Merge remote-tracking branches 'spi/topic/fsl-espi', 'spi/topic/gpio', 'spi/topic...
[linux-2.6-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
234
235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
325static inline int
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
329 return 1;
330
331 return 0;
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339/* return depth at which a sched entity is present in the hierarchy */
340static inline int depth_se(struct sched_entity *se)
341{
342 int depth = 0;
343
344 for_each_sched_entity(se)
345 depth++;
346
347 return depth;
348}
349
350static void
351find_matching_se(struct sched_entity **se, struct sched_entity **pse)
352{
353 int se_depth, pse_depth;
354
355 /*
356 * preemption test can be made between sibling entities who are in the
357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
358 * both tasks until we find their ancestors who are siblings of common
359 * parent.
360 */
361
362 /* First walk up until both entities are at same depth */
363 se_depth = depth_se(*se);
364 pse_depth = depth_se(*pse);
365
366 while (se_depth > pse_depth) {
367 se_depth--;
368 *se = parent_entity(*se);
369 }
370
371 while (pse_depth > se_depth) {
372 pse_depth--;
373 *pse = parent_entity(*pse);
374 }
375
376 while (!is_same_group(*se, *pse)) {
377 *se = parent_entity(*se);
378 *pse = parent_entity(*pse);
379 }
380}
381
8f48894f
PZ
382#else /* !CONFIG_FAIR_GROUP_SCHED */
383
384static inline struct task_struct *task_of(struct sched_entity *se)
385{
386 return container_of(se, struct task_struct, se);
387}
bf0f6f24 388
62160e3f
IM
389static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
390{
391 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
392}
393
394#define entity_is_task(se) 1
395
b758149c
PZ
396#define for_each_sched_entity(se) \
397 for (; se; se = NULL)
bf0f6f24 398
b758149c 399static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 400{
b758149c 401 return &task_rq(p)->cfs;
bf0f6f24
IM
402}
403
b758149c
PZ
404static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
405{
406 struct task_struct *p = task_of(se);
407 struct rq *rq = task_rq(p);
408
409 return &rq->cfs;
410}
411
412/* runqueue "owned" by this group */
413static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
414{
415 return NULL;
416}
417
3d4b47b4
PZ
418static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
419{
420}
421
422static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
423{
424}
425
b758149c
PZ
426#define for_each_leaf_cfs_rq(rq, cfs_rq) \
427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428
429static inline int
430is_same_group(struct sched_entity *se, struct sched_entity *pse)
431{
432 return 1;
433}
434
435static inline struct sched_entity *parent_entity(struct sched_entity *se)
436{
437 return NULL;
438}
439
464b7527
PZ
440static inline void
441find_matching_se(struct sched_entity **se, struct sched_entity **pse)
442{
443}
444
b758149c
PZ
445#endif /* CONFIG_FAIR_GROUP_SCHED */
446
6c16a6dc 447static __always_inline
9dbdb155 448void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
449
450/**************************************************************
451 * Scheduling class tree data structure manipulation methods:
452 */
453
1bf08230 454static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 455{
1bf08230 456 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 457 if (delta > 0)
1bf08230 458 max_vruntime = vruntime;
02e0431a 459
1bf08230 460 return max_vruntime;
02e0431a
PZ
461}
462
0702e3eb 463static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
464{
465 s64 delta = (s64)(vruntime - min_vruntime);
466 if (delta < 0)
467 min_vruntime = vruntime;
468
469 return min_vruntime;
470}
471
54fdc581
FC
472static inline int entity_before(struct sched_entity *a,
473 struct sched_entity *b)
474{
475 return (s64)(a->vruntime - b->vruntime) < 0;
476}
477
1af5f730
PZ
478static void update_min_vruntime(struct cfs_rq *cfs_rq)
479{
480 u64 vruntime = cfs_rq->min_vruntime;
481
482 if (cfs_rq->curr)
483 vruntime = cfs_rq->curr->vruntime;
484
485 if (cfs_rq->rb_leftmost) {
486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
487 struct sched_entity,
488 run_node);
489
e17036da 490 if (!cfs_rq->curr)
1af5f730
PZ
491 vruntime = se->vruntime;
492 else
493 vruntime = min_vruntime(vruntime, se->vruntime);
494 }
495
1bf08230 496 /* ensure we never gain time by being placed backwards. */
1af5f730 497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
498#ifndef CONFIG_64BIT
499 smp_wmb();
500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
501#endif
1af5f730
PZ
502}
503
bf0f6f24
IM
504/*
505 * Enqueue an entity into the rb-tree:
506 */
0702e3eb 507static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
508{
509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
510 struct rb_node *parent = NULL;
511 struct sched_entity *entry;
bf0f6f24
IM
512 int leftmost = 1;
513
514 /*
515 * Find the right place in the rbtree:
516 */
517 while (*link) {
518 parent = *link;
519 entry = rb_entry(parent, struct sched_entity, run_node);
520 /*
521 * We dont care about collisions. Nodes with
522 * the same key stay together.
523 */
2bd2d6f2 524 if (entity_before(se, entry)) {
bf0f6f24
IM
525 link = &parent->rb_left;
526 } else {
527 link = &parent->rb_right;
528 leftmost = 0;
529 }
530 }
531
532 /*
533 * Maintain a cache of leftmost tree entries (it is frequently
534 * used):
535 */
1af5f730 536 if (leftmost)
57cb499d 537 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
538
539 rb_link_node(&se->run_node, parent, link);
540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
541}
542
0702e3eb 543static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 544{
3fe69747
PZ
545 if (cfs_rq->rb_leftmost == &se->run_node) {
546 struct rb_node *next_node;
3fe69747
PZ
547
548 next_node = rb_next(&se->run_node);
549 cfs_rq->rb_leftmost = next_node;
3fe69747 550 }
e9acbff6 551
bf0f6f24 552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
553}
554
029632fb 555struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 556{
f4b6755f
PZ
557 struct rb_node *left = cfs_rq->rb_leftmost;
558
559 if (!left)
560 return NULL;
561
562 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
563}
564
ac53db59
RR
565static struct sched_entity *__pick_next_entity(struct sched_entity *se)
566{
567 struct rb_node *next = rb_next(&se->run_node);
568
569 if (!next)
570 return NULL;
571
572 return rb_entry(next, struct sched_entity, run_node);
573}
574
575#ifdef CONFIG_SCHED_DEBUG
029632fb 576struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 577{
7eee3e67 578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 579
70eee74b
BS
580 if (!last)
581 return NULL;
7eee3e67
IM
582
583 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
584}
585
bf0f6f24
IM
586/**************************************************************
587 * Scheduling class statistics methods:
588 */
589
acb4a848 590int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 591 void __user *buffer, size_t *lenp,
b2be5e96
PZ
592 loff_t *ppos)
593{
8d65af78 594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 595 int factor = get_update_sysctl_factor();
b2be5e96
PZ
596
597 if (ret || !write)
598 return ret;
599
600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
601 sysctl_sched_min_granularity);
602
acb4a848
CE
603#define WRT_SYSCTL(name) \
604 (normalized_sysctl_##name = sysctl_##name / (factor))
605 WRT_SYSCTL(sched_min_granularity);
606 WRT_SYSCTL(sched_latency);
607 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
608#undef WRT_SYSCTL
609
b2be5e96
PZ
610 return 0;
611}
612#endif
647e7cac 613
a7be37ac 614/*
f9c0b095 615 * delta /= w
a7be37ac 616 */
9dbdb155 617static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 618{
f9c0b095 619 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
621
622 return delta;
623}
624
647e7cac
IM
625/*
626 * The idea is to set a period in which each task runs once.
627 *
532b1858 628 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
629 * this period because otherwise the slices get too small.
630 *
631 * p = (nr <= nl) ? l : l*nr/nl
632 */
4d78e7b6
PZ
633static u64 __sched_period(unsigned long nr_running)
634{
635 u64 period = sysctl_sched_latency;
b2be5e96 636 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
637
638 if (unlikely(nr_running > nr_latency)) {
4bf0b771 639 period = sysctl_sched_min_granularity;
4d78e7b6 640 period *= nr_running;
4d78e7b6
PZ
641 }
642
643 return period;
644}
645
647e7cac
IM
646/*
647 * We calculate the wall-time slice from the period by taking a part
648 * proportional to the weight.
