sched/topology: Fix percpu data types in struct sd_data & struct s_data
[linux-block.git] / kernel / sched / fair.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bf0f6f24
IM
2/*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24 22 */
325ea10c 23#include "sched.h"
029632fb
PZ
24
25#include <trace/events/sched.h>
26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
2b4d5b25
IM
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 39 */
2b4d5b25 40unsigned int sysctl_sched_latency = 6000000ULL;
ed8885a1 41static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 42
1983a922
CE
43/*
44 * The initial- and re-scaling of tunables is configurable
1983a922
CE
45 *
46 * Options are:
2b4d5b25
IM
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
1983a922 53 */
2b4d5b25 54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
1983a922 55
2bd8e6d4 56/*
b2be5e96 57 * Minimal preemption granularity for CPU-bound tasks:
2b4d5b25 58 *
864616ee 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 60 */
ed8885a1
MS
61unsigned int sysctl_sched_min_granularity = 750000ULL;
62static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
63
64/*
2b4d5b25 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
b2be5e96 66 */
0bf377bb 67static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
68
69/*
2bba22c5 70 * After fork, child runs first. If set to 0 (default) then
b2be5e96 71 * parent will (try to) run first.
21805085 72 */
2bba22c5 73unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 74
bf0f6f24
IM
75/*
76 * SCHED_OTHER wake-up granularity.
bf0f6f24
IM
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
2b4d5b25
IM
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 83 */
ed8885a1
MS
84unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 86
2b4d5b25 87const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
da84d961 88
afe06efd
TC
89#ifdef CONFIG_SMP
90/*
97fb7a0a 91 * For asym packing, by default the lower numbered CPU has higher priority.
afe06efd
TC
92 */
93int __weak arch_asym_cpu_priority(int cpu)
94{
95 return -cpu;
96}
6d101ba6
OJ
97
98/*
99 * The margin used when comparing utilization with CPU capacity:
100 * util * margin < capacity * 1024
101 *
102 * (default: ~20%)
103 */
104static unsigned int capacity_margin = 1280;
afe06efd
TC
105#endif
106
ec12cb7f
PT
107#ifdef CONFIG_CFS_BANDWIDTH
108/*
109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110 * each time a cfs_rq requests quota.
111 *
112 * Note: in the case that the slice exceeds the runtime remaining (either due
113 * to consumption or the quota being specified to be smaller than the slice)
114 * we will always only issue the remaining available time.
115 *
2b4d5b25
IM
116 * (default: 5 msec, units: microseconds)
117 */
118unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
ec12cb7f
PT
119#endif
120
8527632d
PG
121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122{
123 lw->weight += inc;
124 lw->inv_weight = 0;
125}
126
127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128{
129 lw->weight -= dec;
130 lw->inv_weight = 0;
131}
132
133static inline void update_load_set(struct load_weight *lw, unsigned long w)
134{
135 lw->weight = w;
136 lw->inv_weight = 0;
137}
138
029632fb
PZ
139/*
140 * Increase the granularity value when there are more CPUs,
141 * because with more CPUs the 'effective latency' as visible
142 * to users decreases. But the relationship is not linear,
143 * so pick a second-best guess by going with the log2 of the
144 * number of CPUs.
145 *
146 * This idea comes from the SD scheduler of Con Kolivas:
147 */
58ac93e4 148static unsigned int get_update_sysctl_factor(void)
029632fb 149{
58ac93e4 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
151 unsigned int factor;
152
153 switch (sysctl_sched_tunable_scaling) {
154 case SCHED_TUNABLESCALING_NONE:
155 factor = 1;
156 break;
157 case SCHED_TUNABLESCALING_LINEAR:
158 factor = cpus;
159 break;
160 case SCHED_TUNABLESCALING_LOG:
161 default:
162 factor = 1 + ilog2(cpus);
163 break;
164 }
165
166 return factor;
167}
168
169static void update_sysctl(void)
170{
171 unsigned int factor = get_update_sysctl_factor();
172
173#define SET_SYSCTL(name) \
174 (sysctl_##name = (factor) * normalized_sysctl_##name)
175 SET_SYSCTL(sched_min_granularity);
176 SET_SYSCTL(sched_latency);
177 SET_SYSCTL(sched_wakeup_granularity);
178#undef SET_SYSCTL
179}
180
181void sched_init_granularity(void)
182{
183 update_sysctl();
184}
185
9dbdb155 186#define WMULT_CONST (~0U)
029632fb
PZ
187#define WMULT_SHIFT 32
188
9dbdb155
PZ
189static void __update_inv_weight(struct load_weight *lw)
190{
191 unsigned long w;
192
193 if (likely(lw->inv_weight))
194 return;
195
196 w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204}
029632fb
PZ
205
206/*
9dbdb155
PZ
207 * delta_exec * weight / lw.weight
208 * OR
209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210 *
1c3de5e1 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214 *
215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 217 */
9dbdb155 218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 219{
9dbdb155
PZ
220 u64 fact = scale_load_down(weight);
221 int shift = WMULT_SHIFT;
029632fb 222
9dbdb155 223 __update_inv_weight(lw);
029632fb 224
9dbdb155
PZ
225 if (unlikely(fact >> 32)) {
226 while (fact >> 32) {
227 fact >>= 1;
228 shift--;
229 }
029632fb
PZ
230 }
231
9dbdb155
PZ
232 /* hint to use a 32x32->64 mul */
233 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 234
9dbdb155
PZ
235 while (fact >> 32) {
236 fact >>= 1;
237 shift--;
238 }
029632fb 239
9dbdb155 240 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
241}
242
243
244const struct sched_class fair_sched_class;
a4c2f00f 245
bf0f6f24
IM
246/**************************************************************
247 * CFS operations on generic schedulable entities:
248 */
249
62160e3f 250#ifdef CONFIG_FAIR_GROUP_SCHED
8f48894f
PZ
251static inline struct task_struct *task_of(struct sched_entity *se)
252{
9148a3a1 253 SCHED_WARN_ON(!entity_is_task(se));
8f48894f
PZ
254 return container_of(se, struct task_struct, se);
255}
256
b758149c
PZ
257/* Walk up scheduling entities hierarchy */
258#define for_each_sched_entity(se) \
259 for (; se; se = se->parent)
260
261static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262{
263 return p->se.cfs_rq;
264}
265
266/* runqueue on which this entity is (to be) queued */
267static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268{
269 return se->cfs_rq;
270}
271
272/* runqueue "owned" by this group */
273static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274{
275 return grp->my_q;
276}
277
f6783319 278static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 279{
5d299eab
PZ
280 struct rq *rq = rq_of(cfs_rq);
281 int cpu = cpu_of(rq);
282
283 if (cfs_rq->on_list)
f6783319 284 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
5d299eab
PZ
285
286 cfs_rq->on_list = 1;
287
288 /*
289 * Ensure we either appear before our parent (if already
290 * enqueued) or force our parent to appear after us when it is
291 * enqueued. The fact that we always enqueue bottom-up
292 * reduces this to two cases and a special case for the root
293 * cfs_rq. Furthermore, it also means that we will always reset
294 * tmp_alone_branch either when the branch is connected
295 * to a tree or when we reach the top of the tree
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
67e86250 299 /*
5d299eab
PZ
300 * If parent is already on the list, we add the child
301 * just before. Thanks to circular linked property of
302 * the list, this means to put the child at the tail
303 * of the list that starts by parent.
67e86250 304 */
5d299eab
PZ
305 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
306 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
307 /*
308 * The branch is now connected to its tree so we can
309 * reset tmp_alone_branch to the beginning of the
310 * list.
311 */
312 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 313 return true;
5d299eab 314 }
3d4b47b4 315
5d299eab
PZ
316 if (!cfs_rq->tg->parent) {
317 /*
318 * cfs rq without parent should be put
319 * at the tail of the list.
320 */
321 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
322 &rq->leaf_cfs_rq_list);
323 /*
324 * We have reach the top of a tree so we can reset
325 * tmp_alone_branch to the beginning of the list.
326 */
327 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
f6783319 328 return true;
3d4b47b4 329 }
5d299eab
PZ
330
331 /*
332 * The parent has not already been added so we want to
333 * make sure that it will be put after us.
334 * tmp_alone_branch points to the begin of the branch
335 * where we will add parent.
336 */
337 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
338 /*
339 * update tmp_alone_branch to points to the new begin
340 * of the branch
341 */
342 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
f6783319 343 return false;
3d4b47b4
PZ
344}
345
346static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
347{
348 if (cfs_rq->on_list) {
31bc6aea
VG
349 struct rq *rq = rq_of(cfs_rq);
350
351 /*
352 * With cfs_rq being unthrottled/throttled during an enqueue,
353 * it can happen the tmp_alone_branch points the a leaf that
354 * we finally want to del. In this case, tmp_alone_branch moves
355 * to the prev element but it will point to rq->leaf_cfs_rq_list
356 * at the end of the enqueue.
357 */
358 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
359 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
360
3d4b47b4
PZ
361 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
362 cfs_rq->on_list = 0;
363 }
364}
365
5d299eab
PZ
366static inline void assert_list_leaf_cfs_rq(struct rq *rq)
367{
368 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
369}
370
039ae8bc
VG
371/* Iterate thr' all leaf cfs_rq's on a runqueue */
372#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
374 leaf_cfs_rq_list)
b758149c
PZ
375
376/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 377static inline struct cfs_rq *
b758149c
PZ
378is_same_group(struct sched_entity *se, struct sched_entity *pse)
379{
380 if (se->cfs_rq == pse->cfs_rq)
fed14d45 381 return se->cfs_rq;
b758149c 382
fed14d45 383 return NULL;
b758149c
PZ
384}
385
386static inline struct sched_entity *parent_entity(struct sched_entity *se)
387{
388 return se->parent;
389}
390
464b7527
PZ
391static void
392find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393{
394 int se_depth, pse_depth;
395
396 /*
397 * preemption test can be made between sibling entities who are in the
398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 * both tasks until we find their ancestors who are siblings of common
400 * parent.
401 */
402
403 /* First walk up until both entities are at same depth */
fed14d45
PZ
404 se_depth = (*se)->depth;
405 pse_depth = (*pse)->depth;
464b7527
PZ
406
407 while (se_depth > pse_depth) {
408 se_depth--;
409 *se = parent_entity(*se);
410 }
411
412 while (pse_depth > se_depth) {
413 pse_depth--;
414 *pse = parent_entity(*pse);
415 }
416
417 while (!is_same_group(*se, *pse)) {
418 *se = parent_entity(*se);
419 *pse = parent_entity(*pse);
420 }
421}
422
8f48894f
PZ
423#else /* !CONFIG_FAIR_GROUP_SCHED */
424
425static inline struct task_struct *task_of(struct sched_entity *se)
426{
427 return container_of(se, struct task_struct, se);
428}
bf0f6f24 429
b758149c
PZ
430#define for_each_sched_entity(se) \
431 for (; se; se = NULL)
bf0f6f24 432
b758149c 433static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 434{
b758149c 435 return &task_rq(p)->cfs;
bf0f6f24
IM
436}
437
b758149c
PZ
438static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
439{
440 struct task_struct *p = task_of(se);
441 struct rq *rq = task_rq(p);
442
443 return &rq->cfs;
444}
445
446/* runqueue "owned" by this group */
447static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
448{
449 return NULL;
450}
451
f6783319 452static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
3d4b47b4 453{
f6783319 454 return true;
3d4b47b4
PZ
455}
456
457static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
458{
459}
460
5d299eab
PZ
461static inline void assert_list_leaf_cfs_rq(struct rq *rq)
462{
463}
464
039ae8bc
VG
465#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
466 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
b758149c 467
b758149c
PZ
468static inline struct sched_entity *parent_entity(struct sched_entity *se)
469{
470 return NULL;
471}
472
464b7527
PZ
473static inline void
474find_matching_se(struct sched_entity **se, struct sched_entity **pse)
475{
476}
477
b758149c
PZ
478#endif /* CONFIG_FAIR_GROUP_SCHED */
479
6c16a6dc 480static __always_inline
9dbdb155 481void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
482
483/**************************************************************
484 * Scheduling class tree data structure manipulation methods:
485 */
486
1bf08230 487static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 488{
1bf08230 489 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 490 if (delta > 0)
1bf08230 491 max_vruntime = vruntime;
02e0431a 492
1bf08230 493 return max_vruntime;
02e0431a
PZ
494}
495
0702e3eb 496static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
497{
498 s64 delta = (s64)(vruntime - min_vruntime);
499 if (delta < 0)
500 min_vruntime = vruntime;
501
502 return min_vruntime;
503}
504
54fdc581
FC
505static inline int entity_before(struct sched_entity *a,
506 struct sched_entity *b)
507{
508 return (s64)(a->vruntime - b->vruntime) < 0;
509}
510
1af5f730
PZ
511static void update_min_vruntime(struct cfs_rq *cfs_rq)
512{
b60205c7 513 struct sched_entity *curr = cfs_rq->curr;
bfb06889 514 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
b60205c7 515
1af5f730
PZ
516 u64 vruntime = cfs_rq->min_vruntime;
517
b60205c7
PZ
518 if (curr) {
519 if (curr->on_rq)
520 vruntime = curr->vruntime;
521 else
522 curr = NULL;
523 }
1af5f730 524
bfb06889
DB
525 if (leftmost) { /* non-empty tree */
526 struct sched_entity *se;
527 se = rb_entry(leftmost, struct sched_entity, run_node);
1af5f730 528
b60205c7 529 if (!curr)
1af5f730
PZ
530 vruntime = se->vruntime;
531 else
532 vruntime = min_vruntime(vruntime, se->vruntime);
533 }
534
1bf08230 535 /* ensure we never gain time by being placed backwards. */
1af5f730 536 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
537#ifndef CONFIG_64BIT
538 smp_wmb();
539 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
540#endif
1af5f730
PZ
541}
542
bf0f6f24
IM
543/*
544 * Enqueue an entity into the rb-tree:
545 */
0702e3eb 546static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 547{
bfb06889 548 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
bf0f6f24
IM
549 struct rb_node *parent = NULL;
550 struct sched_entity *entry;
bfb06889 551 bool leftmost = true;
bf0f6f24
IM
552
553 /*
554 * Find the right place in the rbtree:
555 */
556 while (*link) {
557 parent = *link;
558 entry = rb_entry(parent, struct sched_entity, run_node);
559 /*
560 * We dont care about collisions. Nodes with
561 * the same key stay together.
562 */
2bd2d6f2 563 if (entity_before(se, entry)) {
bf0f6f24
IM
564 link = &parent->rb_left;
565 } else {
566 link = &parent->rb_right;
bfb06889 567 leftmost = false;
bf0f6f24
IM
568 }
569 }
570
bf0f6f24 571 rb_link_node(&se->run_node, parent, link);
bfb06889
DB
572 rb_insert_color_cached(&se->run_node,
573 &cfs_rq->tasks_timeline, leftmost);
bf0f6f24
IM
574}
575
0702e3eb 576static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 577{
bfb06889 578 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
579}
580
029632fb 581struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 582{
bfb06889 583 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
f4b6755f
PZ
584
585 if (!left)
586 return NULL;
587
588 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
589}
590
ac53db59
RR
591static struct sched_entity *__pick_next_entity(struct sched_entity *se)
592{
593 struct rb_node *next = rb_next(&se->run_node);
594
595 if (!next)
596 return NULL;
597
598 return rb_entry(next, struct sched_entity, run_node);
599}
600
601#ifdef CONFIG_SCHED_DEBUG
029632fb 602struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 603{
bfb06889 604 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
aeb73b04 605
70eee74b
BS
606 if (!last)
607 return NULL;
7eee3e67
IM
608
609 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
610}
611
bf0f6f24
IM
612/**************************************************************
613 * Scheduling class statistics methods:
614 */
615
acb4a848 616int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 617 void __user *buffer, size_t *lenp,
b2be5e96
PZ
618 loff_t *ppos)
619{
8d65af78 620 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 621 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
622
623 if (ret || !write)
624 return ret;
625
626 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
627 sysctl_sched_min_granularity);
628
acb4a848
CE
629#define WRT_SYSCTL(name) \
630 (normalized_sysctl_##name = sysctl_##name / (factor))
631 WRT_SYSCTL(sched_min_granularity);
632 WRT_SYSCTL(sched_latency);
633 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
634#undef WRT_SYSCTL
635
b2be5e96
PZ
636 return 0;
637}
638#endif
647e7cac 639
a7be37ac 640/*
f9c0b095 641 * delta /= w
a7be37ac 642 */
9dbdb155 643static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 644{
f9c0b095 645 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 646 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
647
648 return delta;
649}
650
647e7cac
IM
651/*
652 * The idea is to set a period in which each task runs once.
653 *
532b1858 654 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
655 * this period because otherwise the slices get too small.
656 *
657 * p = (nr <= nl) ? l : l*nr/nl
658 */
4d78e7b6
PZ
659static u64 __sched_period(unsigned long nr_running)
660{
8e2b0bf3
BF
661 if (unlikely(nr_running > sched_nr_latency))
662 return nr_running * sysctl_sched_min_granularity;
663 else
664 return sysctl_sched_latency;
4d78e7b6
PZ
665}
666
647e7cac
IM
667/*
668 * We calculate the wall-time slice from the period by taking a part
669 * proportional to the weight.
670 *
f9c0b095 671 * s = p*P[w/rw]
647e7cac 672 */
6d0f0ebd 673static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 674{
0a582440 675 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 676
0a582440 677 for_each_sched_entity(se) {
6272d68c 678 struct load_weight *load;
3104bf03 679 struct load_weight lw;
6272d68c
LM
680
681 cfs_rq = cfs_rq_of(se);
682 load = &cfs_rq->load;
f9c0b095 683
0a582440 684 if (unlikely(!se->on_rq)) {
3104bf03 685 lw = cfs_rq->load;
0a582440
MG
686
687 update_load_add(&lw, se->load.weight);
688 load = &lw;
689 }
9dbdb155 690 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
691 }
692 return slice;
bf0f6f24
IM
693}
694
647e7cac 695/*
660cc00f 696 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 697 *
f9c0b095 698 * vs = s/w
647e7cac 699 */
f9c0b095 700static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 701{
f9c0b095 702 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
703}
704
c0796298 705#include "pelt.h"
23127296 706#ifdef CONFIG_SMP
283e2ed3 707
772bd008 708static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee 709static unsigned long task_h_load(struct task_struct *p);
3b1baa64 710static unsigned long capacity_of(int cpu);
fb13c7ee 711
540247fb
YD
712/* Give new sched_entity start runnable values to heavy its load in infant time */
713void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 714{
540247fb 715 struct sched_avg *sa = &se->avg;
a75cdaa9 716
f207934f
PZ
717 memset(sa, 0, sizeof(*sa));
718
b5a9b340 719 /*
dfcb245e 720 * Tasks are initialized with full load to be seen as heavy tasks until
b5a9b340 721 * they get a chance to stabilize to their real load level.
dfcb245e 722 * Group entities are initialized with zero load to reflect the fact that
b5a9b340
VG
723 * nothing has been attached to the task group yet.
724 */
725 if (entity_is_task(se))
1ea6c46a 726 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
1ea6c46a 727
f207934f
PZ
728 se->runnable_weight = se->load.weight;
729
9d89c257 730 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 731}
7ea241af 732
7dc603c9 733static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
df217913 734static void attach_entity_cfs_rq(struct sched_entity *se);
7dc603c9 735
2b8c41da
YD
736/*
737 * With new tasks being created, their initial util_avgs are extrapolated
738 * based on the cfs_rq's current util_avg:
739 *
740 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
741 *
742 * However, in many cases, the above util_avg does not give a desired
743 * value. Moreover, the sum of the util_avgs may be divergent, such
744 * as when the series is a harmonic series.
745 *
746 * To solve this problem, we also cap the util_avg of successive tasks to
747 * only 1/2 of the left utilization budget:
748 *
8fe5c5a9 749 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
2b8c41da 750 *
8fe5c5a9 751 * where n denotes the nth task and cpu_scale the CPU capacity.
2b8c41da 752 *
8fe5c5a9
QP
753 * For example, for a CPU with 1024 of capacity, a simplest series from
754 * the beginning would be like:
2b8c41da
YD
755 *
756 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
757 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
758 *
759 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
760 * if util_avg > util_avg_cap.
761 */
d0fe0b9c 762void post_init_entity_util_avg(struct task_struct *p)
2b8c41da 763{
d0fe0b9c 764 struct sched_entity *se = &p->se;
2b8c41da
YD
765 struct cfs_rq *cfs_rq = cfs_rq_of(se);
766 struct sched_avg *sa = &se->avg;
8fe5c5a9
QP
767 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
768 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
769
770 if (cap > 0) {
771 if (cfs_rq->avg.util_avg != 0) {
772 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
773 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
774
775 if (sa->util_avg > cap)
776 sa->util_avg = cap;
777 } else {
778 sa->util_avg = cap;
779 }
2b8c41da 780 }
7dc603c9 781
d0fe0b9c
DE
782 if (p->sched_class != &fair_sched_class) {
783 /*
784 * For !fair tasks do:
785 *
786 update_cfs_rq_load_avg(now, cfs_rq);
787 attach_entity_load_avg(cfs_rq, se, 0);
788 switched_from_fair(rq, p);
789 *
790 * such that the next switched_to_fair() has the
791 * expected state.
792 */
793 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
794 return;
7dc603c9
PZ
795 }
796
df217913 797 attach_entity_cfs_rq(se);
2b8c41da
YD
798}
799
7dc603c9 800#else /* !CONFIG_SMP */
540247fb 801void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
802{
803}
d0fe0b9c 804void post_init_entity_util_avg(struct task_struct *p)
2b8c41da
YD
805{
806}
3d30544f
PZ
807static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
808{
809}
7dc603c9 810#endif /* CONFIG_SMP */
a75cdaa9 811
bf0f6f24 812/*
9dbdb155 813 * Update the current task's runtime statistics.
bf0f6f24 814 */
b7cc0896 815static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 816{
429d43bc 817 struct sched_entity *curr = cfs_rq->curr;
78becc27 818 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 819 u64 delta_exec;
bf0f6f24
IM
820
821 if (unlikely(!curr))
822 return;
823
9dbdb155
PZ
824 delta_exec = now - curr->exec_start;
825 if (unlikely((s64)delta_exec <= 0))
34f28ecd 826 return;
bf0f6f24 827
8ebc91d9 828 curr->exec_start = now;
d842de87 829
9dbdb155
PZ
830 schedstat_set(curr->statistics.exec_max,
831 max(delta_exec, curr->statistics.exec_max));
832
833 curr->sum_exec_runtime += delta_exec;
ae92882e 834 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
835
836 curr->vruntime += calc_delta_fair(delta_exec, curr);
837 update_min_vruntime(cfs_rq);
838
d842de87
SV
839 if (entity_is_task(curr)) {
840 struct task_struct *curtask = task_of(curr);
841
f977bb49 842 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d2cc5ed6 843 cgroup_account_cputime(curtask, delta_exec);
f06febc9 844 account_group_exec_runtime(curtask, delta_exec);
d842de87 845 }
ec12cb7f
PT
846
847 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
848}
849
6e998916
SG
850static void update_curr_fair(struct rq *rq)
851{
852 update_curr(cfs_rq_of(&rq->curr->se));
853}
854
bf0f6f24 855static inline void
5870db5b 856update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 857{
4fa8d299
JP
858 u64 wait_start, prev_wait_start;
859
860 if (!schedstat_enabled())
861 return;
862
863 wait_start = rq_clock(rq_of(cfs_rq));
864 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
865
866 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
867 likely(wait_start > prev_wait_start))
868 wait_start -= prev_wait_start;
3ea94de1 869
2ed41a55 870 __schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
871}
872
4fa8d299 873static inline void
3ea94de1
JP
874update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
875{
876 struct task_struct *p;
cb251765
MG
877 u64 delta;
878
4fa8d299
JP
879 if (!schedstat_enabled())
880 return;
881
882 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
883
884 if (entity_is_task(se)) {
885 p = task_of(se);
886 if (task_on_rq_migrating(p)) {
887 /*
888 * Preserve migrating task's wait time so wait_start
889 * time stamp can be adjusted to accumulate wait time
890 * prior to migration.
891 */
2ed41a55 892 __schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
893 return;
894 }
895 trace_sched_stat_wait(p, delta);
896 }
897
2ed41a55 898 __schedstat_set(se->statistics.wait_max,
4fa8d299 899 max(schedstat_val(se->statistics.wait_max), delta));
2ed41a55
PZ
900 __schedstat_inc(se->statistics.wait_count);
901 __schedstat_add(se->statistics.wait_sum, delta);
902 __schedstat_set(se->statistics.wait_start, 0);
3ea94de1 903}
3ea94de1 904
4fa8d299 905static inline void
1a3d027c
JP
906update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
907{
908 struct task_struct *tsk = NULL;
4fa8d299
JP
909 u64 sleep_start, block_start;
910
911 if (!schedstat_enabled())
912 return;
913
914 sleep_start = schedstat_val(se->statistics.sleep_start);
915 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
916
917 if (entity_is_task(se))
918 tsk = task_of(se);
919
4fa8d299
JP
920 if (sleep_start) {
921 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
922
923 if ((s64)delta < 0)
924 delta = 0;
925
4fa8d299 926 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
2ed41a55 927 __schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 928
2ed41a55
PZ
929 __schedstat_set(se->statistics.sleep_start, 0);
930 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
931
932 if (tsk) {
933 account_scheduler_latency(tsk, delta >> 10, 1);
934 trace_sched_stat_sleep(tsk, delta);
935 }
936 }
4fa8d299
JP
937 if (block_start) {
938 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
939
940 if ((s64)delta < 0)
941 delta = 0;
942
4fa8d299 943 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
2ed41a55 944 __schedstat_set(se->statistics.block_max, delta);
1a3d027c 945
2ed41a55
PZ
946 __schedstat_set(se->statistics.block_start, 0);
947 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
948
949 if (tsk) {
950 if (tsk->in_iowait) {
2ed41a55
PZ
951 __schedstat_add(se->statistics.iowait_sum, delta);
952 __schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
953 trace_sched_stat_iowait(tsk, delta);
954 }
955
956 trace_sched_stat_blocked(tsk, delta);
957
958 /*
959 * Blocking time is in units of nanosecs, so shift by
960 * 20 to get a milliseconds-range estimation of the
961 * amount of time that the task spent sleeping:
962 */
963 if (unlikely(prof_on == SLEEP_PROFILING)) {
964 profile_hits(SLEEP_PROFILING,
965 (void *)get_wchan(tsk),
966 delta >> 20);
967 }
968 account_scheduler_latency(tsk, delta >> 10, 0);
969 }
970 }
3ea94de1 971}
3ea94de1 972
bf0f6f24
IM
973/*
974 * Task is being enqueued - update stats:
975 */
cb251765 976static inline void
1a3d027c 977update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 978{
4fa8d299
JP
979 if (!schedstat_enabled())
980 return;
981
bf0f6f24
IM
982 /*
983 * Are we enqueueing a waiting task? (for current tasks
984 * a dequeue/enqueue event is a NOP)
985 */
429d43bc 986 if (se != cfs_rq->curr)
5870db5b 987 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
988
989 if (flags & ENQUEUE_WAKEUP)
990 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
991}
992
bf0f6f24 993static inline void
cb251765 994update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 995{
4fa8d299
JP
996
997 if (!schedstat_enabled())
998 return;
999
bf0f6f24
IM
1000 /*
1001 * Mark the end of the wait period if dequeueing a
1002 * waiting task:
1003 */
429d43bc 1004 if (se != cfs_rq->curr)
9ef0a961 1005 update_stats_wait_end(cfs_rq, se);
cb251765 1006
4fa8d299
JP
1007 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1008 struct task_struct *tsk = task_of(se);
cb251765 1009
4fa8d299 1010 if (tsk->state & TASK_INTERRUPTIBLE)
2ed41a55 1011 __schedstat_set(se->statistics.sleep_start,
4fa8d299
JP
1012 rq_clock(rq_of(cfs_rq)));
1013 if (tsk->state & TASK_UNINTERRUPTIBLE)
2ed41a55 1014 __schedstat_set(se->statistics.block_start,
4fa8d299 1015 rq_clock(rq_of(cfs_rq)));
cb251765 1016 }
cb251765
MG
1017}
1018
bf0f6f24
IM
1019/*
1020 * We are picking a new current task - update its stats:
1021 */
1022static inline void
79303e9e 1023update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
1024{
1025 /*
1026 * We are starting a new run period:
1027 */
78becc27 1028 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1029}
1030
bf0f6f24
IM
1031/**************************************************
1032 * Scheduling class queueing methods:
1033 */
1034
cbee9f88
PZ
1035#ifdef CONFIG_NUMA_BALANCING
1036/*
598f0ec0
MG
1037 * Approximate time to scan a full NUMA task in ms. The task scan period is
1038 * calculated based on the tasks virtual memory size and
1039 * numa_balancing_scan_size.
cbee9f88 1040 */
598f0ec0
MG
1041unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1042unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1043
1044/* Portion of address space to scan in MB */
1045unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1046
4b96a29b
PZ
1047/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1048unsigned int sysctl_numa_balancing_scan_delay = 1000;
1049
b5dd77c8 1050struct numa_group {
c45a7795 1051 refcount_t refcount;
b5dd77c8
RR
1052
1053 spinlock_t lock; /* nr_tasks, tasks */
1054 int nr_tasks;
1055 pid_t gid;
1056 int active_nodes;
1057
1058 struct rcu_head rcu;
1059 unsigned long total_faults;
1060 unsigned long max_faults_cpu;
1061 /*
1062 * Faults_cpu is used to decide whether memory should move
1063 * towards the CPU. As a consequence, these stats are weighted
1064 * more by CPU use than by memory faults.
1065 */
1066 unsigned long *faults_cpu;
1067 unsigned long faults[0];
1068};
1069
1070static inline unsigned long group_faults_priv(struct numa_group *ng);
1071static inline unsigned long group_faults_shared(struct numa_group *ng);
1072
598f0ec0
MG
1073static unsigned int task_nr_scan_windows(struct task_struct *p)
1074{
1075 unsigned long rss = 0;
1076 unsigned long nr_scan_pages;
1077
1078 /*
1079 * Calculations based on RSS as non-present and empty pages are skipped
1080 * by the PTE scanner and NUMA hinting faults should be trapped based
1081 * on resident pages
1082 */
1083 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1084 rss = get_mm_rss(p->mm);
1085 if (!rss)
1086 rss = nr_scan_pages;
1087
1088 rss = round_up(rss, nr_scan_pages);
1089 return rss / nr_scan_pages;
1090}
1091
1092/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1093#define MAX_SCAN_WINDOW 2560
1094
1095static unsigned int task_scan_min(struct task_struct *p)
1096{
316c1608 1097 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1098 unsigned int scan, floor;
1099 unsigned int windows = 1;
1100
64192658
KT
1101 if (scan_size < MAX_SCAN_WINDOW)
1102 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1103 floor = 1000 / windows;
1104
1105 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1106 return max_t(unsigned int, floor, scan);
1107}
1108
b5dd77c8
RR
1109static unsigned int task_scan_start(struct task_struct *p)
1110{
1111 unsigned long smin = task_scan_min(p);
1112 unsigned long period = smin;
1113
1114 /* Scale the maximum scan period with the amount of shared memory. */
1115 if (p->numa_group) {
1116 struct numa_group *ng = p->numa_group;
1117 unsigned long shared = group_faults_shared(ng);
1118 unsigned long private = group_faults_priv(ng);
1119
c45a7795 1120 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1121 period *= shared + 1;
1122 period /= private + shared + 1;
1123 }
1124
1125 return max(smin, period);
1126}
1127
598f0ec0
MG
1128static unsigned int task_scan_max(struct task_struct *p)
1129{
b5dd77c8
RR
1130 unsigned long smin = task_scan_min(p);
1131 unsigned long smax;
598f0ec0
MG
1132
1133 /* Watch for min being lower than max due to floor calculations */
1134 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
b5dd77c8
RR
1135
1136 /* Scale the maximum scan period with the amount of shared memory. */
1137 if (p->numa_group) {
1138 struct numa_group *ng = p->numa_group;
1139 unsigned long shared = group_faults_shared(ng);
1140 unsigned long private = group_faults_priv(ng);
1141 unsigned long period = smax;
1142
c45a7795 1143 period *= refcount_read(&ng->refcount);
b5dd77c8
RR
1144 period *= shared + 1;
1145 period /= private + shared + 1;
1146
1147 smax = max(smax, period);
1148 }
1149
598f0ec0
MG
1150 return max(smin, smax);
1151}
1152
13784475
MG
1153void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1154{
1155 int mm_users = 0;
1156 struct mm_struct *mm = p->mm;
1157
1158 if (mm) {
1159 mm_users = atomic_read(&mm->mm_users);
1160 if (mm_users == 1) {
1161 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1162 mm->numa_scan_seq = 0;
1163 }
1164 }
1165 p->node_stamp = 0;
1166 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
1167 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1168 p->numa_work.next = &p->numa_work;
1169 p->numa_faults = NULL;
1170 p->numa_group = NULL;
1171 p->last_task_numa_placement = 0;
1172 p->last_sum_exec_runtime = 0;
1173
1174 /* New address space, reset the preferred nid */
1175 if (!(clone_flags & CLONE_VM)) {
1176 p->numa_preferred_nid = -1;
1177 return;
1178 }
1179
1180 /*
1181 * New thread, keep existing numa_preferred_nid which should be copied
1182 * already by arch_dup_task_struct but stagger when scans start.
1183 */
1184 if (mm) {
1185 unsigned int delay;
1186
1187 delay = min_t(unsigned int, task_scan_max(current),
1188 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1189 delay += 2 * TICK_NSEC;
1190 p->node_stamp = delay;
1191 }
1192}
1193
0ec8aa00
PZ
1194static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1195{
1196 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1197 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1198}
1199
1200static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1201{
1202 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1203 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1204}
1205
be1e4e76
RR
1206/* Shared or private faults. */
1207#define NR_NUMA_HINT_FAULT_TYPES 2
1208
1209/* Memory and CPU locality */
1210#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1211
1212/* Averaged statistics, and temporary buffers. */
1213#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1214
e29cf08b
MG
1215pid_t task_numa_group_id(struct task_struct *p)
1216{
1217 return p->numa_group ? p->numa_group->gid : 0;
1218}
1219
44dba3d5 1220/*
97fb7a0a 1221 * The averaged statistics, shared & private, memory & CPU,
44dba3d5
IM
1222 * occupy the first half of the array. The second half of the
1223 * array is for current counters, which are averaged into the
1224 * first set by task_numa_placement.
1225 */
1226static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1227{
44dba3d5 1228 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1229}
1230
1231static inline unsigned long task_faults(struct task_struct *p, int nid)
1232{
44dba3d5 1233 if (!p->numa_faults)
ac8e895b
MG
1234 return 0;
1235
44dba3d5
IM
1236 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1237 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1238}
1239
83e1d2cd
MG
1240static inline unsigned long group_faults(struct task_struct *p, int nid)
1241{
1242 if (!p->numa_group)
1243 return 0;
1244
44dba3d5
IM
1245 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1246 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1247}
1248
20e07dea
RR
1249static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1250{
44dba3d5
IM
1251 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1252 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1253}
1254
b5dd77c8
RR
1255static inline unsigned long group_faults_priv(struct numa_group *ng)
1256{
1257 unsigned long faults = 0;
1258 int node;
1259
1260 for_each_online_node(node) {
1261 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1262 }
1263
1264 return faults;
1265}
1266
1267static inline unsigned long group_faults_shared(struct numa_group *ng)
1268{
1269 unsigned long faults = 0;
1270 int node;
1271
1272 for_each_online_node(node) {
1273 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1274 }
1275
1276 return faults;
1277}
1278
4142c3eb
RR
1279/*
1280 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1281 * considered part of a numa group's pseudo-interleaving set. Migrations
1282 * between these nodes are slowed down, to allow things to settle down.
1283 */
1284#define ACTIVE_NODE_FRACTION 3
1285
1286static bool numa_is_active_node(int nid, struct numa_group *ng)
1287{
1288 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1289}
1290
6c6b1193
RR
1291/* Handle placement on systems where not all nodes are directly connected. */
1292static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1293 int maxdist, bool task)
1294{
1295 unsigned long score = 0;
1296 int node;
1297
1298 /*
1299 * All nodes are directly connected, and the same distance
1300 * from each other. No need for fancy placement algorithms.
1301 */
1302 if (sched_numa_topology_type == NUMA_DIRECT)
1303 return 0;
1304
1305 /*
1306 * This code is called for each node, introducing N^2 complexity,
1307 * which should be ok given the number of nodes rarely exceeds 8.
1308 */
1309 for_each_online_node(node) {
1310 unsigned long faults;
1311 int dist = node_distance(nid, node);
1312
1313 /*
1314 * The furthest away nodes in the system are not interesting
1315 * for placement; nid was already counted.
1316 */
1317 if (dist == sched_max_numa_distance || node == nid)
1318 continue;
1319
1320 /*
1321 * On systems with a backplane NUMA topology, compare groups
1322 * of nodes, and move tasks towards the group with the most
1323 * memory accesses. When comparing two nodes at distance
1324 * "hoplimit", only nodes closer by than "hoplimit" are part
1325 * of each group. Skip other nodes.
1326 */
1327 if (sched_numa_topology_type == NUMA_BACKPLANE &&
0ee7e74d 1328 dist >= maxdist)
6c6b1193
RR
1329 continue;
1330
1331 /* Add up the faults from nearby nodes. */
1332 if (task)
1333 faults = task_faults(p, node);
1334 else
1335 faults = group_faults(p, node);
1336
1337 /*
1338 * On systems with a glueless mesh NUMA topology, there are
1339 * no fixed "groups of nodes". Instead, nodes that are not
1340 * directly connected bounce traffic through intermediate
1341 * nodes; a numa_group can occupy any set of nodes.
1342 * The further away a node is, the less the faults count.
1343 * This seems to result in good task placement.
1344 */
1345 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1346 faults *= (sched_max_numa_distance - dist);
1347 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1348 }
1349
1350 score += faults;
1351 }
1352
1353 return score;
1354}
1355
83e1d2cd
MG
1356/*
1357 * These return the fraction of accesses done by a particular task, or
1358 * task group, on a particular numa node. The group weight is given a
1359 * larger multiplier, in order to group tasks together that are almost
1360 * evenly spread out between numa nodes.
1361 */
7bd95320
RR
1362static inline unsigned long task_weight(struct task_struct *p, int nid,
1363 int dist)
83e1d2cd 1364{
7bd95320 1365 unsigned long faults, total_faults;
83e1d2cd 1366
44dba3d5 1367 if (!p->numa_faults)
83e1d2cd
MG
1368 return 0;
1369
1370 total_faults = p->total_numa_faults;
1371
1372 if (!total_faults)
1373 return 0;
1374
7bd95320 1375 faults = task_faults(p, nid);
6c6b1193
RR
1376 faults += score_nearby_nodes(p, nid, dist, true);
1377
7bd95320 1378 return 1000 * faults / total_faults;
83e1d2cd
MG
1379}
1380
7bd95320
RR
1381static inline unsigned long group_weight(struct task_struct *p, int nid,
1382 int dist)
83e1d2cd 1383{
7bd95320
RR
1384 unsigned long faults, total_faults;
1385
1386 if (!p->numa_group)
1387 return 0;
1388
1389 total_faults = p->numa_group->total_faults;
1390
1391 if (!total_faults)
83e1d2cd
MG
1392 return 0;
1393
7bd95320 1394 faults = group_faults(p, nid);
6c6b1193
RR
1395 faults += score_nearby_nodes(p, nid, dist, false);
1396
7bd95320 1397 return 1000 * faults / total_faults;
83e1d2cd
MG
1398}
1399
10f39042
RR
1400bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1401 int src_nid, int dst_cpu)
1402{
1403 struct numa_group *ng = p->numa_group;
1404 int dst_nid = cpu_to_node(dst_cpu);
1405 int last_cpupid, this_cpupid;
1406
1407 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
37355bdc
MG
1408 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1409
1410 /*
1411 * Allow first faults or private faults to migrate immediately early in
1412 * the lifetime of a task. The magic number 4 is based on waiting for
1413 * two full passes of the "multi-stage node selection" test that is
1414 * executed below.
1415 */
1416 if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
1417 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1418 return true;
10f39042
RR
1419
1420 /*
1421 * Multi-stage node selection is used in conjunction with a periodic
1422 * migration fault to build a temporal task<->page relation. By using
1423 * a two-stage filter we remove short/unlikely relations.
1424 *
1425 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1426 * a task's usage of a particular page (n_p) per total usage of this
1427 * page (n_t) (in a given time-span) to a probability.
1428 *
1429 * Our periodic faults will sample this probability and getting the
1430 * same result twice in a row, given these samples are fully
1431 * independent, is then given by P(n)^2, provided our sample period
1432 * is sufficiently short compared to the usage pattern.
1433 *
1434 * This quadric squishes small probabilities, making it less likely we
1435 * act on an unlikely task<->page relation.
1436 */
10f39042
RR
1437 if (!cpupid_pid_unset(last_cpupid) &&
1438 cpupid_to_nid(last_cpupid) != dst_nid)
1439 return false;
1440
1441 /* Always allow migrate on private faults */
1442 if (cpupid_match_pid(p, last_cpupid))
1443 return true;
1444
1445 /* A shared fault, but p->numa_group has not been set up yet. */
1446 if (!ng)
1447 return true;
1448
1449 /*
4142c3eb
RR
1450 * Destination node is much more heavily used than the source
1451 * node? Allow migration.
10f39042 1452 */
4142c3eb
RR
1453 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1454 ACTIVE_NODE_FRACTION)
10f39042
RR
1455 return true;
1456
1457 /*
4142c3eb
RR
1458 * Distribute memory according to CPU & memory use on each node,
1459 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1460 *
1461 * faults_cpu(dst) 3 faults_cpu(src)
1462 * --------------- * - > ---------------
1463 * faults_mem(dst) 4 faults_mem(src)
10f39042 1464 */
4142c3eb
RR
1465 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1466 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1467}
1468
c7132dd6 1469static unsigned long weighted_cpuload(struct rq *rq);
58d081b5
MG
1470static unsigned long source_load(int cpu, int type);
1471static unsigned long target_load(int cpu, int type);
58d081b5 1472
fb13c7ee 1473/* Cached statistics for all CPUs within a node */
58d081b5
MG
1474struct numa_stats {
1475 unsigned long load;
fb13c7ee
MG
1476
1477 /* Total compute capacity of CPUs on a node */
5ef20ca1 1478 unsigned long compute_capacity;
58d081b5 1479};
e6628d5b 1480
fb13c7ee
MG
1481/*
1482 * XXX borrowed from update_sg_lb_stats
1483 */
1484static void update_numa_stats(struct numa_stats *ns, int nid)
1485{
d90707eb 1486 int cpu;
fb13c7ee
MG
1487
1488 memset(ns, 0, sizeof(*ns));
1489 for_each_cpu(cpu, cpumask_of_node(nid)) {
1490 struct rq *rq = cpu_rq(cpu);
1491
c7132dd6 1492 ns->load += weighted_cpuload(rq);
ced549fa 1493 ns->compute_capacity += capacity_of(cpu);
fb13c7ee
MG
1494 }
1495
fb13c7ee
MG
1496}
1497
58d081b5
MG
1498struct task_numa_env {
1499 struct task_struct *p;
e6628d5b 1500
58d081b5
MG
1501 int src_cpu, src_nid;
1502 int dst_cpu, dst_nid;
e6628d5b 1503
58d081b5 1504 struct numa_stats src_stats, dst_stats;
e6628d5b 1505
40ea2b42 1506 int imbalance_pct;
7bd95320 1507 int dist;
fb13c7ee
MG
1508
1509 struct task_struct *best_task;
1510 long best_imp;
58d081b5
MG
1511 int best_cpu;
1512};
1513
fb13c7ee
MG
1514static void task_numa_assign(struct task_numa_env *env,
1515 struct task_struct *p, long imp)
1516{
a4739eca
SD
1517 struct rq *rq = cpu_rq(env->dst_cpu);
1518
1519 /* Bail out if run-queue part of active NUMA balance. */
1520 if (xchg(&rq->numa_migrate_on, 1))
1521 return;
1522
1523 /*
1524 * Clear previous best_cpu/rq numa-migrate flag, since task now
1525 * found a better CPU to move/swap.
1526 */
1527 if (env->best_cpu != -1) {
1528 rq = cpu_rq(env->best_cpu);
1529 WRITE_ONCE(rq->numa_migrate_on, 0);
1530 }
1531
fb13c7ee
MG
1532 if (env->best_task)
1533 put_task_struct(env->best_task);
bac78573
ON
1534 if (p)
1535 get_task_struct(p);
fb13c7ee
MG
1536
1537 env->best_task = p;
1538 env->best_imp = imp;
1539 env->best_cpu = env->dst_cpu;
1540}
1541
28a21745 1542static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1543 struct task_numa_env *env)
1544{
e4991b24
RR
1545 long imb, old_imb;
1546 long orig_src_load, orig_dst_load;
28a21745
RR
1547 long src_capacity, dst_capacity;
1548
1549 /*
1550 * The load is corrected for the CPU capacity available on each node.
