sched/numa: Remove the numa_balancing_scan_period_reset sysctl
[linux-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9 683#ifdef CONFIG_SMP
fb13c7ee
MG
684static unsigned long task_h_load(struct task_struct *p);
685
a75cdaa9
AS
686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
bf0f6f24
IM
705/*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
8ebc91d9
IM
710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
bf0f6f24 712{
bbdba7c0 713 unsigned long delta_exec_weighted;
bf0f6f24 714
41acab88
LDM
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
717
718 curr->sum_exec_runtime += delta_exec;
7a62eabc 719 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 721
e9acbff6 722 curr->vruntime += delta_exec_weighted;
1af5f730 723 update_min_vruntime(cfs_rq);
bf0f6f24
IM
724}
725
b7cc0896 726static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 727{
429d43bc 728 struct sched_entity *curr = cfs_rq->curr;
78becc27 729 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
8ebc91d9 740 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
741 if (!delta_exec)
742 return;
bf0f6f24 743
8ebc91d9
IM
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
d842de87
SV
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
f977bb49 750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 751 cpuacct_charge(curtask, delta_exec);
f06febc9 752 account_group_exec_runtime(curtask, delta_exec);
d842de87 753 }
ec12cb7f
PT
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
756}
757
758static inline void
5870db5b 759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 760{
78becc27 761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
762}
763
bf0f6f24
IM
764/*
765 * Task is being enqueued - update stats:
766 */
d2417e5a 767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 768{
bf0f6f24
IM
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
429d43bc 773 if (se != cfs_rq->curr)
5870db5b 774 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
775}
776
bf0f6f24 777static void
9ef0a961 778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
41acab88 780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
78becc27 788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
789 }
790#endif
41acab88 791 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
792}
793
794static inline void
19b6a2e3 795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 796{
bf0f6f24
IM
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
429d43bc 801 if (se != cfs_rq->curr)
9ef0a961 802 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
79303e9e 809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
810{
811 /*
812 * We are starting a new run period:
813 */
78becc27 814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
815}
816
bf0f6f24
IM
817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
cbee9f88
PZ
821#ifdef CONFIG_NUMA_BALANCING
822/*
598f0ec0
MG
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
cbee9f88 826 */
598f0ec0
MG
827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
829
830/* Portion of address space to scan in MB */
831unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 832
4b96a29b
PZ
833/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834unsigned int sysctl_numa_balancing_scan_delay = 1000;
835
598f0ec0
MG
836static unsigned int task_nr_scan_windows(struct task_struct *p)
837{
838 unsigned long rss = 0;
839 unsigned long nr_scan_pages;
840
841 /*
842 * Calculations based on RSS as non-present and empty pages are skipped
843 * by the PTE scanner and NUMA hinting faults should be trapped based
844 * on resident pages
845 */
846 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
847 rss = get_mm_rss(p->mm);
848 if (!rss)
849 rss = nr_scan_pages;
850
851 rss = round_up(rss, nr_scan_pages);
852 return rss / nr_scan_pages;
853}
854
855/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
856#define MAX_SCAN_WINDOW 2560
857
858static unsigned int task_scan_min(struct task_struct *p)
859{
860 unsigned int scan, floor;
861 unsigned int windows = 1;
862
863 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
864 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
865 floor = 1000 / windows;
866
867 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
868 return max_t(unsigned int, floor, scan);
869}
870
871static unsigned int task_scan_max(struct task_struct *p)
872{
873 unsigned int smin = task_scan_min(p);
874 unsigned int smax;
875
876 /* Watch for min being lower than max due to floor calculations */
877 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
878 return max(smin, smax);
879}
880
3a7053b3
MG
881/*
882 * Once a preferred node is selected the scheduler balancer will prefer moving
883 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
884 * scans. This will give the process the chance to accumulate more faults on
885 * the preferred node but still allow the scheduler to move the task again if
886 * the nodes CPUs are overloaded.
887 */
6fe6b2d6 888unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 889
0ec8aa00
PZ
890static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
891{
892 rq->nr_numa_running += (p->numa_preferred_nid != -1);
893 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
894}
895
896static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
897{
898 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
899 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
900}
901
8c8a743c
PZ
902struct numa_group {
903 atomic_t refcount;
904
905 spinlock_t lock; /* nr_tasks, tasks */
906 int nr_tasks;
e29cf08b 907 pid_t gid;
8c8a743c
PZ
908 struct list_head task_list;
909
910 struct rcu_head rcu;
83e1d2cd 911 atomic_long_t total_faults;
8c8a743c
PZ
912 atomic_long_t faults[0];
913};
914
e29cf08b
MG
915pid_t task_numa_group_id(struct task_struct *p)
916{
917 return p->numa_group ? p->numa_group->gid : 0;
918}
919
ac8e895b
MG
920static inline int task_faults_idx(int nid, int priv)
921{
922 return 2 * nid + priv;
923}
924
925static inline unsigned long task_faults(struct task_struct *p, int nid)
926{
927 if (!p->numa_faults)
928 return 0;
929
930 return p->numa_faults[task_faults_idx(nid, 0)] +
931 p->numa_faults[task_faults_idx(nid, 1)];
932}
933
83e1d2cd
MG
934static inline unsigned long group_faults(struct task_struct *p, int nid)
935{
936 if (!p->numa_group)
937 return 0;
938
939 return atomic_long_read(&p->numa_group->faults[2*nid]) +
940 atomic_long_read(&p->numa_group->faults[2*nid+1]);
941}
942
943/*
944 * These return the fraction of accesses done by a particular task, or
945 * task group, on a particular numa node. The group weight is given a
946 * larger multiplier, in order to group tasks together that are almost
947 * evenly spread out between numa nodes.
948 */
949static inline unsigned long task_weight(struct task_struct *p, int nid)
950{
951 unsigned long total_faults;
952
953 if (!p->numa_faults)
954 return 0;
955
956 total_faults = p->total_numa_faults;
957
958 if (!total_faults)
959 return 0;
960
961 return 1000 * task_faults(p, nid) / total_faults;
962}
963
964static inline unsigned long group_weight(struct task_struct *p, int nid)
965{
966 unsigned long total_faults;
967
968 if (!p->numa_group)
969 return 0;
970
971 total_faults = atomic_long_read(&p->numa_group->total_faults);
972
973 if (!total_faults)
974 return 0;
975
ca28aa53 976 return 1000 * group_faults(p, nid) / total_faults;
83e1d2cd
MG
977}
978
e6628d5b 979static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
980static unsigned long source_load(int cpu, int type);
981static unsigned long target_load(int cpu, int type);
982static unsigned long power_of(int cpu);
983static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
984
fb13c7ee 985/* Cached statistics for all CPUs within a node */
58d081b5 986struct numa_stats {
fb13c7ee 987 unsigned long nr_running;
58d081b5 988 unsigned long load;
fb13c7ee
MG
989
990 /* Total compute capacity of CPUs on a node */
991 unsigned long power;
992
993 /* Approximate capacity in terms of runnable tasks on a node */
994 unsigned long capacity;
995 int has_capacity;
58d081b5 996};
e6628d5b 997
fb13c7ee
MG
998/*
999 * XXX borrowed from update_sg_lb_stats
1000 */
1001static void update_numa_stats(struct numa_stats *ns, int nid)
1002{
1003 int cpu;
1004
1005 memset(ns, 0, sizeof(*ns));
1006 for_each_cpu(cpu, cpumask_of_node(nid)) {
1007 struct rq *rq = cpu_rq(cpu);
1008
1009 ns->nr_running += rq->nr_running;
1010 ns->load += weighted_cpuload(cpu);
1011 ns->power += power_of(cpu);
1012 }
1013
1014 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1015 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1016 ns->has_capacity = (ns->nr_running < ns->capacity);
1017}
1018
58d081b5
MG
1019struct task_numa_env {
1020 struct task_struct *p;
e6628d5b 1021
58d081b5
MG
1022 int src_cpu, src_nid;
1023 int dst_cpu, dst_nid;
e6628d5b 1024
58d081b5 1025 struct numa_stats src_stats, dst_stats;
e6628d5b 1026
fb13c7ee
MG
1027 int imbalance_pct, idx;
1028
1029 struct task_struct *best_task;
1030 long best_imp;
58d081b5
MG
1031 int best_cpu;
1032};
1033
fb13c7ee
MG
1034static void task_numa_assign(struct task_numa_env *env,
1035 struct task_struct *p, long imp)
1036{
1037 if (env->best_task)
1038 put_task_struct(env->best_task);
1039 if (p)
1040 get_task_struct(p);
1041
1042 env->best_task = p;
1043 env->best_imp = imp;
1044 env->best_cpu = env->dst_cpu;
1045}
1046
1047/*
1048 * This checks if the overall compute and NUMA accesses of the system would
1049 * be improved if the source tasks was migrated to the target dst_cpu taking
1050 * into account that it might be best if task running on the dst_cpu should
1051 * be exchanged with the source task
1052 */
887c290e
RR
1053static void task_numa_compare(struct task_numa_env *env,
1054 long taskimp, long groupimp)
fb13c7ee
MG
1055{
1056 struct rq *src_rq = cpu_rq(env->src_cpu);
1057 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1058 struct task_struct *cur;
1059 long dst_load, src_load;
1060 long load;
887c290e 1061 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1062
1063 rcu_read_lock();
1064 cur = ACCESS_ONCE(dst_rq->curr);
1065 if (cur->pid == 0) /* idle */
1066 cur = NULL;
1067
1068 /*
1069 * "imp" is the fault differential for the source task between the
1070 * source and destination node. Calculate the total differential for
1071 * the source task and potential destination task. The more negative
1072 * the value is, the more rmeote accesses that would be expected to
1073 * be incurred if the tasks were swapped.
1074 */
1075 if (cur) {
1076 /* Skip this swap candidate if cannot move to the source cpu */
1077 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1078 goto unlock;
1079
887c290e
RR
1080 /*
1081 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1082 * in any group then look only at task weights.
887c290e 1083 */
ca28aa53 1084 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1085 imp = taskimp + task_weight(cur, env->src_nid) -
1086 task_weight(cur, env->dst_nid);
ca28aa53
RR
1087 /*
1088 * Add some hysteresis to prevent swapping the
1089 * tasks within a group over tiny differences.
1090 */
1091 if (cur->numa_group)
1092 imp -= imp/16;
887c290e 1093 } else {
ca28aa53
RR
1094 /*
1095 * Compare the group weights. If a task is all by
1096 * itself (not part of a group), use the task weight
1097 * instead.
1098 */
1099 if (env->p->numa_group)
1100 imp = groupimp;
1101 else
1102 imp = taskimp;
1103
1104 if (cur->numa_group)
1105 imp += group_weight(cur, env->src_nid) -
1106 group_weight(cur, env->dst_nid);
1107 else
1108 imp += task_weight(cur, env->src_nid) -
1109 task_weight(cur, env->dst_nid);
887c290e 1110 }
fb13c7ee
MG
1111 }
1112
1113 if (imp < env->best_imp)
1114 goto unlock;
1115
1116 if (!cur) {
1117 /* Is there capacity at our destination? */
1118 if (env->src_stats.has_capacity &&
1119 !env->dst_stats.has_capacity)
1120 goto unlock;
1121
1122 goto balance;
1123 }
1124
1125 /* Balance doesn't matter much if we're running a task per cpu */
1126 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1127 goto assign;
1128
1129 /*
1130 * In the overloaded case, try and keep the load balanced.
1131 */
1132balance:
1133 dst_load = env->dst_stats.load;
1134 src_load = env->src_stats.load;
1135
1136 /* XXX missing power terms */
1137 load = task_h_load(env->p);
1138 dst_load += load;
1139 src_load -= load;
1140
1141 if (cur) {
1142 load = task_h_load(cur);
1143 dst_load -= load;
1144 src_load += load;
1145 }
1146
1147 /* make src_load the smaller */
1148 if (dst_load < src_load)
1149 swap(dst_load, src_load);
1150
1151 if (src_load * env->imbalance_pct < dst_load * 100)
1152 goto unlock;
1153
1154assign:
1155 task_numa_assign(env, cur, imp);
1156unlock:
1157 rcu_read_unlock();
1158}
1159
887c290e
RR
1160static void task_numa_find_cpu(struct task_numa_env *env,
1161 long taskimp, long groupimp)
2c8a50aa
MG
1162{
1163 int cpu;
1164
1165 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1166 /* Skip this CPU if the source task cannot migrate */
1167 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1168 continue;
1169
1170 env->dst_cpu = cpu;
887c290e 1171 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1172 }
1173}
1174
58d081b5
MG
1175static int task_numa_migrate(struct task_struct *p)
1176{
58d081b5
MG
1177 struct task_numa_env env = {
1178 .p = p,
fb13c7ee 1179
58d081b5 1180 .src_cpu = task_cpu(p),
b32e86b4 1181 .src_nid = task_node(p),
fb13c7ee
MG
1182
1183 .imbalance_pct = 112,
1184
1185 .best_task = NULL,
1186 .best_imp = 0,
1187 .best_cpu = -1
58d081b5
MG
1188 };
1189 struct sched_domain *sd;
887c290e 1190 unsigned long taskweight, groupweight;
2c8a50aa 1191 int nid, ret;
887c290e 1192 long taskimp, groupimp;
e6628d5b 1193
58d081b5 1194 /*
fb13c7ee
MG
1195 * Pick the lowest SD_NUMA domain, as that would have the smallest
1196 * imbalance and would be the first to start moving tasks about.
1197 *
1198 * And we want to avoid any moving of tasks about, as that would create
1199 * random movement of tasks -- counter the numa conditions we're trying
1200 * to satisfy here.
58d081b5
MG
1201 */
1202 rcu_read_lock();
fb13c7ee
MG
1203 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1204 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1205 rcu_read_unlock();
1206
887c290e
RR
1207 taskweight = task_weight(p, env.src_nid);
1208 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1209 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1210 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1211 taskimp = task_weight(p, env.dst_nid) - taskweight;
1212 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1213 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1214
e1dda8a7
RR
1215 /* If the preferred nid has capacity, try to use it. */
1216 if (env.dst_stats.has_capacity)
887c290e 1217 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1218
1219 /* No space available on the preferred nid. Look elsewhere. */
1220 if (env.best_cpu == -1) {
2c8a50aa
MG
1221 for_each_online_node(nid) {
1222 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1223 continue;
58d081b5 1224
83e1d2cd 1225 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1226 taskimp = task_weight(p, nid) - taskweight;
1227 groupimp = group_weight(p, nid) - groupweight;
1228 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1229 continue;
1230
2c8a50aa
MG
1231 env.dst_nid = nid;
1232 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1233 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1234 }
1235 }
1236
fb13c7ee
MG
1237 /* No better CPU than the current one was found. */
1238 if (env.best_cpu == -1)
1239 return -EAGAIN;
1240
0ec8aa00
PZ
1241 sched_setnuma(p, env.dst_nid);
1242
04bb2f94
RR
1243 /*
1244 * Reset the scan period if the task is being rescheduled on an
1245 * alternative node to recheck if the tasks is now properly placed.
1246 */
1247 p->numa_scan_period = task_scan_min(p);
1248
fb13c7ee
MG
1249 if (env.best_task == NULL) {
1250 int ret = migrate_task_to(p, env.best_cpu);
1251 return ret;
1252 }
1253
1254 ret = migrate_swap(p, env.best_task);
1255 put_task_struct(env.best_task);
1256 return ret;
e6628d5b
MG
1257}
1258
6b9a7460
MG
1259/* Attempt to migrate a task to a CPU on the preferred node. */
1260static void numa_migrate_preferred(struct task_struct *p)
1261{
1262 /* Success if task is already running on preferred CPU */
1263 p->numa_migrate_retry = 0;
06ea5e03
RR
1264 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1265 /*
1266 * If migration is temporarily disabled due to a task migration
1267 * then re-enable it now as the task is running on its
1268 * preferred node and memory should migrate locally
1269 */
1270 if (!p->numa_migrate_seq)
1271 p->numa_migrate_seq++;
6b9a7460 1272 return;
06ea5e03 1273 }
6b9a7460
MG
1274
1275 /* This task has no NUMA fault statistics yet */
1276 if (unlikely(p->numa_preferred_nid == -1))
1277 return;
1278
1279 /* Otherwise, try migrate to a CPU on the preferred node */
1280 if (task_numa_migrate(p) != 0)
1281 p->numa_migrate_retry = jiffies + HZ*5;
1282}
1283
04bb2f94
RR
1284/*
1285 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1286 * increments. The more local the fault statistics are, the higher the scan
1287 * period will be for the next scan window. If local/remote ratio is below
1288 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1289 * scan period will decrease
1290 */
1291#define NUMA_PERIOD_SLOTS 10
1292#define NUMA_PERIOD_THRESHOLD 3
1293
1294/*
1295 * Increase the scan period (slow down scanning) if the majority of
1296 * our memory is already on our local node, or if the majority of
1297 * the page accesses are shared with other processes.
1298 * Otherwise, decrease the scan period.
1299 */
1300static void update_task_scan_period(struct task_struct *p,
1301 unsigned long shared, unsigned long private)
1302{
1303 unsigned int period_slot;
1304 int ratio;
1305 int diff;
1306
1307 unsigned long remote = p->numa_faults_locality[0];
1308 unsigned long local = p->numa_faults_locality[1];
1309
1310 /*
1311 * If there were no record hinting faults then either the task is
1312 * completely idle or all activity is areas that are not of interest
1313 * to automatic numa balancing. Scan slower
1314 */
1315 if (local + shared == 0) {
1316 p->numa_scan_period = min(p->numa_scan_period_max,
1317 p->numa_scan_period << 1);
1318
1319 p->mm->numa_next_scan = jiffies +
1320 msecs_to_jiffies(p->numa_scan_period);
1321
1322 return;
1323 }
1324
1325 /*
1326 * Prepare to scale scan period relative to the current period.
1327 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1328 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1329 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1330 */
1331 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1332 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1333 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1334 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1335 if (!slot)
1336 slot = 1;
1337 diff = slot * period_slot;
1338 } else {
1339 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1340
1341 /*
1342 * Scale scan rate increases based on sharing. There is an
1343 * inverse relationship between the degree of sharing and
1344 * the adjustment made to the scanning period. Broadly
1345 * speaking the intent is that there is little point
1346 * scanning faster if shared accesses dominate as it may
1347 * simply bounce migrations uselessly
1348 */
1349 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1350 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1351 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1352 }
1353
1354 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1355 task_scan_min(p), task_scan_max(p));
1356 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1357}
1358
cbee9f88
PZ
1359static void task_numa_placement(struct task_struct *p)
1360{
83e1d2cd
MG
1361 int seq, nid, max_nid = -1, max_group_nid = -1;
1362 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1363 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1364 spinlock_t *group_lock = NULL;
cbee9f88 1365
2832bc19 1366 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1367 if (p->numa_scan_seq == seq)
1368 return;
1369 p->numa_scan_seq = seq;
3a7053b3 1370 p->numa_migrate_seq++;
598f0ec0 1371 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1372
7dbd13ed
MG
1373 /* If the task is part of a group prevent parallel updates to group stats */
1374 if (p->numa_group) {
1375 group_lock = &p->numa_group->lock;
1376 spin_lock(group_lock);
1377 }
1378
688b7585
MG
1379 /* Find the node with the highest number of faults */
1380 for_each_online_node(nid) {
83e1d2cd 1381 unsigned long faults = 0, group_faults = 0;
ac8e895b 1382 int priv, i;
745d6147 1383
ac8e895b 1384 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1385 long diff;
1386
ac8e895b 1387 i = task_faults_idx(nid, priv);
8c8a743c 1388 diff = -p->numa_faults[i];
745d6147 1389
ac8e895b
MG
1390 /* Decay existing window, copy faults since last scan */
1391 p->numa_faults[i] >>= 1;
1392 p->numa_faults[i] += p->numa_faults_buffer[i];
04bb2f94 1393 fault_types[priv] += p->numa_faults_buffer[i];
ac8e895b 1394 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1395
1396 faults += p->numa_faults[i];
8c8a743c 1397 diff += p->numa_faults[i];
83e1d2cd 1398 p->total_numa_faults += diff;
8c8a743c
PZ
1399 if (p->numa_group) {
1400 /* safe because we can only change our own group */
1401 atomic_long_add(diff, &p->numa_group->faults[i]);
83e1d2cd
MG
1402 atomic_long_add(diff, &p->numa_group->total_faults);
1403 group_faults += atomic_long_read(&p->numa_group->faults[i]);
8c8a743c 1404 }
ac8e895b
MG
1405 }
1406
688b7585
MG
1407 if (faults > max_faults) {
1408 max_faults = faults;
1409 max_nid = nid;
1410 }
83e1d2cd
MG
1411
1412 if (group_faults > max_group_faults) {
1413 max_group_faults = group_faults;
1414 max_group_nid = nid;
1415 }
1416 }
1417
04bb2f94
RR
1418 update_task_scan_period(p, fault_types[0], fault_types[1]);
1419
7dbd13ed
MG
1420 if (p->numa_group) {
1421 /*
1422 * If the preferred task and group nids are different,
1423 * iterate over the nodes again to find the best place.
1424 */
1425 if (max_nid != max_group_nid) {
1426 unsigned long weight, max_weight = 0;
1427
1428 for_each_online_node(nid) {
1429 weight = task_weight(p, nid) + group_weight(p, nid);
1430 if (weight > max_weight) {
1431 max_weight = weight;
1432 max_nid = nid;
1433 }
83e1d2cd
MG
1434 }
1435 }
7dbd13ed
MG
1436
1437 spin_unlock(group_lock);
688b7585
MG
1438 }
1439
6b9a7460 1440 /* Preferred node as the node with the most faults */
3a7053b3 1441 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1442 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1443 sched_setnuma(p, max_nid);
6b9a7460 1444 numa_migrate_preferred(p);
3a7053b3 1445 }
cbee9f88
PZ
1446}
1447
8c8a743c
PZ
1448static inline int get_numa_group(struct numa_group *grp)
1449{
1450 return atomic_inc_not_zero(&grp->refcount);
1451}
1452
1453static inline void put_numa_group(struct numa_group *grp)
1454{
1455 if (atomic_dec_and_test(&grp->refcount))
1456 kfree_rcu(grp, rcu);
1457}
1458
1459static void double_lock(spinlock_t *l1, spinlock_t *l2)
1460{
1461 if (l1 > l2)
1462 swap(l1, l2);
1463
1464 spin_lock(l1);
1465 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1466}
1467
3e6a9418
MG
1468static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1469 int *priv)
8c8a743c
PZ
1470{
1471 struct numa_group *grp, *my_grp;
1472 struct task_struct *tsk;
1473 bool join = false;
1474 int cpu = cpupid_to_cpu(cpupid);
1475 int i;
1476
1477 if (unlikely(!p->numa_group)) {
1478 unsigned int size = sizeof(struct numa_group) +
1479 2*nr_node_ids*sizeof(atomic_long_t);
1480
1481 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1482 if (!grp)
1483 return;
1484
1485 atomic_set(&grp->refcount, 1);
1486 spin_lock_init(&grp->lock);
1487 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1488 grp->gid = p->pid;
8c8a743c
PZ
1489
1490 for (i = 0; i < 2*nr_node_ids; i++)
1491 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1492
83e1d2cd
MG
1493 atomic_long_set(&grp->total_faults, p->total_numa_faults);
1494
8c8a743c
PZ
1495 list_add(&p->numa_entry, &grp->task_list);
1496 grp->nr_tasks++;
1497 rcu_assign_pointer(p->numa_group, grp);
1498 }
1499
1500 rcu_read_lock();
1501 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1502
1503 if (!cpupid_match_pid(tsk, cpupid))
1504 goto unlock;
1505
1506 grp = rcu_dereference(tsk->numa_group);
1507 if (!grp)
1508 goto unlock;
1509
1510 my_grp = p->numa_group;
1511 if (grp == my_grp)
1512 goto unlock;
1513
1514 /*
1515 * Only join the other group if its bigger; if we're the bigger group,
1516 * the other task will join us.
1517 */
1518 if (my_grp->nr_tasks > grp->nr_tasks)
1519 goto unlock;
1520
1521 /*
1522 * Tie-break on the grp address.
1523 */
1524 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1525 goto unlock;
1526
dabe1d99
RR
1527 /* Always join threads in the same process. */
1528 if (tsk->mm == current->mm)
1529 join = true;
1530
1531 /* Simple filter to avoid false positives due to PID collisions */
1532 if (flags & TNF_SHARED)
1533 join = true;
8c8a743c 1534
3e6a9418
MG
1535 /* Update priv based on whether false sharing was detected */
1536 *priv = !join;
1537
dabe1d99
RR
1538 if (join && !get_numa_group(grp))
1539 join = false;
8c8a743c
PZ
1540
1541unlock:
1542 rcu_read_unlock();
1543
1544 if (!join)
1545 return;
1546
1547 for (i = 0; i < 2*nr_node_ids; i++) {
1548 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1549 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1550 }
83e1d2cd
MG
1551 atomic_long_sub(p->total_numa_faults, &my_grp->total_faults);
1552 atomic_long_add(p->total_numa_faults, &grp->total_faults);
8c8a743c
PZ
1553
1554 double_lock(&my_grp->lock, &grp->lock);
1555
1556 list_move(&p->numa_entry, &grp->task_list);
1557 my_grp->nr_tasks--;
1558 grp->nr_tasks++;
1559
1560 spin_unlock(&my_grp->lock);
1561 spin_unlock(&grp->lock);
1562
1563 rcu_assign_pointer(p->numa_group, grp);
1564
1565 put_numa_group(my_grp);
1566}
1567
1568void task_numa_free(struct task_struct *p)
1569{
1570 struct numa_group *grp = p->numa_group;
1571 int i;
82727018 1572 void *numa_faults = p->numa_faults;
8c8a743c
PZ
1573
1574 if (grp) {
1575 for (i = 0; i < 2*nr_node_ids; i++)
1576 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1577
83e1d2cd
MG
1578 atomic_long_sub(p->total_numa_faults, &grp->total_faults);
1579
8c8a743c
PZ
1580 spin_lock(&grp->lock);
1581 list_del(&p->numa_entry);
1582 grp->nr_tasks--;
1583 spin_unlock(&grp->lock);
1584 rcu_assign_pointer(p->numa_group, NULL);
1585 put_numa_group(grp);
1586 }
1587
82727018
RR
1588 p->numa_faults = NULL;
1589 p->numa_faults_buffer = NULL;
1590 kfree(numa_faults);
8c8a743c
PZ
1591}
1592
cbee9f88
PZ
1593/*
1594 * Got a PROT_NONE fault for a page on @node.