649 *
f9c0b095 650 * s = p*P[w/rw]
647e7cac 651 */
6d0f0ebd 652static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 653{
0a582440 654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 655
0a582440 656 for_each_sched_entity(se) {
6272d68c 657 struct load_weight *load;
3104bf03 658 struct load_weight lw;
6272d68c
LM
659
660 cfs_rq = cfs_rq_of(se);
661 load = &cfs_rq->load;
f9c0b095 662
0a582440 663 if (unlikely(!se->on_rq)) {
3104bf03 664 lw = cfs_rq->load;
0a582440
MG
665
666 update_load_add(&lw, se->load.weight);
667 load = &lw;
668 }
9dbdb155 669 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
670 }
671 return slice;
bf0f6f24
IM
672}
673
647e7cac 674/*
660cc00f 675 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 676 *
f9c0b095 677 * vs = s/w
647e7cac 678 */
f9c0b095 679static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 680{
f9c0b095 681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
682}
683
a75cdaa9 684#ifdef CONFIG_SMP
fb13c7ee
MG
685static unsigned long task_h_load(struct task_struct *p);
686
a75cdaa9
AS
687static inline void __update_task_entity_contrib(struct sched_entity *se);
688
689/* Give new task start runnable values to heavy its load in infant time */
690void init_task_runnable_average(struct task_struct *p)
691{
692 u32 slice;
693
694 p->se.avg.decay_count = 0;
695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
696 p->se.avg.runnable_avg_sum = slice;
697 p->se.avg.runnable_avg_period = slice;
698 __update_task_entity_contrib(&p->se);
699}
700#else
701void init_task_runnable_average(struct task_struct *p)
702{
703}
704#endif
705
bf0f6f24 706/*
9dbdb155 707 * Update the current task's runtime statistics.
bf0f6f24 708 */
b7cc0896 709static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 710{
429d43bc 711 struct sched_entity *curr = cfs_rq->curr;
78becc27 712 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 713 u64 delta_exec;
bf0f6f24
IM
714
715 if (unlikely(!curr))
716 return;
717
9dbdb155
PZ
718 delta_exec = now - curr->exec_start;
719 if (unlikely((s64)delta_exec <= 0))
34f28ecd 720 return;
bf0f6f24 721
8ebc91d9 722 curr->exec_start = now;
d842de87 723
9dbdb155
PZ
724 schedstat_set(curr->statistics.exec_max,
725 max(delta_exec, curr->statistics.exec_max));
726
727 curr->sum_exec_runtime += delta_exec;
728 schedstat_add(cfs_rq, exec_clock, delta_exec);
729
730 curr->vruntime += calc_delta_fair(delta_exec, curr);
731 update_min_vruntime(cfs_rq);
732
d842de87
SV
733 if (entity_is_task(curr)) {
734 struct task_struct *curtask = task_of(curr);
735
f977bb49 736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 737 cpuacct_charge(curtask, delta_exec);
f06febc9 738 account_group_exec_runtime(curtask, delta_exec);
d842de87 739 }
ec12cb7f
PT
740
741 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
742}
743
744static inline void
5870db5b 745update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 746{
78becc27 747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
748}
749
bf0f6f24
IM
750/*
751 * Task is being enqueued - update stats:
752 */
d2417e5a 753static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
bf0f6f24
IM
755 /*
756 * Are we enqueueing a waiting task? (for current tasks
757 * a dequeue/enqueue event is a NOP)
758 */
429d43bc 759 if (se != cfs_rq->curr)
5870db5b 760 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
761}
762
bf0f6f24 763static void
9ef0a961 764update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
41acab88 766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
771#ifdef CONFIG_SCHEDSTATS
772 if (entity_is_task(se)) {
773 trace_sched_stat_wait(task_of(se),
78becc27 774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
775 }
776#endif
41acab88 777 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
778}
779
780static inline void
19b6a2e3 781update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 782{
bf0f6f24
IM
783 /*
784 * Mark the end of the wait period if dequeueing a
785 * waiting task:
786 */
429d43bc 787 if (se != cfs_rq->curr)
9ef0a961 788 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
789}
790
791/*
792 * We are picking a new current task - update its stats:
793 */
794static inline void
79303e9e 795update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
796{
797 /*
798 * We are starting a new run period:
799 */
78becc27 800 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
801}
802
bf0f6f24
IM
803/**************************************************
804 * Scheduling class queueing methods:
805 */
806
cbee9f88
PZ
807#ifdef CONFIG_NUMA_BALANCING
808/*
598f0ec0
MG
809 * Approximate time to scan a full NUMA task in ms. The task scan period is
810 * calculated based on the tasks virtual memory size and
811 * numa_balancing_scan_size.
cbee9f88 812 */
598f0ec0
MG
813unsigned int sysctl_numa_balancing_scan_period_min = 1000;
814unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
815
816/* Portion of address space to scan in MB */
817unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 818
4b96a29b
PZ
819/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
820unsigned int sysctl_numa_balancing_scan_delay = 1000;
821
de1c9ce6
RR
822/*
823 * After skipping a page migration on a shared page, skip N more numa page
824 * migrations unconditionally. This reduces the number of NUMA migrations
825 * in shared memory workloads, and has the effect of pulling tasks towards
826 * where their memory lives, over pulling the memory towards the task.
827 */
828unsigned int sysctl_numa_balancing_migrate_deferred = 16;
829
598f0ec0
MG
830static unsigned int task_nr_scan_windows(struct task_struct *p)
831{
832 unsigned long rss = 0;
833 unsigned long nr_scan_pages;
834
835 /*
836 * Calculations based on RSS as non-present and empty pages are skipped
837 * by the PTE scanner and NUMA hinting faults should be trapped based
838 * on resident pages
839 */
840 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
841 rss = get_mm_rss(p->mm);
842 if (!rss)
843 rss = nr_scan_pages;
844
845 rss = round_up(rss, nr_scan_pages);
846 return rss / nr_scan_pages;
847}
848
849/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
850#define MAX_SCAN_WINDOW 2560
851
852static unsigned int task_scan_min(struct task_struct *p)
853{
854 unsigned int scan, floor;
855 unsigned int windows = 1;
856
857 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
858 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
859 floor = 1000 / windows;
860
861 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
862 return max_t(unsigned int, floor, scan);
863}
864
865static unsigned int task_scan_max(struct task_struct *p)
866{
867 unsigned int smin = task_scan_min(p);
868 unsigned int smax;
869
870 /* Watch for min being lower than max due to floor calculations */
871 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
872 return max(smin, smax);
873}
874
3a7053b3
MG
875/*
876 * Once a preferred node is selected the scheduler balancer will prefer moving
877 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
878 * scans. This will give the process the chance to accumulate more faults on
879 * the preferred node but still allow the scheduler to move the task again if
880 * the nodes CPUs are overloaded.
881 */
6fe6b2d6 882unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 883
0ec8aa00
PZ
884static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
885{
886 rq->nr_numa_running += (p->numa_preferred_nid != -1);
887 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
888}
889
890static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
891{
892 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
893 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
894}
895
8c8a743c
PZ
896struct numa_group {
897 atomic_t refcount;
898
899 spinlock_t lock; /* nr_tasks, tasks */
900 int nr_tasks;
e29cf08b 901 pid_t gid;
8c8a743c
PZ
902 struct list_head task_list;
903
904 struct rcu_head rcu;
989348b5
MG
905 unsigned long total_faults;
906 unsigned long faults[0];
8c8a743c
PZ
907};
908
e29cf08b
MG
909pid_t task_numa_group_id(struct task_struct *p)
910{
911 return p->numa_group ? p->numa_group->gid : 0;
912}
913
ac8e895b
MG
914static inline int task_faults_idx(int nid, int priv)
915{
916 return 2 * nid + priv;
917}
918
919static inline unsigned long task_faults(struct task_struct *p, int nid)
920{
921 if (!p->numa_faults)
922 return 0;
923
924 return p->numa_faults[task_faults_idx(nid, 0)] +
925 p->numa_faults[task_faults_idx(nid, 1)];
926}
927
83e1d2cd
MG
928static inline unsigned long group_faults(struct task_struct *p, int nid)
929{
930 if (!p->numa_group)
931 return 0;
932
989348b5 933 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
83e1d2cd
MG
934}
935
936/*
937 * These return the fraction of accesses done by a particular task, or
938 * task group, on a particular numa node. The group weight is given a
939 * larger multiplier, in order to group tasks together that are almost
940 * evenly spread out between numa nodes.