1551 *
1552 * src_load dst_load
1553 * ------------ vs ---------
1554 * src_capacity dst_capacity
1555 */
1556 src_capacity = env->src_stats.compute_capacity;
1557 dst_capacity = env->dst_stats.compute_capacity;
e63da036 1558
5f95ba7a 1559 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
e63da036 1560
28a21745 1561 orig_src_load = env->src_stats.load;
e4991b24 1562 orig_dst_load = env->dst_stats.load;
28a21745 1563
5f95ba7a 1564 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
e4991b24
RR
1565
1566 /* Would this change make things worse? */
1567 return (imb > old_imb);
e63da036
RR
1568}
1569
6fd98e77
SD
1570/*
1571 * Maximum NUMA importance can be 1998 (2*999);
1572 * SMALLIMP @ 30 would be close to 1998/64.
1573 * Used to deter task migration.
1574 */
1575#define SMALLIMP 30
1576
fb13c7ee
MG
1577/*
1578 * This checks if the overall compute and NUMA accesses of the system would
1579 * be improved if the source tasks was migrated to the target dst_cpu taking
1580 * into account that it might be best if task running on the dst_cpu should
1581 * be exchanged with the source task
1582 */
887c290e 1583static void task_numa_compare(struct task_numa_env *env,
305c1fac 1584 long taskimp, long groupimp, bool maymove)
fb13c7ee 1585{
fb13c7ee
MG
1586 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1587 struct task_struct *cur;
28a21745 1588 long src_load, dst_load;
fb13c7ee 1589 long load;
1c5d3eb3 1590 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1591 long moveimp = imp;
7bd95320 1592 int dist = env->dist;
fb13c7ee 1593
a4739eca
SD
1594 if (READ_ONCE(dst_rq->numa_migrate_on))
1595 return;
1596
fb13c7ee 1597 rcu_read_lock();
bac78573
ON
1598 cur = task_rcu_dereference(&dst_rq->curr);
1599 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1600 cur = NULL;
1601
7af68335
PZ
1602 /*
1603 * Because we have preemption enabled we can get migrated around and
1604 * end try selecting ourselves (current == env->p) as a swap candidate.
1605 */
1606 if (cur == env->p)
1607 goto unlock;
1608
305c1fac 1609 if (!cur) {
6fd98e77 1610 if (maymove && moveimp >= env->best_imp)
305c1fac
SD
1611 goto assign;
1612 else
1613 goto unlock;
1614 }
1615
fb13c7ee
MG
1616 /*
1617 * "imp" is the fault differential for the source task between the
1618 * source and destination node. Calculate the total differential for
1619 * the source task and potential destination task. The more negative
305c1fac 1620 * the value is, the more remote accesses that would be expected to
fb13c7ee
MG
1621 * be incurred if the tasks were swapped.
1622 */
305c1fac
SD
1623 /* Skip this swap candidate if cannot move to the source cpu */
1624 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1625 goto unlock;
fb13c7ee 1626
305c1fac
SD
1627 /*
1628 * If dst and source tasks are in the same NUMA group, or not
1629 * in any group then look only at task weights.
1630 */
1631 if (cur->numa_group == env->p->numa_group) {
1632 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1633 task_weight(cur, env->dst_nid, dist);
887c290e 1634 /*
305c1fac
SD
1635 * Add some hysteresis to prevent swapping the
1636 * tasks within a group over tiny differences.
887c290e 1637 */
305c1fac
SD
1638 if (cur->numa_group)
1639 imp -= imp / 16;
1640 } else {
1641 /*
1642 * Compare the group weights. If a task is all by itself
1643 * (not part of a group), use the task weight instead.
1644 */
1645 if (cur->numa_group && env->p->numa_group)
1646 imp += group_weight(cur, env->src_nid, dist) -
1647 group_weight(cur, env->dst_nid, dist);
1648 else
1649 imp += task_weight(cur, env->src_nid, dist) -
1650 task_weight(cur, env->dst_nid, dist);
fb13c7ee
MG
1651 }
1652
305c1fac 1653 if (maymove && moveimp > imp && moveimp > env->best_imp) {
6fd98e77 1654 imp = moveimp;
305c1fac 1655 cur = NULL;
fb13c7ee 1656 goto assign;
305c1fac 1657 }
fb13c7ee 1658
6fd98e77
SD
1659 /*
1660 * If the NUMA importance is less than SMALLIMP,
1661 * task migration might only result in ping pong
1662 * of tasks and also hurt performance due to cache
1663 * misses.
1664 */
1665 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1666 goto unlock;
1667
fb13c7ee
MG
1668 /*
1669 * In the overloaded case, try and keep the load balanced.
1670 */
305c1fac
SD
1671 load = task_h_load(env->p) - task_h_load(cur);
1672 if (!load)
1673 goto assign;
1674
e720fff6
PZ
1675 dst_load = env->dst_stats.load + load;
1676 src_load = env->src_stats.load - load;
fb13c7ee 1677
28a21745 1678 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1679 goto unlock;
1680
305c1fac 1681assign:
ba7e5a27
RR
1682 /*
1683 * One idle CPU per node is evaluated for a task numa move.
1684 * Call select_idle_sibling to maybe find a better one.
1685 */
10e2f1ac
PZ
1686 if (!cur) {
1687 /*
97fb7a0a 1688 * select_idle_siblings() uses an per-CPU cpumask that
10e2f1ac
PZ
1689 * can be used from IRQ context.
1690 */
1691 local_irq_disable();
772bd008
MR
1692 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1693 env->dst_cpu);
10e2f1ac
PZ
1694 local_irq_enable();
1695 }
ba7e5a27 1696
fb13c7ee
MG
1697 task_numa_assign(env, cur, imp);
1698unlock:
1699 rcu_read_unlock();
1700}
1701
887c290e
RR
1702static void task_numa_find_cpu(struct task_numa_env *env,
1703 long taskimp, long groupimp)
2c8a50aa 1704{
305c1fac
SD
1705 long src_load, dst_load, load;
1706 bool maymove = false;
2c8a50aa
MG
1707 int cpu;
1708
305c1fac
SD
1709 load = task_h_load(env->p);
1710 dst_load = env->dst_stats.load + load;
1711 src_load = env->src_stats.load - load;
1712
1713 /*
1714 * If the improvement from just moving env->p direction is better
1715 * than swapping tasks around, check if a move is possible.
1716 */
1717 maymove = !load_too_imbalanced(src_load, dst_load, env);
1718
2c8a50aa
MG
1719 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1720 /* Skip this CPU if the source task cannot migrate */
0c98d344 1721 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
2c8a50aa
MG
1722 continue;
1723
1724 env->dst_cpu = cpu;
305c1fac 1725 task_numa_compare(env, taskimp, groupimp, maymove);
2c8a50aa
MG
1726 }
1727}
1728
58d081b5
MG
1729static int task_numa_migrate(struct task_struct *p)
1730{
58d081b5
MG
1731 struct task_numa_env env = {
1732 .p = p,
fb13c7ee 1733
58d081b5 1734 .src_cpu = task_cpu(p),
b32e86b4 1735 .src_nid = task_node(p),
fb13c7ee
MG
1736
1737 .imbalance_pct = 112,
1738
1739 .best_task = NULL,
1740 .best_imp = 0,
4142c3eb 1741 .best_cpu = -1,
58d081b5
MG
1742 };
1743 struct sched_domain *sd;
a4739eca 1744 struct rq *best_rq;
887c290e 1745 unsigned long taskweight, groupweight;
7bd95320 1746 int nid, ret, dist;
887c290e 1747 long taskimp, groupimp;
e6628d5b 1748
58d081b5 1749 /*
fb13c7ee
MG
1750 * Pick the lowest SD_NUMA domain, as that would have the smallest
1751 * imbalance and would be the first to start moving tasks about.
1752 *
1753 * And we want to avoid any moving of tasks about, as that would create
1754 * random movement of tasks -- counter the numa conditions we're trying
1755 * to satisfy here.
58d081b5
MG
1756 */
1757 rcu_read_lock();
fb13c7ee 1758 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1759 if (sd)
1760 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1761 rcu_read_unlock();
1762
46a73e8a
RR
1763 /*
1764 * Cpusets can break the scheduler domain tree into smaller
1765 * balance domains, some of which do not cross NUMA boundaries.
1766 * Tasks that are "trapped" in such domains cannot be migrated
1767 * elsewhere, so there is no point in (re)trying.
1768 */
1769 if (unlikely(!sd)) {
8cd45eee 1770 sched_setnuma(p, task_node(p));
46a73e8a
RR
1771 return -EINVAL;
1772 }
1773
2c8a50aa 1774 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1775 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1776 taskweight = task_weight(p, env.src_nid, dist);
1777 groupweight = group_weight(p, env.src_nid, dist);
1778 update_numa_stats(&env.src_stats, env.src_nid);
1779 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1780 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1781 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1782
a43455a1 1783 /* Try to find a spot on the preferred nid. */
2d4056fa 1784 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1785
9de05d48
RR
1786 /*
1787 * Look at other nodes in these cases:
1788 * - there is no space available on the preferred_nid
1789 * - the task is part of a numa_group that is interleaved across
1790 * multiple NUMA nodes; in order to better consolidate the group,
1791 * we need to check other locations.
1792 */
4142c3eb 1793 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1794 for_each_online_node(nid) {
1795 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1796 continue;
58d081b5 1797
7bd95320 1798 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1799 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1800 dist != env.dist) {
1801 taskweight = task_weight(p, env.src_nid, dist);
1802 groupweight = group_weight(p, env.src_nid, dist);
1803 }
7bd95320 1804
83e1d2cd 1805 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1806 taskimp = task_weight(p, nid, dist) - taskweight;
1807 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1808 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1809 continue;
1810
7bd95320 1811 env.dist = dist;
2c8a50aa
MG
1812 env.dst_nid = nid;
1813 update_numa_stats(&env.dst_stats, env.dst_nid);
2d4056fa 1814 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1815 }
1816 }
1817
68d1b02a
RR
1818 /*
1819 * If the task is part of a workload that spans multiple NUMA nodes,
1820 * and is migrating into one of the workload's active nodes, remember
1821 * this node as the task's preferred numa node, so the workload can
1822 * settle down.
1823 * A task that migrated to a second choice node will be better off
1824 * trying for a better one later. Do not set the preferred node here.
1825 */
db015dae
RR
1826 if (p->numa_group) {
1827 if (env.best_cpu == -1)
1828 nid = env.src_nid;
1829 else
8cd45eee 1830 nid = cpu_to_node(env.best_cpu);
db015dae 1831
8cd45eee
SD
1832 if (nid != p->numa_preferred_nid)
1833 sched_setnuma(p, nid);
db015dae
RR
1834 }
1835
1836 /* No better CPU than the current one was found. */
1837 if (env.best_cpu == -1)
1838 return -EAGAIN;
0ec8aa00 1839
a4739eca 1840 best_rq = cpu_rq(env.best_cpu);
fb13c7ee 1841 if (env.best_task == NULL) {
286549dc 1842 ret = migrate_task_to(p, env.best_cpu);
a4739eca 1843 WRITE_ONCE(best_rq->numa_migrate_on, 0);
286549dc
MG
1844 if (ret != 0)
1845 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1846 return ret;
1847 }
1848
0ad4e3df 1849 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
a4739eca 1850 WRITE_ONCE(best_rq->numa_migrate_on, 0);
0ad4e3df 1851
286549dc
MG
1852 if (ret != 0)
1853 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1854 put_task_struct(env.best_task);
1855 return ret;
e6628d5b
MG
1856}
1857
6b9a7460
MG
1858/* Attempt to migrate a task to a CPU on the preferred node. */
1859static void numa_migrate_preferred(struct task_struct *p)
1860{
5085e2a3
RR
1861 unsigned long interval = HZ;
1862
2739d3ee 1863 /* This task has no NUMA fault statistics yet */
44dba3d5 1864 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1865 return;
1866
2739d3ee 1867 /* Periodically retry migrating the task to the preferred node */
5085e2a3 1868 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
789ba280 1869 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1870
1871 /* Success if task is already running on preferred CPU */
de1b301a 1872 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1873 return;
1874
1875 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1876 task_numa_migrate(p);
6b9a7460
MG
1877}
1878
20e07dea 1879/*
4142c3eb 1880 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1881 * tracking the nodes from which NUMA hinting faults are triggered. This can
1882 * be different from the set of nodes where the workload's memory is currently
1883 * located.
20e07dea 1884 */
4142c3eb 1885static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1886{
1887 unsigned long faults, max_faults = 0;
4142c3eb 1888 int nid, active_nodes = 0;
20e07dea
RR
1889
1890 for_each_online_node(nid) {
1891 faults = group_faults_cpu(numa_group, nid);
1892 if (faults > max_faults)
1893 max_faults = faults;
1894 }
1895
1896 for_each_online_node(nid) {
1897 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1898 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1899 active_nodes++;
20e07dea 1900 }
4142c3eb
RR
1901
1902 numa_group->max_faults_cpu = max_faults;
1903 numa_group->active_nodes = active_nodes;
20e07dea
RR
1904}
1905
04bb2f94
RR
1906/*
1907 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1908 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1909 * period will be for the next scan window. If local/(local+remote) ratio is
1910 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1911 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1912 */
1913#define NUMA_PERIOD_SLOTS 10
a22b4b01 1914#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1915
1916/*
1917 * Increase the scan period (slow down scanning) if the majority of
1918 * our memory is already on our local node, or if the majority of
1919 * the page accesses are shared with other processes.
1920 * Otherwise, decrease the scan period.
1921 */
1922static void update_task_scan_period(struct task_struct *p,
1923 unsigned long shared, unsigned long private)
1924{
1925 unsigned int period_slot;
37ec97de 1926 int lr_ratio, ps_ratio;
04bb2f94
RR
1927 int diff;
1928
1929 unsigned long remote = p->numa_faults_locality[0];
1930 unsigned long local = p->numa_faults_locality[1];
1931
1932 /*
1933 * If there were no record hinting faults then either the task is
1934 * completely idle or all activity is areas that are not of interest
074c2381
MG
1935 * to automatic numa balancing. Related to that, if there were failed
1936 * migration then it implies we are migrating too quickly or the local
1937 * node is overloaded. In either case, scan slower
04bb2f94 1938 */
074c2381 1939 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1940 p->numa_scan_period = min(p->numa_scan_period_max,
1941 p->numa_scan_period << 1);
1942
1943 p->mm->numa_next_scan = jiffies +
1944 msecs_to_jiffies(p->numa_scan_period);
1945
1946 return;
1947 }
1948
1949 /*
1950 * Prepare to scale scan period relative to the current period.
1951 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1952 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1953 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1954 */
1955 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
37ec97de
RR
1956 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1957 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1958
1959 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1960 /*
1961 * Most memory accesses are local. There is no need to
1962 * do fast NUMA scanning, since memory is already local.
1963 */
1964 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1965 if (!slot)
1966 slot = 1;
1967 diff = slot * period_slot;
1968 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1969 /*
1970 * Most memory accesses are shared with other tasks.
1971 * There is no point in continuing fast NUMA scanning,
1972 * since other tasks may just move the memory elsewhere.
1973 */
1974 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
04bb2f94
RR
1975 if (!slot)
1976 slot = 1;
1977 diff = slot * period_slot;
1978 } else {
04bb2f94 1979 /*
37ec97de
RR
1980 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1981 * yet they are not on the local NUMA node. Speed up
1982 * NUMA scanning to get the memory moved over.
04bb2f94 1983 */
37ec97de
RR
1984 int ratio = max(lr_ratio, ps_ratio);
1985 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
04bb2f94
RR
1986 }
1987
1988 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1989 task_scan_min(p), task_scan_max(p));
1990 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1991}
1992
7e2703e6
RR
1993/*
1994 * Get the fraction of time the task has been running since the last
1995 * NUMA placement cycle. The scheduler keeps similar statistics, but
1996 * decays those on a 32ms period, which is orders of magnitude off
1997 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1998 * stats only if the task is so new there are no NUMA statistics yet.
1999 */
2000static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2001{
2002 u64 runtime, delta, now;
2003 /* Use the start of this time slice to avoid calculations. */
2004 now = p->se.exec_start;
2005 runtime = p->se.sum_exec_runtime;
2006
2007 if (p->last_task_numa_placement) {
2008 delta = runtime - p->last_sum_exec_runtime;
2009 *period = now - p->last_task_numa_placement;
2010 } else {
c7b50216 2011 delta = p->se.avg.load_sum;
9d89c257 2012 *period = LOAD_AVG_MAX;
7e2703e6
RR
2013 }
2014
2015 p->last_sum_exec_runtime = runtime;
2016 p->last_task_numa_placement = now;
2017
2018 return delta;
2019}
2020
54009416
RR
2021/*
2022 * Determine the preferred nid for a task in a numa_group. This needs to
2023 * be done in a way that produces consistent results with group_weight,
2024 * otherwise workloads might not converge.
2025 */
2026static int preferred_group_nid(struct task_struct *p, int nid)
2027{
2028 nodemask_t nodes;
2029 int dist;
2030
2031 /* Direct connections between all NUMA nodes. */
2032 if (sched_numa_topology_type == NUMA_DIRECT)
2033 return nid;
2034
2035 /*
2036 * On a system with glueless mesh NUMA topology, group_weight
2037 * scores nodes according to the number of NUMA hinting faults on
2038 * both the node itself, and on nearby nodes.
2039 */
2040 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2041 unsigned long score, max_score = 0;
2042 int node, max_node = nid;
2043
2044 dist = sched_max_numa_distance;
2045
2046 for_each_online_node(node) {
2047 score = group_weight(p, node, dist);
2048 if (score > max_score) {
2049 max_score = score;
2050 max_node = node;
2051 }
2052 }
2053 return max_node;
2054 }
2055
2056 /*
2057 * Finding the preferred nid in a system with NUMA backplane
2058 * interconnect topology is more involved. The goal is to locate
2059 * tasks from numa_groups near each other in the system, and
2060 * untangle workloads from different sides of the system. This requires
2061 * searching down the hierarchy of node groups, recursively searching
2062 * inside the highest scoring group of nodes. The nodemask tricks
2063 * keep the complexity of the search down.
2064 */
2065 nodes = node_online_map;
2066 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2067 unsigned long max_faults = 0;
81907478 2068 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
2069 int a, b;
2070
2071 /* Are there nodes at this distance from each other? */
2072 if (!find_numa_distance(dist))
2073 continue;
2074
2075 for_each_node_mask(a, nodes) {
2076 unsigned long faults = 0;
2077 nodemask_t this_group;
2078 nodes_clear(this_group);
2079
2080 /* Sum group's NUMA faults; includes a==b case. */
2081 for_each_node_mask(b, nodes) {
2082 if (node_distance(a, b) < dist) {
2083 faults += group_faults(p, b);
2084 node_set(b, this_group);
2085 node_clear(b, nodes);
2086 }
2087 }
2088
2089 /* Remember the top group. */
2090 if (faults > max_faults) {
2091 max_faults = faults;
2092 max_group = this_group;
2093 /*
2094 * subtle: at the smallest distance there is
2095 * just one node left in each "group", the
2096 * winner is the preferred nid.
2097 */
2098 nid = a;
2099 }
2100 }
2101 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2102 if (!max_faults)
2103 break;
54009416
RR
2104 nodes = max_group;
2105 }
2106 return nid;
2107}
2108
cbee9f88
PZ
2109static void task_numa_placement(struct task_struct *p)
2110{
f03bb676
SD
2111 int seq, nid, max_nid = -1;
2112 unsigned long max_faults = 0;
04bb2f94 2113 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2114 unsigned long total_faults;
2115 u64 runtime, period;
7dbd13ed 2116 spinlock_t *group_lock = NULL;
cbee9f88 2117
7e5a2c17
JL
2118 /*
2119 * The p->mm->numa_scan_seq field gets updated without
2120 * exclusive access. Use READ_ONCE() here to ensure
2121 * that the field is read in a single access:
2122 */
316c1608 2123 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2124 if (p->numa_scan_seq == seq)
2125 return;
2126 p->numa_scan_seq = seq;
598f0ec0 2127 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2128
7e2703e6
RR
2129 total_faults = p->numa_faults_locality[0] +
2130 p->numa_faults_locality[1];
2131 runtime = numa_get_avg_runtime(p, &period);
2132
7dbd13ed
MG
2133 /* If the task is part of a group prevent parallel updates to group stats */
2134 if (p->numa_group) {
2135 group_lock = &p->numa_group->lock;
60e69eed 2136 spin_lock_irq(group_lock);
7dbd13ed
MG
2137 }
2138
688b7585
MG
2139 /* Find the node with the highest number of faults */
2140 for_each_online_node(nid) {
44dba3d5
IM
2141 /* Keep track of the offsets in numa_faults array */
2142 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2143 unsigned long faults = 0, group_faults = 0;
44dba3d5 2144 int priv;
745d6147 2145
be1e4e76 2146 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2147 long diff, f_diff, f_weight;
8c8a743c 2148
44dba3d5
IM
2149 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2150 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2151 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2152 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2153
ac8e895b 2154 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2155 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2156 fault_types[priv] += p->numa_faults[membuf_idx];
2157 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2158
7e2703e6
RR
2159 /*
2160 * Normalize the faults_from, so all tasks in a group
2161 * count according to CPU use, instead of by the raw
2162 * number of faults. Tasks with little runtime have
2163 * little over-all impact on throughput, and thus their
2164 * faults are less important.
2165 */
2166 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2167 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2168 (total_faults + 1);
44dba3d5
IM
2169 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2170 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2171
44dba3d5
IM
2172 p->numa_faults[mem_idx] += diff;
2173 p->numa_faults[cpu_idx] += f_diff;
2174 faults += p->numa_faults[mem_idx];
83e1d2cd 2175 p->total_numa_faults += diff;
8c8a743c 2176 if (p->numa_group) {
44dba3d5
IM
2177 /*
2178 * safe because we can only change our own group
2179 *
2180 * mem_idx represents the offset for a given
2181 * nid and priv in a specific region because it
2182 * is at the beginning of the numa_faults array.
2183 */
2184 p->numa_group->faults[mem_idx] += diff;
2185 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2186 p->numa_group->total_faults += diff;
44dba3d5 2187 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2188 }
ac8e895b
MG
2189 }
2190
f03bb676
SD
2191 if (!p->numa_group) {
2192 if (faults > max_faults) {
2193 max_faults = faults;
2194 max_nid = nid;
2195 }
2196 } else if (group_faults > max_faults) {
2197 max_faults = group_faults;
688b7585
MG
2198 max_nid = nid;
2199 }
83e1d2cd
MG
2200 }
2201
7dbd13ed 2202 if (p->numa_group) {
4142c3eb 2203 numa_group_count_active_nodes(p->numa_group);
60e69eed 2204 spin_unlock_irq(group_lock);
f03bb676 2205 max_nid = preferred_group_nid(p, max_nid);
688b7585
MG
2206 }
2207
bb97fc31
RR
2208 if (max_faults) {
2209 /* Set the new preferred node */
2210 if (max_nid != p->numa_preferred_nid)
2211 sched_setnuma(p, max_nid);
3a7053b3 2212 }
30619c89
SD
2213
2214 update_task_scan_period(p, fault_types[0], fault_types[1]);
cbee9f88
PZ
2215}
2216
8c8a743c
PZ
2217static inline int get_numa_group(struct numa_group *grp)
2218{
c45a7795 2219 return refcount_inc_not_zero(&grp->refcount);
8c8a743c
PZ
2220}
2221
2222static inline void put_numa_group(struct numa_group *grp)
2223{
c45a7795 2224 if (refcount_dec_and_test(&grp->refcount))
8c8a743c
PZ
2225 kfree_rcu(grp, rcu);
2226}
2227
3e6a9418
MG
2228static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2229 int *priv)
8c8a743c
PZ
2230{
2231 struct numa_group *grp, *my_grp;
2232 struct task_struct *tsk;
2233 bool join = false;
2234 int cpu = cpupid_to_cpu(cpupid);
2235 int i;
2236
2237 if (unlikely(!p->numa_group)) {
2238 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2239 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2240
2241 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2242 if (!grp)
2243 return;
2244
c45a7795 2245 refcount_set(&grp->refcount, 1);
4142c3eb
RR
2246 grp->active_nodes = 1;
2247 grp->max_faults_cpu = 0;
8c8a743c 2248 spin_lock_init(&grp->lock);
e29cf08b 2249 grp->gid = p->pid;
50ec8a40 2250 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2251 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2252 nr_node_ids;
8c8a743c 2253
be1e4e76 2254 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2255 grp->faults[i] = p->numa_faults[i];
8c8a743c 2256
989348b5 2257 grp->total_faults = p->total_numa_faults;
83e1d2cd 2258
8c8a743c
PZ
2259 grp->nr_tasks++;
2260 rcu_assign_pointer(p->numa_group, grp);
2261 }
2262
2263 rcu_read_lock();
316c1608 2264 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2265
2266 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2267 goto no_join;
8c8a743c
PZ
2268
2269 grp = rcu_dereference(tsk->numa_group);
2270 if (!grp)
3354781a 2271 goto no_join;
8c8a743c
PZ
2272
2273 my_grp = p->numa_group;
2274 if (grp == my_grp)
3354781a 2275 goto no_join;
8c8a743c
PZ
2276
2277 /*
2278 * Only join the other group if its bigger; if we're the bigger group,
2279 * the other task will join us.
2280 */
2281 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2282 goto no_join;
8c8a743c
PZ
2283
2284 /*
2285 * Tie-break on the grp address.
2286 */
2287 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2288 goto no_join;
8c8a743c 2289
dabe1d99
RR
2290 /* Always join threads in the same process. */
2291 if (tsk->mm == current->mm)
2292 join = true;
2293
2294 /* Simple filter to avoid false positives due to PID collisions */
2295 if (flags & TNF_SHARED)
2296 join = true;
8c8a743c 2297
3e6a9418
MG
2298 /* Update priv based on whether false sharing was detected */
2299 *priv = !join;
2300
dabe1d99 2301 if (join && !get_numa_group(grp))
3354781a 2302 goto no_join;
8c8a743c 2303
8c8a743c
PZ
2304 rcu_read_unlock();
2305
2306 if (!join)
2307 return;
2308
60e69eed
MG
2309 BUG_ON(irqs_disabled());
2310 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2311
be1e4e76 2312 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2313 my_grp->faults[i] -= p->numa_faults[i];
2314 grp->faults[i] += p->numa_faults[i];
8c8a743c 2315 }
989348b5
MG
2316 my_grp->total_faults -= p->total_numa_faults;
2317 grp->total_faults += p->total_numa_faults;
8c8a743c 2318
8c8a743c
PZ
2319 my_grp->nr_tasks--;
2320 grp->nr_tasks++;
2321
2322 spin_unlock(&my_grp->lock);
60e69eed 2323 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2324
2325 rcu_assign_pointer(p->numa_group, grp);
2326
2327 put_numa_group(my_grp);
3354781a
PZ
2328 return;
2329
2330no_join:
2331 rcu_read_unlock();
2332 return;
8c8a743c
PZ
2333}
2334
2335void task_numa_free(struct task_struct *p)
2336{
2337 struct numa_group *grp = p->numa_group;
44dba3d5 2338 void *numa_faults = p->numa_faults;
e9dd685c
SR
2339 unsigned long flags;
2340 int i;
8c8a743c
PZ
2341
2342 if (grp) {
e9dd685c 2343 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2344 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2345 grp->faults[i] -= p->numa_faults[i];
989348b5 2346 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2347
8c8a743c 2348 grp->nr_tasks--;
e9dd685c 2349 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2350 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2351 put_numa_group(grp);
2352 }
2353
44dba3d5 2354 p->numa_faults = NULL;
82727018 2355 kfree(numa_faults);
8c8a743c
PZ
2356}
2357
cbee9f88
PZ
2358/*
2359 * Got a PROT_NONE fault for a page on @node.
2360 */
58b46da3 2361void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2362{
2363 struct task_struct *p = current;
6688cc05 2364 bool migrated = flags & TNF_MIGRATED;
58b46da3 2365 int cpu_node = task_node(current);
792568ec 2366 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2367 struct numa_group *ng;
ac8e895b 2368 int priv;
cbee9f88 2369
2a595721 2370 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2371 return;
2372
9ff1d9ff
MG
2373 /* for example, ksmd faulting in a user's mm */
2374 if (!p->mm)
2375 return;
2376
f809ca9a 2377 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2378 if (unlikely(!p->numa_faults)) {
2379 int size = sizeof(*p->numa_faults) *
be1e4e76 2380 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2381
44dba3d5
IM
2382 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2383 if (!p->numa_faults)
f809ca9a 2384 return;
745d6147 2385
83e1d2cd 2386 p->total_numa_faults = 0;
04bb2f94 2387 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2388 }
cbee9f88 2389
8c8a743c
PZ
2390 /*
2391 * First accesses are treated as private, otherwise consider accesses
2392 * to be private if the accessing pid has not changed
2393 */
2394 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2395 priv = 1;
2396 } else {
2397 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2398 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2399 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2400 }
2401
792568ec
RR
2402 /*
2403 * If a workload spans multiple NUMA nodes, a shared fault that
2404 * occurs wholly within the set of nodes that the workload is
2405 * actively using should be counted as local. This allows the
2406 * scan rate to slow down when a workload has settled down.
2407 */
4142c3eb
RR
2408 ng = p->numa_group;
2409 if (!priv && !local && ng && ng->active_nodes > 1 &&
2410 numa_is_active_node(cpu_node, ng) &&
2411 numa_is_active_node(mem_node, ng))
792568ec
RR
2412 local = 1;
2413
2739d3ee 2414 /*
e1ff516a
YW
2415 * Retry to migrate task to preferred node periodically, in case it
2416 * previously failed, or the scheduler moved us.
2739d3ee 2417 */
b6a60cf3
SD
2418 if (time_after(jiffies, p->numa_migrate_retry)) {
2419 task_numa_placement(p);
6b9a7460 2420 numa_migrate_preferred(p);
b6a60cf3 2421 }
6b9a7460 2422
b32e86b4
IM
2423 if (migrated)
2424 p->numa_pages_migrated += pages;
074c2381
MG
2425 if (flags & TNF_MIGRATE_FAIL)
2426 p->numa_faults_locality[2] += pages;
b32e86b4 2427
44dba3d5
IM
2428 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2429 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2430 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2431}
2432
6e5fb223
PZ
2433static void reset_ptenuma_scan(struct task_struct *p)
2434{
7e5a2c17
JL
2435 /*
2436 * We only did a read acquisition of the mmap sem, so
2437 * p->mm->numa_scan_seq is written to without exclusive access
2438 * and the update is not guaranteed to be atomic. That's not
2439 * much of an issue though, since this is just used for
2440 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2441 * expensive, to avoid any form of compiler optimizations:
2442 */
316c1608 2443 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2444 p->mm->numa_scan_offset = 0;
2445}
2446
cbee9f88
PZ
2447/*
2448 * The expensive part of numa migration is done from task_work context.
2449 * Triggered from task_tick_numa().
2450 */
2451void task_numa_work(struct callback_head *work)
2452{
2453 unsigned long migrate, next_scan, now = jiffies;
2454 struct task_struct *p = current;
2455 struct mm_struct *mm = p->mm;
51170840 2456 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2457 struct vm_area_struct *vma;
9f40604c 2458 unsigned long start, end;
598f0ec0 2459 unsigned long nr_pte_updates = 0;
4620f8c1 2460 long pages, virtpages;
cbee9f88 2461
9148a3a1 2462 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
cbee9f88
PZ
2463
2464 work->next = work; /* protect against double add */
2465 /*
2466 * Who cares about NUMA placement when they're dying.
2467 *
2468 * NOTE: make sure not to dereference p->mm before this check,
2469 * exit_task_work() happens _after_ exit_mm() so we could be called
2470 * without p->mm even though we still had it when we enqueued this
2471 * work.
2472 */
2473 if (p->flags & PF_EXITING)
2474 return;
2475
930aa174 2476 if (!mm->numa_next_scan) {
7e8d16b6
MG
2477 mm->numa_next_scan = now +
2478 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2479 }
2480
cbee9f88
PZ
2481 /*
2482 * Enforce maximal scan/migration frequency..
2483 */
2484 migrate = mm->numa_next_scan;
2485 if (time_before(now, migrate))
2486 return;
2487
598f0ec0
MG
2488 if (p->numa_scan_period == 0) {
2489 p->numa_scan_period_max = task_scan_max(p);
b5dd77c8 2490 p->numa_scan_period = task_scan_start(p);
598f0ec0 2491 }
cbee9f88 2492
fb003b80 2493 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2494 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2495 return;
2496
19a78d11
PZ
2497 /*
2498 * Delay this task enough that another task of this mm will likely win
2499 * the next time around.
2500 */
2501 p->node_stamp += 2 * TICK_NSEC;
2502
9f40604c
MG
2503 start = mm->numa_scan_offset;
2504 pages = sysctl_numa_balancing_scan_size;
2505 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2506 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2507 if (!pages)
2508 return;
cbee9f88 2509
4620f8c1 2510
8655d549
VB
2511 if (!down_read_trylock(&mm->mmap_sem))
2512 return;
9f40604c 2513 vma = find_vma(mm, start);
6e5fb223
PZ
2514 if (!vma) {
2515 reset_ptenuma_scan(p);
9f40604c 2516 start = 0;
6e5fb223
PZ
2517 vma = mm->mmap;
2518 }
9f40604c 2519 for (; vma; vma = vma->vm_next) {
6b79c57b 2520 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2521 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2522 continue;
6b79c57b 2523 }
6e5fb223 2524
4591ce4f
MG
2525 /*
2526 * Shared library pages mapped by multiple processes are not
2527 * migrated as it is expected they are cache replicated. Avoid
2528 * hinting faults in read-only file-backed mappings or the vdso
2529 * as migrating the pages will be of marginal benefit.
2530 */
2531 if (!vma->vm_mm ||
2532 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2533 continue;
2534
3c67f474
MG
2535 /*
2536 * Skip inaccessible VMAs to avoid any confusion between
2537 * PROT_NONE and NUMA hinting ptes
2538 */
2539 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2540 continue;
4591ce4f 2541
9f40604c
MG
2542 do {
2543 start = max(start, vma->vm_start);
2544 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2545 end = min(end, vma->vm_end);
4620f8c1 2546 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2547
2548 /*
4620f8c1
RR
2549 * Try to scan sysctl_numa_balancing_size worth of
2550 * hpages that have at least one present PTE that
2551 * is not already pte-numa. If the VMA contains
2552 * areas that are unused or already full of prot_numa
2553 * PTEs, scan up to virtpages, to skip through those
2554 * areas faster.
598f0ec0
MG
2555 */
2556 if (nr_pte_updates)
2557 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2558 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2559
9f40604c 2560 start = end;
4620f8c1 2561 if (pages <= 0 || virtpages <= 0)
9f40604c 2562 goto out;
3cf1962c
RR
2563
2564 cond_resched();
9f40604c 2565 } while (end != vma->vm_end);
cbee9f88 2566 }
6e5fb223 2567
9f40604c 2568out:
6e5fb223 2569 /*
c69307d5
PZ
2570 * It is possible to reach the end of the VMA list but the last few
2571 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2572 * would find the !migratable VMA on the next scan but not reset the
2573 * scanner to the start so check it now.
6e5fb223
PZ
2574 */
2575 if (vma)
9f40604c 2576 mm->numa_scan_offset = start;
6e5fb223
PZ
2577 else
2578 reset_ptenuma_scan(p);
2579 up_read(&mm->mmap_sem);
51170840
RR
2580
2581 /*
2582 * Make sure tasks use at least 32x as much time to run other code
2583 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2584 * Usually update_task_scan_period slows down scanning enough; on an
2585 * overloaded system we need to limit overhead on a per task basis.
2586 */
2587 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2588 u64 diff = p->se.sum_exec_runtime - runtime;
2589 p->node_stamp += 32 * diff;
2590 }
cbee9f88
PZ
2591}
2592
2593/*
2594 * Drive the periodic memory faults..
2595 */
2596void task_tick_numa(struct rq *rq, struct task_struct *curr)
2597{
2598 struct callback_head *work = &curr->numa_work;
2599 u64 period, now;
2600
2601 /*
2602 * We don't care about NUMA placement if we don't have memory.
2603 */
2604 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2605 return;
2606
2607 /*
2608 * Using runtime rather than walltime has the dual advantage that
2609 * we (mostly) drive the selection from busy threads and that the
2610 * task needs to have done some actual work before we bother with
2611 * NUMA placement.
2612 */
2613 now = curr->se.sum_exec_runtime;
2614 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2615
25b3e5a3 2616 if (now > curr->node_stamp + period) {
4b96a29b 2617 if (!curr->node_stamp)
b5dd77c8 2618 curr->numa_scan_period = task_scan_start(curr);
19a78d11 2619 curr->node_stamp += period;
cbee9f88
PZ
2620
2621 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2622 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2623 task_work_add(curr, work, true);
2624 }
2625 }
2626}
3fed382b 2627
3f9672ba
SD
2628static void update_scan_period(struct task_struct *p, int new_cpu)
2629{
2630 int src_nid = cpu_to_node(task_cpu(p));
2631 int dst_nid = cpu_to_node(new_cpu);
2632
05cbdf4f
MG
2633 if (!static_branch_likely(&sched_numa_balancing))
2634 return;
2635
3f9672ba
SD
2636 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2637 return;
2638
05cbdf4f
MG
2639 if (src_nid == dst_nid)
2640 return;
2641
2642 /*
2643 * Allow resets if faults have been trapped before one scan
2644 * has completed. This is most likely due to a new task that
2645 * is pulled cross-node due to wakeups or load balancing.
2646 */
2647 if (p->numa_scan_seq) {
2648 /*
2649 * Avoid scan adjustments if moving to the preferred
2650 * node or if the task was not previously running on
2651 * the preferred node.
2652 */
2653 if (dst_nid == p->numa_preferred_nid ||
2654 (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
2655 return;
2656 }
2657
2658 p->numa_scan_period = task_scan_start(p);
3f9672ba
SD
2659}
2660
cbee9f88
PZ
2661#else
2662static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2663{
2664}
0ec8aa00
PZ
2665
2666static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2667{
2668}
2669
2670static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2671{
2672}
3fed382b 2673
3f9672ba
SD
2674static inline void update_scan_period(struct task_struct *p, int new_cpu)
2675{
2676}
2677
cbee9f88
PZ
2678#endif /* CONFIG_NUMA_BALANCING */
2679
30cfdcfc
DA
2680static void
2681account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2682{
2683 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2684 if (!parent_entity(se))
029632fb 2685 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2686#ifdef CONFIG_SMP
0ec8aa00
PZ
2687 if (entity_is_task(se)) {
2688 struct rq *rq = rq_of(cfs_rq);
2689
2690 account_numa_enqueue(rq, task_of(se));
2691 list_add(&se->group_node, &rq->cfs_tasks);
2692 }
367456c7 2693#endif
30cfdcfc 2694 cfs_rq->nr_running++;
30cfdcfc
DA
2695}
2696
2697static void
2698account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2699{
2700 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2701 if (!parent_entity(se))
029632fb 2702 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2703#ifdef CONFIG_SMP
0ec8aa00
PZ
2704 if (entity_is_task(se)) {
2705 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2706 list_del_init(&se->group_node);
0ec8aa00 2707 }
bfdb198c 2708#endif
30cfdcfc 2709 cfs_rq->nr_running--;
30cfdcfc
DA
2710}
2711
8d5b9025
PZ
2712/*
2713 * Signed add and clamp on underflow.
2714 *
2715 * Explicitly do a load-store to ensure the intermediate value never hits
2716 * memory. This allows lockless observations without ever seeing the negative
2717 * values.
2718 */
2719#define add_positive(_ptr, _val) do { \
2720 typeof(_ptr) ptr = (_ptr); \
2721 typeof(_val) val = (_val); \
2722 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2723 \
2724 res = var + val; \
2725 \
2726 if (val < 0 && res > var) \
2727 res = 0; \
2728 \
2729 WRITE_ONCE(*ptr, res); \
2730} while (0)
2731
2732/*
2733 * Unsigned subtract and clamp on underflow.
2734 *
2735 * Explicitly do a load-store to ensure the intermediate value never hits
2736 * memory. This allows lockless observations without ever seeing the negative
2737 * values.
2738 */
2739#define sub_positive(_ptr, _val) do { \
2740 typeof(_ptr) ptr = (_ptr); \
2741 typeof(*ptr) val = (_val); \
2742 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2743 res = var - val; \
2744 if (res > var) \
2745 res = 0; \
2746 WRITE_ONCE(*ptr, res); \
2747} while (0)
2748
b5c0ce7b
PB
2749/*
2750 * Remove and clamp on negative, from a local variable.
2751 *
2752 * A variant of sub_positive(), which does not use explicit load-store
2753 * and is thus optimized for local variable updates.
2754 */
2755#define lsub_positive(_ptr, _val) do { \
2756 typeof(_ptr) ptr = (_ptr); \
2757 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2758} while (0)
2759
8d5b9025 2760#ifdef CONFIG_SMP
8d5b9025
PZ
2761static inline void
2762enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2763{
1ea6c46a
PZ
2764 cfs_rq->runnable_weight += se->runnable_weight;
2765
2766 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2767 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
8d5b9025
PZ
2768}
2769
2770static inline void
2771dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2772{
1ea6c46a
PZ
2773 cfs_rq->runnable_weight -= se->runnable_weight;
2774
2775 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2776 sub_positive(&cfs_rq->avg.runnable_load_sum,
2777 se_runnable(se) * se->avg.runnable_load_sum);
8d5b9025
PZ
2778}
2779
2780static inline void
2781enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2782{
2783 cfs_rq->avg.load_avg += se->avg.load_avg;
2784 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2785}
2786
2787static inline void
2788dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2789{
2790 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2791 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2792}
2793#else
2794static inline void
2795enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2796static inline void
2797dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2798static inline void
2799enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2800static inline void
2801dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2802#endif
2803
9059393e 2804static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1ea6c46a 2805 unsigned long weight, unsigned long runnable)
9059393e
VG
2806{
2807 if (se->on_rq) {
2808 /* commit outstanding execution time */
2809 if (cfs_rq->curr == se)
2810 update_curr(cfs_rq);
2811 account_entity_dequeue(cfs_rq, se);
2812 dequeue_runnable_load_avg(cfs_rq, se);
2813 }
2814 dequeue_load_avg(cfs_rq, se);
2815
1ea6c46a 2816 se->runnable_weight = runnable;
9059393e
VG
2817 update_load_set(&se->load, weight);
2818
2819#ifdef CONFIG_SMP
1ea6c46a
PZ
2820 do {
2821 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2822
2823 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2824 se->avg.runnable_load_avg =
2825 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2826 } while (0);
9059393e
VG
2827#endif
2828
2829 enqueue_load_avg(cfs_rq, se);
2830 if (se->on_rq) {
2831 account_entity_enqueue(cfs_rq, se);
2832 enqueue_runnable_load_avg(cfs_rq, se);
2833 }
2834}
2835
2836void reweight_task(struct task_struct *p, int prio)
2837{
2838 struct sched_entity *se = &p->se;
2839 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2840 struct load_weight *load = &se->load;
2841 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2842
1ea6c46a 2843 reweight_entity(cfs_rq, se, weight, weight);
9059393e
VG
2844 load->inv_weight = sched_prio_to_wmult[prio];
2845}
2846
3ff6dcac 2847#ifdef CONFIG_FAIR_GROUP_SCHED
387f77cc 2848#ifdef CONFIG_SMP
cef27403
PZ
2849/*
2850 * All this does is approximate the hierarchical proportion which includes that
2851 * global sum we all love to hate.
2852 *
2853 * That is, the weight of a group entity, is the proportional share of the
2854 * group weight based on the group runqueue weights. That is:
2855 *
2856 * tg->weight * grq->load.weight
2857 * ge->load.weight = ----------------------------- (1)
2858 * \Sum grq->load.weight
2859 *
2860 * Now, because computing that sum is prohibitively expensive to compute (been
2861 * there, done that) we approximate it with this average stuff. The average
2862 * moves slower and therefore the approximation is cheaper and more stable.
2863 *
2864 * So instead of the above, we substitute:
2865 *
2866 * grq->load.weight -> grq->avg.load_avg (2)
2867 *
2868 * which yields the following:
2869 *
2870 * tg->weight * grq->avg.load_avg
2871 * ge->load.weight = ------------------------------ (3)
2872 * tg->load_avg
2873 *
2874 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2875 *
2876 * That is shares_avg, and it is right (given the approximation (2)).