1595 */
6688cc05 1596void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1597{
1598 struct task_struct *p = current;
6688cc05 1599 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1600 int priv;
cbee9f88 1601
10e84b97 1602 if (!numabalancing_enabled)
1a687c2e
MG
1603 return;
1604
9ff1d9ff
MG
1605 /* for example, ksmd faulting in a user's mm */
1606 if (!p->mm)
1607 return;
1608
82727018
RR
1609 /* Do not worry about placement if exiting */
1610 if (p->state == TASK_DEAD)
1611 return;
1612
f809ca9a
MG
1613 /* Allocate buffer to track faults on a per-node basis */
1614 if (unlikely(!p->numa_faults)) {
ac8e895b 1615 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1616
745d6147
MG
1617 /* numa_faults and numa_faults_buffer share the allocation */
1618 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1619 if (!p->numa_faults)
1620 return;
745d6147
MG
1621
1622 BUG_ON(p->numa_faults_buffer);
ac8e895b 1623 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
83e1d2cd 1624 p->total_numa_faults = 0;
04bb2f94 1625 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1626 }
cbee9f88 1627
8c8a743c
PZ
1628 /*
1629 * First accesses are treated as private, otherwise consider accesses
1630 * to be private if the accessing pid has not changed
1631 */
1632 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1633 priv = 1;
1634 } else {
1635 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1636 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1637 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1638 }
1639
cbee9f88 1640 task_numa_placement(p);
f809ca9a 1641
6b9a7460
MG
1642 /* Retry task to preferred node migration if it previously failed */
1643 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1644 numa_migrate_preferred(p);
1645
b32e86b4
IM
1646 if (migrated)
1647 p->numa_pages_migrated += pages;
1648
ac8e895b 1649 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
04bb2f94 1650 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1651}
1652
6e5fb223
PZ
1653static void reset_ptenuma_scan(struct task_struct *p)
1654{
1655 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1656 p->mm->numa_scan_offset = 0;
1657}
1658
cbee9f88
PZ
1659/*
1660 * The expensive part of numa migration is done from task_work context.
1661 * Triggered from task_tick_numa().
1662 */
1663void task_numa_work(struct callback_head *work)
1664{
1665 unsigned long migrate, next_scan, now = jiffies;
1666 struct task_struct *p = current;
1667 struct mm_struct *mm = p->mm;
6e5fb223 1668 struct vm_area_struct *vma;
9f40604c 1669 unsigned long start, end;
598f0ec0 1670 unsigned long nr_pte_updates = 0;
9f40604c 1671 long pages;
cbee9f88
PZ
1672
1673 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1674
1675 work->next = work; /* protect against double add */
1676 /*
1677 * Who cares about NUMA placement when they're dying.
1678 *
1679 * NOTE: make sure not to dereference p->mm before this check,
1680 * exit_task_work() happens _after_ exit_mm() so we could be called
1681 * without p->mm even though we still had it when we enqueued this
1682 * work.
1683 */
1684 if (p->flags & PF_EXITING)
1685 return;
1686
930aa174 1687 if (!mm->numa_next_scan) {
7e8d16b6
MG
1688 mm->numa_next_scan = now +
1689 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1690 }
1691
cbee9f88
PZ
1692 /*
1693 * Enforce maximal scan/migration frequency..
1694 */
1695 migrate = mm->numa_next_scan;
1696 if (time_before(now, migrate))
1697 return;
1698
598f0ec0
MG
1699 if (p->numa_scan_period == 0) {
1700 p->numa_scan_period_max = task_scan_max(p);
1701 p->numa_scan_period = task_scan_min(p);
1702 }
cbee9f88 1703
fb003b80 1704 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1705 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1706 return;
1707
19a78d11
PZ
1708 /*
1709 * Delay this task enough that another task of this mm will likely win
1710 * the next time around.
1711 */
1712 p->node_stamp += 2 * TICK_NSEC;
1713
9f40604c
MG
1714 start = mm->numa_scan_offset;
1715 pages = sysctl_numa_balancing_scan_size;
1716 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1717 if (!pages)
1718 return;
cbee9f88 1719
6e5fb223 1720 down_read(&mm->mmap_sem);
9f40604c 1721 vma = find_vma(mm, start);
6e5fb223
PZ
1722 if (!vma) {
1723 reset_ptenuma_scan(p);
9f40604c 1724 start = 0;
6e5fb223
PZ
1725 vma = mm->mmap;
1726 }
9f40604c 1727 for (; vma; vma = vma->vm_next) {
fc314724 1728 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1729 continue;
1730
4591ce4f
MG
1731 /*
1732 * Shared library pages mapped by multiple processes are not
1733 * migrated as it is expected they are cache replicated. Avoid
1734 * hinting faults in read-only file-backed mappings or the vdso
1735 * as migrating the pages will be of marginal benefit.
1736 */
1737 if (!vma->vm_mm ||
1738 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1739 continue;
1740
9f40604c
MG
1741 do {
1742 start = max(start, vma->vm_start);
1743 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1744 end = min(end, vma->vm_end);
598f0ec0
MG
1745 nr_pte_updates += change_prot_numa(vma, start, end);
1746
1747 /*
1748 * Scan sysctl_numa_balancing_scan_size but ensure that
1749 * at least one PTE is updated so that unused virtual
1750 * address space is quickly skipped.
1751 */
1752 if (nr_pte_updates)
1753 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1754
9f40604c
MG
1755 start = end;
1756 if (pages <= 0)
1757 goto out;
1758 } while (end != vma->vm_end);
cbee9f88 1759 }
6e5fb223 1760
9f40604c 1761out:
6e5fb223 1762 /*
c69307d5
PZ
1763 * It is possible to reach the end of the VMA list but the last few
1764 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1765 * would find the !migratable VMA on the next scan but not reset the
1766 * scanner to the start so check it now.
6e5fb223
PZ
1767 */
1768 if (vma)
9f40604c 1769 mm->numa_scan_offset = start;
6e5fb223
PZ
1770 else
1771 reset_ptenuma_scan(p);
1772 up_read(&mm->mmap_sem);
cbee9f88
PZ
1773}
1774
1775/*
1776 * Drive the periodic memory faults..
1777 */
1778void task_tick_numa(struct rq *rq, struct task_struct *curr)
1779{
1780 struct callback_head *work = &curr->numa_work;
1781 u64 period, now;
1782
1783 /*
1784 * We don't care about NUMA placement if we don't have memory.
1785 */
1786 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1787 return;
1788
1789 /*
1790 * Using runtime rather than walltime has the dual advantage that
1791 * we (mostly) drive the selection from busy threads and that the
1792 * task needs to have done some actual work before we bother with
1793 * NUMA placement.
1794 */
1795 now = curr->se.sum_exec_runtime;
1796 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1797
1798 if (now - curr->node_stamp > period) {
4b96a29b 1799 if (!curr->node_stamp)
598f0ec0 1800 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1801 curr->node_stamp += period;
cbee9f88
PZ
1802
1803 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1804 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1805 task_work_add(curr, work, true);
1806 }
1807 }
1808}
1809#else
1810static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1811{
1812}
0ec8aa00
PZ
1813
1814static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1815{
1816}
1817
1818static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1819{
1820}
cbee9f88
PZ
1821#endif /* CONFIG_NUMA_BALANCING */
1822
30cfdcfc
DA
1823static void
1824account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1825{
1826 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1827 if (!parent_entity(se))
029632fb 1828 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1829#ifdef CONFIG_SMP
0ec8aa00
PZ
1830 if (entity_is_task(se)) {
1831 struct rq *rq = rq_of(cfs_rq);
1832
1833 account_numa_enqueue(rq, task_of(se));
1834 list_add(&se->group_node, &rq->cfs_tasks);
1835 }
367456c7 1836#endif
30cfdcfc 1837 cfs_rq->nr_running++;
30cfdcfc
DA
1838}
1839
1840static void
1841account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1842{
1843 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1844 if (!parent_entity(se))
029632fb 1845 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1846 if (entity_is_task(se)) {
1847 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1848 list_del_init(&se->group_node);
0ec8aa00 1849 }
30cfdcfc 1850 cfs_rq->nr_running--;
30cfdcfc
DA
1851}
1852
3ff6dcac
YZ
1853#ifdef CONFIG_FAIR_GROUP_SCHED
1854# ifdef CONFIG_SMP
cf5f0acf
PZ
1855static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1856{
1857 long tg_weight;
1858
1859 /*
1860 * Use this CPU's actual weight instead of the last load_contribution
1861 * to gain a more accurate current total weight. See
1862 * update_cfs_rq_load_contribution().
1863 */
bf5b986e 1864 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1865 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1866 tg_weight += cfs_rq->load.weight;
1867
1868 return tg_weight;
1869}
1870
6d5ab293 1871static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1872{
cf5f0acf 1873 long tg_weight, load, shares;
3ff6dcac 1874
cf5f0acf 1875 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1876 load = cfs_rq->load.weight;
3ff6dcac 1877
3ff6dcac 1878 shares = (tg->shares * load);
cf5f0acf
PZ
1879 if (tg_weight)
1880 shares /= tg_weight;
3ff6dcac
YZ
1881
1882 if (shares < MIN_SHARES)
1883 shares = MIN_SHARES;
1884 if (shares > tg->shares)
1885 shares = tg->shares;
1886
1887 return shares;
1888}
3ff6dcac 1889# else /* CONFIG_SMP */
6d5ab293 1890static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1891{
1892 return tg->shares;
1893}
3ff6dcac 1894# endif /* CONFIG_SMP */
2069dd75
PZ
1895static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1896 unsigned long weight)
1897{
19e5eebb
PT
1898 if (se->on_rq) {
1899 /* commit outstanding execution time */
1900 if (cfs_rq->curr == se)
1901 update_curr(cfs_rq);
2069dd75 1902 account_entity_dequeue(cfs_rq, se);
19e5eebb 1903 }
2069dd75
PZ
1904
1905 update_load_set(&se->load, weight);
1906
1907 if (se->on_rq)
1908 account_entity_enqueue(cfs_rq, se);
1909}
1910
82958366
PT
1911static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1912
6d5ab293 1913static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1914{
1915 struct task_group *tg;
1916 struct sched_entity *se;
3ff6dcac 1917 long shares;
2069dd75 1918
2069dd75
PZ
1919 tg = cfs_rq->tg;
1920 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1921 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1922 return;
3ff6dcac
YZ
1923#ifndef CONFIG_SMP
1924 if (likely(se->load.weight == tg->shares))
1925 return;
1926#endif
6d5ab293 1927 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1928
1929 reweight_entity(cfs_rq_of(se), se, shares);
1930}
1931#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1932static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1933{
1934}
1935#endif /* CONFIG_FAIR_GROUP_SCHED */
1936
141965c7 1937#ifdef CONFIG_SMP
5b51f2f8
PT
1938/*
1939 * We choose a half-life close to 1 scheduling period.
1940 * Note: The tables below are dependent on this value.
1941 */
1942#define LOAD_AVG_PERIOD 32
1943#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1944#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1945
1946/* Precomputed fixed inverse multiplies for multiplication by y^n */
1947static const u32 runnable_avg_yN_inv[] = {
1948 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1949 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1950 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1951 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1952 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1953 0x85aac367, 0x82cd8698,
1954};
1955
1956/*
1957 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1958 * over-estimates when re-combining.
1959 */
1960static const u32 runnable_avg_yN_sum[] = {
1961 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1962 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1963 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1964};
1965
9d85f21c
PT
1966/*
1967 * Approximate:
1968 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1969 */
1970static __always_inline u64 decay_load(u64 val, u64 n)
1971{
5b51f2f8
PT
1972 unsigned int local_n;
1973
1974 if (!n)
1975 return val;
1976 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1977 return 0;
1978
1979 /* after bounds checking we can collapse to 32-bit */
1980 local_n = n;
1981
1982 /*
1983 * As y^PERIOD = 1/2, we can combine
1984 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1985 * With a look-up table which covers k^n (n<PERIOD)
1986 *
1987 * To achieve constant time decay_load.
1988 */
1989 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1990 val >>= local_n / LOAD_AVG_PERIOD;
1991 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1992 }
1993
5b51f2f8
PT
1994 val *= runnable_avg_yN_inv[local_n];
1995 /* We don't use SRR here since we always want to round down. */
1996 return val >> 32;
1997}
1998
1999/*
2000 * For updates fully spanning n periods, the contribution to runnable
2001 * average will be: \Sum 1024*y^n
2002 *
2003 * We can compute this reasonably efficiently by combining:
2004 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2005 */
2006static u32 __compute_runnable_contrib(u64 n)
2007{
2008 u32 contrib = 0;
2009
2010 if (likely(n <= LOAD_AVG_PERIOD))
2011 return runnable_avg_yN_sum[n];
2012 else if (unlikely(n >= LOAD_AVG_MAX_N))
2013 return LOAD_AVG_MAX;
2014
2015 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2016 do {
2017 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2018 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2019
2020 n -= LOAD_AVG_PERIOD;
2021 } while (n > LOAD_AVG_PERIOD);
2022
2023 contrib = decay_load(contrib, n);
2024 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2025}
2026
2027/*
2028 * We can represent the historical contribution to runnable average as the
2029 * coefficients of a geometric series. To do this we sub-divide our runnable
2030 * history into segments of approximately 1ms (1024us); label the segment that
2031 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2032 *
2033 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2034 * p0 p1 p2
2035 * (now) (~1ms ago) (~2ms ago)
2036 *
2037 * Let u_i denote the fraction of p_i that the entity was runnable.
2038 *
2039 * We then designate the fractions u_i as our co-efficients, yielding the
2040 * following representation of historical load:
2041 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2042 *
2043 * We choose y based on the with of a reasonably scheduling period, fixing:
2044 * y^32 = 0.5
2045 *
2046 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2047 * approximately half as much as the contribution to load within the last ms
2048 * (u_0).
2049 *
2050 * When a period "rolls over" and we have new u_0`, multiplying the previous
2051 * sum again by y is sufficient to update:
2052 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2053 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2054 */
2055static __always_inline int __update_entity_runnable_avg(u64 now,
2056 struct sched_avg *sa,
2057 int runnable)
2058{
5b51f2f8
PT
2059 u64 delta, periods;
2060 u32 runnable_contrib;
9d85f21c
PT
2061 int delta_w, decayed = 0;
2062
2063 delta = now - sa->last_runnable_update;
2064 /*
2065 * This should only happen when time goes backwards, which it
2066 * unfortunately does during sched clock init when we swap over to TSC.
2067 */
2068 if ((s64)delta < 0) {
2069 sa->last_runnable_update = now;
2070 return 0;
2071 }
2072
2073 /*
2074 * Use 1024ns as the unit of measurement since it's a reasonable
2075 * approximation of 1us and fast to compute.
2076 */
2077 delta >>= 10;
2078 if (!delta)
2079 return 0;
2080 sa->last_runnable_update = now;
2081
2082 /* delta_w is the amount already accumulated against our next period */
2083 delta_w = sa->runnable_avg_period % 1024;
2084 if (delta + delta_w >= 1024) {
2085 /* period roll-over */
2086 decayed = 1;
2087
2088 /*
2089 * Now that we know we're crossing a period boundary, figure
2090 * out how much from delta we need to complete the current
2091 * period and accrue it.
2092 */
2093 delta_w = 1024 - delta_w;
5b51f2f8
PT
2094 if (runnable)
2095 sa->runnable_avg_sum += delta_w;
2096 sa->runnable_avg_period += delta_w;
2097
2098 delta -= delta_w;
2099
2100 /* Figure out how many additional periods this update spans */
2101 periods = delta / 1024;
2102 delta %= 1024;
2103
2104 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2105 periods + 1);
2106 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2107 periods + 1);
2108
2109 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2110 runnable_contrib = __compute_runnable_contrib(periods);
2111 if (runnable)
2112 sa->runnable_avg_sum += runnable_contrib;
2113 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2114 }
2115
2116 /* Remainder of delta accrued against u_0` */
2117 if (runnable)
2118 sa->runnable_avg_sum += delta;
2119 sa->runnable_avg_period += delta;
2120
2121 return decayed;
2122}
2123
9ee474f5 2124/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2125static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2126{
2127 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2128 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2129
2130 decays -= se->avg.decay_count;
2131 if (!decays)
aff3e498 2132 return 0;
9ee474f5
PT
2133
2134 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2135 se->avg.decay_count = 0;
aff3e498
PT
2136
2137 return decays;
9ee474f5
PT
2138}
2139
c566e8e9
PT
2140#ifdef CONFIG_FAIR_GROUP_SCHED
2141static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2142 int force_update)
2143{
2144 struct task_group *tg = cfs_rq->tg;
bf5b986e 2145 long tg_contrib;
c566e8e9
PT
2146
2147 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2148 tg_contrib -= cfs_rq->tg_load_contrib;
2149
bf5b986e
AS
2150 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2151 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2152 cfs_rq->tg_load_contrib += tg_contrib;
2153 }
2154}
8165e145 2155
bb17f655
PT
2156/*
2157 * Aggregate cfs_rq runnable averages into an equivalent task_group
2158 * representation for computing load contributions.
2159 */
2160static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2161 struct cfs_rq *cfs_rq)
2162{
2163 struct task_group *tg = cfs_rq->tg;
2164 long contrib;
2165
2166 /* The fraction of a cpu used by this cfs_rq */
2167 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2168 sa->runnable_avg_period + 1);
2169 contrib -= cfs_rq->tg_runnable_contrib;
2170
2171 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2172 atomic_add(contrib, &tg->runnable_avg);
2173 cfs_rq->tg_runnable_contrib += contrib;
2174 }
2175}
2176
8165e145
PT
2177static inline void __update_group_entity_contrib(struct sched_entity *se)
2178{
2179 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2180 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2181 int runnable_avg;
2182
8165e145
PT
2183 u64 contrib;
2184
2185 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2186 se->avg.load_avg_contrib = div_u64(contrib,
2187 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2188
2189 /*
2190 * For group entities we need to compute a correction term in the case
2191 * that they are consuming <1 cpu so that we would contribute the same
2192 * load as a task of equal weight.
2193 *
2194 * Explicitly co-ordinating this measurement would be expensive, but
2195 * fortunately the sum of each cpus contribution forms a usable
2196 * lower-bound on the true value.
2197 *
2198 * Consider the aggregate of 2 contributions. Either they are disjoint
2199 * (and the sum represents true value) or they are disjoint and we are
2200 * understating by the aggregate of their overlap.
2201 *
2202 * Extending this to N cpus, for a given overlap, the maximum amount we
2203 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2204 * cpus that overlap for this interval and w_i is the interval width.
2205 *
2206 * On a small machine; the first term is well-bounded which bounds the
2207 * total error since w_i is a subset of the period. Whereas on a
2208 * larger machine, while this first term can be larger, if w_i is the
2209 * of consequential size guaranteed to see n_i*w_i quickly converge to
2210 * our upper bound of 1-cpu.
2211 */
2212 runnable_avg = atomic_read(&tg->runnable_avg);
2213 if (runnable_avg < NICE_0_LOAD) {
2214 se->avg.load_avg_contrib *= runnable_avg;
2215 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2216 }
8165e145 2217}
c566e8e9
PT
2218#else
2219static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2220 int force_update) {}
bb17f655
PT
2221static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2222 struct cfs_rq *cfs_rq) {}
8165e145 2223static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2224#endif
2225
8165e145
PT
2226static inline void __update_task_entity_contrib(struct sched_entity *se)
2227{
2228 u32 contrib;
2229
2230 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2231 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2232 contrib /= (se->avg.runnable_avg_period + 1);
2233 se->avg.load_avg_contrib = scale_load(contrib);
2234}
2235
2dac754e
PT
2236/* Compute the current contribution to load_avg by se, return any delta */
2237static long __update_entity_load_avg_contrib(struct sched_entity *se)
2238{
2239 long old_contrib = se->avg.load_avg_contrib;
2240
8165e145
PT
2241 if (entity_is_task(se)) {
2242 __update_task_entity_contrib(se);
2243 } else {
bb17f655 2244 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2245 __update_group_entity_contrib(se);
2246 }
2dac754e
PT
2247
2248 return se->avg.load_avg_contrib - old_contrib;
2249}
2250
9ee474f5
PT
2251static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2252 long load_contrib)
2253{
2254 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2255 cfs_rq->blocked_load_avg -= load_contrib;
2256 else
2257 cfs_rq->blocked_load_avg = 0;
2258}
2259
f1b17280
PT
2260static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2261
9d85f21c 2262/* Update a sched_entity's runnable average */
9ee474f5
PT
2263static inline void update_entity_load_avg(struct sched_entity *se,
2264 int update_cfs_rq)
9d85f21c 2265{
2dac754e
PT
2266 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2267 long contrib_delta;
f1b17280 2268 u64 now;
2dac754e 2269
f1b17280
PT
2270 /*
2271 * For a group entity we need to use their owned cfs_rq_clock_task() in
2272 * case they are the parent of a throttled hierarchy.
2273 */
2274 if (entity_is_task(se))
2275 now = cfs_rq_clock_task(cfs_rq);
2276 else
2277 now = cfs_rq_clock_task(group_cfs_rq(se));
2278
2279 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2280 return;
2281
2282 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2283
2284 if (!update_cfs_rq)
2285 return;
2286
2dac754e
PT
2287 if (se->on_rq)
2288 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2289 else
2290 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2291}
2292
2293/*
2294 * Decay the load contributed by all blocked children and account this so that
2295 * their contribution may appropriately discounted when they wake up.
2296 */
aff3e498 2297static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2298{
f1b17280 2299 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2300 u64 decays;
2301
2302 decays = now - cfs_rq->last_decay;
aff3e498 2303 if (!decays && !force_update)
9ee474f5
PT
2304 return;
2305
2509940f
AS
2306 if (atomic_long_read(&cfs_rq->removed_load)) {
2307 unsigned long removed_load;
2308 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2309 subtract_blocked_load_contrib(cfs_rq, removed_load);
2310 }
9ee474f5 2311
aff3e498
PT
2312 if (decays) {
2313 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2314 decays);
2315 atomic64_add(decays, &cfs_rq->decay_counter);
2316 cfs_rq->last_decay = now;
2317 }
c566e8e9
PT
2318
2319 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2320}
18bf2805
BS
2321
2322static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2323{
78becc27 2324 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2325 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2326}
2dac754e
PT
2327
2328/* Add the load generated by se into cfs_rq's child load-average */
2329static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2330 struct sched_entity *se,
2331 int wakeup)
2dac754e 2332{
aff3e498
PT
2333 /*
2334 * We track migrations using entity decay_count <= 0, on a wake-up
2335 * migration we use a negative decay count to track the remote decays
2336 * accumulated while sleeping.
a75cdaa9
AS
2337 *
2338 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2339 * are seen by enqueue_entity_load_avg() as a migration with an already
2340 * constructed load_avg_contrib.
aff3e498
PT
2341 */
2342 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2343 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2344 if (se->avg.decay_count) {
2345 /*
2346 * In a wake-up migration we have to approximate the
2347 * time sleeping. This is because we can't synchronize
2348 * clock_task between the two cpus, and it is not
2349 * guaranteed to be read-safe. Instead, we can
2350 * approximate this using our carried decays, which are
2351 * explicitly atomically readable.
2352 */
2353 se->avg.last_runnable_update -= (-se->avg.decay_count)
2354 << 20;
2355 update_entity_load_avg(se, 0);
2356 /* Indicate that we're now synchronized and on-rq */
2357 se->avg.decay_count = 0;
2358 }
9ee474f5
PT
2359 wakeup = 0;
2360 } else {
282cf499
AS
2361 /*
2362 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2363 * would have made count negative); we must be careful to avoid
2364 * double-accounting blocked time after synchronizing decays.
2365 */
2366 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2367 << 20;
9ee474f5
PT
2368 }
2369
aff3e498
PT
2370 /* migrated tasks did not contribute to our blocked load */
2371 if (wakeup) {
9ee474f5 2372 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2373 update_entity_load_avg(se, 0);
2374 }
9ee474f5 2375
2dac754e 2376 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2377 /* we force update consideration on load-balancer moves */
2378 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2379}
2380
9ee474f5
PT
2381/*
2382 * Remove se's load from this cfs_rq child load-average, if the entity is
2383 * transitioning to a blocked state we track its projected decay using
2384 * blocked_load_avg.
2385 */
2dac754e 2386static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2387 struct sched_entity *se,
2388 int sleep)
2dac754e 2389{
9ee474f5 2390 update_entity_load_avg(se, 1);
aff3e498
PT
2391 /* we force update consideration on load-balancer moves */
2392 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2393
2dac754e 2394 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2395 if (sleep) {
2396 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2397 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2398 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2399}
642dbc39
VG
2400
2401/*
2402 * Update the rq's load with the elapsed running time before entering
2403 * idle. if the last scheduled task is not a CFS task, idle_enter will
2404 * be the only way to update the runnable statistic.
2405 */
2406void idle_enter_fair(struct rq *this_rq)
2407{
2408 update_rq_runnable_avg(this_rq, 1);
2409}
2410
2411/*
2412 * Update the rq's load with the elapsed idle time before a task is
2413 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2414 * be the only way to update the runnable statistic.
