969c7921 4679 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 4680 struct sched_domain *sd;
969c7921
TH
4681
4682 raw_spin_lock_irq(&busiest_rq->lock);
4683
4684 /* make sure the requested cpu hasn't gone down in the meantime */
4685 if (unlikely(busiest_cpu != smp_processor_id() ||
4686 !busiest_rq->active_balance))
4687 goto out_unlock;
1e3c88bd
PZ
4688
4689 /* Is there any task to move? */
4690 if (busiest_rq->nr_running <= 1)
969c7921 4691 goto out_unlock;
1e3c88bd
PZ
4692
4693 /*
4694 * This condition is "impossible", if it occurs
4695 * we need to fix it. Originally reported by
4696 * Bjorn Helgaas on a 128-cpu setup.
4697 */
4698 BUG_ON(busiest_rq == target_rq);
4699
4700 /* move a task from busiest_rq to target_rq */
4701 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
4702
4703 /* Search for an sd spanning us and the target CPU. */
dce840a0 4704 rcu_read_lock();
1e3c88bd
PZ
4705 for_each_domain(target_cpu, sd) {
4706 if ((sd->flags & SD_LOAD_BALANCE) &&
4707 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4708 break;
4709 }
4710
4711 if (likely(sd)) {
8e45cb54
PZ
4712 struct lb_env env = {
4713 .sd = sd,
ddcdf6e7
PZ
4714 .dst_cpu = target_cpu,
4715 .dst_rq = target_rq,
4716 .src_cpu = busiest_rq->cpu,
4717 .src_rq = busiest_rq,
8e45cb54
PZ
4718 .idle = CPU_IDLE,
4719 };
4720
1e3c88bd
PZ
4721 schedstat_inc(sd, alb_count);
4722
8e45cb54 4723 if (move_one_task(&env))
1e3c88bd
PZ
4724 schedstat_inc(sd, alb_pushed);
4725 else
4726 schedstat_inc(sd, alb_failed);
4727 }
dce840a0 4728 rcu_read_unlock();
1e3c88bd 4729 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
4730out_unlock:
4731 busiest_rq->active_balance = 0;
4732 raw_spin_unlock_irq(&busiest_rq->lock);
4733 return 0;
1e3c88bd
PZ
4734}
4735
4736#ifdef CONFIG_NO_HZ
83cd4fe2
VP
4737/*
4738 * idle load balancing details
83cd4fe2
VP
4739 * - When one of the busy CPUs notice that there may be an idle rebalancing
4740 * needed, they will kick the idle load balancer, which then does idle
4741 * load balancing for all the idle CPUs.
4742 */
1e3c88bd 4743static struct {
83cd4fe2 4744 cpumask_var_t idle_cpus_mask;
0b005cf5 4745 atomic_t nr_cpus;
83cd4fe2
VP
4746 unsigned long next_balance; /* in jiffy units */
4747} nohz ____cacheline_aligned;
1e3c88bd 4748
8e7fbcbc 4749static inline int find_new_ilb(int call_cpu)
1e3c88bd 4750{
0b005cf5 4751 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 4752
786d6dc7
SS
4753 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4754 return ilb;
4755
4756 return nr_cpu_ids;
1e3c88bd 4757}
1e3c88bd 4758
83cd4fe2
VP
4759/*
4760 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4761 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4762 * CPU (if there is one).
4763 */
4764static void nohz_balancer_kick(int cpu)
4765{
4766 int ilb_cpu;
4767
4768 nohz.next_balance++;
4769
0b005cf5 4770 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 4771
0b005cf5
SS
4772 if (ilb_cpu >= nr_cpu_ids)
4773 return;
83cd4fe2 4774
cd490c5b 4775 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
4776 return;
4777 /*
4778 * Use smp_send_reschedule() instead of resched_cpu().
4779 * This way we generate a sched IPI on the target cpu which
4780 * is idle. And the softirq performing nohz idle load balance
4781 * will be run before returning from the IPI.