2877 *
2878 * The problem with it is that because the average is slow -- it was designed
2879 * to be exactly that of course -- this leads to transients in boundary
2880 * conditions. In specific, the case where the group was idle and we start the
2881 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2882 * yielding bad latency etc..
2883 *
2884 * Now, in that special case (1) reduces to:
2885 *
2886 * tg->weight * grq->load.weight
17de4ee0 2887 * ge->load.weight = ----------------------------- = tg->weight (4)
cef27403
PZ
2888 * grp->load.weight
2889 *
2890 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2891 *
2892 * So what we do is modify our approximation (3) to approach (4) in the (near)
2893 * UP case, like:
2894 *
2895 * ge->load.weight =
2896 *
2897 * tg->weight * grq->load.weight
2898 * --------------------------------------------------- (5)
2899 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2900 *
17de4ee0
PZ
2901 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2902 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2903 *
2904 *
2905 * tg->weight * grq->load.weight
2906 * ge->load.weight = ----------------------------- (6)
2907 * tg_load_avg'
2908 *
2909 * Where:
2910 *
2911 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2912 * max(grq->load.weight, grq->avg.load_avg)
cef27403
PZ
2913 *
2914 * And that is shares_weight and is icky. In the (near) UP case it approaches
2915 * (4) while in the normal case it approaches (3). It consistently
2916 * overestimates the ge->load.weight and therefore:
2917 *
2918 * \Sum ge->load.weight >= tg->weight
2919 *
2920 * hence icky!
2921 */
2c8e4dce 2922static long calc_group_shares(struct cfs_rq *cfs_rq)
cf5f0acf 2923{
7c80cfc9
PZ
2924 long tg_weight, tg_shares, load, shares;
2925 struct task_group *tg = cfs_rq->tg;
2926
2927 tg_shares = READ_ONCE(tg->shares);
cf5f0acf 2928
3d4b60d3 2929 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
cf5f0acf 2930
ea1dc6fc 2931 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2932
ea1dc6fc
PZ
2933 /* Ensure tg_weight >= load */
2934 tg_weight -= cfs_rq->tg_load_avg_contrib;
2935 tg_weight += load;
3ff6dcac 2936
7c80cfc9 2937 shares = (tg_shares * load);
cf5f0acf
PZ
2938 if (tg_weight)
2939 shares /= tg_weight;
3ff6dcac 2940
b8fd8423
DE
2941 /*
2942 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2943 * of a group with small tg->shares value. It is a floor value which is
2944 * assigned as a minimum load.weight to the sched_entity representing
2945 * the group on a CPU.
2946 *
2947 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2948 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2949 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2950 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2951 * instead of 0.
2952 */
7c80cfc9 2953 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3ff6dcac 2954}
2c8e4dce
JB
2955
2956/*
17de4ee0
PZ
2957 * This calculates the effective runnable weight for a group entity based on
2958 * the group entity weight calculated above.
2959 *
2960 * Because of the above approximation (2), our group entity weight is
2961 * an load_avg based ratio (3). This means that it includes blocked load and
2962 * does not represent the runnable weight.
2963 *
2964 * Approximate the group entity's runnable weight per ratio from the group
2965 * runqueue:
2966 *
2967 * grq->avg.runnable_load_avg
2968 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2969 * grq->avg.load_avg
2970 *
2971 * However, analogous to above, since the avg numbers are slow, this leads to
2972 * transients in the from-idle case. Instead we use:
2973 *
2974 * ge->runnable_weight = ge->load.weight *
2975 *
2976 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
2977 * ----------------------------------------------------- (8)
2978 * max(grq->avg.load_avg, grq->load.weight)
2979 *
2980 * Where these max() serve both to use the 'instant' values to fix the slow
2981 * from-idle and avoid the /0 on to-idle, similar to (6).
2c8e4dce
JB
2982 */
2983static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2984{
17de4ee0
PZ
2985 long runnable, load_avg;
2986
2987 load_avg = max(cfs_rq->avg.load_avg,
2988 scale_load_down(cfs_rq->load.weight));
2989
2990 runnable = max(cfs_rq->avg.runnable_load_avg,
2991 scale_load_down(cfs_rq->runnable_weight));
2c8e4dce
JB
2992
2993 runnable *= shares;
2994 if (load_avg)
2995 runnable /= load_avg;
17de4ee0 2996
2c8e4dce
JB
2997 return clamp_t(long, runnable, MIN_SHARES, shares);
2998}
387f77cc 2999#endif /* CONFIG_SMP */
ea1dc6fc 3000
82958366
PT
3001static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3002
1ea6c46a
PZ
3003/*
3004 * Recomputes the group entity based on the current state of its group
3005 * runqueue.
3006 */
3007static void update_cfs_group(struct sched_entity *se)
2069dd75 3008{
1ea6c46a
PZ
3009 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3010 long shares, runnable;
2069dd75 3011
1ea6c46a 3012 if (!gcfs_rq)
89ee048f
VG
3013 return;
3014
1ea6c46a 3015 if (throttled_hierarchy(gcfs_rq))
2069dd75 3016 return;
89ee048f 3017
3ff6dcac 3018#ifndef CONFIG_SMP
1ea6c46a 3019 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
7c80cfc9
PZ
3020
3021 if (likely(se->load.weight == shares))
3ff6dcac 3022 return;
7c80cfc9 3023#else
2c8e4dce
JB
3024 shares = calc_group_shares(gcfs_rq);
3025 runnable = calc_group_runnable(gcfs_rq, shares);
3ff6dcac 3026#endif
2069dd75 3027
1ea6c46a 3028 reweight_entity(cfs_rq_of(se), se, shares, runnable);
2069dd75 3029}
89ee048f 3030
2069dd75 3031#else /* CONFIG_FAIR_GROUP_SCHED */
1ea6c46a 3032static inline void update_cfs_group(struct sched_entity *se)
2069dd75
PZ
3033{
3034}
3035#endif /* CONFIG_FAIR_GROUP_SCHED */
3036
ea14b57e 3037static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
a030d738 3038{
43964409
LT
3039 struct rq *rq = rq_of(cfs_rq);
3040
ea14b57e 3041 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
a030d738
VK
3042 /*
3043 * There are a few boundary cases this might miss but it should
3044 * get called often enough that that should (hopefully) not be
9783be2c 3045 * a real problem.
a030d738
VK
3046 *
3047 * It will not get called when we go idle, because the idle
3048 * thread is a different class (!fair), nor will the utilization
3049 * number include things like RT tasks.
3050 *
3051 * As is, the util number is not freq-invariant (we'd have to
3052 * implement arch_scale_freq_capacity() for that).
3053 *
3054 * See cpu_util().
3055 */
ea14b57e 3056 cpufreq_update_util(rq, flags);
a030d738
VK
3057 }
3058}
3059
141965c7 3060#ifdef CONFIG_SMP
c566e8e9 3061#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
3062/**
3063 * update_tg_load_avg - update the tg's load avg
3064 * @cfs_rq: the cfs_rq whose avg changed
3065 * @force: update regardless of how small the difference
3066 *
3067 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3068 * However, because tg->load_avg is a global value there are performance
3069 * considerations.
3070 *
3071 * In order to avoid having to look at the other cfs_rq's, we use a
3072 * differential update where we store the last value we propagated. This in
3073 * turn allows skipping updates if the differential is 'small'.
3074 *
815abf5a 3075 * Updating tg's load_avg is necessary before update_cfs_share().
bb17f655 3076 */
9d89c257 3077static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 3078{
9d89c257 3079 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 3080
aa0b7ae0
WL
3081 /*
3082 * No need to update load_avg for root_task_group as it is not used.
3083 */
3084 if (cfs_rq->tg == &root_task_group)
3085 return;
3086
9d89c257
YD
3087 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3088 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3089 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 3090 }
8165e145 3091}
f5f9739d 3092
ad936d86 3093/*
97fb7a0a 3094 * Called within set_task_rq() right before setting a task's CPU. The
ad936d86
BP
3095 * caller only guarantees p->pi_lock is held; no other assumptions,
3096 * including the state of rq->lock, should be made.
3097 */
3098void set_task_rq_fair(struct sched_entity *se,
3099 struct cfs_rq *prev, struct cfs_rq *next)
3100{
0ccb977f
PZ
3101 u64 p_last_update_time;
3102 u64 n_last_update_time;
3103
ad936d86
BP
3104 if (!sched_feat(ATTACH_AGE_LOAD))
3105 return;
3106
3107 /*
3108 * We are supposed to update the task to "current" time, then its up to
3109 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3110 * getting what current time is, so simply throw away the out-of-date
3111 * time. This will result in the wakee task is less decayed, but giving
3112 * the wakee more load sounds not bad.
3113 */
0ccb977f
PZ
3114 if (!(se->avg.last_update_time && prev))
3115 return;
ad936d86
BP
3116
3117#ifndef CONFIG_64BIT
0ccb977f 3118 {
ad936d86
BP
3119 u64 p_last_update_time_copy;
3120 u64 n_last_update_time_copy;
3121
3122 do {
3123 p_last_update_time_copy = prev->load_last_update_time_copy;
3124 n_last_update_time_copy = next->load_last_update_time_copy;
3125
3126 smp_rmb();
3127
3128 p_last_update_time = prev->avg.last_update_time;
3129 n_last_update_time = next->avg.last_update_time;
3130
3131 } while (p_last_update_time != p_last_update_time_copy ||
3132 n_last_update_time != n_last_update_time_copy);
0ccb977f 3133 }
ad936d86 3134#else
0ccb977f
PZ
3135 p_last_update_time = prev->avg.last_update_time;
3136 n_last_update_time = next->avg.last_update_time;
ad936d86 3137#endif
23127296 3138 __update_load_avg_blocked_se(p_last_update_time, se);
0ccb977f 3139 se->avg.last_update_time = n_last_update_time;
ad936d86 3140}
09a43ace 3141
0e2d2aaa
PZ
3142
3143/*
3144 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3145 * propagate its contribution. The key to this propagation is the invariant
3146 * that for each group:
3147 *
3148 * ge->avg == grq->avg (1)
3149 *
3150 * _IFF_ we look at the pure running and runnable sums. Because they
3151 * represent the very same entity, just at different points in the hierarchy.
3152 *
a4c3c049
VG
3153 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3154 * sum over (but still wrong, because the group entity and group rq do not have
3155 * their PELT windows aligned).
0e2d2aaa
PZ
3156 *
3157 * However, update_tg_cfs_runnable() is more complex. So we have:
3158 *
3159 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3160 *
3161 * And since, like util, the runnable part should be directly transferable,
3162 * the following would _appear_ to be the straight forward approach:
3163 *
a4c3c049 3164 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
0e2d2aaa
PZ
3165 *
3166 * And per (1) we have:
3167 *
a4c3c049 3168 * ge->avg.runnable_avg == grq->avg.runnable_avg
0e2d2aaa
PZ
3169 *
3170 * Which gives:
3171 *
3172 * ge->load.weight * grq->avg.load_avg
3173 * ge->avg.load_avg = ----------------------------------- (4)
3174 * grq->load.weight
3175 *
3176 * Except that is wrong!
3177 *
3178 * Because while for entities historical weight is not important and we
3179 * really only care about our future and therefore can consider a pure
3180 * runnable sum, runqueues can NOT do this.
3181 *
3182 * We specifically want runqueues to have a load_avg that includes
3183 * historical weights. Those represent the blocked load, the load we expect
3184 * to (shortly) return to us. This only works by keeping the weights as
3185 * integral part of the sum. We therefore cannot decompose as per (3).
3186 *
a4c3c049
VG
3187 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3188 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3189 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3190 * runnable section of these tasks overlap (or not). If they were to perfectly
3191 * align the rq as a whole would be runnable 2/3 of the time. If however we
3192 * always have at least 1 runnable task, the rq as a whole is always runnable.
0e2d2aaa 3193 *
a4c3c049 3194 * So we'll have to approximate.. :/
0e2d2aaa 3195 *
a4c3c049 3196 * Given the constraint:
0e2d2aaa 3197 *
a4c3c049 3198 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
0e2d2aaa 3199 *
a4c3c049
VG
3200 * We can construct a rule that adds runnable to a rq by assuming minimal
3201 * overlap.
0e2d2aaa 3202 *
a4c3c049 3203 * On removal, we'll assume each task is equally runnable; which yields:
0e2d2aaa 3204 *
a4c3c049 3205 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
0e2d2aaa 3206 *
a4c3c049 3207 * XXX: only do this for the part of runnable > running ?
0e2d2aaa 3208 *
0e2d2aaa
PZ
3209 */
3210
09a43ace 3211static inline void
0e2d2aaa 3212update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3213{
09a43ace
VG
3214 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3215
3216 /* Nothing to update */
3217 if (!delta)
3218 return;
3219
a4c3c049
VG
3220 /*
3221 * The relation between sum and avg is:
3222 *
3223 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3224 *
3225 * however, the PELT windows are not aligned between grq and gse.
3226 */
3227
09a43ace
VG
3228 /* Set new sched_entity's utilization */
3229 se->avg.util_avg = gcfs_rq->avg.util_avg;
3230 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3231
3232 /* Update parent cfs_rq utilization */
3233 add_positive(&cfs_rq->avg.util_avg, delta);
3234 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3235}
3236
09a43ace 3237static inline void
0e2d2aaa 3238update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
09a43ace 3239{
a4c3c049
VG
3240 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3241 unsigned long runnable_load_avg, load_avg;
3242 u64 runnable_load_sum, load_sum = 0;
3243 s64 delta_sum;
09a43ace 3244
0e2d2aaa
PZ
3245 if (!runnable_sum)
3246 return;
09a43ace 3247
0e2d2aaa 3248 gcfs_rq->prop_runnable_sum = 0;
09a43ace 3249
a4c3c049
VG
3250 if (runnable_sum >= 0) {
3251 /*
3252 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3253 * the CPU is saturated running == runnable.
3254 */
3255 runnable_sum += se->avg.load_sum;
3256 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3257 } else {
3258 /*
3259 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3260 * assuming all tasks are equally runnable.
3261 */
3262 if (scale_load_down(gcfs_rq->load.weight)) {
3263 load_sum = div_s64(gcfs_rq->avg.load_sum,
3264 scale_load_down(gcfs_rq->load.weight));
3265 }
3266
3267 /* But make sure to not inflate se's runnable */
3268 runnable_sum = min(se->avg.load_sum, load_sum);
3269 }
3270
3271 /*
3272 * runnable_sum can't be lower than running_sum
23127296
VG
3273 * Rescale running sum to be in the same range as runnable sum
3274 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3275 * runnable_sum is in [0 : LOAD_AVG_MAX]
a4c3c049 3276 */
23127296 3277 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
a4c3c049
VG
3278 runnable_sum = max(runnable_sum, running_sum);
3279
0e2d2aaa
PZ
3280 load_sum = (s64)se_weight(se) * runnable_sum;
3281 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
09a43ace 3282
a4c3c049
VG
3283 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3284 delta_avg = load_avg - se->avg.load_avg;
09a43ace 3285
a4c3c049
VG
3286 se->avg.load_sum = runnable_sum;
3287 se->avg.load_avg = load_avg;
3288 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3289 add_positive(&cfs_rq->avg.load_sum, delta_sum);
09a43ace 3290
1ea6c46a
PZ
3291 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3292 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
a4c3c049
VG
3293 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3294 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
1ea6c46a 3295
a4c3c049
VG
3296 se->avg.runnable_load_sum = runnable_sum;
3297 se->avg.runnable_load_avg = runnable_load_avg;
1ea6c46a 3298
09a43ace 3299 if (se->on_rq) {
a4c3c049
VG
3300 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3301 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
09a43ace
VG
3302 }
3303}
3304
0e2d2aaa 3305static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
09a43ace 3306{
0e2d2aaa
PZ
3307 cfs_rq->propagate = 1;
3308 cfs_rq->prop_runnable_sum += runnable_sum;
09a43ace
VG
3309}
3310
3311/* Update task and its cfs_rq load average */
3312static inline int propagate_entity_load_avg(struct sched_entity *se)
3313{
0e2d2aaa 3314 struct cfs_rq *cfs_rq, *gcfs_rq;
09a43ace
VG
3315
3316 if (entity_is_task(se))
3317 return 0;
3318
0e2d2aaa
PZ
3319 gcfs_rq = group_cfs_rq(se);
3320 if (!gcfs_rq->propagate)
09a43ace
VG
3321 return 0;
3322
0e2d2aaa
PZ
3323 gcfs_rq->propagate = 0;
3324
09a43ace
VG
3325 cfs_rq = cfs_rq_of(se);
3326
0e2d2aaa 3327 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
09a43ace 3328
0e2d2aaa
PZ
3329 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3330 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
09a43ace
VG
3331
3332 return 1;
3333}
3334
bc427898
VG
3335/*
3336 * Check if we need to update the load and the utilization of a blocked
3337 * group_entity:
3338 */
3339static inline bool skip_blocked_update(struct sched_entity *se)
3340{
3341 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3342
3343 /*
3344 * If sched_entity still have not zero load or utilization, we have to
3345 * decay it:
3346 */
3347 if (se->avg.load_avg || se->avg.util_avg)
3348 return false;
3349
3350 /*
3351 * If there is a pending propagation, we have to update the load and
3352 * the utilization of the sched_entity:
3353 */
0e2d2aaa 3354 if (gcfs_rq->propagate)
bc427898
VG
3355 return false;
3356
3357 /*
3358 * Otherwise, the load and the utilization of the sched_entity is
3359 * already zero and there is no pending propagation, so it will be a
3360 * waste of time to try to decay it:
3361 */
3362 return true;
3363}
3364
6e83125c 3365#else /* CONFIG_FAIR_GROUP_SCHED */
09a43ace 3366
9d89c257 3367static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
09a43ace
VG
3368
3369static inline int propagate_entity_load_avg(struct sched_entity *se)
3370{
3371 return 0;
3372}
3373
0e2d2aaa 3374static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
09a43ace 3375
6e83125c 3376#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 3377
3d30544f
PZ
3378/**
3379 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
23127296 3380 * @now: current time, as per cfs_rq_clock_pelt()
3d30544f 3381 * @cfs_rq: cfs_rq to update
3d30544f
PZ
3382 *
3383 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3384 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3385 * post_init_entity_util_avg().
3386 *
3387 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3388 *
7c3edd2c
PZ
3389 * Returns true if the load decayed or we removed load.
3390 *
3391 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3392 * call update_tg_load_avg() when this function returns true.
3d30544f 3393 */
a2c6c91f 3394static inline int
3a123bbb 3395update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 3396{
0e2d2aaa 3397 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
9d89c257 3398 struct sched_avg *sa = &cfs_rq->avg;
2a2f5d4e 3399 int decayed = 0;
2dac754e 3400
2a2f5d4e
PZ
3401 if (cfs_rq->removed.nr) {
3402 unsigned long r;
9a2dd585 3403 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
2a2f5d4e
PZ
3404
3405 raw_spin_lock(&cfs_rq->removed.lock);
3406 swap(cfs_rq->removed.util_avg, removed_util);
3407 swap(cfs_rq->removed.load_avg, removed_load);
0e2d2aaa 3408 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
2a2f5d4e
PZ
3409 cfs_rq->removed.nr = 0;
3410 raw_spin_unlock(&cfs_rq->removed.lock);
3411
2a2f5d4e 3412 r = removed_load;
89741892 3413 sub_positive(&sa->load_avg, r);
9a2dd585 3414 sub_positive(&sa->load_sum, r * divider);
2dac754e 3415
2a2f5d4e 3416 r = removed_util;
89741892 3417 sub_positive(&sa->util_avg, r);
9a2dd585 3418 sub_positive(&sa->util_sum, r * divider);
2a2f5d4e 3419
0e2d2aaa 3420 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
2a2f5d4e
PZ
3421
3422 decayed = 1;
9d89c257 3423 }
36ee28e4 3424
23127296 3425 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
36ee28e4 3426
9d89c257
YD
3427#ifndef CONFIG_64BIT
3428 smp_wmb();
3429 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3430#endif
36ee28e4 3431
2a2f5d4e 3432 if (decayed)
ea14b57e 3433 cfs_rq_util_change(cfs_rq, 0);
21e96f88 3434
2a2f5d4e 3435 return decayed;
21e96f88
SM
3436}
3437
3d30544f
PZ
3438/**
3439 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3440 * @cfs_rq: cfs_rq to attach to
3441 * @se: sched_entity to attach
882a78a9 3442 * @flags: migration hints
3d30544f
PZ
3443 *
3444 * Must call update_cfs_rq_load_avg() before this, since we rely on
3445 * cfs_rq->avg.last_update_time being current.
3446 */
ea14b57e 3447static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
a05e8c51 3448{
f207934f
PZ
3449 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3450
3451 /*
3452 * When we attach the @se to the @cfs_rq, we must align the decay
3453 * window because without that, really weird and wonderful things can
3454 * happen.
3455 *
3456 * XXX illustrate
3457 */
a05e8c51 3458 se->avg.last_update_time = cfs_rq->avg.last_update_time;
f207934f
PZ
3459 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3460
3461 /*
3462 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3463 * period_contrib. This isn't strictly correct, but since we're
3464 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3465 * _sum a little.
3466 */
3467 se->avg.util_sum = se->avg.util_avg * divider;
3468
3469 se->avg.load_sum = divider;
3470 if (se_weight(se)) {
3471 se->avg.load_sum =
3472 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3473 }
3474
3475 se->avg.runnable_load_sum = se->avg.load_sum;
3476
8d5b9025 3477 enqueue_load_avg(cfs_rq, se);
a05e8c51
BP
3478 cfs_rq->avg.util_avg += se->avg.util_avg;
3479 cfs_rq->avg.util_sum += se->avg.util_sum;
0e2d2aaa
PZ
3480
3481 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
a2c6c91f 3482
ea14b57e 3483 cfs_rq_util_change(cfs_rq, flags);
a05e8c51
BP
3484}
3485
3d30544f
PZ
3486/**
3487 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3488 * @cfs_rq: cfs_rq to detach from
3489 * @se: sched_entity to detach
3490 *
3491 * Must call update_cfs_rq_load_avg() before this, since we rely on
3492 * cfs_rq->avg.last_update_time being current.
3493 */
a05e8c51
BP
3494static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3495{
8d5b9025 3496 dequeue_load_avg(cfs_rq, se);
89741892
PZ
3497 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3498 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
0e2d2aaa
PZ
3499
3500 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
a2c6c91f 3501
ea14b57e 3502 cfs_rq_util_change(cfs_rq, 0);
a05e8c51
BP
3503}
3504
b382a531
PZ
3505/*
3506 * Optional action to be done while updating the load average
3507 */
3508#define UPDATE_TG 0x1
3509#define SKIP_AGE_LOAD 0x2
3510#define DO_ATTACH 0x4
3511
3512/* Update task and its cfs_rq load average */
3513static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3514{
23127296 3515 u64 now = cfs_rq_clock_pelt(cfs_rq);
b382a531
PZ
3516 int decayed;
3517
3518 /*
3519 * Track task load average for carrying it to new CPU after migrated, and
3520 * track group sched_entity load average for task_h_load calc in migration
3521 */
3522 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
23127296 3523 __update_load_avg_se(now, cfs_rq, se);
b382a531
PZ
3524
3525 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3526 decayed |= propagate_entity_load_avg(se);
3527
3528 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3529
ea14b57e
PZ
3530 /*
3531 * DO_ATTACH means we're here from enqueue_entity().
3532 * !last_update_time means we've passed through
3533 * migrate_task_rq_fair() indicating we migrated.
3534 *
3535 * IOW we're enqueueing a task on a new CPU.
3536 */
3537 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
b382a531
PZ
3538 update_tg_load_avg(cfs_rq, 0);
3539
3540 } else if (decayed && (flags & UPDATE_TG))
3541 update_tg_load_avg(cfs_rq, 0);
3542}
3543
9d89c257 3544#ifndef CONFIG_64BIT
0905f04e
YD
3545static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3546{
9d89c257 3547 u64 last_update_time_copy;
0905f04e 3548 u64 last_update_time;
9ee474f5 3549
9d89c257
YD
3550 do {
3551 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3552 smp_rmb();
3553 last_update_time = cfs_rq->avg.last_update_time;
3554 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3555
3556 return last_update_time;
3557}
9d89c257 3558#else
0905f04e
YD
3559static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3560{
3561 return cfs_rq->avg.last_update_time;
3562}
9d89c257
YD
3563#endif
3564
104cb16d
MR
3565/*
3566 * Synchronize entity load avg of dequeued entity without locking
3567 * the previous rq.
3568 */
3569void sync_entity_load_avg(struct sched_entity *se)
3570{
3571 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3572 u64 last_update_time;
3573
3574 last_update_time = cfs_rq_last_update_time(cfs_rq);
23127296 3575 __update_load_avg_blocked_se(last_update_time, se);
104cb16d
MR
3576}
3577
0905f04e
YD
3578/*
3579 * Task first catches up with cfs_rq, and then subtract
3580 * itself from the cfs_rq (task must be off the queue now).
3581 */
3582void remove_entity_load_avg(struct sched_entity *se)
3583{
3584 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2a2f5d4e 3585 unsigned long flags;
0905f04e
YD
3586
3587 /*
7dc603c9
PZ
3588 * tasks cannot exit without having gone through wake_up_new_task() ->
3589 * post_init_entity_util_avg() which will have added things to the
3590 * cfs_rq, so we can remove unconditionally.
0905f04e 3591 */
0905f04e 3592
104cb16d 3593 sync_entity_load_avg(se);
2a2f5d4e
PZ
3594
3595 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3596 ++cfs_rq->removed.nr;
3597 cfs_rq->removed.util_avg += se->avg.util_avg;
3598 cfs_rq->removed.load_avg += se->avg.load_avg;
0e2d2aaa 3599 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
2a2f5d4e 3600 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
2dac754e 3601}
642dbc39 3602
7ea241af
YD
3603static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3604{
1ea6c46a 3605 return cfs_rq->avg.runnable_load_avg;
7ea241af
YD
3606}
3607
3608static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3609{
3610 return cfs_rq->avg.load_avg;
3611}
3612
46f69fa3 3613static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
6e83125c 3614
7f65ea42
PB
3615static inline unsigned long task_util(struct task_struct *p)
3616{
3617 return READ_ONCE(p->se.avg.util_avg);
3618}
3619
3620static inline unsigned long _task_util_est(struct task_struct *p)
3621{
3622 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3623
92a801e5 3624 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3625}
3626
3627static inline unsigned long task_util_est(struct task_struct *p)
3628{
3629 return max(task_util(p), _task_util_est(p));
3630}
3631
3632static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3633 struct task_struct *p)
3634{
3635 unsigned int enqueued;
3636
3637 if (!sched_feat(UTIL_EST))
3638 return;
3639
3640 /* Update root cfs_rq's estimated utilization */
3641 enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3642 enqueued += _task_util_est(p);
7f65ea42
PB
3643 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3644}
3645
3646/*
3647 * Check if a (signed) value is within a specified (unsigned) margin,
3648 * based on the observation that:
3649 *
3650 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3651 *
3652 * NOTE: this only works when value + maring < INT_MAX.
3653 */
3654static inline bool within_margin(int value, int margin)
3655{
3656 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3657}
3658
3659static void
3660util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3661{
3662 long last_ewma_diff;
3663 struct util_est ue;
10a35e68 3664 int cpu;
7f65ea42
PB
3665
3666 if (!sched_feat(UTIL_EST))
3667 return;
3668
3482d98b
VG
3669 /* Update root cfs_rq's estimated utilization */
3670 ue.enqueued = cfs_rq->avg.util_est.enqueued;
92a801e5 3671 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
7f65ea42
PB
3672 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3673
3674 /*
3675 * Skip update of task's estimated utilization when the task has not
3676 * yet completed an activation, e.g. being migrated.
3677 */
3678 if (!task_sleep)
3679 return;
3680
d519329f
PB
3681 /*
3682 * If the PELT values haven't changed since enqueue time,
3683 * skip the util_est update.
3684 */
3685 ue = p->se.avg.util_est;
3686 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3687 return;
3688
7f65ea42
PB
3689 /*
3690 * Skip update of task's estimated utilization when its EWMA is
3691 * already ~1% close to its last activation value.
3692 */
d519329f 3693 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
7f65ea42
PB
3694 last_ewma_diff = ue.enqueued - ue.ewma;
3695 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3696 return;
3697
10a35e68
VG
3698 /*
3699 * To avoid overestimation of actual task utilization, skip updates if
3700 * we cannot grant there is idle time in this CPU.
3701 */
3702 cpu = cpu_of(rq_of(cfs_rq));
3703 if (task_util(p) > capacity_orig_of(cpu))
3704 return;
3705
7f65ea42
PB
3706 /*
3707 * Update Task's estimated utilization
3708 *
3709 * When *p completes an activation we can consolidate another sample
3710 * of the task size. This is done by storing the current PELT value
3711 * as ue.enqueued and by using this value to update the Exponential
3712 * Weighted Moving Average (EWMA):
3713 *
3714 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3715 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3716 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3717 * = w * ( last_ewma_diff ) + ewma(t-1)
3718 * = w * (last_ewma_diff + ewma(t-1) / w)
3719 *
3720 * Where 'w' is the weight of new samples, which is configured to be
3721 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3722 */
3723 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3724 ue.ewma += last_ewma_diff;
3725 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3726 WRITE_ONCE(p->se.avg.util_est, ue);
3727}
3728
3b1baa64
MR
3729static inline int task_fits_capacity(struct task_struct *p, long capacity)
3730{
3731 return capacity * 1024 > task_util_est(p) * capacity_margin;
3732}
3733
3734static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3735{
3736 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3737 return;
3738
3739 if (!p) {
3740 rq->misfit_task_load = 0;
3741 return;
3742 }
3743
3744 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3745 rq->misfit_task_load = 0;
3746 return;
3747 }
3748
3749 rq->misfit_task_load = task_h_load(p);
3750}
3751
38033c37
PZ
3752#else /* CONFIG_SMP */
3753
d31b1a66
VG
3754#define UPDATE_TG 0x0
3755#define SKIP_AGE_LOAD 0x0
b382a531 3756#define DO_ATTACH 0x0
d31b1a66 3757
88c0616e 3758static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
536bd00c 3759{
ea14b57e 3760 cfs_rq_util_change(cfs_rq, 0);
536bd00c
RW
3761}
3762
9d89c257 3763static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3764
a05e8c51 3765static inline void
ea14b57e 3766attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
a05e8c51
BP
3767static inline void
3768detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3769
46f69fa3 3770static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
6e83125c
PZ
3771{
3772 return 0;
3773}
3774
7f65ea42
PB
3775static inline void
3776util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3777
3778static inline void
3779util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3780 bool task_sleep) {}
3b1baa64 3781static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
7f65ea42 3782
38033c37 3783#endif /* CONFIG_SMP */
9d85f21c 3784
ddc97297
PZ
3785static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3786{
3787#ifdef CONFIG_SCHED_DEBUG
3788 s64 d = se->vruntime - cfs_rq->min_vruntime;
3789
3790 if (d < 0)
3791 d = -d;
3792
3793 if (d > 3*sysctl_sched_latency)
ae92882e 3794 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3795#endif
3796}
3797
aeb73b04
PZ
3798static void
3799place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3800{
1af5f730 3801 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3802
2cb8600e
PZ
3803 /*
3804 * The 'current' period is already promised to the current tasks,
3805 * however the extra weight of the new task will slow them down a
3806 * little, place the new task so that it fits in the slot that
3807 * stays open at the end.
3808 */
94dfb5e7 3809 if (initial && sched_feat(START_DEBIT))
f9c0b095 3810 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3811
a2e7a7eb 3812 /* sleeps up to a single latency don't count. */
5ca9880c 3813 if (!initial) {
a2e7a7eb 3814 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3815
a2e7a7eb
MG
3816 /*
3817 * Halve their sleep time's effect, to allow
3818 * for a gentler effect of sleepers:
3819 */
3820 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3821 thresh >>= 1;
51e0304c 3822
a2e7a7eb 3823 vruntime -= thresh;
aeb73b04
PZ
3824 }
3825
b5d9d734 3826 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3827 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3828}
3829
d3d9dc33
PT
3830static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3831
cb251765
MG
3832static inline void check_schedstat_required(void)
3833{
3834#ifdef CONFIG_SCHEDSTATS
3835 if (schedstat_enabled())
3836 return;
3837
3838 /* Force schedstat enabled if a dependent tracepoint is active */
3839 if (trace_sched_stat_wait_enabled() ||
3840 trace_sched_stat_sleep_enabled() ||
3841 trace_sched_stat_iowait_enabled() ||
3842 trace_sched_stat_blocked_enabled() ||
3843 trace_sched_stat_runtime_enabled()) {
eda8dca5 3844 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765 3845 "stat_blocked and stat_runtime require the "
f67abed5 3846 "kernel parameter schedstats=enable or "
cb251765
MG
3847 "kernel.sched_schedstats=1\n");
3848 }
3849#endif
3850}
3851
b5179ac7
PZ
3852
3853/*
3854 * MIGRATION
3855 *
3856 * dequeue
3857 * update_curr()
3858 * update_min_vruntime()
3859 * vruntime -= min_vruntime
3860 *
3861 * enqueue
3862 * update_curr()
3863 * update_min_vruntime()
3864 * vruntime += min_vruntime
3865 *
3866 * this way the vruntime transition between RQs is done when both
3867 * min_vruntime are up-to-date.
3868 *
3869 * WAKEUP (remote)
3870 *
59efa0ba 3871 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3872 * vruntime -= min_vruntime
3873 *
3874 * enqueue
3875 * update_curr()
3876 * update_min_vruntime()
3877 * vruntime += min_vruntime
3878 *
3879 * this way we don't have the most up-to-date min_vruntime on the originating
3880 * CPU and an up-to-date min_vruntime on the destination CPU.
3881 */
3882
bf0f6f24 3883static void
88ec22d3 3884enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3885{
2f950354
PZ
3886 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3887 bool curr = cfs_rq->curr == se;
3888
88ec22d3 3889 /*
2f950354
PZ
3890 * If we're the current task, we must renormalise before calling
3891 * update_curr().
88ec22d3 3892 */
2f950354 3893 if (renorm && curr)
88ec22d3
PZ
3894 se->vruntime += cfs_rq->min_vruntime;
3895
2f950354
PZ
3896 update_curr(cfs_rq);
3897
bf0f6f24 3898 /*
2f950354
PZ
3899 * Otherwise, renormalise after, such that we're placed at the current
3900 * moment in time, instead of some random moment in the past. Being
3901 * placed in the past could significantly boost this task to the
3902 * fairness detriment of existing tasks.
bf0f6f24 3903 */
2f950354
PZ
3904 if (renorm && !curr)
3905 se->vruntime += cfs_rq->min_vruntime;
3906
89ee048f
VG
3907 /*
3908 * When enqueuing a sched_entity, we must:
3909 * - Update loads to have both entity and cfs_rq synced with now.
3910 * - Add its load to cfs_rq->runnable_avg
3911 * - For group_entity, update its weight to reflect the new share of
3912 * its group cfs_rq
3913 * - Add its new weight to cfs_rq->load.weight
3914 */
b382a531 3915 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
1ea6c46a 3916 update_cfs_group(se);
b5b3e35f 3917 enqueue_runnable_load_avg(cfs_rq, se);
17bc14b7 3918 account_entity_enqueue(cfs_rq, se);
bf0f6f24 3919
1a3d027c 3920 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3921 place_entity(cfs_rq, se, 0);
bf0f6f24 3922
cb251765 3923 check_schedstat_required();
4fa8d299
JP
3924 update_stats_enqueue(cfs_rq, se, flags);
3925 check_spread(cfs_rq, se);
2f950354 3926 if (!curr)
83b699ed 3927 __enqueue_entity(cfs_rq, se);
2069dd75 3928 se->on_rq = 1;
3d4b47b4 3929
d3d9dc33 3930 if (cfs_rq->nr_running == 1) {
3d4b47b4 3931 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3932 check_enqueue_throttle(cfs_rq);
3933 }
bf0f6f24
IM
3934}
3935
2c13c919 3936static void __clear_buddies_last(struct sched_entity *se)
2002c695 3937{
2c13c919
RR
3938 for_each_sched_entity(se) {
3939 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3940 if (cfs_rq->last != se)
2c13c919 3941 break;
f1044799
PZ
3942
3943 cfs_rq->last = NULL;
2c13c919
RR
3944 }
3945}
2002c695 3946
2c13c919
RR
3947static void __clear_buddies_next(struct sched_entity *se)
3948{
3949 for_each_sched_entity(se) {
3950 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3951 if (cfs_rq->next != se)
2c13c919 3952 break;
f1044799
PZ
3953
3954 cfs_rq->next = NULL;
2c13c919 3955 }
2002c695
PZ
3956}
3957
ac53db59
RR
3958static void __clear_buddies_skip(struct sched_entity *se)
3959{
3960 for_each_sched_entity(se) {
3961 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3962 if (cfs_rq->skip != se)
ac53db59 3963 break;
f1044799
PZ
3964
3965 cfs_rq->skip = NULL;
ac53db59
RR
3966 }
3967}
3968
a571bbea
PZ
3969static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3970{
2c13c919
RR
3971 if (cfs_rq->last == se)
3972 __clear_buddies_last(se);
3973
3974 if (cfs_rq->next == se)
3975 __clear_buddies_next(se);
ac53db59
RR
3976
3977 if (cfs_rq->skip == se)
3978 __clear_buddies_skip(se);
a571bbea
PZ
3979}
3980
6c16a6dc 3981static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3982
bf0f6f24 3983static void
371fd7e7 3984dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3985{
a2a2d680
DA
3986 /*
3987 * Update run-time statistics of the 'current'.
3988 */
3989 update_curr(cfs_rq);
89ee048f
VG
3990
3991 /*
3992 * When dequeuing a sched_entity, we must:
3993 * - Update loads to have both entity and cfs_rq synced with now.
dfcb245e
IM
3994 * - Subtract its load from the cfs_rq->runnable_avg.
3995 * - Subtract its previous weight from cfs_rq->load.weight.
89ee048f
VG
3996 * - For group entity, update its weight to reflect the new share
3997 * of its group cfs_rq.
3998 */
88c0616e 3999 update_load_avg(cfs_rq, se, UPDATE_TG);
b5b3e35f 4000 dequeue_runnable_load_avg(cfs_rq, se);
a2a2d680 4001
4fa8d299 4002 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 4003
2002c695 4004 clear_buddies(cfs_rq, se);
4793241b 4005
83b699ed 4006 if (se != cfs_rq->curr)
30cfdcfc 4007 __dequeue_entity(cfs_rq, se);
17bc14b7 4008 se->on_rq = 0;
30cfdcfc 4009 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
4010
4011 /*
b60205c7
PZ
4012 * Normalize after update_curr(); which will also have moved
4013 * min_vruntime if @se is the one holding it back. But before doing
4014 * update_min_vruntime() again, which will discount @se's position and
4015 * can move min_vruntime forward still more.
88ec22d3 4016 */
371fd7e7 4017 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 4018 se->vruntime -= cfs_rq->min_vruntime;
1e876231 4019
d8b4986d
PT
4020 /* return excess runtime on last dequeue */
4021 return_cfs_rq_runtime(cfs_rq);
4022
1ea6c46a 4023 update_cfs_group(se);
b60205c7
PZ
4024
4025 /*
4026 * Now advance min_vruntime if @se was the entity holding it back,
4027 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4028 * put back on, and if we advance min_vruntime, we'll be placed back
4029 * further than we started -- ie. we'll be penalized.
4030 */
9845c49c 4031 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
b60205c7 4032 update_min_vruntime(cfs_rq);
bf0f6f24
IM
4033}
4034
4035/*
4036 * Preempt the current task with a newly woken task if needed:
4037 */
7c92e54f 4038static void
2e09bf55 4039check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 4040{
11697830 4041 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
4042 struct sched_entity *se;
4043 s64 delta;
11697830 4044
6d0f0ebd 4045 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 4046 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 4047 if (delta_exec > ideal_runtime) {
8875125e 4048 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
4049 /*
4050 * The current task ran long enough, ensure it doesn't get
4051 * re-elected due to buddy favours.
4052 */
4053 clear_buddies(cfs_rq, curr);
f685ceac
MG
4054 return;
4055 }
4056
4057 /*
4058 * Ensure that a task that missed wakeup preemption by a
4059 * narrow margin doesn't have to wait for a full slice.
4060 * This also mitigates buddy induced latencies under load.
4061 */
f685ceac
MG
4062 if (delta_exec < sysctl_sched_min_granularity)
4063 return;
4064
f4cfb33e
WX
4065 se = __pick_first_entity(cfs_rq);
4066 delta = curr->vruntime - se->vruntime;
f685ceac 4067
f4cfb33e
WX
4068 if (delta < 0)
4069 return;
d7d82944 4070
f4cfb33e 4071 if (delta > ideal_runtime)
8875125e 4072 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
4073}
4074
83b699ed 4075static void
8494f412 4076set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 4077{
83b699ed
SV
4078 /* 'current' is not kept within the tree. */
4079 if (se->on_rq) {
4080 /*
4081 * Any task has to be enqueued before it get to execute on
4082 * a CPU. So account for the time it spent waiting on the
4083 * runqueue.
4084 */
4fa8d299 4085 update_stats_wait_end(cfs_rq, se);
83b699ed 4086 __dequeue_entity(cfs_rq, se);
88c0616e 4087 update_load_avg(cfs_rq, se, UPDATE_TG);
83b699ed
SV
4088 }
4089
79303e9e 4090 update_stats_curr_start(cfs_rq, se);
429d43bc 4091 cfs_rq->curr = se;
4fa8d299 4092
eba1ed4b
IM
4093 /*
4094 * Track our maximum slice length, if the CPU's load is at
4095 * least twice that of our own weight (i.e. dont track it
4096 * when there are only lesser-weight tasks around):
4097 */
cb251765 4098 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
4099 schedstat_set(se->statistics.slice_max,
4100 max((u64)schedstat_val(se->statistics.slice_max),
4101 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 4102 }
4fa8d299 4103
4a55b450 4104 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
4105}
4106
3f3a4904
PZ
4107static int
4108wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4109
ac53db59
RR
4110/*
4111 * Pick the next process, keeping these things in mind, in this order:
4112 * 1) keep things fair between processes/task groups
4113 * 2) pick the "next" process, since someone really wants that to run
4114 * 3) pick the "last" process, for cache locality
4115 * 4) do not run the "skip" process, if something else is available
4116 */
678d5718
PZ
4117static struct sched_entity *
4118pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 4119{
678d5718
PZ
4120 struct sched_entity *left = __pick_first_entity(cfs_rq);
4121 struct sched_entity *se;
4122
4123 /*
4124 * If curr is set we have to see if its left of the leftmost entity
4125 * still in the tree, provided there was anything in the tree at all.
4126 */
4127 if (!left || (curr && entity_before(curr, left)))
4128 left = curr;
4129
4130 se = left; /* ideally we run the leftmost entity */
f4b6755f 4131
ac53db59
RR
4132 /*
4133 * Avoid running the skip buddy, if running something else can
4134 * be done without getting too unfair.
4135 */
4136 if (cfs_rq->skip == se) {
678d5718
PZ
4137 struct sched_entity *second;
4138
4139 if (se == curr) {
4140 second = __pick_first_entity(cfs_rq);
4141 } else {
4142 second = __pick_next_entity(se);
4143 if (!second || (curr && entity_before(curr, second)))
4144 second = curr;
4145 }
4146
ac53db59
RR
4147 if (second && wakeup_preempt_entity(second, left) < 1)
4148 se = second;
4149 }
aa2ac252 4150
f685ceac
MG
4151 /*
4152 * Prefer last buddy, try to return the CPU to a preempted task.
4153 */
4154 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4155 se = cfs_rq->last;
4156
ac53db59
RR
4157 /*
4158 * Someone really wants this to run. If it's not unfair, run it.
4159 */
4160 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4161 se = cfs_rq->next;
4162
f685ceac 4163 clear_buddies(cfs_rq, se);
4793241b
PZ
4164
4165 return se;
aa2ac252
PZ
4166}
4167
678d5718 4168static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 4169
ab6cde26 4170static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
4171{
4172 /*
4173 * If still on the runqueue then deactivate_task()
4174 * was not called and update_curr() has to be done:
4175 */
4176 if (prev->on_rq)
b7cc0896 4177 update_curr(cfs_rq);
bf0f6f24 4178
d3d9dc33
PT
4179 /* throttle cfs_rqs exceeding runtime */
4180 check_cfs_rq_runtime(cfs_rq);
4181
4fa8d299 4182 check_spread(cfs_rq, prev);
cb251765 4183
30cfdcfc 4184 if (prev->on_rq) {
4fa8d299 4185 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
4186 /* Put 'current' back into the tree. */
4187 __enqueue_entity(cfs_rq, prev);
9d85f21c 4188 /* in !on_rq case, update occurred at dequeue */
88c0616e 4189 update_load_avg(cfs_rq, prev, 0);
30cfdcfc 4190 }
429d43bc 4191 cfs_rq->curr = NULL;
bf0f6f24
IM
4192}
4193
8f4d37ec
PZ
4194static void
4195entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 4196{
bf0f6f24 4197 /*
30cfdcfc 4198 * Update run-time statistics of the 'current'.
bf0f6f24 4199 */
30cfdcfc 4200 update_curr(cfs_rq);
bf0f6f24 4201
9d85f21c
PT
4202 /*
4203 * Ensure that runnable average is periodically updated.