2415 */
2416void idle_exit_fair(struct rq *this_rq)
2417{
2418 update_rq_runnable_avg(this_rq, 0);
2419}
2420
9d85f21c 2421#else
9ee474f5
PT
2422static inline void update_entity_load_avg(struct sched_entity *se,
2423 int update_cfs_rq) {}
18bf2805 2424static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2425static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2426 struct sched_entity *se,
2427 int wakeup) {}
2dac754e 2428static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2429 struct sched_entity *se,
2430 int sleep) {}
aff3e498
PT
2431static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2432 int force_update) {}
9d85f21c
PT
2433#endif
2434
2396af69 2435static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2436{
bf0f6f24 2437#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2438 struct task_struct *tsk = NULL;
2439
2440 if (entity_is_task(se))
2441 tsk = task_of(se);
2442
41acab88 2443 if (se->statistics.sleep_start) {
78becc27 2444 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2445
2446 if ((s64)delta < 0)
2447 delta = 0;
2448
41acab88
LDM
2449 if (unlikely(delta > se->statistics.sleep_max))
2450 se->statistics.sleep_max = delta;
bf0f6f24 2451
8c79a045 2452 se->statistics.sleep_start = 0;
41acab88 2453 se->statistics.sum_sleep_runtime += delta;
9745512c 2454
768d0c27 2455 if (tsk) {
e414314c 2456 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2457 trace_sched_stat_sleep(tsk, delta);
2458 }
bf0f6f24 2459 }
41acab88 2460 if (se->statistics.block_start) {
78becc27 2461 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2462
2463 if ((s64)delta < 0)
2464 delta = 0;
2465
41acab88
LDM
2466 if (unlikely(delta > se->statistics.block_max))
2467 se->statistics.block_max = delta;
bf0f6f24 2468
8c79a045 2469 se->statistics.block_start = 0;
41acab88 2470 se->statistics.sum_sleep_runtime += delta;
30084fbd 2471
e414314c 2472 if (tsk) {
8f0dfc34 2473 if (tsk->in_iowait) {
41acab88
LDM
2474 se->statistics.iowait_sum += delta;
2475 se->statistics.iowait_count++;
768d0c27 2476 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2477 }
2478
b781a602
AV
2479 trace_sched_stat_blocked(tsk, delta);
2480
e414314c
PZ
2481 /*
2482 * Blocking time is in units of nanosecs, so shift by
2483 * 20 to get a milliseconds-range estimation of the
2484 * amount of time that the task spent sleeping:
2485 */
2486 if (unlikely(prof_on == SLEEP_PROFILING)) {
2487 profile_hits(SLEEP_PROFILING,
2488 (void *)get_wchan(tsk),
2489 delta >> 20);
2490 }
2491 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2492 }
bf0f6f24
IM
2493 }
2494#endif
2495}
2496
ddc97297
PZ
2497static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2498{
2499#ifdef CONFIG_SCHED_DEBUG
2500 s64 d = se->vruntime - cfs_rq->min_vruntime;
2501
2502 if (d < 0)
2503 d = -d;
2504
2505 if (d > 3*sysctl_sched_latency)
2506 schedstat_inc(cfs_rq, nr_spread_over);
2507#endif
2508}
2509
aeb73b04
PZ
2510static void
2511place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2512{
1af5f730 2513 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2514
2cb8600e
PZ
2515 /*
2516 * The 'current' period is already promised to the current tasks,
2517 * however the extra weight of the new task will slow them down a
2518 * little, place the new task so that it fits in the slot that
2519 * stays open at the end.
2520 */
94dfb5e7 2521 if (initial && sched_feat(START_DEBIT))
f9c0b095 2522 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2523
a2e7a7eb 2524 /* sleeps up to a single latency don't count. */
5ca9880c 2525 if (!initial) {
a2e7a7eb 2526 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2527
a2e7a7eb
MG
2528 /*
2529 * Halve their sleep time's effect, to allow
2530 * for a gentler effect of sleepers:
2531 */
2532 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2533 thresh >>= 1;
51e0304c 2534
a2e7a7eb 2535 vruntime -= thresh;
aeb73b04
PZ
2536 }
2537
b5d9d734 2538 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2539 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2540}
2541
d3d9dc33
PT
2542static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2543
bf0f6f24 2544static void
88ec22d3 2545enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2546{
88ec22d3
PZ
2547 /*
2548 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2549 * through calling update_curr().
88ec22d3 2550 */
371fd7e7 2551 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2552 se->vruntime += cfs_rq->min_vruntime;
2553
bf0f6f24 2554 /*
a2a2d680 2555 * Update run-time statistics of the 'current'.
bf0f6f24 2556 */
b7cc0896 2557 update_curr(cfs_rq);
f269ae04 2558 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2559 account_entity_enqueue(cfs_rq, se);
2560 update_cfs_shares(cfs_rq);
bf0f6f24 2561
88ec22d3 2562 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2563 place_entity(cfs_rq, se, 0);
2396af69 2564 enqueue_sleeper(cfs_rq, se);
e9acbff6 2565 }
bf0f6f24 2566
d2417e5a 2567 update_stats_enqueue(cfs_rq, se);
ddc97297 2568 check_spread(cfs_rq, se);
83b699ed
SV
2569 if (se != cfs_rq->curr)
2570 __enqueue_entity(cfs_rq, se);
2069dd75 2571 se->on_rq = 1;
3d4b47b4 2572
d3d9dc33 2573 if (cfs_rq->nr_running == 1) {
3d4b47b4 2574 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2575 check_enqueue_throttle(cfs_rq);
2576 }
bf0f6f24
IM
2577}
2578
2c13c919 2579static void __clear_buddies_last(struct sched_entity *se)
2002c695 2580{
2c13c919
RR
2581 for_each_sched_entity(se) {
2582 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2583 if (cfs_rq->last == se)
2584 cfs_rq->last = NULL;
2585 else
2586 break;
2587 }
2588}
2002c695 2589
2c13c919
RR
2590static void __clear_buddies_next(struct sched_entity *se)
2591{
2592 for_each_sched_entity(se) {
2593 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2594 if (cfs_rq->next == se)
2595 cfs_rq->next = NULL;
2596 else
2597 break;
2598 }
2002c695
PZ
2599}
2600
ac53db59
RR
2601static void __clear_buddies_skip(struct sched_entity *se)
2602{
2603 for_each_sched_entity(se) {
2604 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2605 if (cfs_rq->skip == se)
2606 cfs_rq->skip = NULL;
2607 else
2608 break;
2609 }
2610}
2611
a571bbea
PZ
2612static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2613{
2c13c919
RR
2614 if (cfs_rq->last == se)
2615 __clear_buddies_last(se);
2616
2617 if (cfs_rq->next == se)
2618 __clear_buddies_next(se);
ac53db59
RR
2619
2620 if (cfs_rq->skip == se)
2621 __clear_buddies_skip(se);
a571bbea
PZ
2622}
2623
6c16a6dc 2624static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2625
bf0f6f24 2626static void
371fd7e7 2627dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2628{
a2a2d680
DA
2629 /*
2630 * Update run-time statistics of the 'current'.
2631 */
2632 update_curr(cfs_rq);
17bc14b7 2633 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2634
19b6a2e3 2635 update_stats_dequeue(cfs_rq, se);
371fd7e7 2636 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2637#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2638 if (entity_is_task(se)) {
2639 struct task_struct *tsk = task_of(se);
2640
2641 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2642 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2643 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2644 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2645 }
db36cc7d 2646#endif
67e9fb2a
PZ
2647 }
2648
2002c695 2649 clear_buddies(cfs_rq, se);
4793241b 2650
83b699ed 2651 if (se != cfs_rq->curr)
30cfdcfc 2652 __dequeue_entity(cfs_rq, se);
17bc14b7 2653 se->on_rq = 0;
30cfdcfc 2654 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2655
2656 /*
2657 * Normalize the entity after updating the min_vruntime because the
2658 * update can refer to the ->curr item and we need to reflect this
2659 * movement in our normalized position.
2660 */
371fd7e7 2661 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2662 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2663
d8b4986d
PT
2664 /* return excess runtime on last dequeue */
2665 return_cfs_rq_runtime(cfs_rq);
2666
1e876231 2667 update_min_vruntime(cfs_rq);
17bc14b7 2668 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2669}
2670
2671/*
2672 * Preempt the current task with a newly woken task if needed:
2673 */
7c92e54f 2674static void
2e09bf55 2675check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2676{
11697830 2677 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2678 struct sched_entity *se;
2679 s64 delta;
11697830 2680
6d0f0ebd 2681 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2682 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2683 if (delta_exec > ideal_runtime) {
bf0f6f24 2684 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2685 /*
2686 * The current task ran long enough, ensure it doesn't get
2687 * re-elected due to buddy favours.
2688 */
2689 clear_buddies(cfs_rq, curr);
f685ceac
MG
2690 return;
2691 }
2692
2693 /*
2694 * Ensure that a task that missed wakeup preemption by a
2695 * narrow margin doesn't have to wait for a full slice.
2696 * This also mitigates buddy induced latencies under load.
2697 */
f685ceac
MG
2698 if (delta_exec < sysctl_sched_min_granularity)
2699 return;
2700
f4cfb33e
WX
2701 se = __pick_first_entity(cfs_rq);
2702 delta = curr->vruntime - se->vruntime;
f685ceac 2703
f4cfb33e
WX
2704 if (delta < 0)
2705 return;
d7d82944 2706
f4cfb33e
WX
2707 if (delta > ideal_runtime)
2708 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2709}
2710
83b699ed 2711static void
8494f412 2712set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2713{
83b699ed
SV
2714 /* 'current' is not kept within the tree. */
2715 if (se->on_rq) {
2716 /*
2717 * Any task has to be enqueued before it get to execute on
2718 * a CPU. So account for the time it spent waiting on the
2719 * runqueue.
2720 */
2721 update_stats_wait_end(cfs_rq, se);
2722 __dequeue_entity(cfs_rq, se);
2723 }
2724
79303e9e 2725 update_stats_curr_start(cfs_rq, se);
429d43bc 2726 cfs_rq->curr = se;
eba1ed4b
IM
2727#ifdef CONFIG_SCHEDSTATS
2728 /*
2729 * Track our maximum slice length, if the CPU's load is at
2730 * least twice that of our own weight (i.e. dont track it
2731 * when there are only lesser-weight tasks around):
2732 */
495eca49 2733 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2734 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2735 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2736 }
2737#endif
4a55b450 2738 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2739}
2740
3f3a4904
PZ
2741static int
2742wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2743
ac53db59
RR
2744/*
2745 * Pick the next process, keeping these things in mind, in this order:
2746 * 1) keep things fair between processes/task groups
2747 * 2) pick the "next" process, since someone really wants that to run
2748 * 3) pick the "last" process, for cache locality
2749 * 4) do not run the "skip" process, if something else is available
2750 */
f4b6755f 2751static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2752{
ac53db59 2753 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2754 struct sched_entity *left = se;
f4b6755f 2755
ac53db59
RR
2756 /*
2757 * Avoid running the skip buddy, if running something else can
2758 * be done without getting too unfair.
2759 */
2760 if (cfs_rq->skip == se) {
2761 struct sched_entity *second = __pick_next_entity(se);
2762 if (second && wakeup_preempt_entity(second, left) < 1)
2763 se = second;
2764 }
aa2ac252 2765
f685ceac
MG
2766 /*
2767 * Prefer last buddy, try to return the CPU to a preempted task.
2768 */
2769 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2770 se = cfs_rq->last;
2771
ac53db59
RR
2772 /*
2773 * Someone really wants this to run. If it's not unfair, run it.
2774 */
2775 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2776 se = cfs_rq->next;
2777
f685ceac 2778 clear_buddies(cfs_rq, se);
4793241b
PZ
2779
2780 return se;
aa2ac252
PZ
2781}
2782
d3d9dc33
PT
2783static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2784
ab6cde26 2785static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2786{
2787 /*
2788 * If still on the runqueue then deactivate_task()
2789 * was not called and update_curr() has to be done:
2790 */
2791 if (prev->on_rq)
b7cc0896 2792 update_curr(cfs_rq);
bf0f6f24 2793
d3d9dc33
PT
2794 /* throttle cfs_rqs exceeding runtime */
2795 check_cfs_rq_runtime(cfs_rq);
2796
ddc97297 2797 check_spread(cfs_rq, prev);
30cfdcfc 2798 if (prev->on_rq) {
5870db5b 2799 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2800 /* Put 'current' back into the tree. */
2801 __enqueue_entity(cfs_rq, prev);
9d85f21c 2802 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2803 update_entity_load_avg(prev, 1);
30cfdcfc 2804 }
429d43bc 2805 cfs_rq->curr = NULL;
bf0f6f24
IM
2806}
2807
8f4d37ec
PZ
2808static void
2809entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2810{
bf0f6f24 2811 /*
30cfdcfc 2812 * Update run-time statistics of the 'current'.
bf0f6f24 2813 */
30cfdcfc 2814 update_curr(cfs_rq);
bf0f6f24 2815
9d85f21c
PT
2816 /*
2817 * Ensure that runnable average is periodically updated.
2818 */
9ee474f5 2819 update_entity_load_avg(curr, 1);
aff3e498 2820 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2821 update_cfs_shares(cfs_rq);
9d85f21c 2822
8f4d37ec
PZ
2823#ifdef CONFIG_SCHED_HRTICK
2824 /*
2825 * queued ticks are scheduled to match the slice, so don't bother
2826 * validating it and just reschedule.
2827 */
983ed7a6
HH
2828 if (queued) {
2829 resched_task(rq_of(cfs_rq)->curr);
2830 return;
2831 }
8f4d37ec
PZ
2832 /*
2833 * don't let the period tick interfere with the hrtick preemption
2834 */
2835 if (!sched_feat(DOUBLE_TICK) &&
2836 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2837 return;
2838#endif
2839
2c2efaed 2840 if (cfs_rq->nr_running > 1)
2e09bf55 2841 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2842}
2843
ab84d31e
PT
2844
2845/**************************************************
2846 * CFS bandwidth control machinery
2847 */
2848
2849#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2850
2851#ifdef HAVE_JUMP_LABEL
c5905afb 2852static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2853
2854static inline bool cfs_bandwidth_used(void)
2855{
c5905afb 2856 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2857}
2858
2859void account_cfs_bandwidth_used(int enabled, int was_enabled)
2860{
2861 /* only need to count groups transitioning between enabled/!enabled */
2862 if (enabled && !was_enabled)
c5905afb 2863 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2864 else if (!enabled && was_enabled)
c5905afb 2865 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2866}
2867#else /* HAVE_JUMP_LABEL */
2868static bool cfs_bandwidth_used(void)
2869{
2870 return true;
2871}
2872
2873void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2874#endif /* HAVE_JUMP_LABEL */
2875
ab84d31e
PT
2876/*
2877 * default period for cfs group bandwidth.
2878 * default: 0.1s, units: nanoseconds
2879 */
2880static inline u64 default_cfs_period(void)
2881{
2882 return 100000000ULL;
2883}
ec12cb7f
PT
2884
2885static inline u64 sched_cfs_bandwidth_slice(void)
2886{
2887 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2888}
2889
a9cf55b2
PT
2890/*
2891 * Replenish runtime according to assigned quota and update expiration time.
2892 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2893 * additional synchronization around rq->lock.
2894 *
2895 * requires cfs_b->lock
2896 */
029632fb 2897void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2898{
2899 u64 now;
2900
2901 if (cfs_b->quota == RUNTIME_INF)
2902 return;
2903
2904 now = sched_clock_cpu(smp_processor_id());
2905 cfs_b->runtime = cfs_b->quota;
2906 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2907}
2908
029632fb
PZ
2909static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2910{
2911 return &tg->cfs_bandwidth;
2912}
2913
f1b17280
PT
2914/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2915static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2916{
2917 if (unlikely(cfs_rq->throttle_count))
2918 return cfs_rq->throttled_clock_task;
2919
78becc27 2920 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2921}
2922
85dac906
PT
2923/* returns 0 on failure to allocate runtime */
2924static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2925{
2926 struct task_group *tg = cfs_rq->tg;
2927 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2928 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2929
2930 /* note: this is a positive sum as runtime_remaining <= 0 */
2931 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2932
2933 raw_spin_lock(&cfs_b->lock);
2934 if (cfs_b->quota == RUNTIME_INF)
2935 amount = min_amount;
58088ad0 2936 else {
a9cf55b2
PT
2937 /*
2938 * If the bandwidth pool has become inactive, then at least one
2939 * period must have elapsed since the last consumption.
2940 * Refresh the global state and ensure bandwidth timer becomes
2941 * active.
2942 */
2943 if (!cfs_b->timer_active) {
2944 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2945 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2946 }
58088ad0
PT
2947
2948 if (cfs_b->runtime > 0) {
2949 amount = min(cfs_b->runtime, min_amount);
2950 cfs_b->runtime -= amount;
2951 cfs_b->idle = 0;
2952 }
ec12cb7f 2953 }
a9cf55b2 2954 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2955 raw_spin_unlock(&cfs_b->lock);
2956
2957 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2958 /*
2959 * we may have advanced our local expiration to account for allowed
2960 * spread between our sched_clock and the one on which runtime was
2961 * issued.
2962 */
2963 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2964 cfs_rq->runtime_expires = expires;
85dac906
PT
2965
2966 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2967}
2968
a9cf55b2
PT
2969/*
2970 * Note: This depends on the synchronization provided by sched_clock and the
2971 * fact that rq->clock snapshots this value.
2972 */
2973static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2974{
a9cf55b2 2975 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2976
2977 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2978 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2979 return;
2980
a9cf55b2
PT
2981 if (cfs_rq->runtime_remaining < 0)
2982 return;
2983
2984 /*
2985 * If the local deadline has passed we have to consider the
2986 * possibility that our sched_clock is 'fast' and the global deadline
2987 * has not truly expired.
2988 *
2989 * Fortunately we can check determine whether this the case by checking
2990 * whether the global deadline has advanced.
2991 */
2992
2993 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2994 /* extend local deadline, drift is bounded above by 2 ticks */
2995 cfs_rq->runtime_expires += TICK_NSEC;
2996 } else {
2997 /* global deadline is ahead, expiration has passed */
2998 cfs_rq->runtime_remaining = 0;
2999 }
3000}
3001
3002static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3003 unsigned long delta_exec)
3004{
3005 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3006 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3007 expire_cfs_rq_runtime(cfs_rq);
3008
3009 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3010 return;
3011
85dac906
PT
3012 /*
3013 * if we're unable to extend our runtime we resched so that the active
3014 * hierarchy can be throttled
3015 */
3016 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3017 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3018}
3019
6c16a6dc
PZ
3020static __always_inline
3021void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 3022{
56f570e5 3023 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3024 return;
3025
3026 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3027}
3028
85dac906
PT
3029static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3030{
56f570e5 3031 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3032}
3033
64660c86
PT
3034/* check whether cfs_rq, or any parent, is throttled */
3035static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3036{
56f570e5 3037 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3038}
3039
3040/*
3041 * Ensure that neither of the group entities corresponding to src_cpu or
3042 * dest_cpu are members of a throttled hierarchy when performing group
3043 * load-balance operations.
3044 */
3045static inline int throttled_lb_pair(struct task_group *tg,
3046 int src_cpu, int dest_cpu)
3047{
3048 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3049
3050 src_cfs_rq = tg->cfs_rq[src_cpu];
3051 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3052
3053 return throttled_hierarchy(src_cfs_rq) ||
3054 throttled_hierarchy(dest_cfs_rq);
3055}
3056
3057/* updated child weight may affect parent so we have to do this bottom up */
3058static int tg_unthrottle_up(struct task_group *tg, void *data)
3059{
3060 struct rq *rq = data;
3061 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3062
3063 cfs_rq->throttle_count--;
3064#ifdef CONFIG_SMP
3065 if (!cfs_rq->throttle_count) {
f1b17280 3066 /* adjust cfs_rq_clock_task() */
78becc27 3067 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3068 cfs_rq->throttled_clock_task;
64660c86
PT
3069 }
3070#endif
3071
3072 return 0;
3073}
3074
3075static int tg_throttle_down(struct task_group *tg, void *data)
3076{
3077 struct rq *rq = data;
3078 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3079
82958366
PT
3080 /* group is entering throttled state, stop time */
3081 if (!cfs_rq->throttle_count)
78becc27 3082 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3083 cfs_rq->throttle_count++;
3084
3085 return 0;
3086}
3087
d3d9dc33 3088static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3089{
3090 struct rq *rq = rq_of(cfs_rq);
3091 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3092 struct sched_entity *se;
3093 long task_delta, dequeue = 1;
3094
3095 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3096
f1b17280 3097 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3098 rcu_read_lock();
3099 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3100 rcu_read_unlock();
85dac906
PT
3101
3102 task_delta = cfs_rq->h_nr_running;
3103 for_each_sched_entity(se) {
3104 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3105 /* throttled entity or throttle-on-deactivate */
3106 if (!se->on_rq)
3107 break;
3108
3109 if (dequeue)
3110 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3111 qcfs_rq->h_nr_running -= task_delta;
3112
3113 if (qcfs_rq->load.weight)
3114 dequeue = 0;
3115 }
3116
3117 if (!se)
3118 rq->nr_running -= task_delta;
3119
3120 cfs_rq->throttled = 1;
78becc27 3121 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3122 raw_spin_lock(&cfs_b->lock);
3123 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3124 raw_spin_unlock(&cfs_b->lock);
3125}
3126
029632fb 3127void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3128{
3129 struct rq *rq = rq_of(cfs_rq);
3130 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3131 struct sched_entity *se;
3132 int enqueue = 1;
3133 long task_delta;
3134
22b958d8 3135 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3136
3137 cfs_rq->throttled = 0;
1a55af2e
FW
3138
3139 update_rq_clock(rq);
3140
671fd9da 3141 raw_spin_lock(&cfs_b->lock);
78becc27 3142 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3143 list_del_rcu(&cfs_rq->throttled_list);
3144 raw_spin_unlock(&cfs_b->lock);
3145
64660c86
PT
3146 /* update hierarchical throttle state */
3147 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3148
671fd9da
PT
3149 if (!cfs_rq->load.weight)
3150 return;
3151
3152 task_delta = cfs_rq->h_nr_running;
3153 for_each_sched_entity(se) {
3154 if (se->on_rq)
3155 enqueue = 0;
3156
3157 cfs_rq = cfs_rq_of(se);
3158 if (enqueue)
3159 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3160 cfs_rq->h_nr_running += task_delta;
3161
3162 if (cfs_rq_throttled(cfs_rq))
3163 break;
3164 }
3165
3166 if (!se)
3167 rq->nr_running += task_delta;
3168
3169 /* determine whether we need to wake up potentially idle cpu */
3170 if (rq->curr == rq->idle && rq->cfs.nr_running)
3171 resched_task(rq->curr);
3172}
3173
3174static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3175 u64 remaining, u64 expires)
3176{
3177 struct cfs_rq *cfs_rq;
3178 u64 runtime = remaining;
3179
3180 rcu_read_lock();
3181 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3182 throttled_list) {
3183 struct rq *rq = rq_of(cfs_rq);
3184
3185 raw_spin_lock(&rq->lock);
3186 if (!cfs_rq_throttled(cfs_rq))
3187 goto next;
3188
3189 runtime = -cfs_rq->runtime_remaining + 1;
3190 if (runtime > remaining)
3191 runtime = remaining;
3192 remaining -= runtime;
3193
3194 cfs_rq->runtime_remaining += runtime;
3195 cfs_rq->runtime_expires = expires;
3196
3197 /* we check whether we're throttled above */
3198 if (cfs_rq->runtime_remaining > 0)
3199 unthrottle_cfs_rq(cfs_rq);
3200
3201next:
3202 raw_spin_unlock(&rq->lock);
3203
3204 if (!remaining)
3205 break;
3206 }
3207 rcu_read_unlock();
3208
3209 return remaining;
3210}
3211
58088ad0
PT
3212/*
3213 * Responsible for refilling a task_group's bandwidth and unthrottling its
3214 * cfs_rqs as appropriate. If there has been no activity within the last
3215 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3216 * used to track this state.
3217 */
3218static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3219{
671fd9da
PT
3220 u64 runtime, runtime_expires;
3221 int idle = 1, throttled;
58088ad0
PT
3222
3223 raw_spin_lock(&cfs_b->lock);
3224 /* no need to continue the timer with no bandwidth constraint */
3225 if (cfs_b->quota == RUNTIME_INF)
3226 goto out_unlock;
3227
671fd9da
PT
3228 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3229 /* idle depends on !throttled (for the case of a large deficit) */
3230 idle = cfs_b->idle && !throttled;
e8da1b18 3231 cfs_b->nr_periods += overrun;
671fd9da 3232
a9cf55b2
PT
3233 /* if we're going inactive then everything else can be deferred */
3234 if (idle)
3235 goto out_unlock;
3236
3237 __refill_cfs_bandwidth_runtime(cfs_b);
3238
671fd9da
PT
3239 if (!throttled) {
3240 /* mark as potentially idle for the upcoming period */
3241 cfs_b->idle = 1;
3242 goto out_unlock;
3243 }
3244
e8da1b18
NR
3245 /* account preceding periods in which throttling occurred */
3246 cfs_b->nr_throttled += overrun;
3247
671fd9da
PT
3248 /*
3249 * There are throttled entities so we must first use the new bandwidth
3250 * to unthrottle them before making it generally available. This
3251 * ensures that all existing debts will be paid before a new cfs_rq is
3252 * allowed to run.
3253 */
3254 runtime = cfs_b->runtime;
3255 runtime_expires = cfs_b->runtime_expires;
3256 cfs_b->runtime = 0;
3257
3258 /*
3259 * This check is repeated as we are holding onto the new bandwidth
3260 * while we unthrottle. This can potentially race with an unthrottled
3261 * group trying to acquire new bandwidth from the global pool.