4782 */
4783 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
4784 return;
4785}
4786
c1cc017c 4787static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
4788{
4789 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4790 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4791 atomic_dec(&nohz.nr_cpus);
4792 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4793 }
4794}
4795
69e1e811
SS
4796static inline void set_cpu_sd_state_busy(void)
4797{
4798 struct sched_domain *sd;
4799 int cpu = smp_processor_id();
4800
4801 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4802 return;
4803 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4804
4805 rcu_read_lock();
4806 for_each_domain(cpu, sd)
4807 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4808 rcu_read_unlock();
4809}
4810
4811void set_cpu_sd_state_idle(void)
4812{
4813 struct sched_domain *sd;
4814 int cpu = smp_processor_id();
4815
4816 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4817 return;
4818 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4819
4820 rcu_read_lock();
4821 for_each_domain(cpu, sd)
4822 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4823 rcu_read_unlock();
4824}
4825
1e3c88bd 4826/*
c1cc017c 4827 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 4828 * This info will be used in performing idle load balancing in the future.
1e3c88bd 4829 */
c1cc017c 4830void nohz_balance_enter_idle(int cpu)
1e3c88bd 4831{
71325960
SS
4832 /*
4833 * If this cpu is going down, then nothing needs to be done.
4834 */
4835 if (!cpu_active(cpu))
4836 return;
4837
c1cc017c
AS
4838 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
4839 return;
1e3c88bd 4840
c1cc017c
AS
4841 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4842 atomic_inc(&nohz.nr_cpus);
4843 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 4844}
71325960
SS
4845
4846static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4847 unsigned long action, void *hcpu)
4848{
4849 switch (action & ~CPU_TASKS_FROZEN) {
4850 case CPU_DYING:
c1cc017c 4851 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
4852 return NOTIFY_OK;
4853 default:
4854 return NOTIFY_DONE;
4855 }
4856}
1e3c88bd
PZ
4857#endif
4858
4859static DEFINE_SPINLOCK(balancing);
4860
49c022e6
PZ
4861/*
4862 * Scale the max load_balance interval with the number of CPUs in the system.
4863 * This trades load-balance latency on larger machines for less cross talk.
4864 */
029632fb 4865void update_max_interval(void)
49c022e6
PZ
4866{
4867 max_load_balance_interval = HZ*num_online_cpus()/10;
4868}
4869
1e3c88bd
PZ
4870/*
4871 * It checks each scheduling domain to see if it is due to be balanced,
4872 * and initiates a balancing operation if so.
4873 *
4874 * Balancing parameters are set up in arch_init_sched_domains.
4875 */
4876static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4877{
4878 int balance = 1;
4879 struct rq *rq = cpu_rq(cpu);
4880 unsigned long interval;
04f733b4 4881 struct sched_domain *sd;
1e3c88bd
PZ
4882 /* Earliest time when we have to do rebalance again */
4883 unsigned long next_balance = jiffies + 60*HZ;
4884 int update_next_balance = 0;
4885 int need_serialize;
4886
2069dd75
PZ
4887 update_shares(cpu);
4888
dce840a0 4889 rcu_read_lock();
1e3c88bd
PZ
4890 for_each_domain(cpu, sd) {
4891 if (!(sd->flags & SD_LOAD_BALANCE))
4892 continue;
4893
4894 interval = sd->balance_interval;
4895 if (idle != CPU_IDLE)
4896 interval *= sd->busy_factor;
4897
4898 /* scale ms to jiffies */
4899 interval = msecs_to_jiffies(interval);
49c022e6 4900 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
4901
4902 need_serialize = sd->flags & SD_SERIALIZE;
4903
4904 if (need_serialize) {
4905 if (!spin_trylock(&balancing))
4906 goto out;
4907 }
4908
4909 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4910 if (load_balance(cpu, rq, sd, idle, &balance)) {
4911 /*
4912 * We've pulled tasks over so either we're no
c186fafe 4913 * longer idle.