4204 */
88c0616e 4205 update_load_avg(cfs_rq, curr, UPDATE_TG);
1ea6c46a 4206 update_cfs_group(curr);
9d85f21c 4207
8f4d37ec
PZ
4208#ifdef CONFIG_SCHED_HRTICK
4209 /*
4210 * queued ticks are scheduled to match the slice, so don't bother
4211 * validating it and just reschedule.
4212 */
983ed7a6 4213 if (queued) {
8875125e 4214 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
4215 return;
4216 }
8f4d37ec
PZ
4217 /*
4218 * don't let the period tick interfere with the hrtick preemption
4219 */
4220 if (!sched_feat(DOUBLE_TICK) &&
4221 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4222 return;
4223#endif
4224
2c2efaed 4225 if (cfs_rq->nr_running > 1)
2e09bf55 4226 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
4227}
4228
ab84d31e
PT
4229
4230/**************************************************
4231 * CFS bandwidth control machinery
4232 */
4233
4234#ifdef CONFIG_CFS_BANDWIDTH
029632fb 4235
e9666d10 4236#ifdef CONFIG_JUMP_LABEL
c5905afb 4237static struct static_key __cfs_bandwidth_used;
029632fb
PZ
4238
4239static inline bool cfs_bandwidth_used(void)
4240{
c5905afb 4241 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
4242}
4243
1ee14e6c 4244void cfs_bandwidth_usage_inc(void)
029632fb 4245{
ce48c146 4246 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
1ee14e6c
BS
4247}
4248
4249void cfs_bandwidth_usage_dec(void)
4250{
ce48c146 4251 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
029632fb 4252}
e9666d10 4253#else /* CONFIG_JUMP_LABEL */
029632fb
PZ
4254static bool cfs_bandwidth_used(void)
4255{
4256 return true;
4257}
4258
1ee14e6c
BS
4259void cfs_bandwidth_usage_inc(void) {}
4260void cfs_bandwidth_usage_dec(void) {}
e9666d10 4261#endif /* CONFIG_JUMP_LABEL */
029632fb 4262
ab84d31e
PT
4263/*
4264 * default period for cfs group bandwidth.
4265 * default: 0.1s, units: nanoseconds
4266 */
4267static inline u64 default_cfs_period(void)
4268{
4269 return 100000000ULL;
4270}
ec12cb7f
PT
4271
4272static inline u64 sched_cfs_bandwidth_slice(void)
4273{
4274 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4275}
4276
a9cf55b2
PT
4277/*
4278 * Replenish runtime according to assigned quota and update expiration time.
4279 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4280 * additional synchronization around rq->lock.
4281 *
4282 * requires cfs_b->lock
4283 */
029632fb 4284void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
4285{
4286 u64 now;
4287
4288 if (cfs_b->quota == RUNTIME_INF)
4289 return;
4290
4291 now = sched_clock_cpu(smp_processor_id());
4292 cfs_b->runtime = cfs_b->quota;
4293 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
512ac999 4294 cfs_b->expires_seq++;
a9cf55b2
PT
4295}
4296
029632fb
PZ
4297static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4298{
4299 return &tg->cfs_bandwidth;
4300}
4301
f1b17280
PT
4302/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4303static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4304{
4305 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 4306 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 4307
78becc27 4308 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
4309}
4310
85dac906
PT
4311/* returns 0 on failure to allocate runtime */
4312static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
4313{
4314 struct task_group *tg = cfs_rq->tg;
4315 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 4316 u64 amount = 0, min_amount, expires;
512ac999 4317 int expires_seq;
ec12cb7f
PT
4318
4319 /* note: this is a positive sum as runtime_remaining <= 0 */
4320 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4321
4322 raw_spin_lock(&cfs_b->lock);
4323 if (cfs_b->quota == RUNTIME_INF)
4324 amount = min_amount;
58088ad0 4325 else {
77a4d1a1 4326 start_cfs_bandwidth(cfs_b);
58088ad0
PT
4327
4328 if (cfs_b->runtime > 0) {
4329 amount = min(cfs_b->runtime, min_amount);
4330 cfs_b->runtime -= amount;
4331 cfs_b->idle = 0;
4332 }
ec12cb7f 4333 }
512ac999 4334 expires_seq = cfs_b->expires_seq;
a9cf55b2 4335 expires = cfs_b->runtime_expires;
ec12cb7f
PT
4336 raw_spin_unlock(&cfs_b->lock);
4337
4338 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
4339 /*
4340 * we may have advanced our local expiration to account for allowed
4341 * spread between our sched_clock and the one on which runtime was
4342 * issued.
4343 */
512ac999
XP
4344 if (cfs_rq->expires_seq != expires_seq) {
4345 cfs_rq->expires_seq = expires_seq;
a9cf55b2 4346 cfs_rq->runtime_expires = expires;
512ac999 4347 }
85dac906
PT
4348
4349 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
4350}
4351
a9cf55b2
PT
4352/*
4353 * Note: This depends on the synchronization provided by sched_clock and the
4354 * fact that rq->clock snapshots this value.
4355 */
4356static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 4357{
a9cf55b2 4358 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
4359
4360 /* if the deadline is ahead of our clock, nothing to do */
78becc27 4361 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
4362 return;
4363
a9cf55b2
PT
4364 if (cfs_rq->runtime_remaining < 0)
4365 return;
4366
4367 /*
4368 * If the local deadline has passed we have to consider the
4369 * possibility that our sched_clock is 'fast' and the global deadline
4370 * has not truly expired.
4371 *
4372 * Fortunately we can check determine whether this the case by checking
512ac999 4373 * whether the global deadline(cfs_b->expires_seq) has advanced.
a9cf55b2 4374 */
512ac999 4375 if (cfs_rq->expires_seq == cfs_b->expires_seq) {
a9cf55b2
PT
4376 /* extend local deadline, drift is bounded above by 2 ticks */
4377 cfs_rq->runtime_expires += TICK_NSEC;
4378 } else {
4379 /* global deadline is ahead, expiration has passed */
4380 cfs_rq->runtime_remaining = 0;
4381 }
4382}
4383
9dbdb155 4384static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
4385{
4386 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 4387 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
4388 expire_cfs_rq_runtime(cfs_rq);
4389
4390 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
4391 return;
4392
85dac906
PT
4393 /*
4394 * if we're unable to extend our runtime we resched so that the active
4395 * hierarchy can be throttled
4396 */
4397 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 4398 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
4399}
4400
6c16a6dc 4401static __always_inline
9dbdb155 4402void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 4403{
56f570e5 4404 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
4405 return;
4406
4407 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4408}
4409
85dac906
PT
4410static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4411{
56f570e5 4412 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
4413}
4414
64660c86
PT
4415/* check whether cfs_rq, or any parent, is throttled */
4416static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4417{
56f570e5 4418 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
4419}
4420
4421/*
4422 * Ensure that neither of the group entities corresponding to src_cpu or
4423 * dest_cpu are members of a throttled hierarchy when performing group
4424 * load-balance operations.
4425 */
4426static inline int throttled_lb_pair(struct task_group *tg,
4427 int src_cpu, int dest_cpu)
4428{
4429 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4430
4431 src_cfs_rq = tg->cfs_rq[src_cpu];
4432 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4433
4434 return throttled_hierarchy(src_cfs_rq) ||
4435 throttled_hierarchy(dest_cfs_rq);
4436}
4437
64660c86
PT
4438static int tg_unthrottle_up(struct task_group *tg, void *data)
4439{
4440 struct rq *rq = data;
4441 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4442
4443 cfs_rq->throttle_count--;
64660c86 4444 if (!cfs_rq->throttle_count) {
f1b17280 4445 /* adjust cfs_rq_clock_task() */
78becc27 4446 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 4447 cfs_rq->throttled_clock_task;
31bc6aea
VG
4448
4449 /* Add cfs_rq with already running entity in the list */
4450 if (cfs_rq->nr_running >= 1)
4451 list_add_leaf_cfs_rq(cfs_rq);
64660c86 4452 }
64660c86
PT
4453
4454 return 0;
4455}
4456
4457static int tg_throttle_down(struct task_group *tg, void *data)
4458{
4459 struct rq *rq = data;
4460 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4461
82958366 4462 /* group is entering throttled state, stop time */
31bc6aea 4463 if (!cfs_rq->throttle_count) {
78becc27 4464 cfs_rq->throttled_clock_task = rq_clock_task(rq);
31bc6aea
VG
4465 list_del_leaf_cfs_rq(cfs_rq);
4466 }
64660c86
PT
4467 cfs_rq->throttle_count++;
4468
4469 return 0;
4470}
4471
d3d9dc33 4472static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
4473{
4474 struct rq *rq = rq_of(cfs_rq);
4475 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4476 struct sched_entity *se;
4477 long task_delta, dequeue = 1;
77a4d1a1 4478 bool empty;
85dac906
PT
4479
4480 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4481
f1b17280 4482 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
4483 rcu_read_lock();
4484 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4485 rcu_read_unlock();
85dac906
PT
4486
4487 task_delta = cfs_rq->h_nr_running;
4488 for_each_sched_entity(se) {
4489 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4490 /* throttled entity or throttle-on-deactivate */
4491 if (!se->on_rq)
4492 break;
4493
4494 if (dequeue)
4495 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4496 qcfs_rq->h_nr_running -= task_delta;
4497
4498 if (qcfs_rq->load.weight)
4499 dequeue = 0;
4500 }
4501
4502 if (!se)
72465447 4503 sub_nr_running(rq, task_delta);
85dac906
PT
4504
4505 cfs_rq->throttled = 1;
78becc27 4506 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 4507 raw_spin_lock(&cfs_b->lock);
d49db342 4508 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 4509
c06f04c7
BS
4510 /*
4511 * Add to the _head_ of the list, so that an already-started
baa9be4f
PA
4512 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4513 * not running add to the tail so that later runqueues don't get starved.
c06f04c7 4514 */
baa9be4f
PA
4515 if (cfs_b->distribute_running)
4516 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4517 else
4518 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
4519
4520 /*
4521 * If we're the first throttled task, make sure the bandwidth
4522 * timer is running.
4523 */
4524 if (empty)
4525 start_cfs_bandwidth(cfs_b);
4526
85dac906
PT
4527 raw_spin_unlock(&cfs_b->lock);
4528}
4529
029632fb 4530void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
4531{
4532 struct rq *rq = rq_of(cfs_rq);
4533 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4534 struct sched_entity *se;
4535 int enqueue = 1;
4536 long task_delta;
4537
22b958d8 4538 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
4539
4540 cfs_rq->throttled = 0;
1a55af2e
FW
4541
4542 update_rq_clock(rq);
4543
671fd9da 4544 raw_spin_lock(&cfs_b->lock);
78becc27 4545 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
4546 list_del_rcu(&cfs_rq->throttled_list);
4547 raw_spin_unlock(&cfs_b->lock);
4548
64660c86
PT
4549 /* update hierarchical throttle state */
4550 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4551
671fd9da
PT
4552 if (!cfs_rq->load.weight)
4553 return;
4554
4555 task_delta = cfs_rq->h_nr_running;
4556 for_each_sched_entity(se) {
4557 if (se->on_rq)
4558 enqueue = 0;
4559
4560 cfs_rq = cfs_rq_of(se);
4561 if (enqueue)
4562 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4563 cfs_rq->h_nr_running += task_delta;
4564
4565 if (cfs_rq_throttled(cfs_rq))
4566 break;
4567 }
4568
31bc6aea
VG
4569 assert_list_leaf_cfs_rq(rq);
4570
671fd9da 4571 if (!se)
72465447 4572 add_nr_running(rq, task_delta);
671fd9da 4573
97fb7a0a 4574 /* Determine whether we need to wake up potentially idle CPU: */
671fd9da 4575 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4576 resched_curr(rq);
671fd9da
PT
4577}
4578
4579static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4580 u64 remaining, u64 expires)
4581{
4582 struct cfs_rq *cfs_rq;
c06f04c7
BS
4583 u64 runtime;
4584 u64 starting_runtime = remaining;
671fd9da
PT
4585
4586 rcu_read_lock();
4587 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4588 throttled_list) {
4589 struct rq *rq = rq_of(cfs_rq);
8a8c69c3 4590 struct rq_flags rf;
671fd9da 4591
c0ad4aa4 4592 rq_lock_irqsave(rq, &rf);
671fd9da
PT
4593 if (!cfs_rq_throttled(cfs_rq))
4594 goto next;
4595
4596 runtime = -cfs_rq->runtime_remaining + 1;
4597 if (runtime > remaining)
4598 runtime = remaining;
4599 remaining -= runtime;
4600
4601 cfs_rq->runtime_remaining += runtime;
4602 cfs_rq->runtime_expires = expires;
4603
4604 /* we check whether we're throttled above */
4605 if (cfs_rq->runtime_remaining > 0)
4606 unthrottle_cfs_rq(cfs_rq);
4607
4608next:
c0ad4aa4 4609 rq_unlock_irqrestore(rq, &rf);
671fd9da
PT
4610
4611 if (!remaining)
4612 break;
4613 }
4614 rcu_read_unlock();
4615
c06f04c7 4616 return starting_runtime - remaining;
671fd9da
PT
4617}
4618
58088ad0
PT
4619/*
4620 * Responsible for refilling a task_group's bandwidth and unthrottling its
4621 * cfs_rqs as appropriate. If there has been no activity within the last
4622 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4623 * used to track this state.
4624 */
c0ad4aa4 4625static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
58088ad0 4626{
671fd9da 4627 u64 runtime, runtime_expires;
51f2176d 4628 int throttled;
58088ad0 4629
58088ad0
PT
4630 /* no need to continue the timer with no bandwidth constraint */
4631 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4632 goto out_deactivate;
58088ad0 4633
671fd9da 4634 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4635 cfs_b->nr_periods += overrun;
671fd9da 4636
51f2176d
BS
4637 /*
4638 * idle depends on !throttled (for the case of a large deficit), and if
4639 * we're going inactive then everything else can be deferred
4640 */
4641 if (cfs_b->idle && !throttled)
4642 goto out_deactivate;
a9cf55b2
PT
4643
4644 __refill_cfs_bandwidth_runtime(cfs_b);
4645
671fd9da
PT
4646 if (!throttled) {
4647 /* mark as potentially idle for the upcoming period */
4648 cfs_b->idle = 1;
51f2176d 4649 return 0;
671fd9da
PT
4650 }
4651
e8da1b18
NR
4652 /* account preceding periods in which throttling occurred */
4653 cfs_b->nr_throttled += overrun;
4654
671fd9da 4655 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4656
4657 /*
c06f04c7
BS
4658 * This check is repeated as we are holding onto the new bandwidth while
4659 * we unthrottle. This can potentially race with an unthrottled group
4660 * trying to acquire new bandwidth from the global pool. This can result
4661 * in us over-using our runtime if it is all used during this loop, but
4662 * only by limited amounts in that extreme case.
671fd9da 4663 */
baa9be4f 4664 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
c06f04c7 4665 runtime = cfs_b->runtime;
baa9be4f 4666 cfs_b->distribute_running = 1;
c0ad4aa4 4667 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
671fd9da
PT
4668 /* we can't nest cfs_b->lock while distributing bandwidth */
4669 runtime = distribute_cfs_runtime(cfs_b, runtime,
4670 runtime_expires);
c0ad4aa4 4671 raw_spin_lock_irqsave(&cfs_b->lock, flags);
671fd9da 4672
baa9be4f 4673 cfs_b->distribute_running = 0;
671fd9da 4674 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7 4675
b5c0ce7b 4676 lsub_positive(&cfs_b->runtime, runtime);
671fd9da 4677 }
58088ad0 4678
671fd9da
PT
4679 /*
4680 * While we are ensured activity in the period following an
4681 * unthrottle, this also covers the case in which the new bandwidth is
4682 * insufficient to cover the existing bandwidth deficit. (Forcing the
4683 * timer to remain active while there are any throttled entities.)
4684 */
4685 cfs_b->idle = 0;
58088ad0 4686
51f2176d
BS
4687 return 0;
4688
4689out_deactivate:
51f2176d 4690 return 1;
58088ad0 4691}
d3d9dc33 4692
d8b4986d
PT
4693/* a cfs_rq won't donate quota below this amount */
4694static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4695/* minimum remaining period time to redistribute slack quota */
4696static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4697/* how long we wait to gather additional slack before distributing */
4698static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4699
db06e78c
BS
4700/*
4701 * Are we near the end of the current quota period?
4702 *
4703 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4704 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4705 * migrate_hrtimers, base is never cleared, so we are fine.
4706 */
d8b4986d
PT
4707static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4708{
4709 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4710 u64 remaining;
4711
4712 /* if the call-back is running a quota refresh is already occurring */
4713 if (hrtimer_callback_running(refresh_timer))
4714 return 1;
4715
4716 /* is a quota refresh about to occur? */
4717 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4718 if (remaining < min_expire)
4719 return 1;
4720
4721 return 0;
4722}
4723
4724static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4725{
4726 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4727
4728 /* if there's a quota refresh soon don't bother with slack */
4729 if (runtime_refresh_within(cfs_b, min_left))
4730 return;
4731
4cfafd30
PZ
4732 hrtimer_start(&cfs_b->slack_timer,
4733 ns_to_ktime(cfs_bandwidth_slack_period),
4734 HRTIMER_MODE_REL);
d8b4986d
PT
4735}
4736
4737/* we know any runtime found here is valid as update_curr() precedes return */
4738static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4739{
4740 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4741 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4742
4743 if (slack_runtime <= 0)
4744 return;
4745
4746 raw_spin_lock(&cfs_b->lock);
4747 if (cfs_b->quota != RUNTIME_INF &&
4748 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4749 cfs_b->runtime += slack_runtime;
4750
4751 /* we are under rq->lock, defer unthrottling using a timer */
4752 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4753 !list_empty(&cfs_b->throttled_cfs_rq))
4754 start_cfs_slack_bandwidth(cfs_b);
4755 }
4756 raw_spin_unlock(&cfs_b->lock);
4757
4758 /* even if it's not valid for return we don't want to try again */
4759 cfs_rq->runtime_remaining -= slack_runtime;
4760}
4761
4762static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4763{
56f570e5
PT
4764 if (!cfs_bandwidth_used())
4765 return;
4766
fccfdc6f 4767 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4768 return;
4769
4770 __return_cfs_rq_runtime(cfs_rq);
4771}
4772
4773/*
4774 * This is done with a timer (instead of inline with bandwidth return) since
4775 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4776 */
4777static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4778{
4779 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
c0ad4aa4 4780 unsigned long flags;
d8b4986d
PT
4781 u64 expires;
4782
4783 /* confirm we're still not at a refresh boundary */
c0ad4aa4 4784 raw_spin_lock_irqsave(&cfs_b->lock, flags);
baa9be4f 4785 if (cfs_b->distribute_running) {
c0ad4aa4 4786 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
baa9be4f
PA
4787 return;
4788 }
4789
db06e78c 4790 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
c0ad4aa4 4791 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d 4792 return;
db06e78c 4793 }
d8b4986d 4794
c06f04c7 4795 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4796 runtime = cfs_b->runtime;
c06f04c7 4797
d8b4986d 4798 expires = cfs_b->runtime_expires;
baa9be4f
PA
4799 if (runtime)
4800 cfs_b->distribute_running = 1;
4801
c0ad4aa4 4802 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4803
4804 if (!runtime)
4805 return;
4806
4807 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4808
c0ad4aa4 4809 raw_spin_lock_irqsave(&cfs_b->lock, flags);
d8b4986d 4810 if (expires == cfs_b->runtime_expires)
b5c0ce7b 4811 lsub_positive(&cfs_b->runtime, runtime);
baa9be4f 4812 cfs_b->distribute_running = 0;
c0ad4aa4 4813 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
d8b4986d
PT
4814}
4815
d3d9dc33
PT
4816/*
4817 * When a group wakes up we want to make sure that its quota is not already
4818 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4819 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4820 */
4821static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4822{
56f570e5
PT
4823 if (!cfs_bandwidth_used())
4824 return;
4825
d3d9dc33
PT
4826 /* an active group must be handled by the update_curr()->put() path */
4827 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4828 return;
4829
4830 /* ensure the group is not already throttled */
4831 if (cfs_rq_throttled(cfs_rq))
4832 return;
4833
4834 /* update runtime allocation */
4835 account_cfs_rq_runtime(cfs_rq, 0);
4836 if (cfs_rq->runtime_remaining <= 0)
4837 throttle_cfs_rq(cfs_rq);
4838}
4839
55e16d30
PZ
4840static void sync_throttle(struct task_group *tg, int cpu)
4841{
4842 struct cfs_rq *pcfs_rq, *cfs_rq;
4843
4844 if (!cfs_bandwidth_used())
4845 return;
4846
4847 if (!tg->parent)
4848 return;
4849
4850 cfs_rq = tg->cfs_rq[cpu];
4851 pcfs_rq = tg->parent->cfs_rq[cpu];
4852
4853 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4854 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4855}
4856
d3d9dc33 4857/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4858static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4859{
56f570e5 4860 if (!cfs_bandwidth_used())
678d5718 4861 return false;
56f570e5 4862
d3d9dc33 4863 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4864 return false;
d3d9dc33
PT
4865
4866 /*
4867 * it's possible for a throttled entity to be forced into a running
4868 * state (e.g. set_curr_task), in this case we're finished.
4869 */
4870 if (cfs_rq_throttled(cfs_rq))
678d5718 4871 return true;
d3d9dc33
PT
4872
4873 throttle_cfs_rq(cfs_rq);
678d5718 4874 return true;
d3d9dc33 4875}
029632fb 4876
029632fb
PZ
4877static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4878{
4879 struct cfs_bandwidth *cfs_b =
4880 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4881
029632fb
PZ
4882 do_sched_cfs_slack_timer(cfs_b);
4883
4884 return HRTIMER_NORESTART;
4885}
4886
4887static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4888{
4889 struct cfs_bandwidth *cfs_b =
4890 container_of(timer, struct cfs_bandwidth, period_timer);
c0ad4aa4 4891 unsigned long flags;
029632fb
PZ
4892 int overrun;
4893 int idle = 0;
4894
c0ad4aa4 4895 raw_spin_lock_irqsave(&cfs_b->lock, flags);
029632fb 4896 for (;;) {
77a4d1a1 4897 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4898 if (!overrun)
4899 break;
4900
c0ad4aa4 4901 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
029632fb 4902 }
4cfafd30
PZ
4903 if (idle)
4904 cfs_b->period_active = 0;
c0ad4aa4 4905 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
029632fb
PZ
4906
4907 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4908}
4909
4910void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4911{
4912 raw_spin_lock_init(&cfs_b->lock);
4913 cfs_b->runtime = 0;
4914 cfs_b->quota = RUNTIME_INF;
4915 cfs_b->period = ns_to_ktime(default_cfs_period());
4916
4917 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4918 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4919 cfs_b->period_timer.function = sched_cfs_period_timer;
4920 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4921 cfs_b->slack_timer.function = sched_cfs_slack_timer;
baa9be4f 4922 cfs_b->distribute_running = 0;
029632fb
PZ
4923}
4924
4925static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4926{
4927 cfs_rq->runtime_enabled = 0;
4928 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4929}
4930
77a4d1a1 4931void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4932{
f1d1be8a
XP
4933 u64 overrun;
4934
4cfafd30 4935 lockdep_assert_held(&cfs_b->lock);
029632fb 4936
f1d1be8a
XP
4937 if (cfs_b->period_active)
4938 return;
4939
4940 cfs_b->period_active = 1;
4941 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4942 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4943 cfs_b->expires_seq++;
4944 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4945}
4946
4947static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4948{
7f1a169b
TH
4949 /* init_cfs_bandwidth() was not called */
4950 if (!cfs_b->throttled_cfs_rq.next)
4951 return;
4952
029632fb
PZ
4953 hrtimer_cancel(&cfs_b->period_timer);
4954 hrtimer_cancel(&cfs_b->slack_timer);
4955}
4956
502ce005 4957/*
97fb7a0a 4958 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
502ce005
PZ
4959 *
4960 * The race is harmless, since modifying bandwidth settings of unhooked group
4961 * bits doesn't do much.
4962 */
4963
4964/* cpu online calback */
0e59bdae
KT
4965static void __maybe_unused update_runtime_enabled(struct rq *rq)
4966{
502ce005 4967 struct task_group *tg;
0e59bdae 4968
502ce005
PZ
4969 lockdep_assert_held(&rq->lock);
4970
4971 rcu_read_lock();
4972 list_for_each_entry_rcu(tg, &task_groups, list) {
4973 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4974 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
0e59bdae
KT
4975
4976 raw_spin_lock(&cfs_b->lock);
4977 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4978 raw_spin_unlock(&cfs_b->lock);
4979 }
502ce005 4980 rcu_read_unlock();
0e59bdae
KT
4981}
4982
502ce005 4983/* cpu offline callback */
38dc3348 4984static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb 4985{
502ce005
PZ
4986 struct task_group *tg;
4987
4988 lockdep_assert_held(&rq->lock);
4989
4990 rcu_read_lock();
4991 list_for_each_entry_rcu(tg, &task_groups, list) {
4992 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
029632fb 4993
029632fb
PZ
4994 if (!cfs_rq->runtime_enabled)
4995 continue;
4996
4997 /*
4998 * clock_task is not advancing so we just need to make sure
4999 * there's some valid quota amount
5000 */
51f2176d 5001 cfs_rq->runtime_remaining = 1;
0e59bdae 5002 /*
97fb7a0a 5003 * Offline rq is schedulable till CPU is completely disabled
0e59bdae
KT
5004 * in take_cpu_down(), so we prevent new cfs throttling here.
5005 */
5006 cfs_rq->runtime_enabled = 0;
5007
029632fb
PZ
5008 if (cfs_rq_throttled(cfs_rq))
5009 unthrottle_cfs_rq(cfs_rq);
5010 }
502ce005 5011 rcu_read_unlock();
029632fb
PZ
5012}
5013
5014#else /* CONFIG_CFS_BANDWIDTH */
f6783319
VG
5015
5016static inline bool cfs_bandwidth_used(void)
5017{
5018 return false;
5019}
5020
f1b17280
PT
5021static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5022{
78becc27 5023 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
5024}
5025
9dbdb155 5026static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 5027static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 5028static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 5029static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 5030static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
5031
5032static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5033{
5034 return 0;
5035}
64660c86
PT
5036
5037static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5038{
5039 return 0;
5040}
5041
5042static inline int throttled_lb_pair(struct task_group *tg,
5043 int src_cpu, int dest_cpu)
5044{
5045 return 0;
5046}
029632fb
PZ
5047
5048void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5049
5050#ifdef CONFIG_FAIR_GROUP_SCHED
5051static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
5052#endif
5053
029632fb
PZ
5054static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5055{
5056 return NULL;
5057}
5058static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 5059static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 5060static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
5061
5062#endif /* CONFIG_CFS_BANDWIDTH */
5063
bf0f6f24
IM
5064/**************************************************
5065 * CFS operations on tasks:
5066 */
5067
8f4d37ec
PZ
5068#ifdef CONFIG_SCHED_HRTICK
5069static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5070{
8f4d37ec
PZ
5071 struct sched_entity *se = &p->se;
5072 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5073
9148a3a1 5074 SCHED_WARN_ON(task_rq(p) != rq);
8f4d37ec 5075
8bf46a39 5076 if (rq->cfs.h_nr_running > 1) {
8f4d37ec
PZ
5077 u64 slice = sched_slice(cfs_rq, se);
5078 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5079 s64 delta = slice - ran;
5080
5081 if (delta < 0) {
5082 if (rq->curr == p)
8875125e 5083 resched_curr(rq);
8f4d37ec
PZ
5084 return;
5085 }
31656519 5086 hrtick_start(rq, delta);
8f4d37ec
PZ
5087 }
5088}
a4c2f00f
PZ
5089
5090/*
5091 * called from enqueue/dequeue and updates the hrtick when the
5092 * current task is from our class and nr_running is low enough
5093 * to matter.
5094 */
5095static void hrtick_update(struct rq *rq)
5096{
5097 struct task_struct *curr = rq->curr;
5098
b39e66ea 5099 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
5100 return;
5101
5102 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5103 hrtick_start_fair(rq, curr);
5104}
55e12e5e 5105#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
5106static inline void
5107hrtick_start_fair(struct rq *rq, struct task_struct *p)
5108{
5109}
a4c2f00f
PZ
5110
5111static inline void hrtick_update(struct rq *rq)
5112{
5113}
8f4d37ec
PZ
5114#endif
5115
2802bf3c
MR
5116#ifdef CONFIG_SMP
5117static inline unsigned long cpu_util(int cpu);
5118static unsigned long capacity_of(int cpu);
5119
5120static inline bool cpu_overutilized(int cpu)
5121{
5122 return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
5123}
5124
5125static inline void update_overutilized_status(struct rq *rq)
5126{
5127 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
5128 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5129}
5130#else
5131static inline void update_overutilized_status(struct rq *rq) { }
5132#endif
5133
bf0f6f24
IM
5134/*
5135 * The enqueue_task method is called before nr_running is
5136 * increased. Here we update the fair scheduling stats and
5137 * then put the task into the rbtree:
5138 */
ea87bb78 5139static void
371fd7e7 5140enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5141{
5142 struct cfs_rq *cfs_rq;
62fb1851 5143 struct sched_entity *se = &p->se;
bf0f6f24 5144
2539fc82
PB
5145 /*
5146 * The code below (indirectly) updates schedutil which looks at
5147 * the cfs_rq utilization to select a frequency.
5148 * Let's add the task's estimated utilization to the cfs_rq's
5149 * estimated utilization, before we update schedutil.
5150 */
5151 util_est_enqueue(&rq->cfs, p);
5152
8c34ab19
RW
5153 /*
5154 * If in_iowait is set, the code below may not trigger any cpufreq
5155 * utilization updates, so do it here explicitly with the IOWAIT flag
5156 * passed.
5157 */
5158 if (p->in_iowait)
674e7541 5159 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
8c34ab19 5160
bf0f6f24 5161 for_each_sched_entity(se) {
62fb1851 5162 if (se->on_rq)
bf0f6f24
IM
5163 break;
5164 cfs_rq = cfs_rq_of(se);
88ec22d3 5165 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
5166
5167 /*
5168 * end evaluation on encountering a throttled cfs_rq
5169 *
5170 * note: in the case of encountering a throttled cfs_rq we will
5171 * post the final h_nr_running increment below.
e210bffd 5172 */
85dac906
PT
5173 if (cfs_rq_throttled(cfs_rq))
5174 break;
953bfcd1 5175 cfs_rq->h_nr_running++;
85dac906 5176
88ec22d3 5177 flags = ENQUEUE_WAKEUP;
bf0f6f24 5178 }
8f4d37ec 5179
2069dd75 5180 for_each_sched_entity(se) {
0f317143 5181 cfs_rq = cfs_rq_of(se);
953bfcd1 5182 cfs_rq->h_nr_running++;
2069dd75 5183
85dac906
PT
5184 if (cfs_rq_throttled(cfs_rq))
5185 break;
5186
88c0616e 5187 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5188 update_cfs_group(se);
2069dd75
PZ
5189 }
5190
2802bf3c 5191 if (!se) {
72465447 5192 add_nr_running(rq, 1);
2802bf3c
MR
5193 /*
5194 * Since new tasks are assigned an initial util_avg equal to
5195 * half of the spare capacity of their CPU, tiny tasks have the
5196 * ability to cross the overutilized threshold, which will
5197 * result in the load balancer ruining all the task placement
5198 * done by EAS. As a way to mitigate that effect, do not account
5199 * for the first enqueue operation of new tasks during the
5200 * overutilized flag detection.
5201 *
5202 * A better way of solving this problem would be to wait for
5203 * the PELT signals of tasks to converge before taking them
5204 * into account, but that is not straightforward to implement,
5205 * and the following generally works well enough in practice.
5206 */
5207 if (flags & ENQUEUE_WAKEUP)
5208 update_overutilized_status(rq);
5209
5210 }
cd126afe 5211
f6783319
VG
5212 if (cfs_bandwidth_used()) {
5213 /*
5214 * When bandwidth control is enabled; the cfs_rq_throttled()
5215 * breaks in the above iteration can result in incomplete
5216 * leaf list maintenance, resulting in triggering the assertion
5217 * below.
5218 */
5219 for_each_sched_entity(se) {
5220 cfs_rq = cfs_rq_of(se);
5221
5222 if (list_add_leaf_cfs_rq(cfs_rq))
5223 break;
5224 }
5225 }
5226
5d299eab
PZ
5227 assert_list_leaf_cfs_rq(rq);
5228
a4c2f00f 5229 hrtick_update(rq);
bf0f6f24
IM
5230}
5231
2f36825b
VP
5232static void set_next_buddy(struct sched_entity *se);
5233
bf0f6f24
IM
5234/*
5235 * The dequeue_task method is called before nr_running is
5236 * decreased. We remove the task from the rbtree and
5237 * update the fair scheduling stats:
5238 */
371fd7e7 5239static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
5240{
5241 struct cfs_rq *cfs_rq;
62fb1851 5242 struct sched_entity *se = &p->se;
2f36825b 5243 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
5244
5245 for_each_sched_entity(se) {
5246 cfs_rq = cfs_rq_of(se);
371fd7e7 5247 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
5248
5249 /*
5250 * end evaluation on encountering a throttled cfs_rq
5251 *
5252 * note: in the case of encountering a throttled cfs_rq we will
5253 * post the final h_nr_running decrement below.
5254 */
5255 if (cfs_rq_throttled(cfs_rq))
5256 break;
953bfcd1 5257 cfs_rq->h_nr_running--;
2069dd75 5258
bf0f6f24 5259 /* Don't dequeue parent if it has other entities besides us */
2f36825b 5260 if (cfs_rq->load.weight) {
754bd598
KK
5261 /* Avoid re-evaluating load for this entity: */
5262 se = parent_entity(se);
2f36825b
VP
5263 /*
5264 * Bias pick_next to pick a task from this cfs_rq, as
5265 * p is sleeping when it is within its sched_slice.
5266 */
754bd598
KK
5267 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5268 set_next_buddy(se);
bf0f6f24 5269 break;
2f36825b 5270 }
371fd7e7 5271 flags |= DEQUEUE_SLEEP;
bf0f6f24 5272 }
8f4d37ec 5273
2069dd75 5274 for_each_sched_entity(se) {
0f317143 5275 cfs_rq = cfs_rq_of(se);
953bfcd1 5276 cfs_rq->h_nr_running--;
2069dd75 5277
85dac906
PT
5278 if (cfs_rq_throttled(cfs_rq))
5279 break;
5280
88c0616e 5281 update_load_avg(cfs_rq, se, UPDATE_TG);
1ea6c46a 5282 update_cfs_group(se);
2069dd75
PZ
5283 }
5284
cd126afe 5285 if (!se)
72465447 5286 sub_nr_running(rq, 1);
cd126afe 5287
7f65ea42 5288 util_est_dequeue(&rq->cfs, p, task_sleep);
a4c2f00f 5289 hrtick_update(rq);
bf0f6f24
IM
5290}
5291
e7693a36 5292#ifdef CONFIG_SMP
10e2f1ac
PZ
5293
5294/* Working cpumask for: load_balance, load_balance_newidle. */
5295DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5296DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5297
9fd81dd5 5298#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
5299/*
5300 * per rq 'load' arrray crap; XXX kill this.
5301 */
5302
5303/*
d937cdc5 5304 * The exact cpuload calculated at every tick would be:
3289bdb4 5305 *
d937cdc5
PZ
5306 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5307 *
97fb7a0a
IM
5308 * If a CPU misses updates for n ticks (as it was idle) and update gets
5309 * called on the n+1-th tick when CPU may be busy, then we have:
d937cdc5
PZ
5310 *
5311 * load_n = (1 - 1/2^i)^n * load_0
5312 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
5313 *
5314 * decay_load_missed() below does efficient calculation of
3289bdb4 5315 *
d937cdc5
PZ
5316 * load' = (1 - 1/2^i)^n * load
5317 *
5318 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5319 * This allows us to precompute the above in said factors, thereby allowing the
5320 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5321 * fixed_power_int())
3289bdb4 5322 *
d937cdc5 5323 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
5324 */
5325#define DEGRADE_SHIFT 7
d937cdc5
PZ
5326
5327static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5328static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5329 { 0, 0, 0, 0, 0, 0, 0, 0 },
5330 { 64, 32, 8, 0, 0, 0, 0, 0 },
5331 { 96, 72, 40, 12, 1, 0, 0, 0 },
5332 { 112, 98, 75, 43, 15, 1, 0, 0 },
5333 { 120, 112, 98, 76, 45, 16, 2, 0 }
5334};
3289bdb4
PZ
5335
5336/*
5337 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5338 * would be when CPU is idle and so we just decay the old load without
5339 * adding any new load.
5340 */
5341static unsigned long
5342decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5343{
5344 int j = 0;
5345
5346 if (!missed_updates)
5347 return load;
5348
5349 if (missed_updates >= degrade_zero_ticks[idx])
5350 return 0;
5351
5352 if (idx == 1)
5353 return load >> missed_updates;
5354
5355 while (missed_updates) {
5356 if (missed_updates % 2)
5357 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5358
5359 missed_updates >>= 1;
5360 j++;
5361 }
5362 return load;
5363}
e022e0d3
PZ
5364
5365static struct {
5366 cpumask_var_t idle_cpus_mask;
5367 atomic_t nr_cpus;
f643ea22 5368 int has_blocked; /* Idle CPUS has blocked load */
e022e0d3 5369 unsigned long next_balance; /* in jiffy units */
f643ea22 5370 unsigned long next_blocked; /* Next update of blocked load in jiffies */
e022e0d3
PZ
5371} nohz ____cacheline_aligned;
5372
9fd81dd5 5373#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 5374
59543275 5375/**
cee1afce 5376 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
5377 * @this_rq: The rq to update statistics for
5378 * @this_load: The current load
5379 * @pending_updates: The number of missed updates
59543275 5380 *
3289bdb4 5381 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
5382 * scheduler tick (TICK_NSEC).
5383 *
5384 * This function computes a decaying average:
5385 *
5386 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5387 *
5388 * Because of NOHZ it might not get called on every tick which gives need for
5389 * the @pending_updates argument.
5390 *
5391 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5392 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5393 * = A * (A * load[i]_n-2 + B) + B
5394 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5395 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5396 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5397 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5398 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5399 *
5400 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5401 * any change in load would have resulted in the tick being turned back on.
5402 *
5403 * For regular NOHZ, this reduces to:
5404 *
5405 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5406 *
5407 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 5408 * term.
3289bdb4 5409 */
1f41906a
FW
5410static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5411 unsigned long pending_updates)
3289bdb4 5412{
9fd81dd5 5413 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
5414 int i, scale;
5415
5416 this_rq->nr_load_updates++;
5417
5418 /* Update our load: */
5419 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5420 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5421 unsigned long old_load, new_load;
5422
5423 /* scale is effectively 1 << i now, and >> i divides by scale */
5424
7400d3bb 5425 old_load = this_rq->cpu_load[i];
9fd81dd5 5426#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 5427 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
5428 if (tickless_load) {
5429 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5430 /*
5431 * old_load can never be a negative value because a
5432 * decayed tickless_load cannot be greater than the
5433 * original tickless_load.
5434 */
5435 old_load += tickless_load;
5436 }
9fd81dd5 5437#endif
3289bdb4
PZ
5438 new_load = this_load;
5439 /*
5440 * Round up the averaging division if load is increasing. This
5441 * prevents us from getting stuck on 9 if the load is 10, for
5442 * example.
5443 */
5444 if (new_load > old_load)
5445 new_load += scale - 1;
5446
5447 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5448 }
3289bdb4
PZ
5449}
5450
7ea241af 5451/* Used instead of source_load when we know the type == 0 */
c7132dd6 5452static unsigned long weighted_cpuload(struct rq *rq)
7ea241af 5453{
c7132dd6 5454 return cfs_rq_runnable_load_avg(&rq->cfs);
7ea241af
YD
5455}
5456
3289bdb4 5457#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5458/*
5459 * There is no sane way to deal with nohz on smp when using jiffies because the
97fb7a0a 5460 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
1f41906a
FW
5461 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5462 *
5463 * Therefore we need to avoid the delta approach from the regular tick when
5464 * possible since that would seriously skew the load calculation. This is why we
5465 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5466 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5467 * loop exit, nohz_idle_balance, nohz full exit...)
5468 *
5469 * This means we might still be one tick off for nohz periods.
5470 */
5471
5472static void cpu_load_update_nohz(struct rq *this_rq,
5473 unsigned long curr_jiffies,
5474 unsigned long load)
be68a682
FW
5475{
5476 unsigned long pending_updates;
5477
5478 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5479 if (pending_updates) {
5480 this_rq->last_load_update_tick = curr_jiffies;
5481 /*
5482 * In the regular NOHZ case, we were idle, this means load 0.
5483 * In the NOHZ_FULL case, we were non-idle, we should consider
5484 * its weighted load.
5485 */
1f41906a 5486 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
5487 }
5488}
5489
3289bdb4
PZ
5490/*
5491 * Called from nohz_idle_balance() to update the load ratings before doing the
5492 * idle balance.
5493 */
cee1afce 5494static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 5495{
3289bdb4
PZ
5496 /*
5497 * bail if there's load or we're actually up-to-date.
5498 */
c7132dd6 5499 if (weighted_cpuload(this_rq))
3289bdb4
PZ
5500 return;
5501
1f41906a 5502 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
5503}
5504
5505/*
1f41906a
FW
5506 * Record CPU load on nohz entry so we know the tickless load to account
5507 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5508 * than other cpu_load[idx] but it should be fine as cpu_load readers
5509 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 5510 */
1f41906a 5511void cpu_load_update_nohz_start(void)
3289bdb4
PZ
5512{
5513 struct rq *this_rq = this_rq();
1f41906a
FW
5514
5515 /*
5516 * This is all lockless but should be fine. If weighted_cpuload changes
5517 * concurrently we'll exit nohz. And cpu_load write can race with
5518 * cpu_load_update_idle() but both updater would be writing the same.
5519 */
c7132dd6 5520 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
1f41906a
FW
5521}
5522
5523/*
5524 * Account the tickless load in the end of a nohz frame.
5525 */
5526void cpu_load_update_nohz_stop(void)
5527{
316c1608 5528 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
5529 struct rq *this_rq = this_rq();
5530 unsigned long load;
8a8c69c3 5531 struct rq_flags rf;
3289bdb4
PZ
5532
5533 if (curr_jiffies == this_rq->last_load_update_tick)
5534 return;
5535
c7132dd6 5536 load = weighted_cpuload(this_rq);
8a8c69c3 5537 rq_lock(this_rq, &rf);
b52fad2d 5538 update_rq_clock(this_rq);
1f41906a 5539 cpu_load_update_nohz(this_rq, curr_jiffies, load);
8a8c69c3 5540 rq_unlock(this_rq, &rf);
3289bdb4 5541}
1f41906a
FW
5542#else /* !CONFIG_NO_HZ_COMMON */
5543static inline void cpu_load_update_nohz(struct rq *this_rq,
5544 unsigned long curr_jiffies,
5545 unsigned long load) { }
5546#endif /* CONFIG_NO_HZ_COMMON */
5547
5548static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5549{
9fd81dd5 5550#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
5551 /* See the mess around cpu_load_update_nohz(). */
5552 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 5553#endif
1f41906a
FW
5554 cpu_load_update(this_rq, load, 1);
5555}
3289bdb4
PZ
5556
5557/*
5558 * Called from scheduler_tick()
5559 */
cee1afce 5560void cpu_load_update_active(struct rq *this_rq)
3289bdb4 5561{
c7132dd6 5562 unsigned long load = weighted_cpuload(this_rq);
1f41906a
FW
5563
5564 if (tick_nohz_tick_stopped())
5565 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5566 else
5567 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
5568}
5569
029632fb 5570/*
97fb7a0a 5571 * Return a low guess at the load of a migration-source CPU weighted
029632fb
PZ
5572 * according to the scheduling class and "nice" value.
5573 *
5574 * We want to under-estimate the load of migration sources, to
5575 * balance conservatively.
5576 */
5577static unsigned long source_load(int cpu, int type)
5578{
5579 struct rq *rq = cpu_rq(cpu);
c7132dd6 5580 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5581
5582 if (type == 0 || !sched_feat(LB_BIAS))
5583 return total;
5584
5585 return min(rq->cpu_load[type-1], total);
5586}
5587
5588/*
97fb7a0a 5589 * Return a high guess at the load of a migration-target CPU weighted
029632fb
PZ
5590 * according to the scheduling class and "nice" value.