941 */
942static inline unsigned long task_weight(struct task_struct *p, int nid)
943{
944 unsigned long total_faults;
945
946 if (!p->numa_faults)
947 return 0;
948
949 total_faults = p->total_numa_faults;
950
951 if (!total_faults)
952 return 0;
953
954 return 1000 * task_faults(p, nid) / total_faults;
955}
956
957static inline unsigned long group_weight(struct task_struct *p, int nid)
958{
989348b5 959 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
960 return 0;
961
989348b5 962 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
963}
964
e6628d5b 965static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
966static unsigned long source_load(int cpu, int type);
967static unsigned long target_load(int cpu, int type);
968static unsigned long power_of(int cpu);
969static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
970
fb13c7ee 971/* Cached statistics for all CPUs within a node */
58d081b5 972struct numa_stats {
fb13c7ee 973 unsigned long nr_running;
58d081b5 974 unsigned long load;
fb13c7ee
MG
975
976 /* Total compute capacity of CPUs on a node */
977 unsigned long power;
978
979 /* Approximate capacity in terms of runnable tasks on a node */
980 unsigned long capacity;
981 int has_capacity;
58d081b5 982};
e6628d5b 983
fb13c7ee
MG
984/*
985 * XXX borrowed from update_sg_lb_stats
986 */
987static void update_numa_stats(struct numa_stats *ns, int nid)
988{
5eca82a9 989 int cpu, cpus = 0;
fb13c7ee
MG
990
991 memset(ns, 0, sizeof(*ns));
992 for_each_cpu(cpu, cpumask_of_node(nid)) {
993 struct rq *rq = cpu_rq(cpu);
994
995 ns->nr_running += rq->nr_running;
996 ns->load += weighted_cpuload(cpu);
997 ns->power += power_of(cpu);
5eca82a9
PZ
998
999 cpus++;
fb13c7ee
MG
1000 }
1001
5eca82a9
PZ
1002 /*
1003 * If we raced with hotplug and there are no CPUs left in our mask
1004 * the @ns structure is NULL'ed and task_numa_compare() will
1005 * not find this node attractive.
1006 *
1007 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1008 * and bail there.
1009 */
1010 if (!cpus)
1011 return;
1012
fb13c7ee
MG
1013 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1014 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1015 ns->has_capacity = (ns->nr_running < ns->capacity);
1016}
1017
58d081b5
MG
1018struct task_numa_env {
1019 struct task_struct *p;
e6628d5b 1020
58d081b5
MG
1021 int src_cpu, src_nid;
1022 int dst_cpu, dst_nid;
e6628d5b 1023
58d081b5 1024 struct numa_stats src_stats, dst_stats;
e6628d5b 1025
fb13c7ee
MG
1026 int imbalance_pct, idx;
1027
1028 struct task_struct *best_task;
1029 long best_imp;
58d081b5
MG
1030 int best_cpu;
1031};
1032
fb13c7ee
MG
1033static void task_numa_assign(struct task_numa_env *env,
1034 struct task_struct *p, long imp)
1035{
1036 if (env->best_task)
1037 put_task_struct(env->best_task);
1038 if (p)
1039 get_task_struct(p);
1040
1041 env->best_task = p;
1042 env->best_imp = imp;
1043 env->best_cpu = env->dst_cpu;
1044}
1045
1046/*
1047 * This checks if the overall compute and NUMA accesses of the system would
1048 * be improved if the source tasks was migrated to the target dst_cpu taking
1049 * into account that it might be best if task running on the dst_cpu should
1050 * be exchanged with the source task
1051 */
887c290e
RR
1052static void task_numa_compare(struct task_numa_env *env,
1053 long taskimp, long groupimp)
fb13c7ee
MG
1054{
1055 struct rq *src_rq = cpu_rq(env->src_cpu);
1056 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1057 struct task_struct *cur;
1058 long dst_load, src_load;
1059 long load;
887c290e 1060 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1061
1062 rcu_read_lock();
1063 cur = ACCESS_ONCE(dst_rq->curr);
1064 if (cur->pid == 0) /* idle */
1065 cur = NULL;
1066
1067 /*
1068 * "imp" is the fault differential for the source task between the
1069 * source and destination node. Calculate the total differential for
1070 * the source task and potential destination task. The more negative
1071 * the value is, the more rmeote accesses that would be expected to
1072 * be incurred if the tasks were swapped.
1073 */
1074 if (cur) {
1075 /* Skip this swap candidate if cannot move to the source cpu */
1076 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1077 goto unlock;
1078
887c290e
RR
1079 /*
1080 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1081 * in any group then look only at task weights.
887c290e 1082 */
ca28aa53 1083 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1084 imp = taskimp + task_weight(cur, env->src_nid) -
1085 task_weight(cur, env->dst_nid);
ca28aa53
RR
1086 /*
1087 * Add some hysteresis to prevent swapping the
1088 * tasks within a group over tiny differences.
1089 */
1090 if (cur->numa_group)
1091 imp -= imp/16;
887c290e 1092 } else {
ca28aa53
RR
1093 /*
1094 * Compare the group weights. If a task is all by
1095 * itself (not part of a group), use the task weight
1096 * instead.
1097 */
1098 if (env->p->numa_group)
1099 imp = groupimp;
1100 else
1101 imp = taskimp;
1102
1103 if (cur->numa_group)
1104 imp += group_weight(cur, env->src_nid) -
1105 group_weight(cur, env->dst_nid);
1106 else
1107 imp += task_weight(cur, env->src_nid) -
1108 task_weight(cur, env->dst_nid);
887c290e 1109 }
fb13c7ee
MG
1110 }
1111
1112 if (imp < env->best_imp)
1113 goto unlock;
1114
1115 if (!cur) {
1116 /* Is there capacity at our destination? */
1117 if (env->src_stats.has_capacity &&
1118 !env->dst_stats.has_capacity)
1119 goto unlock;
1120
1121 goto balance;
1122 }
1123
1124 /* Balance doesn't matter much if we're running a task per cpu */
1125 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1126 goto assign;
1127
1128 /*
1129 * In the overloaded case, try and keep the load balanced.
1130 */
1131balance:
1132 dst_load = env->dst_stats.load;
1133 src_load = env->src_stats.load;
1134
1135 /* XXX missing power terms */
1136 load = task_h_load(env->p);
1137 dst_load += load;
1138 src_load -= load;
1139
1140 if (cur) {
1141 load = task_h_load(cur);
1142 dst_load -= load;
1143 src_load += load;
1144 }
1145
1146 /* make src_load the smaller */
1147 if (dst_load < src_load)
1148 swap(dst_load, src_load);
1149
1150 if (src_load * env->imbalance_pct < dst_load * 100)
1151 goto unlock;
1152
1153assign:
1154 task_numa_assign(env, cur, imp);
1155unlock:
1156 rcu_read_unlock();
1157}
1158
887c290e
RR
1159static void task_numa_find_cpu(struct task_numa_env *env,
1160 long taskimp, long groupimp)
2c8a50aa
MG
1161{
1162 int cpu;
1163
1164 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1165 /* Skip this CPU if the source task cannot migrate */
1166 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1167 continue;
1168
1169 env->dst_cpu = cpu;
887c290e 1170 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1171 }
1172}
1173
58d081b5
MG
1174static int task_numa_migrate(struct task_struct *p)
1175{
58d081b5
MG
1176 struct task_numa_env env = {
1177 .p = p,
fb13c7ee 1178
58d081b5 1179 .src_cpu = task_cpu(p),
b32e86b4 1180 .src_nid = task_node(p),
fb13c7ee
MG
1181
1182 .imbalance_pct = 112,
1183
1184 .best_task = NULL,
1185 .best_imp = 0,
1186 .best_cpu = -1
58d081b5
MG
1187 };
1188 struct sched_domain *sd;
887c290e 1189 unsigned long taskweight, groupweight;
2c8a50aa 1190 int nid, ret;
887c290e 1191 long taskimp, groupimp;
e6628d5b 1192
58d081b5 1193 /*
fb13c7ee
MG
1194 * Pick the lowest SD_NUMA domain, as that would have the smallest
1195 * imbalance and would be the first to start moving tasks about.