1e3c88bd
PZ
4914 */
4915 idle = CPU_NOT_IDLE;
4916 }
4917 sd->last_balance = jiffies;
4918 }
4919 if (need_serialize)
4920 spin_unlock(&balancing);
4921out:
4922 if (time_after(next_balance, sd->last_balance + interval)) {
4923 next_balance = sd->last_balance + interval;
4924 update_next_balance = 1;
4925 }
4926
4927 /*
4928 * Stop the load balance at this level. There is another
4929 * CPU in our sched group which is doing load balancing more
4930 * actively.
4931 */
4932 if (!balance)
4933 break;
4934 }
dce840a0 4935 rcu_read_unlock();
1e3c88bd
PZ
4936
4937 /*
4938 * next_balance will be updated only when there is a need.
4939 * When the cpu is attached to null domain for ex, it will not be
4940 * updated.
4941 */
4942 if (likely(update_next_balance))
4943 rq->next_balance = next_balance;
4944}
4945
83cd4fe2 4946#ifdef CONFIG_NO_HZ
1e3c88bd 4947/*
83cd4fe2 4948 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
4949 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4950 */
83cd4fe2
VP
4951static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4952{
4953 struct rq *this_rq = cpu_rq(this_cpu);
4954 struct rq *rq;
4955 int balance_cpu;
4956
1c792db7
SS
4957 if (idle != CPU_IDLE ||
4958 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
4959 goto end;
83cd4fe2
VP
4960
4961 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 4962 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
4963 continue;
4964
4965 /*
4966 * If this cpu gets work to do, stop the load balancing
4967 * work being done for other cpus. Next load
4968 * balancing owner will pick it up.
4969 */
1c792db7 4970 if (need_resched())
83cd4fe2 4971 break;
83cd4fe2 4972
5ed4f1d9
VG
4973 rq = cpu_rq(balance_cpu);
4974
4975 raw_spin_lock_irq(&rq->lock);
4976 update_rq_clock(rq);
4977 update_idle_cpu_load(rq);
4978 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
4979
4980 rebalance_domains(balance_cpu, CPU_IDLE);
4981
83cd4fe2
VP
4982 if (time_after(this_rq->next_balance, rq->next_balance))
4983 this_rq->next_balance = rq->next_balance;
4984 }
4985 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
4986end:
4987 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
4988}
4989
4990/*
0b005cf5
SS
4991 * Current heuristic for kicking the idle load balancer in the presence
4992 * of an idle cpu is the system.
4993 * - This rq has more than one task.
4994 * - At any scheduler domain level, this cpu's scheduler group has multiple
4995 * busy cpu's exceeding the group's power.
4996 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
4997 * domain span are idle.
83cd4fe2
VP
4998 */
4999static inline int nohz_kick_needed(struct rq *rq, int cpu)
5000{
5001 unsigned long now = jiffies;
0b005cf5 5002 struct sched_domain *sd;
83cd4fe2 5003
1c792db7 5004 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5005 return 0;
5006
1c792db7
SS
5007 /*
5008 * We may be recently in ticked or tickless idle mode. At the first
5009 * busy tick after returning from idle, we will update the busy stats.
5010 */
69e1e811 5011 set_cpu_sd_state_busy();
c1cc017c 5012 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5013
5014 /*
5015 * None are in tickless mode and hence no need for NOHZ idle load
5016 * balancing.
5017 */
5018 if (likely(!atomic_read(&nohz.nr_cpus)))
5019 return 0;
1c792db7
SS
5020
5021 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5022 return 0;
5023
0b005cf5
SS
5024 if (rq->nr_running >= 2)
5025 goto need_kick;
83cd4fe2 5026
067491b7 5027 rcu_read_lock();
0b005cf5
SS
5028 for_each_domain(cpu, sd) {
5029 struct sched_group *sg = sd->groups;
5030 struct sched_group_power *sgp = sg->sgp;
5031 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5032
0b005cf5 5033 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5034 goto need_kick_unlock;
0b005cf5
SS
5035
5036 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5037 && (cpumask_first_and(nohz.idle_cpus_mask,
5038 sched_domain_span(sd)) < cpu))
067491b7 5039 goto need_kick_unlock;
0b005cf5
SS
5040
5041 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5042 break;
83cd4fe2 5043 }
067491b7 5044 rcu_read_unlock();
83cd4fe2 5045 return 0;
067491b7
PZ
5046
5047need_kick_unlock:
5048 rcu_read_unlock();
0b005cf5
SS
5049need_kick:
5050 return 1;
83cd4fe2
VP
5051}
5052#else
5053static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5054#endif
5055
5056/*
5057 * run_rebalance_domains is triggered when needed from the scheduler tick.