5591 */
5592static unsigned long target_load(int cpu, int type)
5593{
5594 struct rq *rq = cpu_rq(cpu);
c7132dd6 5595 unsigned long total = weighted_cpuload(rq);
029632fb
PZ
5596
5597 if (type == 0 || !sched_feat(LB_BIAS))
5598 return total;
5599
5600 return max(rq->cpu_load[type-1], total);
5601}
5602
ced549fa 5603static unsigned long capacity_of(int cpu)
029632fb 5604{
ced549fa 5605 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
5606}
5607
5608static unsigned long cpu_avg_load_per_task(int cpu)
5609{
5610 struct rq *rq = cpu_rq(cpu);
316c1608 5611 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
c7132dd6 5612 unsigned long load_avg = weighted_cpuload(rq);
029632fb
PZ
5613
5614 if (nr_running)
b92486cb 5615 return load_avg / nr_running;
029632fb
PZ
5616
5617 return 0;
5618}
5619
c58d25f3
PZ
5620static void record_wakee(struct task_struct *p)
5621{
5622 /*
5623 * Only decay a single time; tasks that have less then 1 wakeup per
5624 * jiffy will not have built up many flips.
5625 */
5626 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5627 current->wakee_flips >>= 1;
5628 current->wakee_flip_decay_ts = jiffies;
5629 }
5630
5631 if (current->last_wakee != p) {
5632 current->last_wakee = p;
5633 current->wakee_flips++;
5634 }
5635}
5636
63b0e9ed
MG
5637/*
5638 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5639 *
63b0e9ed 5640 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5641 * at a frequency roughly N times higher than one of its wakees.
5642 *
5643 * In order to determine whether we should let the load spread vs consolidating
5644 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5645 * partner, and a factor of lls_size higher frequency in the other.
5646 *
5647 * With both conditions met, we can be relatively sure that the relationship is
5648 * non-monogamous, with partner count exceeding socket size.
5649 *
5650 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5651 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5652 * socket size.
63b0e9ed 5653 */
62470419
MW
5654static int wake_wide(struct task_struct *p)
5655{
63b0e9ed
MG
5656 unsigned int master = current->wakee_flips;
5657 unsigned int slave = p->wakee_flips;
7d9ffa89 5658 int factor = this_cpu_read(sd_llc_size);
62470419 5659
63b0e9ed
MG
5660 if (master < slave)
5661 swap(master, slave);
5662 if (slave < factor || master < slave * factor)
5663 return 0;
5664 return 1;
62470419
MW
5665}
5666
90001d67 5667/*
d153b153
PZ
5668 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5669 * soonest. For the purpose of speed we only consider the waking and previous
5670 * CPU.
90001d67 5671 *
7332dec0
MG
5672 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5673 * cache-affine and is (or will be) idle.
f2cdd9cc
PZ
5674 *
5675 * wake_affine_weight() - considers the weight to reflect the average
5676 * scheduling latency of the CPUs. This seems to work
5677 * for the overloaded case.
90001d67 5678 */
3b76c4a3 5679static int
89a55f56 5680wake_affine_idle(int this_cpu, int prev_cpu, int sync)
90001d67 5681{
7332dec0
MG
5682 /*
5683 * If this_cpu is idle, it implies the wakeup is from interrupt
5684 * context. Only allow the move if cache is shared. Otherwise an
5685 * interrupt intensive workload could force all tasks onto one
5686 * node depending on the IO topology or IRQ affinity settings.
806486c3
MG
5687 *
5688 * If the prev_cpu is idle and cache affine then avoid a migration.
5689 * There is no guarantee that the cache hot data from an interrupt
5690 * is more important than cache hot data on the prev_cpu and from
5691 * a cpufreq perspective, it's better to have higher utilisation
5692 * on one CPU.
7332dec0 5693 */
943d355d
RJ
5694 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5695 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
90001d67 5696
d153b153 5697 if (sync && cpu_rq(this_cpu)->nr_running == 1)
3b76c4a3 5698 return this_cpu;
90001d67 5699
3b76c4a3 5700 return nr_cpumask_bits;
90001d67
PZ
5701}
5702
3b76c4a3 5703static int
f2cdd9cc
PZ
5704wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5705 int this_cpu, int prev_cpu, int sync)
90001d67 5706{
90001d67
PZ
5707 s64 this_eff_load, prev_eff_load;
5708 unsigned long task_load;
5709
f2cdd9cc 5710 this_eff_load = target_load(this_cpu, sd->wake_idx);
90001d67 5711
90001d67
PZ
5712 if (sync) {
5713 unsigned long current_load = task_h_load(current);
5714
f2cdd9cc 5715 if (current_load > this_eff_load)
3b76c4a3 5716 return this_cpu;
90001d67 5717
f2cdd9cc 5718 this_eff_load -= current_load;
90001d67
PZ
5719 }
5720
90001d67
PZ
5721 task_load = task_h_load(p);
5722
f2cdd9cc
PZ
5723 this_eff_load += task_load;
5724 if (sched_feat(WA_BIAS))
5725 this_eff_load *= 100;
5726 this_eff_load *= capacity_of(prev_cpu);
90001d67 5727
eeb60398 5728 prev_eff_load = source_load(prev_cpu, sd->wake_idx);
f2cdd9cc
PZ
5729 prev_eff_load -= task_load;
5730 if (sched_feat(WA_BIAS))
5731 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5732 prev_eff_load *= capacity_of(this_cpu);
90001d67 5733
082f764a
MG
5734 /*
5735 * If sync, adjust the weight of prev_eff_load such that if
5736 * prev_eff == this_eff that select_idle_sibling() will consider
5737 * stacking the wakee on top of the waker if no other CPU is
5738 * idle.
5739 */
5740 if (sync)
5741 prev_eff_load += 1;
5742
5743 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
90001d67
PZ
5744}
5745
772bd008 5746static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7ebb66a1 5747 int this_cpu, int prev_cpu, int sync)
098fb9db 5748{
3b76c4a3 5749 int target = nr_cpumask_bits;
098fb9db 5750
89a55f56 5751 if (sched_feat(WA_IDLE))
3b76c4a3 5752 target = wake_affine_idle(this_cpu, prev_cpu, sync);
90001d67 5753
3b76c4a3
MG
5754 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5755 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
098fb9db 5756
ae92882e 5757 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
3b76c4a3
MG
5758 if (target == nr_cpumask_bits)
5759 return prev_cpu;
098fb9db 5760
3b76c4a3
MG
5761 schedstat_inc(sd->ttwu_move_affine);
5762 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5763 return target;
098fb9db
IM
5764}
5765
c469933e 5766static unsigned long cpu_util_without(int cpu, struct task_struct *p);
6a0b19c0 5767
c469933e 5768static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
6a0b19c0 5769{
c469933e 5770 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
6a0b19c0
MR
5771}
5772
aaee1203
PZ
5773/*
5774 * find_idlest_group finds and returns the least busy CPU group within the
5775 * domain.
6fee85cc
BJ
5776 *
5777 * Assumes p is allowed on at least one CPU in sd.
aaee1203
PZ
5778 */
5779static struct sched_group *
78e7ed53 5780find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5781 int this_cpu, int sd_flag)
e7693a36 5782{
b3bd3de6 5783 struct sched_group *idlest = NULL, *group = sd->groups;
6a0b19c0 5784 struct sched_group *most_spare_sg = NULL;
0d10ab95
BJ
5785 unsigned long min_runnable_load = ULONG_MAX;
5786 unsigned long this_runnable_load = ULONG_MAX;
5787 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6a0b19c0 5788 unsigned long most_spare = 0, this_spare = 0;
c44f2a02 5789 int load_idx = sd->forkexec_idx;
6b94780e
VG
5790 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5791 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5792 (sd->imbalance_pct-100) / 100;
e7693a36 5793
c44f2a02
VG
5794 if (sd_flag & SD_BALANCE_WAKE)
5795 load_idx = sd->wake_idx;
5796
aaee1203 5797 do {
6b94780e
VG
5798 unsigned long load, avg_load, runnable_load;
5799 unsigned long spare_cap, max_spare_cap;
aaee1203
PZ
5800 int local_group;
5801 int i;
e7693a36 5802
aaee1203 5803 /* Skip over this group if it has no CPUs allowed */
ae4df9d6 5804 if (!cpumask_intersects(sched_group_span(group),
0c98d344 5805 &p->cpus_allowed))
aaee1203
PZ
5806 continue;
5807
5808 local_group = cpumask_test_cpu(this_cpu,
ae4df9d6 5809 sched_group_span(group));
aaee1203 5810
6a0b19c0
MR
5811 /*
5812 * Tally up the load of all CPUs in the group and find
5813 * the group containing the CPU with most spare capacity.
5814 */
aaee1203 5815 avg_load = 0;
6b94780e 5816 runnable_load = 0;
6a0b19c0 5817 max_spare_cap = 0;
aaee1203 5818
ae4df9d6 5819 for_each_cpu(i, sched_group_span(group)) {
97fb7a0a 5820 /* Bias balancing toward CPUs of our domain */
aaee1203
PZ
5821 if (local_group)
5822 load = source_load(i, load_idx);
5823 else
5824 load = target_load(i, load_idx);
5825
6b94780e
VG
5826 runnable_load += load;
5827
5828 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6a0b19c0 5829
c469933e 5830 spare_cap = capacity_spare_without(i, p);
6a0b19c0
MR
5831
5832 if (spare_cap > max_spare_cap)
5833 max_spare_cap = spare_cap;
aaee1203
PZ
5834 }
5835
63b2ca30 5836 /* Adjust by relative CPU capacity of the group */
6b94780e
VG
5837 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5838 group->sgc->capacity;
5839 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5840 group->sgc->capacity;
aaee1203
PZ
5841
5842 if (local_group) {
6b94780e
VG
5843 this_runnable_load = runnable_load;
5844 this_avg_load = avg_load;
6a0b19c0
MR
5845 this_spare = max_spare_cap;
5846 } else {
6b94780e
VG
5847 if (min_runnable_load > (runnable_load + imbalance)) {
5848 /*
5849 * The runnable load is significantly smaller
97fb7a0a 5850 * so we can pick this new CPU:
6b94780e
VG
5851 */
5852 min_runnable_load = runnable_load;
5853 min_avg_load = avg_load;
5854 idlest = group;
5855 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5856 (100*min_avg_load > imbalance_scale*avg_load)) {
5857 /*
5858 * The runnable loads are close so take the
97fb7a0a 5859 * blocked load into account through avg_load:
6b94780e
VG
5860 */
5861 min_avg_load = avg_load;
6a0b19c0
MR
5862 idlest = group;
5863 }
5864
5865 if (most_spare < max_spare_cap) {
5866 most_spare = max_spare_cap;
5867 most_spare_sg = group;
5868 }
aaee1203
PZ
5869 }
5870 } while (group = group->next, group != sd->groups);
5871
6a0b19c0
MR
5872 /*
5873 * The cross-over point between using spare capacity or least load
5874 * is too conservative for high utilization tasks on partially
5875 * utilized systems if we require spare_capacity > task_util(p),
5876 * so we allow for some task stuffing by using
5877 * spare_capacity > task_util(p)/2.
f519a3f1
VG
5878 *
5879 * Spare capacity can't be used for fork because the utilization has
5880 * not been set yet, we must first select a rq to compute the initial
5881 * utilization.
6a0b19c0 5882 */
f519a3f1
VG
5883 if (sd_flag & SD_BALANCE_FORK)
5884 goto skip_spare;
5885
6a0b19c0 5886 if (this_spare > task_util(p) / 2 &&
6b94780e 5887 imbalance_scale*this_spare > 100*most_spare)
6a0b19c0 5888 return NULL;
6b94780e
VG
5889
5890 if (most_spare > task_util(p) / 2)
6a0b19c0
MR
5891 return most_spare_sg;
5892
f519a3f1 5893skip_spare:
6b94780e
VG
5894 if (!idlest)
5895 return NULL;
5896
2c833627
MG
5897 /*
5898 * When comparing groups across NUMA domains, it's possible for the
5899 * local domain to be very lightly loaded relative to the remote
5900 * domains but "imbalance" skews the comparison making remote CPUs
5901 * look much more favourable. When considering cross-domain, add
5902 * imbalance to the runnable load on the remote node and consider
5903 * staying local.
5904 */
5905 if ((sd->flags & SD_NUMA) &&
5906 min_runnable_load + imbalance >= this_runnable_load)
5907 return NULL;
5908
6b94780e 5909 if (min_runnable_load > (this_runnable_load + imbalance))
aaee1203 5910 return NULL;
6b94780e
VG
5911
5912 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5913 (100*this_avg_load < imbalance_scale*min_avg_load))
5914 return NULL;
5915
aaee1203
PZ
5916 return idlest;
5917}
5918
5919/*
97fb7a0a 5920 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
aaee1203
PZ
5921 */
5922static int
18bd1b4b 5923find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
aaee1203
PZ
5924{
5925 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5926 unsigned int min_exit_latency = UINT_MAX;
5927 u64 latest_idle_timestamp = 0;
5928 int least_loaded_cpu = this_cpu;
5929 int shallowest_idle_cpu = -1;
aaee1203
PZ
5930 int i;
5931
eaecf41f
MR
5932 /* Check if we have any choice: */
5933 if (group->group_weight == 1)
ae4df9d6 5934 return cpumask_first(sched_group_span(group));
eaecf41f 5935
aaee1203 5936 /* Traverse only the allowed CPUs */
ae4df9d6 5937 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
943d355d 5938 if (available_idle_cpu(i)) {
83a0a96a
NP
5939 struct rq *rq = cpu_rq(i);
5940 struct cpuidle_state *idle = idle_get_state(rq);
5941 if (idle && idle->exit_latency < min_exit_latency) {
5942 /*
5943 * We give priority to a CPU whose idle state
5944 * has the smallest exit latency irrespective
5945 * of any idle timestamp.
5946 */
5947 min_exit_latency = idle->exit_latency;
5948 latest_idle_timestamp = rq->idle_stamp;
5949 shallowest_idle_cpu = i;
5950 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5951 rq->idle_stamp > latest_idle_timestamp) {
5952 /*
5953 * If equal or no active idle state, then
5954 * the most recently idled CPU might have
5955 * a warmer cache.
5956 */
5957 latest_idle_timestamp = rq->idle_stamp;
5958 shallowest_idle_cpu = i;
5959 }
9f96742a 5960 } else if (shallowest_idle_cpu == -1) {
c7132dd6 5961 load = weighted_cpuload(cpu_rq(i));
18cec7e0 5962 if (load < min_load) {
83a0a96a
NP
5963 min_load = load;
5964 least_loaded_cpu = i;
5965 }
e7693a36
GH
5966 }
5967 }
5968
83a0a96a 5969 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5970}
e7693a36 5971
18bd1b4b
BJ
5972static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5973 int cpu, int prev_cpu, int sd_flag)
5974{
93f50f90 5975 int new_cpu = cpu;
18bd1b4b 5976
6fee85cc
BJ
5977 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5978 return prev_cpu;
5979
c976a862 5980 /*
c469933e
PB
5981 * We need task's util for capacity_spare_without, sync it up to
5982 * prev_cpu's last_update_time.
c976a862
VK
5983 */
5984 if (!(sd_flag & SD_BALANCE_FORK))
5985 sync_entity_load_avg(&p->se);
5986
18bd1b4b
BJ
5987 while (sd) {
5988 struct sched_group *group;
5989 struct sched_domain *tmp;
5990 int weight;
5991
5992 if (!(sd->flags & sd_flag)) {
5993 sd = sd->child;
5994 continue;
5995 }
5996
5997 group = find_idlest_group(sd, p, cpu, sd_flag);
5998 if (!group) {
5999 sd = sd->child;
6000 continue;
6001 }
6002
6003 new_cpu = find_idlest_group_cpu(group, p, cpu);
e90381ea 6004 if (new_cpu == cpu) {
97fb7a0a 6005 /* Now try balancing at a lower domain level of 'cpu': */
18bd1b4b
BJ
6006 sd = sd->child;
6007 continue;
6008 }
6009
97fb7a0a 6010 /* Now try balancing at a lower domain level of 'new_cpu': */
18bd1b4b
BJ
6011 cpu = new_cpu;
6012 weight = sd->span_weight;
6013 sd = NULL;
6014 for_each_domain(cpu, tmp) {
6015 if (weight <= tmp->span_weight)
6016 break;
6017 if (tmp->flags & sd_flag)
6018 sd = tmp;
6019 }
18bd1b4b
BJ
6020 }
6021
6022 return new_cpu;
6023}
6024
10e2f1ac 6025#ifdef CONFIG_SCHED_SMT
ba2591a5 6026DEFINE_STATIC_KEY_FALSE(sched_smt_present);
b284909a 6027EXPORT_SYMBOL_GPL(sched_smt_present);
10e2f1ac
PZ
6028
6029static inline void set_idle_cores(int cpu, int val)
6030{
6031 struct sched_domain_shared *sds;
6032
6033 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6034 if (sds)
6035 WRITE_ONCE(sds->has_idle_cores, val);
6036}
6037
6038static inline bool test_idle_cores(int cpu, bool def)
6039{
6040 struct sched_domain_shared *sds;
6041
6042 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6043 if (sds)
6044 return READ_ONCE(sds->has_idle_cores);
6045
6046 return def;
6047}
6048
6049/*
6050 * Scans the local SMT mask to see if the entire core is idle, and records this
6051 * information in sd_llc_shared->has_idle_cores.
6052 *
6053 * Since SMT siblings share all cache levels, inspecting this limited remote
6054 * state should be fairly cheap.
6055 */
1b568f0a 6056void __update_idle_core(struct rq *rq)
10e2f1ac
PZ
6057{
6058 int core = cpu_of(rq);
6059 int cpu;
6060
6061 rcu_read_lock();
6062 if (test_idle_cores(core, true))
6063 goto unlock;
6064
6065 for_each_cpu(cpu, cpu_smt_mask(core)) {
6066 if (cpu == core)
6067 continue;
6068
943d355d 6069 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6070 goto unlock;
6071 }
6072
6073 set_idle_cores(core, 1);
6074unlock:
6075 rcu_read_unlock();
6076}
6077
6078/*
6079 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6080 * there are no idle cores left in the system; tracked through
6081 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6082 */
6083static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6084{
6085 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
c743f0a5 6086 int core, cpu;
10e2f1ac 6087
1b568f0a
PZ
6088 if (!static_branch_likely(&sched_smt_present))
6089 return -1;
6090
10e2f1ac
PZ
6091 if (!test_idle_cores(target, false))
6092 return -1;
6093
0c98d344 6094 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
10e2f1ac 6095
c743f0a5 6096 for_each_cpu_wrap(core, cpus, target) {
10e2f1ac
PZ
6097 bool idle = true;
6098
6099 for_each_cpu(cpu, cpu_smt_mask(core)) {
6100 cpumask_clear_cpu(cpu, cpus);
943d355d 6101 if (!available_idle_cpu(cpu))
10e2f1ac
PZ
6102 idle = false;
6103 }
6104
6105 if (idle)
6106 return core;
6107 }
6108
6109 /*
6110 * Failed to find an idle core; stop looking for one.
6111 */
6112 set_idle_cores(target, 0);
6113
6114 return -1;
6115}
6116
6117/*
6118 * Scan the local SMT mask for idle CPUs.
6119 */
6120static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6121{
6122 int cpu;
6123
1b568f0a
PZ
6124 if (!static_branch_likely(&sched_smt_present))
6125 return -1;
6126
10e2f1ac 6127 for_each_cpu(cpu, cpu_smt_mask(target)) {
0c98d344 6128 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac 6129 continue;
943d355d 6130 if (available_idle_cpu(cpu))
10e2f1ac
PZ
6131 return cpu;
6132 }
6133
6134 return -1;
6135}
6136
6137#else /* CONFIG_SCHED_SMT */
6138
6139static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6140{
6141 return -1;
6142}
6143
6144static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6145{
6146 return -1;
6147}
6148
6149#endif /* CONFIG_SCHED_SMT */
6150
6151/*
6152 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6153 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6154 * average idle time for this rq (as found in rq->avg_idle).
a50bde51 6155 */
10e2f1ac
PZ
6156static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6157{
9cfb38a7 6158 struct sched_domain *this_sd;
1ad3aaf3 6159 u64 avg_cost, avg_idle;
10e2f1ac
PZ
6160 u64 time, cost;
6161 s64 delta;
1ad3aaf3 6162 int cpu, nr = INT_MAX;
10e2f1ac 6163
9cfb38a7
WL
6164 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6165 if (!this_sd)
6166 return -1;
6167
10e2f1ac
PZ
6168 /*
6169 * Due to large variance we need a large fuzz factor; hackbench in
6170 * particularly is sensitive here.
6171 */
1ad3aaf3
PZ
6172 avg_idle = this_rq()->avg_idle / 512;
6173 avg_cost = this_sd->avg_scan_cost + 1;
6174
6175 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
10e2f1ac
PZ
6176 return -1;
6177
1ad3aaf3
PZ
6178 if (sched_feat(SIS_PROP)) {
6179 u64 span_avg = sd->span_weight * avg_idle;
6180 if (span_avg > 4*avg_cost)
6181 nr = div_u64(span_avg, avg_cost);
6182 else
6183 nr = 4;
6184 }
6185
10e2f1ac
PZ
6186 time = local_clock();
6187
c743f0a5 6188 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
1ad3aaf3
PZ
6189 if (!--nr)
6190 return -1;
0c98d344 6191 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
10e2f1ac 6192 continue;
943d355d 6193 if (available_idle_cpu(cpu))
10e2f1ac
PZ
6194 break;
6195 }
6196
6197 time = local_clock() - time;
6198 cost = this_sd->avg_scan_cost;
6199 delta = (s64)(time - cost) / 8;
6200 this_sd->avg_scan_cost += delta;
6201
6202 return cpu;
6203}
6204
6205/*
6206 * Try and locate an idle core/thread in the LLC cache domain.
a50bde51 6207 */
772bd008 6208static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 6209{
99bd5e2f 6210 struct sched_domain *sd;
32e839dd 6211 int i, recent_used_cpu;
a50bde51 6212
943d355d 6213 if (available_idle_cpu(target))
e0a79f52 6214 return target;
99bd5e2f
SS
6215
6216 /*
97fb7a0a 6217 * If the previous CPU is cache affine and idle, don't be stupid:
99bd5e2f 6218 */
943d355d 6219 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
772bd008 6220 return prev;
a50bde51 6221
97fb7a0a 6222 /* Check a recently used CPU as a potential idle candidate: */
32e839dd
MG
6223 recent_used_cpu = p->recent_used_cpu;
6224 if (recent_used_cpu != prev &&
6225 recent_used_cpu != target &&
6226 cpus_share_cache(recent_used_cpu, target) &&
943d355d 6227 available_idle_cpu(recent_used_cpu) &&
32e839dd
MG
6228 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6229 /*
6230 * Replace recent_used_cpu with prev as it is a potential
97fb7a0a 6231 * candidate for the next wake:
32e839dd
MG
6232 */
6233 p->recent_used_cpu = prev;
6234 return recent_used_cpu;
6235 }
6236
518cd623 6237 sd = rcu_dereference(per_cpu(sd_llc, target));
10e2f1ac
PZ
6238 if (!sd)
6239 return target;
772bd008 6240
10e2f1ac
PZ
6241 i = select_idle_core(p, sd, target);
6242 if ((unsigned)i < nr_cpumask_bits)
6243 return i;
37407ea7 6244
10e2f1ac
PZ
6245 i = select_idle_cpu(p, sd, target);
6246 if ((unsigned)i < nr_cpumask_bits)
6247 return i;
6248
6249 i = select_idle_smt(p, sd, target);
6250 if ((unsigned)i < nr_cpumask_bits)
6251 return i;
970e1789 6252
a50bde51
PZ
6253 return target;
6254}
231678b7 6255
f9be3e59
PB
6256/**
6257 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6258 * @cpu: the CPU to get the utilization of
6259 *
6260 * The unit of the return value must be the one of capacity so we can compare
6261 * the utilization with the capacity of the CPU that is available for CFS task
6262 * (ie cpu_capacity).
231678b7
DE
6263 *
6264 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6265 * recent utilization of currently non-runnable tasks on a CPU. It represents
6266 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6267 * capacity_orig is the cpu_capacity available at the highest frequency
6268 * (arch_scale_freq_capacity()).
6269 * The utilization of a CPU converges towards a sum equal to or less than the
6270 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6271 * the running time on this CPU scaled by capacity_curr.
6272 *
f9be3e59
PB
6273 * The estimated utilization of a CPU is defined to be the maximum between its
6274 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6275 * currently RUNNABLE on that CPU.
6276 * This allows to properly represent the expected utilization of a CPU which
6277 * has just got a big task running since a long sleep period. At the same time
6278 * however it preserves the benefits of the "blocked utilization" in
6279 * describing the potential for other tasks waking up on the same CPU.
6280 *
231678b7
DE
6281 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6282 * higher than capacity_orig because of unfortunate rounding in
6283 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6284 * the average stabilizes with the new running time. We need to check that the
6285 * utilization stays within the range of [0..capacity_orig] and cap it if
6286 * necessary. Without utilization capping, a group could be seen as overloaded
6287 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6288 * available capacity. We allow utilization to overshoot capacity_curr (but not
6289 * capacity_orig) as it useful for predicting the capacity required after task
6290 * migrations (scheduler-driven DVFS).
f9be3e59
PB
6291 *
6292 * Return: the (estimated) utilization for the specified CPU
8bb5b00c 6293 */
f9be3e59 6294static inline unsigned long cpu_util(int cpu)
8bb5b00c 6295{
f9be3e59
PB
6296 struct cfs_rq *cfs_rq;
6297 unsigned int util;
6298
6299 cfs_rq = &cpu_rq(cpu)->cfs;
6300 util = READ_ONCE(cfs_rq->avg.util_avg);
6301
6302 if (sched_feat(UTIL_EST))
6303 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
8bb5b00c 6304
f9be3e59 6305 return min_t(unsigned long, util, capacity_orig_of(cpu));
8bb5b00c 6306}
a50bde51 6307
104cb16d 6308/*
c469933e
PB
6309 * cpu_util_without: compute cpu utilization without any contributions from *p
6310 * @cpu: the CPU which utilization is requested
6311 * @p: the task which utilization should be discounted
6312 *
6313 * The utilization of a CPU is defined by the utilization of tasks currently
6314 * enqueued on that CPU as well as tasks which are currently sleeping after an
6315 * execution on that CPU.
6316 *
6317 * This method returns the utilization of the specified CPU by discounting the
6318 * utilization of the specified task, whenever the task is currently
6319 * contributing to the CPU utilization.
104cb16d 6320 */
c469933e 6321static unsigned long cpu_util_without(int cpu, struct task_struct *p)
104cb16d 6322{
f9be3e59
PB
6323 struct cfs_rq *cfs_rq;
6324 unsigned int util;
104cb16d
MR
6325
6326 /* Task has no contribution or is new */
f9be3e59 6327 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
104cb16d
MR
6328 return cpu_util(cpu);
6329
f9be3e59
PB
6330 cfs_rq = &cpu_rq(cpu)->cfs;
6331 util = READ_ONCE(cfs_rq->avg.util_avg);
6332
c469933e 6333 /* Discount task's util from CPU's util */
b5c0ce7b 6334 lsub_positive(&util, task_util(p));
104cb16d 6335
f9be3e59
PB
6336 /*
6337 * Covered cases:
6338 *
6339 * a) if *p is the only task sleeping on this CPU, then:
6340 * cpu_util (== task_util) > util_est (== 0)
6341 * and thus we return:
c469933e 6342 * cpu_util_without = (cpu_util - task_util) = 0
f9be3e59
PB
6343 *
6344 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6345 * IDLE, then:
6346 * cpu_util >= task_util
6347 * cpu_util > util_est (== 0)
6348 * and thus we discount *p's blocked utilization to return:
c469933e 6349 * cpu_util_without = (cpu_util - task_util) >= 0
f9be3e59
PB
6350 *
6351 * c) if other tasks are RUNNABLE on that CPU and
6352 * util_est > cpu_util
6353 * then we use util_est since it returns a more restrictive
6354 * estimation of the spare capacity on that CPU, by just
6355 * considering the expected utilization of tasks already
6356 * runnable on that CPU.
6357 *
6358 * Cases a) and b) are covered by the above code, while case c) is
6359 * covered by the following code when estimated utilization is
6360 * enabled.
6361 */
c469933e
PB
6362 if (sched_feat(UTIL_EST)) {
6363 unsigned int estimated =
6364 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6365
6366 /*
6367 * Despite the following checks we still have a small window
6368 * for a possible race, when an execl's select_task_rq_fair()
6369 * races with LB's detach_task():
6370 *
6371 * detach_task()
6372 * p->on_rq = TASK_ON_RQ_MIGRATING;
6373 * ---------------------------------- A
6374 * deactivate_task() \
6375 * dequeue_task() + RaceTime
6376 * util_est_dequeue() /
6377 * ---------------------------------- B
6378 *
6379 * The additional check on "current == p" it's required to
6380 * properly fix the execl regression and it helps in further
6381 * reducing the chances for the above race.
6382 */
b5c0ce7b
PB
6383 if (unlikely(task_on_rq_queued(p) || current == p))
6384 lsub_positive(&estimated, _task_util_est(p));
6385
c469933e
PB
6386 util = max(util, estimated);
6387 }
f9be3e59
PB
6388
6389 /*
6390 * Utilization (estimated) can exceed the CPU capacity, thus let's
6391 * clamp to the maximum CPU capacity to ensure consistency with
6392 * the cpu_util call.
6393 */
6394 return min_t(unsigned long, util, capacity_orig_of(cpu));
104cb16d
MR
6395}
6396
3273163c
MR
6397/*
6398 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6399 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6400 *
6401 * In that case WAKE_AFFINE doesn't make sense and we'll let
6402 * BALANCE_WAKE sort things out.
6403 */
6404static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6405{
6406 long min_cap, max_cap;
6407
df054e84
MR
6408 if (!static_branch_unlikely(&sched_asym_cpucapacity))
6409 return 0;
6410
3273163c
MR
6411 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6412 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6413
6414 /* Minimum capacity is close to max, no need to abort wake_affine */
6415 if (max_cap - min_cap < max_cap >> 3)
6416 return 0;
6417
104cb16d
MR
6418 /* Bring task utilization in sync with prev_cpu */
6419 sync_entity_load_avg(&p->se);
6420
3b1baa64 6421 return !task_fits_capacity(p, min_cap);
3273163c
MR
6422}
6423
390031e4
QP
6424/*
6425 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6426 * to @dst_cpu.
6427 */
6428static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6429{
6430 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6431 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6432
6433 /*
6434 * If @p migrates from @cpu to another, remove its contribution. Or,
6435 * if @p migrates from another CPU to @cpu, add its contribution. In
6436 * the other cases, @cpu is not impacted by the migration, so the
6437 * util_avg should already be correct.
6438 */
6439 if (task_cpu(p) == cpu && dst_cpu != cpu)
6440 sub_positive(&util, task_util(p));
6441 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6442 util += task_util(p);
6443
6444 if (sched_feat(UTIL_EST)) {
6445 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6446
6447 /*
6448 * During wake-up, the task isn't enqueued yet and doesn't
6449 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6450 * so just add it (if needed) to "simulate" what will be
6451 * cpu_util() after the task has been enqueued.
6452 */
6453 if (dst_cpu == cpu)
6454 util_est += _task_util_est(p);
6455
6456 util = max(util, util_est);
6457 }
6458
6459 return min(util, capacity_orig_of(cpu));
6460}
6461
6462/*
6463 * compute_energy(): Estimates the energy that would be consumed if @p was
6464 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6465 * landscape of the * CPUs after the task migration, and uses the Energy Model
6466 * to compute what would be the energy if we decided to actually migrate that
6467 * task.
6468 */
6469static long
6470compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6471{
6472 long util, max_util, sum_util, energy = 0;
6473 int cpu;
6474
6475 for (; pd; pd = pd->next) {
6476 max_util = sum_util = 0;
6477 /*
6478 * The capacity state of CPUs of the current rd can be driven by
6479 * CPUs of another rd if they belong to the same performance
6480 * domain. So, account for the utilization of these CPUs too
6481 * by masking pd with cpu_online_mask instead of the rd span.
6482 *
6483 * If an entire performance domain is outside of the current rd,
6484 * it will not appear in its pd list and will not be accounted
6485 * by compute_energy().
6486 */
6487 for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) {
6488 util = cpu_util_next(cpu, p, dst_cpu);
6489 util = schedutil_energy_util(cpu, util);
6490 max_util = max(util, max_util);
6491 sum_util += util;
6492 }
6493
6494 energy += em_pd_energy(pd->em_pd, max_util, sum_util);
6495 }
6496
6497 return energy;
6498}
6499
732cd75b
QP
6500/*
6501 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6502 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6503 * spare capacity in each performance domain and uses it as a potential
6504 * candidate to execute the task. Then, it uses the Energy Model to figure
6505 * out which of the CPU candidates is the most energy-efficient.
6506 *
6507 * The rationale for this heuristic is as follows. In a performance domain,
6508 * all the most energy efficient CPU candidates (according to the Energy
6509 * Model) are those for which we'll request a low frequency. When there are
6510 * several CPUs for which the frequency request will be the same, we don't
6511 * have enough data to break the tie between them, because the Energy Model
6512 * only includes active power costs. With this model, if we assume that
6513 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6514 * the maximum spare capacity in a performance domain is guaranteed to be among
6515 * the best candidates of the performance domain.
6516 *
6517 * In practice, it could be preferable from an energy standpoint to pack
6518 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6519 * but that could also hurt our chances to go cluster idle, and we have no
6520 * ways to tell with the current Energy Model if this is actually a good
6521 * idea or not. So, find_energy_efficient_cpu() basically favors
6522 * cluster-packing, and spreading inside a cluster. That should at least be
6523 * a good thing for latency, and this is consistent with the idea that most
6524 * of the energy savings of EAS come from the asymmetry of the system, and
6525 * not so much from breaking the tie between identical CPUs. That's also the
6526 * reason why EAS is enabled in the topology code only for systems where
6527 * SD_ASYM_CPUCAPACITY is set.
6528 *
6529 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6530 * they don't have any useful utilization data yet and it's not possible to
6531 * forecast their impact on energy consumption. Consequently, they will be
6532 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6533 * to be energy-inefficient in some use-cases. The alternative would be to
6534 * bias new tasks towards specific types of CPUs first, or to try to infer
6535 * their util_avg from the parent task, but those heuristics could hurt
6536 * other use-cases too. So, until someone finds a better way to solve this,
6537 * let's keep things simple by re-using the existing slow path.
6538 */
6539
6540static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6541{
6542 unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
6543 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6544 int cpu, best_energy_cpu = prev_cpu;
6545 struct perf_domain *head, *pd;
6546 unsigned long cpu_cap, util;
6547 struct sched_domain *sd;
6548
6549 rcu_read_lock();
6550 pd = rcu_dereference(rd->pd);
6551 if (!pd || READ_ONCE(rd->overutilized))
6552 goto fail;
6553 head = pd;
6554
6555 /*
6556 * Energy-aware wake-up happens on the lowest sched_domain starting
6557 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6558 */
6559 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6560 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6561 sd = sd->parent;
6562 if (!sd)
6563 goto fail;
6564
6565 sync_entity_load_avg(&p->se);
6566 if (!task_util_est(p))
6567 goto unlock;
6568
6569 for (; pd; pd = pd->next) {
6570 unsigned long cur_energy, spare_cap, max_spare_cap = 0;
6571 int max_spare_cap_cpu = -1;
6572
6573 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6574 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6575 continue;
6576
6577 /* Skip CPUs that will be overutilized. */
6578 util = cpu_util_next(cpu, p, cpu);
6579 cpu_cap = capacity_of(cpu);
6580 if (cpu_cap * 1024 < util * capacity_margin)
6581 continue;
6582
6583 /* Always use prev_cpu as a candidate. */
6584 if (cpu == prev_cpu) {
6585 prev_energy = compute_energy(p, prev_cpu, head);
6586 best_energy = min(best_energy, prev_energy);
6587 continue;
6588 }
6589
6590 /*
6591 * Find the CPU with the maximum spare capacity in
6592 * the performance domain
6593 */
6594 spare_cap = cpu_cap - util;
6595 if (spare_cap > max_spare_cap) {
6596 max_spare_cap = spare_cap;
6597 max_spare_cap_cpu = cpu;
6598 }
6599 }
6600
6601 /* Evaluate the energy impact of using this CPU. */
6602 if (max_spare_cap_cpu >= 0) {
6603 cur_energy = compute_energy(p, max_spare_cap_cpu, head);
6604 if (cur_energy < best_energy) {
6605 best_energy = cur_energy;
6606 best_energy_cpu = max_spare_cap_cpu;
6607 }
6608 }
6609 }
6610unlock:
6611 rcu_read_unlock();
6612
6613 /*
6614 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6615 * least 6% of the energy used by prev_cpu.
6616 */
6617 if (prev_energy == ULONG_MAX)
6618 return best_energy_cpu;
6619
6620 if ((prev_energy - best_energy) > (prev_energy >> 4))
6621 return best_energy_cpu;
6622
6623 return prev_cpu;
6624
6625fail:
6626 rcu_read_unlock();
6627
6628 return -1;
6629}
6630
aaee1203 6631/*
de91b9cb
MR
6632 * select_task_rq_fair: Select target runqueue for the waking task in domains
6633 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6634 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 6635 *
97fb7a0a
IM
6636 * Balances load by selecting the idlest CPU in the idlest group, or under
6637 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
aaee1203 6638 *
97fb7a0a 6639 * Returns the target CPU number.
aaee1203
PZ
6640 *
6641 * preempt must be disabled.
6642 */
0017d735 6643static int
ac66f547 6644select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 6645{
f1d88b44 6646 struct sched_domain *tmp, *sd = NULL;
c88d5910 6647 int cpu = smp_processor_id();
63b0e9ed 6648 int new_cpu = prev_cpu;
99bd5e2f 6649 int want_affine = 0;
24d0c1d6 6650 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
c88d5910 6651
c58d25f3
PZ
6652 if (sd_flag & SD_BALANCE_WAKE) {
6653 record_wakee(p);
732cd75b 6654
f8a696f2 6655 if (sched_energy_enabled()) {
732cd75b
QP
6656 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6657 if (new_cpu >= 0)
6658 return new_cpu;
6659 new_cpu = prev_cpu;
6660 }
6661
6662 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6663 cpumask_test_cpu(cpu, &p->cpus_allowed);
c58d25f3 6664 }
aaee1203 6665
dce840a0 6666 rcu_read_lock();
aaee1203 6667 for_each_domain(cpu, tmp) {
e4f42888 6668 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 6669 break;
e4f42888 6670
fe3bcfe1 6671 /*
97fb7a0a 6672 * If both 'cpu' and 'prev_cpu' are part of this domain,
99bd5e2f 6673 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 6674 */
99bd5e2f
SS
6675 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6676 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
f1d88b44
VK
6677 if (cpu != prev_cpu)
6678 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6679
6680 sd = NULL; /* Prefer wake_affine over balance flags */
29cd8bae 6681 break;
f03542a7 6682 }
29cd8bae 6683
f03542a7 6684 if (tmp->flags & sd_flag)
29cd8bae 6685 sd = tmp;
63b0e9ed
MG
6686 else if (!want_affine)
6687 break;
29cd8bae
PZ
6688 }
6689
f1d88b44
VK
6690 if (unlikely(sd)) {
6691 /* Slow path */
18bd1b4b 6692 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
f1d88b44
VK
6693 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6694 /* Fast path */
6695
6696 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6697
6698 if (want_affine)
6699 current->recent_used_cpu = cpu;
e7693a36 6700 }
dce840a0 6701 rcu_read_unlock();
e7693a36 6702
c88d5910 6703 return new_cpu;
e7693a36 6704}
0a74bef8 6705
144d8487
PZ
6706static void detach_entity_cfs_rq(struct sched_entity *se);
6707
0a74bef8 6708/*
97fb7a0a 6709 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
0a74bef8 6710 * cfs_rq_of(p) references at time of call are still valid and identify the
97fb7a0a 6711 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 6712 */
3f9672ba 6713static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
0a74bef8 6714{
59efa0ba
PZ
6715 /*
6716 * As blocked tasks retain absolute vruntime the migration needs to
6717 * deal with this by subtracting the old and adding the new
6718 * min_vruntime -- the latter is done by enqueue_entity() when placing
6719 * the task on the new runqueue.
6720 */
6721 if (p->state == TASK_WAKING) {
6722 struct sched_entity *se = &p->se;
6723 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6724 u64 min_vruntime;
6725
6726#ifndef CONFIG_64BIT
6727 u64 min_vruntime_copy;
6728
6729 do {
6730 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6731 smp_rmb();
6732 min_vruntime = cfs_rq->min_vruntime;
6733 } while (min_vruntime != min_vruntime_copy);
6734#else
6735 min_vruntime = cfs_rq->min_vruntime;
6736#endif
6737
6738 se->vruntime -= min_vruntime;
6739 }
6740
144d8487
PZ
6741 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6742 /*
6743 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6744 * rq->lock and can modify state directly.
6745 */
6746 lockdep_assert_held(&task_rq(p)->lock);
6747 detach_entity_cfs_rq(&p->se);
6748
6749 } else {
6750 /*
6751 * We are supposed to update the task to "current" time, then
6752 * its up to date and ready to go to new CPU/cfs_rq. But we
6753 * have difficulty in getting what current time is, so simply
6754 * throw away the out-of-date time. This will result in the
6755 * wakee task is less decayed, but giving the wakee more load
6756 * sounds not bad.
6757 */
6758 remove_entity_load_avg(&p->se);
6759 }
9d89c257
YD
6760
6761 /* Tell new CPU we are migrated */
6762 p->se.avg.last_update_time = 0;
3944a927
BS
6763
6764 /* We have migrated, no longer consider this task hot */
9d89c257 6765 p->se.exec_start = 0;
3f9672ba
SD
6766
6767 update_scan_period(p, new_cpu);
0a74bef8 6768}
12695578
YD
6769
6770static void task_dead_fair(struct task_struct *p)
6771{
6772 remove_entity_load_avg(&p->se);
6773}
e7693a36
GH
6774#endif /* CONFIG_SMP */
6775
a555e9d8 6776static unsigned long wakeup_gran(struct sched_entity *se)
0bbd3336
PZ
6777{
6778 unsigned long gran = sysctl_sched_wakeup_granularity;
6779
6780 /*
e52fb7c0
PZ
6781 * Since its curr running now, convert the gran from real-time
6782 * to virtual-time in his units.
13814d42
MG
6783 *
6784 * By using 'se' instead of 'curr' we penalize light tasks, so
6785 * they get preempted easier. That is, if 'se' < 'curr' then
6786 * the resulting gran will be larger, therefore penalizing the
6787 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6788 * be smaller, again penalizing the lighter task.
6789 *
6790 * This is especially important for buddies when the leftmost
6791 * task is higher priority than the buddy.
0bbd3336 6792 */
f4ad9bd2 6793 return calc_delta_fair(gran, se);
0bbd3336
PZ
6794}
6795
464b7527
PZ
6796/*
6797 * Should 'se' preempt 'curr'.
6798 *
6799 * |s1
6800 * |s2
6801 * |s3
6802 * g
6803 * |<--->|c
6804 *
6805 * w(c, s1) = -1
6806 * w(c, s2) = 0
6807 * w(c, s3) = 1
6808 *
6809 */
6810static int
6811wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6812{
6813 s64 gran, vdiff = curr->vruntime - se->vruntime;
6814
6815 if (vdiff <= 0)
6816 return -1;
6817
a555e9d8 6818 gran = wakeup_gran(se);
464b7527
PZ
6819 if (vdiff > gran)
6820 return 1;
6821
6822 return 0;
6823}
6824
02479099
PZ
6825static void set_last_buddy(struct sched_entity *se)
6826{
1da1843f 6827 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6828 return;
6829
c5ae366e
DA
6830 for_each_sched_entity(se) {
6831 if (SCHED_WARN_ON(!se->on_rq))
6832 return;
69c80f3e 6833 cfs_rq_of(se)->last = se;
c5ae366e 6834 }
02479099
PZ
6835}
6836
6837static void set_next_buddy(struct sched_entity *se)
6838{
1da1843f 6839 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
69c80f3e
VP
6840 return;
6841
c5ae366e
DA
6842 for_each_sched_entity(se) {
6843 if (SCHED_WARN_ON(!se->on_rq))
6844 return;
69c80f3e 6845 cfs_rq_of(se)->next = se;
c5ae366e 6846 }
02479099
PZ
6847}
6848
ac53db59
RR
6849static void set_skip_buddy(struct sched_entity *se)
6850{
69c80f3e
VP
6851 for_each_sched_entity(se)
6852 cfs_rq_of(se)->skip = se;
ac53db59
RR
6853}
6854
bf0f6f24
IM
6855/*
6856 * Preempt the current task with a newly woken task if needed:
6857 */
5a9b86f6 6858static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
6859{
6860 struct task_struct *curr = rq->curr;
8651a86c 6861 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 6862 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 6863 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 6864 int next_buddy_marked = 0;
bf0f6f24 6865
4ae7d5ce
IM
6866 if (unlikely(se == pse))
6867 return;
6868
5238cdd3 6869 /*
163122b7 6870 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
6871 * unconditionally check_prempt_curr() after an enqueue (which may have
6872 * lead to a throttle). This both saves work and prevents false
6873 * next-buddy nomination below.