1196 *
1197 * And we want to avoid any moving of tasks about, as that would create
1198 * random movement of tasks -- counter the numa conditions we're trying
1199 * to satisfy here.
58d081b5
MG
1200 */
1201 rcu_read_lock();
fb13c7ee 1202 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1203 if (sd)
1204 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1205 rcu_read_unlock();
1206
46a73e8a
RR
1207 /*
1208 * Cpusets can break the scheduler domain tree into smaller
1209 * balance domains, some of which do not cross NUMA boundaries.
1210 * Tasks that are "trapped" in such domains cannot be migrated
1211 * elsewhere, so there is no point in (re)trying.
1212 */
1213 if (unlikely(!sd)) {
1214 p->numa_preferred_nid = cpu_to_node(task_cpu(p));
1215 return -EINVAL;
1216 }
1217
887c290e
RR
1218 taskweight = task_weight(p, env.src_nid);
1219 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1220 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1221 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1222 taskimp = task_weight(p, env.dst_nid) - taskweight;
1223 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1224 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1225
e1dda8a7
RR
1226 /* If the preferred nid has capacity, try to use it. */
1227 if (env.dst_stats.has_capacity)
887c290e 1228 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1229
1230 /* No space available on the preferred nid. Look elsewhere. */
1231 if (env.best_cpu == -1) {
2c8a50aa
MG
1232 for_each_online_node(nid) {
1233 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1234 continue;
58d081b5 1235
83e1d2cd 1236 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1237 taskimp = task_weight(p, nid) - taskweight;
1238 groupimp = group_weight(p, nid) - groupweight;
1239 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1240 continue;
1241
2c8a50aa
MG
1242 env.dst_nid = nid;
1243 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1244 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1245 }
1246 }
1247
fb13c7ee
MG
1248 /* No better CPU than the current one was found. */
1249 if (env.best_cpu == -1)
1250 return -EAGAIN;
1251
0ec8aa00
PZ
1252 sched_setnuma(p, env.dst_nid);
1253
04bb2f94
RR
1254 /*
1255 * Reset the scan period if the task is being rescheduled on an
1256 * alternative node to recheck if the tasks is now properly placed.
1257 */
1258 p->numa_scan_period = task_scan_min(p);
1259
fb13c7ee
MG
1260 if (env.best_task == NULL) {
1261 int ret = migrate_task_to(p, env.best_cpu);
1262 return ret;
1263 }
1264
1265 ret = migrate_swap(p, env.best_task);
1266 put_task_struct(env.best_task);
1267 return ret;
e6628d5b
MG
1268}
1269
6b9a7460
MG
1270/* Attempt to migrate a task to a CPU on the preferred node. */
1271static void numa_migrate_preferred(struct task_struct *p)
1272{
2739d3ee
RR
1273 /* This task has no NUMA fault statistics yet */
1274 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1275 return;
1276
2739d3ee
RR
1277 /* Periodically retry migrating the task to the preferred node */
1278 p->numa_migrate_retry = jiffies + HZ;
1279
1280 /* Success if task is already running on preferred CPU */
1281 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
6b9a7460
MG
1282 return;
1283
1284 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1285 task_numa_migrate(p);
6b9a7460
MG
1286}
1287
04bb2f94
RR
1288/*
1289 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1290 * increments. The more local the fault statistics are, the higher the scan
1291 * period will be for the next scan window. If local/remote ratio is below
1292 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1293 * scan period will decrease
1294 */
1295#define NUMA_PERIOD_SLOTS 10
1296#define NUMA_PERIOD_THRESHOLD 3
1297
1298/*
1299 * Increase the scan period (slow down scanning) if the majority of
1300 * our memory is already on our local node, or if the majority of
1301 * the page accesses are shared with other processes.
1302 * Otherwise, decrease the scan period.
1303 */
1304static void update_task_scan_period(struct task_struct *p,
1305 unsigned long shared, unsigned long private)
1306{
1307 unsigned int period_slot;
1308 int ratio;
1309 int diff;
1310
1311 unsigned long remote = p->numa_faults_locality[0];
1312 unsigned long local = p->numa_faults_locality[1];
1313
1314 /*
1315 * If there were no record hinting faults then either the task is
1316 * completely idle or all activity is areas that are not of interest
1317 * to automatic numa balancing. Scan slower
1318 */
1319 if (local + shared == 0) {
1320 p->numa_scan_period = min(p->numa_scan_period_max,
1321 p->numa_scan_period << 1);
1322
1323 p->mm->numa_next_scan = jiffies +
1324 msecs_to_jiffies(p->numa_scan_period);
1325
1326 return;
1327 }
1328
1329 /*
1330 * Prepare to scale scan period relative to the current period.
1331 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1332 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1333 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1334 */
1335 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1336 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1337 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1338 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1339 if (!slot)
1340 slot = 1;
1341 diff = slot * period_slot;
1342 } else {
1343 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1344
1345 /*
1346 * Scale scan rate increases based on sharing. There is an
1347 * inverse relationship between the degree of sharing and
1348 * the adjustment made to the scanning period. Broadly
1349 * speaking the intent is that there is little point
1350 * scanning faster if shared accesses dominate as it may
1351 * simply bounce migrations uselessly
1352 */
1353 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1354 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1355 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1356 }
1357
1358 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1359 task_scan_min(p), task_scan_max(p));
1360 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1361}
1362
cbee9f88
PZ
1363static void task_numa_placement(struct task_struct *p)
1364{
83e1d2cd
MG
1365 int seq, nid, max_nid = -1, max_group_nid = -1;
1366 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1367 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1368 spinlock_t *group_lock = NULL;
cbee9f88 1369
2832bc19 1370 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1371 if (p->numa_scan_seq == seq)
1372 return;
1373 p->numa_scan_seq = seq;
598f0ec0 1374 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1375
7dbd13ed
MG
1376 /* If the task is part of a group prevent parallel updates to group stats */
1377 if (p->numa_group) {
1378 group_lock = &p->numa_group->lock;
1379 spin_lock(group_lock);
1380 }
1381
688b7585
MG
1382 /* Find the node with the highest number of faults */
1383 for_each_online_node(nid) {
83e1d2cd 1384 unsigned long faults = 0, group_faults = 0;
ac8e895b 1385 int priv, i;
745d6147 1386
ac8e895b 1387 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1388 long diff;
1389
ac8e895b 1390 i = task_faults_idx(nid, priv);
8c8a743c 1391 diff = -p->numa_faults[i];
745d6147 1392
ac8e895b
MG
1393 /* Decay existing window, copy faults since last scan */
1394 p->numa_faults[i] >>= 1;
1395 p->numa_faults[i] += p->numa_faults_buffer[i];
04bb2f94 1396 fault_types[priv] += p->numa_faults_buffer[i];
ac8e895b 1397 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1398
1399 faults += p->numa_faults[i];
8c8a743c 1400 diff += p->numa_faults[i];
83e1d2cd 1401 p->total_numa_faults += diff;
8c8a743c
PZ
1402 if (p->numa_group) {
1403 /* safe because we can only change our own group */
989348b5
MG
1404 p->numa_group->faults[i] += diff;
1405 p->numa_group->total_faults += diff;
1406 group_faults += p->numa_group->faults[i];
8c8a743c 1407 }
ac8e895b
MG
1408 }
1409
688b7585
MG
1410 if (faults > max_faults) {
1411 max_faults = faults;
1412 max_nid = nid;
1413 }
83e1d2cd
MG
1414
1415 if (group_faults > max_group_faults) {
1416 max_group_faults = group_faults;
1417 max_group_nid = nid;
1418 }
1419 }
1420
04bb2f94
RR
1421 update_task_scan_period(p, fault_types[0], fault_types[1]);
1422
7dbd13ed
MG
1423 if (p->numa_group) {
1424 /*
1425 * If the preferred task and group nids are different,
1426 * iterate over the nodes again to find the best place.