5058 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5059 */
1e3c88bd
PZ
5060static void run_rebalance_domains(struct softirq_action *h)
5061{
5062 int this_cpu = smp_processor_id();
5063 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5064 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5065 CPU_IDLE : CPU_NOT_IDLE;
5066
5067 rebalance_domains(this_cpu, idle);
5068
1e3c88bd 5069 /*
83cd4fe2 5070 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5071 * balancing on behalf of the other idle cpus whose ticks are
5072 * stopped.
5073 */
83cd4fe2 5074 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5075}
5076
5077static inline int on_null_domain(int cpu)
5078{
90a6501f 5079 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5080}
5081
5082/*
5083 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5084 */
029632fb 5085void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5086{
1e3c88bd
PZ
5087 /* Don't need to rebalance while attached to NULL domain */
5088 if (time_after_eq(jiffies, rq->next_balance) &&
5089 likely(!on_null_domain(cpu)))
5090 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2 5091#ifdef CONFIG_NO_HZ
1c792db7 5092 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5093 nohz_balancer_kick(cpu);
5094#endif
1e3c88bd
PZ
5095}
5096
0bcdcf28
CE
5097static void rq_online_fair(struct rq *rq)
5098{
5099 update_sysctl();
5100}
5101
5102static void rq_offline_fair(struct rq *rq)
5103{
5104 update_sysctl();
a4c96ae3
PB
5105
5106 /* Ensure any throttled groups are reachable by pick_next_task */
5107 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5108}
5109
55e12e5e 5110#endif /* CONFIG_SMP */
e1d1484f 5111
bf0f6f24
IM
5112/*
5113 * scheduler tick hitting a task of our scheduling class:
5114 */
8f4d37ec 5115static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5116{
5117 struct cfs_rq *cfs_rq;
5118 struct sched_entity *se = &curr->se;
5119
5120 for_each_sched_entity(se) {
5121 cfs_rq = cfs_rq_of(se);
8f4d37ec 5122 entity_tick(cfs_rq, se, queued);
bf0f6f24 5123 }
cbee9f88
PZ
5124
5125 if (sched_feat_numa(NUMA))
5126 task_tick_numa(rq, curr);
bf0f6f24
IM
5127}
5128
5129/*
cd29fe6f
PZ
5130 * called on fork with the child task as argument from the parent's context
5131 * - child not yet on the tasklist
5132 * - preemption disabled
bf0f6f24 5133 */
cd29fe6f 5134static void task_fork_fair(struct task_struct *p)
bf0f6f24 5135{
4fc420c9
DN
5136 struct cfs_rq *cfs_rq;
5137 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5138 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5139 struct rq *rq = this_rq();
5140 unsigned long flags;
5141
05fa785c 5142 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5143
861d034e
PZ
5144 update_rq_clock(rq);
5145
4fc420c9
DN
5146 cfs_rq = task_cfs_rq(current);
5147 curr = cfs_rq->curr;
5148
b0a0f667
PM
5149 if (unlikely(task_cpu(p) != this_cpu)) {
5150 rcu_read_lock();
cd29fe6f 5151 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5152 rcu_read_unlock();
5153 }
bf0f6f24 5154
7109c442 5155 update_curr(cfs_rq);
cd29fe6f 5156
b5d9d734
MG
5157 if (curr)
5158 se->vruntime = curr->vruntime;
aeb73b04 5159 place_entity(cfs_rq, se, 1);
4d78e7b6 5160
cd29fe6f 5161 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5162 /*
edcb60a3
IM
5163 * Upon rescheduling, sched_class::put_prev_task() will place
5164 * 'current' within the tree based on its new key value.