6874 */
6875 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6876 return;
6877
2f36825b 6878 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 6879 set_next_buddy(pse);
2f36825b
VP
6880 next_buddy_marked = 1;
6881 }
57fdc26d 6882
aec0a514
BR
6883 /*
6884 * We can come here with TIF_NEED_RESCHED already set from new task
6885 * wake up path.
5238cdd3
PT
6886 *
6887 * Note: this also catches the edge-case of curr being in a throttled
6888 * group (e.g. via set_curr_task), since update_curr() (in the
6889 * enqueue of curr) will have resulted in resched being set. This
6890 * prevents us from potentially nominating it as a false LAST_BUDDY
6891 * below.
aec0a514
BR
6892 */
6893 if (test_tsk_need_resched(curr))
6894 return;
6895
a2f5c9ab 6896 /* Idle tasks are by definition preempted by non-idle tasks. */
1da1843f
VK
6897 if (unlikely(task_has_idle_policy(curr)) &&
6898 likely(!task_has_idle_policy(p)))
a2f5c9ab
DH
6899 goto preempt;
6900
91c234b4 6901 /*
a2f5c9ab
DH
6902 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6903 * is driven by the tick):
91c234b4 6904 */
8ed92e51 6905 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 6906 return;
bf0f6f24 6907
464b7527 6908 find_matching_se(&se, &pse);
9bbd7374 6909 update_curr(cfs_rq_of(se));
002f128b 6910 BUG_ON(!pse);
2f36825b
VP
6911 if (wakeup_preempt_entity(se, pse) == 1) {
6912 /*
6913 * Bias pick_next to pick the sched entity that is
6914 * triggering this preemption.
6915 */
6916 if (!next_buddy_marked)
6917 set_next_buddy(pse);
3a7e73a2 6918 goto preempt;
2f36825b 6919 }
464b7527 6920
3a7e73a2 6921 return;
a65ac745 6922
3a7e73a2 6923preempt:
8875125e 6924 resched_curr(rq);
3a7e73a2
PZ
6925 /*
6926 * Only set the backward buddy when the current task is still
6927 * on the rq. This can happen when a wakeup gets interleaved
6928 * with schedule on the ->pre_schedule() or idle_balance()
6929 * point, either of which can * drop the rq lock.
6930 *
6931 * Also, during early boot the idle thread is in the fair class,
6932 * for obvious reasons its a bad idea to schedule back to it.
6933 */
6934 if (unlikely(!se->on_rq || curr == rq->idle))
6935 return;
6936
6937 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6938 set_last_buddy(se);
bf0f6f24
IM
6939}
6940
606dba2e 6941static struct task_struct *
d8ac8971 6942pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
bf0f6f24
IM
6943{
6944 struct cfs_rq *cfs_rq = &rq->cfs;
6945 struct sched_entity *se;
678d5718 6946 struct task_struct *p;
37e117c0 6947 int new_tasks;
678d5718 6948
6e83125c 6949again:
678d5718 6950 if (!cfs_rq->nr_running)
38033c37 6951 goto idle;
678d5718 6952
9674f5ca 6953#ifdef CONFIG_FAIR_GROUP_SCHED
3f1d2a31 6954 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
6955 goto simple;
6956
6957 /*
6958 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6959 * likely that a next task is from the same cgroup as the current.
6960 *
6961 * Therefore attempt to avoid putting and setting the entire cgroup
6962 * hierarchy, only change the part that actually changes.
6963 */
6964
6965 do {
6966 struct sched_entity *curr = cfs_rq->curr;
6967
6968 /*
6969 * Since we got here without doing put_prev_entity() we also
6970 * have to consider cfs_rq->curr. If it is still a runnable
6971 * entity, update_curr() will update its vruntime, otherwise
6972 * forget we've ever seen it.
6973 */
54d27365
BS
6974 if (curr) {
6975 if (curr->on_rq)
6976 update_curr(cfs_rq);
6977 else
6978 curr = NULL;
678d5718 6979
54d27365
BS
6980 /*
6981 * This call to check_cfs_rq_runtime() will do the
6982 * throttle and dequeue its entity in the parent(s).
9674f5ca 6983 * Therefore the nr_running test will indeed
54d27365
BS
6984 * be correct.
6985 */
9674f5ca
VK
6986 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6987 cfs_rq = &rq->cfs;
6988
6989 if (!cfs_rq->nr_running)
6990 goto idle;
6991
54d27365 6992 goto simple;
9674f5ca 6993 }
54d27365 6994 }
678d5718
PZ
6995
6996 se = pick_next_entity(cfs_rq, curr);
6997 cfs_rq = group_cfs_rq(se);
6998 } while (cfs_rq);
6999
7000 p = task_of(se);
7001
7002 /*
7003 * Since we haven't yet done put_prev_entity and if the selected task
7004 * is a different task than we started out with, try and touch the
7005 * least amount of cfs_rqs.
7006 */
7007 if (prev != p) {
7008 struct sched_entity *pse = &prev->se;
7009
7010 while (!(cfs_rq = is_same_group(se, pse))) {
7011 int se_depth = se->depth;
7012 int pse_depth = pse->depth;
7013
7014 if (se_depth <= pse_depth) {
7015 put_prev_entity(cfs_rq_of(pse), pse);
7016 pse = parent_entity(pse);
7017 }
7018 if (se_depth >= pse_depth) {
7019 set_next_entity(cfs_rq_of(se), se);
7020 se = parent_entity(se);
7021 }
7022 }
7023
7024 put_prev_entity(cfs_rq, pse);
7025 set_next_entity(cfs_rq, se);
7026 }
7027
93824900 7028 goto done;
678d5718 7029simple:
678d5718 7030#endif
bf0f6f24 7031
3f1d2a31 7032 put_prev_task(rq, prev);
606dba2e 7033
bf0f6f24 7034 do {
678d5718 7035 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 7036 set_next_entity(cfs_rq, se);
bf0f6f24
IM
7037 cfs_rq = group_cfs_rq(se);
7038 } while (cfs_rq);
7039
8f4d37ec 7040 p = task_of(se);
678d5718 7041
13a453c2 7042done: __maybe_unused;
93824900
UR
7043#ifdef CONFIG_SMP
7044 /*
7045 * Move the next running task to the front of
7046 * the list, so our cfs_tasks list becomes MRU
7047 * one.
7048 */
7049 list_move(&p->se.group_node, &rq->cfs_tasks);
7050#endif
7051
b39e66ea
MG
7052 if (hrtick_enabled(rq))
7053 hrtick_start_fair(rq, p);
8f4d37ec 7054
3b1baa64
MR
7055 update_misfit_status(p, rq);
7056
8f4d37ec 7057 return p;
38033c37
PZ
7058
7059idle:
3b1baa64 7060 update_misfit_status(NULL, rq);
46f69fa3
MF
7061 new_tasks = idle_balance(rq, rf);
7062
37e117c0
PZ
7063 /*
7064 * Because idle_balance() releases (and re-acquires) rq->lock, it is
7065 * possible for any higher priority task to appear. In that case we
7066 * must re-start the pick_next_entity() loop.
7067 */
e4aa358b 7068 if (new_tasks < 0)
37e117c0
PZ
7069 return RETRY_TASK;
7070
e4aa358b 7071 if (new_tasks > 0)
38033c37 7072 goto again;
38033c37 7073
23127296
VG
7074 /*
7075 * rq is about to be idle, check if we need to update the
7076 * lost_idle_time of clock_pelt
7077 */
7078 update_idle_rq_clock_pelt(rq);
7079
38033c37 7080 return NULL;
bf0f6f24
IM
7081}
7082
7083/*
7084 * Account for a descheduled task:
7085 */
31ee529c 7086static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
7087{
7088 struct sched_entity *se = &prev->se;
7089 struct cfs_rq *cfs_rq;
7090
7091 for_each_sched_entity(se) {
7092 cfs_rq = cfs_rq_of(se);
ab6cde26 7093 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
7094 }
7095}
7096
ac53db59
RR
7097/*
7098 * sched_yield() is very simple
7099 *
7100 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7101 */
7102static void yield_task_fair(struct rq *rq)
7103{
7104 struct task_struct *curr = rq->curr;
7105 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7106 struct sched_entity *se = &curr->se;
7107
7108 /*
7109 * Are we the only task in the tree?
7110 */
7111 if (unlikely(rq->nr_running == 1))
7112 return;
7113
7114 clear_buddies(cfs_rq, se);
7115
7116 if (curr->policy != SCHED_BATCH) {
7117 update_rq_clock(rq);
7118 /*
7119 * Update run-time statistics of the 'current'.
7120 */
7121 update_curr(cfs_rq);
916671c0
MG
7122 /*
7123 * Tell update_rq_clock() that we've just updated,
7124 * so we don't do microscopic update in schedule()
7125 * and double the fastpath cost.
7126 */
adcc8da8 7127 rq_clock_skip_update(rq);
ac53db59
RR
7128 }
7129
7130 set_skip_buddy(se);
7131}
7132
d95f4122
MG
7133static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7134{
7135 struct sched_entity *se = &p->se;
7136
5238cdd3
PT
7137 /* throttled hierarchies are not runnable */
7138 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
7139 return false;
7140
7141 /* Tell the scheduler that we'd really like pse to run next. */
7142 set_next_buddy(se);
7143
d95f4122
MG
7144 yield_task_fair(rq);
7145
7146 return true;
7147}
7148
681f3e68 7149#ifdef CONFIG_SMP
bf0f6f24 7150/**************************************************
e9c84cb8
PZ
7151 * Fair scheduling class load-balancing methods.
7152 *
7153 * BASICS
7154 *
7155 * The purpose of load-balancing is to achieve the same basic fairness the
97fb7a0a 7156 * per-CPU scheduler provides, namely provide a proportional amount of compute
e9c84cb8
PZ
7157 * time to each task. This is expressed in the following equation:
7158 *
7159 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7160 *
97fb7a0a 7161 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
e9c84cb8
PZ
7162 * W_i,0 is defined as:
7163 *
7164 * W_i,0 = \Sum_j w_i,j (2)
7165 *
97fb7a0a 7166 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
1c3de5e1 7167 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
7168 *
7169 * The weight average is an exponential decay average of the instantaneous
7170 * weight:
7171 *
7172 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7173 *
97fb7a0a 7174 * C_i is the compute capacity of CPU i, typically it is the
e9c84cb8
PZ
7175 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7176 * can also include other factors [XXX].
7177 *
7178 * To achieve this balance we define a measure of imbalance which follows
7179 * directly from (1):
7180 *
ced549fa 7181 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
7182 *
7183 * We them move tasks around to minimize the imbalance. In the continuous
7184 * function space it is obvious this converges, in the discrete case we get
7185 * a few fun cases generally called infeasible weight scenarios.
7186 *
7187 * [XXX expand on:
7188 * - infeasible weights;
7189 * - local vs global optima in the discrete case. ]
7190 *
7191 *
7192 * SCHED DOMAINS
7193 *
7194 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
97fb7a0a 7195 * for all i,j solution, we create a tree of CPUs that follows the hardware
e9c84cb8 7196 * topology where each level pairs two lower groups (or better). This results
97fb7a0a 7197 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
e9c84cb8 7198 * tree to only the first of the previous level and we decrease the frequency
97fb7a0a 7199 * of load-balance at each level inv. proportional to the number of CPUs in
e9c84cb8
PZ
7200 * the groups.
7201 *
7202 * This yields:
7203 *
7204 * log_2 n 1 n
7205 * \Sum { --- * --- * 2^i } = O(n) (5)
7206 * i = 0 2^i 2^i
7207 * `- size of each group
97fb7a0a 7208 * | | `- number of CPUs doing load-balance
e9c84cb8
PZ
7209 * | `- freq
7210 * `- sum over all levels
7211 *
7212 * Coupled with a limit on how many tasks we can migrate every balance pass,
7213 * this makes (5) the runtime complexity of the balancer.
7214 *
7215 * An important property here is that each CPU is still (indirectly) connected
97fb7a0a 7216 * to every other CPU in at most O(log n) steps:
e9c84cb8
PZ
7217 *
7218 * The adjacency matrix of the resulting graph is given by:
7219 *
97a7142f 7220 * log_2 n
e9c84cb8
PZ
7221 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7222 * k = 0
7223 *
7224 * And you'll find that:
7225 *
7226 * A^(log_2 n)_i,j != 0 for all i,j (7)
7227 *
97fb7a0a 7228 * Showing there's indeed a path between every CPU in at most O(log n) steps.
e9c84cb8
PZ
7229 * The task movement gives a factor of O(m), giving a convergence complexity
7230 * of:
7231 *
7232 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7233 *
7234 *
7235 * WORK CONSERVING
7236 *
7237 * In order to avoid CPUs going idle while there's still work to do, new idle
97fb7a0a 7238 * balancing is more aggressive and has the newly idle CPU iterate up the domain
e9c84cb8
PZ
7239 * tree itself instead of relying on other CPUs to bring it work.
7240 *
7241 * This adds some complexity to both (5) and (8) but it reduces the total idle
7242 * time.
7243 *
7244 * [XXX more?]
7245 *
7246 *
7247 * CGROUPS
7248 *
7249 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7250 *
7251 * s_k,i
7252 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7253 * S_k
7254 *
7255 * Where
7256 *
7257 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7258 *
97fb7a0a 7259 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
e9c84cb8
PZ
7260 *
7261 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7262 * property.
7263 *
7264 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7265 * rewrite all of this once again.]
97a7142f 7266 */
bf0f6f24 7267
ed387b78
HS
7268static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7269
0ec8aa00
PZ
7270enum fbq_type { regular, remote, all };
7271
3b1baa64
MR
7272enum group_type {
7273 group_other = 0,
7274 group_misfit_task,
7275 group_imbalanced,
7276 group_overloaded,
7277};
7278
ddcdf6e7 7279#define LBF_ALL_PINNED 0x01
367456c7 7280#define LBF_NEED_BREAK 0x02
6263322c
PZ
7281#define LBF_DST_PINNED 0x04
7282#define LBF_SOME_PINNED 0x08
e022e0d3 7283#define LBF_NOHZ_STATS 0x10
f643ea22 7284#define LBF_NOHZ_AGAIN 0x20
ddcdf6e7
PZ
7285
7286struct lb_env {
7287 struct sched_domain *sd;
7288
ddcdf6e7 7289 struct rq *src_rq;
85c1e7da 7290 int src_cpu;
ddcdf6e7
PZ
7291
7292 int dst_cpu;
7293 struct rq *dst_rq;
7294
88b8dac0
SV
7295 struct cpumask *dst_grpmask;
7296 int new_dst_cpu;
ddcdf6e7 7297 enum cpu_idle_type idle;
bd939f45 7298 long imbalance;
b9403130
MW
7299 /* The set of CPUs under consideration for load-balancing */
7300 struct cpumask *cpus;
7301
ddcdf6e7 7302 unsigned int flags;
367456c7
PZ
7303
7304 unsigned int loop;
7305 unsigned int loop_break;
7306 unsigned int loop_max;
0ec8aa00
PZ
7307
7308 enum fbq_type fbq_type;
cad68e55 7309 enum group_type src_grp_type;
163122b7 7310 struct list_head tasks;
ddcdf6e7
PZ
7311};
7312
029632fb
PZ
7313/*
7314 * Is this task likely cache-hot:
7315 */
5d5e2b1b 7316static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
7317{
7318 s64 delta;
7319
e5673f28
KT
7320 lockdep_assert_held(&env->src_rq->lock);
7321
029632fb
PZ
7322 if (p->sched_class != &fair_sched_class)
7323 return 0;
7324
1da1843f 7325 if (unlikely(task_has_idle_policy(p)))
029632fb
PZ
7326 return 0;
7327
7328 /*
7329 * Buddy candidates are cache hot:
7330 */
5d5e2b1b 7331 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
7332 (&p->se == cfs_rq_of(&p->se)->next ||
7333 &p->se == cfs_rq_of(&p->se)->last))
7334 return 1;
7335
7336 if (sysctl_sched_migration_cost == -1)
7337 return 1;
7338 if (sysctl_sched_migration_cost == 0)
7339 return 0;
7340
5d5e2b1b 7341 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
7342
7343 return delta < (s64)sysctl_sched_migration_cost;
7344}
7345
3a7053b3 7346#ifdef CONFIG_NUMA_BALANCING
c1ceac62 7347/*
2a1ed24c
SD
7348 * Returns 1, if task migration degrades locality
7349 * Returns 0, if task migration improves locality i.e migration preferred.
7350 * Returns -1, if task migration is not affected by locality.
c1ceac62 7351 */
2a1ed24c 7352static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 7353{
b1ad065e 7354 struct numa_group *numa_group = rcu_dereference(p->numa_group);
f35678b6
SD
7355 unsigned long src_weight, dst_weight;
7356 int src_nid, dst_nid, dist;
3a7053b3 7357
2a595721 7358 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
7359 return -1;
7360
c3b9bc5b 7361 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 7362 return -1;
7a0f3083
MG
7363
7364 src_nid = cpu_to_node(env->src_cpu);
7365 dst_nid = cpu_to_node(env->dst_cpu);
7366
83e1d2cd 7367 if (src_nid == dst_nid)
2a1ed24c 7368 return -1;
7a0f3083 7369
2a1ed24c
SD
7370 /* Migrating away from the preferred node is always bad. */
7371 if (src_nid == p->numa_preferred_nid) {
7372 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7373 return 1;
7374 else
7375 return -1;
7376 }
b1ad065e 7377
c1ceac62
RR
7378 /* Encourage migration to the preferred node. */
7379 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 7380 return 0;
b1ad065e 7381
739294fb 7382 /* Leaving a core idle is often worse than degrading locality. */
f35678b6 7383 if (env->idle == CPU_IDLE)
739294fb
RR
7384 return -1;
7385
f35678b6 7386 dist = node_distance(src_nid, dst_nid);
c1ceac62 7387 if (numa_group) {
f35678b6
SD
7388 src_weight = group_weight(p, src_nid, dist);
7389 dst_weight = group_weight(p, dst_nid, dist);
c1ceac62 7390 } else {
f35678b6
SD
7391 src_weight = task_weight(p, src_nid, dist);
7392 dst_weight = task_weight(p, dst_nid, dist);
b1ad065e
RR
7393 }
7394
f35678b6 7395 return dst_weight < src_weight;
7a0f3083
MG
7396}
7397
3a7053b3 7398#else
2a1ed24c 7399static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
7400 struct lb_env *env)
7401{
2a1ed24c 7402 return -1;
7a0f3083 7403}
3a7053b3
MG
7404#endif
7405
1e3c88bd
PZ
7406/*
7407 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7408 */
7409static
8e45cb54 7410int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 7411{
2a1ed24c 7412 int tsk_cache_hot;
e5673f28
KT
7413
7414 lockdep_assert_held(&env->src_rq->lock);
7415
1e3c88bd
PZ
7416 /*
7417 * We do not migrate tasks that are:
d3198084 7418 * 1) throttled_lb_pair, or
1e3c88bd 7419 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
7420 * 3) running (obviously), or
7421 * 4) are cache-hot on their current CPU.
1e3c88bd 7422 */
d3198084
JK
7423 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7424 return 0;
7425
0c98d344 7426 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
e02e60c1 7427 int cpu;
88b8dac0 7428
ae92882e 7429 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 7430
6263322c
PZ
7431 env->flags |= LBF_SOME_PINNED;
7432
88b8dac0 7433 /*
97fb7a0a 7434 * Remember if this task can be migrated to any other CPU in
88b8dac0
SV
7435 * our sched_group. We may want to revisit it if we couldn't
7436 * meet load balance goals by pulling other tasks on src_cpu.
7437 *
65a4433a
JH
7438 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7439 * already computed one in current iteration.
88b8dac0 7440 */
65a4433a 7441 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
7442 return 0;
7443
97fb7a0a 7444 /* Prevent to re-select dst_cpu via env's CPUs: */
e02e60c1 7445 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
0c98d344 7446 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6263322c 7447 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
7448 env->new_dst_cpu = cpu;
7449 break;
7450 }
88b8dac0 7451 }
e02e60c1 7452
1e3c88bd
PZ
7453 return 0;
7454 }
88b8dac0
SV
7455
7456 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 7457 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 7458
ddcdf6e7 7459 if (task_running(env->src_rq, p)) {
ae92882e 7460 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
7461 return 0;
7462 }
7463
7464 /*
7465 * Aggressive migration if:
3a7053b3
MG
7466 * 1) destination numa is preferred
7467 * 2) task is cache cold, or
7468 * 3) too many balance attempts have failed.
1e3c88bd 7469 */
2a1ed24c
SD
7470 tsk_cache_hot = migrate_degrades_locality(p, env);
7471 if (tsk_cache_hot == -1)
7472 tsk_cache_hot = task_hot(p, env);
3a7053b3 7473
2a1ed24c 7474 if (tsk_cache_hot <= 0 ||
7a96c231 7475 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 7476 if (tsk_cache_hot == 1) {
ae92882e
JP
7477 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7478 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 7479 }
1e3c88bd
PZ
7480 return 1;
7481 }
7482
ae92882e 7483 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 7484 return 0;
1e3c88bd
PZ
7485}
7486
897c395f 7487/*
163122b7
KT
7488 * detach_task() -- detach the task for the migration specified in env
7489 */
7490static void detach_task(struct task_struct *p, struct lb_env *env)
7491{
7492 lockdep_assert_held(&env->src_rq->lock);
7493
163122b7 7494 p->on_rq = TASK_ON_RQ_MIGRATING;
5704ac0a 7495 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
163122b7
KT
7496 set_task_cpu(p, env->dst_cpu);
7497}
7498
897c395f 7499/*
e5673f28 7500 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 7501 * part of active balancing operations within "domain".
897c395f 7502 *
e5673f28 7503 * Returns a task if successful and NULL otherwise.
897c395f 7504 */
e5673f28 7505static struct task_struct *detach_one_task(struct lb_env *env)
897c395f 7506{
93824900 7507 struct task_struct *p;
897c395f 7508
e5673f28
KT
7509 lockdep_assert_held(&env->src_rq->lock);
7510
93824900
UR
7511 list_for_each_entry_reverse(p,
7512 &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
7513 if (!can_migrate_task(p, env))
7514 continue;
897c395f 7515
163122b7 7516 detach_task(p, env);
e5673f28 7517
367456c7 7518 /*
e5673f28 7519 * Right now, this is only the second place where
163122b7 7520 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 7521 * so we can safely collect stats here rather than
163122b7 7522 * inside detach_tasks().
367456c7 7523 */
ae92882e 7524 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 7525 return p;
897c395f 7526 }
e5673f28 7527 return NULL;
897c395f
PZ
7528}
7529
eb95308e
PZ
7530static const unsigned int sched_nr_migrate_break = 32;
7531
5d6523eb 7532/*
163122b7
KT
7533 * detach_tasks() -- tries to detach up to imbalance weighted load from
7534 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 7535 *
163122b7 7536 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 7537 */
163122b7 7538static int detach_tasks(struct lb_env *env)
1e3c88bd 7539{
5d6523eb
PZ
7540 struct list_head *tasks = &env->src_rq->cfs_tasks;
7541 struct task_struct *p;
367456c7 7542 unsigned long load;
163122b7
KT
7543 int detached = 0;
7544
7545 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 7546
bd939f45 7547 if (env->imbalance <= 0)
5d6523eb 7548 return 0;
1e3c88bd 7549
5d6523eb 7550 while (!list_empty(tasks)) {
985d3a4c
YD
7551 /*
7552 * We don't want to steal all, otherwise we may be treated likewise,
7553 * which could at worst lead to a livelock crash.
7554 */
7555 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7556 break;
7557
93824900 7558 p = list_last_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 7559
367456c7
PZ
7560 env->loop++;
7561 /* We've more or less seen every task there is, call it quits */
5d6523eb 7562 if (env->loop > env->loop_max)
367456c7 7563 break;
5d6523eb
PZ
7564
7565 /* take a breather every nr_migrate tasks */
367456c7 7566 if (env->loop > env->loop_break) {
eb95308e 7567 env->loop_break += sched_nr_migrate_break;
8e45cb54 7568 env->flags |= LBF_NEED_BREAK;
ee00e66f 7569 break;
a195f004 7570 }
1e3c88bd 7571
d3198084 7572 if (!can_migrate_task(p, env))
367456c7
PZ
7573 goto next;
7574
7575 load = task_h_load(p);
5d6523eb 7576
eb95308e 7577 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
7578 goto next;
7579
bd939f45 7580 if ((load / 2) > env->imbalance)
367456c7 7581 goto next;
1e3c88bd 7582
163122b7
KT
7583 detach_task(p, env);
7584 list_add(&p->se.group_node, &env->tasks);
7585
7586 detached++;
bd939f45 7587 env->imbalance -= load;
1e3c88bd
PZ
7588
7589#ifdef CONFIG_PREEMPT
ee00e66f
PZ
7590 /*
7591 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 7592 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
7593 * the critical section.
7594 */
5d6523eb 7595 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 7596 break;
1e3c88bd
PZ
7597#endif
7598
ee00e66f
PZ
7599 /*
7600 * We only want to steal up to the prescribed amount of
7601 * weighted load.
7602 */
bd939f45 7603 if (env->imbalance <= 0)
ee00e66f 7604 break;
367456c7
PZ
7605
7606 continue;
7607next:
93824900 7608 list_move(&p->se.group_node, tasks);
1e3c88bd 7609 }
5d6523eb 7610
1e3c88bd 7611 /*
163122b7
KT
7612 * Right now, this is one of only two places we collect this stat
7613 * so we can safely collect detach_one_task() stats here rather
7614 * than inside detach_one_task().
1e3c88bd 7615 */
ae92882e 7616 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 7617
163122b7
KT
7618 return detached;
7619}
7620
7621/*
7622 * attach_task() -- attach the task detached by detach_task() to its new rq.
7623 */
7624static void attach_task(struct rq *rq, struct task_struct *p)
7625{
7626 lockdep_assert_held(&rq->lock);
7627
7628 BUG_ON(task_rq(p) != rq);
5704ac0a 7629 activate_task(rq, p, ENQUEUE_NOCLOCK);
3ea94de1 7630 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
7631 check_preempt_curr(rq, p, 0);
7632}
7633
7634/*
7635 * attach_one_task() -- attaches the task returned from detach_one_task() to
7636 * its new rq.
7637 */
7638static void attach_one_task(struct rq *rq, struct task_struct *p)
7639{
8a8c69c3
PZ
7640 struct rq_flags rf;
7641
7642 rq_lock(rq, &rf);
5704ac0a 7643 update_rq_clock(rq);
163122b7 7644 attach_task(rq, p);
8a8c69c3 7645 rq_unlock(rq, &rf);
163122b7
KT
7646}
7647
7648/*
7649 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7650 * new rq.
7651 */
7652static void attach_tasks(struct lb_env *env)
7653{
7654 struct list_head *tasks = &env->tasks;
7655 struct task_struct *p;
8a8c69c3 7656 struct rq_flags rf;
163122b7 7657
8a8c69c3 7658 rq_lock(env->dst_rq, &rf);
5704ac0a 7659 update_rq_clock(env->dst_rq);
163122b7
KT
7660
7661 while (!list_empty(tasks)) {
7662 p = list_first_entry(tasks, struct task_struct, se.group_node);
7663 list_del_init(&p->se.group_node);
1e3c88bd 7664
163122b7
KT
7665 attach_task(env->dst_rq, p);
7666 }
7667
8a8c69c3 7668 rq_unlock(env->dst_rq, &rf);
1e3c88bd
PZ
7669}
7670
1936c53c
VG
7671static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7672{
7673 if (cfs_rq->avg.load_avg)
7674 return true;
7675
7676 if (cfs_rq->avg.util_avg)
7677 return true;
7678
7679 return false;
7680}
7681
91c27493 7682static inline bool others_have_blocked(struct rq *rq)
371bf427
VG
7683{
7684 if (READ_ONCE(rq->avg_rt.util_avg))
7685 return true;
7686
3727e0e1
VG
7687 if (READ_ONCE(rq->avg_dl.util_avg))
7688 return true;
7689
11d4afd4 7690#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
7691 if (READ_ONCE(rq->avg_irq.util_avg))
7692 return true;
7693#endif
7694
371bf427
VG
7695 return false;
7696}
7697
1936c53c
VG
7698#ifdef CONFIG_FAIR_GROUP_SCHED
7699
039ae8bc
VG
7700static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7701{
7702 if (cfs_rq->load.weight)
7703 return false;
7704
7705 if (cfs_rq->avg.load_sum)
7706 return false;
7707
7708 if (cfs_rq->avg.util_sum)
7709 return false;
7710
7711 if (cfs_rq->avg.runnable_load_sum)
7712 return false;
7713
7714 return true;
7715}
7716
48a16753 7717static void update_blocked_averages(int cpu)
9e3081ca 7718{
9e3081ca 7719 struct rq *rq = cpu_rq(cpu);
039ae8bc 7720 struct cfs_rq *cfs_rq, *pos;
12b04875 7721 const struct sched_class *curr_class;
8a8c69c3 7722 struct rq_flags rf;
f643ea22 7723 bool done = true;
9e3081ca 7724
8a8c69c3 7725 rq_lock_irqsave(rq, &rf);
48a16753 7726 update_rq_clock(rq);
9d89c257 7727
9763b67f
PZ
7728 /*
7729 * Iterates the task_group tree in a bottom up fashion, see
7730 * list_add_leaf_cfs_rq() for details.
7731 */
039ae8bc 7732 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
bc427898
VG
7733 struct sched_entity *se;
7734
23127296 7735 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
9d89c257 7736 update_tg_load_avg(cfs_rq, 0);
4e516076 7737
bc427898
VG
7738 /* Propagate pending load changes to the parent, if any: */
7739 se = cfs_rq->tg->se[cpu];
7740 if (se && !skip_blocked_update(se))
88c0616e 7741 update_load_avg(cfs_rq_of(se), se, 0);
a9e7f654 7742
039ae8bc
VG
7743 /*
7744 * There can be a lot of idle CPU cgroups. Don't let fully
7745 * decayed cfs_rqs linger on the list.
7746 */
7747 if (cfs_rq_is_decayed(cfs_rq))
7748 list_del_leaf_cfs_rq(cfs_rq);
7749
1936c53c
VG
7750 /* Don't need periodic decay once load/util_avg are null */
7751 if (cfs_rq_has_blocked(cfs_rq))
f643ea22 7752 done = false;
9d89c257 7753 }
12b04875
VG
7754
7755 curr_class = rq->curr->sched_class;
23127296
VG
7756 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7757 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
91c27493 7758 update_irq_load_avg(rq, 0);
371bf427 7759 /* Don't need periodic decay once load/util_avg are null */
91c27493 7760 if (others_have_blocked(rq))
371bf427 7761 done = false;
e022e0d3
PZ
7762
7763#ifdef CONFIG_NO_HZ_COMMON
7764 rq->last_blocked_load_update_tick = jiffies;
f643ea22
VG
7765 if (done)
7766 rq->has_blocked_load = 0;
e022e0d3 7767#endif
8a8c69c3 7768 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7769}
7770
9763b67f 7771/*
68520796 7772 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
7773 * This needs to be done in a top-down fashion because the load of a child
7774 * group is a fraction of its parents load.
7775 */
68520796 7776static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 7777{
68520796
VD
7778 struct rq *rq = rq_of(cfs_rq);
7779 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 7780 unsigned long now = jiffies;
68520796 7781 unsigned long load;
a35b6466 7782
68520796 7783 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
7784 return;
7785
68520796
VD
7786 cfs_rq->h_load_next = NULL;
7787 for_each_sched_entity(se) {
7788 cfs_rq = cfs_rq_of(se);
7789 cfs_rq->h_load_next = se;
7790 if (cfs_rq->last_h_load_update == now)
7791 break;
7792 }
a35b6466 7793
68520796 7794 if (!se) {
7ea241af 7795 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
7796 cfs_rq->last_h_load_update = now;
7797 }
7798
7799 while ((se = cfs_rq->h_load_next) != NULL) {
7800 load = cfs_rq->h_load;
7ea241af
YD
7801 load = div64_ul(load * se->avg.load_avg,
7802 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
7803 cfs_rq = group_cfs_rq(se);
7804 cfs_rq->h_load = load;
7805 cfs_rq->last_h_load_update = now;
7806 }
9763b67f
PZ
7807}
7808
367456c7 7809static unsigned long task_h_load(struct task_struct *p)
230059de 7810{
367456c7 7811 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 7812
68520796 7813 update_cfs_rq_h_load(cfs_rq);
9d89c257 7814 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 7815 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
7816}
7817#else
48a16753 7818static inline void update_blocked_averages(int cpu)
9e3081ca 7819{
6c1d47c0
VG
7820 struct rq *rq = cpu_rq(cpu);
7821 struct cfs_rq *cfs_rq = &rq->cfs;
12b04875 7822 const struct sched_class *curr_class;
8a8c69c3 7823 struct rq_flags rf;
6c1d47c0 7824
8a8c69c3 7825 rq_lock_irqsave(rq, &rf);
6c1d47c0 7826 update_rq_clock(rq);
23127296 7827 update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
12b04875
VG
7828
7829 curr_class = rq->curr->sched_class;
23127296
VG
7830 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7831 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
91c27493 7832 update_irq_load_avg(rq, 0);
e022e0d3
PZ
7833#ifdef CONFIG_NO_HZ_COMMON
7834 rq->last_blocked_load_update_tick = jiffies;
91c27493 7835 if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
f643ea22 7836 rq->has_blocked_load = 0;
e022e0d3 7837#endif
8a8c69c3 7838 rq_unlock_irqrestore(rq, &rf);
9e3081ca
PZ
7839}
7840
367456c7 7841static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 7842{
9d89c257 7843 return p->se.avg.load_avg;
1e3c88bd 7844}
230059de 7845#endif
1e3c88bd 7846
1e3c88bd 7847/********** Helpers for find_busiest_group ************************/
caeb178c 7848
1e3c88bd
PZ
7849/*
7850 * sg_lb_stats - stats of a sched_group required for load_balancing
7851 */
7852struct sg_lb_stats {
7853 unsigned long avg_load; /*Avg load across the CPUs of the group */
7854 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 7855 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 7856 unsigned long load_per_task;
63b2ca30 7857 unsigned long group_capacity;
9e91d61d 7858 unsigned long group_util; /* Total utilization of the group */
147c5fc2 7859 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
7860 unsigned int idle_cpus;
7861 unsigned int group_weight;
caeb178c 7862 enum group_type group_type;
ea67821b 7863 int group_no_capacity;
3b1baa64 7864 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
0ec8aa00
PZ
7865#ifdef CONFIG_NUMA_BALANCING
7866 unsigned int nr_numa_running;
7867 unsigned int nr_preferred_running;
7868#endif
1e3c88bd
PZ
7869};
7870
56cf515b
JK
7871/*
7872 * sd_lb_stats - Structure to store the statistics of a sched_domain
7873 * during load balancing.
7874 */
7875struct sd_lb_stats {
7876 struct sched_group *busiest; /* Busiest group in this sd */
7877 struct sched_group *local; /* Local group in this sd */
90001d67 7878 unsigned long total_running;
56cf515b 7879 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 7880 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
7881 unsigned long avg_load; /* Average load across all groups in sd */
7882
56cf515b 7883 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 7884 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
7885};
7886
147c5fc2
PZ
7887static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7888{
7889 /*
7890 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7891 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7892 * We must however clear busiest_stat::avg_load because
7893 * update_sd_pick_busiest() reads this before assignment.
7894 */
7895 *sds = (struct sd_lb_stats){
7896 .busiest = NULL,
7897 .local = NULL,
90001d67 7898 .total_running = 0UL,
147c5fc2 7899 .total_load = 0UL,
63b2ca30 7900 .total_capacity = 0UL,
147c5fc2
PZ
7901 .busiest_stat = {
7902 .avg_load = 0UL,
caeb178c
RR
7903 .sum_nr_running = 0,
7904 .group_type = group_other,
147c5fc2
PZ
7905 },
7906 };
7907}
7908
1e3c88bd
PZ
7909/**
7910 * get_sd_load_idx - Obtain the load index for a given sched domain.
7911 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 7912 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
7913 *
7914 * Return: The load index.
1e3c88bd
PZ
7915 */
7916static inline int get_sd_load_idx(struct sched_domain *sd,
7917 enum cpu_idle_type idle)
7918{
7919 int load_idx;
7920
7921 switch (idle) {
7922 case CPU_NOT_IDLE:
7923 load_idx = sd->busy_idx;
7924 break;
7925
7926 case CPU_NEWLY_IDLE:
7927 load_idx = sd->newidle_idx;
7928 break;
7929 default:
7930 load_idx = sd->idle_idx;
7931 break;
7932 }
7933
7934 return load_idx;
7935}
7936
287cdaac 7937static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7938{
7939 struct rq *rq = cpu_rq(cpu);
287cdaac 7940 unsigned long max = arch_scale_cpu_capacity(sd, cpu);
523e979d 7941 unsigned long used, free;
523e979d 7942 unsigned long irq;
b654f7de 7943
2e62c474 7944 irq = cpu_util_irq(rq);
cadefd3d 7945
523e979d
VG
7946 if (unlikely(irq >= max))
7947 return 1;
aa483808 7948
523e979d
VG
7949 used = READ_ONCE(rq->avg_rt.util_avg);
7950 used += READ_ONCE(rq->avg_dl.util_avg);
1e3c88bd 7951
523e979d
VG
7952 if (unlikely(used >= max))
7953 return 1;
1e3c88bd 7954
523e979d 7955 free = max - used;
2e62c474
VG
7956
7957 return scale_irq_capacity(free, irq, max);
1e3c88bd
PZ
7958}
7959
ced549fa 7960static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 7961{
287cdaac 7962 unsigned long capacity = scale_rt_capacity(sd, cpu);
1e3c88bd
PZ
7963 struct sched_group *sdg = sd->groups;
7964
523e979d 7965 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd 7966
ced549fa
NP
7967 if (!capacity)
7968 capacity = 1;
1e3c88bd 7969
ced549fa
NP
7970 cpu_rq(cpu)->cpu_capacity = capacity;
7971 sdg->sgc->capacity = capacity;
bf475ce0 7972 sdg->sgc->min_capacity = capacity;
e3d6d0cb 7973 sdg->sgc->max_capacity = capacity;
1e3c88bd
PZ
7974}
7975
63b2ca30 7976void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
7977{
7978 struct sched_domain *child = sd->child;
7979 struct sched_group *group, *sdg = sd->groups;
e3d6d0cb 7980 unsigned long capacity, min_capacity, max_capacity;
4ec4412e
VG
7981 unsigned long interval;
7982
7983 interval = msecs_to_jiffies(sd->balance_interval);
7984 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 7985 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
7986
7987 if (!child) {
ced549fa 7988 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
7989 return;
7990 }
7991
dc7ff76e 7992 capacity = 0;
bf475ce0 7993 min_capacity = ULONG_MAX;
e3d6d0cb 7994 max_capacity = 0;
1e3c88bd 7995
74a5ce20
PZ
7996 if (child->flags & SD_OVERLAP) {
7997 /*
7998 * SD_OVERLAP domains cannot assume that child groups
7999 * span the current group.
8000 */
8001
ae4df9d6 8002 for_each_cpu(cpu, sched_group_span(sdg)) {
63b2ca30 8003 struct sched_group_capacity *sgc;
9abf24d4 8004 struct rq *rq = cpu_rq(cpu);
863bffc8 8005
9abf24d4 8006 /*
63b2ca30 8007 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
8008 * gets here before we've attached the domains to the
8009 * runqueues.
8010 *
ced549fa
NP
8011 * Use capacity_of(), which is set irrespective of domains
8012 * in update_cpu_capacity().
9abf24d4 8013 *
dc7ff76e 8014 * This avoids capacity from being 0 and
9abf24d4 8015 * causing divide-by-zero issues on boot.
9abf24d4
SD
8016 */
8017 if (unlikely(!rq->sd)) {
ced549fa 8018 capacity += capacity_of(cpu);
bf475ce0
MR
8019 } else {
8020 sgc = rq->sd->groups->sgc;
8021 capacity += sgc->capacity;
9abf24d4 8022 }
863bffc8 8023
bf475ce0 8024 min_capacity = min(capacity, min_capacity);
e3d6d0cb 8025 max_capacity = max(capacity, max_capacity);
863bffc8 8026 }
74a5ce20
PZ
8027 } else {
8028 /*
8029 * !SD_OVERLAP domains can assume that child groups
8030 * span the current group.
97a7142f 8031 */
74a5ce20
PZ
8032
8033 group = child->groups;
8034 do {
bf475ce0
MR
8035 struct sched_group_capacity *sgc = group->sgc;
8036
8037 capacity += sgc->capacity;
8038 min_capacity = min(sgc->min_capacity, min_capacity);
e3d6d0cb 8039 max_capacity = max(sgc->max_capacity, max_capacity);
74a5ce20
PZ
8040 group = group->next;
8041 } while (group != child->groups);
8042 }
1e3c88bd 8043
63b2ca30 8044 sdg->sgc->capacity = capacity;
bf475ce0 8045 sdg->sgc->min_capacity = min_capacity;
e3d6d0cb 8046 sdg->sgc->max_capacity = max_capacity;
1e3c88bd
PZ
8047}
8048
9d5efe05 8049/*
ea67821b
VG
8050 * Check whether the capacity of the rq has been noticeably reduced by side
8051 * activity. The imbalance_pct is used for the threshold.
8052 * Return true is the capacity is reduced
9d5efe05
SV
8053 */
8054static inline int
ea67821b 8055check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 8056{
ea67821b
VG
8057 return ((rq->cpu_capacity * sd->imbalance_pct) <
8058 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
8059}
8060
30ce5dab
PZ
8061/*
8062 * Group imbalance indicates (and tries to solve) the problem where balancing
0c98d344 8063 * groups is inadequate due to ->cpus_allowed constraints.
30ce5dab 8064 *
97fb7a0a
IM
8065 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8066 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
30ce5dab
PZ
8067 * Something like:
8068 *
2b4d5b25
IM
8069 * { 0 1 2 3 } { 4 5 6 7 }
8070 * * * * *
30ce5dab
PZ
8071 *
8072 * If we were to balance group-wise we'd place two tasks in the first group and
8073 * two tasks in the second group. Clearly this is undesired as it will overload
97fb7a0a 8074 * cpu 3 and leave one of the CPUs in the second group unused.
30ce5dab
PZ
8075 *
8076 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
8077 * by noticing the lower domain failed to reach balance and had difficulty
8078 * moving tasks due to affinity constraints.
30ce5dab
PZ
8079 *
8080 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 8081 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 8082 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
8083 * to create an effective group imbalance.
8084 *
8085 * This is a somewhat tricky proposition since the next run might not find the
8086 * group imbalance and decide the groups need to be balanced again. A most
8087 * subtle and fragile situation.
8088 */
8089
6263322c 8090static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 8091{
63b2ca30 8092 return group->sgc->imbalance;
30ce5dab
PZ
8093}
8094
b37d9316 8095/*
ea67821b
VG
8096 * group_has_capacity returns true if the group has spare capacity that could
8097 * be used by some tasks.
8098 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
8099 * smaller than the number of CPUs or if the utilization is lower than the
8100 * available capacity for CFS tasks.
ea67821b
VG
8101 * For the latter, we use a threshold to stabilize the state, to take into
8102 * account the variance of the tasks' load and to return true if the available
8103 * capacity in meaningful for the load balancer.
8104 * As an example, an available capacity of 1% can appear but it doesn't make
8105 * any benefit for the load balance.
b37d9316 8106 */
ea67821b
VG
8107static inline bool
8108group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 8109{
ea67821b
VG
8110 if (sgs->sum_nr_running < sgs->group_weight)
8111 return true;
c61037e9 8112
ea67821b 8113 if ((sgs->group_capacity * 100) >
9e91d61d 8114 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 8115 return true;
b37d9316 8116
ea67821b
VG
8117 return false;
8118}
8119
8120/*
8121 * group_is_overloaded returns true if the group has more tasks than it can
8122 * handle.
8123 * group_is_overloaded is not equals to !group_has_capacity because a group
8124 * with the exact right number of tasks, has no more spare capacity but is not
8125 * overloaded so both group_has_capacity and group_is_overloaded return
8126 * false.