1427 */
1428 if (max_nid != max_group_nid) {
1429 unsigned long weight, max_weight = 0;
1430
1431 for_each_online_node(nid) {
1432 weight = task_weight(p, nid) + group_weight(p, nid);
1433 if (weight > max_weight) {
1434 max_weight = weight;
1435 max_nid = nid;
1436 }
83e1d2cd
MG
1437 }
1438 }
7dbd13ed
MG
1439
1440 spin_unlock(group_lock);
688b7585
MG
1441 }
1442
6b9a7460 1443 /* Preferred node as the node with the most faults */
3a7053b3 1444 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1445 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1446 sched_setnuma(p, max_nid);
6b9a7460 1447 numa_migrate_preferred(p);
3a7053b3 1448 }
cbee9f88
PZ
1449}
1450
8c8a743c
PZ
1451static inline int get_numa_group(struct numa_group *grp)
1452{
1453 return atomic_inc_not_zero(&grp->refcount);
1454}
1455
1456static inline void put_numa_group(struct numa_group *grp)
1457{
1458 if (atomic_dec_and_test(&grp->refcount))
1459 kfree_rcu(grp, rcu);
1460}
1461
3e6a9418
MG
1462static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1463 int *priv)
8c8a743c
PZ
1464{
1465 struct numa_group *grp, *my_grp;
1466 struct task_struct *tsk;
1467 bool join = false;
1468 int cpu = cpupid_to_cpu(cpupid);
1469 int i;
1470
1471 if (unlikely(!p->numa_group)) {
1472 unsigned int size = sizeof(struct numa_group) +
989348b5 1473 2*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1474
1475 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1476 if (!grp)
1477 return;
1478
1479 atomic_set(&grp->refcount, 1);
1480 spin_lock_init(&grp->lock);
1481 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1482 grp->gid = p->pid;
8c8a743c
PZ
1483
1484 for (i = 0; i < 2*nr_node_ids; i++)
989348b5 1485 grp->faults[i] = p->numa_faults[i];
8c8a743c 1486
989348b5 1487 grp->total_faults = p->total_numa_faults;
83e1d2cd 1488
8c8a743c
PZ
1489 list_add(&p->numa_entry, &grp->task_list);
1490 grp->nr_tasks++;
1491 rcu_assign_pointer(p->numa_group, grp);
1492 }
1493
1494 rcu_read_lock();
1495 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1496
1497 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1498 goto no_join;
8c8a743c
PZ
1499
1500 grp = rcu_dereference(tsk->numa_group);
1501 if (!grp)
3354781a 1502 goto no_join;
8c8a743c
PZ
1503
1504 my_grp = p->numa_group;
1505 if (grp == my_grp)
3354781a 1506 goto no_join;
8c8a743c
PZ
1507
1508 /*
1509 * Only join the other group if its bigger; if we're the bigger group,
1510 * the other task will join us.
1511 */
1512 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1513 goto no_join;
8c8a743c
PZ
1514
1515 /*
1516 * Tie-break on the grp address.
1517 */
1518 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1519 goto no_join;
8c8a743c 1520
dabe1d99
RR
1521 /* Always join threads in the same process. */
1522 if (tsk->mm == current->mm)
1523 join = true;
1524
1525 /* Simple filter to avoid false positives due to PID collisions */
1526 if (flags & TNF_SHARED)
1527 join = true;
8c8a743c 1528
3e6a9418
MG
1529 /* Update priv based on whether false sharing was detected */
1530 *priv = !join;
1531
dabe1d99 1532 if (join && !get_numa_group(grp))
3354781a 1533 goto no_join;
8c8a743c 1534
8c8a743c
PZ
1535 rcu_read_unlock();
1536
1537 if (!join)
1538 return;
1539
989348b5
MG
1540 double_lock(&my_grp->lock, &grp->lock);
1541
8c8a743c 1542 for (i = 0; i < 2*nr_node_ids; i++) {
989348b5
MG
1543 my_grp->faults[i] -= p->numa_faults[i];
1544 grp->faults[i] += p->numa_faults[i];
8c8a743c 1545 }
989348b5
MG
1546 my_grp->total_faults -= p->total_numa_faults;
1547 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1548
1549 list_move(&p->numa_entry, &grp->task_list);
1550 my_grp->nr_tasks--;
1551 grp->nr_tasks++;
1552
1553 spin_unlock(&my_grp->lock);
1554 spin_unlock(&grp->lock);
1555
1556 rcu_assign_pointer(p->numa_group, grp);
1557
1558 put_numa_group(my_grp);
3354781a
PZ
1559 return;
1560
1561no_join:
1562 rcu_read_unlock();
1563 return;
8c8a743c
PZ
1564}
1565
1566void task_numa_free(struct task_struct *p)
1567{
1568 struct numa_group *grp = p->numa_group;
1569 int i;
82727018 1570 void *numa_faults = p->numa_faults;
8c8a743c
PZ
1571
1572 if (grp) {
989348b5 1573 spin_lock(&grp->lock);
8c8a743c 1574 for (i = 0; i < 2*nr_node_ids; i++)
989348b5
MG
1575 grp->faults[i] -= p->numa_faults[i];
1576 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1577
8c8a743c
PZ
1578 list_del(&p->numa_entry);
1579 grp->nr_tasks--;
1580 spin_unlock(&grp->lock);
1581 rcu_assign_pointer(p->numa_group, NULL);
1582 put_numa_group(grp);
1583 }
1584
82727018
RR
1585 p->numa_faults = NULL;
1586 p->numa_faults_buffer = NULL;
1587 kfree(numa_faults);
8c8a743c
PZ
1588}
1589
cbee9f88
PZ
1590/*
1591 * Got a PROT_NONE fault for a page on @node.
1592 */
6688cc05 1593void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1594{
1595 struct task_struct *p = current;
6688cc05 1596 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1597 int priv;
cbee9f88 1598
10e84b97 1599 if (!numabalancing_enabled)
1a687c2e
MG
1600 return;
1601
9ff1d9ff
MG
1602 /* for example, ksmd faulting in a user's mm */
1603 if (!p->mm)
1604 return;
1605
82727018
RR
1606 /* Do not worry about placement if exiting */
1607 if (p->state == TASK_DEAD)
1608 return;
1609
f809ca9a
MG
1610 /* Allocate buffer to track faults on a per-node basis */
1611 if (unlikely(!p->numa_faults)) {
ac8e895b 1612 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1613
745d6147
MG
1614 /* numa_faults and numa_faults_buffer share the allocation */
1615 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1616 if (!p->numa_faults)
1617 return;
745d6147
MG
1618
1619 BUG_ON(p->numa_faults_buffer);
ac8e895b 1620 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
83e1d2cd 1621 p->total_numa_faults = 0;
04bb2f94 1622 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1623 }
cbee9f88 1624
8c8a743c
PZ
1625 /*
1626 * First accesses are treated as private, otherwise consider accesses
1627 * to be private if the accessing pid has not changed
1628 */
1629 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1630 priv = 1;
1631 } else {
1632 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1633 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1634 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1635 }
1636
cbee9f88 1637 task_numa_placement(p);
f809ca9a 1638
2739d3ee
RR
1639 /*
1640 * Retry task to preferred node migration periodically, in case it
1641 * case it previously failed, or the scheduler moved us.
1642 */
1643 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1644 numa_migrate_preferred(p);
1645
b32e86b4
IM
1646 if (migrated)
1647 p->numa_pages_migrated += pages;
1648
ac8e895b 1649 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
04bb2f94 1650 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1651}
1652
6e5fb223
PZ
1653static void reset_ptenuma_scan(struct task_struct *p)
1654{
1655 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1656 p->mm->numa_scan_offset = 0;
1657}
1658
cbee9f88
PZ
1659/*
1660 * The expensive part of numa migration is done from task_work context.
1661 * Triggered from task_tick_numa().
1662 */
1663void task_numa_work(struct callback_head *work)
1664{
1665 unsigned long migrate, next_scan, now = jiffies;
1666 struct task_struct *p = current;
1667 struct mm_struct *mm = p->mm;
6e5fb223 1668 struct vm_area_struct *vma;
9f40604c 1669 unsigned long start, end;
598f0ec0 1670 unsigned long nr_pte_updates = 0;
9f40604c 1671 long pages;
cbee9f88
PZ
1672
1673 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1674
1675 work->next = work; /* protect against double add */
1676 /*
1677 * Who cares about NUMA placement when they're dying.
1678 *
1679 * NOTE: make sure not to dereference p->mm before this check,
1680 * exit_task_work() happens _after_ exit_mm() so we could be called
1681 * without p->mm even though we still had it when we enqueued this
1682 * work.
1683 */
1684 if (p->flags & PF_EXITING)
1685 return;
1686
930aa174 1687 if (!mm->numa_next_scan) {
7e8d16b6
MG
1688 mm->numa_next_scan = now +
1689 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1690 }
1691
cbee9f88
PZ
1692 /*
1693 * Enforce maximal scan/migration frequency..
