sched: Fix hrtimer_cancel()/rq->lock deadlock
[linux-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9 683#ifdef CONFIG_SMP
fb13c7ee
MG
684static unsigned long task_h_load(struct task_struct *p);
685
a75cdaa9
AS
686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
bf0f6f24
IM
705/*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
8ebc91d9
IM
710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
bf0f6f24 712{
bbdba7c0 713 unsigned long delta_exec_weighted;
bf0f6f24 714
41acab88
LDM
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
717
718 curr->sum_exec_runtime += delta_exec;
7a62eabc 719 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 721
e9acbff6 722 curr->vruntime += delta_exec_weighted;
1af5f730 723 update_min_vruntime(cfs_rq);
bf0f6f24
IM
724}
725
b7cc0896 726static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 727{
429d43bc 728 struct sched_entity *curr = cfs_rq->curr;
78becc27 729 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
8ebc91d9 740 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
741 if (!delta_exec)
742 return;
bf0f6f24 743
8ebc91d9
IM
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
d842de87
SV
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
f977bb49 750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 751 cpuacct_charge(curtask, delta_exec);
f06febc9 752 account_group_exec_runtime(curtask, delta_exec);
d842de87 753 }
ec12cb7f
PT
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
756}
757
758static inline void
5870db5b 759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 760{
78becc27 761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
762}
763
bf0f6f24
IM
764/*
765 * Task is being enqueued - update stats:
766 */
d2417e5a 767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 768{
bf0f6f24
IM
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
429d43bc 773 if (se != cfs_rq->curr)
5870db5b 774 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
775}
776
bf0f6f24 777static void
9ef0a961 778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
41acab88 780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
78becc27 788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
789 }
790#endif
41acab88 791 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
792}
793
794static inline void
19b6a2e3 795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 796{
bf0f6f24
IM
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
429d43bc 801 if (se != cfs_rq->curr)
9ef0a961 802 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
79303e9e 809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
810{
811 /*
812 * We are starting a new run period:
813 */
78becc27 814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
815}
816
bf0f6f24
IM
817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
cbee9f88
PZ
821#ifdef CONFIG_NUMA_BALANCING
822/*
598f0ec0
MG
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
cbee9f88 826 */
598f0ec0
MG
827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
829
830/* Portion of address space to scan in MB */
831unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 832
4b96a29b
PZ
833/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834unsigned int sysctl_numa_balancing_scan_delay = 1000;
835
de1c9ce6
RR
836/*
837 * After skipping a page migration on a shared page, skip N more numa page
838 * migrations unconditionally. This reduces the number of NUMA migrations
839 * in shared memory workloads, and has the effect of pulling tasks towards
840 * where their memory lives, over pulling the memory towards the task.
841 */
842unsigned int sysctl_numa_balancing_migrate_deferred = 16;
843
598f0ec0
MG
844static unsigned int task_nr_scan_windows(struct task_struct *p)
845{
846 unsigned long rss = 0;
847 unsigned long nr_scan_pages;
848
849 /*
850 * Calculations based on RSS as non-present and empty pages are skipped
851 * by the PTE scanner and NUMA hinting faults should be trapped based
852 * on resident pages
853 */
854 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
855 rss = get_mm_rss(p->mm);
856 if (!rss)
857 rss = nr_scan_pages;
858
859 rss = round_up(rss, nr_scan_pages);
860 return rss / nr_scan_pages;
861}
862
863/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
864#define MAX_SCAN_WINDOW 2560
865
866static unsigned int task_scan_min(struct task_struct *p)
867{
868 unsigned int scan, floor;
869 unsigned int windows = 1;
870
871 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
872 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
873 floor = 1000 / windows;
874
875 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
876 return max_t(unsigned int, floor, scan);
877}
878
879static unsigned int task_scan_max(struct task_struct *p)
880{
881 unsigned int smin = task_scan_min(p);
882 unsigned int smax;
883
884 /* Watch for min being lower than max due to floor calculations */
885 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
886 return max(smin, smax);
887}
888
3a7053b3
MG
889/*
890 * Once a preferred node is selected the scheduler balancer will prefer moving
891 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
892 * scans. This will give the process the chance to accumulate more faults on
893 * the preferred node but still allow the scheduler to move the task again if
894 * the nodes CPUs are overloaded.
895 */
6fe6b2d6 896unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 897
0ec8aa00
PZ
898static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
899{
900 rq->nr_numa_running += (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
902}
903
904static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
905{
906 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
907 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
908}
909
8c8a743c
PZ
910struct numa_group {
911 atomic_t refcount;
912
913 spinlock_t lock; /* nr_tasks, tasks */
914 int nr_tasks;
e29cf08b 915 pid_t gid;
8c8a743c
PZ
916 struct list_head task_list;
917
918 struct rcu_head rcu;
989348b5
MG
919 unsigned long total_faults;
920 unsigned long faults[0];
8c8a743c
PZ
921};
922
e29cf08b
MG
923pid_t task_numa_group_id(struct task_struct *p)
924{
925 return p->numa_group ? p->numa_group->gid : 0;
926}
927
ac8e895b
MG
928static inline int task_faults_idx(int nid, int priv)
929{
930 return 2 * nid + priv;
931}
932
933static inline unsigned long task_faults(struct task_struct *p, int nid)
934{
935 if (!p->numa_faults)
936 return 0;
937
938 return p->numa_faults[task_faults_idx(nid, 0)] +
939 p->numa_faults[task_faults_idx(nid, 1)];
940}
941
83e1d2cd
MG
942static inline unsigned long group_faults(struct task_struct *p, int nid)
943{
944 if (!p->numa_group)
945 return 0;
946
989348b5 947 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
83e1d2cd
MG
948}
949
950/*
951 * These return the fraction of accesses done by a particular task, or
952 * task group, on a particular numa node. The group weight is given a
953 * larger multiplier, in order to group tasks together that are almost
954 * evenly spread out between numa nodes.
955 */
956static inline unsigned long task_weight(struct task_struct *p, int nid)
957{
958 unsigned long total_faults;
959
960 if (!p->numa_faults)
961 return 0;
962
963 total_faults = p->total_numa_faults;
964
965 if (!total_faults)
966 return 0;
967
968 return 1000 * task_faults(p, nid) / total_faults;
969}
970
971static inline unsigned long group_weight(struct task_struct *p, int nid)
972{
989348b5 973 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
974 return 0;
975
989348b5 976 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
977}
978
e6628d5b 979static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
980static unsigned long source_load(int cpu, int type);
981static unsigned long target_load(int cpu, int type);
982static unsigned long power_of(int cpu);
983static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
984
fb13c7ee 985/* Cached statistics for all CPUs within a node */
58d081b5 986struct numa_stats {
fb13c7ee 987 unsigned long nr_running;
58d081b5 988 unsigned long load;
fb13c7ee
MG
989
990 /* Total compute capacity of CPUs on a node */
991 unsigned long power;
992
993 /* Approximate capacity in terms of runnable tasks on a node */
994 unsigned long capacity;
995 int has_capacity;
58d081b5 996};
e6628d5b 997
fb13c7ee
MG
998/*
999 * XXX borrowed from update_sg_lb_stats
1000 */
1001static void update_numa_stats(struct numa_stats *ns, int nid)
1002{
1003 int cpu;
1004
1005 memset(ns, 0, sizeof(*ns));
1006 for_each_cpu(cpu, cpumask_of_node(nid)) {
1007 struct rq *rq = cpu_rq(cpu);
1008
1009 ns->nr_running += rq->nr_running;
1010 ns->load += weighted_cpuload(cpu);
1011 ns->power += power_of(cpu);
1012 }
1013
1014 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1015 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1016 ns->has_capacity = (ns->nr_running < ns->capacity);
1017}
1018
58d081b5
MG
1019struct task_numa_env {
1020 struct task_struct *p;
e6628d5b 1021
58d081b5
MG
1022 int src_cpu, src_nid;
1023 int dst_cpu, dst_nid;
e6628d5b 1024
58d081b5 1025 struct numa_stats src_stats, dst_stats;
e6628d5b 1026
fb13c7ee
MG
1027 int imbalance_pct, idx;
1028
1029 struct task_struct *best_task;
1030 long best_imp;
58d081b5
MG
1031 int best_cpu;
1032};
1033
fb13c7ee
MG
1034static void task_numa_assign(struct task_numa_env *env,
1035 struct task_struct *p, long imp)
1036{
1037 if (env->best_task)
1038 put_task_struct(env->best_task);
1039 if (p)
1040 get_task_struct(p);
1041
1042 env->best_task = p;
1043 env->best_imp = imp;
1044 env->best_cpu = env->dst_cpu;
1045}
1046
1047/*
1048 * This checks if the overall compute and NUMA accesses of the system would
1049 * be improved if the source tasks was migrated to the target dst_cpu taking
1050 * into account that it might be best if task running on the dst_cpu should
1051 * be exchanged with the source task
1052 */
887c290e
RR
1053static void task_numa_compare(struct task_numa_env *env,
1054 long taskimp, long groupimp)
fb13c7ee
MG
1055{
1056 struct rq *src_rq = cpu_rq(env->src_cpu);
1057 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1058 struct task_struct *cur;
1059 long dst_load, src_load;
1060 long load;
887c290e 1061 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1062
1063 rcu_read_lock();
1064 cur = ACCESS_ONCE(dst_rq->curr);
1065 if (cur->pid == 0) /* idle */
1066 cur = NULL;
1067
1068 /*
1069 * "imp" is the fault differential for the source task between the
1070 * source and destination node. Calculate the total differential for
1071 * the source task and potential destination task. The more negative
1072 * the value is, the more rmeote accesses that would be expected to
1073 * be incurred if the tasks were swapped.
1074 */
1075 if (cur) {
1076 /* Skip this swap candidate if cannot move to the source cpu */
1077 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1078 goto unlock;
1079
887c290e
RR
1080 /*
1081 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1082 * in any group then look only at task weights.
887c290e 1083 */
ca28aa53 1084 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1085 imp = taskimp + task_weight(cur, env->src_nid) -
1086 task_weight(cur, env->dst_nid);
ca28aa53
RR
1087 /*
1088 * Add some hysteresis to prevent swapping the
1089 * tasks within a group over tiny differences.
1090 */
1091 if (cur->numa_group)
1092 imp -= imp/16;
887c290e 1093 } else {
ca28aa53
RR
1094 /*
1095 * Compare the group weights. If a task is all by
1096 * itself (not part of a group), use the task weight
1097 * instead.
1098 */
1099 if (env->p->numa_group)
1100 imp = groupimp;
1101 else
1102 imp = taskimp;
1103
1104 if (cur->numa_group)
1105 imp += group_weight(cur, env->src_nid) -
1106 group_weight(cur, env->dst_nid);
1107 else
1108 imp += task_weight(cur, env->src_nid) -
1109 task_weight(cur, env->dst_nid);
887c290e 1110 }
fb13c7ee
MG
1111 }
1112
1113 if (imp < env->best_imp)
1114 goto unlock;
1115
1116 if (!cur) {
1117 /* Is there capacity at our destination? */
1118 if (env->src_stats.has_capacity &&
1119 !env->dst_stats.has_capacity)
1120 goto unlock;
1121
1122 goto balance;
1123 }
1124
1125 /* Balance doesn't matter much if we're running a task per cpu */
1126 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1127 goto assign;
1128
1129 /*
1130 * In the overloaded case, try and keep the load balanced.
1131 */
1132balance:
1133 dst_load = env->dst_stats.load;
1134 src_load = env->src_stats.load;
1135
1136 /* XXX missing power terms */
1137 load = task_h_load(env->p);
1138 dst_load += load;
1139 src_load -= load;
1140
1141 if (cur) {
1142 load = task_h_load(cur);
1143 dst_load -= load;
1144 src_load += load;
1145 }
1146
1147 /* make src_load the smaller */
1148 if (dst_load < src_load)
1149 swap(dst_load, src_load);
1150
1151 if (src_load * env->imbalance_pct < dst_load * 100)
1152 goto unlock;
1153
1154assign:
1155 task_numa_assign(env, cur, imp);
1156unlock:
1157 rcu_read_unlock();
1158}
1159
887c290e
RR
1160static void task_numa_find_cpu(struct task_numa_env *env,
1161 long taskimp, long groupimp)
2c8a50aa
MG
1162{
1163 int cpu;
1164
1165 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1166 /* Skip this CPU if the source task cannot migrate */
1167 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1168 continue;
1169
1170 env->dst_cpu = cpu;
887c290e 1171 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1172 }
1173}
1174
58d081b5
MG
1175static int task_numa_migrate(struct task_struct *p)
1176{
58d081b5
MG
1177 struct task_numa_env env = {
1178 .p = p,
fb13c7ee 1179
58d081b5 1180 .src_cpu = task_cpu(p),
b32e86b4 1181 .src_nid = task_node(p),
fb13c7ee
MG
1182
1183 .imbalance_pct = 112,
1184
1185 .best_task = NULL,
1186 .best_imp = 0,
1187 .best_cpu = -1
58d081b5
MG
1188 };
1189 struct sched_domain *sd;
887c290e 1190 unsigned long taskweight, groupweight;
2c8a50aa 1191 int nid, ret;
887c290e 1192 long taskimp, groupimp;
e6628d5b 1193
58d081b5 1194 /*
fb13c7ee
MG
1195 * Pick the lowest SD_NUMA domain, as that would have the smallest
1196 * imbalance and would be the first to start moving tasks about.
1197 *
1198 * And we want to avoid any moving of tasks about, as that would create
1199 * random movement of tasks -- counter the numa conditions we're trying
1200 * to satisfy here.
58d081b5
MG
1201 */
1202 rcu_read_lock();
fb13c7ee
MG
1203 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1204 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1205 rcu_read_unlock();
1206
887c290e
RR
1207 taskweight = task_weight(p, env.src_nid);
1208 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1209 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1210 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1211 taskimp = task_weight(p, env.dst_nid) - taskweight;
1212 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1213 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1214
e1dda8a7
RR
1215 /* If the preferred nid has capacity, try to use it. */
1216 if (env.dst_stats.has_capacity)
887c290e 1217 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1218
1219 /* No space available on the preferred nid. Look elsewhere. */
1220 if (env.best_cpu == -1) {
2c8a50aa
MG
1221 for_each_online_node(nid) {
1222 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1223 continue;
58d081b5 1224
83e1d2cd 1225 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1226 taskimp = task_weight(p, nid) - taskweight;
1227 groupimp = group_weight(p, nid) - groupweight;
1228 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1229 continue;
1230
2c8a50aa
MG
1231 env.dst_nid = nid;
1232 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1233 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1234 }
1235 }
1236
fb13c7ee
MG
1237 /* No better CPU than the current one was found. */
1238 if (env.best_cpu == -1)
1239 return -EAGAIN;
1240
0ec8aa00
PZ
1241 sched_setnuma(p, env.dst_nid);
1242
04bb2f94
RR
1243 /*
1244 * Reset the scan period if the task is being rescheduled on an
1245 * alternative node to recheck if the tasks is now properly placed.
1246 */
1247 p->numa_scan_period = task_scan_min(p);
1248
fb13c7ee
MG
1249 if (env.best_task == NULL) {
1250 int ret = migrate_task_to(p, env.best_cpu);
1251 return ret;
1252 }
1253
1254 ret = migrate_swap(p, env.best_task);
1255 put_task_struct(env.best_task);
1256 return ret;
e6628d5b
MG
1257}
1258
6b9a7460
MG
1259/* Attempt to migrate a task to a CPU on the preferred node. */
1260static void numa_migrate_preferred(struct task_struct *p)
1261{
2739d3ee
RR
1262 /* This task has no NUMA fault statistics yet */
1263 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1264 return;
1265
2739d3ee
RR
1266 /* Periodically retry migrating the task to the preferred node */
1267 p->numa_migrate_retry = jiffies + HZ;
1268
1269 /* Success if task is already running on preferred CPU */
1270 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
6b9a7460
MG
1271 return;
1272
1273 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1274 task_numa_migrate(p);
6b9a7460
MG
1275}
1276
04bb2f94
RR
1277/*
1278 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1279 * increments. The more local the fault statistics are, the higher the scan
1280 * period will be for the next scan window. If local/remote ratio is below
1281 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1282 * scan period will decrease
1283 */
1284#define NUMA_PERIOD_SLOTS 10
1285#define NUMA_PERIOD_THRESHOLD 3
1286
1287/*
1288 * Increase the scan period (slow down scanning) if the majority of
1289 * our memory is already on our local node, or if the majority of
1290 * the page accesses are shared with other processes.
1291 * Otherwise, decrease the scan period.
1292 */
1293static void update_task_scan_period(struct task_struct *p,
1294 unsigned long shared, unsigned long private)
1295{
1296 unsigned int period_slot;
1297 int ratio;
1298 int diff;
1299
1300 unsigned long remote = p->numa_faults_locality[0];
1301 unsigned long local = p->numa_faults_locality[1];
1302
1303 /*
1304 * If there were no record hinting faults then either the task is
1305 * completely idle or all activity is areas that are not of interest
1306 * to automatic numa balancing. Scan slower
1307 */
1308 if (local + shared == 0) {
1309 p->numa_scan_period = min(p->numa_scan_period_max,
1310 p->numa_scan_period << 1);
1311
1312 p->mm->numa_next_scan = jiffies +
1313 msecs_to_jiffies(p->numa_scan_period);
1314
1315 return;
1316 }
1317
1318 /*
1319 * Prepare to scale scan period relative to the current period.
1320 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1321 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1322 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1323 */
1324 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1325 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1326 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1327 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1328 if (!slot)
1329 slot = 1;
1330 diff = slot * period_slot;
1331 } else {
1332 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1333
1334 /*
1335 * Scale scan rate increases based on sharing. There is an
1336 * inverse relationship between the degree of sharing and
1337 * the adjustment made to the scanning period. Broadly
1338 * speaking the intent is that there is little point
1339 * scanning faster if shared accesses dominate as it may
1340 * simply bounce migrations uselessly
1341 */
1342 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1343 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1344 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1345 }
1346
1347 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1348 task_scan_min(p), task_scan_max(p));
1349 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1350}
1351
cbee9f88
PZ
1352static void task_numa_placement(struct task_struct *p)
1353{
83e1d2cd
MG
1354 int seq, nid, max_nid = -1, max_group_nid = -1;
1355 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1356 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1357 spinlock_t *group_lock = NULL;
cbee9f88 1358
2832bc19 1359 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1360 if (p->numa_scan_seq == seq)
1361 return;
1362 p->numa_scan_seq = seq;
598f0ec0 1363 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1364
7dbd13ed
MG
1365 /* If the task is part of a group prevent parallel updates to group stats */
1366 if (p->numa_group) {
1367 group_lock = &p->numa_group->lock;
1368 spin_lock(group_lock);
1369 }
1370
688b7585
MG
1371 /* Find the node with the highest number of faults */
1372 for_each_online_node(nid) {
83e1d2cd 1373 unsigned long faults = 0, group_faults = 0;
ac8e895b 1374 int priv, i;
745d6147 1375
ac8e895b 1376 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1377 long diff;
1378
ac8e895b 1379 i = task_faults_idx(nid, priv);
8c8a743c 1380 diff = -p->numa_faults[i];
745d6147 1381
ac8e895b
MG
1382 /* Decay existing window, copy faults since last scan */
1383 p->numa_faults[i] >>= 1;
1384 p->numa_faults[i] += p->numa_faults_buffer[i];
04bb2f94 1385 fault_types[priv] += p->numa_faults_buffer[i];
ac8e895b 1386 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1387
1388 faults += p->numa_faults[i];
8c8a743c 1389 diff += p->numa_faults[i];
83e1d2cd 1390 p->total_numa_faults += diff;
8c8a743c
PZ
1391 if (p->numa_group) {
1392 /* safe because we can only change our own group */
989348b5
MG
1393 p->numa_group->faults[i] += diff;
1394 p->numa_group->total_faults += diff;
1395 group_faults += p->numa_group->faults[i];
8c8a743c 1396 }
ac8e895b
MG
1397 }
1398
688b7585
MG
1399 if (faults > max_faults) {
1400 max_faults = faults;
1401 max_nid = nid;
1402 }
83e1d2cd
MG
1403
1404 if (group_faults > max_group_faults) {
1405 max_group_faults = group_faults;
1406 max_group_nid = nid;
1407 }
1408 }
1409
04bb2f94
RR
1410 update_task_scan_period(p, fault_types[0], fault_types[1]);
1411
7dbd13ed
MG
1412 if (p->numa_group) {
1413 /*
1414 * If the preferred task and group nids are different,
1415 * iterate over the nodes again to find the best place.
1416 */
1417 if (max_nid != max_group_nid) {
1418 unsigned long weight, max_weight = 0;
1419
1420 for_each_online_node(nid) {
1421 weight = task_weight(p, nid) + group_weight(p, nid);
1422 if (weight > max_weight) {
1423 max_weight = weight;
1424 max_nid = nid;
1425 }
83e1d2cd
MG
1426 }
1427 }
7dbd13ed
MG
1428
1429 spin_unlock(group_lock);
688b7585
MG
1430 }
1431
6b9a7460 1432 /* Preferred node as the node with the most faults */
3a7053b3 1433 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1434 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1435 sched_setnuma(p, max_nid);
6b9a7460 1436 numa_migrate_preferred(p);
3a7053b3 1437 }
cbee9f88
PZ
1438}
1439
8c8a743c
PZ
1440static inline int get_numa_group(struct numa_group *grp)
1441{
1442 return atomic_inc_not_zero(&grp->refcount);
1443}
1444
1445static inline void put_numa_group(struct numa_group *grp)
1446{
1447 if (atomic_dec_and_test(&grp->refcount))
1448 kfree_rcu(grp, rcu);
1449}
1450
3e6a9418
MG
1451static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1452 int *priv)
8c8a743c
PZ
1453{
1454 struct numa_group *grp, *my_grp;
1455 struct task_struct *tsk;
1456 bool join = false;
1457 int cpu = cpupid_to_cpu(cpupid);
1458 int i;
1459
1460 if (unlikely(!p->numa_group)) {
1461 unsigned int size = sizeof(struct numa_group) +
989348b5 1462 2*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1463
1464 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1465 if (!grp)
1466 return;
1467
1468 atomic_set(&grp->refcount, 1);
1469 spin_lock_init(&grp->lock);
1470 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1471 grp->gid = p->pid;
8c8a743c
PZ
1472
1473 for (i = 0; i < 2*nr_node_ids; i++)
989348b5 1474 grp->faults[i] = p->numa_faults[i];
8c8a743c 1475
989348b5 1476 grp->total_faults = p->total_numa_faults;
83e1d2cd 1477
8c8a743c
PZ
1478 list_add(&p->numa_entry, &grp->task_list);
1479 grp->nr_tasks++;
1480 rcu_assign_pointer(p->numa_group, grp);
1481 }
1482
1483 rcu_read_lock();
1484 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1485
1486 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1487 goto no_join;
8c8a743c
PZ
1488
1489 grp = rcu_dereference(tsk->numa_group);
1490 if (!grp)
3354781a 1491 goto no_join;
8c8a743c
PZ
1492
1493 my_grp = p->numa_group;
1494 if (grp == my_grp)
3354781a 1495 goto no_join;
8c8a743c
PZ
1496
1497 /*
1498 * Only join the other group if its bigger; if we're the bigger group,
1499 * the other task will join us.
1500 */
1501 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1502 goto no_join;
8c8a743c
PZ
1503
1504 /*
1505 * Tie-break on the grp address.
1506 */
1507 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1508 goto no_join;
8c8a743c 1509
dabe1d99
RR
1510 /* Always join threads in the same process. */
1511 if (tsk->mm == current->mm)
1512 join = true;
1513
1514 /* Simple filter to avoid false positives due to PID collisions */
1515 if (flags & TNF_SHARED)
1516 join = true;
8c8a743c 1517
3e6a9418
MG
1518 /* Update priv based on whether false sharing was detected */
1519 *priv = !join;
1520
dabe1d99 1521 if (join && !get_numa_group(grp))
3354781a 1522 goto no_join;
8c8a743c 1523
8c8a743c
PZ
1524 rcu_read_unlock();
1525
1526 if (!join)
1527 return;
1528
989348b5
MG
1529 double_lock(&my_grp->lock, &grp->lock);
1530
8c8a743c 1531 for (i = 0; i < 2*nr_node_ids; i++) {
989348b5
MG
1532 my_grp->faults[i] -= p->numa_faults[i];
1533 grp->faults[i] += p->numa_faults[i];
8c8a743c 1534 }
989348b5
MG
1535 my_grp->total_faults -= p->total_numa_faults;
1536 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1537
1538 list_move(&p->numa_entry, &grp->task_list);
1539 my_grp->nr_tasks--;
1540 grp->nr_tasks++;
1541
1542 spin_unlock(&my_grp->lock);
1543 spin_unlock(&grp->lock);
1544
1545 rcu_assign_pointer(p->numa_group, grp);
1546
1547 put_numa_group(my_grp);
3354781a
PZ
1548 return;
1549
1550no_join:
1551 rcu_read_unlock();
1552 return;
8c8a743c
PZ
1553}
1554
1555void task_numa_free(struct task_struct *p)
1556{
1557 struct numa_group *grp = p->numa_group;
1558 int i;
82727018 1559 void *numa_faults = p->numa_faults;
8c8a743c
PZ
1560
1561 if (grp) {
989348b5 1562 spin_lock(&grp->lock);
8c8a743c 1563 for (i = 0; i < 2*nr_node_ids; i++)
989348b5
MG
1564 grp->faults[i] -= p->numa_faults[i];
1565 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1566
8c8a743c
PZ
1567 list_del(&p->numa_entry);
1568 grp->nr_tasks--;
1569 spin_unlock(&grp->lock);
1570 rcu_assign_pointer(p->numa_group, NULL);
1571 put_numa_group(grp);
1572 }
1573
82727018
RR
1574 p->numa_faults = NULL;
1575 p->numa_faults_buffer = NULL;
1576 kfree(numa_faults);
8c8a743c
PZ
1577}
1578
cbee9f88
PZ
1579/*
1580 * Got a PROT_NONE fault for a page on @node.