8127 */
8128static inline bool
8129group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8130{
8131 if (sgs->sum_nr_running <= sgs->group_weight)
8132 return false;
b37d9316 8133
ea67821b 8134 if ((sgs->group_capacity * 100) <
9e91d61d 8135 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 8136 return true;
b37d9316 8137
ea67821b 8138 return false;
b37d9316
PZ
8139}
8140
9e0994c0 8141/*
e3d6d0cb 8142 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9e0994c0
MR
8143 * per-CPU capacity than sched_group ref.
8144 */
8145static inline bool
e3d6d0cb 8146group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9e0994c0
MR
8147{
8148 return sg->sgc->min_capacity * capacity_margin <
8149 ref->sgc->min_capacity * 1024;
8150}
8151
e3d6d0cb
MR
8152/*
8153 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8154 * per-CPU capacity_orig than sched_group ref.
8155 */
8156static inline bool
8157group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8158{
8159 return sg->sgc->max_capacity * capacity_margin <
8160 ref->sgc->max_capacity * 1024;
8161}
8162
79a89f92
LY
8163static inline enum
8164group_type group_classify(struct sched_group *group,
8165 struct sg_lb_stats *sgs)
caeb178c 8166{
ea67821b 8167 if (sgs->group_no_capacity)
caeb178c
RR
8168 return group_overloaded;
8169
8170 if (sg_imbalanced(group))
8171 return group_imbalanced;
8172
3b1baa64
MR
8173 if (sgs->group_misfit_task_load)
8174 return group_misfit_task;
8175
caeb178c
RR
8176 return group_other;
8177}
8178
63928384 8179static bool update_nohz_stats(struct rq *rq, bool force)
e022e0d3
PZ
8180{
8181#ifdef CONFIG_NO_HZ_COMMON
8182 unsigned int cpu = rq->cpu;
8183
f643ea22
VG
8184 if (!rq->has_blocked_load)
8185 return false;
8186
e022e0d3 8187 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
f643ea22 8188 return false;
e022e0d3 8189
63928384 8190 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
f643ea22 8191 return true;
e022e0d3
PZ
8192
8193 update_blocked_averages(cpu);
f643ea22
VG
8194
8195 return rq->has_blocked_load;
8196#else
8197 return false;
e022e0d3
PZ
8198#endif
8199}
8200
1e3c88bd
PZ
8201/**
8202 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 8203 * @env: The load balancing environment.
1e3c88bd 8204 * @group: sched_group whose statistics are to be updated.
1e3c88bd 8205 * @sgs: variable to hold the statistics for this group.
630246a0 8206 * @sg_status: Holds flag indicating the status of the sched_group
1e3c88bd 8207 */
bd939f45 8208static inline void update_sg_lb_stats(struct lb_env *env,
630246a0
QP
8209 struct sched_group *group,
8210 struct sg_lb_stats *sgs,
8211 int *sg_status)
1e3c88bd 8212{
630246a0
QP
8213 int local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8214 int load_idx = get_sd_load_idx(env->sd, env->idle);
30ce5dab 8215 unsigned long load;
a426f99c 8216 int i, nr_running;
1e3c88bd 8217
b72ff13c
PZ
8218 memset(sgs, 0, sizeof(*sgs));
8219
ae4df9d6 8220 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
1e3c88bd
PZ
8221 struct rq *rq = cpu_rq(i);
8222
63928384 8223 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
f643ea22 8224 env->flags |= LBF_NOHZ_AGAIN;
e022e0d3 8225
97fb7a0a 8226 /* Bias balancing toward CPUs of our domain: */
6263322c 8227 if (local_group)
04f733b4 8228 load = target_load(i, load_idx);
6263322c 8229 else
1e3c88bd 8230 load = source_load(i, load_idx);
1e3c88bd
PZ
8231
8232 sgs->group_load += load;
9e91d61d 8233 sgs->group_util += cpu_util(i);
65fdac08 8234 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 8235
a426f99c
WL
8236 nr_running = rq->nr_running;
8237 if (nr_running > 1)
630246a0 8238 *sg_status |= SG_OVERLOAD;
4486edd1 8239
2802bf3c
MR
8240 if (cpu_overutilized(i))
8241 *sg_status |= SG_OVERUTILIZED;
4486edd1 8242
0ec8aa00
PZ
8243#ifdef CONFIG_NUMA_BALANCING
8244 sgs->nr_numa_running += rq->nr_numa_running;
8245 sgs->nr_preferred_running += rq->nr_preferred_running;
8246#endif
c7132dd6 8247 sgs->sum_weighted_load += weighted_cpuload(rq);
a426f99c
WL
8248 /*
8249 * No need to call idle_cpu() if nr_running is not 0
8250 */
8251 if (!nr_running && idle_cpu(i))
aae6d3dd 8252 sgs->idle_cpus++;
3b1baa64
MR
8253
8254 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
757ffdd7 8255 sgs->group_misfit_task_load < rq->misfit_task_load) {
3b1baa64 8256 sgs->group_misfit_task_load = rq->misfit_task_load;
630246a0 8257 *sg_status |= SG_OVERLOAD;
757ffdd7 8258 }
1e3c88bd
PZ
8259 }
8260
63b2ca30
NP
8261 /* Adjust by relative CPU capacity of the group */
8262 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 8263 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 8264
dd5feea1 8265 if (sgs->sum_nr_running)
38d0f770 8266 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 8267
aae6d3dd 8268 sgs->group_weight = group->group_weight;
b37d9316 8269
ea67821b 8270 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 8271 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
8272}
8273
532cb4c4
MN
8274/**
8275 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 8276 * @env: The load balancing environment.
532cb4c4
MN
8277 * @sds: sched_domain statistics
8278 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 8279 * @sgs: sched_group statistics
532cb4c4
MN
8280 *
8281 * Determine if @sg is a busier group than the previously selected
8282 * busiest group.
e69f6186
YB
8283 *
8284 * Return: %true if @sg is a busier group than the previously selected
8285 * busiest group. %false otherwise.
532cb4c4 8286 */
bd939f45 8287static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
8288 struct sd_lb_stats *sds,
8289 struct sched_group *sg,
bd939f45 8290 struct sg_lb_stats *sgs)
532cb4c4 8291{
caeb178c 8292 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 8293
cad68e55
MR
8294 /*
8295 * Don't try to pull misfit tasks we can't help.
8296 * We can use max_capacity here as reduction in capacity on some
8297 * CPUs in the group should either be possible to resolve
8298 * internally or be covered by avg_load imbalance (eventually).
8299 */
8300 if (sgs->group_type == group_misfit_task &&
8301 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8302 !group_has_capacity(env, &sds->local_stat)))
8303 return false;
8304
caeb178c 8305 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
8306 return true;
8307
caeb178c
RR
8308 if (sgs->group_type < busiest->group_type)
8309 return false;
8310
8311 if (sgs->avg_load <= busiest->avg_load)
8312 return false;
8313
9e0994c0
MR
8314 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8315 goto asym_packing;
8316
8317 /*
8318 * Candidate sg has no more than one task per CPU and
8319 * has higher per-CPU capacity. Migrating tasks to less
8320 * capable CPUs may harm throughput. Maximize throughput,
8321 * power/energy consequences are not considered.
8322 */
8323 if (sgs->sum_nr_running <= sgs->group_weight &&
e3d6d0cb 8324 group_smaller_min_cpu_capacity(sds->local, sg))
9e0994c0
MR
8325 return false;
8326
cad68e55
MR
8327 /*
8328 * If we have more than one misfit sg go with the biggest misfit.
8329 */
8330 if (sgs->group_type == group_misfit_task &&
8331 sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9e0994c0
MR
8332 return false;
8333
8334asym_packing:
caeb178c
RR
8335 /* This is the busiest node in its class. */
8336 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8337 return true;
8338
97fb7a0a 8339 /* No ASYM_PACKING if target CPU is already busy */
1f621e02
SD
8340 if (env->idle == CPU_NOT_IDLE)
8341 return true;
532cb4c4 8342 /*
afe06efd
TC
8343 * ASYM_PACKING needs to move all the work to the highest
8344 * prority CPUs in the group, therefore mark all groups
8345 * of lower priority than ourself as busy.
532cb4c4 8346 */
afe06efd
TC
8347 if (sgs->sum_nr_running &&
8348 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
532cb4c4
MN
8349 if (!sds->busiest)
8350 return true;
8351
97fb7a0a 8352 /* Prefer to move from lowest priority CPU's work */
afe06efd
TC
8353 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8354 sg->asym_prefer_cpu))
532cb4c4
MN
8355 return true;
8356 }
8357
8358 return false;
8359}
8360
0ec8aa00
PZ
8361#ifdef CONFIG_NUMA_BALANCING
8362static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8363{
8364 if (sgs->sum_nr_running > sgs->nr_numa_running)
8365 return regular;
8366 if (sgs->sum_nr_running > sgs->nr_preferred_running)
8367 return remote;
8368 return all;
8369}
8370
8371static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8372{
8373 if (rq->nr_running > rq->nr_numa_running)
8374 return regular;
8375 if (rq->nr_running > rq->nr_preferred_running)
8376 return remote;
8377 return all;
8378}
8379#else
8380static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8381{
8382 return all;
8383}
8384
8385static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8386{
8387 return regular;
8388}
8389#endif /* CONFIG_NUMA_BALANCING */
8390
1e3c88bd 8391/**
461819ac 8392 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 8393 * @env: The load balancing environment.
1e3c88bd
PZ
8394 * @sds: variable to hold the statistics for this sched_domain.
8395 */
0ec8aa00 8396static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8397{
bd939f45
PZ
8398 struct sched_domain *child = env->sd->child;
8399 struct sched_group *sg = env->sd->groups;
05b40e05 8400 struct sg_lb_stats *local = &sds->local_stat;
56cf515b 8401 struct sg_lb_stats tmp_sgs;
dbbad719 8402 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
630246a0 8403 int sg_status = 0;
1e3c88bd 8404
e022e0d3 8405#ifdef CONFIG_NO_HZ_COMMON
f643ea22 8406 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
e022e0d3 8407 env->flags |= LBF_NOHZ_STATS;
e022e0d3
PZ
8408#endif
8409
1e3c88bd 8410 do {
56cf515b 8411 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
8412 int local_group;
8413
ae4df9d6 8414 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
56cf515b
JK
8415 if (local_group) {
8416 sds->local = sg;
05b40e05 8417 sgs = local;
b72ff13c
PZ
8418
8419 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
8420 time_after_eq(jiffies, sg->sgc->next_update))
8421 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 8422 }
1e3c88bd 8423
630246a0 8424 update_sg_lb_stats(env, sg, sgs, &sg_status);
1e3c88bd 8425
b72ff13c
PZ
8426 if (local_group)
8427 goto next_group;
8428
1e3c88bd
PZ
8429 /*
8430 * In case the child domain prefers tasks go to siblings
ea67821b 8431 * first, lower the sg capacity so that we'll try
75dd321d
NR
8432 * and move all the excess tasks away. We lower the capacity
8433 * of a group only if the local group has the capacity to fit
ea67821b
VG
8434 * these excess tasks. The extra check prevents the case where
8435 * you always pull from the heaviest group when it is already
8436 * under-utilized (possible with a large weight task outweighs
8437 * the tasks on the system).
1e3c88bd 8438 */
b72ff13c 8439 if (prefer_sibling && sds->local &&
05b40e05
SD
8440 group_has_capacity(env, local) &&
8441 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
ea67821b 8442 sgs->group_no_capacity = 1;
79a89f92 8443 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 8444 }
1e3c88bd 8445
b72ff13c 8446 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 8447 sds->busiest = sg;
56cf515b 8448 sds->busiest_stat = *sgs;
1e3c88bd
PZ
8449 }
8450
b72ff13c
PZ
8451next_group:
8452 /* Now, start updating sd_lb_stats */
90001d67 8453 sds->total_running += sgs->sum_nr_running;
b72ff13c 8454 sds->total_load += sgs->group_load;
63b2ca30 8455 sds->total_capacity += sgs->group_capacity;
b72ff13c 8456
532cb4c4 8457 sg = sg->next;
bd939f45 8458 } while (sg != env->sd->groups);
0ec8aa00 8459
f643ea22
VG
8460#ifdef CONFIG_NO_HZ_COMMON
8461 if ((env->flags & LBF_NOHZ_AGAIN) &&
8462 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8463
8464 WRITE_ONCE(nohz.next_blocked,
8465 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8466 }
8467#endif
8468
0ec8aa00
PZ
8469 if (env->sd->flags & SD_NUMA)
8470 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
8471
8472 if (!env->sd->parent) {
2802bf3c
MR
8473 struct root_domain *rd = env->dst_rq->rd;
8474
4486edd1 8475 /* update overload indicator if we are at root domain */
2802bf3c
MR
8476 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8477
8478 /* Update over-utilization (tipping point, U >= 0) indicator */
8479 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8480 } else if (sg_status & SG_OVERUTILIZED) {
8481 WRITE_ONCE(env->dst_rq->rd->overutilized, SG_OVERUTILIZED);
4486edd1 8482 }
532cb4c4
MN
8483}
8484
532cb4c4
MN
8485/**
8486 * check_asym_packing - Check to see if the group is packed into the
0ba42a59 8487 * sched domain.
532cb4c4
MN
8488 *
8489 * This is primarily intended to used at the sibling level. Some
8490 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8491 * case of POWER7, it can move to lower SMT modes only when higher
8492 * threads are idle. When in lower SMT modes, the threads will
8493 * perform better since they share less core resources. Hence when we
8494 * have idle threads, we want them to be the higher ones.
8495 *
8496 * This packing function is run on idle threads. It checks to see if
8497 * the busiest CPU in this domain (core in the P7 case) has a higher
8498 * CPU number than the packing function is being run on. Here we are
8499 * assuming lower CPU number will be equivalent to lower a SMT thread
8500 * number.
8501 *
e69f6186 8502 * Return: 1 when packing is required and a task should be moved to
46123355 8503 * this CPU. The amount of the imbalance is returned in env->imbalance.
b6b12294 8504 *
cd96891d 8505 * @env: The load balancing environment.
532cb4c4 8506 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 8507 */
bd939f45 8508static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
8509{
8510 int busiest_cpu;
8511
bd939f45 8512 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
8513 return 0;
8514
1f621e02
SD
8515 if (env->idle == CPU_NOT_IDLE)
8516 return 0;
8517
532cb4c4
MN
8518 if (!sds->busiest)
8519 return 0;
8520
afe06efd
TC
8521 busiest_cpu = sds->busiest->asym_prefer_cpu;
8522 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
532cb4c4
MN
8523 return 0;
8524
4ad4e481 8525 env->imbalance = sds->busiest_stat.group_load;
bd939f45 8526
532cb4c4 8527 return 1;
1e3c88bd
PZ
8528}
8529
8530/**
8531 * fix_small_imbalance - Calculate the minor imbalance that exists
8532 * amongst the groups of a sched_domain, during
8533 * load balancing.
cd96891d 8534 * @env: The load balancing environment.
1e3c88bd 8535 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8536 */
bd939f45
PZ
8537static inline
8538void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8539{
63b2ca30 8540 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 8541 unsigned int imbn = 2;
dd5feea1 8542 unsigned long scaled_busy_load_per_task;
56cf515b 8543 struct sg_lb_stats *local, *busiest;
1e3c88bd 8544
56cf515b
JK
8545 local = &sds->local_stat;
8546 busiest = &sds->busiest_stat;
1e3c88bd 8547
56cf515b
JK
8548 if (!local->sum_nr_running)
8549 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8550 else if (busiest->load_per_task > local->load_per_task)
8551 imbn = 1;
dd5feea1 8552
56cf515b 8553 scaled_busy_load_per_task =
ca8ce3d0 8554 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8555 busiest->group_capacity;
56cf515b 8556
3029ede3
VD
8557 if (busiest->avg_load + scaled_busy_load_per_task >=
8558 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 8559 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8560 return;
8561 }
8562
8563 /*
8564 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 8565 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
8566 * moving them.
8567 */
8568
63b2ca30 8569 capa_now += busiest->group_capacity *
56cf515b 8570 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 8571 capa_now += local->group_capacity *
56cf515b 8572 min(local->load_per_task, local->avg_load);
ca8ce3d0 8573 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8574
8575 /* Amount of load we'd subtract */
a2cd4260 8576 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 8577 capa_move += busiest->group_capacity *
56cf515b 8578 min(busiest->load_per_task,
a2cd4260 8579 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 8580 }
1e3c88bd
PZ
8581
8582 /* Amount of load we'd add */
63b2ca30 8583 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 8584 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
8585 tmp = (busiest->avg_load * busiest->group_capacity) /
8586 local->group_capacity;
56cf515b 8587 } else {
ca8ce3d0 8588 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 8589 local->group_capacity;
56cf515b 8590 }
63b2ca30 8591 capa_move += local->group_capacity *
3ae11c90 8592 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 8593 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
8594
8595 /* Move if we gain throughput */
63b2ca30 8596 if (capa_move > capa_now)
56cf515b 8597 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
8598}
8599
8600/**
8601 * calculate_imbalance - Calculate the amount of imbalance present within the
8602 * groups of a given sched_domain during load balance.
bd939f45 8603 * @env: load balance environment
1e3c88bd 8604 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 8605 */
bd939f45 8606static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 8607{
dd5feea1 8608 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
8609 struct sg_lb_stats *local, *busiest;
8610
8611 local = &sds->local_stat;
56cf515b 8612 busiest = &sds->busiest_stat;
dd5feea1 8613
caeb178c 8614 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
8615 /*
8616 * In the group_imb case we cannot rely on group-wide averages
97fb7a0a 8617 * to ensure CPU-load equilibrium, look at wider averages. XXX
30ce5dab 8618 */
56cf515b
JK
8619 busiest->load_per_task =
8620 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
8621 }
8622
1e3c88bd 8623 /*
885e542c
DE
8624 * Avg load of busiest sg can be less and avg load of local sg can
8625 * be greater than avg load across all sgs of sd because avg load
8626 * factors in sg capacity and sgs with smaller group_type are
8627 * skipped when updating the busiest sg:
1e3c88bd 8628 */
cad68e55
MR
8629 if (busiest->group_type != group_misfit_task &&
8630 (busiest->avg_load <= sds->avg_load ||
8631 local->avg_load >= sds->avg_load)) {
bd939f45
PZ
8632 env->imbalance = 0;
8633 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
8634 }
8635
9a5d9ba6 8636 /*
97fb7a0a 8637 * If there aren't any idle CPUs, avoid creating some.
9a5d9ba6
PZ
8638 */
8639 if (busiest->group_type == group_overloaded &&
8640 local->group_type == group_overloaded) {
1be0eb2a 8641 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 8642 if (load_above_capacity > busiest->group_capacity) {
ea67821b 8643 load_above_capacity -= busiest->group_capacity;
26656215 8644 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
8645 load_above_capacity /= busiest->group_capacity;
8646 } else
ea67821b 8647 load_above_capacity = ~0UL;
dd5feea1
SS
8648 }
8649
8650 /*
97fb7a0a 8651 * We're trying to get all the CPUs to the average_load, so we don't
dd5feea1 8652 * want to push ourselves above the average load, nor do we wish to
97fb7a0a 8653 * reduce the max loaded CPU below the average load. At the same time,
0a9b23ce
DE
8654 * we also don't want to reduce the group load below the group
8655 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 8656 */
30ce5dab 8657 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
8658
8659 /* How much load to actually move to equalise the imbalance */
56cf515b 8660 env->imbalance = min(
63b2ca30
NP
8661 max_pull * busiest->group_capacity,
8662 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 8663 ) / SCHED_CAPACITY_SCALE;
1e3c88bd 8664
cad68e55
MR
8665 /* Boost imbalance to allow misfit task to be balanced. */
8666 if (busiest->group_type == group_misfit_task) {
8667 env->imbalance = max_t(long, env->imbalance,
8668 busiest->group_misfit_task_load);
8669 }
8670
1e3c88bd
PZ
8671 /*
8672 * if *imbalance is less than the average load per runnable task
25985edc 8673 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
8674 * a think about bumping its value to force at least one task to be
8675 * moved
8676 */
56cf515b 8677 if (env->imbalance < busiest->load_per_task)
bd939f45 8678 return fix_small_imbalance(env, sds);
1e3c88bd 8679}
fab47622 8680
1e3c88bd
PZ
8681/******* find_busiest_group() helpers end here *********************/
8682
8683/**
8684 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 8685 * if there is an imbalance.
1e3c88bd
PZ
8686 *
8687 * Also calculates the amount of weighted load which should be moved
8688 * to restore balance.
8689 *
cd96891d 8690 * @env: The load balancing environment.
1e3c88bd 8691 *
e69f6186 8692 * Return: - The busiest group if imbalance exists.
1e3c88bd 8693 */
56cf515b 8694static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 8695{
56cf515b 8696 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
8697 struct sd_lb_stats sds;
8698
147c5fc2 8699 init_sd_lb_stats(&sds);
1e3c88bd
PZ
8700
8701 /*
8702 * Compute the various statistics relavent for load balancing at
8703 * this level.
8704 */
23f0d209 8705 update_sd_lb_stats(env, &sds);
2802bf3c 8706
f8a696f2 8707 if (sched_energy_enabled()) {
2802bf3c
MR
8708 struct root_domain *rd = env->dst_rq->rd;
8709
8710 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8711 goto out_balanced;
8712 }
8713
56cf515b
JK
8714 local = &sds.local_stat;
8715 busiest = &sds.busiest_stat;
1e3c88bd 8716
ea67821b 8717 /* ASYM feature bypasses nice load balance check */
1f621e02 8718 if (check_asym_packing(env, &sds))
532cb4c4
MN
8719 return sds.busiest;
8720
cc57aa8f 8721 /* There is no busy sibling group to pull tasks from */
56cf515b 8722 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
8723 goto out_balanced;
8724
90001d67 8725 /* XXX broken for overlapping NUMA groups */
ca8ce3d0
NP
8726 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8727 / sds.total_capacity;
b0432d8f 8728
866ab43e
PZ
8729 /*
8730 * If the busiest group is imbalanced the below checks don't
30ce5dab 8731 * work because they assume all things are equal, which typically
866ab43e
PZ
8732 * isn't true due to cpus_allowed constraints and the like.
8733 */
caeb178c 8734 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
8735 goto force_balance;
8736
583ffd99
BJ
8737 /*
8738 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8739 * capacities from resulting in underutilization due to avg_load.
8740 */
8741 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
ea67821b 8742 busiest->group_no_capacity)
fab47622
NR
8743 goto force_balance;
8744
cad68e55
MR
8745 /* Misfit tasks should be dealt with regardless of the avg load */
8746 if (busiest->group_type == group_misfit_task)
8747 goto force_balance;
8748
cc57aa8f 8749 /*
9c58c79a 8750 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
8751 * don't try and pull any tasks.
8752 */
56cf515b 8753 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
8754 goto out_balanced;
8755
cc57aa8f
PZ
8756 /*
8757 * Don't pull any tasks if this group is already above the domain
8758 * average load.
8759 */
56cf515b 8760 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
8761 goto out_balanced;
8762
bd939f45 8763 if (env->idle == CPU_IDLE) {
aae6d3dd 8764 /*
97fb7a0a 8765 * This CPU is idle. If the busiest group is not overloaded
43f4d666 8766 * and there is no imbalance between this and busiest group
97fb7a0a 8767 * wrt idle CPUs, it is balanced. The imbalance becomes
43f4d666
VG
8768 * significant if the diff is greater than 1 otherwise we
8769 * might end up to just move the imbalance on another group
aae6d3dd 8770 */
43f4d666
VG
8771 if ((busiest->group_type != group_overloaded) &&
8772 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 8773 goto out_balanced;
c186fafe
PZ
8774 } else {
8775 /*
8776 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8777 * imbalance_pct to be conservative.
8778 */
56cf515b
JK
8779 if (100 * busiest->avg_load <=
8780 env->sd->imbalance_pct * local->avg_load)
c186fafe 8781 goto out_balanced;
aae6d3dd 8782 }
1e3c88bd 8783
fab47622 8784force_balance:
1e3c88bd 8785 /* Looks like there is an imbalance. Compute it */
cad68e55 8786 env->src_grp_type = busiest->group_type;
bd939f45 8787 calculate_imbalance(env, &sds);
bb3485c8 8788 return env->imbalance ? sds.busiest : NULL;
1e3c88bd
PZ
8789
8790out_balanced:
bd939f45 8791 env->imbalance = 0;
1e3c88bd
PZ
8792 return NULL;
8793}
8794
8795/*
97fb7a0a 8796 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
1e3c88bd 8797 */
bd939f45 8798static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 8799 struct sched_group *group)
1e3c88bd
PZ
8800{
8801 struct rq *busiest = NULL, *rq;
ced549fa 8802 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
8803 int i;
8804
ae4df9d6 8805 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
ea67821b 8806 unsigned long capacity, wl;
0ec8aa00
PZ
8807 enum fbq_type rt;
8808
8809 rq = cpu_rq(i);
8810 rt = fbq_classify_rq(rq);
1e3c88bd 8811
0ec8aa00
PZ
8812 /*
8813 * We classify groups/runqueues into three groups:
8814 * - regular: there are !numa tasks
8815 * - remote: there are numa tasks that run on the 'wrong' node
8816 * - all: there is no distinction
8817 *
8818 * In order to avoid migrating ideally placed numa tasks,
8819 * ignore those when there's better options.
8820 *
8821 * If we ignore the actual busiest queue to migrate another
8822 * task, the next balance pass can still reduce the busiest
8823 * queue by moving tasks around inside the node.
8824 *
8825 * If we cannot move enough load due to this classification
8826 * the next pass will adjust the group classification and
8827 * allow migration of more tasks.
8828 *
8829 * Both cases only affect the total convergence complexity.
8830 */
8831 if (rt > env->fbq_type)
8832 continue;
8833
cad68e55
MR
8834 /*
8835 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8836 * seek the "biggest" misfit task.
8837 */
8838 if (env->src_grp_type == group_misfit_task) {
8839 if (rq->misfit_task_load > busiest_load) {
8840 busiest_load = rq->misfit_task_load;
8841 busiest = rq;
8842 }
8843
8844 continue;
8845 }
8846
ced549fa 8847 capacity = capacity_of(i);
9d5efe05 8848
4ad3831a
CR
8849 /*
8850 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8851 * eventually lead to active_balancing high->low capacity.
8852 * Higher per-CPU capacity is considered better than balancing
8853 * average load.
8854 */
8855 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8856 capacity_of(env->dst_cpu) < capacity &&
8857 rq->nr_running == 1)
8858 continue;
8859
c7132dd6 8860 wl = weighted_cpuload(rq);
1e3c88bd 8861
6e40f5bb
TG
8862 /*
8863 * When comparing with imbalance, use weighted_cpuload()
97fb7a0a 8864 * which is not scaled with the CPU capacity.
6e40f5bb 8865 */
ea67821b
VG
8866
8867 if (rq->nr_running == 1 && wl > env->imbalance &&
8868 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
8869 continue;
8870
6e40f5bb 8871 /*
97fb7a0a
IM
8872 * For the load comparisons with the other CPU's, consider
8873 * the weighted_cpuload() scaled with the CPU capacity, so
8874 * that the load can be moved away from the CPU that is
ced549fa 8875 * potentially running at a lower capacity.
95a79b80 8876 *
ced549fa 8877 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 8878 * multiplication to rid ourselves of the division works out
ced549fa
NP
8879 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8880 * our previous maximum.
6e40f5bb 8881 */
ced549fa 8882 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 8883 busiest_load = wl;
ced549fa 8884 busiest_capacity = capacity;
1e3c88bd
PZ
8885 busiest = rq;
8886 }
8887 }
8888
8889 return busiest;
8890}
8891
8892/*
8893 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8894 * so long as it is large enough.
8895 */
8896#define MAX_PINNED_INTERVAL 512
8897
46a745d9
VG
8898static inline bool
8899asym_active_balance(struct lb_env *env)
1af3ed3d 8900{
46a745d9
VG
8901 /*
8902 * ASYM_PACKING needs to force migrate tasks from busy but
8903 * lower priority CPUs in order to pack all tasks in the
8904 * highest priority CPUs.
8905 */
8906 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8907 sched_asym_prefer(env->dst_cpu, env->src_cpu);
8908}
bd939f45 8909
46a745d9
VG
8910static inline bool
8911voluntary_active_balance(struct lb_env *env)
8912{
8913 struct sched_domain *sd = env->sd;
532cb4c4 8914
46a745d9
VG
8915 if (asym_active_balance(env))
8916 return 1;
1af3ed3d 8917
1aaf90a4
VG
8918 /*
8919 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8920 * It's worth migrating the task if the src_cpu's capacity is reduced
8921 * because of other sched_class or IRQs if more capacity stays
8922 * available on dst_cpu.
8923 */
8924 if ((env->idle != CPU_NOT_IDLE) &&
8925 (env->src_rq->cfs.h_nr_running == 1)) {
8926 if ((check_cpu_capacity(env->src_rq, sd)) &&
8927 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8928 return 1;
8929 }
8930
cad68e55
MR
8931 if (env->src_grp_type == group_misfit_task)
8932 return 1;
8933
46a745d9
VG
8934 return 0;
8935}
8936
8937static int need_active_balance(struct lb_env *env)
8938{
8939 struct sched_domain *sd = env->sd;
8940
8941 if (voluntary_active_balance(env))
8942 return 1;
8943
1af3ed3d
PZ
8944 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8945}
8946
969c7921
TH
8947static int active_load_balance_cpu_stop(void *data);
8948
23f0d209
JK
8949static int should_we_balance(struct lb_env *env)
8950{
8951 struct sched_group *sg = env->sd->groups;
23f0d209
JK
8952 int cpu, balance_cpu = -1;
8953
024c9d2f
PZ
8954 /*
8955 * Ensure the balancing environment is consistent; can happen
8956 * when the softirq triggers 'during' hotplug.
8957 */
8958 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8959 return 0;
8960
23f0d209 8961 /*
97fb7a0a 8962 * In the newly idle case, we will allow all the CPUs
23f0d209
JK
8963 * to do the newly idle load balance.
8964 */
8965 if (env->idle == CPU_NEWLY_IDLE)
8966 return 1;
8967
97fb7a0a 8968 /* Try to find first idle CPU */
e5c14b1f 8969 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
af218122 8970 if (!idle_cpu(cpu))
23f0d209
JK
8971 continue;
8972
8973 balance_cpu = cpu;
8974 break;
8975 }
8976
8977 if (balance_cpu == -1)
8978 balance_cpu = group_balance_cpu(sg);
8979
8980 /*
97fb7a0a 8981 * First idle CPU or the first CPU(busiest) in this sched group
23f0d209
JK
8982 * is eligible for doing load balancing at this and above domains.
8983 */
b0cff9d8 8984 return balance_cpu == env->dst_cpu;
23f0d209
JK
8985}
8986
1e3c88bd
PZ
8987/*
8988 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8989 * tasks if there is an imbalance.
8990 */
8991static int load_balance(int this_cpu, struct rq *this_rq,
8992 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 8993 int *continue_balancing)
1e3c88bd 8994{
88b8dac0 8995 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 8996 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 8997 struct sched_group *group;
1e3c88bd 8998 struct rq *busiest;
8a8c69c3 8999 struct rq_flags rf;
4ba29684 9000 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 9001
8e45cb54
PZ
9002 struct lb_env env = {
9003 .sd = sd,
ddcdf6e7
PZ
9004 .dst_cpu = this_cpu,
9005 .dst_rq = this_rq,
ae4df9d6 9006 .dst_grpmask = sched_group_span(sd->groups),
8e45cb54 9007 .idle = idle,
eb95308e 9008 .loop_break = sched_nr_migrate_break,
b9403130 9009 .cpus = cpus,
0ec8aa00 9010 .fbq_type = all,
163122b7 9011 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
9012 };
9013
65a4433a 9014 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
1e3c88bd 9015
ae92882e 9016 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
9017
9018redo:
23f0d209
JK
9019 if (!should_we_balance(&env)) {
9020 *continue_balancing = 0;
1e3c88bd 9021 goto out_balanced;
23f0d209 9022 }
1e3c88bd 9023
23f0d209 9024 group = find_busiest_group(&env);
1e3c88bd 9025 if (!group) {
ae92882e 9026 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
9027 goto out_balanced;
9028 }
9029
b9403130 9030 busiest = find_busiest_queue(&env, group);
1e3c88bd 9031 if (!busiest) {
ae92882e 9032 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
9033 goto out_balanced;
9034 }
9035
78feefc5 9036 BUG_ON(busiest == env.dst_rq);
1e3c88bd 9037
ae92882e 9038 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 9039
1aaf90a4
VG
9040 env.src_cpu = busiest->cpu;
9041 env.src_rq = busiest;
9042
1e3c88bd
PZ
9043 ld_moved = 0;
9044 if (busiest->nr_running > 1) {
9045 /*
9046 * Attempt to move tasks. If find_busiest_group has found
9047 * an imbalance but busiest->nr_running <= 1, the group is
9048 * still unbalanced. ld_moved simply stays zero, so it is
9049 * correctly treated as an imbalance.
9050 */
8e45cb54 9051 env.flags |= LBF_ALL_PINNED;
c82513e5 9052 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 9053
5d6523eb 9054more_balance:
8a8c69c3 9055 rq_lock_irqsave(busiest, &rf);
3bed5e21 9056 update_rq_clock(busiest);
88b8dac0
SV
9057
9058 /*
9059 * cur_ld_moved - load moved in current iteration
9060 * ld_moved - cumulative load moved across iterations
9061 */
163122b7 9062 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
9063
9064 /*
163122b7
KT
9065 * We've detached some tasks from busiest_rq. Every
9066 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9067 * unlock busiest->lock, and we are able to be sure
9068 * that nobody can manipulate the tasks in parallel.
9069 * See task_rq_lock() family for the details.
1e3c88bd 9070 */
163122b7 9071
8a8c69c3 9072 rq_unlock(busiest, &rf);
163122b7
KT
9073
9074 if (cur_ld_moved) {
9075 attach_tasks(&env);
9076 ld_moved += cur_ld_moved;
9077 }
9078
8a8c69c3 9079 local_irq_restore(rf.flags);
88b8dac0 9080
f1cd0858
JK
9081 if (env.flags & LBF_NEED_BREAK) {
9082 env.flags &= ~LBF_NEED_BREAK;
9083 goto more_balance;
9084 }
9085
88b8dac0
SV
9086 /*
9087 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9088 * us and move them to an alternate dst_cpu in our sched_group
9089 * where they can run. The upper limit on how many times we
97fb7a0a 9090 * iterate on same src_cpu is dependent on number of CPUs in our
88b8dac0
SV
9091 * sched_group.
9092 *
9093 * This changes load balance semantics a bit on who can move
9094 * load to a given_cpu. In addition to the given_cpu itself
9095 * (or a ilb_cpu acting on its behalf where given_cpu is
9096 * nohz-idle), we now have balance_cpu in a position to move
9097 * load to given_cpu. In rare situations, this may cause
9098 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9099 * _independently_ and at _same_ time to move some load to
9100 * given_cpu) causing exceess load to be moved to given_cpu.
9101 * This however should not happen so much in practice and
9102 * moreover subsequent load balance cycles should correct the
9103 * excess load moved.
9104 */
6263322c 9105 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 9106
97fb7a0a 9107 /* Prevent to re-select dst_cpu via env's CPUs */
7aff2e3a
VD
9108 cpumask_clear_cpu(env.dst_cpu, env.cpus);
9109
78feefc5 9110 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 9111 env.dst_cpu = env.new_dst_cpu;
6263322c 9112 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
9113 env.loop = 0;
9114 env.loop_break = sched_nr_migrate_break;
e02e60c1 9115
88b8dac0
SV
9116 /*
9117 * Go back to "more_balance" rather than "redo" since we
9118 * need to continue with same src_cpu.
9119 */
9120 goto more_balance;
9121 }
1e3c88bd 9122
6263322c
PZ
9123 /*
9124 * We failed to reach balance because of affinity.
9125 */
9126 if (sd_parent) {
63b2ca30 9127 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 9128
afdeee05 9129 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 9130 *group_imbalance = 1;
6263322c
PZ
9131 }
9132
1e3c88bd 9133 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 9134 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 9135 cpumask_clear_cpu(cpu_of(busiest), cpus);
65a4433a
JH
9136 /*
9137 * Attempting to continue load balancing at the current
9138 * sched_domain level only makes sense if there are
9139 * active CPUs remaining as possible busiest CPUs to
9140 * pull load from which are not contained within the
9141 * destination group that is receiving any migrated
9142 * load.
9143 */
9144 if (!cpumask_subset(cpus, env.dst_grpmask)) {
bbf18b19
PN
9145 env.loop = 0;
9146 env.loop_break = sched_nr_migrate_break;
1e3c88bd 9147 goto redo;
bbf18b19 9148 }
afdeee05 9149 goto out_all_pinned;
1e3c88bd
PZ
9150 }
9151 }
9152
9153 if (!ld_moved) {
ae92882e 9154 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
9155 /*
9156 * Increment the failure counter only on periodic balance.
9157 * We do not want newidle balance, which can be very
9158 * frequent, pollute the failure counter causing
9159 * excessive cache_hot migrations and active balances.
9160 */
9161 if (idle != CPU_NEWLY_IDLE)
9162 sd->nr_balance_failed++;
1e3c88bd 9163
bd939f45 9164 if (need_active_balance(&env)) {
8a8c69c3
PZ
9165 unsigned long flags;
9166
1e3c88bd
PZ
9167 raw_spin_lock_irqsave(&busiest->lock, flags);
9168
97fb7a0a
IM
9169 /*
9170 * Don't kick the active_load_balance_cpu_stop,
9171 * if the curr task on busiest CPU can't be
9172 * moved to this_cpu:
1e3c88bd 9173 */
0c98d344 9174 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
1e3c88bd
PZ
9175 raw_spin_unlock_irqrestore(&busiest->lock,
9176 flags);
8e45cb54 9177 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
9178 goto out_one_pinned;
9179 }
9180
969c7921
TH
9181 /*
9182 * ->active_balance synchronizes accesses to
9183 * ->active_balance_work. Once set, it's cleared
9184 * only after active load balance is finished.
9185 */
1e3c88bd
PZ
9186 if (!busiest->active_balance) {
9187 busiest->active_balance = 1;
9188 busiest->push_cpu = this_cpu;
9189 active_balance = 1;
9190 }
9191 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 9192
bd939f45 9193 if (active_balance) {
969c7921
TH
9194 stop_one_cpu_nowait(cpu_of(busiest),
9195 active_load_balance_cpu_stop, busiest,
9196 &busiest->active_balance_work);
bd939f45 9197 }
1e3c88bd 9198
d02c0711 9199 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
9200 sd->nr_balance_failed = sd->cache_nice_tries+1;
9201 }
9202 } else
9203 sd->nr_balance_failed = 0;
9204
46a745d9 9205 if (likely(!active_balance) || voluntary_active_balance(&env)) {
1e3c88bd
PZ
9206 /* We were unbalanced, so reset the balancing interval */
9207 sd->balance_interval = sd->min_interval;
9208 } else {
9209 /*
9210 * If we've begun active balancing, start to back off. This
9211 * case may not be covered by the all_pinned logic if there
9212 * is only 1 task on the busy runqueue (because we don't call
163122b7 9213 * detach_tasks).
1e3c88bd
PZ
9214 */
9215 if (sd->balance_interval < sd->max_interval)
9216 sd->balance_interval *= 2;
9217 }
9218
1e3c88bd
PZ
9219 goto out;
9220
9221out_balanced:
afdeee05
VG
9222 /*
9223 * We reach balance although we may have faced some affinity
9224 * constraints. Clear the imbalance flag if it was set.
9225 */
9226 if (sd_parent) {
9227 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9228
9229 if (*group_imbalance)
9230 *group_imbalance = 0;
9231 }
9232
9233out_all_pinned:
9234 /*
9235 * We reach balance because all tasks are pinned at this level so
9236 * we can't migrate them. Let the imbalance flag set so parent level
9237 * can try to migrate them.
9238 */
ae92882e 9239 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
9240
9241 sd->nr_balance_failed = 0;
9242
9243out_one_pinned:
3f130a37
VS
9244 ld_moved = 0;
9245
9246 /*
9247 * idle_balance() disregards balance intervals, so we could repeatedly
9248 * reach this code, which would lead to balance_interval skyrocketting
9249 * in a short amount of time. Skip the balance_interval increase logic
9250 * to avoid that.
9251 */
9252 if (env.idle == CPU_NEWLY_IDLE)
9253 goto out;
9254
1e3c88bd 9255 /* tune up the balancing interval */
47b7aee1
VS
9256 if ((env.flags & LBF_ALL_PINNED &&
9257 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9258 sd->balance_interval < sd->max_interval)
1e3c88bd 9259 sd->balance_interval *= 2;
1e3c88bd 9260out:
1e3c88bd
PZ
9261 return ld_moved;
9262}
9263
52a08ef1
JL
9264static inline unsigned long
9265get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9266{
9267 unsigned long interval = sd->balance_interval;
9268
9269 if (cpu_busy)
9270 interval *= sd->busy_factor;
9271
9272 /* scale ms to jiffies */
9273 interval = msecs_to_jiffies(interval);
9274 interval = clamp(interval, 1UL, max_load_balance_interval);
9275
9276 return interval;
9277}
9278
9279static inline void
31851a98 9280update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
9281{
9282 unsigned long interval, next;
9283
31851a98
LY
9284 /* used by idle balance, so cpu_busy = 0 */
9285 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
9286 next = sd->last_balance + interval;
9287
9288 if (time_after(*next_balance, next))
9289 *next_balance = next;
9290}
9291
1e3c88bd 9292/*
97fb7a0a 9293 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
969c7921
TH
9294 * running tasks off the busiest CPU onto idle CPUs. It requires at
9295 * least 1 task to be running on each physical CPU where possible, and
9296 * avoids physical / logical imbalances.
1e3c88bd 9297 */
969c7921 9298static int active_load_balance_cpu_stop(void *data)
1e3c88bd 9299{
969c7921
TH
9300 struct rq *busiest_rq = data;
9301 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 9302 int target_cpu = busiest_rq->push_cpu;
969c7921 9303 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 9304 struct sched_domain *sd;
e5673f28 9305 struct task_struct *p = NULL;
8a8c69c3 9306 struct rq_flags rf;
969c7921 9307
8a8c69c3 9308 rq_lock_irq(busiest_rq, &rf);
edd8e41d
PZ
9309 /*
9310 * Between queueing the stop-work and running it is a hole in which
9311 * CPUs can become inactive. We should not move tasks from or to
9312 * inactive CPUs.
9313 */
9314 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9315 goto out_unlock;
969c7921 9316
97fb7a0a 9317 /* Make sure the requested CPU hasn't gone down in the meantime: */
969c7921
TH
9318 if (unlikely(busiest_cpu != smp_processor_id() ||
9319 !busiest_rq->active_balance))
9320 goto out_unlock;
1e3c88bd
PZ
9321
9322 /* Is there any task to move? */
9323 if (busiest_rq->nr_running <= 1)
969c7921 9324 goto out_unlock;
1e3c88bd
PZ
9325
9326 /*
9327 * This condition is "impossible", if it occurs
9328 * we need to fix it. Originally reported by
97fb7a0a 9329 * Bjorn Helgaas on a 128-CPU setup.
1e3c88bd
PZ
9330 */
9331 BUG_ON(busiest_rq == target_rq);
9332
1e3c88bd 9333 /* Search for an sd spanning us and the target CPU. */
dce840a0 9334 rcu_read_lock();
1e3c88bd
PZ
9335 for_each_domain(target_cpu, sd) {
9336 if ((sd->flags & SD_LOAD_BALANCE) &&
9337 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9338 break;
9339 }
9340
9341 if (likely(sd)) {
8e45cb54
PZ
9342 struct lb_env env = {
9343 .sd = sd,
ddcdf6e7
PZ
9344 .dst_cpu = target_cpu,
9345 .dst_rq = target_rq,
9346 .src_cpu = busiest_rq->cpu,
9347 .src_rq = busiest_rq,
8e45cb54 9348 .idle = CPU_IDLE,
65a4433a
JH
9349 /*
9350 * can_migrate_task() doesn't need to compute new_dst_cpu
9351 * for active balancing. Since we have CPU_IDLE, but no
9352 * @dst_grpmask we need to make that test go away with lying
9353 * about DST_PINNED.