3262 */
3263 while (throttled && runtime > 0) {
3264 raw_spin_unlock(&cfs_b->lock);
3265 /* we can't nest cfs_b->lock while distributing bandwidth */
3266 runtime = distribute_cfs_runtime(cfs_b, runtime,
3267 runtime_expires);
3268 raw_spin_lock(&cfs_b->lock);
3269
3270 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3271 }
58088ad0 3272
671fd9da
PT
3273 /* return (any) remaining runtime */
3274 cfs_b->runtime = runtime;
3275 /*
3276 * While we are ensured activity in the period following an
3277 * unthrottle, this also covers the case in which the new bandwidth is
3278 * insufficient to cover the existing bandwidth deficit. (Forcing the
3279 * timer to remain active while there are any throttled entities.)
3280 */
3281 cfs_b->idle = 0;
58088ad0
PT
3282out_unlock:
3283 if (idle)
3284 cfs_b->timer_active = 0;
3285 raw_spin_unlock(&cfs_b->lock);
3286
3287 return idle;
3288}
d3d9dc33 3289
d8b4986d
PT
3290/* a cfs_rq won't donate quota below this amount */
3291static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3292/* minimum remaining period time to redistribute slack quota */
3293static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3294/* how long we wait to gather additional slack before distributing */
3295static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3296
3297/* are we near the end of the current quota period? */
3298static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3299{
3300 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3301 u64 remaining;
3302
3303 /* if the call-back is running a quota refresh is already occurring */
3304 if (hrtimer_callback_running(refresh_timer))
3305 return 1;
3306
3307 /* is a quota refresh about to occur? */
3308 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3309 if (remaining < min_expire)
3310 return 1;
3311
3312 return 0;
3313}
3314
3315static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3316{
3317 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3318
3319 /* if there's a quota refresh soon don't bother with slack */
3320 if (runtime_refresh_within(cfs_b, min_left))
3321 return;
3322
3323 start_bandwidth_timer(&cfs_b->slack_timer,
3324 ns_to_ktime(cfs_bandwidth_slack_period));
3325}
3326
3327/* we know any runtime found here is valid as update_curr() precedes return */
3328static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3329{
3330 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3331 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3332
3333 if (slack_runtime <= 0)
3334 return;
3335
3336 raw_spin_lock(&cfs_b->lock);
3337 if (cfs_b->quota != RUNTIME_INF &&
3338 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3339 cfs_b->runtime += slack_runtime;
3340
3341 /* we are under rq->lock, defer unthrottling using a timer */
3342 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3343 !list_empty(&cfs_b->throttled_cfs_rq))
3344 start_cfs_slack_bandwidth(cfs_b);
3345 }
3346 raw_spin_unlock(&cfs_b->lock);
3347
3348 /* even if it's not valid for return we don't want to try again */
3349 cfs_rq->runtime_remaining -= slack_runtime;
3350}
3351
3352static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3353{
56f570e5
PT
3354 if (!cfs_bandwidth_used())
3355 return;
3356
fccfdc6f 3357 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3358 return;
3359
3360 __return_cfs_rq_runtime(cfs_rq);
3361}
3362
3363/*
3364 * This is done with a timer (instead of inline with bandwidth return) since
3365 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3366 */
3367static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3368{
3369 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3370 u64 expires;
3371
3372 /* confirm we're still not at a refresh boundary */
3373 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3374 return;
3375
3376 raw_spin_lock(&cfs_b->lock);
3377 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3378 runtime = cfs_b->runtime;
3379 cfs_b->runtime = 0;
3380 }
3381 expires = cfs_b->runtime_expires;
3382 raw_spin_unlock(&cfs_b->lock);
3383
3384 if (!runtime)
3385 return;
3386
3387 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3388
3389 raw_spin_lock(&cfs_b->lock);
3390 if (expires == cfs_b->runtime_expires)
3391 cfs_b->runtime = runtime;
3392 raw_spin_unlock(&cfs_b->lock);
3393}
3394
d3d9dc33
PT
3395/*
3396 * When a group wakes up we want to make sure that its quota is not already
3397 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3398 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3399 */
3400static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3401{
56f570e5
PT
3402 if (!cfs_bandwidth_used())
3403 return;
3404
d3d9dc33
PT
3405 /* an active group must be handled by the update_curr()->put() path */
3406 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3407 return;
3408
3409 /* ensure the group is not already throttled */
3410 if (cfs_rq_throttled(cfs_rq))
3411 return;
3412
3413 /* update runtime allocation */
3414 account_cfs_rq_runtime(cfs_rq, 0);
3415 if (cfs_rq->runtime_remaining <= 0)
3416 throttle_cfs_rq(cfs_rq);
3417}
3418
3419/* conditionally throttle active cfs_rq's from put_prev_entity() */
3420static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3421{
56f570e5
PT
3422 if (!cfs_bandwidth_used())
3423 return;
3424
d3d9dc33
PT
3425 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3426 return;
3427
3428 /*
3429 * it's possible for a throttled entity to be forced into a running
3430 * state (e.g. set_curr_task), in this case we're finished.
3431 */
3432 if (cfs_rq_throttled(cfs_rq))
3433 return;
3434
3435 throttle_cfs_rq(cfs_rq);
3436}
029632fb 3437
029632fb
PZ
3438static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3439{
3440 struct cfs_bandwidth *cfs_b =
3441 container_of(timer, struct cfs_bandwidth, slack_timer);
3442 do_sched_cfs_slack_timer(cfs_b);
3443
3444 return HRTIMER_NORESTART;
3445}
3446
3447static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3448{
3449 struct cfs_bandwidth *cfs_b =
3450 container_of(timer, struct cfs_bandwidth, period_timer);
3451 ktime_t now;
3452 int overrun;
3453 int idle = 0;
3454
3455 for (;;) {
3456 now = hrtimer_cb_get_time(timer);
3457 overrun = hrtimer_forward(timer, now, cfs_b->period);
3458
3459 if (!overrun)
3460 break;
3461
3462 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3463 }
3464
3465 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3466}
3467
3468void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3469{
3470 raw_spin_lock_init(&cfs_b->lock);
3471 cfs_b->runtime = 0;
3472 cfs_b->quota = RUNTIME_INF;
3473 cfs_b->period = ns_to_ktime(default_cfs_period());
3474
3475 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3476 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3477 cfs_b->period_timer.function = sched_cfs_period_timer;
3478 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3479 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3480}
3481
3482static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3483{
3484 cfs_rq->runtime_enabled = 0;
3485 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3486}
3487
3488/* requires cfs_b->lock, may release to reprogram timer */
3489void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3490{
3491 /*
3492 * The timer may be active because we're trying to set a new bandwidth
3493 * period or because we're racing with the tear-down path
3494 * (timer_active==0 becomes visible before the hrtimer call-back
3495 * terminates). In either case we ensure that it's re-programmed
3496 */
3497 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3498 raw_spin_unlock(&cfs_b->lock);
3499 /* ensure cfs_b->lock is available while we wait */
3500 hrtimer_cancel(&cfs_b->period_timer);
3501
3502 raw_spin_lock(&cfs_b->lock);
3503 /* if someone else restarted the timer then we're done */
3504 if (cfs_b->timer_active)
3505 return;
3506 }
3507
3508 cfs_b->timer_active = 1;
3509 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3510}
3511
3512static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3513{
3514 hrtimer_cancel(&cfs_b->period_timer);
3515 hrtimer_cancel(&cfs_b->slack_timer);
3516}
3517
38dc3348 3518static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3519{
3520 struct cfs_rq *cfs_rq;
3521
3522 for_each_leaf_cfs_rq(rq, cfs_rq) {
3523 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3524
3525 if (!cfs_rq->runtime_enabled)
3526 continue;
3527
3528 /*
3529 * clock_task is not advancing so we just need to make sure
3530 * there's some valid quota amount
3531 */
3532 cfs_rq->runtime_remaining = cfs_b->quota;
3533 if (cfs_rq_throttled(cfs_rq))
3534 unthrottle_cfs_rq(cfs_rq);
3535 }
3536}
3537
3538#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3539static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3540{
78becc27 3541 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3542}
3543
3544static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3545 unsigned long delta_exec) {}
d3d9dc33
PT
3546static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3547static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3548static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3549
3550static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3551{
3552 return 0;
3553}
64660c86
PT
3554
3555static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3556{
3557 return 0;
3558}
3559
3560static inline int throttled_lb_pair(struct task_group *tg,
3561 int src_cpu, int dest_cpu)
3562{
3563 return 0;
3564}
029632fb
PZ
3565
3566void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3567
3568#ifdef CONFIG_FAIR_GROUP_SCHED
3569static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3570#endif
3571
029632fb
PZ
3572static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3573{
3574 return NULL;
3575}
3576static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3577static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3578
3579#endif /* CONFIG_CFS_BANDWIDTH */
3580
bf0f6f24
IM
3581/**************************************************
3582 * CFS operations on tasks:
3583 */
3584
8f4d37ec
PZ
3585#ifdef CONFIG_SCHED_HRTICK
3586static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3587{
8f4d37ec
PZ
3588 struct sched_entity *se = &p->se;
3589 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3590
3591 WARN_ON(task_rq(p) != rq);
3592
b39e66ea 3593 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3594 u64 slice = sched_slice(cfs_rq, se);
3595 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3596 s64 delta = slice - ran;
3597
3598 if (delta < 0) {
3599 if (rq->curr == p)
3600 resched_task(p);
3601 return;
3602 }
3603
3604 /*
3605 * Don't schedule slices shorter than 10000ns, that just
3606 * doesn't make sense. Rely on vruntime for fairness.
3607 */
31656519 3608 if (rq->curr != p)
157124c1 3609 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3610
31656519 3611 hrtick_start(rq, delta);
8f4d37ec
PZ
3612 }
3613}
a4c2f00f
PZ
3614
3615/*
3616 * called from enqueue/dequeue and updates the hrtick when the
3617 * current task is from our class and nr_running is low enough
3618 * to matter.
3619 */
3620static void hrtick_update(struct rq *rq)
3621{
3622 struct task_struct *curr = rq->curr;
3623
b39e66ea 3624 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3625 return;
3626
3627 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3628 hrtick_start_fair(rq, curr);
3629}
55e12e5e 3630#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3631static inline void
3632hrtick_start_fair(struct rq *rq, struct task_struct *p)
3633{
3634}
a4c2f00f
PZ
3635
3636static inline void hrtick_update(struct rq *rq)
3637{
3638}
8f4d37ec
PZ
3639#endif
3640
bf0f6f24
IM
3641/*
3642 * The enqueue_task method is called before nr_running is
3643 * increased. Here we update the fair scheduling stats and
3644 * then put the task into the rbtree:
3645 */
ea87bb78 3646static void
371fd7e7 3647enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3648{
3649 struct cfs_rq *cfs_rq;
62fb1851 3650 struct sched_entity *se = &p->se;
bf0f6f24
IM
3651
3652 for_each_sched_entity(se) {
62fb1851 3653 if (se->on_rq)
bf0f6f24
IM
3654 break;
3655 cfs_rq = cfs_rq_of(se);
88ec22d3 3656 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3657
3658 /*
3659 * end evaluation on encountering a throttled cfs_rq
3660 *
3661 * note: in the case of encountering a throttled cfs_rq we will
3662 * post the final h_nr_running increment below.
3663 */
3664 if (cfs_rq_throttled(cfs_rq))
3665 break;
953bfcd1 3666 cfs_rq->h_nr_running++;
85dac906 3667
88ec22d3 3668 flags = ENQUEUE_WAKEUP;
bf0f6f24 3669 }
8f4d37ec 3670
2069dd75 3671 for_each_sched_entity(se) {
0f317143 3672 cfs_rq = cfs_rq_of(se);
953bfcd1 3673 cfs_rq->h_nr_running++;
2069dd75 3674
85dac906
PT
3675 if (cfs_rq_throttled(cfs_rq))
3676 break;
3677
17bc14b7 3678 update_cfs_shares(cfs_rq);
9ee474f5 3679 update_entity_load_avg(se, 1);
2069dd75
PZ
3680 }
3681
18bf2805
BS
3682 if (!se) {
3683 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3684 inc_nr_running(rq);
18bf2805 3685 }
a4c2f00f 3686 hrtick_update(rq);
bf0f6f24
IM
3687}
3688
2f36825b
VP
3689static void set_next_buddy(struct sched_entity *se);
3690
bf0f6f24
IM
3691/*
3692 * The dequeue_task method is called before nr_running is
3693 * decreased. We remove the task from the rbtree and
3694 * update the fair scheduling stats:
3695 */
371fd7e7 3696static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3697{
3698 struct cfs_rq *cfs_rq;
62fb1851 3699 struct sched_entity *se = &p->se;
2f36825b 3700 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3701
3702 for_each_sched_entity(se) {
3703 cfs_rq = cfs_rq_of(se);
371fd7e7 3704 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3705
3706 /*
3707 * end evaluation on encountering a throttled cfs_rq
3708 *
3709 * note: in the case of encountering a throttled cfs_rq we will
3710 * post the final h_nr_running decrement below.
3711 */
3712 if (cfs_rq_throttled(cfs_rq))
3713 break;
953bfcd1 3714 cfs_rq->h_nr_running--;
2069dd75 3715
bf0f6f24 3716 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3717 if (cfs_rq->load.weight) {
3718 /*
3719 * Bias pick_next to pick a task from this cfs_rq, as
3720 * p is sleeping when it is within its sched_slice.
3721 */
3722 if (task_sleep && parent_entity(se))
3723 set_next_buddy(parent_entity(se));
9598c82d
PT
3724
3725 /* avoid re-evaluating load for this entity */
3726 se = parent_entity(se);
bf0f6f24 3727 break;
2f36825b 3728 }
371fd7e7 3729 flags |= DEQUEUE_SLEEP;
bf0f6f24 3730 }
8f4d37ec 3731
2069dd75 3732 for_each_sched_entity(se) {
0f317143 3733 cfs_rq = cfs_rq_of(se);
953bfcd1 3734 cfs_rq->h_nr_running--;
2069dd75 3735
85dac906
PT
3736 if (cfs_rq_throttled(cfs_rq))
3737 break;
3738
17bc14b7 3739 update_cfs_shares(cfs_rq);
9ee474f5 3740 update_entity_load_avg(se, 1);
2069dd75
PZ
3741 }
3742
18bf2805 3743 if (!se) {
85dac906 3744 dec_nr_running(rq);
18bf2805
BS
3745 update_rq_runnable_avg(rq, 1);
3746 }
a4c2f00f 3747 hrtick_update(rq);
bf0f6f24
IM
3748}
3749
e7693a36 3750#ifdef CONFIG_SMP
029632fb
PZ
3751/* Used instead of source_load when we know the type == 0 */
3752static unsigned long weighted_cpuload(const int cpu)
3753{
b92486cb 3754 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3755}
3756
3757/*
3758 * Return a low guess at the load of a migration-source cpu weighted
3759 * according to the scheduling class and "nice" value.
3760 *
3761 * We want to under-estimate the load of migration sources, to
3762 * balance conservatively.
3763 */
3764static unsigned long source_load(int cpu, int type)
3765{
3766 struct rq *rq = cpu_rq(cpu);
3767 unsigned long total = weighted_cpuload(cpu);
3768
3769 if (type == 0 || !sched_feat(LB_BIAS))
3770 return total;
3771
3772 return min(rq->cpu_load[type-1], total);
3773}
3774
3775/*
3776 * Return a high guess at the load of a migration-target cpu weighted
3777 * according to the scheduling class and "nice" value.
3778 */
3779static unsigned long target_load(int cpu, int type)
3780{
3781 struct rq *rq = cpu_rq(cpu);
3782 unsigned long total = weighted_cpuload(cpu);
3783
3784 if (type == 0 || !sched_feat(LB_BIAS))
3785 return total;
3786
3787 return max(rq->cpu_load[type-1], total);
3788}
3789
3790static unsigned long power_of(int cpu)
3791{
3792 return cpu_rq(cpu)->cpu_power;
3793}
3794
3795static unsigned long cpu_avg_load_per_task(int cpu)
3796{
3797 struct rq *rq = cpu_rq(cpu);
3798 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3799 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3800
3801 if (nr_running)
b92486cb 3802 return load_avg / nr_running;
029632fb
PZ
3803
3804 return 0;
3805}
3806
62470419
MW
3807static void record_wakee(struct task_struct *p)
3808{
3809 /*
3810 * Rough decay (wiping) for cost saving, don't worry
3811 * about the boundary, really active task won't care
3812 * about the loss.
3813 */
3814 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3815 current->wakee_flips = 0;
3816 current->wakee_flip_decay_ts = jiffies;
3817 }
3818
3819 if (current->last_wakee != p) {
3820 current->last_wakee = p;
3821 current->wakee_flips++;
3822 }
3823}
098fb9db 3824
74f8e4b2 3825static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3826{
3827 struct sched_entity *se = &p->se;
3828 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3829 u64 min_vruntime;
3830
3831#ifndef CONFIG_64BIT
3832 u64 min_vruntime_copy;
88ec22d3 3833
3fe1698b
PZ
3834 do {
3835 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3836 smp_rmb();
3837 min_vruntime = cfs_rq->min_vruntime;
3838 } while (min_vruntime != min_vruntime_copy);
3839#else
3840 min_vruntime = cfs_rq->min_vruntime;
3841#endif
88ec22d3 3842
3fe1698b 3843 se->vruntime -= min_vruntime;
62470419 3844 record_wakee(p);
88ec22d3
PZ
3845}
3846
bb3469ac 3847#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3848/*
3849 * effective_load() calculates the load change as seen from the root_task_group
3850 *
3851 * Adding load to a group doesn't make a group heavier, but can cause movement
3852 * of group shares between cpus. Assuming the shares were perfectly aligned one
3853 * can calculate the shift in shares.
cf5f0acf
PZ
3854 *
3855 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3856 * on this @cpu and results in a total addition (subtraction) of @wg to the
3857 * total group weight.
3858 *
3859 * Given a runqueue weight distribution (rw_i) we can compute a shares
3860 * distribution (s_i) using:
3861 *
3862 * s_i = rw_i / \Sum rw_j (1)
3863 *
3864 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3865 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3866 * shares distribution (s_i):
3867 *
3868 * rw_i = { 2, 4, 1, 0 }
3869 * s_i = { 2/7, 4/7, 1/7, 0 }
3870 *
3871 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3872 * task used to run on and the CPU the waker is running on), we need to
3873 * compute the effect of waking a task on either CPU and, in case of a sync
3874 * wakeup, compute the effect of the current task going to sleep.
3875 *
3876 * So for a change of @wl to the local @cpu with an overall group weight change
3877 * of @wl we can compute the new shares distribution (s'_i) using:
3878 *
3879 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3880 *
3881 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3882 * differences in waking a task to CPU 0. The additional task changes the
3883 * weight and shares distributions like:
3884 *
3885 * rw'_i = { 3, 4, 1, 0 }
3886 * s'_i = { 3/8, 4/8, 1/8, 0 }
3887 *
3888 * We can then compute the difference in effective weight by using:
3889 *
3890 * dw_i = S * (s'_i - s_i) (3)
3891 *
3892 * Where 'S' is the group weight as seen by its parent.
3893 *
3894 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3895 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3896 * 4/7) times the weight of the group.
f5bfb7d9 3897 */
2069dd75 3898static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3899{
4be9daaa 3900 struct sched_entity *se = tg->se[cpu];
f1d239f7 3901
58d081b5 3902 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3903 return wl;
3904
4be9daaa 3905 for_each_sched_entity(se) {
cf5f0acf 3906 long w, W;
4be9daaa 3907
977dda7c 3908 tg = se->my_q->tg;
bb3469ac 3909
cf5f0acf
PZ
3910 /*
3911 * W = @wg + \Sum rw_j
3912 */
3913 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3914
cf5f0acf
PZ
3915 /*
3916 * w = rw_i + @wl
3917 */
3918 w = se->my_q->load.weight + wl;
940959e9 3919
cf5f0acf
PZ
3920 /*
3921 * wl = S * s'_i; see (2)
3922 */
3923 if (W > 0 && w < W)
3924 wl = (w * tg->shares) / W;
977dda7c
PT
3925 else
3926 wl = tg->shares;
940959e9 3927
cf5f0acf
PZ
3928 /*
3929 * Per the above, wl is the new se->load.weight value; since
3930 * those are clipped to [MIN_SHARES, ...) do so now. See
3931 * calc_cfs_shares().
3932 */
977dda7c
PT
3933 if (wl < MIN_SHARES)
3934 wl = MIN_SHARES;
cf5f0acf
PZ
3935
3936 /*
3937 * wl = dw_i = S * (s'_i - s_i); see (3)
3938 */
977dda7c 3939 wl -= se->load.weight;
cf5f0acf
PZ
3940
3941 /*
3942 * Recursively apply this logic to all parent groups to compute
3943 * the final effective load change on the root group. Since
3944 * only the @tg group gets extra weight, all parent groups can
3945 * only redistribute existing shares. @wl is the shift in shares
3946 * resulting from this level per the above.
3947 */
4be9daaa 3948 wg = 0;
4be9daaa 3949 }
bb3469ac 3950
4be9daaa 3951 return wl;
bb3469ac
PZ
3952}
3953#else
4be9daaa 3954
58d081b5 3955static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3956{
83378269 3957 return wl;
bb3469ac 3958}
4be9daaa 3959
bb3469ac
PZ
3960#endif
3961
62470419
MW
3962static int wake_wide(struct task_struct *p)
3963{
7d9ffa89 3964 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3965
3966 /*
3967 * Yeah, it's the switching-frequency, could means many wakee or
3968 * rapidly switch, use factor here will just help to automatically
3969 * adjust the loose-degree, so bigger node will lead to more pull.
3970 */
3971 if (p->wakee_flips > factor) {
3972 /*
3973 * wakee is somewhat hot, it needs certain amount of cpu
3974 * resource, so if waker is far more hot, prefer to leave
3975 * it alone.
3976 */
3977 if (current->wakee_flips > (factor * p->wakee_flips))
3978 return 1;
3979 }
3980
3981 return 0;
3982}
3983
c88d5910 3984static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3985{
e37b6a7b 3986 s64 this_load, load;
c88d5910 3987 int idx, this_cpu, prev_cpu;
098fb9db 3988 unsigned long tl_per_task;
c88d5910 3989 struct task_group *tg;
83378269 3990 unsigned long weight;
b3137bc8 3991 int balanced;
098fb9db 3992
62470419
MW
3993 /*
3994 * If we wake multiple tasks be careful to not bounce
3995 * ourselves around too much.
3996 */
3997 if (wake_wide(p))
3998 return 0;
3999
c88d5910
PZ
4000 idx = sd->wake_idx;
4001 this_cpu = smp_processor_id();
4002 prev_cpu = task_cpu(p);
4003 load = source_load(prev_cpu, idx);
4004 this_load = target_load(this_cpu, idx);
098fb9db 4005
b3137bc8
MG
4006 /*
4007 * If sync wakeup then subtract the (maximum possible)
4008 * effect of the currently running task from the load
4009 * of the current CPU:
4010 */
83378269
PZ
4011 if (sync) {
4012 tg = task_group(current);
4013 weight = current->se.load.weight;
4014
c88d5910 4015 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4016 load += effective_load(tg, prev_cpu, 0, -weight);
4017 }
b3137bc8 4018
83378269
PZ
4019 tg = task_group(p);
4020 weight = p->se.load.weight;
b3137bc8 4021
71a29aa7
PZ
4022 /*
4023 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4024 * due to the sync cause above having dropped this_load to 0, we'll
4025 * always have an imbalance, but there's really nothing you can do
4026 * about that, so that's good too.
71a29aa7
PZ
4027 *
4028 * Otherwise check if either cpus are near enough in load to allow this
4029 * task to be woken on this_cpu.
4030 */
e37b6a7b
PT
4031 if (this_load > 0) {
4032 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4033
4034 this_eff_load = 100;
4035 this_eff_load *= power_of(prev_cpu);
4036 this_eff_load *= this_load +
4037 effective_load(tg, this_cpu, weight, weight);
4038
4039 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4040 prev_eff_load *= power_of(this_cpu);
4041 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4042
4043 balanced = this_eff_load <= prev_eff_load;
4044 } else
4045 balanced = true;
b3137bc8 4046
098fb9db 4047 /*
4ae7d5ce
IM
4048 * If the currently running task will sleep within
4049 * a reasonable amount of time then attract this newly
4050 * woken task:
098fb9db 4051 */
2fb7635c
PZ
4052 if (sync && balanced)
4053 return 1;
098fb9db 4054
41acab88 4055 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4056 tl_per_task = cpu_avg_load_per_task(this_cpu);
4057
c88d5910
PZ
4058 if (balanced ||
4059 (this_load <= load &&
4060 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4061 /*
4062 * This domain has SD_WAKE_AFFINE and
4063 * p is cache cold in this domain, and
4064 * there is no bad imbalance.
4065 */
c88d5910 4066 schedstat_inc(sd, ttwu_move_affine);
41acab88 4067 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4068
4069 return 1;
4070 }
4071 return 0;
4072}
4073
aaee1203
PZ
4074/*
4075 * find_idlest_group finds and returns the least busy CPU group within the
4076 * domain.