5165 */
4d78e7b6 5166 swap(curr->vruntime, se->vruntime);
aec0a514 5167 resched_task(rq->curr);
4d78e7b6 5168 }
bf0f6f24 5169
88ec22d3
PZ
5170 se->vruntime -= cfs_rq->min_vruntime;
5171
05fa785c 5172 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5173}
5174
cb469845
SR
5175/*
5176 * Priority of the task has changed. Check to see if we preempt
5177 * the current task.
5178 */
da7a735e
PZ
5179static void
5180prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5181{
da7a735e
PZ
5182 if (!p->se.on_rq)
5183 return;
5184
cb469845
SR
5185 /*
5186 * Reschedule if we are currently running on this runqueue and
5187 * our priority decreased, or if we are not currently running on
5188 * this runqueue and our priority is higher than the current's
5189 */
da7a735e 5190 if (rq->curr == p) {
cb469845
SR
5191 if (p->prio > oldprio)
5192 resched_task(rq->curr);
5193 } else
15afe09b 5194 check_preempt_curr(rq, p, 0);
cb469845
SR
5195}
5196
da7a735e
PZ
5197static void switched_from_fair(struct rq *rq, struct task_struct *p)
5198{
5199 struct sched_entity *se = &p->se;
5200 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5201
5202 /*
5203 * Ensure the task's vruntime is normalized, so that when its
5204 * switched back to the fair class the enqueue_entity(.flags=0) will
5205 * do the right thing.
5206 *
5207 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5208 * have normalized the vruntime, if it was !on_rq, then only when
5209 * the task is sleeping will it still have non-normalized vruntime.
5210 */
5211 if (!se->on_rq && p->state != TASK_RUNNING) {
5212 /*
5213 * Fix up our vruntime so that the current sleep doesn't
5214 * cause 'unlimited' sleep bonus.
5215 */
5216 place_entity(cfs_rq, se, 0);
5217 se->vruntime -= cfs_rq->min_vruntime;
5218 }
5219}
5220
cb469845
SR
5221/*
5222 * We switched to the sched_fair class.
5223 */
da7a735e 5224static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5225{
da7a735e
PZ
5226 if (!p->se.on_rq)
5227 return;
5228
cb469845
SR
5229 /*
5230 * We were most likely switched from sched_rt, so
5231 * kick off the schedule if running, otherwise just see
5232 * if we can still preempt the current task.
5233 */
da7a735e 5234 if (rq->curr == p)
cb469845
SR
5235 resched_task(rq->curr);
5236 else
15afe09b 5237 check_preempt_curr(rq, p, 0);
cb469845
SR
5238}
5239
83b699ed
SV
5240/* Account for a task changing its policy or group.
5241 *
5242 * This routine is mostly called to set cfs_rq->curr field when a task
5243 * migrates between groups/classes.
5244 */
5245static void set_curr_task_fair(struct rq *rq)
5246{
5247 struct sched_entity *se = &rq->curr->se;
5248
ec12cb7f
PT
5249 for_each_sched_entity(se) {
5250 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5251
5252 set_next_entity(cfs_rq, se);
5253 /* ensure bandwidth has been allocated on our new cfs_rq */
5254 account_cfs_rq_runtime(cfs_rq, 0);
5255 }
83b699ed
SV
5256}
5257
029632fb
PZ
5258void init_cfs_rq(struct cfs_rq *cfs_rq)
5259{
5260 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5261 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5262#ifndef CONFIG_64BIT
5263 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5264#endif
5265}
5266
810b3817 5267#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5268static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5269{
b2b5ce02
PZ
5270 /*
5271 * If the task was not on the rq at the time of this cgroup movement
5272 * it must have been asleep, sleeping tasks keep their ->vruntime
5273 * absolute on their old rq until wakeup (needed for the fair sleeper
5274 * bonus in place_entity()).
5275 *
5276 * If it was on the rq, we've just 'preempted' it, which does convert
5277 * ->vruntime to a relative base.