1581 */
6688cc05 1582void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1583{
1584 struct task_struct *p = current;
6688cc05 1585 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1586 int priv;
cbee9f88 1587
10e84b97 1588 if (!numabalancing_enabled)
1a687c2e
MG
1589 return;
1590
9ff1d9ff
MG
1591 /* for example, ksmd faulting in a user's mm */
1592 if (!p->mm)
1593 return;
1594
82727018
RR
1595 /* Do not worry about placement if exiting */
1596 if (p->state == TASK_DEAD)
1597 return;
1598
f809ca9a
MG
1599 /* Allocate buffer to track faults on a per-node basis */
1600 if (unlikely(!p->numa_faults)) {
ac8e895b 1601 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1602
745d6147
MG
1603 /* numa_faults and numa_faults_buffer share the allocation */
1604 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1605 if (!p->numa_faults)
1606 return;
745d6147
MG
1607
1608 BUG_ON(p->numa_faults_buffer);
ac8e895b 1609 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
83e1d2cd 1610 p->total_numa_faults = 0;
04bb2f94 1611 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1612 }
cbee9f88 1613
8c8a743c
PZ
1614 /*
1615 * First accesses are treated as private, otherwise consider accesses
1616 * to be private if the accessing pid has not changed
1617 */
1618 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1619 priv = 1;
1620 } else {
1621 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1622 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1623 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1624 }
1625
cbee9f88 1626 task_numa_placement(p);
f809ca9a 1627
2739d3ee
RR
1628 /*
1629 * Retry task to preferred node migration periodically, in case it
1630 * case it previously failed, or the scheduler moved us.
1631 */
1632 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1633 numa_migrate_preferred(p);
1634
b32e86b4
IM
1635 if (migrated)
1636 p->numa_pages_migrated += pages;
1637
ac8e895b 1638 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
04bb2f94 1639 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1640}
1641
6e5fb223
PZ
1642static void reset_ptenuma_scan(struct task_struct *p)
1643{
1644 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1645 p->mm->numa_scan_offset = 0;
1646}
1647
cbee9f88
PZ
1648/*
1649 * The expensive part of numa migration is done from task_work context.
1650 * Triggered from task_tick_numa().
1651 */
1652void task_numa_work(struct callback_head *work)
1653{
1654 unsigned long migrate, next_scan, now = jiffies;
1655 struct task_struct *p = current;
1656 struct mm_struct *mm = p->mm;
6e5fb223 1657 struct vm_area_struct *vma;
9f40604c 1658 unsigned long start, end;
598f0ec0 1659 unsigned long nr_pte_updates = 0;
9f40604c 1660 long pages;
cbee9f88
PZ
1661
1662 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1663
1664 work->next = work; /* protect against double add */
1665 /*
1666 * Who cares about NUMA placement when they're dying.
1667 *
1668 * NOTE: make sure not to dereference p->mm before this check,
1669 * exit_task_work() happens _after_ exit_mm() so we could be called
1670 * without p->mm even though we still had it when we enqueued this
1671 * work.
1672 */
1673 if (p->flags & PF_EXITING)
1674 return;
1675
930aa174 1676 if (!mm->numa_next_scan) {
7e8d16b6
MG
1677 mm->numa_next_scan = now +
1678 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1679 }
1680
cbee9f88
PZ
1681 /*
1682 * Enforce maximal scan/migration frequency..
1683 */
1684 migrate = mm->numa_next_scan;
1685 if (time_before(now, migrate))
1686 return;
1687
598f0ec0
MG
1688 if (p->numa_scan_period == 0) {
1689 p->numa_scan_period_max = task_scan_max(p);
1690 p->numa_scan_period = task_scan_min(p);
1691 }
cbee9f88 1692
fb003b80 1693 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1694 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1695 return;
1696
19a78d11
PZ
1697 /*
1698 * Delay this task enough that another task of this mm will likely win
1699 * the next time around.
1700 */
1701 p->node_stamp += 2 * TICK_NSEC;
1702
9f40604c
MG
1703 start = mm->numa_scan_offset;
1704 pages = sysctl_numa_balancing_scan_size;
1705 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1706 if (!pages)
1707 return;
cbee9f88 1708
6e5fb223 1709 down_read(&mm->mmap_sem);
9f40604c 1710 vma = find_vma(mm, start);
6e5fb223
PZ
1711 if (!vma) {
1712 reset_ptenuma_scan(p);
9f40604c 1713 start = 0;
6e5fb223
PZ
1714 vma = mm->mmap;
1715 }
9f40604c 1716 for (; vma; vma = vma->vm_next) {
fc314724 1717 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1718 continue;
1719
4591ce4f
MG
1720 /*
1721 * Shared library pages mapped by multiple processes are not
1722 * migrated as it is expected they are cache replicated. Avoid
1723 * hinting faults in read-only file-backed mappings or the vdso
1724 * as migrating the pages will be of marginal benefit.
1725 */
1726 if (!vma->vm_mm ||
1727 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1728 continue;
1729
9f40604c
MG
1730 do {
1731 start = max(start, vma->vm_start);
1732 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1733 end = min(end, vma->vm_end);
598f0ec0
MG
1734 nr_pte_updates += change_prot_numa(vma, start, end);
1735
1736 /*
1737 * Scan sysctl_numa_balancing_scan_size but ensure that
1738 * at least one PTE is updated so that unused virtual
1739 * address space is quickly skipped.
1740 */
1741 if (nr_pte_updates)
1742 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1743
9f40604c
MG
1744 start = end;
1745 if (pages <= 0)
1746 goto out;
1747 } while (end != vma->vm_end);
cbee9f88 1748 }
6e5fb223 1749
9f40604c 1750out:
6e5fb223 1751 /*
c69307d5
PZ
1752 * It is possible to reach the end of the VMA list but the last few
1753 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1754 * would find the !migratable VMA on the next scan but not reset the
1755 * scanner to the start so check it now.
6e5fb223
PZ
1756 */
1757 if (vma)
9f40604c 1758 mm->numa_scan_offset = start;
6e5fb223
PZ
1759 else
1760 reset_ptenuma_scan(p);
1761 up_read(&mm->mmap_sem);
cbee9f88
PZ
1762}
1763
1764/*
1765 * Drive the periodic memory faults..
1766 */
1767void task_tick_numa(struct rq *rq, struct task_struct *curr)
1768{
1769 struct callback_head *work = &curr->numa_work;
1770 u64 period, now;
1771
1772 /*
1773 * We don't care about NUMA placement if we don't have memory.
1774 */
1775 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1776 return;
1777
1778 /*
1779 * Using runtime rather than walltime has the dual advantage that
1780 * we (mostly) drive the selection from busy threads and that the
1781 * task needs to have done some actual work before we bother with
1782 * NUMA placement.
1783 */
1784 now = curr->se.sum_exec_runtime;
1785 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1786
1787 if (now - curr->node_stamp > period) {
4b96a29b 1788 if (!curr->node_stamp)
598f0ec0 1789 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1790 curr->node_stamp += period;
cbee9f88
PZ
1791
1792 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1793 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1794 task_work_add(curr, work, true);
1795 }
1796 }
1797}
1798#else
1799static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1800{
1801}
0ec8aa00
PZ
1802
1803static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1804{
1805}
1806
1807static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1808{
1809}
cbee9f88
PZ
1810#endif /* CONFIG_NUMA_BALANCING */
1811
30cfdcfc
DA
1812static void
1813account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1814{
1815 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1816 if (!parent_entity(se))
029632fb 1817 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1818#ifdef CONFIG_SMP
0ec8aa00
PZ
1819 if (entity_is_task(se)) {
1820 struct rq *rq = rq_of(cfs_rq);
1821
1822 account_numa_enqueue(rq, task_of(se));
1823 list_add(&se->group_node, &rq->cfs_tasks);
1824 }
367456c7 1825#endif
30cfdcfc 1826 cfs_rq->nr_running++;
30cfdcfc
DA
1827}
1828
1829static void
1830account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1831{
1832 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1833 if (!parent_entity(se))
029632fb 1834 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1835 if (entity_is_task(se)) {
1836 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1837 list_del_init(&se->group_node);
0ec8aa00 1838 }
30cfdcfc 1839 cfs_rq->nr_running--;
30cfdcfc
DA
1840}
1841
3ff6dcac
YZ
1842#ifdef CONFIG_FAIR_GROUP_SCHED
1843# ifdef CONFIG_SMP
cf5f0acf
PZ
1844static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1845{
1846 long tg_weight;
1847
1848 /*
1849 * Use this CPU's actual weight instead of the last load_contribution
1850 * to gain a more accurate current total weight. See
1851 * update_cfs_rq_load_contribution().
1852 */
bf5b986e 1853 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1854 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1855 tg_weight += cfs_rq->load.weight;
1856
1857 return tg_weight;
1858}
1859
6d5ab293 1860static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1861{
cf5f0acf 1862 long tg_weight, load, shares;
3ff6dcac 1863
cf5f0acf 1864 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1865 load = cfs_rq->load.weight;
3ff6dcac 1866
3ff6dcac 1867 shares = (tg->shares * load);
cf5f0acf
PZ
1868 if (tg_weight)
1869 shares /= tg_weight;
3ff6dcac
YZ
1870
1871 if (shares < MIN_SHARES)
1872 shares = MIN_SHARES;
1873 if (shares > tg->shares)
1874 shares = tg->shares;
1875
1876 return shares;
1877}
3ff6dcac 1878# else /* CONFIG_SMP */
6d5ab293 1879static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1880{
1881 return tg->shares;
1882}
3ff6dcac 1883# endif /* CONFIG_SMP */
2069dd75
PZ
1884static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1885 unsigned long weight)
1886{
19e5eebb
PT
1887 if (se->on_rq) {
1888 /* commit outstanding execution time */
1889 if (cfs_rq->curr == se)
1890 update_curr(cfs_rq);
2069dd75 1891 account_entity_dequeue(cfs_rq, se);
19e5eebb 1892 }
2069dd75
PZ
1893
1894 update_load_set(&se->load, weight);
1895
1896 if (se->on_rq)
1897 account_entity_enqueue(cfs_rq, se);
1898}
1899
82958366
PT
1900static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1901
6d5ab293 1902static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1903{
1904 struct task_group *tg;
1905 struct sched_entity *se;
3ff6dcac 1906 long shares;
2069dd75 1907
2069dd75
PZ
1908 tg = cfs_rq->tg;
1909 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1910 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1911 return;
3ff6dcac
YZ
1912#ifndef CONFIG_SMP
1913 if (likely(se->load.weight == tg->shares))
1914 return;
1915#endif
6d5ab293 1916 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1917
1918 reweight_entity(cfs_rq_of(se), se, shares);
1919}
1920#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1921static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1922{
1923}
1924#endif /* CONFIG_FAIR_GROUP_SCHED */
1925
141965c7 1926#ifdef CONFIG_SMP
5b51f2f8
PT
1927/*
1928 * We choose a half-life close to 1 scheduling period.
1929 * Note: The tables below are dependent on this value.
1930 */
1931#define LOAD_AVG_PERIOD 32
1932#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1933#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1934
1935/* Precomputed fixed inverse multiplies for multiplication by y^n */
1936static const u32 runnable_avg_yN_inv[] = {
1937 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1938 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1939 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1940 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1941 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1942 0x85aac367, 0x82cd8698,
1943};
1944
1945/*
1946 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1947 * over-estimates when re-combining.
1948 */
1949static const u32 runnable_avg_yN_sum[] = {
1950 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1951 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1952 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1953};
1954
9d85f21c
PT
1955/*
1956 * Approximate:
1957 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1958 */
1959static __always_inline u64 decay_load(u64 val, u64 n)
1960{
5b51f2f8
PT
1961 unsigned int local_n;
1962
1963 if (!n)
1964 return val;
1965 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1966 return 0;
1967
1968 /* after bounds checking we can collapse to 32-bit */
1969 local_n = n;
1970
1971 /*
1972 * As y^PERIOD = 1/2, we can combine
1973 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1974 * With a look-up table which covers k^n (n<PERIOD)
1975 *
1976 * To achieve constant time decay_load.
1977 */
1978 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1979 val >>= local_n / LOAD_AVG_PERIOD;
1980 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1981 }
1982
5b51f2f8
PT
1983 val *= runnable_avg_yN_inv[local_n];
1984 /* We don't use SRR here since we always want to round down. */
1985 return val >> 32;
1986}
1987
1988/*
1989 * For updates fully spanning n periods, the contribution to runnable
1990 * average will be: \Sum 1024*y^n
1991 *
1992 * We can compute this reasonably efficiently by combining:
1993 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1994 */
1995static u32 __compute_runnable_contrib(u64 n)
1996{
1997 u32 contrib = 0;
1998
1999 if (likely(n <= LOAD_AVG_PERIOD))
2000 return runnable_avg_yN_sum[n];
2001 else if (unlikely(n >= LOAD_AVG_MAX_N))
2002 return LOAD_AVG_MAX;
2003
2004 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2005 do {
2006 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2007 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2008
2009 n -= LOAD_AVG_PERIOD;
2010 } while (n > LOAD_AVG_PERIOD);
2011
2012 contrib = decay_load(contrib, n);
2013 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2014}
2015
2016/*
2017 * We can represent the historical contribution to runnable average as the
2018 * coefficients of a geometric series. To do this we sub-divide our runnable
2019 * history into segments of approximately 1ms (1024us); label the segment that
2020 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2021 *
2022 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2023 * p0 p1 p2
2024 * (now) (~1ms ago) (~2ms ago)
2025 *
2026 * Let u_i denote the fraction of p_i that the entity was runnable.
2027 *
2028 * We then designate the fractions u_i as our co-efficients, yielding the
2029 * following representation of historical load:
2030 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2031 *
2032 * We choose y based on the with of a reasonably scheduling period, fixing:
2033 * y^32 = 0.5
2034 *
2035 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2036 * approximately half as much as the contribution to load within the last ms
2037 * (u_0).
2038 *
2039 * When a period "rolls over" and we have new u_0`, multiplying the previous
2040 * sum again by y is sufficient to update:
2041 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2042 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2043 */
2044static __always_inline int __update_entity_runnable_avg(u64 now,
2045 struct sched_avg *sa,
2046 int runnable)
2047{
5b51f2f8
PT
2048 u64 delta, periods;
2049 u32 runnable_contrib;
9d85f21c
PT
2050 int delta_w, decayed = 0;
2051
2052 delta = now - sa->last_runnable_update;
2053 /*
2054 * This should only happen when time goes backwards, which it
2055 * unfortunately does during sched clock init when we swap over to TSC.
2056 */
2057 if ((s64)delta < 0) {
2058 sa->last_runnable_update = now;
2059 return 0;
2060 }
2061
2062 /*
2063 * Use 1024ns as the unit of measurement since it's a reasonable
2064 * approximation of 1us and fast to compute.
2065 */
2066 delta >>= 10;
2067 if (!delta)
2068 return 0;
2069 sa->last_runnable_update = now;
2070
2071 /* delta_w is the amount already accumulated against our next period */
2072 delta_w = sa->runnable_avg_period % 1024;
2073 if (delta + delta_w >= 1024) {
2074 /* period roll-over */
2075 decayed = 1;
2076
2077 /*
2078 * Now that we know we're crossing a period boundary, figure
2079 * out how much from delta we need to complete the current
2080 * period and accrue it.
2081 */
2082 delta_w = 1024 - delta_w;
5b51f2f8
PT
2083 if (runnable)
2084 sa->runnable_avg_sum += delta_w;
2085 sa->runnable_avg_period += delta_w;
2086
2087 delta -= delta_w;
2088
2089 /* Figure out how many additional periods this update spans */
2090 periods = delta / 1024;
2091 delta %= 1024;
2092
2093 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2094 periods + 1);
2095 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2096 periods + 1);
2097
2098 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2099 runnable_contrib = __compute_runnable_contrib(periods);
2100 if (runnable)
2101 sa->runnable_avg_sum += runnable_contrib;
2102 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2103 }
2104
2105 /* Remainder of delta accrued against u_0` */
2106 if (runnable)
2107 sa->runnable_avg_sum += delta;
2108 sa->runnable_avg_period += delta;
2109
2110 return decayed;
2111}
2112
9ee474f5 2113/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2114static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2115{
2116 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2117 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2118
2119 decays -= se->avg.decay_count;
2120 if (!decays)
aff3e498 2121 return 0;
9ee474f5
PT
2122
2123 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2124 se->avg.decay_count = 0;
aff3e498
PT
2125
2126 return decays;
9ee474f5
PT
2127}
2128
c566e8e9
PT
2129#ifdef CONFIG_FAIR_GROUP_SCHED
2130static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2131 int force_update)
2132{
2133 struct task_group *tg = cfs_rq->tg;
bf5b986e 2134 long tg_contrib;
c566e8e9
PT
2135
2136 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2137 tg_contrib -= cfs_rq->tg_load_contrib;
2138
bf5b986e
AS
2139 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2140 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2141 cfs_rq->tg_load_contrib += tg_contrib;
2142 }
2143}
8165e145 2144
bb17f655
PT
2145/*
2146 * Aggregate cfs_rq runnable averages into an equivalent task_group
2147 * representation for computing load contributions.
2148 */
2149static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2150 struct cfs_rq *cfs_rq)
2151{
2152 struct task_group *tg = cfs_rq->tg;
2153 long contrib;
2154
2155 /* The fraction of a cpu used by this cfs_rq */
2156 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2157 sa->runnable_avg_period + 1);
2158 contrib -= cfs_rq->tg_runnable_contrib;
2159
2160 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2161 atomic_add(contrib, &tg->runnable_avg);
2162 cfs_rq->tg_runnable_contrib += contrib;
2163 }
2164}
2165
8165e145
PT
2166static inline void __update_group_entity_contrib(struct sched_entity *se)
2167{
2168 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2169 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2170 int runnable_avg;
2171
8165e145
PT
2172 u64 contrib;
2173
2174 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2175 se->avg.load_avg_contrib = div_u64(contrib,
2176 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2177
2178 /*
2179 * For group entities we need to compute a correction term in the case
2180 * that they are consuming <1 cpu so that we would contribute the same
2181 * load as a task of equal weight.
2182 *
2183 * Explicitly co-ordinating this measurement would be expensive, but
2184 * fortunately the sum of each cpus contribution forms a usable
2185 * lower-bound on the true value.
2186 *
2187 * Consider the aggregate of 2 contributions. Either they are disjoint
2188 * (and the sum represents true value) or they are disjoint and we are
2189 * understating by the aggregate of their overlap.
2190 *
2191 * Extending this to N cpus, for a given overlap, the maximum amount we
2192 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2193 * cpus that overlap for this interval and w_i is the interval width.
2194 *
2195 * On a small machine; the first term is well-bounded which bounds the
2196 * total error since w_i is a subset of the period. Whereas on a
2197 * larger machine, while this first term can be larger, if w_i is the
2198 * of consequential size guaranteed to see n_i*w_i quickly converge to
2199 * our upper bound of 1-cpu.
2200 */
2201 runnable_avg = atomic_read(&tg->runnable_avg);
2202 if (runnable_avg < NICE_0_LOAD) {
2203 se->avg.load_avg_contrib *= runnable_avg;
2204 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2205 }
8165e145 2206}
c566e8e9
PT
2207#else
2208static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2209 int force_update) {}
bb17f655
PT
2210static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2211 struct cfs_rq *cfs_rq) {}
8165e145 2212static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2213#endif
2214
8165e145
PT
2215static inline void __update_task_entity_contrib(struct sched_entity *se)
2216{
2217 u32 contrib;
2218
2219 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2220 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2221 contrib /= (se->avg.runnable_avg_period + 1);
2222 se->avg.load_avg_contrib = scale_load(contrib);
2223}
2224
2dac754e
PT
2225/* Compute the current contribution to load_avg by se, return any delta */
2226static long __update_entity_load_avg_contrib(struct sched_entity *se)
2227{
2228 long old_contrib = se->avg.load_avg_contrib;
2229
8165e145
PT
2230 if (entity_is_task(se)) {
2231 __update_task_entity_contrib(se);
2232 } else {
bb17f655 2233 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2234 __update_group_entity_contrib(se);
2235 }
2dac754e
PT
2236
2237 return se->avg.load_avg_contrib - old_contrib;
2238}
2239
9ee474f5
PT
2240static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2241 long load_contrib)
2242{
2243 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2244 cfs_rq->blocked_load_avg -= load_contrib;
2245 else
2246 cfs_rq->blocked_load_avg = 0;
2247}
2248
f1b17280
PT
2249static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2250
9d85f21c 2251/* Update a sched_entity's runnable average */
9ee474f5
PT
2252static inline void update_entity_load_avg(struct sched_entity *se,
2253 int update_cfs_rq)
9d85f21c 2254{
2dac754e
PT
2255 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2256 long contrib_delta;
f1b17280 2257 u64 now;
2dac754e 2258
f1b17280
PT
2259 /*
2260 * For a group entity we need to use their owned cfs_rq_clock_task() in
2261 * case they are the parent of a throttled hierarchy.
2262 */
2263 if (entity_is_task(se))
2264 now = cfs_rq_clock_task(cfs_rq);
2265 else
2266 now = cfs_rq_clock_task(group_cfs_rq(se));
2267
2268 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2269 return;
2270
2271 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2272
2273 if (!update_cfs_rq)
2274 return;
2275
2dac754e
PT
2276 if (se->on_rq)
2277 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2278 else
2279 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2280}
2281
2282/*
2283 * Decay the load contributed by all blocked children and account this so that
2284 * their contribution may appropriately discounted when they wake up.
2285 */
aff3e498 2286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2287{
f1b17280 2288 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2289 u64 decays;
2290
2291 decays = now - cfs_rq->last_decay;
aff3e498 2292 if (!decays && !force_update)
9ee474f5
PT
2293 return;
2294
2509940f
AS
2295 if (atomic_long_read(&cfs_rq->removed_load)) {
2296 unsigned long removed_load;
2297 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2298 subtract_blocked_load_contrib(cfs_rq, removed_load);
2299 }
9ee474f5 2300
aff3e498
PT
2301 if (decays) {
2302 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2303 decays);
2304 atomic64_add(decays, &cfs_rq->decay_counter);
2305 cfs_rq->last_decay = now;
2306 }
c566e8e9
PT
2307
2308 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2309}
18bf2805
BS
2310
2311static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2312{
78becc27 2313 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2314 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2315}
2dac754e
PT
2316
2317/* Add the load generated by se into cfs_rq's child load-average */
2318static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2319 struct sched_entity *se,
2320 int wakeup)
2dac754e 2321{
aff3e498
PT
2322 /*
2323 * We track migrations using entity decay_count <= 0, on a wake-up
2324 * migration we use a negative decay count to track the remote decays
2325 * accumulated while sleeping.
a75cdaa9
AS
2326 *
2327 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2328 * are seen by enqueue_entity_load_avg() as a migration with an already
2329 * constructed load_avg_contrib.
aff3e498
PT
2330 */
2331 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2332 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2333 if (se->avg.decay_count) {
2334 /*
2335 * In a wake-up migration we have to approximate the
2336 * time sleeping. This is because we can't synchronize
2337 * clock_task between the two cpus, and it is not
2338 * guaranteed to be read-safe. Instead, we can
2339 * approximate this using our carried decays, which are
2340 * explicitly atomically readable.
2341 */
2342 se->avg.last_runnable_update -= (-se->avg.decay_count)
2343 << 20;
2344 update_entity_load_avg(se, 0);
2345 /* Indicate that we're now synchronized and on-rq */
2346 se->avg.decay_count = 0;
2347 }
9ee474f5
PT
2348 wakeup = 0;
2349 } else {
282cf499
AS
2350 /*
2351 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2352 * would have made count negative); we must be careful to avoid
2353 * double-accounting blocked time after synchronizing decays.
2354 */
2355 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2356 << 20;
9ee474f5
PT
2357 }
2358
aff3e498
PT
2359 /* migrated tasks did not contribute to our blocked load */
2360 if (wakeup) {
9ee474f5 2361 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2362 update_entity_load_avg(se, 0);
2363 }
9ee474f5 2364
2dac754e 2365 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2366 /* we force update consideration on load-balancer moves */
2367 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2368}
2369
9ee474f5
PT
2370/*
2371 * Remove se's load from this cfs_rq child load-average, if the entity is
2372 * transitioning to a blocked state we track its projected decay using
2373 * blocked_load_avg.
2374 */
2dac754e 2375static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2376 struct sched_entity *se,
2377 int sleep)
2dac754e 2378{
9ee474f5 2379 update_entity_load_avg(se, 1);
aff3e498
PT
2380 /* we force update consideration on load-balancer moves */
2381 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2382
2dac754e 2383 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2384 if (sleep) {
2385 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2386 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2387 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2388}
642dbc39
VG
2389
2390/*
2391 * Update the rq's load with the elapsed running time before entering
2392 * idle. if the last scheduled task is not a CFS task, idle_enter will
2393 * be the only way to update the runnable statistic.
2394 */
2395void idle_enter_fair(struct rq *this_rq)
2396{
2397 update_rq_runnable_avg(this_rq, 1);
2398}
2399
2400/*
2401 * Update the rq's load with the elapsed idle time before a task is
2402 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2403 * be the only way to update the runnable statistic.