9354 */
9355 .flags = LBF_DST_PINNED,
8e45cb54
PZ
9356 };
9357
ae92882e 9358 schedstat_inc(sd->alb_count);
3bed5e21 9359 update_rq_clock(busiest_rq);
1e3c88bd 9360
e5673f28 9361 p = detach_one_task(&env);
d02c0711 9362 if (p) {
ae92882e 9363 schedstat_inc(sd->alb_pushed);
d02c0711
SD
9364 /* Active balancing done, reset the failure counter. */
9365 sd->nr_balance_failed = 0;
9366 } else {
ae92882e 9367 schedstat_inc(sd->alb_failed);
d02c0711 9368 }
1e3c88bd 9369 }
dce840a0 9370 rcu_read_unlock();
969c7921
TH
9371out_unlock:
9372 busiest_rq->active_balance = 0;
8a8c69c3 9373 rq_unlock(busiest_rq, &rf);
e5673f28
KT
9374
9375 if (p)
9376 attach_one_task(target_rq, p);
9377
9378 local_irq_enable();
9379
969c7921 9380 return 0;
1e3c88bd
PZ
9381}
9382
af3fe03c
PZ
9383static DEFINE_SPINLOCK(balancing);
9384
9385/*
9386 * Scale the max load_balance interval with the number of CPUs in the system.
9387 * This trades load-balance latency on larger machines for less cross talk.
9388 */
9389void update_max_interval(void)
9390{
9391 max_load_balance_interval = HZ*num_online_cpus()/10;
9392}
9393
9394/*
9395 * It checks each scheduling domain to see if it is due to be balanced,
9396 * and initiates a balancing operation if so.
9397 *
9398 * Balancing parameters are set up in init_sched_domains.
9399 */
9400static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9401{
9402 int continue_balancing = 1;
9403 int cpu = rq->cpu;
9404 unsigned long interval;
9405 struct sched_domain *sd;
9406 /* Earliest time when we have to do rebalance again */
9407 unsigned long next_balance = jiffies + 60*HZ;
9408 int update_next_balance = 0;
9409 int need_serialize, need_decay = 0;
9410 u64 max_cost = 0;
9411
9412 rcu_read_lock();
9413 for_each_domain(cpu, sd) {
9414 /*
9415 * Decay the newidle max times here because this is a regular
9416 * visit to all the domains. Decay ~1% per second.
9417 */
9418 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9419 sd->max_newidle_lb_cost =
9420 (sd->max_newidle_lb_cost * 253) / 256;
9421 sd->next_decay_max_lb_cost = jiffies + HZ;
9422 need_decay = 1;
9423 }
9424 max_cost += sd->max_newidle_lb_cost;
9425
9426 if (!(sd->flags & SD_LOAD_BALANCE))
9427 continue;
9428
9429 /*
9430 * Stop the load balance at this level. There is another
9431 * CPU in our sched group which is doing load balancing more
9432 * actively.
9433 */
9434 if (!continue_balancing) {
9435 if (need_decay)
9436 continue;
9437 break;
9438 }
9439
9440 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9441
9442 need_serialize = sd->flags & SD_SERIALIZE;
9443 if (need_serialize) {
9444 if (!spin_trylock(&balancing))
9445 goto out;
9446 }
9447
9448 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9449 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9450 /*
9451 * The LBF_DST_PINNED logic could have changed
9452 * env->dst_cpu, so we can't know our idle
9453 * state even if we migrated tasks. Update it.
9454 */
9455 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9456 }
9457 sd->last_balance = jiffies;
9458 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9459 }
9460 if (need_serialize)
9461 spin_unlock(&balancing);
9462out:
9463 if (time_after(next_balance, sd->last_balance + interval)) {
9464 next_balance = sd->last_balance + interval;
9465 update_next_balance = 1;
9466 }
9467 }
9468 if (need_decay) {
9469 /*
9470 * Ensure the rq-wide value also decays but keep it at a
9471 * reasonable floor to avoid funnies with rq->avg_idle.
9472 */
9473 rq->max_idle_balance_cost =
9474 max((u64)sysctl_sched_migration_cost, max_cost);
9475 }
9476 rcu_read_unlock();
9477
9478 /*
9479 * next_balance will be updated only when there is a need.
9480 * When the cpu is attached to null domain for ex, it will not be
9481 * updated.
9482 */
9483 if (likely(update_next_balance)) {
9484 rq->next_balance = next_balance;
9485
9486#ifdef CONFIG_NO_HZ_COMMON
9487 /*
9488 * If this CPU has been elected to perform the nohz idle
9489 * balance. Other idle CPUs have already rebalanced with
9490 * nohz_idle_balance() and nohz.next_balance has been
9491 * updated accordingly. This CPU is now running the idle load
9492 * balance for itself and we need to update the
9493 * nohz.next_balance accordingly.
9494 */
9495 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9496 nohz.next_balance = rq->next_balance;
9497#endif
9498 }
9499}
9500
d987fc7f
MG
9501static inline int on_null_domain(struct rq *rq)
9502{
9503 return unlikely(!rcu_dereference_sched(rq->sd));
9504}
9505
3451d024 9506#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
9507/*
9508 * idle load balancing details
83cd4fe2
VP
9509 * - When one of the busy CPUs notice that there may be an idle rebalancing
9510 * needed, they will kick the idle load balancer, which then does idle
9511 * load balancing for all the idle CPUs.
9512 */
1e3c88bd 9513
3dd0337d 9514static inline int find_new_ilb(void)
1e3c88bd 9515{
0b005cf5 9516 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 9517
786d6dc7
SS
9518 if (ilb < nr_cpu_ids && idle_cpu(ilb))
9519 return ilb;
9520
9521 return nr_cpu_ids;
1e3c88bd 9522}
1e3c88bd 9523
83cd4fe2
VP
9524/*
9525 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9526 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9527 * CPU (if there is one).
9528 */
a4064fb6 9529static void kick_ilb(unsigned int flags)
83cd4fe2
VP
9530{
9531 int ilb_cpu;
9532
9533 nohz.next_balance++;
9534
3dd0337d 9535 ilb_cpu = find_new_ilb();
83cd4fe2 9536
0b005cf5
SS
9537 if (ilb_cpu >= nr_cpu_ids)
9538 return;
83cd4fe2 9539
a4064fb6 9540 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
b7031a02 9541 if (flags & NOHZ_KICK_MASK)
1c792db7 9542 return;
4550487a 9543
1c792db7
SS
9544 /*
9545 * Use smp_send_reschedule() instead of resched_cpu().
97fb7a0a 9546 * This way we generate a sched IPI on the target CPU which
1c792db7
SS
9547 * is idle. And the softirq performing nohz idle load balance
9548 * will be run before returning from the IPI.
9549 */
9550 smp_send_reschedule(ilb_cpu);
4550487a
PZ
9551}
9552
9553/*
9554 * Current heuristic for kicking the idle load balancer in the presence
9555 * of an idle cpu in the system.
9556 * - This rq has more than one task.
9557 * - This rq has at least one CFS task and the capacity of the CPU is
9558 * significantly reduced because of RT tasks or IRQs.
9559 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9560 * multiple busy cpu.
9561 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9562 * domain span are idle.
9563 */
9564static void nohz_balancer_kick(struct rq *rq)
9565{
9566 unsigned long now = jiffies;
9567 struct sched_domain_shared *sds;
9568 struct sched_domain *sd;
9569 int nr_busy, i, cpu = rq->cpu;
a4064fb6 9570 unsigned int flags = 0;
4550487a
PZ
9571
9572 if (unlikely(rq->idle_balance))
9573 return;
9574
9575 /*
9576 * We may be recently in ticked or tickless idle mode. At the first
9577 * busy tick after returning from idle, we will update the busy stats.
9578 */
00357f5e 9579 nohz_balance_exit_idle(rq);
4550487a
PZ
9580
9581 /*
9582 * None are in tickless mode and hence no need for NOHZ idle load
9583 * balancing.
9584 */
9585 if (likely(!atomic_read(&nohz.nr_cpus)))
9586 return;
9587
f643ea22
VG
9588 if (READ_ONCE(nohz.has_blocked) &&
9589 time_after(now, READ_ONCE(nohz.next_blocked)))
a4064fb6
PZ
9590 flags = NOHZ_STATS_KICK;
9591
4550487a 9592 if (time_before(now, nohz.next_balance))
a4064fb6 9593 goto out;
4550487a 9594
5fbdfae5 9595 if (rq->nr_running >= 2 || rq->misfit_task_load) {
a4064fb6 9596 flags = NOHZ_KICK_MASK;
4550487a
PZ
9597 goto out;
9598 }
9599
9600 rcu_read_lock();
9601 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9602 if (sds) {
9603 /*
9604 * XXX: write a coherent comment on why we do this.
9605 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9606 */
9607 nr_busy = atomic_read(&sds->nr_busy_cpus);
9608 if (nr_busy > 1) {
a4064fb6 9609 flags = NOHZ_KICK_MASK;
4550487a
PZ
9610 goto unlock;
9611 }
9612
9613 }
9614
9615 sd = rcu_dereference(rq->sd);
9616 if (sd) {
9617 if ((rq->cfs.h_nr_running >= 1) &&
9618 check_cpu_capacity(rq, sd)) {
a4064fb6 9619 flags = NOHZ_KICK_MASK;
4550487a
PZ
9620 goto unlock;
9621 }
9622 }
9623
011b27bb 9624 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
4550487a
PZ
9625 if (sd) {
9626 for_each_cpu(i, sched_domain_span(sd)) {
9627 if (i == cpu ||
9628 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9629 continue;
9630
9631 if (sched_asym_prefer(i, cpu)) {
a4064fb6 9632 flags = NOHZ_KICK_MASK;
4550487a
PZ
9633 goto unlock;
9634 }
9635 }
9636 }
9637unlock:
9638 rcu_read_unlock();
9639out:
a4064fb6
PZ
9640 if (flags)
9641 kick_ilb(flags);
83cd4fe2
VP
9642}
9643
00357f5e 9644static void set_cpu_sd_state_busy(int cpu)
71325960 9645{
00357f5e 9646 struct sched_domain *sd;
a22e47a4 9647
00357f5e
PZ
9648 rcu_read_lock();
9649 sd = rcu_dereference(per_cpu(sd_llc, cpu));
a22e47a4 9650
00357f5e
PZ
9651 if (!sd || !sd->nohz_idle)
9652 goto unlock;
9653 sd->nohz_idle = 0;
9654
9655 atomic_inc(&sd->shared->nr_busy_cpus);
9656unlock:
9657 rcu_read_unlock();
71325960
SS
9658}
9659
00357f5e
PZ
9660void nohz_balance_exit_idle(struct rq *rq)
9661{
9662 SCHED_WARN_ON(rq != this_rq());
9663
9664 if (likely(!rq->nohz_tick_stopped))
9665 return;
9666
9667 rq->nohz_tick_stopped = 0;
9668 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9669 atomic_dec(&nohz.nr_cpus);
9670
9671 set_cpu_sd_state_busy(rq->cpu);
9672}
9673
9674static void set_cpu_sd_state_idle(int cpu)
69e1e811
SS
9675{
9676 struct sched_domain *sd;
69e1e811 9677
69e1e811 9678 rcu_read_lock();
0e369d75 9679 sd = rcu_dereference(per_cpu(sd_llc, cpu));
25f55d9d
VG
9680
9681 if (!sd || sd->nohz_idle)
9682 goto unlock;
9683 sd->nohz_idle = 1;
9684
0e369d75 9685 atomic_dec(&sd->shared->nr_busy_cpus);
25f55d9d 9686unlock:
69e1e811
SS
9687 rcu_read_unlock();
9688}
9689
1e3c88bd 9690/*
97fb7a0a 9691 * This routine will record that the CPU is going idle with tick stopped.
0b005cf5 9692 * This info will be used in performing idle load balancing in the future.
1e3c88bd 9693 */
c1cc017c 9694void nohz_balance_enter_idle(int cpu)
1e3c88bd 9695{
00357f5e
PZ
9696 struct rq *rq = cpu_rq(cpu);
9697
9698 SCHED_WARN_ON(cpu != smp_processor_id());
9699
97fb7a0a 9700 /* If this CPU is going down, then nothing needs to be done: */
71325960
SS
9701 if (!cpu_active(cpu))
9702 return;
9703
387bc8b5 9704 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
de201559 9705 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
387bc8b5
FW
9706 return;
9707
f643ea22
VG
9708 /*
9709 * Can be set safely without rq->lock held
9710 * If a clear happens, it will have evaluated last additions because
9711 * rq->lock is held during the check and the clear
9712 */
9713 rq->has_blocked_load = 1;
9714
9715 /*
9716 * The tick is still stopped but load could have been added in the
9717 * meantime. We set the nohz.has_blocked flag to trig a check of the
9718 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9719 * of nohz.has_blocked can only happen after checking the new load
9720 */
00357f5e 9721 if (rq->nohz_tick_stopped)
f643ea22 9722 goto out;
1e3c88bd 9723
97fb7a0a 9724 /* If we're a completely isolated CPU, we don't play: */
00357f5e 9725 if (on_null_domain(rq))
d987fc7f
MG
9726 return;
9727
00357f5e
PZ
9728 rq->nohz_tick_stopped = 1;
9729
c1cc017c
AS
9730 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9731 atomic_inc(&nohz.nr_cpus);
00357f5e 9732
f643ea22
VG
9733 /*
9734 * Ensures that if nohz_idle_balance() fails to observe our
9735 * @idle_cpus_mask store, it must observe the @has_blocked
9736 * store.
9737 */
9738 smp_mb__after_atomic();
9739
00357f5e 9740 set_cpu_sd_state_idle(cpu);
f643ea22
VG
9741
9742out:
9743 /*
9744 * Each time a cpu enter idle, we assume that it has blocked load and
9745 * enable the periodic update of the load of idle cpus
9746 */
9747 WRITE_ONCE(nohz.has_blocked, 1);
1e3c88bd 9748}
1e3c88bd 9749
1e3c88bd 9750/*
31e77c93
VG
9751 * Internal function that runs load balance for all idle cpus. The load balance
9752 * can be a simple update of blocked load or a complete load balance with
9753 * tasks movement depending of flags.
9754 * The function returns false if the loop has stopped before running
9755 * through all idle CPUs.
1e3c88bd 9756 */
31e77c93
VG
9757static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9758 enum cpu_idle_type idle)
83cd4fe2 9759{
c5afb6a8 9760 /* Earliest time when we have to do rebalance again */
a4064fb6
PZ
9761 unsigned long now = jiffies;
9762 unsigned long next_balance = now + 60*HZ;
f643ea22 9763 bool has_blocked_load = false;
c5afb6a8 9764 int update_next_balance = 0;
b7031a02 9765 int this_cpu = this_rq->cpu;
b7031a02 9766 int balance_cpu;
31e77c93 9767 int ret = false;
b7031a02 9768 struct rq *rq;
83cd4fe2 9769
b7031a02 9770 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
83cd4fe2 9771
f643ea22
VG
9772 /*
9773 * We assume there will be no idle load after this update and clear
9774 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9775 * set the has_blocked flag and trig another update of idle load.
9776 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9777 * setting the flag, we are sure to not clear the state and not
9778 * check the load of an idle cpu.
9779 */
9780 WRITE_ONCE(nohz.has_blocked, 0);
9781
9782 /*
9783 * Ensures that if we miss the CPU, we must see the has_blocked
9784 * store from nohz_balance_enter_idle().
9785 */
9786 smp_mb();
9787
83cd4fe2 9788 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 9789 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
9790 continue;
9791
9792 /*
97fb7a0a
IM
9793 * If this CPU gets work to do, stop the load balancing
9794 * work being done for other CPUs. Next load
83cd4fe2
VP
9795 * balancing owner will pick it up.
9796 */
f643ea22
VG
9797 if (need_resched()) {
9798 has_blocked_load = true;
9799 goto abort;
9800 }
83cd4fe2 9801
5ed4f1d9
VG
9802 rq = cpu_rq(balance_cpu);
9803
63928384 9804 has_blocked_load |= update_nohz_stats(rq, true);
f643ea22 9805
ed61bbc6
TC
9806 /*
9807 * If time for next balance is due,
9808 * do the balance.
9809 */
9810 if (time_after_eq(jiffies, rq->next_balance)) {
8a8c69c3
PZ
9811 struct rq_flags rf;
9812
31e77c93 9813 rq_lock_irqsave(rq, &rf);
ed61bbc6 9814 update_rq_clock(rq);
cee1afce 9815 cpu_load_update_idle(rq);
31e77c93 9816 rq_unlock_irqrestore(rq, &rf);
8a8c69c3 9817
b7031a02
PZ
9818 if (flags & NOHZ_BALANCE_KICK)
9819 rebalance_domains(rq, CPU_IDLE);
ed61bbc6 9820 }
83cd4fe2 9821
c5afb6a8
VG
9822 if (time_after(next_balance, rq->next_balance)) {
9823 next_balance = rq->next_balance;
9824 update_next_balance = 1;
9825 }
83cd4fe2 9826 }
c5afb6a8 9827
31e77c93
VG
9828 /* Newly idle CPU doesn't need an update */
9829 if (idle != CPU_NEWLY_IDLE) {
9830 update_blocked_averages(this_cpu);
9831 has_blocked_load |= this_rq->has_blocked_load;
9832 }
9833
b7031a02
PZ
9834 if (flags & NOHZ_BALANCE_KICK)
9835 rebalance_domains(this_rq, CPU_IDLE);
9836
f643ea22
VG
9837 WRITE_ONCE(nohz.next_blocked,
9838 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9839
31e77c93
VG
9840 /* The full idle balance loop has been done */
9841 ret = true;
9842
f643ea22
VG
9843abort:
9844 /* There is still blocked load, enable periodic update */
9845 if (has_blocked_load)
9846 WRITE_ONCE(nohz.has_blocked, 1);
a4064fb6 9847
c5afb6a8
VG
9848 /*
9849 * next_balance will be updated only when there is a need.
9850 * When the CPU is attached to null domain for ex, it will not be
9851 * updated.
9852 */
9853 if (likely(update_next_balance))
9854 nohz.next_balance = next_balance;
b7031a02 9855
31e77c93
VG
9856 return ret;
9857}
9858
9859/*
9860 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9861 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9862 */
9863static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9864{
9865 int this_cpu = this_rq->cpu;
9866 unsigned int flags;
9867
9868 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9869 return false;
9870
9871 if (idle != CPU_IDLE) {
9872 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9873 return false;
9874 }
9875
80eb8657 9876 /* could be _relaxed() */
31e77c93
VG
9877 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9878 if (!(flags & NOHZ_KICK_MASK))
9879 return false;
9880
9881 _nohz_idle_balance(this_rq, flags, idle);
9882
b7031a02 9883 return true;
83cd4fe2 9884}
31e77c93
VG
9885
9886static void nohz_newidle_balance(struct rq *this_rq)
9887{
9888 int this_cpu = this_rq->cpu;
9889
9890 /*
9891 * This CPU doesn't want to be disturbed by scheduler
9892 * housekeeping
9893 */
9894 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9895 return;
9896
9897 /* Will wake up very soon. No time for doing anything else*/
9898 if (this_rq->avg_idle < sysctl_sched_migration_cost)
9899 return;
9900
9901 /* Don't need to update blocked load of idle CPUs*/
9902 if (!READ_ONCE(nohz.has_blocked) ||
9903 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9904 return;
9905
9906 raw_spin_unlock(&this_rq->lock);
9907 /*
9908 * This CPU is going to be idle and blocked load of idle CPUs
9909 * need to be updated. Run the ilb locally as it is a good
9910 * candidate for ilb instead of waking up another idle CPU.
9911 * Kick an normal ilb if we failed to do the update.
9912 */
9913 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9914 kick_ilb(NOHZ_STATS_KICK);
9915 raw_spin_lock(&this_rq->lock);
9916}
9917
dd707247
PZ
9918#else /* !CONFIG_NO_HZ_COMMON */
9919static inline void nohz_balancer_kick(struct rq *rq) { }
9920
31e77c93 9921static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
b7031a02
PZ
9922{
9923 return false;
9924}
31e77c93
VG
9925
9926static inline void nohz_newidle_balance(struct rq *this_rq) { }
dd707247 9927#endif /* CONFIG_NO_HZ_COMMON */
83cd4fe2 9928
47ea5412
PZ
9929/*
9930 * idle_balance is called by schedule() if this_cpu is about to become
9931 * idle. Attempts to pull tasks from other CPUs.
9932 */
9933static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9934{
9935 unsigned long next_balance = jiffies + HZ;
9936 int this_cpu = this_rq->cpu;
9937 struct sched_domain *sd;
9938 int pulled_task = 0;
9939 u64 curr_cost = 0;
9940
9941 /*
9942 * We must set idle_stamp _before_ calling idle_balance(), such that we
9943 * measure the duration of idle_balance() as idle time.
9944 */
9945 this_rq->idle_stamp = rq_clock(this_rq);
9946
9947 /*
9948 * Do not pull tasks towards !active CPUs...
9949 */
9950 if (!cpu_active(this_cpu))
9951 return 0;
9952
9953 /*
9954 * This is OK, because current is on_cpu, which avoids it being picked
9955 * for load-balance and preemption/IRQs are still disabled avoiding
9956 * further scheduler activity on it and we're being very careful to
9957 * re-start the picking loop.
9958 */
9959 rq_unpin_lock(this_rq, rf);
9960
9961 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
e90c8fe1 9962 !READ_ONCE(this_rq->rd->overload)) {
31e77c93 9963
47ea5412
PZ
9964 rcu_read_lock();
9965 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9966 if (sd)
9967 update_next_balance(sd, &next_balance);
9968 rcu_read_unlock();
9969
31e77c93
VG
9970 nohz_newidle_balance(this_rq);
9971
47ea5412
PZ
9972 goto out;
9973 }
9974
9975 raw_spin_unlock(&this_rq->lock);
9976
9977 update_blocked_averages(this_cpu);
9978 rcu_read_lock();
9979 for_each_domain(this_cpu, sd) {
9980 int continue_balancing = 1;
9981 u64 t0, domain_cost;
9982
9983 if (!(sd->flags & SD_LOAD_BALANCE))
9984 continue;
9985
9986 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9987 update_next_balance(sd, &next_balance);
9988 break;
9989 }
9990
9991 if (sd->flags & SD_BALANCE_NEWIDLE) {
9992 t0 = sched_clock_cpu(this_cpu);
9993
9994 pulled_task = load_balance(this_cpu, this_rq,
9995 sd, CPU_NEWLY_IDLE,
9996 &continue_balancing);
9997
9998 domain_cost = sched_clock_cpu(this_cpu) - t0;
9999 if (domain_cost > sd->max_newidle_lb_cost)
10000 sd->max_newidle_lb_cost = domain_cost;
10001
10002 curr_cost += domain_cost;
10003 }
10004
10005 update_next_balance(sd, &next_balance);
10006
10007 /*
10008 * Stop searching for tasks to pull if there are
10009 * now runnable tasks on this rq.
10010 */
10011 if (pulled_task || this_rq->nr_running > 0)
10012 break;
10013 }
10014 rcu_read_unlock();
10015
10016 raw_spin_lock(&this_rq->lock);
10017
10018 if (curr_cost > this_rq->max_idle_balance_cost)
10019 this_rq->max_idle_balance_cost = curr_cost;
10020
457be908 10021out:
47ea5412
PZ
10022 /*
10023 * While browsing the domains, we released the rq lock, a task could
10024 * have been enqueued in the meantime. Since we're not going idle,
10025 * pretend we pulled a task.
10026 */
10027 if (this_rq->cfs.h_nr_running && !pulled_task)
10028 pulled_task = 1;
10029
47ea5412
PZ
10030 /* Move the next balance forward */
10031 if (time_after(this_rq->next_balance, next_balance))
10032 this_rq->next_balance = next_balance;
10033
10034 /* Is there a task of a high priority class? */
10035 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10036 pulled_task = -1;
10037
10038 if (pulled_task)
10039 this_rq->idle_stamp = 0;
10040
10041 rq_repin_lock(this_rq, rf);
10042
10043 return pulled_task;
10044}
10045
83cd4fe2
VP
10046/*
10047 * run_rebalance_domains is triggered when needed from the scheduler tick.
10048 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10049 */
0766f788 10050static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 10051{
208cb16b 10052 struct rq *this_rq = this_rq();
6eb57e0d 10053 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
10054 CPU_IDLE : CPU_NOT_IDLE;
10055
1e3c88bd 10056 /*
97fb7a0a
IM
10057 * If this CPU has a pending nohz_balance_kick, then do the
10058 * balancing on behalf of the other idle CPUs whose ticks are
d4573c3e 10059 * stopped. Do nohz_idle_balance *before* rebalance_domains to
97fb7a0a 10060 * give the idle CPUs a chance to load balance. Else we may
d4573c3e
PM
10061 * load balance only within the local sched_domain hierarchy
10062 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 10063 */
b7031a02
PZ
10064 if (nohz_idle_balance(this_rq, idle))
10065 return;
10066
10067 /* normal load balance */
10068 update_blocked_averages(this_rq->cpu);
d4573c3e 10069 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
10070}
10071
1e3c88bd
PZ
10072/*
10073 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 10074 */
7caff66f 10075void trigger_load_balance(struct rq *rq)
1e3c88bd 10076{
1e3c88bd 10077 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
10078 if (unlikely(on_null_domain(rq)))
10079 return;
10080
10081 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 10082 raise_softirq(SCHED_SOFTIRQ);
4550487a
PZ
10083
10084 nohz_balancer_kick(rq);
1e3c88bd
PZ
10085}
10086
0bcdcf28
CE
10087static void rq_online_fair(struct rq *rq)
10088{
10089 update_sysctl();
0e59bdae
KT
10090
10091 update_runtime_enabled(rq);
0bcdcf28
CE
10092}
10093
10094static void rq_offline_fair(struct rq *rq)
10095{
10096 update_sysctl();
a4c96ae3
PB
10097
10098 /* Ensure any throttled groups are reachable by pick_next_task */
10099 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
10100}
10101
55e12e5e 10102#endif /* CONFIG_SMP */
e1d1484f 10103
bf0f6f24 10104/*
d84b3131
FW
10105 * scheduler tick hitting a task of our scheduling class.
10106 *
10107 * NOTE: This function can be called remotely by the tick offload that
10108 * goes along full dynticks. Therefore no local assumption can be made
10109 * and everything must be accessed through the @rq and @curr passed in
10110 * parameters.
bf0f6f24 10111 */
8f4d37ec 10112static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
10113{
10114 struct cfs_rq *cfs_rq;
10115 struct sched_entity *se = &curr->se;
10116
10117 for_each_sched_entity(se) {
10118 cfs_rq = cfs_rq_of(se);
8f4d37ec 10119 entity_tick(cfs_rq, se, queued);
bf0f6f24 10120 }
18bf2805 10121
b52da86e 10122 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 10123 task_tick_numa(rq, curr);
3b1baa64
MR
10124
10125 update_misfit_status(curr, rq);
2802bf3c 10126 update_overutilized_status(task_rq(curr));
bf0f6f24
IM
10127}
10128
10129/*
cd29fe6f
PZ
10130 * called on fork with the child task as argument from the parent's context
10131 * - child not yet on the tasklist
10132 * - preemption disabled
bf0f6f24 10133 */
cd29fe6f 10134static void task_fork_fair(struct task_struct *p)
bf0f6f24 10135{
4fc420c9
DN
10136 struct cfs_rq *cfs_rq;
10137 struct sched_entity *se = &p->se, *curr;
cd29fe6f 10138 struct rq *rq = this_rq();
8a8c69c3 10139 struct rq_flags rf;
bf0f6f24 10140
8a8c69c3 10141 rq_lock(rq, &rf);
861d034e
PZ
10142 update_rq_clock(rq);
10143
4fc420c9
DN
10144 cfs_rq = task_cfs_rq(current);
10145 curr = cfs_rq->curr;
e210bffd
PZ
10146 if (curr) {
10147 update_curr(cfs_rq);
b5d9d734 10148 se->vruntime = curr->vruntime;
e210bffd 10149 }
aeb73b04 10150 place_entity(cfs_rq, se, 1);
4d78e7b6 10151
cd29fe6f 10152 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 10153 /*
edcb60a3
IM
10154 * Upon rescheduling, sched_class::put_prev_task() will place
10155 * 'current' within the tree based on its new key value.
10156 */
4d78e7b6 10157 swap(curr->vruntime, se->vruntime);
8875125e 10158 resched_curr(rq);
4d78e7b6 10159 }
bf0f6f24 10160
88ec22d3 10161 se->vruntime -= cfs_rq->min_vruntime;
8a8c69c3 10162 rq_unlock(rq, &rf);
bf0f6f24
IM
10163}
10164
cb469845
SR
10165/*
10166 * Priority of the task has changed. Check to see if we preempt
10167 * the current task.
10168 */
da7a735e
PZ
10169static void
10170prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 10171{
da0c1e65 10172 if (!task_on_rq_queued(p))
da7a735e
PZ
10173 return;
10174
cb469845
SR
10175 /*
10176 * Reschedule if we are currently running on this runqueue and
10177 * our priority decreased, or if we are not currently running on
10178 * this runqueue and our priority is higher than the current's
10179 */
da7a735e 10180 if (rq->curr == p) {
cb469845 10181 if (p->prio > oldprio)
8875125e 10182 resched_curr(rq);
cb469845 10183 } else
15afe09b 10184 check_preempt_curr(rq, p, 0);
cb469845
SR
10185}
10186
daa59407 10187static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
10188{
10189 struct sched_entity *se = &p->se;
da7a735e
PZ
10190
10191 /*
daa59407
BP
10192 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10193 * the dequeue_entity(.flags=0) will already have normalized the
10194 * vruntime.
10195 */
10196 if (p->on_rq)
10197 return true;
10198
10199 /*
10200 * When !on_rq, vruntime of the task has usually NOT been normalized.
10201 * But there are some cases where it has already been normalized:
da7a735e 10202 *
daa59407
BP
10203 * - A forked child which is waiting for being woken up by
10204 * wake_up_new_task().
10205 * - A task which has been woken up by try_to_wake_up() and
10206 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 10207 */
d0cdb3ce
SM
10208 if (!se->sum_exec_runtime ||
10209 (p->state == TASK_WAKING && p->sched_remote_wakeup))
daa59407
BP
10210 return true;
10211
10212 return false;
10213}
10214
09a43ace
VG
10215#ifdef CONFIG_FAIR_GROUP_SCHED
10216/*
10217 * Propagate the changes of the sched_entity across the tg tree to make it
10218 * visible to the root
10219 */
10220static void propagate_entity_cfs_rq(struct sched_entity *se)
10221{
10222 struct cfs_rq *cfs_rq;
10223
10224 /* Start to propagate at parent */
10225 se = se->parent;
10226
10227 for_each_sched_entity(se) {
10228 cfs_rq = cfs_rq_of(se);
10229
10230 if (cfs_rq_throttled(cfs_rq))
10231 break;
10232
88c0616e 10233 update_load_avg(cfs_rq, se, UPDATE_TG);
09a43ace
VG
10234 }
10235}
10236#else
10237static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10238#endif
10239
df217913 10240static void detach_entity_cfs_rq(struct sched_entity *se)
daa59407 10241{
daa59407
BP
10242 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10243
9d89c257 10244 /* Catch up with the cfs_rq and remove our load when we leave */
88c0616e 10245 update_load_avg(cfs_rq, se, 0);
a05e8c51 10246 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 10247 update_tg_load_avg(cfs_rq, false);
09a43ace 10248 propagate_entity_cfs_rq(se);
da7a735e
PZ
10249}
10250
df217913 10251static void attach_entity_cfs_rq(struct sched_entity *se)
cb469845 10252{
daa59407 10253 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
10254
10255#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
10256 /*
10257 * Since the real-depth could have been changed (only FAIR
10258 * class maintain depth value), reset depth properly.
10259 */
10260 se->depth = se->parent ? se->parent->depth + 1 : 0;
10261#endif
7855a35a 10262
df217913 10263 /* Synchronize entity with its cfs_rq */
88c0616e 10264 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
ea14b57e 10265 attach_entity_load_avg(cfs_rq, se, 0);
7c3edd2c 10266 update_tg_load_avg(cfs_rq, false);
09a43ace 10267 propagate_entity_cfs_rq(se);
df217913
VG
10268}
10269
10270static void detach_task_cfs_rq(struct task_struct *p)
10271{
10272 struct sched_entity *se = &p->se;
10273 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10274
10275 if (!vruntime_normalized(p)) {
10276 /*
10277 * Fix up our vruntime so that the current sleep doesn't
10278 * cause 'unlimited' sleep bonus.
10279 */
10280 place_entity(cfs_rq, se, 0);
10281 se->vruntime -= cfs_rq->min_vruntime;
10282 }
10283
10284 detach_entity_cfs_rq(se);
10285}
10286
10287static void attach_task_cfs_rq(struct task_struct *p)
10288{
10289 struct sched_entity *se = &p->se;
10290 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10291
10292 attach_entity_cfs_rq(se);
daa59407
BP
10293
10294 if (!vruntime_normalized(p))
10295 se->vruntime += cfs_rq->min_vruntime;
10296}
6efdb105 10297
daa59407
BP
10298static void switched_from_fair(struct rq *rq, struct task_struct *p)
10299{
10300 detach_task_cfs_rq(p);
10301}
10302
10303static void switched_to_fair(struct rq *rq, struct task_struct *p)
10304{
10305 attach_task_cfs_rq(p);
7855a35a 10306
daa59407 10307 if (task_on_rq_queued(p)) {
7855a35a 10308 /*
daa59407
BP
10309 * We were most likely switched from sched_rt, so
10310 * kick off the schedule if running, otherwise just see
10311 * if we can still preempt the current task.
7855a35a 10312 */
daa59407
BP
10313 if (rq->curr == p)
10314 resched_curr(rq);
10315 else
10316 check_preempt_curr(rq, p, 0);
7855a35a 10317 }
cb469845
SR
10318}
10319
83b699ed
SV
10320/* Account for a task changing its policy or group.
10321 *
10322 * This routine is mostly called to set cfs_rq->curr field when a task
10323 * migrates between groups/classes.
10324 */
10325static void set_curr_task_fair(struct rq *rq)
10326{
10327 struct sched_entity *se = &rq->curr->se;
10328
ec12cb7f
PT
10329 for_each_sched_entity(se) {
10330 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10331
10332 set_next_entity(cfs_rq, se);
10333 /* ensure bandwidth has been allocated on our new cfs_rq */
10334 account_cfs_rq_runtime(cfs_rq, 0);
10335 }
83b699ed
SV
10336}
10337
029632fb
PZ
10338void init_cfs_rq(struct cfs_rq *cfs_rq)
10339{
bfb06889 10340 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
029632fb
PZ
10341 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10342#ifndef CONFIG_64BIT
10343 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10344#endif
141965c7 10345#ifdef CONFIG_SMP
2a2f5d4e 10346 raw_spin_lock_init(&cfs_rq->removed.lock);
9ee474f5 10347#endif
029632fb
PZ
10348}
10349
810b3817 10350#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
10351static void task_set_group_fair(struct task_struct *p)
10352{
10353 struct sched_entity *se = &p->se;
10354
10355 set_task_rq(p, task_cpu(p));
10356 se->depth = se->parent ? se->parent->depth + 1 : 0;
10357}
10358
bc54da21 10359static void task_move_group_fair(struct task_struct *p)
810b3817 10360{
daa59407 10361 detach_task_cfs_rq(p);
b2b5ce02 10362 set_task_rq(p, task_cpu(p));
6efdb105
BP
10363
10364#ifdef CONFIG_SMP
10365 /* Tell se's cfs_rq has been changed -- migrated */
10366 p->se.avg.last_update_time = 0;
10367#endif
daa59407 10368 attach_task_cfs_rq(p);
810b3817 10369}
029632fb 10370
ea86cb4b
VG
10371static void task_change_group_fair(struct task_struct *p, int type)
10372{
10373 switch (type) {
10374 case TASK_SET_GROUP:
10375 task_set_group_fair(p);
10376 break;
10377
10378 case TASK_MOVE_GROUP:
10379 task_move_group_fair(p);
10380 break;
10381 }
10382}
10383
029632fb
PZ
10384void free_fair_sched_group(struct task_group *tg)
10385{
10386 int i;
10387
10388 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10389
10390 for_each_possible_cpu(i) {
10391 if (tg->cfs_rq)
10392 kfree(tg->cfs_rq[i]);
6fe1f348 10393 if (tg->se)
029632fb
PZ
10394 kfree(tg->se[i]);
10395 }
10396
10397 kfree(tg->cfs_rq);
10398 kfree(tg->se);
10399}
10400
10401int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10402{
029632fb 10403 struct sched_entity *se;
b7fa30c9 10404 struct cfs_rq *cfs_rq;
029632fb
PZ
10405 int i;
10406
6396bb22 10407 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
029632fb
PZ
10408 if (!tg->cfs_rq)
10409 goto err;
6396bb22 10410 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
029632fb
PZ
10411 if (!tg->se)
10412 goto err;
10413
10414 tg->shares = NICE_0_LOAD;
10415
10416 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10417
10418 for_each_possible_cpu(i) {
10419 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10420 GFP_KERNEL, cpu_to_node(i));
10421 if (!cfs_rq)
10422 goto err;
10423
10424 se = kzalloc_node(sizeof(struct sched_entity),
10425 GFP_KERNEL, cpu_to_node(i));
10426 if (!se)
10427 goto err_free_rq;
10428
10429 init_cfs_rq(cfs_rq);
10430 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 10431 init_entity_runnable_average(se);
029632fb
PZ
10432 }
10433
10434 return 1;
10435
10436err_free_rq:
10437 kfree(cfs_rq);
10438err:
10439 return 0;
10440}
10441
8663e24d
PZ
10442void online_fair_sched_group(struct task_group *tg)
10443{
10444 struct sched_entity *se;
10445 struct rq *rq;
10446 int i;
10447
10448 for_each_possible_cpu(i) {
10449 rq = cpu_rq(i);
10450 se = tg->se[i];
10451
10452 raw_spin_lock_irq(&rq->lock);
4126bad6 10453 update_rq_clock(rq);
d0326691 10454 attach_entity_cfs_rq(se);
55e16d30 10455 sync_throttle(tg, i);
8663e24d
PZ
10456 raw_spin_unlock_irq(&rq->lock);
10457 }
10458}
10459
6fe1f348 10460void unregister_fair_sched_group(struct task_group *tg)
029632fb 10461{
029632fb 10462 unsigned long flags;
6fe1f348
PZ
10463 struct rq *rq;
10464 int cpu;
029632fb 10465
6fe1f348
PZ
10466 for_each_possible_cpu(cpu) {
10467 if (tg->se[cpu])
10468 remove_entity_load_avg(tg->se[cpu]);
029632fb 10469
6fe1f348
PZ
10470 /*
10471 * Only empty task groups can be destroyed; so we can speculatively
10472 * check on_list without danger of it being re-added.
10473 */
10474 if (!tg->cfs_rq[cpu]->on_list)
10475 continue;
10476
10477 rq = cpu_rq(cpu);
10478
10479 raw_spin_lock_irqsave(&rq->lock, flags);
10480 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10481 raw_spin_unlock_irqrestore(&rq->lock, flags);
10482 }
029632fb
PZ
10483}
10484
10485void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10486 struct sched_entity *se, int cpu,
10487 struct sched_entity *parent)
10488{
10489 struct rq *rq = cpu_rq(cpu);
10490
10491 cfs_rq->tg = tg;
10492 cfs_rq->rq = rq;
029632fb
PZ
10493 init_cfs_rq_runtime(cfs_rq);
10494
10495 tg->cfs_rq[cpu] = cfs_rq;
10496 tg->se[cpu] = se;
10497
10498 /* se could be NULL for root_task_group */
10499 if (!se)
10500 return;
10501
fed14d45 10502 if (!parent) {
029632fb 10503 se->cfs_rq = &rq->cfs;
fed14d45
PZ
10504 se->depth = 0;
10505 } else {
029632fb 10506 se->cfs_rq = parent->my_q;
fed14d45
PZ
10507 se->depth = parent->depth + 1;
10508 }
029632fb
PZ
10509
10510 se->my_q = cfs_rq;
0ac9b1c2
PT
10511 /* guarantee group entities always have weight */
10512 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
10513 se->parent = parent;
10514}
10515
10516static DEFINE_MUTEX(shares_mutex);
10517
10518int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10519{
10520 int i;
029632fb
PZ
10521
10522 /*
10523 * We can't change the weight of the root cgroup.
10524 */
10525 if (!tg->se[0])
10526 return -EINVAL;
10527
10528 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10529
10530 mutex_lock(&shares_mutex);
10531 if (tg->shares == shares)
10532 goto done;
10533
10534 tg->shares = shares;
10535 for_each_possible_cpu(i) {
10536 struct rq *rq = cpu_rq(i);
8a8c69c3
PZ
10537 struct sched_entity *se = tg->se[i];
10538 struct rq_flags rf;
029632fb 10539
029632fb 10540 /* Propagate contribution to hierarchy */
8a8c69c3 10541 rq_lock_irqsave(rq, &rf);
71b1da46 10542 update_rq_clock(rq);
89ee048f 10543 for_each_sched_entity(se) {
88c0616e 10544 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
1ea6c46a 10545 update_cfs_group(se);
89ee048f 10546 }
8a8c69c3 10547 rq_unlock_irqrestore(rq, &rf);
029632fb
PZ
10548 }
10549
10550done:
10551 mutex_unlock(&shares_mutex);
10552 return 0;
10553}
10554#else /* CONFIG_FAIR_GROUP_SCHED */
10555
10556void free_fair_sched_group(struct task_group *tg) { }
10557
10558int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10559{
10560 return 1;
10561}
10562
8663e24d
PZ
10563void online_fair_sched_group(struct task_group *tg) { }
10564
6fe1f348 10565void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
10566
10567#endif /* CONFIG_FAIR_GROUP_SCHED */
10568
810b3817 10569
6d686f45 10570static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
10571{
10572 struct sched_entity *se = &task->se;
0d721cea
PW
10573 unsigned int rr_interval = 0;
10574
10575 /*
10576 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10577 * idle runqueue:
10578 */
0d721cea 10579 if (rq->cfs.load.weight)
a59f4e07 10580 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
10581
10582 return rr_interval;
10583}
10584
bf0f6f24
IM
10585/*
10586 * All the scheduling class methods:
10587 */
029632fb 10588const struct sched_class fair_sched_class = {
5522d5d5 10589 .next = &idle_sched_class,
bf0f6f24
IM
10590 .enqueue_task = enqueue_task_fair,
10591 .dequeue_task = dequeue_task_fair,
10592 .yield_task = yield_task_fair,
d95f4122 10593 .yield_to_task = yield_to_task_fair,
bf0f6f24 10594
2e09bf55 10595 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
10596
10597 .pick_next_task = pick_next_task_fair,
10598 .put_prev_task = put_prev_task_fair,
10599
681f3e68 10600#ifdef CONFIG_SMP
4ce72a2c 10601 .select_task_rq = select_task_rq_fair,
0a74bef8 10602 .migrate_task_rq = migrate_task_rq_fair,
141965c7 10603
0bcdcf28
CE
10604 .rq_online = rq_online_fair,
10605 .rq_offline = rq_offline_fair,
88ec22d3 10606
12695578 10607 .task_dead = task_dead_fair,
c5b28038 10608 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 10609#endif
bf0f6f24 10610
83b699ed 10611 .set_curr_task = set_curr_task_fair,
bf0f6f24 10612 .task_tick = task_tick_fair,
cd29fe6f 10613 .task_fork = task_fork_fair,
cb469845
SR
10614
10615 .prio_changed = prio_changed_fair,
da7a735e 10616 .switched_from = switched_from_fair,
cb469845 10617 .switched_to = switched_to_fair,
810b3817 10618
0d721cea
PW
10619 .get_rr_interval = get_rr_interval_fair,
10620
6e998916
SG
10621 .update_curr = update_curr_fair,
10622
810b3817 10623#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10624 .task_change_group = task_change_group_fair,
810b3817 10625#endif
bf0f6f24
IM
10626};
10627
10628#ifdef CONFIG_SCHED_DEBUG
029632fb 10629void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 10630{
039ae8bc 10631 struct cfs_rq *cfs_rq, *pos;
bf0f6f24 10632
5973e5b9 10633 rcu_read_lock();
039ae8bc 10634 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
5cef9eca 10635 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 10636 rcu_read_unlock();
bf0f6f24 10637}
397f2378
SD
10638
10639#ifdef CONFIG_NUMA_BALANCING
10640void show_numa_stats(struct task_struct *p, struct seq_file *m)
10641{
10642 int node;
10643 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10644
10645 for_each_online_node(node) {
10646 if (p->numa_faults) {
10647 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10648 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10649 }
10650 if (p->numa_group) {
10651 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10652 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10653 }
10654 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10655 }
10656}
10657#endif /* CONFIG_NUMA_BALANCING */
10658#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
10659
10660__init void init_sched_fair_class(void)
10661{
10662#ifdef CONFIG_SMP
10663 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10664
3451d024 10665#ifdef CONFIG_NO_HZ_COMMON
554cecaf 10666 nohz.next_balance = jiffies;
f643ea22 10667 nohz.next_blocked = jiffies;
029632fb 10668 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
10669#endif
10670#endif /* SMP */
10671
10672}