5278 *
5279 * Make sure both cases convert their relative position when migrating
5280 * to another cgroup's rq. This does somewhat interfere with the
5281 * fair sleeper stuff for the first placement, but who cares.
5282 */
7ceff013
DN
5283 /*
5284 * When !on_rq, vruntime of the task has usually NOT been normalized.
5285 * But there are some cases where it has already been normalized:
5286 *
5287 * - Moving a forked child which is waiting for being woken up by
5288 * wake_up_new_task().
62af3783
DN
5289 * - Moving a task which has been woken up by try_to_wake_up() and
5290 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5291 *
5292 * To prevent boost or penalty in the new cfs_rq caused by delta
5293 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5294 */
62af3783 5295 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5296 on_rq = 1;
5297
b2b5ce02
PZ
5298 if (!on_rq)
5299 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5300 set_task_rq(p, task_cpu(p));
88ec22d3 5301 if (!on_rq)
b2b5ce02 5302 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817 5303}
029632fb
PZ
5304
5305void free_fair_sched_group(struct task_group *tg)
5306{
5307 int i;
5308
5309 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5310
5311 for_each_possible_cpu(i) {
5312 if (tg->cfs_rq)
5313 kfree(tg->cfs_rq[i]);
5314 if (tg->se)
5315 kfree(tg->se[i]);
5316 }
5317
5318 kfree(tg->cfs_rq);
5319 kfree(tg->se);
5320}
5321
5322int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5323{
5324 struct cfs_rq *cfs_rq;
5325 struct sched_entity *se;
5326 int i;
5327
5328 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5329 if (!tg->cfs_rq)
5330 goto err;
5331 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5332 if (!tg->se)
5333 goto err;
5334
5335 tg->shares = NICE_0_LOAD;
5336
5337 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5338
5339 for_each_possible_cpu(i) {
5340 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5341 GFP_KERNEL, cpu_to_node(i));
5342 if (!cfs_rq)
5343 goto err;
5344
5345 se = kzalloc_node(sizeof(struct sched_entity),
5346 GFP_KERNEL, cpu_to_node(i));
5347 if (!se)
5348 goto err_free_rq;
5349
5350 init_cfs_rq(cfs_rq);
5351 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5352 }
5353
5354 return 1;
5355
5356err_free_rq:
5357 kfree(cfs_rq);
5358err:
5359 return 0;
5360}
5361
5362void unregister_fair_sched_group(struct task_group *tg, int cpu)
5363{
5364 struct rq *rq = cpu_rq(cpu);
5365 unsigned long flags;
5366
5367 /*
5368 * Only empty task groups can be destroyed; so we can speculatively
5369 * check on_list without danger of it being re-added.
5370 */
5371 if (!tg->cfs_rq[cpu]->on_list)
5372 return;
5373
5374 raw_spin_lock_irqsave(&rq->lock, flags);
5375 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5376 raw_spin_unlock_irqrestore(&rq->lock, flags);
5377}
5378
5379void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5380 struct sched_entity *se, int cpu,
5381 struct sched_entity *parent)
5382{
5383 struct rq *rq = cpu_rq(cpu);
5384
5385 cfs_rq->tg = tg;
5386 cfs_rq->rq = rq;
5387#ifdef CONFIG_SMP
5388 /* allow initial update_cfs_load() to truncate */
5389 cfs_rq->load_stamp = 1;
810b3817 5390#endif
029632fb
PZ
5391 init_cfs_rq_runtime(cfs_rq);
5392
5393 tg->cfs_rq[cpu] = cfs_rq;
5394 tg->se[cpu] = se;
5395
5396 /* se could be NULL for root_task_group */
5397 if (!se)
5398 return;
5399
5400 if (!parent)
5401 se->cfs_rq = &rq->cfs;
5402 else
5403 se->cfs_rq = parent->my_q;
5404
5405 se->my_q = cfs_rq;
5406 update_load_set(&se->load, 0);
5407 se->parent = parent;
5408}
5409
5410static DEFINE_MUTEX(shares_mutex);
5411
5412int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5413{
5414 int i;
5415 unsigned long flags;
5416
5417 /*
5418 * We can't change the weight of the root cgroup.