2404 */
2405void idle_exit_fair(struct rq *this_rq)
2406{
2407 update_rq_runnable_avg(this_rq, 0);
2408}
2409
9d85f21c 2410#else
9ee474f5
PT
2411static inline void update_entity_load_avg(struct sched_entity *se,
2412 int update_cfs_rq) {}
18bf2805 2413static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2414static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2415 struct sched_entity *se,
2416 int wakeup) {}
2dac754e 2417static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2418 struct sched_entity *se,
2419 int sleep) {}
aff3e498
PT
2420static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2421 int force_update) {}
9d85f21c
PT
2422#endif
2423
2396af69 2424static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2425{
bf0f6f24 2426#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2427 struct task_struct *tsk = NULL;
2428
2429 if (entity_is_task(se))
2430 tsk = task_of(se);
2431
41acab88 2432 if (se->statistics.sleep_start) {
78becc27 2433 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2434
2435 if ((s64)delta < 0)
2436 delta = 0;
2437
41acab88
LDM
2438 if (unlikely(delta > se->statistics.sleep_max))
2439 se->statistics.sleep_max = delta;
bf0f6f24 2440
8c79a045 2441 se->statistics.sleep_start = 0;
41acab88 2442 se->statistics.sum_sleep_runtime += delta;
9745512c 2443
768d0c27 2444 if (tsk) {
e414314c 2445 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2446 trace_sched_stat_sleep(tsk, delta);
2447 }
bf0f6f24 2448 }
41acab88 2449 if (se->statistics.block_start) {
78becc27 2450 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2451
2452 if ((s64)delta < 0)
2453 delta = 0;
2454
41acab88
LDM
2455 if (unlikely(delta > se->statistics.block_max))
2456 se->statistics.block_max = delta;
bf0f6f24 2457
8c79a045 2458 se->statistics.block_start = 0;
41acab88 2459 se->statistics.sum_sleep_runtime += delta;
30084fbd 2460
e414314c 2461 if (tsk) {
8f0dfc34 2462 if (tsk->in_iowait) {
41acab88
LDM
2463 se->statistics.iowait_sum += delta;
2464 se->statistics.iowait_count++;
768d0c27 2465 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2466 }
2467
b781a602
AV
2468 trace_sched_stat_blocked(tsk, delta);
2469
e414314c
PZ
2470 /*
2471 * Blocking time is in units of nanosecs, so shift by
2472 * 20 to get a milliseconds-range estimation of the
2473 * amount of time that the task spent sleeping:
2474 */
2475 if (unlikely(prof_on == SLEEP_PROFILING)) {
2476 profile_hits(SLEEP_PROFILING,
2477 (void *)get_wchan(tsk),
2478 delta >> 20);
2479 }
2480 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2481 }
bf0f6f24
IM
2482 }
2483#endif
2484}
2485
ddc97297
PZ
2486static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2487{
2488#ifdef CONFIG_SCHED_DEBUG
2489 s64 d = se->vruntime - cfs_rq->min_vruntime;
2490
2491 if (d < 0)
2492 d = -d;
2493
2494 if (d > 3*sysctl_sched_latency)
2495 schedstat_inc(cfs_rq, nr_spread_over);
2496#endif
2497}
2498
aeb73b04
PZ
2499static void
2500place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2501{
1af5f730 2502 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2503
2cb8600e
PZ
2504 /*
2505 * The 'current' period is already promised to the current tasks,
2506 * however the extra weight of the new task will slow them down a
2507 * little, place the new task so that it fits in the slot that
2508 * stays open at the end.
2509 */
94dfb5e7 2510 if (initial && sched_feat(START_DEBIT))
f9c0b095 2511 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2512
a2e7a7eb 2513 /* sleeps up to a single latency don't count. */
5ca9880c 2514 if (!initial) {
a2e7a7eb 2515 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2516
a2e7a7eb
MG
2517 /*
2518 * Halve their sleep time's effect, to allow
2519 * for a gentler effect of sleepers:
2520 */
2521 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2522 thresh >>= 1;
51e0304c 2523
a2e7a7eb 2524 vruntime -= thresh;
aeb73b04
PZ
2525 }
2526
b5d9d734 2527 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2528 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2529}
2530
d3d9dc33
PT
2531static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2532
bf0f6f24 2533static void
88ec22d3 2534enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2535{
88ec22d3
PZ
2536 /*
2537 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2538 * through calling update_curr().
88ec22d3 2539 */
371fd7e7 2540 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2541 se->vruntime += cfs_rq->min_vruntime;
2542
bf0f6f24 2543 /*
a2a2d680 2544 * Update run-time statistics of the 'current'.
bf0f6f24 2545 */
b7cc0896 2546 update_curr(cfs_rq);
f269ae04 2547 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2548 account_entity_enqueue(cfs_rq, se);
2549 update_cfs_shares(cfs_rq);
bf0f6f24 2550
88ec22d3 2551 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2552 place_entity(cfs_rq, se, 0);
2396af69 2553 enqueue_sleeper(cfs_rq, se);
e9acbff6 2554 }
bf0f6f24 2555
d2417e5a 2556 update_stats_enqueue(cfs_rq, se);
ddc97297 2557 check_spread(cfs_rq, se);
83b699ed
SV
2558 if (se != cfs_rq->curr)
2559 __enqueue_entity(cfs_rq, se);
2069dd75 2560 se->on_rq = 1;
3d4b47b4 2561
d3d9dc33 2562 if (cfs_rq->nr_running == 1) {
3d4b47b4 2563 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2564 check_enqueue_throttle(cfs_rq);
2565 }
bf0f6f24
IM
2566}
2567
2c13c919 2568static void __clear_buddies_last(struct sched_entity *se)
2002c695 2569{
2c13c919
RR
2570 for_each_sched_entity(se) {
2571 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2572 if (cfs_rq->last == se)
2573 cfs_rq->last = NULL;
2574 else
2575 break;
2576 }
2577}
2002c695 2578
2c13c919
RR
2579static void __clear_buddies_next(struct sched_entity *se)
2580{
2581 for_each_sched_entity(se) {
2582 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2583 if (cfs_rq->next == se)
2584 cfs_rq->next = NULL;
2585 else
2586 break;
2587 }
2002c695
PZ
2588}
2589
ac53db59
RR
2590static void __clear_buddies_skip(struct sched_entity *se)
2591{
2592 for_each_sched_entity(se) {
2593 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2594 if (cfs_rq->skip == se)
2595 cfs_rq->skip = NULL;
2596 else
2597 break;
2598 }
2599}
2600
a571bbea
PZ
2601static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2602{
2c13c919
RR
2603 if (cfs_rq->last == se)
2604 __clear_buddies_last(se);
2605
2606 if (cfs_rq->next == se)
2607 __clear_buddies_next(se);
ac53db59
RR
2608
2609 if (cfs_rq->skip == se)
2610 __clear_buddies_skip(se);
a571bbea
PZ
2611}
2612
6c16a6dc 2613static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2614
bf0f6f24 2615static void
371fd7e7 2616dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2617{
a2a2d680
DA
2618 /*
2619 * Update run-time statistics of the 'current'.
2620 */
2621 update_curr(cfs_rq);
17bc14b7 2622 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2623
19b6a2e3 2624 update_stats_dequeue(cfs_rq, se);
371fd7e7 2625 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2626#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2627 if (entity_is_task(se)) {
2628 struct task_struct *tsk = task_of(se);
2629
2630 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2631 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2632 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2633 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2634 }
db36cc7d 2635#endif
67e9fb2a
PZ
2636 }
2637
2002c695 2638 clear_buddies(cfs_rq, se);
4793241b 2639
83b699ed 2640 if (se != cfs_rq->curr)
30cfdcfc 2641 __dequeue_entity(cfs_rq, se);
17bc14b7 2642 se->on_rq = 0;
30cfdcfc 2643 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2644
2645 /*
2646 * Normalize the entity after updating the min_vruntime because the
2647 * update can refer to the ->curr item and we need to reflect this
2648 * movement in our normalized position.
2649 */
371fd7e7 2650 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2651 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2652
d8b4986d
PT
2653 /* return excess runtime on last dequeue */
2654 return_cfs_rq_runtime(cfs_rq);
2655
1e876231 2656 update_min_vruntime(cfs_rq);
17bc14b7 2657 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2658}
2659
2660/*
2661 * Preempt the current task with a newly woken task if needed:
2662 */
7c92e54f 2663static void
2e09bf55 2664check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2665{
11697830 2666 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2667 struct sched_entity *se;
2668 s64 delta;
11697830 2669
6d0f0ebd 2670 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2671 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2672 if (delta_exec > ideal_runtime) {
bf0f6f24 2673 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2674 /*
2675 * The current task ran long enough, ensure it doesn't get
2676 * re-elected due to buddy favours.
2677 */
2678 clear_buddies(cfs_rq, curr);
f685ceac
MG
2679 return;
2680 }
2681
2682 /*
2683 * Ensure that a task that missed wakeup preemption by a
2684 * narrow margin doesn't have to wait for a full slice.
2685 * This also mitigates buddy induced latencies under load.
2686 */
f685ceac
MG
2687 if (delta_exec < sysctl_sched_min_granularity)
2688 return;
2689
f4cfb33e
WX
2690 se = __pick_first_entity(cfs_rq);
2691 delta = curr->vruntime - se->vruntime;
f685ceac 2692
f4cfb33e
WX
2693 if (delta < 0)
2694 return;
d7d82944 2695
f4cfb33e
WX
2696 if (delta > ideal_runtime)
2697 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2698}
2699
83b699ed 2700static void
8494f412 2701set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2702{
83b699ed
SV
2703 /* 'current' is not kept within the tree. */
2704 if (se->on_rq) {
2705 /*
2706 * Any task has to be enqueued before it get to execute on
2707 * a CPU. So account for the time it spent waiting on the
2708 * runqueue.
2709 */
2710 update_stats_wait_end(cfs_rq, se);
2711 __dequeue_entity(cfs_rq, se);
2712 }
2713
79303e9e 2714 update_stats_curr_start(cfs_rq, se);
429d43bc 2715 cfs_rq->curr = se;
eba1ed4b
IM
2716#ifdef CONFIG_SCHEDSTATS
2717 /*
2718 * Track our maximum slice length, if the CPU's load is at
2719 * least twice that of our own weight (i.e. dont track it
2720 * when there are only lesser-weight tasks around):
2721 */
495eca49 2722 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2723 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2724 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2725 }
2726#endif
4a55b450 2727 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2728}
2729
3f3a4904
PZ
2730static int
2731wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2732
ac53db59
RR
2733/*
2734 * Pick the next process, keeping these things in mind, in this order:
2735 * 1) keep things fair between processes/task groups
2736 * 2) pick the "next" process, since someone really wants that to run
2737 * 3) pick the "last" process, for cache locality
2738 * 4) do not run the "skip" process, if something else is available
2739 */
f4b6755f 2740static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2741{
ac53db59 2742 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2743 struct sched_entity *left = se;
f4b6755f 2744
ac53db59
RR
2745 /*
2746 * Avoid running the skip buddy, if running something else can
2747 * be done without getting too unfair.
2748 */
2749 if (cfs_rq->skip == se) {
2750 struct sched_entity *second = __pick_next_entity(se);
2751 if (second && wakeup_preempt_entity(second, left) < 1)
2752 se = second;
2753 }
aa2ac252 2754
f685ceac
MG
2755 /*
2756 * Prefer last buddy, try to return the CPU to a preempted task.
2757 */
2758 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2759 se = cfs_rq->last;
2760
ac53db59
RR
2761 /*
2762 * Someone really wants this to run. If it's not unfair, run it.
2763 */
2764 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2765 se = cfs_rq->next;
2766
f685ceac 2767 clear_buddies(cfs_rq, se);
4793241b
PZ
2768
2769 return se;
aa2ac252
PZ
2770}
2771
d3d9dc33
PT
2772static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2773
ab6cde26 2774static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2775{
2776 /*
2777 * If still on the runqueue then deactivate_task()
2778 * was not called and update_curr() has to be done:
2779 */
2780 if (prev->on_rq)
b7cc0896 2781 update_curr(cfs_rq);
bf0f6f24 2782
d3d9dc33
PT
2783 /* throttle cfs_rqs exceeding runtime */
2784 check_cfs_rq_runtime(cfs_rq);
2785
ddc97297 2786 check_spread(cfs_rq, prev);
30cfdcfc 2787 if (prev->on_rq) {
5870db5b 2788 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2789 /* Put 'current' back into the tree. */
2790 __enqueue_entity(cfs_rq, prev);
9d85f21c 2791 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2792 update_entity_load_avg(prev, 1);
30cfdcfc 2793 }
429d43bc 2794 cfs_rq->curr = NULL;
bf0f6f24
IM
2795}
2796
8f4d37ec
PZ
2797static void
2798entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2799{
bf0f6f24 2800 /*
30cfdcfc 2801 * Update run-time statistics of the 'current'.
bf0f6f24 2802 */
30cfdcfc 2803 update_curr(cfs_rq);
bf0f6f24 2804
9d85f21c
PT
2805 /*
2806 * Ensure that runnable average is periodically updated.
2807 */
9ee474f5 2808 update_entity_load_avg(curr, 1);
aff3e498 2809 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2810 update_cfs_shares(cfs_rq);
9d85f21c 2811
8f4d37ec
PZ
2812#ifdef CONFIG_SCHED_HRTICK
2813 /*
2814 * queued ticks are scheduled to match the slice, so don't bother
2815 * validating it and just reschedule.
2816 */
983ed7a6
HH
2817 if (queued) {
2818 resched_task(rq_of(cfs_rq)->curr);
2819 return;
2820 }
8f4d37ec
PZ
2821 /*
2822 * don't let the period tick interfere with the hrtick preemption
2823 */
2824 if (!sched_feat(DOUBLE_TICK) &&
2825 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2826 return;
2827#endif
2828
2c2efaed 2829 if (cfs_rq->nr_running > 1)
2e09bf55 2830 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2831}
2832
ab84d31e
PT
2833
2834/**************************************************
2835 * CFS bandwidth control machinery
2836 */
2837
2838#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2839
2840#ifdef HAVE_JUMP_LABEL
c5905afb 2841static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2842
2843static inline bool cfs_bandwidth_used(void)
2844{
c5905afb 2845 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2846}
2847
1ee14e6c 2848void cfs_bandwidth_usage_inc(void)
029632fb 2849{
1ee14e6c
BS
2850 static_key_slow_inc(&__cfs_bandwidth_used);
2851}
2852
2853void cfs_bandwidth_usage_dec(void)
2854{
2855 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2856}
2857#else /* HAVE_JUMP_LABEL */
2858static bool cfs_bandwidth_used(void)
2859{
2860 return true;
2861}
2862
1ee14e6c
BS
2863void cfs_bandwidth_usage_inc(void) {}
2864void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
2865#endif /* HAVE_JUMP_LABEL */
2866
ab84d31e
PT
2867/*
2868 * default period for cfs group bandwidth.
2869 * default: 0.1s, units: nanoseconds
2870 */
2871static inline u64 default_cfs_period(void)
2872{
2873 return 100000000ULL;
2874}
ec12cb7f
PT
2875
2876static inline u64 sched_cfs_bandwidth_slice(void)
2877{
2878 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2879}
2880
a9cf55b2
PT
2881/*
2882 * Replenish runtime according to assigned quota and update expiration time.
2883 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2884 * additional synchronization around rq->lock.
2885 *
2886 * requires cfs_b->lock
2887 */
029632fb 2888void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2889{
2890 u64 now;
2891
2892 if (cfs_b->quota == RUNTIME_INF)
2893 return;
2894
2895 now = sched_clock_cpu(smp_processor_id());
2896 cfs_b->runtime = cfs_b->quota;
2897 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2898}
2899
029632fb
PZ
2900static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2901{
2902 return &tg->cfs_bandwidth;
2903}
2904
f1b17280
PT
2905/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2906static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2907{
2908 if (unlikely(cfs_rq->throttle_count))
2909 return cfs_rq->throttled_clock_task;
2910
78becc27 2911 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2912}
2913
85dac906
PT
2914/* returns 0 on failure to allocate runtime */
2915static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2916{
2917 struct task_group *tg = cfs_rq->tg;
2918 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2919 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2920
2921 /* note: this is a positive sum as runtime_remaining <= 0 */
2922 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2923
2924 raw_spin_lock(&cfs_b->lock);
2925 if (cfs_b->quota == RUNTIME_INF)
2926 amount = min_amount;
58088ad0 2927 else {
a9cf55b2
PT
2928 /*
2929 * If the bandwidth pool has become inactive, then at least one
2930 * period must have elapsed since the last consumption.
2931 * Refresh the global state and ensure bandwidth timer becomes
2932 * active.
2933 */
2934 if (!cfs_b->timer_active) {
2935 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2936 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2937 }
58088ad0
PT
2938
2939 if (cfs_b->runtime > 0) {
2940 amount = min(cfs_b->runtime, min_amount);
2941 cfs_b->runtime -= amount;
2942 cfs_b->idle = 0;
2943 }
ec12cb7f 2944 }
a9cf55b2 2945 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2946 raw_spin_unlock(&cfs_b->lock);
2947
2948 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2949 /*
2950 * we may have advanced our local expiration to account for allowed
2951 * spread between our sched_clock and the one on which runtime was
2952 * issued.
2953 */
2954 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2955 cfs_rq->runtime_expires = expires;
85dac906
PT
2956
2957 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2958}
2959
a9cf55b2
PT
2960/*
2961 * Note: This depends on the synchronization provided by sched_clock and the
2962 * fact that rq->clock snapshots this value.
2963 */
2964static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2965{
a9cf55b2 2966 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2967
2968 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2969 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2970 return;
2971
a9cf55b2
PT
2972 if (cfs_rq->runtime_remaining < 0)
2973 return;
2974
2975 /*
2976 * If the local deadline has passed we have to consider the
2977 * possibility that our sched_clock is 'fast' and the global deadline
2978 * has not truly expired.
2979 *
2980 * Fortunately we can check determine whether this the case by checking
2981 * whether the global deadline has advanced.
2982 */
2983
2984 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2985 /* extend local deadline, drift is bounded above by 2 ticks */
2986 cfs_rq->runtime_expires += TICK_NSEC;
2987 } else {
2988 /* global deadline is ahead, expiration has passed */
2989 cfs_rq->runtime_remaining = 0;
2990 }
2991}
2992
2993static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2994 unsigned long delta_exec)
2995{
2996 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2997 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2998 expire_cfs_rq_runtime(cfs_rq);
2999
3000 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3001 return;
3002
85dac906
PT
3003 /*
3004 * if we're unable to extend our runtime we resched so that the active
3005 * hierarchy can be throttled
3006 */
3007 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3008 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3009}
3010
6c16a6dc
PZ
3011static __always_inline
3012void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 3013{
56f570e5 3014 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3015 return;
3016
3017 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3018}
3019
85dac906
PT
3020static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3021{
56f570e5 3022 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3023}
3024
64660c86
PT
3025/* check whether cfs_rq, or any parent, is throttled */
3026static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3027{
56f570e5 3028 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3029}
3030
3031/*
3032 * Ensure that neither of the group entities corresponding to src_cpu or
3033 * dest_cpu are members of a throttled hierarchy when performing group
3034 * load-balance operations.
3035 */
3036static inline int throttled_lb_pair(struct task_group *tg,
3037 int src_cpu, int dest_cpu)
3038{
3039 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3040
3041 src_cfs_rq = tg->cfs_rq[src_cpu];
3042 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3043
3044 return throttled_hierarchy(src_cfs_rq) ||
3045 throttled_hierarchy(dest_cfs_rq);
3046}
3047
3048/* updated child weight may affect parent so we have to do this bottom up */
3049static int tg_unthrottle_up(struct task_group *tg, void *data)
3050{
3051 struct rq *rq = data;
3052 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3053
3054 cfs_rq->throttle_count--;
3055#ifdef CONFIG_SMP
3056 if (!cfs_rq->throttle_count) {
f1b17280 3057 /* adjust cfs_rq_clock_task() */
78becc27 3058 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3059 cfs_rq->throttled_clock_task;
64660c86
PT
3060 }
3061#endif
3062
3063 return 0;
3064}
3065
3066static int tg_throttle_down(struct task_group *tg, void *data)
3067{
3068 struct rq *rq = data;
3069 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3070
82958366
PT
3071 /* group is entering throttled state, stop time */
3072 if (!cfs_rq->throttle_count)
78becc27 3073 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3074 cfs_rq->throttle_count++;
3075
3076 return 0;
3077}
3078
d3d9dc33 3079static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3080{
3081 struct rq *rq = rq_of(cfs_rq);
3082 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3083 struct sched_entity *se;
3084 long task_delta, dequeue = 1;
3085
3086 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3087
f1b17280 3088 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3089 rcu_read_lock();
3090 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3091 rcu_read_unlock();
85dac906
PT
3092
3093 task_delta = cfs_rq->h_nr_running;
3094 for_each_sched_entity(se) {
3095 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3096 /* throttled entity or throttle-on-deactivate */
3097 if (!se->on_rq)
3098 break;
3099
3100 if (dequeue)
3101 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3102 qcfs_rq->h_nr_running -= task_delta;
3103
3104 if (qcfs_rq->load.weight)
3105 dequeue = 0;
3106 }
3107
3108 if (!se)
3109 rq->nr_running -= task_delta;
3110
3111 cfs_rq->throttled = 1;
78becc27 3112 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3113 raw_spin_lock(&cfs_b->lock);
3114 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3115 raw_spin_unlock(&cfs_b->lock);
3116}
3117
029632fb 3118void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3119{
3120 struct rq *rq = rq_of(cfs_rq);
3121 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3122 struct sched_entity *se;
3123 int enqueue = 1;
3124 long task_delta;
3125
22b958d8 3126 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3127
3128 cfs_rq->throttled = 0;
1a55af2e
FW
3129
3130 update_rq_clock(rq);
3131
671fd9da 3132 raw_spin_lock(&cfs_b->lock);
78becc27 3133 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3134 list_del_rcu(&cfs_rq->throttled_list);
3135 raw_spin_unlock(&cfs_b->lock);
3136
64660c86
PT
3137 /* update hierarchical throttle state */
3138 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3139
671fd9da
PT
3140 if (!cfs_rq->load.weight)
3141 return;
3142
3143 task_delta = cfs_rq->h_nr_running;
3144 for_each_sched_entity(se) {
3145 if (se->on_rq)
3146 enqueue = 0;
3147
3148 cfs_rq = cfs_rq_of(se);
3149 if (enqueue)
3150 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3151 cfs_rq->h_nr_running += task_delta;
3152
3153 if (cfs_rq_throttled(cfs_rq))
3154 break;
3155 }
3156
3157 if (!se)
3158 rq->nr_running += task_delta;
3159
3160 /* determine whether we need to wake up potentially idle cpu */
3161 if (rq->curr == rq->idle && rq->cfs.nr_running)
3162 resched_task(rq->curr);
3163}
3164
3165static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3166 u64 remaining, u64 expires)
3167{
3168 struct cfs_rq *cfs_rq;
3169 u64 runtime = remaining;
3170
3171 rcu_read_lock();
3172 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3173 throttled_list) {
3174 struct rq *rq = rq_of(cfs_rq);
3175
3176 raw_spin_lock(&rq->lock);
3177 if (!cfs_rq_throttled(cfs_rq))
3178 goto next;
3179
3180 runtime = -cfs_rq->runtime_remaining + 1;
3181 if (runtime > remaining)
3182 runtime = remaining;
3183 remaining -= runtime;
3184
3185 cfs_rq->runtime_remaining += runtime;
3186 cfs_rq->runtime_expires = expires;
3187
3188 /* we check whether we're throttled above */
3189 if (cfs_rq->runtime_remaining > 0)
3190 unthrottle_cfs_rq(cfs_rq);
3191
3192next:
3193 raw_spin_unlock(&rq->lock);
3194
3195 if (!remaining)
3196 break;
3197 }
3198 rcu_read_unlock();
3199
3200 return remaining;
3201}
3202
58088ad0
PT
3203/*
3204 * Responsible for refilling a task_group's bandwidth and unthrottling its
3205 * cfs_rqs as appropriate. If there has been no activity within the last
3206 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3207 * used to track this state.
3208 */
3209static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3210{
671fd9da
PT
3211 u64 runtime, runtime_expires;
3212 int idle = 1, throttled;
58088ad0
PT
3213
3214 raw_spin_lock(&cfs_b->lock);
3215 /* no need to continue the timer with no bandwidth constraint */
3216 if (cfs_b->quota == RUNTIME_INF)
3217 goto out_unlock;
3218
671fd9da
PT
3219 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3220 /* idle depends on !throttled (for the case of a large deficit) */
3221 idle = cfs_b->idle && !throttled;
e8da1b18 3222 cfs_b->nr_periods += overrun;
671fd9da 3223
a9cf55b2
PT
3224 /* if we're going inactive then everything else can be deferred */
3225 if (idle)
3226 goto out_unlock;
3227
927b54fc
BS
3228 /*
3229 * if we have relooped after returning idle once, we need to update our
3230 * status as actually running, so that other cpus doing
3231 * __start_cfs_bandwidth will stop trying to cancel us.
3232 */
3233 cfs_b->timer_active = 1;
3234
a9cf55b2
PT
3235 __refill_cfs_bandwidth_runtime(cfs_b);
3236
671fd9da
PT
3237 if (!throttled) {
3238 /* mark as potentially idle for the upcoming period */
3239 cfs_b->idle = 1;
3240 goto out_unlock;
3241 }
3242
e8da1b18
NR
3243 /* account preceding periods in which throttling occurred */
3244 cfs_b->nr_throttled += overrun;
3245
671fd9da
PT
3246 /*
3247 * There are throttled entities so we must first use the new bandwidth
3248 * to unthrottle them before making it generally available. This
3249 * ensures that all existing debts will be paid before a new cfs_rq is
3250 * allowed to run.