4077 */
4078static struct sched_group *
78e7ed53 4079find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 4080 int this_cpu, int load_idx)
e7693a36 4081{
b3bd3de6 4082 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4083 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 4084 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4085
aaee1203
PZ
4086 do {
4087 unsigned long load, avg_load;
4088 int local_group;
4089 int i;
e7693a36 4090
aaee1203
PZ
4091 /* Skip over this group if it has no CPUs allowed */
4092 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4093 tsk_cpus_allowed(p)))
aaee1203
PZ
4094 continue;
4095
4096 local_group = cpumask_test_cpu(this_cpu,
4097 sched_group_cpus(group));
4098
4099 /* Tally up the load of all CPUs in the group */
4100 avg_load = 0;
4101
4102 for_each_cpu(i, sched_group_cpus(group)) {
4103 /* Bias balancing toward cpus of our domain */
4104 if (local_group)
4105 load = source_load(i, load_idx);
4106 else
4107 load = target_load(i, load_idx);
4108
4109 avg_load += load;
4110 }
4111
4112 /* Adjust by relative CPU power of the group */
9c3f75cb 4113 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4114
4115 if (local_group) {
4116 this_load = avg_load;
aaee1203
PZ
4117 } else if (avg_load < min_load) {
4118 min_load = avg_load;
4119 idlest = group;
4120 }
4121 } while (group = group->next, group != sd->groups);
4122
4123 if (!idlest || 100*this_load < imbalance*min_load)
4124 return NULL;
4125 return idlest;
4126}
4127
4128/*
4129 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4130 */
4131static int
4132find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4133{
4134 unsigned long load, min_load = ULONG_MAX;
4135 int idlest = -1;
4136 int i;
4137
4138 /* Traverse only the allowed CPUs */
fa17b507 4139 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4140 load = weighted_cpuload(i);
4141
4142 if (load < min_load || (load == min_load && i == this_cpu)) {
4143 min_load = load;
4144 idlest = i;
e7693a36
GH
4145 }
4146 }
4147
aaee1203
PZ
4148 return idlest;
4149}
e7693a36 4150
a50bde51
PZ
4151/*
4152 * Try and locate an idle CPU in the sched_domain.
4153 */
99bd5e2f 4154static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4155{
99bd5e2f 4156 struct sched_domain *sd;
37407ea7 4157 struct sched_group *sg;
e0a79f52 4158 int i = task_cpu(p);
a50bde51 4159
e0a79f52
MG
4160 if (idle_cpu(target))
4161 return target;
99bd5e2f
SS
4162
4163 /*
e0a79f52 4164 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4165 */
e0a79f52
MG
4166 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4167 return i;
a50bde51
PZ
4168
4169 /*
37407ea7 4170 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4171 */
518cd623 4172 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4173 for_each_lower_domain(sd) {
37407ea7
LT
4174 sg = sd->groups;
4175 do {
4176 if (!cpumask_intersects(sched_group_cpus(sg),
4177 tsk_cpus_allowed(p)))
4178 goto next;
4179
4180 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4181 if (i == target || !idle_cpu(i))
37407ea7
LT
4182 goto next;
4183 }
970e1789 4184
37407ea7
LT
4185 target = cpumask_first_and(sched_group_cpus(sg),
4186 tsk_cpus_allowed(p));
4187 goto done;
4188next:
4189 sg = sg->next;
4190 } while (sg != sd->groups);
4191 }
4192done:
a50bde51
PZ
4193 return target;
4194}
4195
aaee1203
PZ
4196/*
4197 * sched_balance_self: balance the current task (running on cpu) in domains
4198 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4199 * SD_BALANCE_EXEC.
4200 *
4201 * Balance, ie. select the least loaded group.
4202 *
4203 * Returns the target CPU number, or the same CPU if no balancing is needed.
4204 *
4205 * preempt must be disabled.
4206 */
0017d735 4207static int
ac66f547 4208select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4209{
29cd8bae 4210 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4211 int cpu = smp_processor_id();
c88d5910 4212 int new_cpu = cpu;
99bd5e2f 4213 int want_affine = 0;
5158f4e4 4214 int sync = wake_flags & WF_SYNC;
c88d5910 4215
29baa747 4216 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4217 return prev_cpu;
4218
0763a660 4219 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4220 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4221 want_affine = 1;
4222 new_cpu = prev_cpu;
4223 }
aaee1203 4224
dce840a0 4225 rcu_read_lock();
aaee1203 4226 for_each_domain(cpu, tmp) {
e4f42888
PZ
4227 if (!(tmp->flags & SD_LOAD_BALANCE))
4228 continue;
4229
fe3bcfe1 4230 /*
99bd5e2f
SS
4231 * If both cpu and prev_cpu are part of this domain,
4232 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4233 */
99bd5e2f
SS
4234 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4235 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4236 affine_sd = tmp;
29cd8bae 4237 break;
f03542a7 4238 }
29cd8bae 4239
f03542a7 4240 if (tmp->flags & sd_flag)
29cd8bae
PZ
4241 sd = tmp;
4242 }
4243
8b911acd 4244 if (affine_sd) {
f03542a7 4245 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4246 prev_cpu = cpu;
4247
4248 new_cpu = select_idle_sibling(p, prev_cpu);
4249 goto unlock;
8b911acd 4250 }
e7693a36 4251
aaee1203 4252 while (sd) {
5158f4e4 4253 int load_idx = sd->forkexec_idx;
aaee1203 4254 struct sched_group *group;
c88d5910 4255 int weight;
098fb9db 4256
0763a660 4257 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4258 sd = sd->child;
4259 continue;
4260 }
098fb9db 4261
5158f4e4
PZ
4262 if (sd_flag & SD_BALANCE_WAKE)
4263 load_idx = sd->wake_idx;
098fb9db 4264
5158f4e4 4265 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
4266 if (!group) {
4267 sd = sd->child;
4268 continue;
4269 }
4ae7d5ce 4270
d7c33c49 4271 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4272 if (new_cpu == -1 || new_cpu == cpu) {
4273 /* Now try balancing at a lower domain level of cpu */
4274 sd = sd->child;
4275 continue;
e7693a36 4276 }
aaee1203
PZ
4277
4278 /* Now try balancing at a lower domain level of new_cpu */
4279 cpu = new_cpu;
669c55e9 4280 weight = sd->span_weight;
aaee1203
PZ
4281 sd = NULL;
4282 for_each_domain(cpu, tmp) {
669c55e9 4283 if (weight <= tmp->span_weight)
aaee1203 4284 break;
0763a660 4285 if (tmp->flags & sd_flag)
aaee1203
PZ
4286 sd = tmp;
4287 }
4288 /* while loop will break here if sd == NULL */
e7693a36 4289 }
dce840a0
PZ
4290unlock:
4291 rcu_read_unlock();
e7693a36 4292
c88d5910 4293 return new_cpu;
e7693a36 4294}
0a74bef8
PT
4295
4296/*
4297 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4298 * cfs_rq_of(p) references at time of call are still valid and identify the
4299 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4300 * other assumptions, including the state of rq->lock, should be made.
4301 */
4302static void
4303migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4304{
aff3e498
PT
4305 struct sched_entity *se = &p->se;
4306 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4307
4308 /*
4309 * Load tracking: accumulate removed load so that it can be processed
4310 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4311 * to blocked load iff they have a positive decay-count. It can never
4312 * be negative here since on-rq tasks have decay-count == 0.
4313 */
4314 if (se->avg.decay_count) {
4315 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4316 atomic_long_add(se->avg.load_avg_contrib,
4317 &cfs_rq->removed_load);
aff3e498 4318 }
0a74bef8 4319}
e7693a36
GH
4320#endif /* CONFIG_SMP */
4321
e52fb7c0
PZ
4322static unsigned long
4323wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4324{
4325 unsigned long gran = sysctl_sched_wakeup_granularity;
4326
4327 /*
e52fb7c0
PZ
4328 * Since its curr running now, convert the gran from real-time
4329 * to virtual-time in his units.
13814d42
MG
4330 *
4331 * By using 'se' instead of 'curr' we penalize light tasks, so
4332 * they get preempted easier. That is, if 'se' < 'curr' then
4333 * the resulting gran will be larger, therefore penalizing the
4334 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4335 * be smaller, again penalizing the lighter task.
4336 *
4337 * This is especially important for buddies when the leftmost
4338 * task is higher priority than the buddy.
0bbd3336 4339 */
f4ad9bd2 4340 return calc_delta_fair(gran, se);
0bbd3336
PZ
4341}
4342
464b7527
PZ
4343/*
4344 * Should 'se' preempt 'curr'.
4345 *
4346 * |s1
4347 * |s2
4348 * |s3
4349 * g
4350 * |<--->|c
4351 *
4352 * w(c, s1) = -1
4353 * w(c, s2) = 0
4354 * w(c, s3) = 1
4355 *
4356 */
4357static int
4358wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4359{
4360 s64 gran, vdiff = curr->vruntime - se->vruntime;
4361
4362 if (vdiff <= 0)
4363 return -1;
4364
e52fb7c0 4365 gran = wakeup_gran(curr, se);
464b7527
PZ
4366 if (vdiff > gran)
4367 return 1;
4368
4369 return 0;
4370}
4371
02479099
PZ
4372static void set_last_buddy(struct sched_entity *se)
4373{
69c80f3e
VP
4374 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4375 return;
4376
4377 for_each_sched_entity(se)
4378 cfs_rq_of(se)->last = se;
02479099
PZ
4379}
4380
4381static void set_next_buddy(struct sched_entity *se)
4382{
69c80f3e
VP
4383 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4384 return;
4385
4386 for_each_sched_entity(se)
4387 cfs_rq_of(se)->next = se;
02479099
PZ
4388}
4389
ac53db59
RR
4390static void set_skip_buddy(struct sched_entity *se)
4391{
69c80f3e
VP
4392 for_each_sched_entity(se)
4393 cfs_rq_of(se)->skip = se;
ac53db59
RR
4394}
4395
bf0f6f24
IM
4396/*
4397 * Preempt the current task with a newly woken task if needed:
4398 */
5a9b86f6 4399static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4400{
4401 struct task_struct *curr = rq->curr;
8651a86c 4402 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4403 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4404 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4405 int next_buddy_marked = 0;
bf0f6f24 4406
4ae7d5ce
IM
4407 if (unlikely(se == pse))
4408 return;
4409
5238cdd3 4410 /*
ddcdf6e7 4411 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4412 * unconditionally check_prempt_curr() after an enqueue (which may have
4413 * lead to a throttle). This both saves work and prevents false
4414 * next-buddy nomination below.
4415 */
4416 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4417 return;
4418
2f36825b 4419 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4420 set_next_buddy(pse);
2f36825b
VP
4421 next_buddy_marked = 1;
4422 }
57fdc26d 4423
aec0a514
BR
4424 /*
4425 * We can come here with TIF_NEED_RESCHED already set from new task
4426 * wake up path.
5238cdd3
PT
4427 *
4428 * Note: this also catches the edge-case of curr being in a throttled
4429 * group (e.g. via set_curr_task), since update_curr() (in the
4430 * enqueue of curr) will have resulted in resched being set. This
4431 * prevents us from potentially nominating it as a false LAST_BUDDY
4432 * below.
aec0a514
BR
4433 */
4434 if (test_tsk_need_resched(curr))
4435 return;
4436
a2f5c9ab
DH
4437 /* Idle tasks are by definition preempted by non-idle tasks. */
4438 if (unlikely(curr->policy == SCHED_IDLE) &&
4439 likely(p->policy != SCHED_IDLE))
4440 goto preempt;
4441
91c234b4 4442 /*
a2f5c9ab
DH
4443 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4444 * is driven by the tick):
91c234b4 4445 */
8ed92e51 4446 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4447 return;
bf0f6f24 4448
464b7527 4449 find_matching_se(&se, &pse);
9bbd7374 4450 update_curr(cfs_rq_of(se));
002f128b 4451 BUG_ON(!pse);
2f36825b
VP
4452 if (wakeup_preempt_entity(se, pse) == 1) {
4453 /*
4454 * Bias pick_next to pick the sched entity that is
4455 * triggering this preemption.
4456 */
4457 if (!next_buddy_marked)
4458 set_next_buddy(pse);
3a7e73a2 4459 goto preempt;
2f36825b 4460 }
464b7527 4461
3a7e73a2 4462 return;
a65ac745 4463
3a7e73a2
PZ
4464preempt:
4465 resched_task(curr);
4466 /*
4467 * Only set the backward buddy when the current task is still
4468 * on the rq. This can happen when a wakeup gets interleaved
4469 * with schedule on the ->pre_schedule() or idle_balance()
4470 * point, either of which can * drop the rq lock.
4471 *
4472 * Also, during early boot the idle thread is in the fair class,
4473 * for obvious reasons its a bad idea to schedule back to it.
4474 */
4475 if (unlikely(!se->on_rq || curr == rq->idle))
4476 return;
4477
4478 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4479 set_last_buddy(se);
bf0f6f24
IM
4480}
4481
fb8d4724 4482static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4483{
8f4d37ec 4484 struct task_struct *p;
bf0f6f24
IM
4485 struct cfs_rq *cfs_rq = &rq->cfs;
4486 struct sched_entity *se;
4487
36ace27e 4488 if (!cfs_rq->nr_running)
bf0f6f24
IM
4489 return NULL;
4490
4491 do {
9948f4b2 4492 se = pick_next_entity(cfs_rq);
f4b6755f 4493 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4494 cfs_rq = group_cfs_rq(se);
4495 } while (cfs_rq);
4496
8f4d37ec 4497 p = task_of(se);
b39e66ea
MG
4498 if (hrtick_enabled(rq))
4499 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4500
4501 return p;
bf0f6f24
IM
4502}
4503
4504/*
4505 * Account for a descheduled task:
4506 */
31ee529c 4507static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4508{
4509 struct sched_entity *se = &prev->se;
4510 struct cfs_rq *cfs_rq;
4511
4512 for_each_sched_entity(se) {
4513 cfs_rq = cfs_rq_of(se);
ab6cde26 4514 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4515 }
4516}
4517
ac53db59
RR
4518/*
4519 * sched_yield() is very simple
4520 *
4521 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4522 */
4523static void yield_task_fair(struct rq *rq)
4524{
4525 struct task_struct *curr = rq->curr;
4526 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4527 struct sched_entity *se = &curr->se;
4528
4529 /*
4530 * Are we the only task in the tree?
4531 */
4532 if (unlikely(rq->nr_running == 1))
4533 return;
4534
4535 clear_buddies(cfs_rq, se);
4536
4537 if (curr->policy != SCHED_BATCH) {
4538 update_rq_clock(rq);
4539 /*
4540 * Update run-time statistics of the 'current'.
4541 */
4542 update_curr(cfs_rq);
916671c0
MG
4543 /*
4544 * Tell update_rq_clock() that we've just updated,
4545 * so we don't do microscopic update in schedule()
4546 * and double the fastpath cost.
4547 */
4548 rq->skip_clock_update = 1;
ac53db59
RR
4549 }
4550
4551 set_skip_buddy(se);
4552}
4553
d95f4122
MG
4554static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4555{
4556 struct sched_entity *se = &p->se;
4557
5238cdd3
PT
4558 /* throttled hierarchies are not runnable */
4559 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4560 return false;
4561
4562 /* Tell the scheduler that we'd really like pse to run next. */
4563 set_next_buddy(se);
4564
d95f4122
MG
4565 yield_task_fair(rq);
4566
4567 return true;
4568}
4569
681f3e68 4570#ifdef CONFIG_SMP
bf0f6f24 4571/**************************************************
e9c84cb8
PZ
4572 * Fair scheduling class load-balancing methods.
4573 *
4574 * BASICS
4575 *
4576 * The purpose of load-balancing is to achieve the same basic fairness the
4577 * per-cpu scheduler provides, namely provide a proportional amount of compute
4578 * time to each task. This is expressed in the following equation:
4579 *
4580 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4581 *
4582 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4583 * W_i,0 is defined as:
4584 *
4585 * W_i,0 = \Sum_j w_i,j (2)
4586 *
4587 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4588 * is derived from the nice value as per prio_to_weight[].
4589 *
4590 * The weight average is an exponential decay average of the instantaneous
4591 * weight:
4592 *
4593 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4594 *
4595 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4596 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4597 * can also include other factors [XXX].
4598 *
4599 * To achieve this balance we define a measure of imbalance which follows
4600 * directly from (1):
4601 *
4602 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4603 *
4604 * We them move tasks around to minimize the imbalance. In the continuous
4605 * function space it is obvious this converges, in the discrete case we get
4606 * a few fun cases generally called infeasible weight scenarios.
4607 *
4608 * [XXX expand on:
4609 * - infeasible weights;
4610 * - local vs global optima in the discrete case. ]
4611 *
4612 *
4613 * SCHED DOMAINS
4614 *
4615 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4616 * for all i,j solution, we create a tree of cpus that follows the hardware
4617 * topology where each level pairs two lower groups (or better). This results
4618 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4619 * tree to only the first of the previous level and we decrease the frequency
4620 * of load-balance at each level inv. proportional to the number of cpus in
4621 * the groups.
4622 *
4623 * This yields:
4624 *
4625 * log_2 n 1 n
4626 * \Sum { --- * --- * 2^i } = O(n) (5)
4627 * i = 0 2^i 2^i
4628 * `- size of each group
4629 * | | `- number of cpus doing load-balance
4630 * | `- freq
4631 * `- sum over all levels
4632 *
4633 * Coupled with a limit on how many tasks we can migrate every balance pass,
4634 * this makes (5) the runtime complexity of the balancer.
4635 *
4636 * An important property here is that each CPU is still (indirectly) connected
4637 * to every other cpu in at most O(log n) steps:
4638 *
4639 * The adjacency matrix of the resulting graph is given by:
4640 *
4641 * log_2 n
4642 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4643 * k = 0
4644 *
4645 * And you'll find that:
4646 *
4647 * A^(log_2 n)_i,j != 0 for all i,j (7)
4648 *
4649 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4650 * The task movement gives a factor of O(m), giving a convergence complexity
4651 * of:
4652 *
4653 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4654 *
4655 *
4656 * WORK CONSERVING
4657 *
4658 * In order to avoid CPUs going idle while there's still work to do, new idle
4659 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4660 * tree itself instead of relying on other CPUs to bring it work.
4661 *
4662 * This adds some complexity to both (5) and (8) but it reduces the total idle
4663 * time.
4664 *
4665 * [XXX more?]
4666 *
4667 *
4668 * CGROUPS
4669 *
4670 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4671 *
4672 * s_k,i
4673 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4674 * S_k
4675 *
4676 * Where
4677 *
4678 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4679 *
4680 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4681 *
4682 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4683 * property.
4684 *
4685 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4686 * rewrite all of this once again.]
4687 */
bf0f6f24 4688
ed387b78
HS
4689static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4690
0ec8aa00
PZ
4691enum fbq_type { regular, remote, all };
4692
ddcdf6e7 4693#define LBF_ALL_PINNED 0x01
367456c7 4694#define LBF_NEED_BREAK 0x02
6263322c
PZ
4695#define LBF_DST_PINNED 0x04
4696#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4697
4698struct lb_env {
4699 struct sched_domain *sd;
4700
ddcdf6e7 4701 struct rq *src_rq;
85c1e7da 4702 int src_cpu;
ddcdf6e7
PZ
4703
4704 int dst_cpu;
4705 struct rq *dst_rq;
4706
88b8dac0
SV
4707 struct cpumask *dst_grpmask;
4708 int new_dst_cpu;
ddcdf6e7 4709 enum cpu_idle_type idle;
bd939f45 4710 long imbalance;
b9403130
MW
4711 /* The set of CPUs under consideration for load-balancing */
4712 struct cpumask *cpus;
4713
ddcdf6e7 4714 unsigned int flags;
367456c7
PZ
4715
4716 unsigned int loop;
4717 unsigned int loop_break;
4718 unsigned int loop_max;
0ec8aa00
PZ
4719
4720 enum fbq_type fbq_type;
ddcdf6e7
PZ
4721};
4722
1e3c88bd 4723/*
ddcdf6e7 4724 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4725 * Both runqueues must be locked.
4726 */
ddcdf6e7 4727static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4728{
ddcdf6e7
PZ
4729 deactivate_task(env->src_rq, p, 0);
4730 set_task_cpu(p, env->dst_cpu);
4731 activate_task(env->dst_rq, p, 0);
4732 check_preempt_curr(env->dst_rq, p, 0);
6fe6b2d6
RR
4733#ifdef CONFIG_NUMA_BALANCING
4734 if (p->numa_preferred_nid != -1) {
4735 int src_nid = cpu_to_node(env->src_cpu);
4736 int dst_nid = cpu_to_node(env->dst_cpu);
4737
4738 /*
4739 * If the load balancer has moved the task then limit
4740 * migrations from taking place in the short term in
4741 * case this is a short-lived migration.
4742 */
4743 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4744 p->numa_migrate_seq = 0;
4745 }
4746#endif
1e3c88bd
PZ
4747}
4748
029632fb
PZ
4749/*
4750 * Is this task likely cache-hot:
4751 */
4752static int
4753task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4754{
4755 s64 delta;
4756
4757 if (p->sched_class != &fair_sched_class)
4758 return 0;
4759
4760 if (unlikely(p->policy == SCHED_IDLE))
4761 return 0;
4762
4763 /*
4764 * Buddy candidates are cache hot:
4765 */
4766 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4767 (&p->se == cfs_rq_of(&p->se)->next ||
4768 &p->se == cfs_rq_of(&p->se)->last))
4769 return 1;
4770
4771 if (sysctl_sched_migration_cost == -1)
4772 return 1;
4773 if (sysctl_sched_migration_cost == 0)
4774 return 0;
4775
4776 delta = now - p->se.exec_start;
4777
4778 return delta < (s64)sysctl_sched_migration_cost;
4779}
4780
3a7053b3
MG
4781#ifdef CONFIG_NUMA_BALANCING
4782/* Returns true if the destination node has incurred more faults */
4783static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4784{
4785 int src_nid, dst_nid;
4786
4787 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4788 !(env->sd->flags & SD_NUMA)) {
4789 return false;
4790 }
4791
4792 src_nid = cpu_to_node(env->src_cpu);
4793 dst_nid = cpu_to_node(env->dst_cpu);
4794
83e1d2cd 4795 if (src_nid == dst_nid)
3a7053b3
MG
4796 return false;
4797
83e1d2cd
MG
4798 /* Always encourage migration to the preferred node. */
4799 if (dst_nid == p->numa_preferred_nid)
4800 return true;
4801
887c290e
RR
4802 /* If both task and group weight improve, this move is a winner. */
4803 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4804 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4805 return true;
4806
4807 return false;
4808}
7a0f3083
MG
4809
4810
4811static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4812{
4813 int src_nid, dst_nid;
4814
4815 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4816 return false;
4817
4818 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4819 return false;
4820
4821 src_nid = cpu_to_node(env->src_cpu);
4822 dst_nid = cpu_to_node(env->dst_cpu);
4823
83e1d2cd 4824 if (src_nid == dst_nid)
7a0f3083
MG
4825 return false;
4826
83e1d2cd
MG
4827 /* Migrating away from the preferred node is always bad. */
4828 if (src_nid == p->numa_preferred_nid)
4829 return true;
4830
887c290e
RR
4831 /* If either task or group weight get worse, don't do it. */
4832 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4833 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4834 return true;
4835
4836 return false;
4837}
4838
3a7053b3
MG
4839#else
4840static inline bool migrate_improves_locality(struct task_struct *p,
4841 struct lb_env *env)
4842{
4843 return false;
4844}
7a0f3083
MG
4845
4846static inline bool migrate_degrades_locality(struct task_struct *p,
4847 struct lb_env *env)
4848{
4849 return false;
4850}
3a7053b3
MG
4851#endif
4852
1e3c88bd
PZ
4853/*
4854 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4855 */
4856static
8e45cb54 4857int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4858{
4859 int tsk_cache_hot = 0;
4860 /*
4861 * We do not migrate tasks that are:
d3198084 4862 * 1) throttled_lb_pair, or
1e3c88bd 4863 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4864 * 3) running (obviously), or
4865 * 4) are cache-hot on their current CPU.
1e3c88bd 4866 */
d3198084
JK
4867 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4868 return 0;
4869
ddcdf6e7 4870 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4871 int cpu;
88b8dac0 4872
41acab88 4873 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4874
6263322c
PZ
4875 env->flags |= LBF_SOME_PINNED;
4876
88b8dac0
SV
4877 /*
4878 * Remember if this task can be migrated to any other cpu in
4879 * our sched_group. We may want to revisit it if we couldn't
4880 * meet load balance goals by pulling other tasks on src_cpu.
4881 *
4882 * Also avoid computing new_dst_cpu if we have already computed
4883 * one in current iteration.
4884 */
6263322c 4885 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4886 return 0;
4887
e02e60c1
JK
4888 /* Prevent to re-select dst_cpu via env's cpus */
4889 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4890 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4891 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4892 env->new_dst_cpu = cpu;
4893 break;
4894 }
88b8dac0 4895 }
e02e60c1 4896
1e3c88bd
PZ
4897 return 0;
4898 }
88b8dac0
SV
4899
4900 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4901 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4902
ddcdf6e7 4903 if (task_running(env->src_rq, p)) {
41acab88 4904 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4905 return 0;
4906 }
4907
4908 /*
4909 * Aggressive migration if:
3a7053b3
MG
4910 * 1) destination numa is preferred
4911 * 2) task is cache cold, or
4912 * 3) too many balance attempts have failed.
1e3c88bd 4913 */
78becc27 4914 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4915 if (!tsk_cache_hot)
4916 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4917
4918 if (migrate_improves_locality(p, env)) {
4919#ifdef CONFIG_SCHEDSTATS
4920 if (tsk_cache_hot) {
4921 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4922 schedstat_inc(p, se.statistics.nr_forced_migrations);
4923 }
4924#endif
4925 return 1;
4926 }
4927
1e3c88bd 4928 if (!tsk_cache_hot ||
8e45cb54 4929 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4930
1e3c88bd 4931 if (tsk_cache_hot) {
8e45cb54 4932 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4933 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4934 }
4e2dcb73 4935
1e3c88bd
PZ
4936 return 1;
4937 }
4938
4e2dcb73
ZH
4939 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4940 return 0;
1e3c88bd
PZ
4941}
4942
897c395f
PZ
4943/*
4944 * move_one_task tries to move exactly one task from busiest to this_rq, as
4945 * part of active balancing operations within "domain".