5419 */
5420 if (!tg->se[0])
5421 return -EINVAL;
5422
5423 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5424
5425 mutex_lock(&shares_mutex);
5426 if (tg->shares == shares)
5427 goto done;
5428
5429 tg->shares = shares;
5430 for_each_possible_cpu(i) {
5431 struct rq *rq = cpu_rq(i);
5432 struct sched_entity *se;
5433
5434 se = tg->se[i];
5435 /* Propagate contribution to hierarchy */
5436 raw_spin_lock_irqsave(&rq->lock, flags);
5437 for_each_sched_entity(se)
5438 update_cfs_shares(group_cfs_rq(se));
5439 raw_spin_unlock_irqrestore(&rq->lock, flags);
5440 }
5441
5442done:
5443 mutex_unlock(&shares_mutex);
5444 return 0;
5445}
5446#else /* CONFIG_FAIR_GROUP_SCHED */
5447
5448void free_fair_sched_group(struct task_group *tg) { }
5449
5450int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5451{
5452 return 1;
5453}
5454
5455void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5456
5457#endif /* CONFIG_FAIR_GROUP_SCHED */
5458
810b3817 5459
6d686f45 5460static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
5461{
5462 struct sched_entity *se = &task->se;
0d721cea
PW
5463 unsigned int rr_interval = 0;
5464
5465 /*
5466 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5467 * idle runqueue:
5468 */
0d721cea
PW
5469 if (rq->cfs.load.weight)
5470 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
5471
5472 return rr_interval;
5473}
5474
bf0f6f24
IM
5475/*
5476 * All the scheduling class methods:
5477 */
029632fb 5478const struct sched_class fair_sched_class = {
5522d5d5 5479 .next = &idle_sched_class,
bf0f6f24
IM
5480 .enqueue_task = enqueue_task_fair,
5481 .dequeue_task = dequeue_task_fair,
5482 .yield_task = yield_task_fair,
d95f4122 5483 .yield_to_task = yield_to_task_fair,
bf0f6f24 5484
2e09bf55 5485 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
5486
5487 .pick_next_task = pick_next_task_fair,
5488 .put_prev_task = put_prev_task_fair,
5489
681f3e68 5490#ifdef CONFIG_SMP
4ce72a2c
LZ
5491 .select_task_rq = select_task_rq_fair,
5492
0bcdcf28
CE
5493 .rq_online = rq_online_fair,
5494 .rq_offline = rq_offline_fair,
88ec22d3
PZ
5495
5496 .task_waking = task_waking_fair,
681f3e68 5497#endif
bf0f6f24 5498
83b699ed 5499 .set_curr_task = set_curr_task_fair,
bf0f6f24 5500 .task_tick = task_tick_fair,
cd29fe6f 5501 .task_fork = task_fork_fair,
cb469845
SR
5502
5503 .prio_changed = prio_changed_fair,
da7a735e 5504 .switched_from = switched_from_fair,
cb469845 5505 .switched_to = switched_to_fair,
810b3817 5506
0d721cea
PW
5507 .get_rr_interval = get_rr_interval_fair,
5508
810b3817 5509#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5510 .task_move_group = task_move_group_fair,
810b3817 5511#endif
bf0f6f24
IM
5512};
5513
5514#ifdef CONFIG_SCHED_DEBUG
029632fb 5515void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 5516{
bf0f6f24
IM
5517 struct cfs_rq *cfs_rq;
5518
5973e5b9 5519 rcu_read_lock();
c3b64f1e 5520 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 5521 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 5522 rcu_read_unlock();
bf0f6f24
IM
5523}
5524#endif
029632fb
PZ
5525
5526__init void init_sched_fair_class(void)
5527{
5528#ifdef CONFIG_SMP
5529 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5530
5531#ifdef CONFIG_NO_HZ
554cecaf 5532 nohz.next_balance = jiffies;
029632fb 5533 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 5534 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
5535#endif
5536#endif /* SMP */
5537
5538}