3251 */
3252 runtime = cfs_b->runtime;
3253 runtime_expires = cfs_b->runtime_expires;
3254 cfs_b->runtime = 0;
3255
3256 /*
3257 * This check is repeated as we are holding onto the new bandwidth
3258 * while we unthrottle. This can potentially race with an unthrottled
3259 * group trying to acquire new bandwidth from the global pool.
3260 */
3261 while (throttled && runtime > 0) {
3262 raw_spin_unlock(&cfs_b->lock);
3263 /* we can't nest cfs_b->lock while distributing bandwidth */
3264 runtime = distribute_cfs_runtime(cfs_b, runtime,
3265 runtime_expires);
3266 raw_spin_lock(&cfs_b->lock);
3267
3268 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3269 }
58088ad0 3270
671fd9da
PT
3271 /* return (any) remaining runtime */
3272 cfs_b->runtime = runtime;
3273 /*
3274 * While we are ensured activity in the period following an
3275 * unthrottle, this also covers the case in which the new bandwidth is
3276 * insufficient to cover the existing bandwidth deficit. (Forcing the
3277 * timer to remain active while there are any throttled entities.)
3278 */
3279 cfs_b->idle = 0;
58088ad0
PT
3280out_unlock:
3281 if (idle)
3282 cfs_b->timer_active = 0;
3283 raw_spin_unlock(&cfs_b->lock);
3284
3285 return idle;
3286}
d3d9dc33 3287
d8b4986d
PT
3288/* a cfs_rq won't donate quota below this amount */
3289static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3290/* minimum remaining period time to redistribute slack quota */
3291static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3292/* how long we wait to gather additional slack before distributing */
3293static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3294
db06e78c
BS
3295/*
3296 * Are we near the end of the current quota period?
3297 *
3298 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3299 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3300 * migrate_hrtimers, base is never cleared, so we are fine.
3301 */
d8b4986d
PT
3302static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3303{
3304 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3305 u64 remaining;
3306
3307 /* if the call-back is running a quota refresh is already occurring */
3308 if (hrtimer_callback_running(refresh_timer))
3309 return 1;
3310
3311 /* is a quota refresh about to occur? */
3312 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3313 if (remaining < min_expire)
3314 return 1;
3315
3316 return 0;
3317}
3318
3319static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3320{
3321 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3322
3323 /* if there's a quota refresh soon don't bother with slack */
3324 if (runtime_refresh_within(cfs_b, min_left))
3325 return;
3326
3327 start_bandwidth_timer(&cfs_b->slack_timer,
3328 ns_to_ktime(cfs_bandwidth_slack_period));
3329}
3330
3331/* we know any runtime found here is valid as update_curr() precedes return */
3332static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3333{
3334 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3335 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3336
3337 if (slack_runtime <= 0)
3338 return;
3339
3340 raw_spin_lock(&cfs_b->lock);
3341 if (cfs_b->quota != RUNTIME_INF &&
3342 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3343 cfs_b->runtime += slack_runtime;
3344
3345 /* we are under rq->lock, defer unthrottling using a timer */
3346 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3347 !list_empty(&cfs_b->throttled_cfs_rq))
3348 start_cfs_slack_bandwidth(cfs_b);
3349 }
3350 raw_spin_unlock(&cfs_b->lock);
3351
3352 /* even if it's not valid for return we don't want to try again */
3353 cfs_rq->runtime_remaining -= slack_runtime;
3354}
3355
3356static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3357{
56f570e5
PT
3358 if (!cfs_bandwidth_used())
3359 return;
3360
fccfdc6f 3361 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3362 return;
3363
3364 __return_cfs_rq_runtime(cfs_rq);
3365}
3366
3367/*
3368 * This is done with a timer (instead of inline with bandwidth return) since
3369 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3370 */
3371static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3372{
3373 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3374 u64 expires;
3375
3376 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3377 raw_spin_lock(&cfs_b->lock);
3378 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3379 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3380 return;
db06e78c 3381 }
d8b4986d 3382
d8b4986d
PT
3383 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3384 runtime = cfs_b->runtime;
3385 cfs_b->runtime = 0;
3386 }
3387 expires = cfs_b->runtime_expires;
3388 raw_spin_unlock(&cfs_b->lock);
3389
3390 if (!runtime)
3391 return;
3392
3393 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3394
3395 raw_spin_lock(&cfs_b->lock);
3396 if (expires == cfs_b->runtime_expires)
3397 cfs_b->runtime = runtime;
3398 raw_spin_unlock(&cfs_b->lock);
3399}
3400
d3d9dc33
PT
3401/*
3402 * When a group wakes up we want to make sure that its quota is not already
3403 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3404 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3405 */
3406static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3407{
56f570e5
PT
3408 if (!cfs_bandwidth_used())
3409 return;
3410
d3d9dc33
PT
3411 /* an active group must be handled by the update_curr()->put() path */
3412 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3413 return;
3414
3415 /* ensure the group is not already throttled */
3416 if (cfs_rq_throttled(cfs_rq))
3417 return;
3418
3419 /* update runtime allocation */
3420 account_cfs_rq_runtime(cfs_rq, 0);
3421 if (cfs_rq->runtime_remaining <= 0)
3422 throttle_cfs_rq(cfs_rq);
3423}
3424
3425/* conditionally throttle active cfs_rq's from put_prev_entity() */
3426static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3427{
56f570e5
PT
3428 if (!cfs_bandwidth_used())
3429 return;
3430
d3d9dc33
PT
3431 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3432 return;
3433
3434 /*
3435 * it's possible for a throttled entity to be forced into a running
3436 * state (e.g. set_curr_task), in this case we're finished.
3437 */
3438 if (cfs_rq_throttled(cfs_rq))
3439 return;
3440
3441 throttle_cfs_rq(cfs_rq);
3442}
029632fb 3443
029632fb
PZ
3444static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3445{
3446 struct cfs_bandwidth *cfs_b =
3447 container_of(timer, struct cfs_bandwidth, slack_timer);
3448 do_sched_cfs_slack_timer(cfs_b);
3449
3450 return HRTIMER_NORESTART;
3451}
3452
3453static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3454{
3455 struct cfs_bandwidth *cfs_b =
3456 container_of(timer, struct cfs_bandwidth, period_timer);
3457 ktime_t now;
3458 int overrun;
3459 int idle = 0;
3460
3461 for (;;) {
3462 now = hrtimer_cb_get_time(timer);
3463 overrun = hrtimer_forward(timer, now, cfs_b->period);
3464
3465 if (!overrun)
3466 break;
3467
3468 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3469 }
3470
3471 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3472}
3473
3474void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3475{
3476 raw_spin_lock_init(&cfs_b->lock);
3477 cfs_b->runtime = 0;
3478 cfs_b->quota = RUNTIME_INF;
3479 cfs_b->period = ns_to_ktime(default_cfs_period());
3480
3481 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3482 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3483 cfs_b->period_timer.function = sched_cfs_period_timer;
3484 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3485 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3486}
3487
3488static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3489{
3490 cfs_rq->runtime_enabled = 0;
3491 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3492}
3493
3494/* requires cfs_b->lock, may release to reprogram timer */
3495void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3496{
3497 /*
3498 * The timer may be active because we're trying to set a new bandwidth
3499 * period or because we're racing with the tear-down path
3500 * (timer_active==0 becomes visible before the hrtimer call-back
3501 * terminates). In either case we ensure that it's re-programmed
3502 */
927b54fc
BS
3503 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3504 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3505 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3506 raw_spin_unlock(&cfs_b->lock);
927b54fc 3507 cpu_relax();
029632fb
PZ
3508 raw_spin_lock(&cfs_b->lock);
3509 /* if someone else restarted the timer then we're done */
3510 if (cfs_b->timer_active)
3511 return;
3512 }
3513
3514 cfs_b->timer_active = 1;
3515 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3516}
3517
3518static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3519{
3520 hrtimer_cancel(&cfs_b->period_timer);
3521 hrtimer_cancel(&cfs_b->slack_timer);
3522}
3523
38dc3348 3524static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3525{
3526 struct cfs_rq *cfs_rq;
3527
3528 for_each_leaf_cfs_rq(rq, cfs_rq) {
3529 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3530
3531 if (!cfs_rq->runtime_enabled)
3532 continue;
3533
3534 /*
3535 * clock_task is not advancing so we just need to make sure
3536 * there's some valid quota amount
3537 */
3538 cfs_rq->runtime_remaining = cfs_b->quota;
3539 if (cfs_rq_throttled(cfs_rq))
3540 unthrottle_cfs_rq(cfs_rq);
3541 }
3542}
3543
3544#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3545static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3546{
78becc27 3547 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3548}
3549
3550static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3551 unsigned long delta_exec) {}
d3d9dc33
PT
3552static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3553static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3554static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3555
3556static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3557{
3558 return 0;
3559}
64660c86
PT
3560
3561static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3562{
3563 return 0;
3564}
3565
3566static inline int throttled_lb_pair(struct task_group *tg,
3567 int src_cpu, int dest_cpu)
3568{
3569 return 0;
3570}
029632fb
PZ
3571
3572void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3573
3574#ifdef CONFIG_FAIR_GROUP_SCHED
3575static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3576#endif
3577
029632fb
PZ
3578static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3579{
3580 return NULL;
3581}
3582static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3583static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3584
3585#endif /* CONFIG_CFS_BANDWIDTH */
3586
bf0f6f24
IM
3587/**************************************************
3588 * CFS operations on tasks:
3589 */
3590
8f4d37ec
PZ
3591#ifdef CONFIG_SCHED_HRTICK
3592static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3593{
8f4d37ec
PZ
3594 struct sched_entity *se = &p->se;
3595 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3596
3597 WARN_ON(task_rq(p) != rq);
3598
b39e66ea 3599 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3600 u64 slice = sched_slice(cfs_rq, se);
3601 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3602 s64 delta = slice - ran;
3603
3604 if (delta < 0) {
3605 if (rq->curr == p)
3606 resched_task(p);
3607 return;
3608 }
3609
3610 /*
3611 * Don't schedule slices shorter than 10000ns, that just
3612 * doesn't make sense. Rely on vruntime for fairness.
3613 */
31656519 3614 if (rq->curr != p)
157124c1 3615 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3616
31656519 3617 hrtick_start(rq, delta);
8f4d37ec
PZ
3618 }
3619}
a4c2f00f
PZ
3620
3621/*
3622 * called from enqueue/dequeue and updates the hrtick when the
3623 * current task is from our class and nr_running is low enough
3624 * to matter.
3625 */
3626static void hrtick_update(struct rq *rq)
3627{
3628 struct task_struct *curr = rq->curr;
3629
b39e66ea 3630 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3631 return;
3632
3633 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3634 hrtick_start_fair(rq, curr);
3635}
55e12e5e 3636#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3637static inline void
3638hrtick_start_fair(struct rq *rq, struct task_struct *p)
3639{
3640}
a4c2f00f
PZ
3641
3642static inline void hrtick_update(struct rq *rq)
3643{
3644}
8f4d37ec
PZ
3645#endif
3646
bf0f6f24
IM
3647/*
3648 * The enqueue_task method is called before nr_running is
3649 * increased. Here we update the fair scheduling stats and
3650 * then put the task into the rbtree:
3651 */
ea87bb78 3652static void
371fd7e7 3653enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3654{
3655 struct cfs_rq *cfs_rq;
62fb1851 3656 struct sched_entity *se = &p->se;
bf0f6f24
IM
3657
3658 for_each_sched_entity(se) {
62fb1851 3659 if (se->on_rq)
bf0f6f24
IM
3660 break;
3661 cfs_rq = cfs_rq_of(se);
88ec22d3 3662 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3663
3664 /*
3665 * end evaluation on encountering a throttled cfs_rq
3666 *
3667 * note: in the case of encountering a throttled cfs_rq we will
3668 * post the final h_nr_running increment below.
3669 */
3670 if (cfs_rq_throttled(cfs_rq))
3671 break;
953bfcd1 3672 cfs_rq->h_nr_running++;
85dac906 3673
88ec22d3 3674 flags = ENQUEUE_WAKEUP;
bf0f6f24 3675 }
8f4d37ec 3676
2069dd75 3677 for_each_sched_entity(se) {
0f317143 3678 cfs_rq = cfs_rq_of(se);
953bfcd1 3679 cfs_rq->h_nr_running++;
2069dd75 3680
85dac906
PT
3681 if (cfs_rq_throttled(cfs_rq))
3682 break;
3683
17bc14b7 3684 update_cfs_shares(cfs_rq);
9ee474f5 3685 update_entity_load_avg(se, 1);
2069dd75
PZ
3686 }
3687
18bf2805
BS
3688 if (!se) {
3689 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3690 inc_nr_running(rq);
18bf2805 3691 }
a4c2f00f 3692 hrtick_update(rq);
bf0f6f24
IM
3693}
3694
2f36825b
VP
3695static void set_next_buddy(struct sched_entity *se);
3696
bf0f6f24
IM
3697/*
3698 * The dequeue_task method is called before nr_running is
3699 * decreased. We remove the task from the rbtree and
3700 * update the fair scheduling stats:
3701 */
371fd7e7 3702static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3703{
3704 struct cfs_rq *cfs_rq;
62fb1851 3705 struct sched_entity *se = &p->se;
2f36825b 3706 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3707
3708 for_each_sched_entity(se) {
3709 cfs_rq = cfs_rq_of(se);
371fd7e7 3710 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3711
3712 /*
3713 * end evaluation on encountering a throttled cfs_rq
3714 *
3715 * note: in the case of encountering a throttled cfs_rq we will
3716 * post the final h_nr_running decrement below.
3717 */
3718 if (cfs_rq_throttled(cfs_rq))
3719 break;
953bfcd1 3720 cfs_rq->h_nr_running--;
2069dd75 3721
bf0f6f24 3722 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3723 if (cfs_rq->load.weight) {
3724 /*
3725 * Bias pick_next to pick a task from this cfs_rq, as
3726 * p is sleeping when it is within its sched_slice.
3727 */
3728 if (task_sleep && parent_entity(se))
3729 set_next_buddy(parent_entity(se));
9598c82d
PT
3730
3731 /* avoid re-evaluating load for this entity */
3732 se = parent_entity(se);
bf0f6f24 3733 break;
2f36825b 3734 }
371fd7e7 3735 flags |= DEQUEUE_SLEEP;
bf0f6f24 3736 }
8f4d37ec 3737
2069dd75 3738 for_each_sched_entity(se) {
0f317143 3739 cfs_rq = cfs_rq_of(se);
953bfcd1 3740 cfs_rq->h_nr_running--;
2069dd75 3741
85dac906
PT
3742 if (cfs_rq_throttled(cfs_rq))
3743 break;
3744
17bc14b7 3745 update_cfs_shares(cfs_rq);
9ee474f5 3746 update_entity_load_avg(se, 1);
2069dd75
PZ
3747 }
3748
18bf2805 3749 if (!se) {
85dac906 3750 dec_nr_running(rq);
18bf2805
BS
3751 update_rq_runnable_avg(rq, 1);
3752 }
a4c2f00f 3753 hrtick_update(rq);
bf0f6f24
IM
3754}
3755
e7693a36 3756#ifdef CONFIG_SMP
029632fb
PZ
3757/* Used instead of source_load when we know the type == 0 */
3758static unsigned long weighted_cpuload(const int cpu)
3759{
b92486cb 3760 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3761}
3762
3763/*
3764 * Return a low guess at the load of a migration-source cpu weighted
3765 * according to the scheduling class and "nice" value.
3766 *
3767 * We want to under-estimate the load of migration sources, to
3768 * balance conservatively.
3769 */
3770static unsigned long source_load(int cpu, int type)
3771{
3772 struct rq *rq = cpu_rq(cpu);
3773 unsigned long total = weighted_cpuload(cpu);
3774
3775 if (type == 0 || !sched_feat(LB_BIAS))
3776 return total;
3777
3778 return min(rq->cpu_load[type-1], total);
3779}
3780
3781/*
3782 * Return a high guess at the load of a migration-target cpu weighted
3783 * according to the scheduling class and "nice" value.
3784 */
3785static unsigned long target_load(int cpu, int type)
3786{
3787 struct rq *rq = cpu_rq(cpu);
3788 unsigned long total = weighted_cpuload(cpu);
3789
3790 if (type == 0 || !sched_feat(LB_BIAS))
3791 return total;
3792
3793 return max(rq->cpu_load[type-1], total);
3794}
3795
3796static unsigned long power_of(int cpu)
3797{
3798 return cpu_rq(cpu)->cpu_power;
3799}
3800
3801static unsigned long cpu_avg_load_per_task(int cpu)
3802{
3803 struct rq *rq = cpu_rq(cpu);
3804 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3805 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3806
3807 if (nr_running)
b92486cb 3808 return load_avg / nr_running;
029632fb
PZ
3809
3810 return 0;
3811}
3812
62470419
MW
3813static void record_wakee(struct task_struct *p)
3814{
3815 /*
3816 * Rough decay (wiping) for cost saving, don't worry
3817 * about the boundary, really active task won't care
3818 * about the loss.
3819 */
3820 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3821 current->wakee_flips = 0;
3822 current->wakee_flip_decay_ts = jiffies;
3823 }
3824
3825 if (current->last_wakee != p) {
3826 current->last_wakee = p;
3827 current->wakee_flips++;
3828 }
3829}
098fb9db 3830
74f8e4b2 3831static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3832{
3833 struct sched_entity *se = &p->se;
3834 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3835 u64 min_vruntime;
3836
3837#ifndef CONFIG_64BIT
3838 u64 min_vruntime_copy;
88ec22d3 3839
3fe1698b
PZ
3840 do {
3841 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3842 smp_rmb();
3843 min_vruntime = cfs_rq->min_vruntime;
3844 } while (min_vruntime != min_vruntime_copy);
3845#else
3846 min_vruntime = cfs_rq->min_vruntime;
3847#endif
88ec22d3 3848
3fe1698b 3849 se->vruntime -= min_vruntime;
62470419 3850 record_wakee(p);
88ec22d3
PZ
3851}
3852
bb3469ac 3853#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3854/*
3855 * effective_load() calculates the load change as seen from the root_task_group
3856 *
3857 * Adding load to a group doesn't make a group heavier, but can cause movement
3858 * of group shares between cpus. Assuming the shares were perfectly aligned one
3859 * can calculate the shift in shares.
cf5f0acf
PZ
3860 *
3861 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3862 * on this @cpu and results in a total addition (subtraction) of @wg to the
3863 * total group weight.
3864 *
3865 * Given a runqueue weight distribution (rw_i) we can compute a shares
3866 * distribution (s_i) using:
3867 *
3868 * s_i = rw_i / \Sum rw_j (1)
3869 *
3870 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3871 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3872 * shares distribution (s_i):
3873 *
3874 * rw_i = { 2, 4, 1, 0 }
3875 * s_i = { 2/7, 4/7, 1/7, 0 }
3876 *
3877 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3878 * task used to run on and the CPU the waker is running on), we need to
3879 * compute the effect of waking a task on either CPU and, in case of a sync
3880 * wakeup, compute the effect of the current task going to sleep.
3881 *
3882 * So for a change of @wl to the local @cpu with an overall group weight change
3883 * of @wl we can compute the new shares distribution (s'_i) using:
3884 *
3885 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3886 *
3887 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3888 * differences in waking a task to CPU 0. The additional task changes the
3889 * weight and shares distributions like:
3890 *
3891 * rw'_i = { 3, 4, 1, 0 }
3892 * s'_i = { 3/8, 4/8, 1/8, 0 }
3893 *
3894 * We can then compute the difference in effective weight by using:
3895 *
3896 * dw_i = S * (s'_i - s_i) (3)
3897 *
3898 * Where 'S' is the group weight as seen by its parent.
3899 *
3900 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3901 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3902 * 4/7) times the weight of the group.
f5bfb7d9 3903 */
2069dd75 3904static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3905{
4be9daaa 3906 struct sched_entity *se = tg->se[cpu];
f1d239f7 3907
58d081b5 3908 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3909 return wl;
3910
4be9daaa 3911 for_each_sched_entity(se) {
cf5f0acf 3912 long w, W;
4be9daaa 3913
977dda7c 3914 tg = se->my_q->tg;
bb3469ac 3915
cf5f0acf
PZ
3916 /*
3917 * W = @wg + \Sum rw_j
3918 */
3919 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3920
cf5f0acf
PZ
3921 /*
3922 * w = rw_i + @wl
3923 */
3924 w = se->my_q->load.weight + wl;
940959e9 3925
cf5f0acf
PZ
3926 /*
3927 * wl = S * s'_i; see (2)
3928 */
3929 if (W > 0 && w < W)
3930 wl = (w * tg->shares) / W;
977dda7c
PT
3931 else
3932 wl = tg->shares;
940959e9 3933
cf5f0acf
PZ
3934 /*
3935 * Per the above, wl is the new se->load.weight value; since
3936 * those are clipped to [MIN_SHARES, ...) do so now. See
3937 * calc_cfs_shares().
3938 */
977dda7c
PT
3939 if (wl < MIN_SHARES)
3940 wl = MIN_SHARES;
cf5f0acf
PZ
3941
3942 /*
3943 * wl = dw_i = S * (s'_i - s_i); see (3)
3944 */
977dda7c 3945 wl -= se->load.weight;
cf5f0acf
PZ
3946
3947 /*
3948 * Recursively apply this logic to all parent groups to compute
3949 * the final effective load change on the root group. Since
3950 * only the @tg group gets extra weight, all parent groups can
3951 * only redistribute existing shares. @wl is the shift in shares
3952 * resulting from this level per the above.
3953 */
4be9daaa 3954 wg = 0;
4be9daaa 3955 }
bb3469ac 3956
4be9daaa 3957 return wl;
bb3469ac
PZ
3958}
3959#else
4be9daaa 3960
58d081b5 3961static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3962{
83378269 3963 return wl;
bb3469ac 3964}
4be9daaa 3965
bb3469ac
PZ
3966#endif
3967
62470419
MW
3968static int wake_wide(struct task_struct *p)
3969{
7d9ffa89 3970 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3971
3972 /*
3973 * Yeah, it's the switching-frequency, could means many wakee or
3974 * rapidly switch, use factor here will just help to automatically
3975 * adjust the loose-degree, so bigger node will lead to more pull.
3976 */
3977 if (p->wakee_flips > factor) {
3978 /*
3979 * wakee is somewhat hot, it needs certain amount of cpu
3980 * resource, so if waker is far more hot, prefer to leave
3981 * it alone.
3982 */
3983 if (current->wakee_flips > (factor * p->wakee_flips))
3984 return 1;
3985 }
3986
3987 return 0;
3988}
3989
c88d5910 3990static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3991{
e37b6a7b 3992 s64 this_load, load;
c88d5910 3993 int idx, this_cpu, prev_cpu;
098fb9db 3994 unsigned long tl_per_task;
c88d5910 3995 struct task_group *tg;
83378269 3996 unsigned long weight;
b3137bc8 3997 int balanced;
098fb9db 3998
62470419
MW
3999 /*
4000 * If we wake multiple tasks be careful to not bounce
4001 * ourselves around too much.
4002 */
4003 if (wake_wide(p))
4004 return 0;
4005
c88d5910
PZ
4006 idx = sd->wake_idx;
4007 this_cpu = smp_processor_id();
4008 prev_cpu = task_cpu(p);
4009 load = source_load(prev_cpu, idx);
4010 this_load = target_load(this_cpu, idx);
098fb9db 4011
b3137bc8
MG
4012 /*
4013 * If sync wakeup then subtract the (maximum possible)
4014 * effect of the currently running task from the load
4015 * of the current CPU:
4016 */
83378269
PZ
4017 if (sync) {
4018 tg = task_group(current);
4019 weight = current->se.load.weight;
4020
c88d5910 4021 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4022 load += effective_load(tg, prev_cpu, 0, -weight);
4023 }
b3137bc8 4024
83378269
PZ
4025 tg = task_group(p);
4026 weight = p->se.load.weight;
b3137bc8 4027
71a29aa7
PZ
4028 /*
4029 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4030 * due to the sync cause above having dropped this_load to 0, we'll
4031 * always have an imbalance, but there's really nothing you can do
4032 * about that, so that's good too.
71a29aa7
PZ
4033 *
4034 * Otherwise check if either cpus are near enough in load to allow this
4035 * task to be woken on this_cpu.
4036 */
e37b6a7b
PT
4037 if (this_load > 0) {
4038 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4039
4040 this_eff_load = 100;
4041 this_eff_load *= power_of(prev_cpu);
4042 this_eff_load *= this_load +
4043 effective_load(tg, this_cpu, weight, weight);
4044
4045 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4046 prev_eff_load *= power_of(this_cpu);
4047 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4048
4049 balanced = this_eff_load <= prev_eff_load;
4050 } else
4051 balanced = true;
b3137bc8 4052
098fb9db 4053 /*
4ae7d5ce
IM
4054 * If the currently running task will sleep within
4055 * a reasonable amount of time then attract this newly
4056 * woken task:
098fb9db 4057 */
2fb7635c
PZ
4058 if (sync && balanced)
4059 return 1;
098fb9db 4060
41acab88 4061 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4062 tl_per_task = cpu_avg_load_per_task(this_cpu);
4063
c88d5910
PZ
4064 if (balanced ||
4065 (this_load <= load &&
4066 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4067 /*
4068 * This domain has SD_WAKE_AFFINE and
4069 * p is cache cold in this domain, and
4070 * there is no bad imbalance.
4071 */
c88d5910 4072 schedstat_inc(sd, ttwu_move_affine);
41acab88 4073 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4074
4075 return 1;
4076 }
4077 return 0;
4078}
4079
aaee1203
PZ
4080/*
4081 * find_idlest_group finds and returns the least busy CPU group within the
4082 * domain.