4946 * Returns 1 if successful and 0 otherwise.
4947 *
4948 * Called with both runqueues locked.
4949 */
8e45cb54 4950static int move_one_task(struct lb_env *env)
897c395f
PZ
4951{
4952 struct task_struct *p, *n;
897c395f 4953
367456c7 4954 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4955 if (!can_migrate_task(p, env))
4956 continue;
897c395f 4957
367456c7
PZ
4958 move_task(p, env);
4959 /*
4960 * Right now, this is only the second place move_task()
4961 * is called, so we can safely collect move_task()
4962 * stats here rather than inside move_task().
4963 */
4964 schedstat_inc(env->sd, lb_gained[env->idle]);
4965 return 1;
897c395f 4966 }
897c395f
PZ
4967 return 0;
4968}
4969
eb95308e
PZ
4970static const unsigned int sched_nr_migrate_break = 32;
4971
5d6523eb 4972/*
bd939f45 4973 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4974 * this_rq, as part of a balancing operation within domain "sd".
4975 * Returns 1 if successful and 0 otherwise.
4976 *
4977 * Called with both runqueues locked.
4978 */
4979static int move_tasks(struct lb_env *env)
1e3c88bd 4980{
5d6523eb
PZ
4981 struct list_head *tasks = &env->src_rq->cfs_tasks;
4982 struct task_struct *p;
367456c7
PZ
4983 unsigned long load;
4984 int pulled = 0;
1e3c88bd 4985
bd939f45 4986 if (env->imbalance <= 0)
5d6523eb 4987 return 0;
1e3c88bd 4988
5d6523eb
PZ
4989 while (!list_empty(tasks)) {
4990 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4991
367456c7
PZ
4992 env->loop++;
4993 /* We've more or less seen every task there is, call it quits */
5d6523eb 4994 if (env->loop > env->loop_max)
367456c7 4995 break;
5d6523eb
PZ
4996
4997 /* take a breather every nr_migrate tasks */
367456c7 4998 if (env->loop > env->loop_break) {
eb95308e 4999 env->loop_break += sched_nr_migrate_break;
8e45cb54 5000 env->flags |= LBF_NEED_BREAK;
ee00e66f 5001 break;
a195f004 5002 }
1e3c88bd 5003
d3198084 5004 if (!can_migrate_task(p, env))
367456c7
PZ
5005 goto next;
5006
5007 load = task_h_load(p);
5d6523eb 5008
eb95308e 5009 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5010 goto next;
5011
bd939f45 5012 if ((load / 2) > env->imbalance)
367456c7 5013 goto next;
1e3c88bd 5014
ddcdf6e7 5015 move_task(p, env);
ee00e66f 5016 pulled++;
bd939f45 5017 env->imbalance -= load;
1e3c88bd
PZ
5018
5019#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5020 /*
5021 * NEWIDLE balancing is a source of latency, so preemptible
5022 * kernels will stop after the first task is pulled to minimize
5023 * the critical section.
5024 */
5d6523eb 5025 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5026 break;
1e3c88bd
PZ
5027#endif
5028
ee00e66f
PZ
5029 /*
5030 * We only want to steal up to the prescribed amount of
5031 * weighted load.
5032 */
bd939f45 5033 if (env->imbalance <= 0)
ee00e66f 5034 break;
367456c7
PZ
5035
5036 continue;
5037next:
5d6523eb 5038 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5039 }
5d6523eb 5040
1e3c88bd 5041 /*
ddcdf6e7
PZ
5042 * Right now, this is one of only two places move_task() is called,
5043 * so we can safely collect move_task() stats here rather than
5044 * inside move_task().
1e3c88bd 5045 */
8e45cb54 5046 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5047
5d6523eb 5048 return pulled;
1e3c88bd
PZ
5049}
5050
230059de 5051#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5052/*
5053 * update tg->load_weight by folding this cpu's load_avg
5054 */
48a16753 5055static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5056{
48a16753
PT
5057 struct sched_entity *se = tg->se[cpu];
5058 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5059
48a16753
PT
5060 /* throttled entities do not contribute to load */
5061 if (throttled_hierarchy(cfs_rq))
5062 return;
9e3081ca 5063
aff3e498 5064 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5065
82958366
PT
5066 if (se) {
5067 update_entity_load_avg(se, 1);
5068 /*
5069 * We pivot on our runnable average having decayed to zero for
5070 * list removal. This generally implies that all our children
5071 * have also been removed (modulo rounding error or bandwidth
5072 * control); however, such cases are rare and we can fix these
5073 * at enqueue.
5074 *
5075 * TODO: fix up out-of-order children on enqueue.
5076 */
5077 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5078 list_del_leaf_cfs_rq(cfs_rq);
5079 } else {
48a16753 5080 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5081 update_rq_runnable_avg(rq, rq->nr_running);
5082 }
9e3081ca
PZ
5083}
5084
48a16753 5085static void update_blocked_averages(int cpu)
9e3081ca 5086{
9e3081ca 5087 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5088 struct cfs_rq *cfs_rq;
5089 unsigned long flags;
9e3081ca 5090
48a16753
PT
5091 raw_spin_lock_irqsave(&rq->lock, flags);
5092 update_rq_clock(rq);
9763b67f
PZ
5093 /*
5094 * Iterates the task_group tree in a bottom up fashion, see
5095 * list_add_leaf_cfs_rq() for details.
5096 */
64660c86 5097 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5098 /*
5099 * Note: We may want to consider periodically releasing
5100 * rq->lock about these updates so that creating many task
5101 * groups does not result in continually extending hold time.
5102 */
5103 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5104 }
48a16753
PT
5105
5106 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5107}
5108
9763b67f 5109/*
68520796 5110 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5111 * This needs to be done in a top-down fashion because the load of a child
5112 * group is a fraction of its parents load.
5113 */
68520796 5114static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5115{
68520796
VD
5116 struct rq *rq = rq_of(cfs_rq);
5117 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5118 unsigned long now = jiffies;
68520796 5119 unsigned long load;
a35b6466 5120
68520796 5121 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5122 return;
5123
68520796
VD
5124 cfs_rq->h_load_next = NULL;
5125 for_each_sched_entity(se) {
5126 cfs_rq = cfs_rq_of(se);
5127 cfs_rq->h_load_next = se;
5128 if (cfs_rq->last_h_load_update == now)
5129 break;
5130 }
a35b6466 5131
68520796 5132 if (!se) {
7e3115ef 5133 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5134 cfs_rq->last_h_load_update = now;
5135 }
5136
5137 while ((se = cfs_rq->h_load_next) != NULL) {
5138 load = cfs_rq->h_load;
5139 load = div64_ul(load * se->avg.load_avg_contrib,
5140 cfs_rq->runnable_load_avg + 1);
5141 cfs_rq = group_cfs_rq(se);
5142 cfs_rq->h_load = load;
5143 cfs_rq->last_h_load_update = now;
5144 }
9763b67f
PZ
5145}
5146
367456c7 5147static unsigned long task_h_load(struct task_struct *p)
230059de 5148{
367456c7 5149 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5150
68520796 5151 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5152 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5153 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5154}
5155#else
48a16753 5156static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5157{
5158}
5159
367456c7 5160static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5161{
a003a25b 5162 return p->se.avg.load_avg_contrib;
1e3c88bd 5163}
230059de 5164#endif
1e3c88bd 5165
1e3c88bd 5166/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5167/*
5168 * sg_lb_stats - stats of a sched_group required for load_balancing
5169 */
5170struct sg_lb_stats {
5171 unsigned long avg_load; /*Avg load across the CPUs of the group */
5172 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5173 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5174 unsigned long load_per_task;
3ae11c90 5175 unsigned long group_power;
147c5fc2
PZ
5176 unsigned int sum_nr_running; /* Nr tasks running in the group */
5177 unsigned int group_capacity;
5178 unsigned int idle_cpus;
5179 unsigned int group_weight;
1e3c88bd 5180 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5181 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5182#ifdef CONFIG_NUMA_BALANCING
5183 unsigned int nr_numa_running;
5184 unsigned int nr_preferred_running;
5185#endif
1e3c88bd
PZ
5186};
5187
56cf515b
JK
5188/*
5189 * sd_lb_stats - Structure to store the statistics of a sched_domain
5190 * during load balancing.
5191 */
5192struct sd_lb_stats {
5193 struct sched_group *busiest; /* Busiest group in this sd */
5194 struct sched_group *local; /* Local group in this sd */
5195 unsigned long total_load; /* Total load of all groups in sd */
5196 unsigned long total_pwr; /* Total power of all groups in sd */
5197 unsigned long avg_load; /* Average load across all groups in sd */
5198
56cf515b 5199 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5200 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5201};
5202
147c5fc2
PZ
5203static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5204{
5205 /*
5206 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5207 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5208 * We must however clear busiest_stat::avg_load because
5209 * update_sd_pick_busiest() reads this before assignment.
5210 */
5211 *sds = (struct sd_lb_stats){
5212 .busiest = NULL,
5213 .local = NULL,
5214 .total_load = 0UL,
5215 .total_pwr = 0UL,
5216 .busiest_stat = {
5217 .avg_load = 0UL,
5218 },
5219 };
5220}
5221
1e3c88bd
PZ
5222/**
5223 * get_sd_load_idx - Obtain the load index for a given sched domain.
5224 * @sd: The sched_domain whose load_idx is to be obtained.
5225 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
e69f6186
YB
5226 *
5227 * Return: The load index.
1e3c88bd
PZ
5228 */
5229static inline int get_sd_load_idx(struct sched_domain *sd,
5230 enum cpu_idle_type idle)
5231{
5232 int load_idx;
5233
5234 switch (idle) {
5235 case CPU_NOT_IDLE:
5236 load_idx = sd->busy_idx;
5237 break;
5238
5239 case CPU_NEWLY_IDLE:
5240 load_idx = sd->newidle_idx;
5241 break;
5242 default:
5243 load_idx = sd->idle_idx;
5244 break;
5245 }
5246
5247 return load_idx;
5248}
5249
15f803c9 5250static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5251{
1399fa78 5252 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5253}
5254
5255unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5256{
5257 return default_scale_freq_power(sd, cpu);
5258}
5259
15f803c9 5260static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5261{
669c55e9 5262 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5263 unsigned long smt_gain = sd->smt_gain;
5264
5265 smt_gain /= weight;
5266
5267 return smt_gain;
5268}
5269
5270unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5271{
5272 return default_scale_smt_power(sd, cpu);
5273}
5274
15f803c9 5275static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5276{
5277 struct rq *rq = cpu_rq(cpu);
b654f7de 5278 u64 total, available, age_stamp, avg;
1e3c88bd 5279
b654f7de
PZ
5280 /*
5281 * Since we're reading these variables without serialization make sure
5282 * we read them once before doing sanity checks on them.
5283 */
5284 age_stamp = ACCESS_ONCE(rq->age_stamp);
5285 avg = ACCESS_ONCE(rq->rt_avg);
5286
78becc27 5287 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5288
b654f7de 5289 if (unlikely(total < avg)) {
aa483808
VP
5290 /* Ensures that power won't end up being negative */
5291 available = 0;
5292 } else {
b654f7de 5293 available = total - avg;
aa483808 5294 }
1e3c88bd 5295
1399fa78
NR
5296 if (unlikely((s64)total < SCHED_POWER_SCALE))
5297 total = SCHED_POWER_SCALE;
1e3c88bd 5298
1399fa78 5299 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5300
5301 return div_u64(available, total);
5302}
5303
5304static void update_cpu_power(struct sched_domain *sd, int cpu)
5305{
669c55e9 5306 unsigned long weight = sd->span_weight;
1399fa78 5307 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5308 struct sched_group *sdg = sd->groups;
5309
1e3c88bd
PZ
5310 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5311 if (sched_feat(ARCH_POWER))
5312 power *= arch_scale_smt_power(sd, cpu);
5313 else
5314 power *= default_scale_smt_power(sd, cpu);
5315
1399fa78 5316 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5317 }
5318
9c3f75cb 5319 sdg->sgp->power_orig = power;
9d5efe05
SV
5320
5321 if (sched_feat(ARCH_POWER))
5322 power *= arch_scale_freq_power(sd, cpu);
5323 else
5324 power *= default_scale_freq_power(sd, cpu);
5325
1399fa78 5326 power >>= SCHED_POWER_SHIFT;
9d5efe05 5327
1e3c88bd 5328 power *= scale_rt_power(cpu);
1399fa78 5329 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5330
5331 if (!power)
5332 power = 1;
5333
e51fd5e2 5334 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5335 sdg->sgp->power = power;
1e3c88bd
PZ
5336}
5337
029632fb 5338void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5339{
5340 struct sched_domain *child = sd->child;
5341 struct sched_group *group, *sdg = sd->groups;
863bffc8 5342 unsigned long power, power_orig;
4ec4412e
VG
5343 unsigned long interval;
5344
5345 interval = msecs_to_jiffies(sd->balance_interval);
5346 interval = clamp(interval, 1UL, max_load_balance_interval);
5347 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5348
5349 if (!child) {
5350 update_cpu_power(sd, cpu);
5351 return;
5352 }
5353
863bffc8 5354 power_orig = power = 0;
1e3c88bd 5355
74a5ce20
PZ
5356 if (child->flags & SD_OVERLAP) {
5357 /*
5358 * SD_OVERLAP domains cannot assume that child groups
5359 * span the current group.
5360 */
5361
863bffc8
PZ
5362 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5363 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5364
5365 power_orig += sg->sgp->power_orig;
5366 power += sg->sgp->power;
5367 }
74a5ce20
PZ
5368 } else {
5369 /*
5370 * !SD_OVERLAP domains can assume that child groups
5371 * span the current group.
5372 */
5373
5374 group = child->groups;
5375 do {
863bffc8 5376 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5377 power += group->sgp->power;
5378 group = group->next;
5379 } while (group != child->groups);
5380 }
1e3c88bd 5381
863bffc8
PZ
5382 sdg->sgp->power_orig = power_orig;
5383 sdg->sgp->power = power;
1e3c88bd
PZ
5384}
5385
9d5efe05
SV
5386/*
5387 * Try and fix up capacity for tiny siblings, this is needed when
5388 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5389 * which on its own isn't powerful enough.
5390 *
5391 * See update_sd_pick_busiest() and check_asym_packing().
5392 */
5393static inline int
5394fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5395{
5396 /*
1399fa78 5397 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5398 */
a6c75f2f 5399 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5400 return 0;
5401
5402 /*
5403 * If ~90% of the cpu_power is still there, we're good.
5404 */
9c3f75cb 5405 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5406 return 1;
5407
5408 return 0;
5409}
5410
30ce5dab
PZ
5411/*
5412 * Group imbalance indicates (and tries to solve) the problem where balancing
5413 * groups is inadequate due to tsk_cpus_allowed() constraints.
5414 *
5415 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5416 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5417 * Something like:
5418 *
5419 * { 0 1 2 3 } { 4 5 6 7 }
5420 * * * * *
5421 *
5422 * If we were to balance group-wise we'd place two tasks in the first group and
5423 * two tasks in the second group. Clearly this is undesired as it will overload
5424 * cpu 3 and leave one of the cpus in the second group unused.
5425 *
5426 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5427 * by noticing the lower domain failed to reach balance and had difficulty
5428 * moving tasks due to affinity constraints.
30ce5dab
PZ
5429 *
5430 * When this is so detected; this group becomes a candidate for busiest; see
5431 * update_sd_pick_busiest(). And calculcate_imbalance() and
6263322c 5432 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5433 * to create an effective group imbalance.
5434 *
5435 * This is a somewhat tricky proposition since the next run might not find the
5436 * group imbalance and decide the groups need to be balanced again. A most
5437 * subtle and fragile situation.
5438 */
5439
6263322c 5440static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5441{
6263322c 5442 return group->sgp->imbalance;
30ce5dab
PZ
5443}
5444
b37d9316
PZ
5445/*
5446 * Compute the group capacity.
5447 *
c61037e9
PZ
5448 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5449 * first dividing out the smt factor and computing the actual number of cores
5450 * and limit power unit capacity with that.
b37d9316
PZ
5451 */
5452static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5453{
c61037e9
PZ
5454 unsigned int capacity, smt, cpus;
5455 unsigned int power, power_orig;
5456
5457 power = group->sgp->power;
5458 power_orig = group->sgp->power_orig;
5459 cpus = group->group_weight;
b37d9316 5460
c61037e9
PZ
5461 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5462 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5463 capacity = cpus / smt; /* cores */
b37d9316 5464
c61037e9 5465 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5466 if (!capacity)
5467 capacity = fix_small_capacity(env->sd, group);
5468
5469 return capacity;
5470}
5471
1e3c88bd
PZ
5472/**
5473 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5474 * @env: The load balancing environment.
1e3c88bd 5475 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5476 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5477 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5478 * @sgs: variable to hold the statistics for this group.
5479 */
bd939f45
PZ
5480static inline void update_sg_lb_stats(struct lb_env *env,
5481 struct sched_group *group, int load_idx,
23f0d209 5482 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5483{
30ce5dab
PZ
5484 unsigned long nr_running;
5485 unsigned long load;
bd939f45 5486 int i;
1e3c88bd 5487
b72ff13c
PZ
5488 memset(sgs, 0, sizeof(*sgs));
5489
b9403130 5490 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5491 struct rq *rq = cpu_rq(i);
5492
e44bc5c5
PZ
5493 nr_running = rq->nr_running;
5494
1e3c88bd 5495 /* Bias balancing toward cpus of our domain */
6263322c 5496 if (local_group)
04f733b4 5497 load = target_load(i, load_idx);
6263322c 5498 else
1e3c88bd 5499 load = source_load(i, load_idx);
1e3c88bd
PZ
5500
5501 sgs->group_load += load;
e44bc5c5 5502 sgs->sum_nr_running += nr_running;
0ec8aa00
PZ
5503#ifdef CONFIG_NUMA_BALANCING
5504 sgs->nr_numa_running += rq->nr_numa_running;
5505 sgs->nr_preferred_running += rq->nr_preferred_running;
5506#endif
1e3c88bd 5507 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5508 if (idle_cpu(i))
5509 sgs->idle_cpus++;
1e3c88bd
PZ
5510 }
5511
1e3c88bd 5512 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5513 sgs->group_power = group->sgp->power;
5514 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5515
dd5feea1 5516 if (sgs->sum_nr_running)
38d0f770 5517 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5518
aae6d3dd 5519 sgs->group_weight = group->group_weight;
fab47622 5520
b37d9316
PZ
5521 sgs->group_imb = sg_imbalanced(group);
5522 sgs->group_capacity = sg_capacity(env, group);
5523
fab47622
NR
5524 if (sgs->group_capacity > sgs->sum_nr_running)
5525 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5526}
5527
532cb4c4
MN
5528/**
5529 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5530 * @env: The load balancing environment.
532cb4c4
MN
5531 * @sds: sched_domain statistics
5532 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5533 * @sgs: sched_group statistics
532cb4c4
MN
5534 *
5535 * Determine if @sg is a busier group than the previously selected
5536 * busiest group.
e69f6186
YB
5537 *
5538 * Return: %true if @sg is a busier group than the previously selected
5539 * busiest group. %false otherwise.
532cb4c4 5540 */
bd939f45 5541static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5542 struct sd_lb_stats *sds,
5543 struct sched_group *sg,
bd939f45 5544 struct sg_lb_stats *sgs)
532cb4c4 5545{
56cf515b 5546 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5547 return false;
5548
5549 if (sgs->sum_nr_running > sgs->group_capacity)
5550 return true;
5551
5552 if (sgs->group_imb)
5553 return true;
5554
5555 /*
5556 * ASYM_PACKING needs to move all the work to the lowest
5557 * numbered CPUs in the group, therefore mark all groups
5558 * higher than ourself as busy.
5559 */
bd939f45
PZ
5560 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5561 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5562 if (!sds->busiest)
5563 return true;
5564
5565 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5566 return true;
5567 }
5568
5569 return false;
5570}
5571
0ec8aa00
PZ
5572#ifdef CONFIG_NUMA_BALANCING
5573static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5574{
5575 if (sgs->sum_nr_running > sgs->nr_numa_running)
5576 return regular;
5577 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5578 return remote;
5579 return all;
5580}
5581
5582static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5583{
5584 if (rq->nr_running > rq->nr_numa_running)
5585 return regular;
5586 if (rq->nr_running > rq->nr_preferred_running)
5587 return remote;
5588 return all;
5589}
5590#else
5591static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5592{
5593 return all;
5594}
5595
5596static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5597{
5598 return regular;
5599}
5600#endif /* CONFIG_NUMA_BALANCING */
5601
1e3c88bd 5602/**
461819ac 5603 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5604 * @env: The load balancing environment.
1e3c88bd
PZ
5605 * @balance: Should we balance.
5606 * @sds: variable to hold the statistics for this sched_domain.
5607 */
0ec8aa00 5608static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5609{
bd939f45
PZ
5610 struct sched_domain *child = env->sd->child;
5611 struct sched_group *sg = env->sd->groups;
56cf515b 5612 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5613 int load_idx, prefer_sibling = 0;
5614
5615 if (child && child->flags & SD_PREFER_SIBLING)
5616 prefer_sibling = 1;
5617
bd939f45 5618 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5619
5620 do {
56cf515b 5621 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5622 int local_group;
5623
bd939f45 5624 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5625 if (local_group) {
5626 sds->local = sg;
5627 sgs = &sds->local_stat;
b72ff13c
PZ
5628
5629 if (env->idle != CPU_NEWLY_IDLE ||
5630 time_after_eq(jiffies, sg->sgp->next_update))
5631 update_group_power(env->sd, env->dst_cpu);
56cf515b 5632 }
1e3c88bd 5633
56cf515b 5634 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5635
b72ff13c
PZ
5636 if (local_group)
5637 goto next_group;
5638
1e3c88bd
PZ
5639 /*
5640 * In case the child domain prefers tasks go to siblings
532cb4c4 5641 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5642 * and move all the excess tasks away. We lower the capacity
5643 * of a group only if the local group has the capacity to fit
5644 * these excess tasks, i.e. nr_running < group_capacity. The
5645 * extra check prevents the case where you always pull from the
5646 * heaviest group when it is already under-utilized (possible
5647 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5648 */
b72ff13c
PZ
5649 if (prefer_sibling && sds->local &&
5650 sds->local_stat.group_has_capacity)
147c5fc2 5651 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5652
b72ff13c 5653 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5654 sds->busiest = sg;
56cf515b 5655 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5656 }
5657
b72ff13c
PZ
5658next_group:
5659 /* Now, start updating sd_lb_stats */
5660 sds->total_load += sgs->group_load;
5661 sds->total_pwr += sgs->group_power;
5662
532cb4c4 5663 sg = sg->next;
bd939f45 5664 } while (sg != env->sd->groups);
0ec8aa00
PZ
5665
5666 if (env->sd->flags & SD_NUMA)
5667 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5668}
5669
532cb4c4
MN
5670/**
5671 * check_asym_packing - Check to see if the group is packed into the
5672 * sched doman.
5673 *
5674 * This is primarily intended to used at the sibling level. Some
5675 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5676 * case of POWER7, it can move to lower SMT modes only when higher
5677 * threads are idle. When in lower SMT modes, the threads will
5678 * perform better since they share less core resources. Hence when we
5679 * have idle threads, we want them to be the higher ones.
5680 *
5681 * This packing function is run on idle threads. It checks to see if
5682 * the busiest CPU in this domain (core in the P7 case) has a higher
5683 * CPU number than the packing function is being run on. Here we are
5684 * assuming lower CPU number will be equivalent to lower a SMT thread
5685 * number.
5686 *
e69f6186 5687 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5688 * this CPU. The amount of the imbalance is returned in *imbalance.
5689 *
cd96891d 5690 * @env: The load balancing environment.
532cb4c4 5691 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5692 */
bd939f45 5693static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5694{
5695 int busiest_cpu;
5696
bd939f45 5697 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5698 return 0;
5699
5700 if (!sds->busiest)
5701 return 0;
5702
5703 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5704 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5705 return 0;
5706
bd939f45 5707 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5708 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5709 SCHED_POWER_SCALE);
bd939f45 5710
532cb4c4 5711 return 1;
1e3c88bd
PZ
5712}
5713
5714/**
5715 * fix_small_imbalance - Calculate the minor imbalance that exists
5716 * amongst the groups of a sched_domain, during
5717 * load balancing.
cd96891d 5718 * @env: The load balancing environment.
1e3c88bd 5719 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5720 */
bd939f45
PZ
5721static inline
5722void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5723{
5724 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5725 unsigned int imbn = 2;
dd5feea1 5726 unsigned long scaled_busy_load_per_task;
56cf515b 5727 struct sg_lb_stats *local, *busiest;
1e3c88bd 5728
56cf515b
JK
5729 local = &sds->local_stat;
5730 busiest = &sds->busiest_stat;
1e3c88bd 5731
56cf515b
JK
5732 if (!local->sum_nr_running)
5733 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5734 else if (busiest->load_per_task > local->load_per_task)
5735 imbn = 1;
dd5feea1 5736
56cf515b
JK
5737 scaled_busy_load_per_task =
5738 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5739 busiest->group_power;
56cf515b 5740
3029ede3
VD
5741 if (busiest->avg_load + scaled_busy_load_per_task >=
5742 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5743 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5744 return;
5745 }
5746
5747 /*
5748 * OK, we don't have enough imbalance to justify moving tasks,
5749 * however we may be able to increase total CPU power used by
5750 * moving them.