1694 */
1695 migrate = mm->numa_next_scan;
1696 if (time_before(now, migrate))
1697 return;
1698
598f0ec0
MG
1699 if (p->numa_scan_period == 0) {
1700 p->numa_scan_period_max = task_scan_max(p);
1701 p->numa_scan_period = task_scan_min(p);
1702 }
cbee9f88 1703
fb003b80 1704 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1705 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1706 return;
1707
19a78d11
PZ
1708 /*
1709 * Delay this task enough that another task of this mm will likely win
1710 * the next time around.
1711 */
1712 p->node_stamp += 2 * TICK_NSEC;
1713
9f40604c
MG
1714 start = mm->numa_scan_offset;
1715 pages = sysctl_numa_balancing_scan_size;
1716 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1717 if (!pages)
1718 return;
cbee9f88 1719
6e5fb223 1720 down_read(&mm->mmap_sem);
9f40604c 1721 vma = find_vma(mm, start);
6e5fb223
PZ
1722 if (!vma) {
1723 reset_ptenuma_scan(p);
9f40604c 1724 start = 0;
6e5fb223
PZ
1725 vma = mm->mmap;
1726 }
9f40604c 1727 for (; vma; vma = vma->vm_next) {
fc314724 1728 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1729 continue;
1730
4591ce4f
MG
1731 /*
1732 * Shared library pages mapped by multiple processes are not
1733 * migrated as it is expected they are cache replicated. Avoid
1734 * hinting faults in read-only file-backed mappings or the vdso
1735 * as migrating the pages will be of marginal benefit.
1736 */
1737 if (!vma->vm_mm ||
1738 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1739 continue;
3c67f474
MG
1740
1741 /*
1742 * Skip inaccessible VMAs to avoid any confusion between
1743 * PROT_NONE and NUMA hinting ptes
1744 */
1745 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1746 continue;
4591ce4f 1747
9f40604c
MG
1748 do {
1749 start = max(start, vma->vm_start);
1750 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1751 end = min(end, vma->vm_end);
598f0ec0
MG
1752 nr_pte_updates += change_prot_numa(vma, start, end);
1753
1754 /*
1755 * Scan sysctl_numa_balancing_scan_size but ensure that
1756 * at least one PTE is updated so that unused virtual
1757 * address space is quickly skipped.
1758 */
1759 if (nr_pte_updates)
1760 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1761
9f40604c
MG
1762 start = end;
1763 if (pages <= 0)
1764 goto out;
1765 } while (end != vma->vm_end);
cbee9f88 1766 }
6e5fb223 1767
9f40604c 1768out:
6e5fb223 1769 /*
c69307d5
PZ
1770 * It is possible to reach the end of the VMA list but the last few
1771 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1772 * would find the !migratable VMA on the next scan but not reset the
1773 * scanner to the start so check it now.
6e5fb223
PZ
1774 */
1775 if (vma)
9f40604c 1776 mm->numa_scan_offset = start;
6e5fb223
PZ
1777 else
1778 reset_ptenuma_scan(p);
1779 up_read(&mm->mmap_sem);
cbee9f88
PZ
1780}
1781
1782/*
1783 * Drive the periodic memory faults..
1784 */
1785void task_tick_numa(struct rq *rq, struct task_struct *curr)
1786{
1787 struct callback_head *work = &curr->numa_work;
1788 u64 period, now;
1789
1790 /*
1791 * We don't care about NUMA placement if we don't have memory.
1792 */
1793 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1794 return;
1795
1796 /*
1797 * Using runtime rather than walltime has the dual advantage that
1798 * we (mostly) drive the selection from busy threads and that the
1799 * task needs to have done some actual work before we bother with
1800 * NUMA placement.
1801 */
1802 now = curr->se.sum_exec_runtime;
1803 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1804
1805 if (now - curr->node_stamp > period) {
4b96a29b 1806 if (!curr->node_stamp)
598f0ec0 1807 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1808 curr->node_stamp += period;
cbee9f88
PZ
1809
1810 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1811 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1812 task_work_add(curr, work, true);
1813 }
1814 }
1815}
1816#else
1817static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1818{
1819}
0ec8aa00
PZ
1820
1821static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1822{
1823}
1824
1825static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1826{
1827}
cbee9f88
PZ
1828#endif /* CONFIG_NUMA_BALANCING */
1829
30cfdcfc
DA
1830static void
1831account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1832{
1833 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1834 if (!parent_entity(se))
029632fb 1835 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1836#ifdef CONFIG_SMP
0ec8aa00
PZ
1837 if (entity_is_task(se)) {
1838 struct rq *rq = rq_of(cfs_rq);
1839
1840 account_numa_enqueue(rq, task_of(se));
1841 list_add(&se->group_node, &rq->cfs_tasks);
1842 }
367456c7 1843#endif
30cfdcfc 1844 cfs_rq->nr_running++;
30cfdcfc
DA
1845}
1846
1847static void
1848account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1849{
1850 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1851 if (!parent_entity(se))
029632fb 1852 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1853 if (entity_is_task(se)) {
1854 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1855 list_del_init(&se->group_node);
0ec8aa00 1856 }
30cfdcfc 1857 cfs_rq->nr_running--;
30cfdcfc
DA
1858}
1859
3ff6dcac
YZ
1860#ifdef CONFIG_FAIR_GROUP_SCHED
1861# ifdef CONFIG_SMP
cf5f0acf
PZ
1862static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1863{
1864 long tg_weight;
1865
1866 /*
1867 * Use this CPU's actual weight instead of the last load_contribution
1868 * to gain a more accurate current total weight. See
1869 * update_cfs_rq_load_contribution().
1870 */
bf5b986e 1871 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1872 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1873 tg_weight += cfs_rq->load.weight;
1874
1875 return tg_weight;
1876}
1877
6d5ab293 1878static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1879{
cf5f0acf 1880 long tg_weight, load, shares;
3ff6dcac 1881
cf5f0acf 1882 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1883 load = cfs_rq->load.weight;
3ff6dcac 1884
3ff6dcac 1885 shares = (tg->shares * load);
cf5f0acf
PZ
1886 if (tg_weight)
1887 shares /= tg_weight;
3ff6dcac
YZ
1888
1889 if (shares < MIN_SHARES)
1890 shares = MIN_SHARES;
1891 if (shares > tg->shares)
1892 shares = tg->shares;
1893
1894 return shares;
1895}
3ff6dcac 1896# else /* CONFIG_SMP */
6d5ab293 1897static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1898{
1899 return tg->shares;
1900}
3ff6dcac 1901# endif /* CONFIG_SMP */
2069dd75
PZ
1902static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1903 unsigned long weight)
1904{
19e5eebb
PT
1905 if (se->on_rq) {
1906 /* commit outstanding execution time */
1907 if (cfs_rq->curr == se)
1908 update_curr(cfs_rq);
2069dd75 1909 account_entity_dequeue(cfs_rq, se);
19e5eebb 1910 }
2069dd75
PZ
1911
1912 update_load_set(&se->load, weight);
1913
1914 if (se->on_rq)
1915 account_entity_enqueue(cfs_rq, se);
1916}
1917
82958366
PT
1918static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1919
6d5ab293 1920static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1921{
1922 struct task_group *tg;
1923 struct sched_entity *se;
3ff6dcac 1924 long shares;
2069dd75 1925
2069dd75
PZ
1926 tg = cfs_rq->tg;
1927 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1928 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1929 return;
3ff6dcac
YZ
1930#ifndef CONFIG_SMP
1931 if (likely(se->load.weight == tg->shares))
1932 return;
1933#endif
6d5ab293 1934 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1935
1936 reweight_entity(cfs_rq_of(se), se, shares);
1937}
1938#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1939static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1940{
1941}
1942#endif /* CONFIG_FAIR_GROUP_SCHED */
1943
141965c7 1944#ifdef CONFIG_SMP
5b51f2f8
PT
1945/*
1946 * We choose a half-life close to 1 scheduling period.
1947 * Note: The tables below are dependent on this value.
1948 */
1949#define LOAD_AVG_PERIOD 32
1950#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1951#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1952
1953/* Precomputed fixed inverse multiplies for multiplication by y^n */
1954static const u32 runnable_avg_yN_inv[] = {
1955 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1956 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1957 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1958 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1959 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1960 0x85aac367, 0x82cd8698,
1961};
1962
1963/*
1964 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1965 * over-estimates when re-combining.