4083 */
4084static struct sched_group *
78e7ed53 4085find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 4086 int this_cpu, int load_idx)
e7693a36 4087{
b3bd3de6 4088 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4089 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 4090 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4091
aaee1203
PZ
4092 do {
4093 unsigned long load, avg_load;
4094 int local_group;
4095 int i;
e7693a36 4096
aaee1203
PZ
4097 /* Skip over this group if it has no CPUs allowed */
4098 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4099 tsk_cpus_allowed(p)))
aaee1203
PZ
4100 continue;
4101
4102 local_group = cpumask_test_cpu(this_cpu,
4103 sched_group_cpus(group));
4104
4105 /* Tally up the load of all CPUs in the group */
4106 avg_load = 0;
4107
4108 for_each_cpu(i, sched_group_cpus(group)) {
4109 /* Bias balancing toward cpus of our domain */
4110 if (local_group)
4111 load = source_load(i, load_idx);
4112 else
4113 load = target_load(i, load_idx);
4114
4115 avg_load += load;
4116 }
4117
4118 /* Adjust by relative CPU power of the group */
9c3f75cb 4119 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4120
4121 if (local_group) {
4122 this_load = avg_load;
aaee1203
PZ
4123 } else if (avg_load < min_load) {
4124 min_load = avg_load;
4125 idlest = group;
4126 }
4127 } while (group = group->next, group != sd->groups);
4128
4129 if (!idlest || 100*this_load < imbalance*min_load)
4130 return NULL;
4131 return idlest;
4132}
4133
4134/*
4135 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4136 */
4137static int
4138find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4139{
4140 unsigned long load, min_load = ULONG_MAX;
4141 int idlest = -1;
4142 int i;
4143
4144 /* Traverse only the allowed CPUs */
fa17b507 4145 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4146 load = weighted_cpuload(i);
4147
4148 if (load < min_load || (load == min_load && i == this_cpu)) {
4149 min_load = load;
4150 idlest = i;
e7693a36
GH
4151 }
4152 }
4153
aaee1203
PZ
4154 return idlest;
4155}
e7693a36 4156
a50bde51
PZ
4157/*
4158 * Try and locate an idle CPU in the sched_domain.
4159 */
99bd5e2f 4160static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4161{
99bd5e2f 4162 struct sched_domain *sd;
37407ea7 4163 struct sched_group *sg;
e0a79f52 4164 int i = task_cpu(p);
a50bde51 4165
e0a79f52
MG
4166 if (idle_cpu(target))
4167 return target;
99bd5e2f
SS
4168
4169 /*
e0a79f52 4170 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4171 */
e0a79f52
MG
4172 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4173 return i;
a50bde51
PZ
4174
4175 /*
37407ea7 4176 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4177 */
518cd623 4178 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4179 for_each_lower_domain(sd) {
37407ea7
LT
4180 sg = sd->groups;
4181 do {
4182 if (!cpumask_intersects(sched_group_cpus(sg),
4183 tsk_cpus_allowed(p)))
4184 goto next;
4185
4186 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4187 if (i == target || !idle_cpu(i))
37407ea7
LT
4188 goto next;
4189 }
970e1789 4190
37407ea7
LT
4191 target = cpumask_first_and(sched_group_cpus(sg),
4192 tsk_cpus_allowed(p));
4193 goto done;
4194next:
4195 sg = sg->next;
4196 } while (sg != sd->groups);
4197 }
4198done:
a50bde51
PZ
4199 return target;
4200}
4201
aaee1203
PZ
4202/*
4203 * sched_balance_self: balance the current task (running on cpu) in domains
4204 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4205 * SD_BALANCE_EXEC.
4206 *
4207 * Balance, ie. select the least loaded group.
4208 *
4209 * Returns the target CPU number, or the same CPU if no balancing is needed.
4210 *
4211 * preempt must be disabled.
4212 */
0017d735 4213static int
ac66f547 4214select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4215{
29cd8bae 4216 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4217 int cpu = smp_processor_id();
c88d5910 4218 int new_cpu = cpu;
99bd5e2f 4219 int want_affine = 0;
5158f4e4 4220 int sync = wake_flags & WF_SYNC;
c88d5910 4221
29baa747 4222 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4223 return prev_cpu;
4224
0763a660 4225 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4226 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4227 want_affine = 1;
4228 new_cpu = prev_cpu;
4229 }
aaee1203 4230
dce840a0 4231 rcu_read_lock();
aaee1203 4232 for_each_domain(cpu, tmp) {
e4f42888
PZ
4233 if (!(tmp->flags & SD_LOAD_BALANCE))
4234 continue;
4235
fe3bcfe1 4236 /*
99bd5e2f
SS
4237 * If both cpu and prev_cpu are part of this domain,
4238 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4239 */
99bd5e2f
SS
4240 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4241 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4242 affine_sd = tmp;
29cd8bae 4243 break;
f03542a7 4244 }
29cd8bae 4245
f03542a7 4246 if (tmp->flags & sd_flag)
29cd8bae
PZ
4247 sd = tmp;
4248 }
4249
8b911acd 4250 if (affine_sd) {
f03542a7 4251 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4252 prev_cpu = cpu;
4253
4254 new_cpu = select_idle_sibling(p, prev_cpu);
4255 goto unlock;
8b911acd 4256 }
e7693a36 4257
aaee1203 4258 while (sd) {
5158f4e4 4259 int load_idx = sd->forkexec_idx;
aaee1203 4260 struct sched_group *group;
c88d5910 4261 int weight;
098fb9db 4262
0763a660 4263 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4264 sd = sd->child;
4265 continue;
4266 }
098fb9db 4267
5158f4e4
PZ
4268 if (sd_flag & SD_BALANCE_WAKE)
4269 load_idx = sd->wake_idx;
098fb9db 4270
5158f4e4 4271 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
4272 if (!group) {
4273 sd = sd->child;
4274 continue;
4275 }
4ae7d5ce 4276
d7c33c49 4277 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4278 if (new_cpu == -1 || new_cpu == cpu) {
4279 /* Now try balancing at a lower domain level of cpu */
4280 sd = sd->child;
4281 continue;
e7693a36 4282 }
aaee1203
PZ
4283
4284 /* Now try balancing at a lower domain level of new_cpu */
4285 cpu = new_cpu;
669c55e9 4286 weight = sd->span_weight;
aaee1203
PZ
4287 sd = NULL;
4288 for_each_domain(cpu, tmp) {
669c55e9 4289 if (weight <= tmp->span_weight)
aaee1203 4290 break;
0763a660 4291 if (tmp->flags & sd_flag)
aaee1203
PZ
4292 sd = tmp;
4293 }
4294 /* while loop will break here if sd == NULL */
e7693a36 4295 }
dce840a0
PZ
4296unlock:
4297 rcu_read_unlock();
e7693a36 4298
c88d5910 4299 return new_cpu;
e7693a36 4300}
0a74bef8
PT
4301
4302/*
4303 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4304 * cfs_rq_of(p) references at time of call are still valid and identify the
4305 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4306 * other assumptions, including the state of rq->lock, should be made.
4307 */
4308static void
4309migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4310{
aff3e498
PT
4311 struct sched_entity *se = &p->se;
4312 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4313
4314 /*
4315 * Load tracking: accumulate removed load so that it can be processed
4316 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4317 * to blocked load iff they have a positive decay-count. It can never
4318 * be negative here since on-rq tasks have decay-count == 0.
4319 */
4320 if (se->avg.decay_count) {
4321 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4322 atomic_long_add(se->avg.load_avg_contrib,
4323 &cfs_rq->removed_load);
aff3e498 4324 }
0a74bef8 4325}
e7693a36
GH
4326#endif /* CONFIG_SMP */
4327
e52fb7c0
PZ
4328static unsigned long
4329wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4330{
4331 unsigned long gran = sysctl_sched_wakeup_granularity;
4332
4333 /*
e52fb7c0
PZ
4334 * Since its curr running now, convert the gran from real-time
4335 * to virtual-time in his units.
13814d42
MG
4336 *
4337 * By using 'se' instead of 'curr' we penalize light tasks, so
4338 * they get preempted easier. That is, if 'se' < 'curr' then
4339 * the resulting gran will be larger, therefore penalizing the
4340 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4341 * be smaller, again penalizing the lighter task.
4342 *
4343 * This is especially important for buddies when the leftmost
4344 * task is higher priority than the buddy.
0bbd3336 4345 */
f4ad9bd2 4346 return calc_delta_fair(gran, se);
0bbd3336
PZ
4347}
4348
464b7527
PZ
4349/*
4350 * Should 'se' preempt 'curr'.
4351 *
4352 * |s1
4353 * |s2
4354 * |s3
4355 * g
4356 * |<--->|c
4357 *
4358 * w(c, s1) = -1
4359 * w(c, s2) = 0
4360 * w(c, s3) = 1
4361 *
4362 */
4363static int
4364wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4365{
4366 s64 gran, vdiff = curr->vruntime - se->vruntime;
4367
4368 if (vdiff <= 0)
4369 return -1;
4370
e52fb7c0 4371 gran = wakeup_gran(curr, se);
464b7527
PZ
4372 if (vdiff > gran)
4373 return 1;
4374
4375 return 0;
4376}
4377
02479099
PZ
4378static void set_last_buddy(struct sched_entity *se)
4379{
69c80f3e
VP
4380 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4381 return;
4382
4383 for_each_sched_entity(se)
4384 cfs_rq_of(se)->last = se;
02479099
PZ
4385}
4386
4387static void set_next_buddy(struct sched_entity *se)
4388{
69c80f3e
VP
4389 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4390 return;
4391
4392 for_each_sched_entity(se)
4393 cfs_rq_of(se)->next = se;
02479099
PZ
4394}
4395
ac53db59
RR
4396static void set_skip_buddy(struct sched_entity *se)
4397{
69c80f3e
VP
4398 for_each_sched_entity(se)
4399 cfs_rq_of(se)->skip = se;
ac53db59
RR
4400}
4401
bf0f6f24
IM
4402/*
4403 * Preempt the current task with a newly woken task if needed:
4404 */
5a9b86f6 4405static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4406{
4407 struct task_struct *curr = rq->curr;
8651a86c 4408 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4409 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4410 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4411 int next_buddy_marked = 0;
bf0f6f24 4412
4ae7d5ce
IM
4413 if (unlikely(se == pse))
4414 return;
4415
5238cdd3 4416 /*
ddcdf6e7 4417 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4418 * unconditionally check_prempt_curr() after an enqueue (which may have
4419 * lead to a throttle). This both saves work and prevents false
4420 * next-buddy nomination below.
4421 */
4422 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4423 return;
4424
2f36825b 4425 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4426 set_next_buddy(pse);
2f36825b
VP
4427 next_buddy_marked = 1;
4428 }
57fdc26d 4429
aec0a514
BR
4430 /*
4431 * We can come here with TIF_NEED_RESCHED already set from new task
4432 * wake up path.
5238cdd3
PT
4433 *
4434 * Note: this also catches the edge-case of curr being in a throttled
4435 * group (e.g. via set_curr_task), since update_curr() (in the
4436 * enqueue of curr) will have resulted in resched being set. This
4437 * prevents us from potentially nominating it as a false LAST_BUDDY
4438 * below.
aec0a514
BR
4439 */
4440 if (test_tsk_need_resched(curr))
4441 return;
4442
a2f5c9ab
DH
4443 /* Idle tasks are by definition preempted by non-idle tasks. */
4444 if (unlikely(curr->policy == SCHED_IDLE) &&
4445 likely(p->policy != SCHED_IDLE))
4446 goto preempt;
4447
91c234b4 4448 /*
a2f5c9ab
DH
4449 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4450 * is driven by the tick):
91c234b4 4451 */
8ed92e51 4452 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4453 return;
bf0f6f24 4454
464b7527 4455 find_matching_se(&se, &pse);
9bbd7374 4456 update_curr(cfs_rq_of(se));
002f128b 4457 BUG_ON(!pse);
2f36825b
VP
4458 if (wakeup_preempt_entity(se, pse) == 1) {
4459 /*
4460 * Bias pick_next to pick the sched entity that is
4461 * triggering this preemption.
4462 */
4463 if (!next_buddy_marked)
4464 set_next_buddy(pse);
3a7e73a2 4465 goto preempt;
2f36825b 4466 }
464b7527 4467
3a7e73a2 4468 return;
a65ac745 4469
3a7e73a2
PZ
4470preempt:
4471 resched_task(curr);
4472 /*
4473 * Only set the backward buddy when the current task is still
4474 * on the rq. This can happen when a wakeup gets interleaved
4475 * with schedule on the ->pre_schedule() or idle_balance()
4476 * point, either of which can * drop the rq lock.
4477 *
4478 * Also, during early boot the idle thread is in the fair class,
4479 * for obvious reasons its a bad idea to schedule back to it.
4480 */
4481 if (unlikely(!se->on_rq || curr == rq->idle))
4482 return;
4483
4484 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4485 set_last_buddy(se);
bf0f6f24
IM
4486}
4487
fb8d4724 4488static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4489{
8f4d37ec 4490 struct task_struct *p;
bf0f6f24
IM
4491 struct cfs_rq *cfs_rq = &rq->cfs;
4492 struct sched_entity *se;
4493
36ace27e 4494 if (!cfs_rq->nr_running)
bf0f6f24
IM
4495 return NULL;
4496
4497 do {
9948f4b2 4498 se = pick_next_entity(cfs_rq);
f4b6755f 4499 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4500 cfs_rq = group_cfs_rq(se);
4501 } while (cfs_rq);
4502
8f4d37ec 4503 p = task_of(se);
b39e66ea
MG
4504 if (hrtick_enabled(rq))
4505 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4506
4507 return p;
bf0f6f24
IM
4508}
4509
4510/*
4511 * Account for a descheduled task:
4512 */
31ee529c 4513static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4514{
4515 struct sched_entity *se = &prev->se;
4516 struct cfs_rq *cfs_rq;
4517
4518 for_each_sched_entity(se) {
4519 cfs_rq = cfs_rq_of(se);
ab6cde26 4520 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4521 }
4522}
4523
ac53db59
RR
4524/*
4525 * sched_yield() is very simple
4526 *
4527 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4528 */
4529static void yield_task_fair(struct rq *rq)
4530{
4531 struct task_struct *curr = rq->curr;
4532 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4533 struct sched_entity *se = &curr->se;
4534
4535 /*
4536 * Are we the only task in the tree?
4537 */
4538 if (unlikely(rq->nr_running == 1))
4539 return;
4540
4541 clear_buddies(cfs_rq, se);
4542
4543 if (curr->policy != SCHED_BATCH) {
4544 update_rq_clock(rq);
4545 /*
4546 * Update run-time statistics of the 'current'.
4547 */
4548 update_curr(cfs_rq);
916671c0
MG
4549 /*
4550 * Tell update_rq_clock() that we've just updated,
4551 * so we don't do microscopic update in schedule()
4552 * and double the fastpath cost.
4553 */
4554 rq->skip_clock_update = 1;
ac53db59
RR
4555 }
4556
4557 set_skip_buddy(se);
4558}
4559
d95f4122
MG
4560static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4561{
4562 struct sched_entity *se = &p->se;
4563
5238cdd3
PT
4564 /* throttled hierarchies are not runnable */
4565 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4566 return false;
4567
4568 /* Tell the scheduler that we'd really like pse to run next. */
4569 set_next_buddy(se);
4570
d95f4122
MG
4571 yield_task_fair(rq);
4572
4573 return true;
4574}
4575
681f3e68 4576#ifdef CONFIG_SMP
bf0f6f24 4577/**************************************************
e9c84cb8
PZ
4578 * Fair scheduling class load-balancing methods.
4579 *
4580 * BASICS
4581 *
4582 * The purpose of load-balancing is to achieve the same basic fairness the
4583 * per-cpu scheduler provides, namely provide a proportional amount of compute
4584 * time to each task. This is expressed in the following equation:
4585 *
4586 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4587 *
4588 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4589 * W_i,0 is defined as:
4590 *
4591 * W_i,0 = \Sum_j w_i,j (2)
4592 *
4593 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4594 * is derived from the nice value as per prio_to_weight[].
4595 *
4596 * The weight average is an exponential decay average of the instantaneous
4597 * weight:
4598 *
4599 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4600 *
4601 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4602 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4603 * can also include other factors [XXX].
4604 *
4605 * To achieve this balance we define a measure of imbalance which follows
4606 * directly from (1):
4607 *
4608 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4609 *
4610 * We them move tasks around to minimize the imbalance. In the continuous
4611 * function space it is obvious this converges, in the discrete case we get
4612 * a few fun cases generally called infeasible weight scenarios.
4613 *
4614 * [XXX expand on:
4615 * - infeasible weights;
4616 * - local vs global optima in the discrete case. ]
4617 *
4618 *
4619 * SCHED DOMAINS
4620 *
4621 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4622 * for all i,j solution, we create a tree of cpus that follows the hardware
4623 * topology where each level pairs two lower groups (or better). This results
4624 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4625 * tree to only the first of the previous level and we decrease the frequency
4626 * of load-balance at each level inv. proportional to the number of cpus in
4627 * the groups.
4628 *
4629 * This yields:
4630 *
4631 * log_2 n 1 n
4632 * \Sum { --- * --- * 2^i } = O(n) (5)
4633 * i = 0 2^i 2^i
4634 * `- size of each group
4635 * | | `- number of cpus doing load-balance
4636 * | `- freq
4637 * `- sum over all levels
4638 *
4639 * Coupled with a limit on how many tasks we can migrate every balance pass,
4640 * this makes (5) the runtime complexity of the balancer.
4641 *
4642 * An important property here is that each CPU is still (indirectly) connected
4643 * to every other cpu in at most O(log n) steps:
4644 *
4645 * The adjacency matrix of the resulting graph is given by:
4646 *
4647 * log_2 n
4648 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4649 * k = 0
4650 *
4651 * And you'll find that:
4652 *
4653 * A^(log_2 n)_i,j != 0 for all i,j (7)
4654 *
4655 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4656 * The task movement gives a factor of O(m), giving a convergence complexity
4657 * of:
4658 *
4659 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4660 *
4661 *
4662 * WORK CONSERVING
4663 *
4664 * In order to avoid CPUs going idle while there's still work to do, new idle
4665 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4666 * tree itself instead of relying on other CPUs to bring it work.
4667 *
4668 * This adds some complexity to both (5) and (8) but it reduces the total idle
4669 * time.
4670 *
4671 * [XXX more?]
4672 *
4673 *
4674 * CGROUPS
4675 *
4676 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4677 *
4678 * s_k,i
4679 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4680 * S_k
4681 *
4682 * Where
4683 *
4684 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4685 *
4686 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4687 *
4688 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4689 * property.
4690 *
4691 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4692 * rewrite all of this once again.]
4693 */
bf0f6f24 4694
ed387b78
HS
4695static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4696
0ec8aa00
PZ
4697enum fbq_type { regular, remote, all };
4698
ddcdf6e7 4699#define LBF_ALL_PINNED 0x01
367456c7 4700#define LBF_NEED_BREAK 0x02
6263322c
PZ
4701#define LBF_DST_PINNED 0x04
4702#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4703
4704struct lb_env {
4705 struct sched_domain *sd;
4706
ddcdf6e7 4707 struct rq *src_rq;
85c1e7da 4708 int src_cpu;
ddcdf6e7
PZ
4709
4710 int dst_cpu;
4711 struct rq *dst_rq;
4712
88b8dac0
SV
4713 struct cpumask *dst_grpmask;
4714 int new_dst_cpu;
ddcdf6e7 4715 enum cpu_idle_type idle;
bd939f45 4716 long imbalance;
b9403130
MW
4717 /* The set of CPUs under consideration for load-balancing */
4718 struct cpumask *cpus;
4719
ddcdf6e7 4720 unsigned int flags;
367456c7
PZ
4721
4722 unsigned int loop;
4723 unsigned int loop_break;
4724 unsigned int loop_max;
0ec8aa00
PZ
4725
4726 enum fbq_type fbq_type;
ddcdf6e7
PZ
4727};
4728
1e3c88bd 4729/*
ddcdf6e7 4730 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4731 * Both runqueues must be locked.
4732 */
ddcdf6e7 4733static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4734{
ddcdf6e7
PZ
4735 deactivate_task(env->src_rq, p, 0);
4736 set_task_cpu(p, env->dst_cpu);
4737 activate_task(env->dst_rq, p, 0);
4738 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4739}
4740
029632fb
PZ
4741/*
4742 * Is this task likely cache-hot:
4743 */
4744static int
4745task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4746{
4747 s64 delta;
4748
4749 if (p->sched_class != &fair_sched_class)
4750 return 0;
4751
4752 if (unlikely(p->policy == SCHED_IDLE))
4753 return 0;
4754
4755 /*
4756 * Buddy candidates are cache hot:
4757 */
4758 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4759 (&p->se == cfs_rq_of(&p->se)->next ||
4760 &p->se == cfs_rq_of(&p->se)->last))
4761 return 1;
4762
4763 if (sysctl_sched_migration_cost == -1)
4764 return 1;
4765 if (sysctl_sched_migration_cost == 0)
4766 return 0;
4767
4768 delta = now - p->se.exec_start;
4769
4770 return delta < (s64)sysctl_sched_migration_cost;
4771}
4772
3a7053b3
MG
4773#ifdef CONFIG_NUMA_BALANCING
4774/* Returns true if the destination node has incurred more faults */
4775static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4776{
4777 int src_nid, dst_nid;
4778
4779 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4780 !(env->sd->flags & SD_NUMA)) {
4781 return false;
4782 }
4783
4784 src_nid = cpu_to_node(env->src_cpu);
4785 dst_nid = cpu_to_node(env->dst_cpu);
4786
83e1d2cd 4787 if (src_nid == dst_nid)
3a7053b3
MG
4788 return false;
4789
83e1d2cd
MG
4790 /* Always encourage migration to the preferred node. */
4791 if (dst_nid == p->numa_preferred_nid)
4792 return true;
4793
887c290e
RR
4794 /* If both task and group weight improve, this move is a winner. */
4795 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4796 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4797 return true;
4798
4799 return false;
4800}
7a0f3083
MG
4801
4802
4803static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4804{
4805 int src_nid, dst_nid;
4806
4807 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4808 return false;
4809
4810 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4811 return false;
4812
4813 src_nid = cpu_to_node(env->src_cpu);
4814 dst_nid = cpu_to_node(env->dst_cpu);
4815
83e1d2cd 4816 if (src_nid == dst_nid)
7a0f3083
MG
4817 return false;
4818
83e1d2cd
MG
4819 /* Migrating away from the preferred node is always bad. */
4820 if (src_nid == p->numa_preferred_nid)
4821 return true;
4822
887c290e
RR
4823 /* If either task or group weight get worse, don't do it. */
4824 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4825 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4826 return true;
4827
4828 return false;
4829}
4830
3a7053b3
MG
4831#else
4832static inline bool migrate_improves_locality(struct task_struct *p,
4833 struct lb_env *env)
4834{
4835 return false;
4836}
7a0f3083
MG
4837
4838static inline bool migrate_degrades_locality(struct task_struct *p,
4839 struct lb_env *env)
4840{
4841 return false;
4842}
3a7053b3
MG
4843#endif
4844
1e3c88bd
PZ
4845/*
4846 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4847 */
4848static
8e45cb54 4849int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4850{
4851 int tsk_cache_hot = 0;
4852 /*
4853 * We do not migrate tasks that are:
d3198084 4854 * 1) throttled_lb_pair, or
1e3c88bd 4855 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4856 * 3) running (obviously), or
4857 * 4) are cache-hot on their current CPU.
1e3c88bd 4858 */
d3198084
JK
4859 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4860 return 0;
4861
ddcdf6e7 4862 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4863 int cpu;
88b8dac0 4864
41acab88 4865 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4866
6263322c
PZ
4867 env->flags |= LBF_SOME_PINNED;
4868
88b8dac0
SV
4869 /*
4870 * Remember if this task can be migrated to any other cpu in
4871 * our sched_group. We may want to revisit it if we couldn't
4872 * meet load balance goals by pulling other tasks on src_cpu.
4873 *
4874 * Also avoid computing new_dst_cpu if we have already computed
4875 * one in current iteration.
4876 */
6263322c 4877 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4878 return 0;
4879
e02e60c1
JK
4880 /* Prevent to re-select dst_cpu via env's cpus */
4881 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4882 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4883 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4884 env->new_dst_cpu = cpu;
4885 break;
4886 }
88b8dac0 4887 }
e02e60c1 4888
1e3c88bd
PZ
4889 return 0;
4890 }
88b8dac0
SV
4891
4892 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4893 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4894
ddcdf6e7 4895 if (task_running(env->src_rq, p)) {
41acab88 4896 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4897 return 0;
4898 }
4899
4900 /*
4901 * Aggressive migration if:
3a7053b3
MG
4902 * 1) destination numa is preferred
4903 * 2) task is cache cold, or
4904 * 3) too many balance attempts have failed.
1e3c88bd 4905 */
78becc27 4906 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4907 if (!tsk_cache_hot)
4908 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4909
4910 if (migrate_improves_locality(p, env)) {
4911#ifdef CONFIG_SCHEDSTATS
4912 if (tsk_cache_hot) {
4913 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4914 schedstat_inc(p, se.statistics.nr_forced_migrations);
4915 }
4916#endif
4917 return 1;
4918 }
4919
1e3c88bd 4920 if (!tsk_cache_hot ||
8e45cb54 4921 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4922
1e3c88bd 4923 if (tsk_cache_hot) {
8e45cb54 4924 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4925 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4926 }
4e2dcb73 4927
1e3c88bd
PZ
4928 return 1;
4929 }
4930
4e2dcb73
ZH
4931 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4932 return 0;
1e3c88bd
PZ
4933}
4934
897c395f
PZ
4935/*
4936 * move_one_task tries to move exactly one task from busiest to this_rq, as
4937 * part of active balancing operations within "domain".