5751 */
5752
3ae11c90 5753 pwr_now += busiest->group_power *
56cf515b 5754 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5755 pwr_now += local->group_power *
56cf515b 5756 min(local->load_per_task, local->avg_load);
1399fa78 5757 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5758
5759 /* Amount of load we'd subtract */
56cf515b 5760 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5761 busiest->group_power;
56cf515b 5762 if (busiest->avg_load > tmp) {
3ae11c90 5763 pwr_move += busiest->group_power *
56cf515b
JK
5764 min(busiest->load_per_task,
5765 busiest->avg_load - tmp);
5766 }
1e3c88bd
PZ
5767
5768 /* Amount of load we'd add */
3ae11c90 5769 if (busiest->avg_load * busiest->group_power <
56cf515b 5770 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5771 tmp = (busiest->avg_load * busiest->group_power) /
5772 local->group_power;
56cf515b
JK
5773 } else {
5774 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5775 local->group_power;
56cf515b 5776 }
3ae11c90
PZ
5777 pwr_move += local->group_power *
5778 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5779 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5780
5781 /* Move if we gain throughput */
5782 if (pwr_move > pwr_now)
56cf515b 5783 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5784}
5785
5786/**
5787 * calculate_imbalance - Calculate the amount of imbalance present within the
5788 * groups of a given sched_domain during load balance.
bd939f45 5789 * @env: load balance environment
1e3c88bd 5790 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5791 */
bd939f45 5792static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5793{
dd5feea1 5794 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5795 struct sg_lb_stats *local, *busiest;
5796
5797 local = &sds->local_stat;
56cf515b 5798 busiest = &sds->busiest_stat;
dd5feea1 5799
56cf515b 5800 if (busiest->group_imb) {
30ce5dab
PZ
5801 /*
5802 * In the group_imb case we cannot rely on group-wide averages
5803 * to ensure cpu-load equilibrium, look at wider averages. XXX
5804 */
56cf515b
JK
5805 busiest->load_per_task =
5806 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5807 }
5808
1e3c88bd
PZ
5809 /*
5810 * In the presence of smp nice balancing, certain scenarios can have
5811 * max load less than avg load(as we skip the groups at or below
5812 * its cpu_power, while calculating max_load..)
5813 */
b1885550
VD
5814 if (busiest->avg_load <= sds->avg_load ||
5815 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5816 env->imbalance = 0;
5817 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5818 }
5819
56cf515b 5820 if (!busiest->group_imb) {
dd5feea1
SS
5821 /*
5822 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5823 * Except of course for the group_imb case, since then we might
5824 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5825 */
56cf515b
JK
5826 load_above_capacity =
5827 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5828
1399fa78 5829 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5830 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5831 }
5832
5833 /*
5834 * We're trying to get all the cpus to the average_load, so we don't
5835 * want to push ourselves above the average load, nor do we wish to
5836 * reduce the max loaded cpu below the average load. At the same time,
5837 * we also don't want to reduce the group load below the group capacity
5838 * (so that we can implement power-savings policies etc). Thus we look
5839 * for the minimum possible imbalance.
dd5feea1 5840 */
30ce5dab 5841 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5842
5843 /* How much load to actually move to equalise the imbalance */
56cf515b 5844 env->imbalance = min(
3ae11c90
PZ
5845 max_pull * busiest->group_power,
5846 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5847 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5848
5849 /*
5850 * if *imbalance is less than the average load per runnable task
25985edc 5851 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5852 * a think about bumping its value to force at least one task to be
5853 * moved
5854 */
56cf515b 5855 if (env->imbalance < busiest->load_per_task)
bd939f45 5856 return fix_small_imbalance(env, sds);
1e3c88bd 5857}
fab47622 5858
1e3c88bd
PZ
5859/******* find_busiest_group() helpers end here *********************/
5860
5861/**
5862 * find_busiest_group - Returns the busiest group within the sched_domain
5863 * if there is an imbalance. If there isn't an imbalance, and
5864 * the user has opted for power-savings, it returns a group whose
5865 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5866 * such a group exists.
5867 *
5868 * Also calculates the amount of weighted load which should be moved
5869 * to restore balance.
5870 *
cd96891d 5871 * @env: The load balancing environment.
1e3c88bd 5872 *
e69f6186 5873 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5874 * - If no imbalance and user has opted for power-savings balance,
5875 * return the least loaded group whose CPUs can be
5876 * put to idle by rebalancing its tasks onto our group.
5877 */
56cf515b 5878static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5879{
56cf515b 5880 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5881 struct sd_lb_stats sds;
5882
147c5fc2 5883 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5884
5885 /*
5886 * Compute the various statistics relavent for load balancing at
5887 * this level.
5888 */
23f0d209 5889 update_sd_lb_stats(env, &sds);
56cf515b
JK
5890 local = &sds.local_stat;
5891 busiest = &sds.busiest_stat;
1e3c88bd 5892
bd939f45
PZ
5893 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5894 check_asym_packing(env, &sds))
532cb4c4
MN
5895 return sds.busiest;
5896
cc57aa8f 5897 /* There is no busy sibling group to pull tasks from */
56cf515b 5898 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5899 goto out_balanced;
5900
1399fa78 5901 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5902
866ab43e
PZ
5903 /*
5904 * If the busiest group is imbalanced the below checks don't
30ce5dab 5905 * work because they assume all things are equal, which typically
866ab43e
PZ
5906 * isn't true due to cpus_allowed constraints and the like.
5907 */
56cf515b 5908 if (busiest->group_imb)
866ab43e
PZ
5909 goto force_balance;
5910
cc57aa8f 5911 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5912 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5913 !busiest->group_has_capacity)
fab47622
NR
5914 goto force_balance;
5915
cc57aa8f
PZ
5916 /*
5917 * If the local group is more busy than the selected busiest group
5918 * don't try and pull any tasks.
5919 */
56cf515b 5920 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5921 goto out_balanced;
5922
cc57aa8f
PZ
5923 /*
5924 * Don't pull any tasks if this group is already above the domain
5925 * average load.
5926 */
56cf515b 5927 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5928 goto out_balanced;
5929
bd939f45 5930 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5931 /*
5932 * This cpu is idle. If the busiest group load doesn't
5933 * have more tasks than the number of available cpu's and
5934 * there is no imbalance between this and busiest group
5935 * wrt to idle cpu's, it is balanced.
5936 */
56cf515b
JK
5937 if ((local->idle_cpus < busiest->idle_cpus) &&
5938 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5939 goto out_balanced;
c186fafe
PZ
5940 } else {
5941 /*
5942 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5943 * imbalance_pct to be conservative.
5944 */
56cf515b
JK
5945 if (100 * busiest->avg_load <=
5946 env->sd->imbalance_pct * local->avg_load)
c186fafe 5947 goto out_balanced;
aae6d3dd 5948 }
1e3c88bd 5949
fab47622 5950force_balance:
1e3c88bd 5951 /* Looks like there is an imbalance. Compute it */
bd939f45 5952 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5953 return sds.busiest;
5954
5955out_balanced:
bd939f45 5956 env->imbalance = 0;
1e3c88bd
PZ
5957 return NULL;
5958}
5959
5960/*
5961 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5962 */
bd939f45 5963static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5964 struct sched_group *group)
1e3c88bd
PZ
5965{
5966 struct rq *busiest = NULL, *rq;
95a79b80 5967 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5968 int i;
5969
6906a408 5970 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
5971 unsigned long power, capacity, wl;
5972 enum fbq_type rt;
5973
5974 rq = cpu_rq(i);
5975 rt = fbq_classify_rq(rq);
1e3c88bd 5976
0ec8aa00
PZ
5977 /*
5978 * We classify groups/runqueues into three groups:
5979 * - regular: there are !numa tasks
5980 * - remote: there are numa tasks that run on the 'wrong' node
5981 * - all: there is no distinction
5982 *
5983 * In order to avoid migrating ideally placed numa tasks,
5984 * ignore those when there's better options.
5985 *
5986 * If we ignore the actual busiest queue to migrate another
5987 * task, the next balance pass can still reduce the busiest
5988 * queue by moving tasks around inside the node.
5989 *
5990 * If we cannot move enough load due to this classification
5991 * the next pass will adjust the group classification and
5992 * allow migration of more tasks.
5993 *
5994 * Both cases only affect the total convergence complexity.
5995 */
5996 if (rt > env->fbq_type)
5997 continue;
5998
5999 power = power_of(i);
6000 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6001 if (!capacity)
bd939f45 6002 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6003
6e40f5bb 6004 wl = weighted_cpuload(i);
1e3c88bd 6005
6e40f5bb
TG
6006 /*
6007 * When comparing with imbalance, use weighted_cpuload()
6008 * which is not scaled with the cpu power.
6009 */
bd939f45 6010 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6011 continue;
6012
6e40f5bb
TG
6013 /*
6014 * For the load comparisons with the other cpu's, consider
6015 * the weighted_cpuload() scaled with the cpu power, so that
6016 * the load can be moved away from the cpu that is potentially
6017 * running at a lower capacity.
95a79b80
JK
6018 *
6019 * Thus we're looking for max(wl_i / power_i), crosswise
6020 * multiplication to rid ourselves of the division works out
6021 * to: wl_i * power_j > wl_j * power_i; where j is our
6022 * previous maximum.
6e40f5bb 6023 */
95a79b80
JK
6024 if (wl * busiest_power > busiest_load * power) {
6025 busiest_load = wl;
6026 busiest_power = power;
1e3c88bd
PZ
6027 busiest = rq;
6028 }
6029 }
6030
6031 return busiest;
6032}
6033
6034/*
6035 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6036 * so long as it is large enough.
6037 */
6038#define MAX_PINNED_INTERVAL 512
6039
6040/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6041DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6042
bd939f45 6043static int need_active_balance(struct lb_env *env)
1af3ed3d 6044{
bd939f45
PZ
6045 struct sched_domain *sd = env->sd;
6046
6047 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6048
6049 /*
6050 * ASYM_PACKING needs to force migrate tasks from busy but
6051 * higher numbered CPUs in order to pack all tasks in the
6052 * lowest numbered CPUs.
6053 */
bd939f45 6054 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6055 return 1;
1af3ed3d
PZ
6056 }
6057
6058 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6059}
6060
969c7921
TH
6061static int active_load_balance_cpu_stop(void *data);
6062
23f0d209
JK
6063static int should_we_balance(struct lb_env *env)
6064{
6065 struct sched_group *sg = env->sd->groups;
6066 struct cpumask *sg_cpus, *sg_mask;
6067 int cpu, balance_cpu = -1;
6068
6069 /*
6070 * In the newly idle case, we will allow all the cpu's
6071 * to do the newly idle load balance.
6072 */
6073 if (env->idle == CPU_NEWLY_IDLE)
6074 return 1;
6075
6076 sg_cpus = sched_group_cpus(sg);
6077 sg_mask = sched_group_mask(sg);
6078 /* Try to find first idle cpu */
6079 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6080 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6081 continue;
6082
6083 balance_cpu = cpu;
6084 break;
6085 }
6086
6087 if (balance_cpu == -1)
6088 balance_cpu = group_balance_cpu(sg);
6089
6090 /*
6091 * First idle cpu or the first cpu(busiest) in this sched group
6092 * is eligible for doing load balancing at this and above domains.
6093 */
b0cff9d8 6094 return balance_cpu == env->dst_cpu;
23f0d209
JK
6095}
6096
1e3c88bd
PZ
6097/*
6098 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6099 * tasks if there is an imbalance.
6100 */
6101static int load_balance(int this_cpu, struct rq *this_rq,
6102 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6103 int *continue_balancing)
1e3c88bd 6104{
88b8dac0 6105 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6106 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6107 struct sched_group *group;
1e3c88bd
PZ
6108 struct rq *busiest;
6109 unsigned long flags;
e6252c3e 6110 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6111
8e45cb54
PZ
6112 struct lb_env env = {
6113 .sd = sd,
ddcdf6e7
PZ
6114 .dst_cpu = this_cpu,
6115 .dst_rq = this_rq,
88b8dac0 6116 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6117 .idle = idle,
eb95308e 6118 .loop_break = sched_nr_migrate_break,
b9403130 6119 .cpus = cpus,
0ec8aa00 6120 .fbq_type = all,
8e45cb54
PZ
6121 };
6122
cfc03118
JK
6123 /*
6124 * For NEWLY_IDLE load_balancing, we don't need to consider
6125 * other cpus in our group
6126 */
e02e60c1 6127 if (idle == CPU_NEWLY_IDLE)
cfc03118 6128 env.dst_grpmask = NULL;
cfc03118 6129
1e3c88bd
PZ
6130 cpumask_copy(cpus, cpu_active_mask);
6131
1e3c88bd
PZ
6132 schedstat_inc(sd, lb_count[idle]);
6133
6134redo:
23f0d209
JK
6135 if (!should_we_balance(&env)) {
6136 *continue_balancing = 0;
1e3c88bd 6137 goto out_balanced;
23f0d209 6138 }
1e3c88bd 6139
23f0d209 6140 group = find_busiest_group(&env);
1e3c88bd
PZ
6141 if (!group) {
6142 schedstat_inc(sd, lb_nobusyg[idle]);
6143 goto out_balanced;
6144 }
6145
b9403130 6146 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6147 if (!busiest) {
6148 schedstat_inc(sd, lb_nobusyq[idle]);
6149 goto out_balanced;
6150 }
6151
78feefc5 6152 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6153
bd939f45 6154 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6155
6156 ld_moved = 0;
6157 if (busiest->nr_running > 1) {
6158 /*
6159 * Attempt to move tasks. If find_busiest_group has found
6160 * an imbalance but busiest->nr_running <= 1, the group is
6161 * still unbalanced. ld_moved simply stays zero, so it is
6162 * correctly treated as an imbalance.
6163 */
8e45cb54 6164 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6165 env.src_cpu = busiest->cpu;
6166 env.src_rq = busiest;
6167 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6168
5d6523eb 6169more_balance:
1e3c88bd 6170 local_irq_save(flags);
78feefc5 6171 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6172
6173 /*
6174 * cur_ld_moved - load moved in current iteration
6175 * ld_moved - cumulative load moved across iterations
6176 */
6177 cur_ld_moved = move_tasks(&env);
6178 ld_moved += cur_ld_moved;
78feefc5 6179 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6180 local_irq_restore(flags);
6181
6182 /*
6183 * some other cpu did the load balance for us.
6184 */
88b8dac0
SV
6185 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6186 resched_cpu(env.dst_cpu);
6187
f1cd0858
JK
6188 if (env.flags & LBF_NEED_BREAK) {
6189 env.flags &= ~LBF_NEED_BREAK;
6190 goto more_balance;
6191 }
6192
88b8dac0
SV
6193 /*
6194 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6195 * us and move them to an alternate dst_cpu in our sched_group
6196 * where they can run. The upper limit on how many times we
6197 * iterate on same src_cpu is dependent on number of cpus in our
6198 * sched_group.
6199 *
6200 * This changes load balance semantics a bit on who can move
6201 * load to a given_cpu. In addition to the given_cpu itself
6202 * (or a ilb_cpu acting on its behalf where given_cpu is
6203 * nohz-idle), we now have balance_cpu in a position to move
6204 * load to given_cpu. In rare situations, this may cause
6205 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6206 * _independently_ and at _same_ time to move some load to
6207 * given_cpu) causing exceess load to be moved to given_cpu.
6208 * This however should not happen so much in practice and
6209 * moreover subsequent load balance cycles should correct the
6210 * excess load moved.
6211 */
6263322c 6212 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6213
7aff2e3a
VD
6214 /* Prevent to re-select dst_cpu via env's cpus */
6215 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6216
78feefc5 6217 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6218 env.dst_cpu = env.new_dst_cpu;
6263322c 6219 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6220 env.loop = 0;
6221 env.loop_break = sched_nr_migrate_break;
e02e60c1 6222
88b8dac0
SV
6223 /*
6224 * Go back to "more_balance" rather than "redo" since we
6225 * need to continue with same src_cpu.
6226 */
6227 goto more_balance;
6228 }
1e3c88bd 6229
6263322c
PZ
6230 /*
6231 * We failed to reach balance because of affinity.
6232 */
6233 if (sd_parent) {
6234 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6235
6236 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6237 *group_imbalance = 1;
6238 } else if (*group_imbalance)
6239 *group_imbalance = 0;
6240 }
6241
1e3c88bd 6242 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6243 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6244 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6245 if (!cpumask_empty(cpus)) {
6246 env.loop = 0;
6247 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6248 goto redo;
bbf18b19 6249 }
1e3c88bd
PZ
6250 goto out_balanced;
6251 }
6252 }
6253
6254 if (!ld_moved) {
6255 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6256 /*
6257 * Increment the failure counter only on periodic balance.
6258 * We do not want newidle balance, which can be very
6259 * frequent, pollute the failure counter causing
6260 * excessive cache_hot migrations and active balances.
6261 */
6262 if (idle != CPU_NEWLY_IDLE)
6263 sd->nr_balance_failed++;
1e3c88bd 6264
bd939f45 6265 if (need_active_balance(&env)) {
1e3c88bd
PZ
6266 raw_spin_lock_irqsave(&busiest->lock, flags);
6267
969c7921
TH
6268 /* don't kick the active_load_balance_cpu_stop,
6269 * if the curr task on busiest cpu can't be
6270 * moved to this_cpu
1e3c88bd
PZ
6271 */
6272 if (!cpumask_test_cpu(this_cpu,
fa17b507 6273 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6274 raw_spin_unlock_irqrestore(&busiest->lock,
6275 flags);
8e45cb54 6276 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6277 goto out_one_pinned;
6278 }
6279
969c7921
TH
6280 /*
6281 * ->active_balance synchronizes accesses to
6282 * ->active_balance_work. Once set, it's cleared
6283 * only after active load balance is finished.
6284 */
1e3c88bd
PZ
6285 if (!busiest->active_balance) {
6286 busiest->active_balance = 1;
6287 busiest->push_cpu = this_cpu;
6288 active_balance = 1;
6289 }
6290 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6291
bd939f45 6292 if (active_balance) {
969c7921
TH
6293 stop_one_cpu_nowait(cpu_of(busiest),
6294 active_load_balance_cpu_stop, busiest,
6295 &busiest->active_balance_work);
bd939f45 6296 }
1e3c88bd
PZ
6297
6298 /*
6299 * We've kicked active balancing, reset the failure
6300 * counter.
6301 */
6302 sd->nr_balance_failed = sd->cache_nice_tries+1;
6303 }
6304 } else
6305 sd->nr_balance_failed = 0;
6306
6307 if (likely(!active_balance)) {
6308 /* We were unbalanced, so reset the balancing interval */
6309 sd->balance_interval = sd->min_interval;
6310 } else {
6311 /*
6312 * If we've begun active balancing, start to back off. This
6313 * case may not be covered by the all_pinned logic if there
6314 * is only 1 task on the busy runqueue (because we don't call
6315 * move_tasks).
6316 */
6317 if (sd->balance_interval < sd->max_interval)
6318 sd->balance_interval *= 2;
6319 }
6320
1e3c88bd
PZ
6321 goto out;
6322
6323out_balanced:
6324 schedstat_inc(sd, lb_balanced[idle]);
6325
6326 sd->nr_balance_failed = 0;
6327
6328out_one_pinned:
6329 /* tune up the balancing interval */
8e45cb54 6330 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6331 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6332 (sd->balance_interval < sd->max_interval))
6333 sd->balance_interval *= 2;
6334
46e49b38 6335 ld_moved = 0;
1e3c88bd 6336out:
1e3c88bd
PZ
6337 return ld_moved;
6338}
6339
1e3c88bd
PZ
6340/*
6341 * idle_balance is called by schedule() if this_cpu is about to become
6342 * idle. Attempts to pull tasks from other CPUs.
6343 */
029632fb 6344void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6345{
6346 struct sched_domain *sd;
6347 int pulled_task = 0;
6348 unsigned long next_balance = jiffies + HZ;
9bd721c5 6349 u64 curr_cost = 0;
1e3c88bd 6350
78becc27 6351 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6352
6353 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6354 return;
6355
f492e12e
PZ
6356 /*
6357 * Drop the rq->lock, but keep IRQ/preempt disabled.
6358 */
6359 raw_spin_unlock(&this_rq->lock);
6360
48a16753 6361 update_blocked_averages(this_cpu);
dce840a0 6362 rcu_read_lock();
1e3c88bd
PZ
6363 for_each_domain(this_cpu, sd) {
6364 unsigned long interval;
23f0d209 6365 int continue_balancing = 1;
9bd721c5 6366 u64 t0, domain_cost;
1e3c88bd
PZ
6367
6368 if (!(sd->flags & SD_LOAD_BALANCE))
6369 continue;
6370
9bd721c5
JL
6371 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6372 break;
6373
f492e12e 6374 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6375 t0 = sched_clock_cpu(this_cpu);
6376
1e3c88bd 6377 /* If we've pulled tasks over stop searching: */
f492e12e 6378 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6379 sd, CPU_NEWLY_IDLE,
6380 &continue_balancing);
9bd721c5
JL
6381
6382 domain_cost = sched_clock_cpu(this_cpu) - t0;
6383 if (domain_cost > sd->max_newidle_lb_cost)
6384 sd->max_newidle_lb_cost = domain_cost;
6385
6386 curr_cost += domain_cost;
f492e12e 6387 }
1e3c88bd
PZ
6388
6389 interval = msecs_to_jiffies(sd->balance_interval);
6390 if (time_after(next_balance, sd->last_balance + interval))
6391 next_balance = sd->last_balance + interval;
d5ad140b
NR
6392 if (pulled_task) {
6393 this_rq->idle_stamp = 0;
1e3c88bd 6394 break;
d5ad140b 6395 }
1e3c88bd 6396 }
dce840a0 6397 rcu_read_unlock();
f492e12e
PZ
6398
6399 raw_spin_lock(&this_rq->lock);
6400
1e3c88bd
PZ
6401 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6402 /*
6403 * We are going idle. next_balance may be set based on
6404 * a busy processor. So reset next_balance.
6405 */
6406 this_rq->next_balance = next_balance;
6407 }
9bd721c5
JL
6408
6409 if (curr_cost > this_rq->max_idle_balance_cost)
6410 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6411}
6412
6413/*
969c7921
TH
6414 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6415 * running tasks off the busiest CPU onto idle CPUs. It requires at
6416 * least 1 task to be running on each physical CPU where possible, and
6417 * avoids physical / logical imbalances.
1e3c88bd 6418 */
969c7921 6419static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6420{
969c7921
TH
6421 struct rq *busiest_rq = data;
6422 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6423 int target_cpu = busiest_rq->push_cpu;
969c7921 6424 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6425 struct sched_domain *sd;
969c7921
TH
6426
6427 raw_spin_lock_irq(&busiest_rq->lock);
6428
6429 /* make sure the requested cpu hasn't gone down in the meantime */
6430 if (unlikely(busiest_cpu != smp_processor_id() ||
6431 !busiest_rq->active_balance))
6432 goto out_unlock;
1e3c88bd
PZ
6433
6434 /* Is there any task to move? */
6435 if (busiest_rq->nr_running <= 1)
969c7921 6436 goto out_unlock;
1e3c88bd
PZ
6437
6438 /*
6439 * This condition is "impossible", if it occurs
6440 * we need to fix it. Originally reported by
6441 * Bjorn Helgaas on a 128-cpu setup.
6442 */
6443 BUG_ON(busiest_rq == target_rq);
6444
6445 /* move a task from busiest_rq to target_rq */
6446 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6447
6448 /* Search for an sd spanning us and the target CPU. */
dce840a0 6449 rcu_read_lock();
1e3c88bd
PZ
6450 for_each_domain(target_cpu, sd) {
6451 if ((sd->flags & SD_LOAD_BALANCE) &&
6452 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6453 break;
6454 }
6455
6456 if (likely(sd)) {
8e45cb54
PZ
6457 struct lb_env env = {
6458 .sd = sd,
ddcdf6e7
PZ
6459 .dst_cpu = target_cpu,
6460 .dst_rq = target_rq,
6461 .src_cpu = busiest_rq->cpu,
6462 .src_rq = busiest_rq,
8e45cb54
PZ
6463 .idle = CPU_IDLE,
6464 };
6465
1e3c88bd
PZ
6466 schedstat_inc(sd, alb_count);
6467
8e45cb54 6468 if (move_one_task(&env))
1e3c88bd
PZ
6469 schedstat_inc(sd, alb_pushed);
6470 else
6471 schedstat_inc(sd, alb_failed);
6472 }
dce840a0 6473 rcu_read_unlock();
1e3c88bd 6474 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6475out_unlock:
6476 busiest_rq->active_balance = 0;
6477 raw_spin_unlock_irq(&busiest_rq->lock);
6478 return 0;
1e3c88bd
PZ
6479}
6480
3451d024 6481#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6482/*
6483 * idle load balancing details
83cd4fe2
VP
6484 * - When one of the busy CPUs notice that there may be an idle rebalancing
6485 * needed, they will kick the idle load balancer, which then does idle
6486 * load balancing for all the idle CPUs.
6487 */
1e3c88bd 6488static struct {
83cd4fe2 6489 cpumask_var_t idle_cpus_mask;
0b005cf5 6490 atomic_t nr_cpus;
83cd4fe2
VP
6491 unsigned long next_balance; /* in jiffy units */
6492} nohz ____cacheline_aligned;
1e3c88bd 6493
8e7fbcbc 6494static inline int find_new_ilb(int call_cpu)
1e3c88bd 6495{
0b005cf5 6496 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6497
786d6dc7
SS
6498 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6499 return ilb;
6500
6501 return nr_cpu_ids;
1e3c88bd 6502}
1e3c88bd 6503
83cd4fe2
VP
6504/*
6505 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6506 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6507 * CPU (if there is one).
6508 */
6509static void nohz_balancer_kick(int cpu)
6510{
6511 int ilb_cpu;
6512
6513 nohz.next_balance++;
6514
0b005cf5 6515 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6516
0b005cf5
SS
6517 if (ilb_cpu >= nr_cpu_ids)
6518 return;
83cd4fe2 6519
cd490c5b 6520 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6521 return;
6522 /*
6523 * Use smp_send_reschedule() instead of resched_cpu().