1966 */
1967static const u32 runnable_avg_yN_sum[] = {
1968 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1969 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1970 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1971};
1972
9d85f21c
PT
1973/*
1974 * Approximate:
1975 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1976 */
1977static __always_inline u64 decay_load(u64 val, u64 n)
1978{
5b51f2f8
PT
1979 unsigned int local_n;
1980
1981 if (!n)
1982 return val;
1983 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1984 return 0;
1985
1986 /* after bounds checking we can collapse to 32-bit */
1987 local_n = n;
1988
1989 /*
1990 * As y^PERIOD = 1/2, we can combine
1991 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1992 * With a look-up table which covers k^n (n<PERIOD)
1993 *
1994 * To achieve constant time decay_load.
1995 */
1996 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1997 val >>= local_n / LOAD_AVG_PERIOD;
1998 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1999 }
2000
5b51f2f8
PT
2001 val *= runnable_avg_yN_inv[local_n];
2002 /* We don't use SRR here since we always want to round down. */
2003 return val >> 32;
2004}
2005
2006/*
2007 * For updates fully spanning n periods, the contribution to runnable
2008 * average will be: \Sum 1024*y^n
2009 *
2010 * We can compute this reasonably efficiently by combining:
2011 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2012 */
2013static u32 __compute_runnable_contrib(u64 n)
2014{
2015 u32 contrib = 0;
2016
2017 if (likely(n <= LOAD_AVG_PERIOD))
2018 return runnable_avg_yN_sum[n];
2019 else if (unlikely(n >= LOAD_AVG_MAX_N))
2020 return LOAD_AVG_MAX;
2021
2022 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2023 do {
2024 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2025 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2026
2027 n -= LOAD_AVG_PERIOD;
2028 } while (n > LOAD_AVG_PERIOD);
2029
2030 contrib = decay_load(contrib, n);
2031 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2032}
2033
2034/*
2035 * We can represent the historical contribution to runnable average as the
2036 * coefficients of a geometric series. To do this we sub-divide our runnable
2037 * history into segments of approximately 1ms (1024us); label the segment that
2038 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2039 *
2040 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2041 * p0 p1 p2
2042 * (now) (~1ms ago) (~2ms ago)
2043 *
2044 * Let u_i denote the fraction of p_i that the entity was runnable.
2045 *
2046 * We then designate the fractions u_i as our co-efficients, yielding the
2047 * following representation of historical load:
2048 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2049 *
2050 * We choose y based on the with of a reasonably scheduling period, fixing:
2051 * y^32 = 0.5
2052 *
2053 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2054 * approximately half as much as the contribution to load within the last ms
2055 * (u_0).
2056 *
2057 * When a period "rolls over" and we have new u_0`, multiplying the previous
2058 * sum again by y is sufficient to update:
2059 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2060 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2061 */
2062static __always_inline int __update_entity_runnable_avg(u64 now,
2063 struct sched_avg *sa,
2064 int runnable)
2065{
5b51f2f8
PT
2066 u64 delta, periods;
2067 u32 runnable_contrib;
9d85f21c
PT
2068 int delta_w, decayed = 0;
2069
2070 delta = now - sa->last_runnable_update;
2071 /*
2072 * This should only happen when time goes backwards, which it
2073 * unfortunately does during sched clock init when we swap over to TSC.
2074 */
2075 if ((s64)delta < 0) {
2076 sa->last_runnable_update = now;
2077 return 0;
2078 }
2079
2080 /*
2081 * Use 1024ns as the unit of measurement since it's a reasonable
2082 * approximation of 1us and fast to compute.
2083 */
2084 delta >>= 10;
2085 if (!delta)
2086 return 0;
2087 sa->last_runnable_update = now;
2088
2089 /* delta_w is the amount already accumulated against our next period */
2090 delta_w = sa->runnable_avg_period % 1024;
2091 if (delta + delta_w >= 1024) {
2092 /* period roll-over */
2093 decayed = 1;
2094
2095 /*
2096 * Now that we know we're crossing a period boundary, figure
2097 * out how much from delta we need to complete the current
2098 * period and accrue it.
2099 */
2100 delta_w = 1024 - delta_w;
5b51f2f8
PT
2101 if (runnable)
2102 sa->runnable_avg_sum += delta_w;
2103 sa->runnable_avg_period += delta_w;
2104
2105 delta -= delta_w;
2106
2107 /* Figure out how many additional periods this update spans */
2108 periods = delta / 1024;
2109 delta %= 1024;
2110
2111 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2112 periods + 1);
2113 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2114 periods + 1);
2115
2116 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2117 runnable_contrib = __compute_runnable_contrib(periods);
2118 if (runnable)
2119 sa->runnable_avg_sum += runnable_contrib;
2120 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2121 }
2122
2123 /* Remainder of delta accrued against u_0` */
2124 if (runnable)
2125 sa->runnable_avg_sum += delta;
2126 sa->runnable_avg_period += delta;
2127
2128 return decayed;
2129}
2130
9ee474f5 2131/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2132static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2133{
2134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2135 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2136
2137 decays -= se->avg.decay_count;
2138 if (!decays)
aff3e498 2139 return 0;
9ee474f5
PT
2140
2141 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2142 se->avg.decay_count = 0;
aff3e498
PT
2143
2144 return decays;
9ee474f5
PT
2145}
2146
c566e8e9
PT
2147#ifdef CONFIG_FAIR_GROUP_SCHED
2148static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2149 int force_update)
2150{
2151 struct task_group *tg = cfs_rq->tg;
bf5b986e 2152 long tg_contrib;
c566e8e9
PT
2153
2154 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2155 tg_contrib -= cfs_rq->tg_load_contrib;
2156
bf5b986e
AS
2157 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2158 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2159 cfs_rq->tg_load_contrib += tg_contrib;
2160 }
2161}
8165e145 2162
bb17f655
PT
2163/*
2164 * Aggregate cfs_rq runnable averages into an equivalent task_group
2165 * representation for computing load contributions.
2166 */
2167static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2168 struct cfs_rq *cfs_rq)
2169{
2170 struct task_group *tg = cfs_rq->tg;
2171 long contrib;
2172
2173 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2174 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2175 sa->runnable_avg_period + 1);
2176 contrib -= cfs_rq->tg_runnable_contrib;
2177
2178 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2179 atomic_add(contrib, &tg->runnable_avg);
2180 cfs_rq->tg_runnable_contrib += contrib;
2181 }
2182}
2183
8165e145
PT
2184static inline void __update_group_entity_contrib(struct sched_entity *se)
2185{
2186 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2187 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2188 int runnable_avg;
2189
8165e145
PT
2190 u64 contrib;
2191
2192 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2193 se->avg.load_avg_contrib = div_u64(contrib,
2194 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2195
2196 /*
2197 * For group entities we need to compute a correction term in the case
2198 * that they are consuming <1 cpu so that we would contribute the same
2199 * load as a task of equal weight.
2200 *
2201 * Explicitly co-ordinating this measurement would be expensive, but
2202 * fortunately the sum of each cpus contribution forms a usable
2203 * lower-bound on the true value.
2204 *
2205 * Consider the aggregate of 2 contributions. Either they are disjoint
2206 * (and the sum represents true value) or they are disjoint and we are
2207 * understating by the aggregate of their overlap.
2208 *
2209 * Extending this to N cpus, for a given overlap, the maximum amount we
2210 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2211 * cpus that overlap for this interval and w_i is the interval width.
2212 *
2213 * On a small machine; the first term is well-bounded which bounds the
2214 * total error since w_i is a subset of the period. Whereas on a
2215 * larger machine, while this first term can be larger, if w_i is the
2216 * of consequential size guaranteed to see n_i*w_i quickly converge to
2217 * our upper bound of 1-cpu.