4938 * Returns 1 if successful and 0 otherwise.
4939 *
4940 * Called with both runqueues locked.
4941 */
8e45cb54 4942static int move_one_task(struct lb_env *env)
897c395f
PZ
4943{
4944 struct task_struct *p, *n;
897c395f 4945
367456c7 4946 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4947 if (!can_migrate_task(p, env))
4948 continue;
897c395f 4949
367456c7
PZ
4950 move_task(p, env);
4951 /*
4952 * Right now, this is only the second place move_task()
4953 * is called, so we can safely collect move_task()
4954 * stats here rather than inside move_task().
4955 */
4956 schedstat_inc(env->sd, lb_gained[env->idle]);
4957 return 1;
897c395f 4958 }
897c395f
PZ
4959 return 0;
4960}
4961
eb95308e
PZ
4962static const unsigned int sched_nr_migrate_break = 32;
4963
5d6523eb 4964/*
bd939f45 4965 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4966 * this_rq, as part of a balancing operation within domain "sd".
4967 * Returns 1 if successful and 0 otherwise.
4968 *
4969 * Called with both runqueues locked.
4970 */
4971static int move_tasks(struct lb_env *env)
1e3c88bd 4972{
5d6523eb
PZ
4973 struct list_head *tasks = &env->src_rq->cfs_tasks;
4974 struct task_struct *p;
367456c7
PZ
4975 unsigned long load;
4976 int pulled = 0;
1e3c88bd 4977
bd939f45 4978 if (env->imbalance <= 0)
5d6523eb 4979 return 0;
1e3c88bd 4980
5d6523eb
PZ
4981 while (!list_empty(tasks)) {
4982 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4983
367456c7
PZ
4984 env->loop++;
4985 /* We've more or less seen every task there is, call it quits */
5d6523eb 4986 if (env->loop > env->loop_max)
367456c7 4987 break;
5d6523eb
PZ
4988
4989 /* take a breather every nr_migrate tasks */
367456c7 4990 if (env->loop > env->loop_break) {
eb95308e 4991 env->loop_break += sched_nr_migrate_break;
8e45cb54 4992 env->flags |= LBF_NEED_BREAK;
ee00e66f 4993 break;
a195f004 4994 }
1e3c88bd 4995
d3198084 4996 if (!can_migrate_task(p, env))
367456c7
PZ
4997 goto next;
4998
4999 load = task_h_load(p);
5d6523eb 5000
eb95308e 5001 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5002 goto next;
5003
bd939f45 5004 if ((load / 2) > env->imbalance)
367456c7 5005 goto next;
1e3c88bd 5006
ddcdf6e7 5007 move_task(p, env);
ee00e66f 5008 pulled++;
bd939f45 5009 env->imbalance -= load;
1e3c88bd
PZ
5010
5011#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5012 /*
5013 * NEWIDLE balancing is a source of latency, so preemptible
5014 * kernels will stop after the first task is pulled to minimize
5015 * the critical section.
5016 */
5d6523eb 5017 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5018 break;
1e3c88bd
PZ
5019#endif
5020
ee00e66f
PZ
5021 /*
5022 * We only want to steal up to the prescribed amount of
5023 * weighted load.
5024 */
bd939f45 5025 if (env->imbalance <= 0)
ee00e66f 5026 break;
367456c7
PZ
5027
5028 continue;
5029next:
5d6523eb 5030 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5031 }
5d6523eb 5032
1e3c88bd 5033 /*
ddcdf6e7
PZ
5034 * Right now, this is one of only two places move_task() is called,
5035 * so we can safely collect move_task() stats here rather than
5036 * inside move_task().
1e3c88bd 5037 */
8e45cb54 5038 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5039
5d6523eb 5040 return pulled;
1e3c88bd
PZ
5041}
5042
230059de 5043#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5044/*
5045 * update tg->load_weight by folding this cpu's load_avg
5046 */
48a16753 5047static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5048{
48a16753
PT
5049 struct sched_entity *se = tg->se[cpu];
5050 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5051
48a16753
PT
5052 /* throttled entities do not contribute to load */
5053 if (throttled_hierarchy(cfs_rq))
5054 return;
9e3081ca 5055
aff3e498 5056 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5057
82958366
PT
5058 if (se) {
5059 update_entity_load_avg(se, 1);
5060 /*
5061 * We pivot on our runnable average having decayed to zero for
5062 * list removal. This generally implies that all our children
5063 * have also been removed (modulo rounding error or bandwidth
5064 * control); however, such cases are rare and we can fix these
5065 * at enqueue.
5066 *
5067 * TODO: fix up out-of-order children on enqueue.
5068 */
5069 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5070 list_del_leaf_cfs_rq(cfs_rq);
5071 } else {
48a16753 5072 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5073 update_rq_runnable_avg(rq, rq->nr_running);
5074 }
9e3081ca
PZ
5075}
5076
48a16753 5077static void update_blocked_averages(int cpu)
9e3081ca 5078{
9e3081ca 5079 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5080 struct cfs_rq *cfs_rq;
5081 unsigned long flags;
9e3081ca 5082
48a16753
PT
5083 raw_spin_lock_irqsave(&rq->lock, flags);
5084 update_rq_clock(rq);
9763b67f
PZ
5085 /*
5086 * Iterates the task_group tree in a bottom up fashion, see
5087 * list_add_leaf_cfs_rq() for details.
5088 */
64660c86 5089 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5090 /*
5091 * Note: We may want to consider periodically releasing
5092 * rq->lock about these updates so that creating many task
5093 * groups does not result in continually extending hold time.
5094 */
5095 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5096 }
48a16753
PT
5097
5098 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5099}
5100
9763b67f 5101/*
68520796 5102 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5103 * This needs to be done in a top-down fashion because the load of a child
5104 * group is a fraction of its parents load.
5105 */
68520796 5106static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5107{
68520796
VD
5108 struct rq *rq = rq_of(cfs_rq);
5109 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5110 unsigned long now = jiffies;
68520796 5111 unsigned long load;
a35b6466 5112
68520796 5113 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5114 return;
5115
68520796
VD
5116 cfs_rq->h_load_next = NULL;
5117 for_each_sched_entity(se) {
5118 cfs_rq = cfs_rq_of(se);
5119 cfs_rq->h_load_next = se;
5120 if (cfs_rq->last_h_load_update == now)
5121 break;
5122 }
a35b6466 5123
68520796 5124 if (!se) {
7e3115ef 5125 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5126 cfs_rq->last_h_load_update = now;
5127 }
5128
5129 while ((se = cfs_rq->h_load_next) != NULL) {
5130 load = cfs_rq->h_load;
5131 load = div64_ul(load * se->avg.load_avg_contrib,
5132 cfs_rq->runnable_load_avg + 1);
5133 cfs_rq = group_cfs_rq(se);
5134 cfs_rq->h_load = load;
5135 cfs_rq->last_h_load_update = now;
5136 }
9763b67f
PZ
5137}
5138
367456c7 5139static unsigned long task_h_load(struct task_struct *p)
230059de 5140{
367456c7 5141 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5142
68520796 5143 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5144 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5145 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5146}
5147#else
48a16753 5148static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5149{
5150}
5151
367456c7 5152static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5153{
a003a25b 5154 return p->se.avg.load_avg_contrib;
1e3c88bd 5155}
230059de 5156#endif
1e3c88bd 5157
1e3c88bd 5158/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5159/*
5160 * sg_lb_stats - stats of a sched_group required for load_balancing
5161 */
5162struct sg_lb_stats {
5163 unsigned long avg_load; /*Avg load across the CPUs of the group */
5164 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5165 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5166 unsigned long load_per_task;
3ae11c90 5167 unsigned long group_power;
147c5fc2
PZ
5168 unsigned int sum_nr_running; /* Nr tasks running in the group */
5169 unsigned int group_capacity;
5170 unsigned int idle_cpus;
5171 unsigned int group_weight;
1e3c88bd 5172 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5173 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5174#ifdef CONFIG_NUMA_BALANCING
5175 unsigned int nr_numa_running;
5176 unsigned int nr_preferred_running;
5177#endif
1e3c88bd
PZ
5178};
5179
56cf515b
JK
5180/*
5181 * sd_lb_stats - Structure to store the statistics of a sched_domain
5182 * during load balancing.
5183 */
5184struct sd_lb_stats {
5185 struct sched_group *busiest; /* Busiest group in this sd */
5186 struct sched_group *local; /* Local group in this sd */
5187 unsigned long total_load; /* Total load of all groups in sd */
5188 unsigned long total_pwr; /* Total power of all groups in sd */
5189 unsigned long avg_load; /* Average load across all groups in sd */
5190
56cf515b 5191 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5192 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5193};
5194
147c5fc2
PZ
5195static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5196{
5197 /*
5198 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5199 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5200 * We must however clear busiest_stat::avg_load because
5201 * update_sd_pick_busiest() reads this before assignment.
5202 */
5203 *sds = (struct sd_lb_stats){
5204 .busiest = NULL,
5205 .local = NULL,
5206 .total_load = 0UL,
5207 .total_pwr = 0UL,
5208 .busiest_stat = {
5209 .avg_load = 0UL,
5210 },
5211 };
5212}
5213
1e3c88bd
PZ
5214/**
5215 * get_sd_load_idx - Obtain the load index for a given sched domain.
5216 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5217 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5218 *
5219 * Return: The load index.
1e3c88bd
PZ
5220 */
5221static inline int get_sd_load_idx(struct sched_domain *sd,
5222 enum cpu_idle_type idle)
5223{
5224 int load_idx;
5225
5226 switch (idle) {
5227 case CPU_NOT_IDLE:
5228 load_idx = sd->busy_idx;
5229 break;
5230
5231 case CPU_NEWLY_IDLE:
5232 load_idx = sd->newidle_idx;
5233 break;
5234 default:
5235 load_idx = sd->idle_idx;
5236 break;
5237 }
5238
5239 return load_idx;
5240}
5241
15f803c9 5242static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5243{
1399fa78 5244 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5245}
5246
5247unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5248{
5249 return default_scale_freq_power(sd, cpu);
5250}
5251
15f803c9 5252static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5253{
669c55e9 5254 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5255 unsigned long smt_gain = sd->smt_gain;
5256
5257 smt_gain /= weight;
5258
5259 return smt_gain;
5260}
5261
5262unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5263{
5264 return default_scale_smt_power(sd, cpu);
5265}
5266
15f803c9 5267static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5268{
5269 struct rq *rq = cpu_rq(cpu);
b654f7de 5270 u64 total, available, age_stamp, avg;
1e3c88bd 5271
b654f7de
PZ
5272 /*
5273 * Since we're reading these variables without serialization make sure
5274 * we read them once before doing sanity checks on them.
5275 */
5276 age_stamp = ACCESS_ONCE(rq->age_stamp);
5277 avg = ACCESS_ONCE(rq->rt_avg);
5278
78becc27 5279 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5280
b654f7de 5281 if (unlikely(total < avg)) {
aa483808
VP
5282 /* Ensures that power won't end up being negative */
5283 available = 0;
5284 } else {
b654f7de 5285 available = total - avg;
aa483808 5286 }
1e3c88bd 5287
1399fa78
NR
5288 if (unlikely((s64)total < SCHED_POWER_SCALE))
5289 total = SCHED_POWER_SCALE;
1e3c88bd 5290
1399fa78 5291 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5292
5293 return div_u64(available, total);
5294}
5295
5296static void update_cpu_power(struct sched_domain *sd, int cpu)
5297{
669c55e9 5298 unsigned long weight = sd->span_weight;
1399fa78 5299 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5300 struct sched_group *sdg = sd->groups;
5301
1e3c88bd
PZ
5302 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5303 if (sched_feat(ARCH_POWER))
5304 power *= arch_scale_smt_power(sd, cpu);
5305 else
5306 power *= default_scale_smt_power(sd, cpu);
5307
1399fa78 5308 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5309 }
5310
9c3f75cb 5311 sdg->sgp->power_orig = power;
9d5efe05
SV
5312
5313 if (sched_feat(ARCH_POWER))
5314 power *= arch_scale_freq_power(sd, cpu);
5315 else
5316 power *= default_scale_freq_power(sd, cpu);
5317
1399fa78 5318 power >>= SCHED_POWER_SHIFT;
9d5efe05 5319
1e3c88bd 5320 power *= scale_rt_power(cpu);
1399fa78 5321 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5322
5323 if (!power)
5324 power = 1;
5325
e51fd5e2 5326 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5327 sdg->sgp->power = power;
1e3c88bd
PZ
5328}
5329
029632fb 5330void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5331{
5332 struct sched_domain *child = sd->child;
5333 struct sched_group *group, *sdg = sd->groups;
863bffc8 5334 unsigned long power, power_orig;
4ec4412e
VG
5335 unsigned long interval;
5336
5337 interval = msecs_to_jiffies(sd->balance_interval);
5338 interval = clamp(interval, 1UL, max_load_balance_interval);
5339 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5340
5341 if (!child) {
5342 update_cpu_power(sd, cpu);
5343 return;
5344 }
5345
863bffc8 5346 power_orig = power = 0;
1e3c88bd 5347
74a5ce20
PZ
5348 if (child->flags & SD_OVERLAP) {
5349 /*
5350 * SD_OVERLAP domains cannot assume that child groups
5351 * span the current group.
5352 */
5353
863bffc8
PZ
5354 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5355 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5356
5357 power_orig += sg->sgp->power_orig;
5358 power += sg->sgp->power;
5359 }
74a5ce20
PZ
5360 } else {
5361 /*
5362 * !SD_OVERLAP domains can assume that child groups
5363 * span the current group.
5364 */
5365
5366 group = child->groups;
5367 do {
863bffc8 5368 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5369 power += group->sgp->power;
5370 group = group->next;
5371 } while (group != child->groups);
5372 }
1e3c88bd 5373
863bffc8
PZ
5374 sdg->sgp->power_orig = power_orig;
5375 sdg->sgp->power = power;
1e3c88bd
PZ
5376}
5377
9d5efe05
SV
5378/*
5379 * Try and fix up capacity for tiny siblings, this is needed when
5380 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5381 * which on its own isn't powerful enough.
5382 *
5383 * See update_sd_pick_busiest() and check_asym_packing().
5384 */
5385static inline int
5386fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5387{
5388 /*
1399fa78 5389 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5390 */
a6c75f2f 5391 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5392 return 0;
5393
5394 /*
5395 * If ~90% of the cpu_power is still there, we're good.
5396 */
9c3f75cb 5397 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5398 return 1;
5399
5400 return 0;
5401}
5402
30ce5dab
PZ
5403/*
5404 * Group imbalance indicates (and tries to solve) the problem where balancing
5405 * groups is inadequate due to tsk_cpus_allowed() constraints.
5406 *
5407 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5408 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5409 * Something like:
5410 *
5411 * { 0 1 2 3 } { 4 5 6 7 }
5412 * * * * *
5413 *
5414 * If we were to balance group-wise we'd place two tasks in the first group and
5415 * two tasks in the second group. Clearly this is undesired as it will overload
5416 * cpu 3 and leave one of the cpus in the second group unused.
5417 *
5418 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5419 * by noticing the lower domain failed to reach balance and had difficulty
5420 * moving tasks due to affinity constraints.
30ce5dab
PZ
5421 *
5422 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5423 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5424 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5425 * to create an effective group imbalance.
5426 *
5427 * This is a somewhat tricky proposition since the next run might not find the
5428 * group imbalance and decide the groups need to be balanced again. A most
5429 * subtle and fragile situation.
5430 */
5431
6263322c 5432static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5433{
6263322c 5434 return group->sgp->imbalance;
30ce5dab
PZ
5435}
5436
b37d9316
PZ
5437/*
5438 * Compute the group capacity.
5439 *
c61037e9
PZ
5440 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5441 * first dividing out the smt factor and computing the actual number of cores
5442 * and limit power unit capacity with that.
b37d9316
PZ
5443 */
5444static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5445{
c61037e9
PZ
5446 unsigned int capacity, smt, cpus;
5447 unsigned int power, power_orig;
5448
5449 power = group->sgp->power;
5450 power_orig = group->sgp->power_orig;
5451 cpus = group->group_weight;
b37d9316 5452
c61037e9
PZ
5453 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5454 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5455 capacity = cpus / smt; /* cores */
b37d9316 5456
c61037e9 5457 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5458 if (!capacity)
5459 capacity = fix_small_capacity(env->sd, group);
5460
5461 return capacity;
5462}
5463
1e3c88bd
PZ
5464/**
5465 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5466 * @env: The load balancing environment.
1e3c88bd 5467 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5468 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5469 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5470 * @sgs: variable to hold the statistics for this group.
5471 */
bd939f45
PZ
5472static inline void update_sg_lb_stats(struct lb_env *env,
5473 struct sched_group *group, int load_idx,
23f0d209 5474 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5475{
30ce5dab
PZ
5476 unsigned long nr_running;
5477 unsigned long load;
bd939f45 5478 int i;
1e3c88bd 5479
b72ff13c
PZ
5480 memset(sgs, 0, sizeof(*sgs));
5481
b9403130 5482 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5483 struct rq *rq = cpu_rq(i);
5484
e44bc5c5
PZ
5485 nr_running = rq->nr_running;
5486
1e3c88bd 5487 /* Bias balancing toward cpus of our domain */
6263322c 5488 if (local_group)
04f733b4 5489 load = target_load(i, load_idx);
6263322c 5490 else
1e3c88bd 5491 load = source_load(i, load_idx);
1e3c88bd
PZ
5492
5493 sgs->group_load += load;
e44bc5c5 5494 sgs->sum_nr_running += nr_running;
0ec8aa00
PZ
5495#ifdef CONFIG_NUMA_BALANCING
5496 sgs->nr_numa_running += rq->nr_numa_running;
5497 sgs->nr_preferred_running += rq->nr_preferred_running;
5498#endif
1e3c88bd 5499 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5500 if (idle_cpu(i))
5501 sgs->idle_cpus++;
1e3c88bd
PZ
5502 }
5503
1e3c88bd 5504 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5505 sgs->group_power = group->sgp->power;
5506 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5507
dd5feea1 5508 if (sgs->sum_nr_running)
38d0f770 5509 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5510
aae6d3dd 5511 sgs->group_weight = group->group_weight;
fab47622 5512
b37d9316
PZ
5513 sgs->group_imb = sg_imbalanced(group);
5514 sgs->group_capacity = sg_capacity(env, group);
5515
fab47622
NR
5516 if (sgs->group_capacity > sgs->sum_nr_running)
5517 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5518}
5519
532cb4c4
MN
5520/**
5521 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5522 * @env: The load balancing environment.
532cb4c4
MN
5523 * @sds: sched_domain statistics
5524 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5525 * @sgs: sched_group statistics
532cb4c4
MN
5526 *
5527 * Determine if @sg is a busier group than the previously selected
5528 * busiest group.
e69f6186
YB
5529 *
5530 * Return: %true if @sg is a busier group than the previously selected
5531 * busiest group. %false otherwise.
532cb4c4 5532 */
bd939f45 5533static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5534 struct sd_lb_stats *sds,
5535 struct sched_group *sg,
bd939f45 5536 struct sg_lb_stats *sgs)
532cb4c4 5537{
56cf515b 5538 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5539 return false;
5540
5541 if (sgs->sum_nr_running > sgs->group_capacity)
5542 return true;
5543
5544 if (sgs->group_imb)
5545 return true;
5546
5547 /*
5548 * ASYM_PACKING needs to move all the work to the lowest
5549 * numbered CPUs in the group, therefore mark all groups
5550 * higher than ourself as busy.
5551 */
bd939f45
PZ
5552 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5553 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5554 if (!sds->busiest)
5555 return true;
5556
5557 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5558 return true;
5559 }
5560
5561 return false;
5562}
5563
0ec8aa00
PZ
5564#ifdef CONFIG_NUMA_BALANCING
5565static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5566{
5567 if (sgs->sum_nr_running > sgs->nr_numa_running)
5568 return regular;
5569 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5570 return remote;
5571 return all;
5572}
5573
5574static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5575{
5576 if (rq->nr_running > rq->nr_numa_running)
5577 return regular;
5578 if (rq->nr_running > rq->nr_preferred_running)
5579 return remote;
5580 return all;
5581}
5582#else
5583static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5584{
5585 return all;
5586}
5587
5588static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5589{
5590 return regular;
5591}
5592#endif /* CONFIG_NUMA_BALANCING */
5593
1e3c88bd 5594/**
461819ac 5595 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5596 * @env: The load balancing environment.
1e3c88bd
PZ
5597 * @sds: variable to hold the statistics for this sched_domain.
5598 */
0ec8aa00 5599static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5600{
bd939f45
PZ
5601 struct sched_domain *child = env->sd->child;
5602 struct sched_group *sg = env->sd->groups;
56cf515b 5603 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5604 int load_idx, prefer_sibling = 0;
5605
5606 if (child && child->flags & SD_PREFER_SIBLING)
5607 prefer_sibling = 1;
5608
bd939f45 5609 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5610
5611 do {
56cf515b 5612 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5613 int local_group;
5614
bd939f45 5615 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5616 if (local_group) {
5617 sds->local = sg;
5618 sgs = &sds->local_stat;
b72ff13c
PZ
5619
5620 if (env->idle != CPU_NEWLY_IDLE ||
5621 time_after_eq(jiffies, sg->sgp->next_update))
5622 update_group_power(env->sd, env->dst_cpu);
56cf515b 5623 }
1e3c88bd 5624
56cf515b 5625 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5626
b72ff13c
PZ
5627 if (local_group)
5628 goto next_group;
5629
1e3c88bd
PZ
5630 /*
5631 * In case the child domain prefers tasks go to siblings
532cb4c4 5632 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5633 * and move all the excess tasks away. We lower the capacity
5634 * of a group only if the local group has the capacity to fit
5635 * these excess tasks, i.e. nr_running < group_capacity. The
5636 * extra check prevents the case where you always pull from the
5637 * heaviest group when it is already under-utilized (possible
5638 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5639 */
b72ff13c
PZ
5640 if (prefer_sibling && sds->local &&
5641 sds->local_stat.group_has_capacity)
147c5fc2 5642 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5643
b72ff13c 5644 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5645 sds->busiest = sg;
56cf515b 5646 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5647 }
5648
b72ff13c
PZ
5649next_group:
5650 /* Now, start updating sd_lb_stats */
5651 sds->total_load += sgs->group_load;
5652 sds->total_pwr += sgs->group_power;
5653
532cb4c4 5654 sg = sg->next;
bd939f45 5655 } while (sg != env->sd->groups);
0ec8aa00
PZ
5656
5657 if (env->sd->flags & SD_NUMA)
5658 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5659}
5660
532cb4c4
MN
5661/**
5662 * check_asym_packing - Check to see if the group is packed into the
5663 * sched doman.
5664 *
5665 * This is primarily intended to used at the sibling level. Some
5666 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5667 * case of POWER7, it can move to lower SMT modes only when higher
5668 * threads are idle. When in lower SMT modes, the threads will
5669 * perform better since they share less core resources. Hence when we
5670 * have idle threads, we want them to be the higher ones.
5671 *
5672 * This packing function is run on idle threads. It checks to see if
5673 * the busiest CPU in this domain (core in the P7 case) has a higher
5674 * CPU number than the packing function is being run on. Here we are
5675 * assuming lower CPU number will be equivalent to lower a SMT thread
5676 * number.
5677 *
e69f6186 5678 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5679 * this CPU. The amount of the imbalance is returned in *imbalance.
5680 *
cd96891d 5681 * @env: The load balancing environment.
532cb4c4 5682 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5683 */
bd939f45 5684static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5685{
5686 int busiest_cpu;
5687
bd939f45 5688 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5689 return 0;
5690
5691 if (!sds->busiest)
5692 return 0;
5693
5694 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5695 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5696 return 0;
5697
bd939f45 5698 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5699 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5700 SCHED_POWER_SCALE);
bd939f45 5701
532cb4c4 5702 return 1;
1e3c88bd
PZ
5703}
5704
5705/**
5706 * fix_small_imbalance - Calculate the minor imbalance that exists
5707 * amongst the groups of a sched_domain, during
5708 * load balancing.
cd96891d 5709 * @env: The load balancing environment.
1e3c88bd 5710 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5711 */
bd939f45
PZ
5712static inline
5713void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5714{
5715 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5716 unsigned int imbn = 2;
dd5feea1 5717 unsigned long scaled_busy_load_per_task;
56cf515b 5718 struct sg_lb_stats *local, *busiest;
1e3c88bd 5719
56cf515b
JK
5720 local = &sds->local_stat;
5721 busiest = &sds->busiest_stat;
1e3c88bd 5722
56cf515b
JK
5723 if (!local->sum_nr_running)
5724 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5725 else if (busiest->load_per_task > local->load_per_task)
5726 imbn = 1;
dd5feea1 5727
56cf515b
JK
5728 scaled_busy_load_per_task =
5729 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5730 busiest->group_power;
56cf515b 5731
3029ede3
VD
5732 if (busiest->avg_load + scaled_busy_load_per_task >=
5733 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5734 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5735 return;
5736 }
5737
5738 /*
5739 * OK, we don't have enough imbalance to justify moving tasks,
5740 * however we may be able to increase total CPU power used by
5741 * moving them.