6524 * This way we generate a sched IPI on the target cpu which
6525 * is idle. And the softirq performing nohz idle load balance
6526 * will be run before returning from the IPI.
6527 */
6528 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6529 return;
6530}
6531
c1cc017c 6532static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6533{
6534 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6535 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6536 atomic_dec(&nohz.nr_cpus);
6537 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6538 }
6539}
6540
69e1e811
SS
6541static inline void set_cpu_sd_state_busy(void)
6542{
6543 struct sched_domain *sd;
69e1e811 6544
69e1e811 6545 rcu_read_lock();
424c93fe 6546 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6547
6548 if (!sd || !sd->nohz_idle)
6549 goto unlock;
6550 sd->nohz_idle = 0;
6551
6552 for (; sd; sd = sd->parent)
69e1e811 6553 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6554unlock:
69e1e811
SS
6555 rcu_read_unlock();
6556}
6557
6558void set_cpu_sd_state_idle(void)
6559{
6560 struct sched_domain *sd;
69e1e811 6561
69e1e811 6562 rcu_read_lock();
424c93fe 6563 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6564
6565 if (!sd || sd->nohz_idle)
6566 goto unlock;
6567 sd->nohz_idle = 1;
6568
6569 for (; sd; sd = sd->parent)
69e1e811 6570 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6571unlock:
69e1e811
SS
6572 rcu_read_unlock();
6573}
6574
1e3c88bd 6575/*
c1cc017c 6576 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6577 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6578 */
c1cc017c 6579void nohz_balance_enter_idle(int cpu)
1e3c88bd 6580{
71325960
SS
6581 /*
6582 * If this cpu is going down, then nothing needs to be done.
6583 */
6584 if (!cpu_active(cpu))
6585 return;
6586
c1cc017c
AS
6587 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6588 return;
1e3c88bd 6589
c1cc017c
AS
6590 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6591 atomic_inc(&nohz.nr_cpus);
6592 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6593}
71325960 6594
0db0628d 6595static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6596 unsigned long action, void *hcpu)
6597{
6598 switch (action & ~CPU_TASKS_FROZEN) {
6599 case CPU_DYING:
c1cc017c 6600 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6601 return NOTIFY_OK;
6602 default:
6603 return NOTIFY_DONE;
6604 }
6605}
1e3c88bd
PZ
6606#endif
6607
6608static DEFINE_SPINLOCK(balancing);
6609
49c022e6
PZ
6610/*
6611 * Scale the max load_balance interval with the number of CPUs in the system.
6612 * This trades load-balance latency on larger machines for less cross talk.
6613 */
029632fb 6614void update_max_interval(void)
49c022e6
PZ
6615{
6616 max_load_balance_interval = HZ*num_online_cpus()/10;
6617}
6618
1e3c88bd
PZ
6619/*
6620 * It checks each scheduling domain to see if it is due to be balanced,
6621 * and initiates a balancing operation if so.
6622 *
b9b0853a 6623 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6624 */
6625static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6626{
23f0d209 6627 int continue_balancing = 1;
1e3c88bd
PZ
6628 struct rq *rq = cpu_rq(cpu);
6629 unsigned long interval;
04f733b4 6630 struct sched_domain *sd;
1e3c88bd
PZ
6631 /* Earliest time when we have to do rebalance again */
6632 unsigned long next_balance = jiffies + 60*HZ;
6633 int update_next_balance = 0;
f48627e6
JL
6634 int need_serialize, need_decay = 0;
6635 u64 max_cost = 0;
1e3c88bd 6636
48a16753 6637 update_blocked_averages(cpu);
2069dd75 6638
dce840a0 6639 rcu_read_lock();
1e3c88bd 6640 for_each_domain(cpu, sd) {
f48627e6
JL
6641 /*
6642 * Decay the newidle max times here because this is a regular
6643 * visit to all the domains. Decay ~1% per second.
6644 */
6645 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6646 sd->max_newidle_lb_cost =
6647 (sd->max_newidle_lb_cost * 253) / 256;
6648 sd->next_decay_max_lb_cost = jiffies + HZ;
6649 need_decay = 1;
6650 }
6651 max_cost += sd->max_newidle_lb_cost;
6652
1e3c88bd
PZ
6653 if (!(sd->flags & SD_LOAD_BALANCE))
6654 continue;
6655
f48627e6
JL
6656 /*
6657 * Stop the load balance at this level. There is another
6658 * CPU in our sched group which is doing load balancing more
6659 * actively.
6660 */
6661 if (!continue_balancing) {
6662 if (need_decay)
6663 continue;
6664 break;
6665 }
6666
1e3c88bd
PZ
6667 interval = sd->balance_interval;
6668 if (idle != CPU_IDLE)
6669 interval *= sd->busy_factor;
6670
6671 /* scale ms to jiffies */
6672 interval = msecs_to_jiffies(interval);
49c022e6 6673 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6674
6675 need_serialize = sd->flags & SD_SERIALIZE;
6676
6677 if (need_serialize) {
6678 if (!spin_trylock(&balancing))
6679 goto out;
6680 }
6681
6682 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6683 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6684 /*
6263322c 6685 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6686 * env->dst_cpu, so we can't know our idle
6687 * state even if we migrated tasks. Update it.
1e3c88bd 6688 */
de5eb2dd 6689 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6690 }
6691 sd->last_balance = jiffies;
6692 }
6693 if (need_serialize)
6694 spin_unlock(&balancing);
6695out:
6696 if (time_after(next_balance, sd->last_balance + interval)) {
6697 next_balance = sd->last_balance + interval;
6698 update_next_balance = 1;
6699 }
f48627e6
JL
6700 }
6701 if (need_decay) {
1e3c88bd 6702 /*
f48627e6
JL
6703 * Ensure the rq-wide value also decays but keep it at a
6704 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6705 */
f48627e6
JL
6706 rq->max_idle_balance_cost =
6707 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6708 }
dce840a0 6709 rcu_read_unlock();
1e3c88bd
PZ
6710
6711 /*
6712 * next_balance will be updated only when there is a need.
6713 * When the cpu is attached to null domain for ex, it will not be
6714 * updated.
6715 */
6716 if (likely(update_next_balance))
6717 rq->next_balance = next_balance;
6718}
6719
3451d024 6720#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6721/*
3451d024 6722 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6723 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6724 */
83cd4fe2
VP
6725static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6726{
6727 struct rq *this_rq = cpu_rq(this_cpu);
6728 struct rq *rq;
6729 int balance_cpu;
6730
1c792db7
SS
6731 if (idle != CPU_IDLE ||
6732 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6733 goto end;
83cd4fe2
VP
6734
6735 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6736 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6737 continue;
6738
6739 /*
6740 * If this cpu gets work to do, stop the load balancing
6741 * work being done for other cpus. Next load
6742 * balancing owner will pick it up.
6743 */
1c792db7 6744 if (need_resched())
83cd4fe2 6745 break;
83cd4fe2 6746
5ed4f1d9
VG
6747 rq = cpu_rq(balance_cpu);
6748
6749 raw_spin_lock_irq(&rq->lock);
6750 update_rq_clock(rq);
6751 update_idle_cpu_load(rq);
6752 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6753
6754 rebalance_domains(balance_cpu, CPU_IDLE);
6755
83cd4fe2
VP
6756 if (time_after(this_rq->next_balance, rq->next_balance))
6757 this_rq->next_balance = rq->next_balance;
6758 }
6759 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6760end:
6761 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6762}
6763
6764/*
0b005cf5
SS
6765 * Current heuristic for kicking the idle load balancer in the presence
6766 * of an idle cpu is the system.
6767 * - This rq has more than one task.
6768 * - At any scheduler domain level, this cpu's scheduler group has multiple
6769 * busy cpu's exceeding the group's power.
6770 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6771 * domain span are idle.
83cd4fe2
VP
6772 */
6773static inline int nohz_kick_needed(struct rq *rq, int cpu)
6774{
6775 unsigned long now = jiffies;
0b005cf5 6776 struct sched_domain *sd;
83cd4fe2 6777
1c792db7 6778 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6779 return 0;
6780
1c792db7
SS
6781 /*
6782 * We may be recently in ticked or tickless idle mode. At the first
6783 * busy tick after returning from idle, we will update the busy stats.
6784 */
69e1e811 6785 set_cpu_sd_state_busy();
c1cc017c 6786 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6787
6788 /*
6789 * None are in tickless mode and hence no need for NOHZ idle load
6790 * balancing.
6791 */
6792 if (likely(!atomic_read(&nohz.nr_cpus)))
6793 return 0;
1c792db7
SS
6794
6795 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6796 return 0;
6797
0b005cf5
SS
6798 if (rq->nr_running >= 2)
6799 goto need_kick;
83cd4fe2 6800
067491b7 6801 rcu_read_lock();
0b005cf5
SS
6802 for_each_domain(cpu, sd) {
6803 struct sched_group *sg = sd->groups;
6804 struct sched_group_power *sgp = sg->sgp;
6805 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 6806
0b005cf5 6807 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 6808 goto need_kick_unlock;
0b005cf5
SS
6809
6810 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6811 && (cpumask_first_and(nohz.idle_cpus_mask,
6812 sched_domain_span(sd)) < cpu))
067491b7 6813 goto need_kick_unlock;
0b005cf5
SS
6814
6815 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6816 break;
83cd4fe2 6817 }
067491b7 6818 rcu_read_unlock();
83cd4fe2 6819 return 0;
067491b7
PZ
6820
6821need_kick_unlock:
6822 rcu_read_unlock();
0b005cf5
SS
6823need_kick:
6824 return 1;
83cd4fe2
VP
6825}
6826#else
6827static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6828#endif
6829
6830/*
6831 * run_rebalance_domains is triggered when needed from the scheduler tick.
6832 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6833 */
1e3c88bd
PZ
6834static void run_rebalance_domains(struct softirq_action *h)
6835{
6836 int this_cpu = smp_processor_id();
6837 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6838 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6839 CPU_IDLE : CPU_NOT_IDLE;
6840
6841 rebalance_domains(this_cpu, idle);
6842
1e3c88bd 6843 /*
83cd4fe2 6844 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6845 * balancing on behalf of the other idle cpus whose ticks are
6846 * stopped.
6847 */
83cd4fe2 6848 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6849}
6850
6851static inline int on_null_domain(int cpu)
6852{
90a6501f 6853 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6854}
6855
6856/*
6857 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6858 */
029632fb 6859void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6860{
1e3c88bd
PZ
6861 /* Don't need to rebalance while attached to NULL domain */
6862 if (time_after_eq(jiffies, rq->next_balance) &&
6863 likely(!on_null_domain(cpu)))
6864 raise_softirq(SCHED_SOFTIRQ);
3451d024 6865#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6866 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6867 nohz_balancer_kick(cpu);
6868#endif
1e3c88bd
PZ
6869}
6870
0bcdcf28
CE
6871static void rq_online_fair(struct rq *rq)
6872{
6873 update_sysctl();
6874}
6875
6876static void rq_offline_fair(struct rq *rq)
6877{
6878 update_sysctl();
a4c96ae3
PB
6879
6880 /* Ensure any throttled groups are reachable by pick_next_task */
6881 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6882}
6883
55e12e5e 6884#endif /* CONFIG_SMP */
e1d1484f 6885
bf0f6f24
IM
6886/*
6887 * scheduler tick hitting a task of our scheduling class:
6888 */
8f4d37ec 6889static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6890{
6891 struct cfs_rq *cfs_rq;
6892 struct sched_entity *se = &curr->se;
6893
6894 for_each_sched_entity(se) {
6895 cfs_rq = cfs_rq_of(se);
8f4d37ec 6896 entity_tick(cfs_rq, se, queued);
bf0f6f24 6897 }
18bf2805 6898
10e84b97 6899 if (numabalancing_enabled)
cbee9f88 6900 task_tick_numa(rq, curr);
3d59eebc 6901
18bf2805 6902 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6903}
6904
6905/*
cd29fe6f
PZ
6906 * called on fork with the child task as argument from the parent's context
6907 * - child not yet on the tasklist
6908 * - preemption disabled
bf0f6f24 6909 */
cd29fe6f 6910static void task_fork_fair(struct task_struct *p)
bf0f6f24 6911{
4fc420c9
DN
6912 struct cfs_rq *cfs_rq;
6913 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6914 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6915 struct rq *rq = this_rq();
6916 unsigned long flags;
6917
05fa785c 6918 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6919
861d034e
PZ
6920 update_rq_clock(rq);
6921
4fc420c9
DN
6922 cfs_rq = task_cfs_rq(current);
6923 curr = cfs_rq->curr;
6924
6c9a27f5
DN
6925 /*
6926 * Not only the cpu but also the task_group of the parent might have
6927 * been changed after parent->se.parent,cfs_rq were copied to
6928 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6929 * of child point to valid ones.
6930 */
6931 rcu_read_lock();
6932 __set_task_cpu(p, this_cpu);
6933 rcu_read_unlock();
bf0f6f24 6934
7109c442 6935 update_curr(cfs_rq);
cd29fe6f 6936
b5d9d734
MG
6937 if (curr)
6938 se->vruntime = curr->vruntime;
aeb73b04 6939 place_entity(cfs_rq, se, 1);
4d78e7b6 6940
cd29fe6f 6941 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6942 /*
edcb60a3
IM
6943 * Upon rescheduling, sched_class::put_prev_task() will place
6944 * 'current' within the tree based on its new key value.
6945 */
4d78e7b6 6946 swap(curr->vruntime, se->vruntime);
aec0a514 6947 resched_task(rq->curr);
4d78e7b6 6948 }
bf0f6f24 6949
88ec22d3
PZ
6950 se->vruntime -= cfs_rq->min_vruntime;
6951
05fa785c 6952 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6953}
6954
cb469845
SR
6955/*
6956 * Priority of the task has changed. Check to see if we preempt
6957 * the current task.
6958 */
da7a735e
PZ
6959static void
6960prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6961{
da7a735e
PZ
6962 if (!p->se.on_rq)
6963 return;
6964
cb469845
SR
6965 /*
6966 * Reschedule if we are currently running on this runqueue and
6967 * our priority decreased, or if we are not currently running on
6968 * this runqueue and our priority is higher than the current's
6969 */
da7a735e 6970 if (rq->curr == p) {
cb469845
SR
6971 if (p->prio > oldprio)
6972 resched_task(rq->curr);
6973 } else
15afe09b 6974 check_preempt_curr(rq, p, 0);
cb469845
SR
6975}
6976
da7a735e
PZ
6977static void switched_from_fair(struct rq *rq, struct task_struct *p)
6978{
6979 struct sched_entity *se = &p->se;
6980 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6981
6982 /*
6983 * Ensure the task's vruntime is normalized, so that when its
6984 * switched back to the fair class the enqueue_entity(.flags=0) will
6985 * do the right thing.
6986 *
6987 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6988 * have normalized the vruntime, if it was !on_rq, then only when
6989 * the task is sleeping will it still have non-normalized vruntime.
6990 */
6991 if (!se->on_rq && p->state != TASK_RUNNING) {
6992 /*
6993 * Fix up our vruntime so that the current sleep doesn't
6994 * cause 'unlimited' sleep bonus.
6995 */
6996 place_entity(cfs_rq, se, 0);
6997 se->vruntime -= cfs_rq->min_vruntime;
6998 }
9ee474f5 6999
141965c7 7000#ifdef CONFIG_SMP
9ee474f5
PT
7001 /*
7002 * Remove our load from contribution when we leave sched_fair
7003 * and ensure we don't carry in an old decay_count if we
7004 * switch back.
7005 */
87e3c8ae
KT
7006 if (se->avg.decay_count) {
7007 __synchronize_entity_decay(se);
7008 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7009 }
7010#endif
da7a735e
PZ
7011}
7012
cb469845
SR
7013/*
7014 * We switched to the sched_fair class.
7015 */
da7a735e 7016static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7017{
da7a735e
PZ
7018 if (!p->se.on_rq)
7019 return;
7020
cb469845
SR
7021 /*
7022 * We were most likely switched from sched_rt, so
7023 * kick off the schedule if running, otherwise just see
7024 * if we can still preempt the current task.
7025 */
da7a735e 7026 if (rq->curr == p)
cb469845
SR
7027 resched_task(rq->curr);
7028 else
15afe09b 7029 check_preempt_curr(rq, p, 0);
cb469845
SR
7030}
7031
83b699ed
SV
7032/* Account for a task changing its policy or group.
7033 *
7034 * This routine is mostly called to set cfs_rq->curr field when a task
7035 * migrates between groups/classes.
7036 */
7037static void set_curr_task_fair(struct rq *rq)
7038{
7039 struct sched_entity *se = &rq->curr->se;
7040
ec12cb7f
PT
7041 for_each_sched_entity(se) {
7042 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7043
7044 set_next_entity(cfs_rq, se);
7045 /* ensure bandwidth has been allocated on our new cfs_rq */
7046 account_cfs_rq_runtime(cfs_rq, 0);
7047 }
83b699ed
SV
7048}
7049
029632fb
PZ
7050void init_cfs_rq(struct cfs_rq *cfs_rq)
7051{
7052 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7053 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7054#ifndef CONFIG_64BIT
7055 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7056#endif
141965c7 7057#ifdef CONFIG_SMP
9ee474f5 7058 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7059 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7060#endif
029632fb
PZ
7061}
7062
810b3817 7063#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7064static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7065{
aff3e498 7066 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7067 /*
7068 * If the task was not on the rq at the time of this cgroup movement
7069 * it must have been asleep, sleeping tasks keep their ->vruntime
7070 * absolute on their old rq until wakeup (needed for the fair sleeper
7071 * bonus in place_entity()).
7072 *
7073 * If it was on the rq, we've just 'preempted' it, which does convert
7074 * ->vruntime to a relative base.
7075 *
7076 * Make sure both cases convert their relative position when migrating
7077 * to another cgroup's rq. This does somewhat interfere with the
7078 * fair sleeper stuff for the first placement, but who cares.
7079 */
7ceff013
DN
7080 /*
7081 * When !on_rq, vruntime of the task has usually NOT been normalized.
7082 * But there are some cases where it has already been normalized:
7083 *
7084 * - Moving a forked child which is waiting for being woken up by
7085 * wake_up_new_task().
62af3783
DN
7086 * - Moving a task which has been woken up by try_to_wake_up() and
7087 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7088 *
7089 * To prevent boost or penalty in the new cfs_rq caused by delta
7090 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7091 */
62af3783 7092 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7093 on_rq = 1;
7094
b2b5ce02
PZ
7095 if (!on_rq)
7096 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7097 set_task_rq(p, task_cpu(p));
aff3e498
PT
7098 if (!on_rq) {
7099 cfs_rq = cfs_rq_of(&p->se);
7100 p->se.vruntime += cfs_rq->min_vruntime;
7101#ifdef CONFIG_SMP
7102 /*
7103 * migrate_task_rq_fair() will have removed our previous
7104 * contribution, but we must synchronize for ongoing future
7105 * decay.
7106 */
7107 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7108 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7109#endif
7110 }
810b3817 7111}
029632fb
PZ
7112
7113void free_fair_sched_group(struct task_group *tg)
7114{
7115 int i;
7116
7117 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7118
7119 for_each_possible_cpu(i) {
7120 if (tg->cfs_rq)
7121 kfree(tg->cfs_rq[i]);
7122 if (tg->se)
7123 kfree(tg->se[i]);
7124 }
7125
7126 kfree(tg->cfs_rq);
7127 kfree(tg->se);
7128}
7129
7130int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7131{
7132 struct cfs_rq *cfs_rq;
7133 struct sched_entity *se;
7134 int i;
7135
7136 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7137 if (!tg->cfs_rq)
7138 goto err;
7139 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7140 if (!tg->se)
7141 goto err;
7142
7143 tg->shares = NICE_0_LOAD;
7144
7145 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7146
7147 for_each_possible_cpu(i) {
7148 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7149 GFP_KERNEL, cpu_to_node(i));
7150 if (!cfs_rq)
7151 goto err;
7152
7153 se = kzalloc_node(sizeof(struct sched_entity),
7154 GFP_KERNEL, cpu_to_node(i));
7155 if (!se)
7156 goto err_free_rq;
7157
7158 init_cfs_rq(cfs_rq);
7159 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7160 }
7161
7162 return 1;
7163
7164err_free_rq:
7165 kfree(cfs_rq);
7166err:
7167 return 0;
7168}
7169
7170void unregister_fair_sched_group(struct task_group *tg, int cpu)
7171{
7172 struct rq *rq = cpu_rq(cpu);
7173 unsigned long flags;
7174
7175 /*
7176 * Only empty task groups can be destroyed; so we can speculatively
7177 * check on_list without danger of it being re-added.
7178 */
7179 if (!tg->cfs_rq[cpu]->on_list)
7180 return;
7181
7182 raw_spin_lock_irqsave(&rq->lock, flags);
7183 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7184 raw_spin_unlock_irqrestore(&rq->lock, flags);
7185}
7186
7187void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7188 struct sched_entity *se, int cpu,
7189 struct sched_entity *parent)
7190{
7191 struct rq *rq = cpu_rq(cpu);
7192
7193 cfs_rq->tg = tg;
7194 cfs_rq->rq = rq;
029632fb
PZ
7195 init_cfs_rq_runtime(cfs_rq);
7196
7197 tg->cfs_rq[cpu] = cfs_rq;
7198 tg->se[cpu] = se;
7199
7200 /* se could be NULL for root_task_group */
7201 if (!se)
7202 return;
7203
7204 if (!parent)
7205 se->cfs_rq = &rq->cfs;
7206 else
7207 se->cfs_rq = parent->my_q;
7208
7209 se->my_q = cfs_rq;
7210 update_load_set(&se->load, 0);
7211 se->parent = parent;
7212}
7213
7214static DEFINE_MUTEX(shares_mutex);
7215
7216int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7217{
7218 int i;
7219 unsigned long flags;
7220
7221 /*
7222 * We can't change the weight of the root cgroup.
7223 */
7224 if (!tg->se[0])
7225 return -EINVAL;
7226
7227 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7228
7229 mutex_lock(&shares_mutex);
7230 if (tg->shares == shares)
7231 goto done;
7232
7233 tg->shares = shares;
7234 for_each_possible_cpu(i) {
7235 struct rq *rq = cpu_rq(i);
7236 struct sched_entity *se;
7237
7238 se = tg->se[i];
7239 /* Propagate contribution to hierarchy */
7240 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7241
7242 /* Possible calls to update_curr() need rq clock */
7243 update_rq_clock(rq);
17bc14b7 7244 for_each_sched_entity(se)
029632fb
PZ
7245 update_cfs_shares(group_cfs_rq(se));
7246 raw_spin_unlock_irqrestore(&rq->lock, flags);
7247 }
7248
7249done:
7250 mutex_unlock(&shares_mutex);
7251 return 0;
7252}
7253#else /* CONFIG_FAIR_GROUP_SCHED */
7254
7255void free_fair_sched_group(struct task_group *tg) { }
7256
7257int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7258{
7259 return 1;
7260}
7261
7262void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7263
7264#endif /* CONFIG_FAIR_GROUP_SCHED */
7265
810b3817 7266
6d686f45 7267static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7268{
7269 struct sched_entity *se = &task->se;
0d721cea
PW
7270 unsigned int rr_interval = 0;
7271
7272 /*
7273 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7274 * idle runqueue:
7275 */
0d721cea 7276 if (rq->cfs.load.weight)
a59f4e07 7277 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7278
7279 return rr_interval;
7280}
7281
bf0f6f24
IM
7282/*
7283 * All the scheduling class methods:
7284 */
029632fb 7285const struct sched_class fair_sched_class = {
5522d5d5 7286 .next = &idle_sched_class,
bf0f6f24
IM
7287 .enqueue_task = enqueue_task_fair,
7288 .dequeue_task = dequeue_task_fair,
7289 .yield_task = yield_task_fair,
d95f4122 7290 .yield_to_task = yield_to_task_fair,
bf0f6f24 7291
2e09bf55 7292 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7293
7294 .pick_next_task = pick_next_task_fair,
7295 .put_prev_task = put_prev_task_fair,
7296
681f3e68 7297#ifdef CONFIG_SMP
4ce72a2c 7298 .select_task_rq = select_task_rq_fair,
0a74bef8 7299 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7300
0bcdcf28
CE
7301 .rq_online = rq_online_fair,
7302 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7303
7304 .task_waking = task_waking_fair,
681f3e68 7305#endif
bf0f6f24 7306
83b699ed 7307 .set_curr_task = set_curr_task_fair,
bf0f6f24 7308 .task_tick = task_tick_fair,
cd29fe6f 7309 .task_fork = task_fork_fair,
cb469845
SR
7310
7311 .prio_changed = prio_changed_fair,
da7a735e 7312 .switched_from = switched_from_fair,
cb469845 7313 .switched_to = switched_to_fair,
810b3817 7314
0d721cea
PW
7315 .get_rr_interval = get_rr_interval_fair,
7316
810b3817 7317#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7318 .task_move_group = task_move_group_fair,
810b3817 7319#endif
bf0f6f24
IM
7320};
7321
7322#ifdef CONFIG_SCHED_DEBUG
029632fb 7323void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7324{
bf0f6f24
IM
7325 struct cfs_rq *cfs_rq;
7326
5973e5b9 7327 rcu_read_lock();
c3b64f1e 7328 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7329 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7330 rcu_read_unlock();
bf0f6f24
IM
7331}
7332#endif
029632fb
PZ
7333
7334__init void init_sched_fair_class(void)
7335{
7336#ifdef CONFIG_SMP
7337 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7338
3451d024 7339#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7340 nohz.next_balance = jiffies;
029632fb 7341 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7342 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7343#endif
7344#endif /* SMP */
7345
7346}