5742 */
5743
3ae11c90 5744 pwr_now += busiest->group_power *
56cf515b 5745 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5746 pwr_now += local->group_power *
56cf515b 5747 min(local->load_per_task, local->avg_load);
1399fa78 5748 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5749
5750 /* Amount of load we'd subtract */
56cf515b 5751 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5752 busiest->group_power;
56cf515b 5753 if (busiest->avg_load > tmp) {
3ae11c90 5754 pwr_move += busiest->group_power *
56cf515b
JK
5755 min(busiest->load_per_task,
5756 busiest->avg_load - tmp);
5757 }
1e3c88bd
PZ
5758
5759 /* Amount of load we'd add */
3ae11c90 5760 if (busiest->avg_load * busiest->group_power <
56cf515b 5761 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5762 tmp = (busiest->avg_load * busiest->group_power) /
5763 local->group_power;
56cf515b
JK
5764 } else {
5765 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5766 local->group_power;
56cf515b 5767 }
3ae11c90
PZ
5768 pwr_move += local->group_power *
5769 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5770 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5771
5772 /* Move if we gain throughput */
5773 if (pwr_move > pwr_now)
56cf515b 5774 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5775}
5776
5777/**
5778 * calculate_imbalance - Calculate the amount of imbalance present within the
5779 * groups of a given sched_domain during load balance.
bd939f45 5780 * @env: load balance environment
1e3c88bd 5781 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5782 */
bd939f45 5783static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5784{
dd5feea1 5785 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5786 struct sg_lb_stats *local, *busiest;
5787
5788 local = &sds->local_stat;
56cf515b 5789 busiest = &sds->busiest_stat;
dd5feea1 5790
56cf515b 5791 if (busiest->group_imb) {
30ce5dab
PZ
5792 /*
5793 * In the group_imb case we cannot rely on group-wide averages
5794 * to ensure cpu-load equilibrium, look at wider averages. XXX
5795 */
56cf515b
JK
5796 busiest->load_per_task =
5797 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5798 }
5799
1e3c88bd
PZ
5800 /*
5801 * In the presence of smp nice balancing, certain scenarios can have
5802 * max load less than avg load(as we skip the groups at or below
5803 * its cpu_power, while calculating max_load..)
5804 */
b1885550
VD
5805 if (busiest->avg_load <= sds->avg_load ||
5806 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5807 env->imbalance = 0;
5808 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5809 }
5810
56cf515b 5811 if (!busiest->group_imb) {
dd5feea1
SS
5812 /*
5813 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5814 * Except of course for the group_imb case, since then we might
5815 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5816 */
56cf515b
JK
5817 load_above_capacity =
5818 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5819
1399fa78 5820 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5821 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5822 }
5823
5824 /*
5825 * We're trying to get all the cpus to the average_load, so we don't
5826 * want to push ourselves above the average load, nor do we wish to
5827 * reduce the max loaded cpu below the average load. At the same time,
5828 * we also don't want to reduce the group load below the group capacity
5829 * (so that we can implement power-savings policies etc). Thus we look
5830 * for the minimum possible imbalance.
dd5feea1 5831 */
30ce5dab 5832 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5833
5834 /* How much load to actually move to equalise the imbalance */
56cf515b 5835 env->imbalance = min(
3ae11c90
PZ
5836 max_pull * busiest->group_power,
5837 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5838 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5839
5840 /*
5841 * if *imbalance is less than the average load per runnable task
25985edc 5842 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5843 * a think about bumping its value to force at least one task to be
5844 * moved
5845 */
56cf515b 5846 if (env->imbalance < busiest->load_per_task)
bd939f45 5847 return fix_small_imbalance(env, sds);
1e3c88bd 5848}
fab47622 5849
1e3c88bd
PZ
5850/******* find_busiest_group() helpers end here *********************/
5851
5852/**
5853 * find_busiest_group - Returns the busiest group within the sched_domain
5854 * if there is an imbalance. If there isn't an imbalance, and
5855 * the user has opted for power-savings, it returns a group whose
5856 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5857 * such a group exists.
5858 *
5859 * Also calculates the amount of weighted load which should be moved
5860 * to restore balance.
5861 *
cd96891d 5862 * @env: The load balancing environment.
1e3c88bd 5863 *
e69f6186 5864 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5865 * - If no imbalance and user has opted for power-savings balance,
5866 * return the least loaded group whose CPUs can be
5867 * put to idle by rebalancing its tasks onto our group.
5868 */
56cf515b 5869static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5870{
56cf515b 5871 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5872 struct sd_lb_stats sds;
5873
147c5fc2 5874 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5875
5876 /*
5877 * Compute the various statistics relavent for load balancing at
5878 * this level.
5879 */
23f0d209 5880 update_sd_lb_stats(env, &sds);
56cf515b
JK
5881 local = &sds.local_stat;
5882 busiest = &sds.busiest_stat;
1e3c88bd 5883
bd939f45
PZ
5884 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5885 check_asym_packing(env, &sds))
532cb4c4
MN
5886 return sds.busiest;
5887
cc57aa8f 5888 /* There is no busy sibling group to pull tasks from */
56cf515b 5889 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5890 goto out_balanced;
5891
1399fa78 5892 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5893
866ab43e
PZ
5894 /*
5895 * If the busiest group is imbalanced the below checks don't
30ce5dab 5896 * work because they assume all things are equal, which typically
866ab43e
PZ
5897 * isn't true due to cpus_allowed constraints and the like.
5898 */
56cf515b 5899 if (busiest->group_imb)
866ab43e
PZ
5900 goto force_balance;
5901
cc57aa8f 5902 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5903 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5904 !busiest->group_has_capacity)
fab47622
NR
5905 goto force_balance;
5906
cc57aa8f
PZ
5907 /*
5908 * If the local group is more busy than the selected busiest group
5909 * don't try and pull any tasks.
5910 */
56cf515b 5911 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5912 goto out_balanced;
5913
cc57aa8f
PZ
5914 /*
5915 * Don't pull any tasks if this group is already above the domain
5916 * average load.
5917 */
56cf515b 5918 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5919 goto out_balanced;
5920
bd939f45 5921 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5922 /*
5923 * This cpu is idle. If the busiest group load doesn't
5924 * have more tasks than the number of available cpu's and
5925 * there is no imbalance between this and busiest group
5926 * wrt to idle cpu's, it is balanced.
5927 */
56cf515b
JK
5928 if ((local->idle_cpus < busiest->idle_cpus) &&
5929 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5930 goto out_balanced;
c186fafe
PZ
5931 } else {
5932 /*
5933 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5934 * imbalance_pct to be conservative.
5935 */
56cf515b
JK
5936 if (100 * busiest->avg_load <=
5937 env->sd->imbalance_pct * local->avg_load)
c186fafe 5938 goto out_balanced;
aae6d3dd 5939 }
1e3c88bd 5940
fab47622 5941force_balance:
1e3c88bd 5942 /* Looks like there is an imbalance. Compute it */
bd939f45 5943 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5944 return sds.busiest;
5945
5946out_balanced:
bd939f45 5947 env->imbalance = 0;
1e3c88bd
PZ
5948 return NULL;
5949}
5950
5951/*
5952 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5953 */
bd939f45 5954static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5955 struct sched_group *group)
1e3c88bd
PZ
5956{
5957 struct rq *busiest = NULL, *rq;
95a79b80 5958 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5959 int i;
5960
6906a408 5961 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
5962 unsigned long power, capacity, wl;
5963 enum fbq_type rt;
5964
5965 rq = cpu_rq(i);
5966 rt = fbq_classify_rq(rq);
1e3c88bd 5967
0ec8aa00
PZ
5968 /*
5969 * We classify groups/runqueues into three groups:
5970 * - regular: there are !numa tasks
5971 * - remote: there are numa tasks that run on the 'wrong' node
5972 * - all: there is no distinction
5973 *
5974 * In order to avoid migrating ideally placed numa tasks,
5975 * ignore those when there's better options.
5976 *
5977 * If we ignore the actual busiest queue to migrate another
5978 * task, the next balance pass can still reduce the busiest
5979 * queue by moving tasks around inside the node.
5980 *
5981 * If we cannot move enough load due to this classification
5982 * the next pass will adjust the group classification and
5983 * allow migration of more tasks.
5984 *
5985 * Both cases only affect the total convergence complexity.
5986 */
5987 if (rt > env->fbq_type)
5988 continue;
5989
5990 power = power_of(i);
5991 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 5992 if (!capacity)
bd939f45 5993 capacity = fix_small_capacity(env->sd, group);
9d5efe05 5994
6e40f5bb 5995 wl = weighted_cpuload(i);
1e3c88bd 5996
6e40f5bb
TG
5997 /*
5998 * When comparing with imbalance, use weighted_cpuload()
5999 * which is not scaled with the cpu power.
6000 */
bd939f45 6001 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6002 continue;
6003
6e40f5bb
TG
6004 /*
6005 * For the load comparisons with the other cpu's, consider
6006 * the weighted_cpuload() scaled with the cpu power, so that
6007 * the load can be moved away from the cpu that is potentially
6008 * running at a lower capacity.
95a79b80
JK
6009 *
6010 * Thus we're looking for max(wl_i / power_i), crosswise
6011 * multiplication to rid ourselves of the division works out
6012 * to: wl_i * power_j > wl_j * power_i; where j is our
6013 * previous maximum.
6e40f5bb 6014 */
95a79b80
JK
6015 if (wl * busiest_power > busiest_load * power) {
6016 busiest_load = wl;
6017 busiest_power = power;
1e3c88bd
PZ
6018 busiest = rq;
6019 }
6020 }
6021
6022 return busiest;
6023}
6024
6025/*
6026 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6027 * so long as it is large enough.
6028 */
6029#define MAX_PINNED_INTERVAL 512
6030
6031/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6032DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6033
bd939f45 6034static int need_active_balance(struct lb_env *env)
1af3ed3d 6035{
bd939f45
PZ
6036 struct sched_domain *sd = env->sd;
6037
6038 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6039
6040 /*
6041 * ASYM_PACKING needs to force migrate tasks from busy but
6042 * higher numbered CPUs in order to pack all tasks in the
6043 * lowest numbered CPUs.
6044 */
bd939f45 6045 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6046 return 1;
1af3ed3d
PZ
6047 }
6048
6049 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6050}
6051
969c7921
TH
6052static int active_load_balance_cpu_stop(void *data);
6053
23f0d209
JK
6054static int should_we_balance(struct lb_env *env)
6055{
6056 struct sched_group *sg = env->sd->groups;
6057 struct cpumask *sg_cpus, *sg_mask;
6058 int cpu, balance_cpu = -1;
6059
6060 /*
6061 * In the newly idle case, we will allow all the cpu's
6062 * to do the newly idle load balance.
6063 */
6064 if (env->idle == CPU_NEWLY_IDLE)
6065 return 1;
6066
6067 sg_cpus = sched_group_cpus(sg);
6068 sg_mask = sched_group_mask(sg);
6069 /* Try to find first idle cpu */
6070 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6071 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6072 continue;
6073
6074 balance_cpu = cpu;
6075 break;
6076 }
6077
6078 if (balance_cpu == -1)
6079 balance_cpu = group_balance_cpu(sg);
6080
6081 /*
6082 * First idle cpu or the first cpu(busiest) in this sched group
6083 * is eligible for doing load balancing at this and above domains.
6084 */
b0cff9d8 6085 return balance_cpu == env->dst_cpu;
23f0d209
JK
6086}
6087
1e3c88bd
PZ
6088/*
6089 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6090 * tasks if there is an imbalance.
6091 */
6092static int load_balance(int this_cpu, struct rq *this_rq,
6093 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6094 int *continue_balancing)
1e3c88bd 6095{
88b8dac0 6096 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6097 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6098 struct sched_group *group;
1e3c88bd
PZ
6099 struct rq *busiest;
6100 unsigned long flags;
e6252c3e 6101 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6102
8e45cb54
PZ
6103 struct lb_env env = {
6104 .sd = sd,
ddcdf6e7
PZ
6105 .dst_cpu = this_cpu,
6106 .dst_rq = this_rq,
88b8dac0 6107 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6108 .idle = idle,
eb95308e 6109 .loop_break = sched_nr_migrate_break,
b9403130 6110 .cpus = cpus,
0ec8aa00 6111 .fbq_type = all,
8e45cb54
PZ
6112 };
6113
cfc03118
JK
6114 /*
6115 * For NEWLY_IDLE load_balancing, we don't need to consider
6116 * other cpus in our group
6117 */
e02e60c1 6118 if (idle == CPU_NEWLY_IDLE)
cfc03118 6119 env.dst_grpmask = NULL;
cfc03118 6120
1e3c88bd
PZ
6121 cpumask_copy(cpus, cpu_active_mask);
6122
1e3c88bd
PZ
6123 schedstat_inc(sd, lb_count[idle]);
6124
6125redo:
23f0d209
JK
6126 if (!should_we_balance(&env)) {
6127 *continue_balancing = 0;
1e3c88bd 6128 goto out_balanced;
23f0d209 6129 }
1e3c88bd 6130
23f0d209 6131 group = find_busiest_group(&env);
1e3c88bd
PZ
6132 if (!group) {
6133 schedstat_inc(sd, lb_nobusyg[idle]);
6134 goto out_balanced;
6135 }
6136
b9403130 6137 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6138 if (!busiest) {
6139 schedstat_inc(sd, lb_nobusyq[idle]);
6140 goto out_balanced;
6141 }
6142
78feefc5 6143 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6144
bd939f45 6145 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6146
6147 ld_moved = 0;
6148 if (busiest->nr_running > 1) {
6149 /*
6150 * Attempt to move tasks. If find_busiest_group has found
6151 * an imbalance but busiest->nr_running <= 1, the group is
6152 * still unbalanced. ld_moved simply stays zero, so it is
6153 * correctly treated as an imbalance.
6154 */
8e45cb54 6155 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6156 env.src_cpu = busiest->cpu;
6157 env.src_rq = busiest;
6158 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6159
5d6523eb 6160more_balance:
1e3c88bd 6161 local_irq_save(flags);
78feefc5 6162 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6163
6164 /*
6165 * cur_ld_moved - load moved in current iteration
6166 * ld_moved - cumulative load moved across iterations
6167 */
6168 cur_ld_moved = move_tasks(&env);
6169 ld_moved += cur_ld_moved;
78feefc5 6170 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6171 local_irq_restore(flags);
6172
6173 /*
6174 * some other cpu did the load balance for us.
6175 */
88b8dac0
SV
6176 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6177 resched_cpu(env.dst_cpu);
6178
f1cd0858
JK
6179 if (env.flags & LBF_NEED_BREAK) {
6180 env.flags &= ~LBF_NEED_BREAK;
6181 goto more_balance;
6182 }
6183
88b8dac0
SV
6184 /*
6185 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6186 * us and move them to an alternate dst_cpu in our sched_group
6187 * where they can run. The upper limit on how many times we
6188 * iterate on same src_cpu is dependent on number of cpus in our
6189 * sched_group.
6190 *
6191 * This changes load balance semantics a bit on who can move
6192 * load to a given_cpu. In addition to the given_cpu itself
6193 * (or a ilb_cpu acting on its behalf where given_cpu is
6194 * nohz-idle), we now have balance_cpu in a position to move
6195 * load to given_cpu. In rare situations, this may cause
6196 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6197 * _independently_ and at _same_ time to move some load to
6198 * given_cpu) causing exceess load to be moved to given_cpu.
6199 * This however should not happen so much in practice and
6200 * moreover subsequent load balance cycles should correct the
6201 * excess load moved.
6202 */
6263322c 6203 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6204
7aff2e3a
VD
6205 /* Prevent to re-select dst_cpu via env's cpus */
6206 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6207
78feefc5 6208 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6209 env.dst_cpu = env.new_dst_cpu;
6263322c 6210 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6211 env.loop = 0;
6212 env.loop_break = sched_nr_migrate_break;
e02e60c1 6213
88b8dac0
SV
6214 /*
6215 * Go back to "more_balance" rather than "redo" since we
6216 * need to continue with same src_cpu.
6217 */
6218 goto more_balance;
6219 }
1e3c88bd 6220
6263322c
PZ
6221 /*
6222 * We failed to reach balance because of affinity.
6223 */
6224 if (sd_parent) {
6225 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6226
6227 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6228 *group_imbalance = 1;
6229 } else if (*group_imbalance)
6230 *group_imbalance = 0;
6231 }
6232
1e3c88bd 6233 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6234 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6235 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6236 if (!cpumask_empty(cpus)) {
6237 env.loop = 0;
6238 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6239 goto redo;
bbf18b19 6240 }
1e3c88bd
PZ
6241 goto out_balanced;
6242 }
6243 }
6244
6245 if (!ld_moved) {
6246 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6247 /*
6248 * Increment the failure counter only on periodic balance.
6249 * We do not want newidle balance, which can be very
6250 * frequent, pollute the failure counter causing
6251 * excessive cache_hot migrations and active balances.
6252 */
6253 if (idle != CPU_NEWLY_IDLE)
6254 sd->nr_balance_failed++;
1e3c88bd 6255
bd939f45 6256 if (need_active_balance(&env)) {
1e3c88bd
PZ
6257 raw_spin_lock_irqsave(&busiest->lock, flags);
6258
969c7921
TH
6259 /* don't kick the active_load_balance_cpu_stop,
6260 * if the curr task on busiest cpu can't be
6261 * moved to this_cpu
1e3c88bd
PZ
6262 */
6263 if (!cpumask_test_cpu(this_cpu,
fa17b507 6264 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6265 raw_spin_unlock_irqrestore(&busiest->lock,
6266 flags);
8e45cb54 6267 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6268 goto out_one_pinned;
6269 }
6270
969c7921
TH
6271 /*
6272 * ->active_balance synchronizes accesses to
6273 * ->active_balance_work. Once set, it's cleared
6274 * only after active load balance is finished.
6275 */
1e3c88bd
PZ
6276 if (!busiest->active_balance) {
6277 busiest->active_balance = 1;
6278 busiest->push_cpu = this_cpu;
6279 active_balance = 1;
6280 }
6281 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6282
bd939f45 6283 if (active_balance) {
969c7921
TH
6284 stop_one_cpu_nowait(cpu_of(busiest),
6285 active_load_balance_cpu_stop, busiest,
6286 &busiest->active_balance_work);
bd939f45 6287 }
1e3c88bd
PZ
6288
6289 /*
6290 * We've kicked active balancing, reset the failure
6291 * counter.
6292 */
6293 sd->nr_balance_failed = sd->cache_nice_tries+1;
6294 }
6295 } else
6296 sd->nr_balance_failed = 0;
6297
6298 if (likely(!active_balance)) {
6299 /* We were unbalanced, so reset the balancing interval */
6300 sd->balance_interval = sd->min_interval;
6301 } else {
6302 /*
6303 * If we've begun active balancing, start to back off. This
6304 * case may not be covered by the all_pinned logic if there
6305 * is only 1 task on the busy runqueue (because we don't call
6306 * move_tasks).
6307 */
6308 if (sd->balance_interval < sd->max_interval)
6309 sd->balance_interval *= 2;
6310 }
6311
1e3c88bd
PZ
6312 goto out;
6313
6314out_balanced:
6315 schedstat_inc(sd, lb_balanced[idle]);
6316
6317 sd->nr_balance_failed = 0;
6318
6319out_one_pinned:
6320 /* tune up the balancing interval */
8e45cb54 6321 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6322 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6323 (sd->balance_interval < sd->max_interval))
6324 sd->balance_interval *= 2;
6325
46e49b38 6326 ld_moved = 0;
1e3c88bd 6327out:
1e3c88bd
PZ
6328 return ld_moved;
6329}
6330
1e3c88bd
PZ
6331/*
6332 * idle_balance is called by schedule() if this_cpu is about to become
6333 * idle. Attempts to pull tasks from other CPUs.
6334 */
029632fb 6335void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6336{
6337 struct sched_domain *sd;
6338 int pulled_task = 0;
6339 unsigned long next_balance = jiffies + HZ;
9bd721c5 6340 u64 curr_cost = 0;
1e3c88bd 6341
78becc27 6342 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6343
6344 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6345 return;
6346
f492e12e
PZ
6347 /*
6348 * Drop the rq->lock, but keep IRQ/preempt disabled.
6349 */
6350 raw_spin_unlock(&this_rq->lock);
6351
48a16753 6352 update_blocked_averages(this_cpu);
dce840a0 6353 rcu_read_lock();
1e3c88bd
PZ
6354 for_each_domain(this_cpu, sd) {
6355 unsigned long interval;
23f0d209 6356 int continue_balancing = 1;
9bd721c5 6357 u64 t0, domain_cost;
1e3c88bd
PZ
6358
6359 if (!(sd->flags & SD_LOAD_BALANCE))
6360 continue;
6361
9bd721c5
JL
6362 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6363 break;
6364
f492e12e 6365 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6366 t0 = sched_clock_cpu(this_cpu);
6367
1e3c88bd 6368 /* If we've pulled tasks over stop searching: */
f492e12e 6369 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6370 sd, CPU_NEWLY_IDLE,
6371 &continue_balancing);
9bd721c5
JL
6372
6373 domain_cost = sched_clock_cpu(this_cpu) - t0;
6374 if (domain_cost > sd->max_newidle_lb_cost)
6375 sd->max_newidle_lb_cost = domain_cost;
6376
6377 curr_cost += domain_cost;
f492e12e 6378 }
1e3c88bd
PZ
6379
6380 interval = msecs_to_jiffies(sd->balance_interval);
6381 if (time_after(next_balance, sd->last_balance + interval))
6382 next_balance = sd->last_balance + interval;
d5ad140b
NR
6383 if (pulled_task) {
6384 this_rq->idle_stamp = 0;
1e3c88bd 6385 break;
d5ad140b 6386 }
1e3c88bd 6387 }
dce840a0 6388 rcu_read_unlock();
f492e12e
PZ
6389
6390 raw_spin_lock(&this_rq->lock);
6391
1e3c88bd
PZ
6392 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6393 /*
6394 * We are going idle. next_balance may be set based on
6395 * a busy processor. So reset next_balance.
6396 */
6397 this_rq->next_balance = next_balance;
6398 }
9bd721c5
JL
6399
6400 if (curr_cost > this_rq->max_idle_balance_cost)
6401 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6402}
6403
6404/*
969c7921
TH
6405 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6406 * running tasks off the busiest CPU onto idle CPUs. It requires at
6407 * least 1 task to be running on each physical CPU where possible, and
6408 * avoids physical / logical imbalances.
1e3c88bd 6409 */
969c7921 6410static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6411{
969c7921
TH
6412 struct rq *busiest_rq = data;
6413 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6414 int target_cpu = busiest_rq->push_cpu;
969c7921 6415 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6416 struct sched_domain *sd;
969c7921
TH
6417
6418 raw_spin_lock_irq(&busiest_rq->lock);
6419
6420 /* make sure the requested cpu hasn't gone down in the meantime */
6421 if (unlikely(busiest_cpu != smp_processor_id() ||
6422 !busiest_rq->active_balance))
6423 goto out_unlock;
1e3c88bd
PZ
6424
6425 /* Is there any task to move? */
6426 if (busiest_rq->nr_running <= 1)
969c7921 6427 goto out_unlock;
1e3c88bd
PZ
6428
6429 /*
6430 * This condition is "impossible", if it occurs
6431 * we need to fix it. Originally reported by
6432 * Bjorn Helgaas on a 128-cpu setup.
6433 */
6434 BUG_ON(busiest_rq == target_rq);
6435
6436 /* move a task from busiest_rq to target_rq */
6437 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6438
6439 /* Search for an sd spanning us and the target CPU. */
dce840a0 6440 rcu_read_lock();
1e3c88bd
PZ
6441 for_each_domain(target_cpu, sd) {
6442 if ((sd->flags & SD_LOAD_BALANCE) &&
6443 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6444 break;
6445 }
6446
6447 if (likely(sd)) {
8e45cb54
PZ
6448 struct lb_env env = {
6449 .sd = sd,
ddcdf6e7
PZ
6450 .dst_cpu = target_cpu,
6451 .dst_rq = target_rq,
6452 .src_cpu = busiest_rq->cpu,
6453 .src_rq = busiest_rq,
8e45cb54
PZ
6454 .idle = CPU_IDLE,
6455 };
6456
1e3c88bd
PZ
6457 schedstat_inc(sd, alb_count);
6458
8e45cb54 6459 if (move_one_task(&env))
1e3c88bd
PZ
6460 schedstat_inc(sd, alb_pushed);
6461 else
6462 schedstat_inc(sd, alb_failed);
6463 }
dce840a0 6464 rcu_read_unlock();
1e3c88bd 6465 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6466out_unlock:
6467 busiest_rq->active_balance = 0;
6468 raw_spin_unlock_irq(&busiest_rq->lock);
6469 return 0;
1e3c88bd
PZ
6470}
6471
3451d024 6472#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6473/*
6474 * idle load balancing details
83cd4fe2
VP
6475 * - When one of the busy CPUs notice that there may be an idle rebalancing
6476 * needed, they will kick the idle load balancer, which then does idle
6477 * load balancing for all the idle CPUs.
6478 */
1e3c88bd 6479static struct {
83cd4fe2 6480 cpumask_var_t idle_cpus_mask;
0b005cf5 6481 atomic_t nr_cpus;
83cd4fe2
VP
6482 unsigned long next_balance; /* in jiffy units */
6483} nohz ____cacheline_aligned;
1e3c88bd 6484
8e7fbcbc 6485static inline int find_new_ilb(int call_cpu)
1e3c88bd 6486{
0b005cf5 6487 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6488
786d6dc7
SS
6489 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6490 return ilb;
6491
6492 return nr_cpu_ids;
1e3c88bd 6493}
1e3c88bd 6494
83cd4fe2
VP
6495/*
6496 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6497 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6498 * CPU (if there is one).
6499 */
6500static void nohz_balancer_kick(int cpu)
6501{
6502 int ilb_cpu;
6503
6504 nohz.next_balance++;
6505
0b005cf5 6506 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6507
0b005cf5
SS
6508 if (ilb_cpu >= nr_cpu_ids)
6509 return;
83cd4fe2 6510
cd490c5b 6511 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6512 return;
6513 /*
6514 * Use smp_send_reschedule() instead of resched_cpu().
6515 * This way we generate a sched IPI on the target cpu which
6516 * is idle. And the softirq performing nohz idle load balance
6517 * will be run before returning from the IPI.
6518 */
6519 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6520 return;
6521}
6522
c1cc017c 6523static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6524{
6525 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6526 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6527 atomic_dec(&nohz.nr_cpus);
6528 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6529 }
6530}
6531
69e1e811
SS
6532static inline void set_cpu_sd_state_busy(void)
6533{
6534 struct sched_domain *sd;
69e1e811 6535
69e1e811 6536 rcu_read_lock();
424c93fe 6537 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6538
6539 if (!sd || !sd->nohz_idle)
6540 goto unlock;
6541 sd->nohz_idle = 0;
6542
6543 for (; sd; sd = sd->parent)
69e1e811 6544 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6545unlock:
69e1e811
SS
6546 rcu_read_unlock();
6547}
6548
6549void set_cpu_sd_state_idle(void)
6550{
6551 struct sched_domain *sd;
69e1e811 6552
69e1e811 6553 rcu_read_lock();
424c93fe 6554 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6555
6556 if (!sd || sd->nohz_idle)
6557 goto unlock;
6558 sd->nohz_idle = 1;
6559
6560 for (; sd; sd = sd->parent)
69e1e811 6561 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6562unlock:
69e1e811
SS
6563 rcu_read_unlock();
6564}
6565
1e3c88bd 6566/*
c1cc017c 6567 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6568 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6569 */
c1cc017c 6570void nohz_balance_enter_idle(int cpu)
1e3c88bd 6571{
71325960
SS
6572 /*
6573 * If this cpu is going down, then nothing needs to be done.
6574 */
6575 if (!cpu_active(cpu))
6576 return;
6577
c1cc017c
AS
6578 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6579 return;
1e3c88bd 6580
c1cc017c
AS
6581 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6582 atomic_inc(&nohz.nr_cpus);
6583 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6584}
71325960 6585
0db0628d 6586static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6587 unsigned long action, void *hcpu)
6588{
6589 switch (action & ~CPU_TASKS_FROZEN) {
6590 case CPU_DYING:
c1cc017c 6591 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6592 return NOTIFY_OK;
6593 default:
6594 return NOTIFY_DONE;
6595 }
6596}
1e3c88bd
PZ
6597#endif
6598
6599static DEFINE_SPINLOCK(balancing);
6600
49c022e6
PZ
6601/*
6602 * Scale the max load_balance interval with the number of CPUs in the system.
6603 * This trades load-balance latency on larger machines for less cross talk.
6604 */
029632fb 6605void update_max_interval(void)
49c022e6
PZ
6606{
6607 max_load_balance_interval = HZ*num_online_cpus()/10;
6608}
6609
1e3c88bd
PZ
6610/*
6611 * It checks each scheduling domain to see if it is due to be balanced,
6612 * and initiates a balancing operation if so.
6613 *
b9b0853a 6614 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6615 */
6616static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6617{
23f0d209 6618 int continue_balancing = 1;
1e3c88bd
PZ
6619 struct rq *rq = cpu_rq(cpu);
6620 unsigned long interval;
04f733b4 6621 struct sched_domain *sd;
1e3c88bd
PZ
6622 /* Earliest time when we have to do rebalance again */
6623 unsigned long next_balance = jiffies + 60*HZ;
6624 int update_next_balance = 0;
f48627e6
JL
6625 int need_serialize, need_decay = 0;
6626 u64 max_cost = 0;
1e3c88bd 6627
48a16753 6628 update_blocked_averages(cpu);
2069dd75 6629
dce840a0 6630 rcu_read_lock();
1e3c88bd 6631 for_each_domain(cpu, sd) {
f48627e6
JL
6632 /*
6633 * Decay the newidle max times here because this is a regular
6634 * visit to all the domains. Decay ~1% per second.
6635 */
6636 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6637 sd->max_newidle_lb_cost =
6638 (sd->max_newidle_lb_cost * 253) / 256;
6639 sd->next_decay_max_lb_cost = jiffies + HZ;
6640 need_decay = 1;
6641 }
6642 max_cost += sd->max_newidle_lb_cost;
6643
1e3c88bd
PZ
6644 if (!(sd->flags & SD_LOAD_BALANCE))
6645 continue;
6646
f48627e6
JL
6647 /*
6648 * Stop the load balance at this level. There is another
6649 * CPU in our sched group which is doing load balancing more
6650 * actively.
6651 */
6652 if (!continue_balancing) {
6653 if (need_decay)
6654 continue;
6655 break;
6656 }
6657
1e3c88bd
PZ
6658 interval = sd->balance_interval;
6659 if (idle != CPU_IDLE)
6660 interval *= sd->busy_factor;
6661
6662 /* scale ms to jiffies */
6663 interval = msecs_to_jiffies(interval);
49c022e6 6664 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6665
6666 need_serialize = sd->flags & SD_SERIALIZE;
6667
6668 if (need_serialize) {
6669 if (!spin_trylock(&balancing))
6670 goto out;
6671 }
6672
6673 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6674 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6675 /*
6263322c 6676 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6677 * env->dst_cpu, so we can't know our idle
6678 * state even if we migrated tasks. Update it.
1e3c88bd 6679 */
de5eb2dd 6680 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6681 }
6682 sd->last_balance = jiffies;
6683 }
6684 if (need_serialize)
6685 spin_unlock(&balancing);
6686out:
6687 if (time_after(next_balance, sd->last_balance + interval)) {
6688 next_balance = sd->last_balance + interval;
6689 update_next_balance = 1;
6690 }
f48627e6
JL
6691 }
6692 if (need_decay) {
1e3c88bd 6693 /*
f48627e6
JL
6694 * Ensure the rq-wide value also decays but keep it at a
6695 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6696 */
f48627e6
JL
6697 rq->max_idle_balance_cost =
6698 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6699 }
dce840a0 6700 rcu_read_unlock();
1e3c88bd
PZ
6701
6702 /*
6703 * next_balance will be updated only when there is a need.
6704 * When the cpu is attached to null domain for ex, it will not be
6705 * updated.
6706 */
6707 if (likely(update_next_balance))
6708 rq->next_balance = next_balance;
6709}
6710
3451d024 6711#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6712/*
3451d024 6713 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6714 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6715 */
83cd4fe2
VP
6716static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6717{
6718 struct rq *this_rq = cpu_rq(this_cpu);
6719 struct rq *rq;
6720 int balance_cpu;
6721
1c792db7
SS
6722 if (idle != CPU_IDLE ||
6723 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6724 goto end;
83cd4fe2
VP
6725
6726 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6727 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6728 continue;
6729
6730 /*
6731 * If this cpu gets work to do, stop the load balancing
6732 * work being done for other cpus. Next load
6733 * balancing owner will pick it up.
6734 */
1c792db7 6735 if (need_resched())
83cd4fe2 6736 break;
83cd4fe2 6737
5ed4f1d9
VG
6738 rq = cpu_rq(balance_cpu);
6739
6740 raw_spin_lock_irq(&rq->lock);
6741 update_rq_clock(rq);
6742 update_idle_cpu_load(rq);
6743 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6744
6745 rebalance_domains(balance_cpu, CPU_IDLE);
6746
83cd4fe2
VP
6747 if (time_after(this_rq->next_balance, rq->next_balance))
6748 this_rq->next_balance = rq->next_balance;
6749 }
6750 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6751end:
6752 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6753}
6754
6755/*
0b005cf5
SS
6756 * Current heuristic for kicking the idle load balancer in the presence
6757 * of an idle cpu is the system.
6758 * - This rq has more than one task.
6759 * - At any scheduler domain level, this cpu's scheduler group has multiple
6760 * busy cpu's exceeding the group's power.
6761 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6762 * domain span are idle.
83cd4fe2
VP
6763 */
6764static inline int nohz_kick_needed(struct rq *rq, int cpu)
6765{
6766 unsigned long now = jiffies;
0b005cf5 6767 struct sched_domain *sd;
83cd4fe2 6768
1c792db7 6769 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6770 return 0;
6771
1c792db7
SS
6772 /*
6773 * We may be recently in ticked or tickless idle mode. At the first
6774 * busy tick after returning from idle, we will update the busy stats.
6775 */
69e1e811 6776 set_cpu_sd_state_busy();
c1cc017c 6777 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6778
6779 /*
6780 * None are in tickless mode and hence no need for NOHZ idle load
6781 * balancing.
6782 */
6783 if (likely(!atomic_read(&nohz.nr_cpus)))
6784 return 0;
1c792db7
SS
6785
6786 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6787 return 0;
6788
0b005cf5
SS
6789 if (rq->nr_running >= 2)
6790 goto need_kick;
83cd4fe2 6791
067491b7 6792 rcu_read_lock();
0b005cf5
SS
6793 for_each_domain(cpu, sd) {
6794 struct sched_group *sg = sd->groups;
6795 struct sched_group_power *sgp = sg->sgp;
6796 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 6797
0b005cf5 6798 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 6799 goto need_kick_unlock;
0b005cf5
SS
6800
6801 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6802 && (cpumask_first_and(nohz.idle_cpus_mask,
6803 sched_domain_span(sd)) < cpu))
067491b7 6804 goto need_kick_unlock;
0b005cf5
SS
6805
6806 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6807 break;
83cd4fe2 6808 }
067491b7 6809 rcu_read_unlock();
83cd4fe2 6810 return 0;
067491b7
PZ
6811
6812need_kick_unlock:
6813 rcu_read_unlock();
0b005cf5
SS
6814need_kick:
6815 return 1;
83cd4fe2
VP
6816}
6817#else
6818static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6819#endif
6820
6821/*
6822 * run_rebalance_domains is triggered when needed from the scheduler tick.
6823 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6824 */
1e3c88bd
PZ
6825static void run_rebalance_domains(struct softirq_action *h)
6826{
6827 int this_cpu = smp_processor_id();
6828 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6829 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6830 CPU_IDLE : CPU_NOT_IDLE;
6831
6832 rebalance_domains(this_cpu, idle);
6833
1e3c88bd 6834 /*
83cd4fe2 6835 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6836 * balancing on behalf of the other idle cpus whose ticks are
6837 * stopped.
6838 */
83cd4fe2 6839 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6840}
6841
6842static inline int on_null_domain(int cpu)
6843{
90a6501f 6844 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6845}
6846
6847/*
6848 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6849 */
029632fb 6850void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6851{
1e3c88bd
PZ
6852 /* Don't need to rebalance while attached to NULL domain */
6853 if (time_after_eq(jiffies, rq->next_balance) &&
6854 likely(!on_null_domain(cpu)))
6855 raise_softirq(SCHED_SOFTIRQ);
3451d024 6856#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6857 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6858 nohz_balancer_kick(cpu);
6859#endif
1e3c88bd
PZ
6860}
6861
0bcdcf28
CE
6862static void rq_online_fair(struct rq *rq)
6863{
6864 update_sysctl();
6865}
6866
6867static void rq_offline_fair(struct rq *rq)
6868{
6869 update_sysctl();
a4c96ae3
PB
6870
6871 /* Ensure any throttled groups are reachable by pick_next_task */
6872 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6873}
6874
55e12e5e 6875#endif /* CONFIG_SMP */
e1d1484f 6876
bf0f6f24
IM
6877/*
6878 * scheduler tick hitting a task of our scheduling class:
6879 */
8f4d37ec 6880static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6881{
6882 struct cfs_rq *cfs_rq;
6883 struct sched_entity *se = &curr->se;
6884
6885 for_each_sched_entity(se) {
6886 cfs_rq = cfs_rq_of(se);
8f4d37ec 6887 entity_tick(cfs_rq, se, queued);
bf0f6f24 6888 }
18bf2805 6889
10e84b97 6890 if (numabalancing_enabled)
cbee9f88 6891 task_tick_numa(rq, curr);
3d59eebc 6892
18bf2805 6893 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6894}
6895
6896/*
cd29fe6f
PZ
6897 * called on fork with the child task as argument from the parent's context
6898 * - child not yet on the tasklist
6899 * - preemption disabled
bf0f6f24 6900 */
cd29fe6f 6901static void task_fork_fair(struct task_struct *p)
bf0f6f24 6902{
4fc420c9
DN
6903 struct cfs_rq *cfs_rq;
6904 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6905 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6906 struct rq *rq = this_rq();
6907 unsigned long flags;
6908
05fa785c 6909 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6910
861d034e
PZ
6911 update_rq_clock(rq);
6912
4fc420c9
DN
6913 cfs_rq = task_cfs_rq(current);
6914 curr = cfs_rq->curr;
6915
6c9a27f5
DN
6916 /*
6917 * Not only the cpu but also the task_group of the parent might have
6918 * been changed after parent->se.parent,cfs_rq were copied to
6919 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6920 * of child point to valid ones.
6921 */
6922 rcu_read_lock();
6923 __set_task_cpu(p, this_cpu);
6924 rcu_read_unlock();
bf0f6f24 6925
7109c442 6926 update_curr(cfs_rq);
cd29fe6f 6927
b5d9d734
MG
6928 if (curr)
6929 se->vruntime = curr->vruntime;
aeb73b04 6930 place_entity(cfs_rq, se, 1);
4d78e7b6 6931
cd29fe6f 6932 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6933 /*
edcb60a3
IM
6934 * Upon rescheduling, sched_class::put_prev_task() will place
6935 * 'current' within the tree based on its new key value.
6936 */
4d78e7b6 6937 swap(curr->vruntime, se->vruntime);
aec0a514 6938 resched_task(rq->curr);
4d78e7b6 6939 }
bf0f6f24 6940
88ec22d3
PZ
6941 se->vruntime -= cfs_rq->min_vruntime;
6942
05fa785c 6943 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6944}
6945
cb469845
SR
6946/*
6947 * Priority of the task has changed. Check to see if we preempt
6948 * the current task.
6949 */
da7a735e
PZ
6950static void
6951prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6952{
da7a735e
PZ
6953 if (!p->se.on_rq)
6954 return;
6955
cb469845
SR
6956 /*
6957 * Reschedule if we are currently running on this runqueue and
6958 * our priority decreased, or if we are not currently running on
6959 * this runqueue and our priority is higher than the current's
6960 */
da7a735e 6961 if (rq->curr == p) {
cb469845
SR
6962 if (p->prio > oldprio)
6963 resched_task(rq->curr);
6964 } else
15afe09b 6965 check_preempt_curr(rq, p, 0);
cb469845
SR
6966}
6967
da7a735e
PZ
6968static void switched_from_fair(struct rq *rq, struct task_struct *p)
6969{
6970 struct sched_entity *se = &p->se;
6971 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6972
6973 /*
6974 * Ensure the task's vruntime is normalized, so that when its
6975 * switched back to the fair class the enqueue_entity(.flags=0) will
6976 * do the right thing.
6977 *
6978 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6979 * have normalized the vruntime, if it was !on_rq, then only when
6980 * the task is sleeping will it still have non-normalized vruntime.
6981 */
6982 if (!se->on_rq && p->state != TASK_RUNNING) {
6983 /*
6984 * Fix up our vruntime so that the current sleep doesn't
6985 * cause 'unlimited' sleep bonus.
6986 */
6987 place_entity(cfs_rq, se, 0);
6988 se->vruntime -= cfs_rq->min_vruntime;
6989 }
9ee474f5 6990
141965c7 6991#ifdef CONFIG_SMP
9ee474f5
PT
6992 /*
6993 * Remove our load from contribution when we leave sched_fair
6994 * and ensure we don't carry in an old decay_count if we
6995 * switch back.
6996 */
87e3c8ae
KT
6997 if (se->avg.decay_count) {
6998 __synchronize_entity_decay(se);
6999 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7000 }
7001#endif
da7a735e
PZ
7002}
7003
cb469845
SR
7004/*
7005 * We switched to the sched_fair class.
7006 */
da7a735e 7007static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7008{
da7a735e
PZ
7009 if (!p->se.on_rq)
7010 return;
7011
cb469845
SR
7012 /*
7013 * We were most likely switched from sched_rt, so
7014 * kick off the schedule if running, otherwise just see
7015 * if we can still preempt the current task.
7016 */
da7a735e 7017 if (rq->curr == p)
cb469845
SR
7018 resched_task(rq->curr);
7019 else
15afe09b 7020 check_preempt_curr(rq, p, 0);
cb469845
SR
7021}
7022
83b699ed
SV
7023/* Account for a task changing its policy or group.
7024 *
7025 * This routine is mostly called to set cfs_rq->curr field when a task
7026 * migrates between groups/classes.
7027 */
7028static void set_curr_task_fair(struct rq *rq)
7029{
7030 struct sched_entity *se = &rq->curr->se;
7031
ec12cb7f
PT
7032 for_each_sched_entity(se) {
7033 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7034
7035 set_next_entity(cfs_rq, se);
7036 /* ensure bandwidth has been allocated on our new cfs_rq */
7037 account_cfs_rq_runtime(cfs_rq, 0);
7038 }
83b699ed
SV
7039}
7040
029632fb
PZ
7041void init_cfs_rq(struct cfs_rq *cfs_rq)
7042{
7043 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7044 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7045#ifndef CONFIG_64BIT
7046 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7047#endif
141965c7 7048#ifdef CONFIG_SMP
9ee474f5 7049 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7050 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7051#endif
029632fb
PZ
7052}
7053
810b3817 7054#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7055static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7056{
aff3e498 7057 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7058 /*
7059 * If the task was not on the rq at the time of this cgroup movement
7060 * it must have been asleep, sleeping tasks keep their ->vruntime
7061 * absolute on their old rq until wakeup (needed for the fair sleeper
7062 * bonus in place_entity()).
7063 *
7064 * If it was on the rq, we've just 'preempted' it, which does convert
7065 * ->vruntime to a relative base.
7066 *
7067 * Make sure both cases convert their relative position when migrating
7068 * to another cgroup's rq. This does somewhat interfere with the
7069 * fair sleeper stuff for the first placement, but who cares.
7070 */
7ceff013
DN
7071 /*
7072 * When !on_rq, vruntime of the task has usually NOT been normalized.
7073 * But there are some cases where it has already been normalized:
7074 *
7075 * - Moving a forked child which is waiting for being woken up by
7076 * wake_up_new_task().
62af3783
DN
7077 * - Moving a task which has been woken up by try_to_wake_up() and
7078 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7079 *
7080 * To prevent boost or penalty in the new cfs_rq caused by delta
7081 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7082 */
62af3783 7083 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7084 on_rq = 1;
7085
b2b5ce02
PZ
7086 if (!on_rq)
7087 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7088 set_task_rq(p, task_cpu(p));
aff3e498
PT
7089 if (!on_rq) {
7090 cfs_rq = cfs_rq_of(&p->se);
7091 p->se.vruntime += cfs_rq->min_vruntime;
7092#ifdef CONFIG_SMP
7093 /*
7094 * migrate_task_rq_fair() will have removed our previous
7095 * contribution, but we must synchronize for ongoing future
7096 * decay.
7097 */
7098 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7099 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7100#endif
7101 }
810b3817 7102}
029632fb
PZ
7103
7104void free_fair_sched_group(struct task_group *tg)
7105{
7106 int i;
7107
7108 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7109
7110 for_each_possible_cpu(i) {
7111 if (tg->cfs_rq)
7112 kfree(tg->cfs_rq[i]);
7113 if (tg->se)
7114 kfree(tg->se[i]);
7115 }
7116
7117 kfree(tg->cfs_rq);
7118 kfree(tg->se);
7119}
7120
7121int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7122{
7123 struct cfs_rq *cfs_rq;
7124 struct sched_entity *se;
7125 int i;
7126
7127 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7128 if (!tg->cfs_rq)
7129 goto err;
7130 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7131 if (!tg->se)
7132 goto err;
7133
7134 tg->shares = NICE_0_LOAD;
7135
7136 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7137
7138 for_each_possible_cpu(i) {
7139 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7140 GFP_KERNEL, cpu_to_node(i));
7141 if (!cfs_rq)
7142 goto err;
7143
7144 se = kzalloc_node(sizeof(struct sched_entity),
7145 GFP_KERNEL, cpu_to_node(i));
7146 if (!se)
7147 goto err_free_rq;
7148
7149 init_cfs_rq(cfs_rq);
7150 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7151 }
7152
7153 return 1;
7154
7155err_free_rq:
7156 kfree(cfs_rq);
7157err:
7158 return 0;
7159}
7160
7161void unregister_fair_sched_group(struct task_group *tg, int cpu)
7162{
7163 struct rq *rq = cpu_rq(cpu);
7164 unsigned long flags;
7165
7166 /*
7167 * Only empty task groups can be destroyed; so we can speculatively
7168 * check on_list without danger of it being re-added.
7169 */
7170 if (!tg->cfs_rq[cpu]->on_list)
7171 return;
7172
7173 raw_spin_lock_irqsave(&rq->lock, flags);
7174 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7175 raw_spin_unlock_irqrestore(&rq->lock, flags);
7176}
7177
7178void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7179 struct sched_entity *se, int cpu,
7180 struct sched_entity *parent)
7181{
7182 struct rq *rq = cpu_rq(cpu);
7183
7184 cfs_rq->tg = tg;
7185 cfs_rq->rq = rq;
029632fb
PZ
7186 init_cfs_rq_runtime(cfs_rq);
7187
7188 tg->cfs_rq[cpu] = cfs_rq;
7189 tg->se[cpu] = se;
7190
7191 /* se could be NULL for root_task_group */
7192 if (!se)
7193 return;
7194
7195 if (!parent)
7196 se->cfs_rq = &rq->cfs;
7197 else
7198 se->cfs_rq = parent->my_q;
7199
7200 se->my_q = cfs_rq;
7201 update_load_set(&se->load, 0);
7202 se->parent = parent;
7203}
7204
7205static DEFINE_MUTEX(shares_mutex);
7206
7207int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7208{
7209 int i;
7210 unsigned long flags;
7211
7212 /*
7213 * We can't change the weight of the root cgroup.
7214 */
7215 if (!tg->se[0])
7216 return -EINVAL;
7217
7218 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7219
7220 mutex_lock(&shares_mutex);
7221 if (tg->shares == shares)
7222 goto done;
7223
7224 tg->shares = shares;
7225 for_each_possible_cpu(i) {
7226 struct rq *rq = cpu_rq(i);
7227 struct sched_entity *se;
7228
7229 se = tg->se[i];
7230 /* Propagate contribution to hierarchy */
7231 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7232
7233 /* Possible calls to update_curr() need rq clock */
7234 update_rq_clock(rq);
17bc14b7 7235 for_each_sched_entity(se)
029632fb
PZ
7236 update_cfs_shares(group_cfs_rq(se));
7237 raw_spin_unlock_irqrestore(&rq->lock, flags);
7238 }
7239
7240done:
7241 mutex_unlock(&shares_mutex);
7242 return 0;
7243}
7244#else /* CONFIG_FAIR_GROUP_SCHED */
7245
7246void free_fair_sched_group(struct task_group *tg) { }
7247
7248int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7249{
7250 return 1;
7251}
7252
7253void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7254
7255#endif /* CONFIG_FAIR_GROUP_SCHED */
7256
810b3817 7257
6d686f45 7258static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7259{
7260 struct sched_entity *se = &task->se;
0d721cea
PW
7261 unsigned int rr_interval = 0;
7262
7263 /*
7264 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7265 * idle runqueue:
7266 */
0d721cea 7267 if (rq->cfs.load.weight)
a59f4e07 7268 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7269
7270 return rr_interval;
7271}
7272
bf0f6f24
IM
7273/*
7274 * All the scheduling class methods:
7275 */
029632fb 7276const struct sched_class fair_sched_class = {
5522d5d5 7277 .next = &idle_sched_class,
bf0f6f24
IM
7278 .enqueue_task = enqueue_task_fair,
7279 .dequeue_task = dequeue_task_fair,
7280 .yield_task = yield_task_fair,
d95f4122 7281 .yield_to_task = yield_to_task_fair,
bf0f6f24 7282
2e09bf55 7283 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7284
7285 .pick_next_task = pick_next_task_fair,
7286 .put_prev_task = put_prev_task_fair,
7287
681f3e68 7288#ifdef CONFIG_SMP
4ce72a2c 7289 .select_task_rq = select_task_rq_fair,
0a74bef8 7290 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7291
0bcdcf28
CE
7292 .rq_online = rq_online_fair,
7293 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7294
7295 .task_waking = task_waking_fair,
681f3e68 7296#endif
bf0f6f24 7297
83b699ed 7298 .set_curr_task = set_curr_task_fair,
bf0f6f24 7299 .task_tick = task_tick_fair,
cd29fe6f 7300 .task_fork = task_fork_fair,
cb469845
SR
7301
7302 .prio_changed = prio_changed_fair,
da7a735e 7303 .switched_from = switched_from_fair,
cb469845 7304 .switched_to = switched_to_fair,
810b3817 7305
0d721cea
PW
7306 .get_rr_interval = get_rr_interval_fair,
7307
810b3817 7308#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7309 .task_move_group = task_move_group_fair,
810b3817 7310#endif
bf0f6f24
IM
7311};
7312
7313#ifdef CONFIG_SCHED_DEBUG
029632fb 7314void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7315{
bf0f6f24
IM
7316 struct cfs_rq *cfs_rq;
7317
5973e5b9 7318 rcu_read_lock();
c3b64f1e 7319 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7320 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7321 rcu_read_unlock();
bf0f6f24
IM
7322}
7323#endif
029632fb
PZ
7324
7325__init void init_sched_fair_class(void)
7326{
7327#ifdef CONFIG_SMP
7328 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7329
3451d024 7330#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7331 nohz.next_balance = jiffies;
029632fb 7332 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7333 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7334#endif
7335#endif /* SMP */
7336
7337}