2218 */
2219 runnable_avg = atomic_read(&tg->runnable_avg);
2220 if (runnable_avg < NICE_0_LOAD) {
2221 se->avg.load_avg_contrib *= runnable_avg;
2222 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2223 }
8165e145 2224}
c566e8e9
PT
2225#else
2226static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2227 int force_update) {}
bb17f655
PT
2228static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2229 struct cfs_rq *cfs_rq) {}
8165e145 2230static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2231#endif
2232
8165e145
PT
2233static inline void __update_task_entity_contrib(struct sched_entity *se)
2234{
2235 u32 contrib;
2236
2237 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2238 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2239 contrib /= (se->avg.runnable_avg_period + 1);
2240 se->avg.load_avg_contrib = scale_load(contrib);
2241}
2242
2dac754e
PT
2243/* Compute the current contribution to load_avg by se, return any delta */
2244static long __update_entity_load_avg_contrib(struct sched_entity *se)
2245{
2246 long old_contrib = se->avg.load_avg_contrib;
2247
8165e145
PT
2248 if (entity_is_task(se)) {
2249 __update_task_entity_contrib(se);
2250 } else {
bb17f655 2251 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2252 __update_group_entity_contrib(se);
2253 }
2dac754e
PT
2254
2255 return se->avg.load_avg_contrib - old_contrib;
2256}
2257
9ee474f5
PT
2258static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2259 long load_contrib)
2260{
2261 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2262 cfs_rq->blocked_load_avg -= load_contrib;
2263 else
2264 cfs_rq->blocked_load_avg = 0;
2265}
2266
f1b17280
PT
2267static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2268
9d85f21c 2269/* Update a sched_entity's runnable average */
9ee474f5
PT
2270static inline void update_entity_load_avg(struct sched_entity *se,
2271 int update_cfs_rq)
9d85f21c 2272{
2dac754e
PT
2273 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2274 long contrib_delta;
f1b17280 2275 u64 now;
2dac754e 2276
f1b17280
PT
2277 /*
2278 * For a group entity we need to use their owned cfs_rq_clock_task() in
2279 * case they are the parent of a throttled hierarchy.
2280 */
2281 if (entity_is_task(se))
2282 now = cfs_rq_clock_task(cfs_rq);
2283 else
2284 now = cfs_rq_clock_task(group_cfs_rq(se));
2285
2286 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2287 return;
2288
2289 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2290
2291 if (!update_cfs_rq)
2292 return;
2293
2dac754e
PT
2294 if (se->on_rq)
2295 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2296 else
2297 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2298}
2299
2300/*
2301 * Decay the load contributed by all blocked children and account this so that
2302 * their contribution may appropriately discounted when they wake up.
2303 */
aff3e498 2304static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2305{
f1b17280 2306 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2307 u64 decays;
2308
2309 decays = now - cfs_rq->last_decay;
aff3e498 2310 if (!decays && !force_update)
9ee474f5
PT
2311 return;
2312
2509940f
AS
2313 if (atomic_long_read(&cfs_rq->removed_load)) {
2314 unsigned long removed_load;
2315 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2316 subtract_blocked_load_contrib(cfs_rq, removed_load);
2317 }
9ee474f5 2318
aff3e498
PT
2319 if (decays) {
2320 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2321 decays);
2322 atomic64_add(decays, &cfs_rq->decay_counter);
2323 cfs_rq->last_decay = now;
2324 }
c566e8e9
PT
2325
2326 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2327}
18bf2805
BS
2328
2329static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2330{
78becc27 2331 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2332 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2333}
2dac754e
PT
2334
2335/* Add the load generated by se into cfs_rq's child load-average */
2336static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2337 struct sched_entity *se,
2338 int wakeup)
2dac754e 2339{
aff3e498
PT
2340 /*
2341 * We track migrations using entity decay_count <= 0, on a wake-up
2342 * migration we use a negative decay count to track the remote decays
2343 * accumulated while sleeping.
a75cdaa9
AS
2344 *
2345 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2346 * are seen by enqueue_entity_load_avg() as a migration with an already
2347 * constructed load_avg_contrib.
aff3e498
PT
2348 */
2349 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2350 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2351 if (se->avg.decay_count) {
2352 /*
2353 * In a wake-up migration we have to approximate the
2354 * time sleeping. This is because we can't synchronize
2355 * clock_task between the two cpus, and it is not
2356 * guaranteed to be read-safe. Instead, we can
2357 * approximate this using our carried decays, which are
2358 * explicitly atomically readable.
2359 */
2360 se->avg.last_runnable_update -= (-se->avg.decay_count)
2361 << 20;
2362 update_entity_load_avg(se, 0);
2363 /* Indicate that we're now synchronized and on-rq */
2364 se->avg.decay_count = 0;
2365 }
9ee474f5
PT
2366 wakeup = 0;
2367 } else {
282cf499
AS
2368 /*
2369 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2370 * would have made count negative); we must be careful to avoid
2371 * double-accounting blocked time after synchronizing decays.
2372 */
2373 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2374 << 20;
9ee474f5
PT
2375 }
2376
aff3e498
PT
2377 /* migrated tasks did not contribute to our blocked load */
2378 if (wakeup) {
9ee474f5 2379 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2380 update_entity_load_avg(se, 0);
2381 }
9ee474f5 2382
2dac754e 2383 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2384 /* we force update consideration on load-balancer moves */
2385 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2386}
2387
9ee474f5
PT
2388/*
2389 * Remove se's load from this cfs_rq child load-average, if the entity is
2390 * transitioning to a blocked state we track its projected decay using
2391 * blocked_load_avg.
2392 */
2dac754e 2393static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2394 struct sched_entity *se,
2395 int sleep)
2dac754e 2396{
9ee474f5 2397 update_entity_load_avg(se, 1);
aff3e498
PT
2398 /* we force update consideration on load-balancer moves */
2399 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2400
2dac754e 2401 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2402 if (sleep) {
2403 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2404 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2405 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2406}
642dbc39
VG
2407
2408/*
2409 * Update the rq's load with the elapsed running time before entering
2410 * idle. if the last scheduled task is not a CFS task, idle_enter will
2411 * be the only way to update the runnable statistic.
2412 */
2413void idle_enter_fair(struct rq *this_rq)
2414{
2415 update_rq_runnable_avg(this_rq, 1);
2416}
2417
2418/*
2419 * Update the rq's load with the elapsed idle time before a task is
2420 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2421 * be the only way to update the runnable statistic.
2422 */
2423void idle_exit_fair(struct rq *this_rq)
2424{
2425 update_rq_runnable_avg(this_rq, 0);
2426}
2427
9d85f21c 2428#else
9ee474f5
PT
2429static inline void update_entity_load_avg(struct sched_entity *se,
2430 int update_cfs_rq) {}
18bf2805 2431static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2432static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2433 struct sched_entity *se,
2434 int wakeup) {}
2dac754e 2435static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2436 struct sched_entity *se,
2437 int sleep) {}
aff3e498
PT
2438static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2439 int force_update) {}
9d85f21c
PT
2440#endif
2441
2396af69 2442static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2443{
bf0f6f24 2444#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2445 struct task_struct *tsk = NULL;
2446
2447 if (entity_is_task(se))
2448 tsk = task_of(se);
2449
41acab88 2450 if (se->statistics.sleep_start) {
78becc27 2451 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2452
2453 if ((s64)delta < 0)
2454 delta = 0;
2455
41acab88
LDM
2456 if (unlikely(delta > se->statistics.sleep_max))
2457 se->statistics.sleep_max = delta;
bf0f6f24 2458
8c79a045 2459 se->statistics.sleep_start = 0;
41acab88 2460 se->statistics.sum_sleep_runtime += delta;
9745512c 2461
768d0c27 2462 if (tsk) {
e414314c 2463 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2464 trace_sched_stat_sleep(tsk, delta);
2465 }
bf0f6f24 2466 }
41acab88 2467 if (se->statistics.block_start) {
78becc27 2468 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2469
2470 if ((s64)delta < 0)
2471 delta = 0;
2472
41acab88
LDM
2473 if (unlikely(delta > se->statistics.block_max))
2474 se->statistics.block_max = delta;
bf0f6f24 2475
8c79a045 2476 se->statistics.block_start = 0;
41acab88 2477 se->statistics.sum_sleep_runtime += delta;
30084fbd 2478
e414314c 2479 if (tsk) {
8f0dfc34 2480 if (tsk->in_iowait) {
41acab88
LDM
2481 se->statistics.iowait_sum += delta;
2482 se->statistics.iowait_count++;
768d0c27 2483 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2484 }
2485
b781a602
AV
2486 trace_sched_stat_blocked(tsk, delta);
2487
e414314c
PZ
2488 /*
2489 * Blocking time is in units of nanosecs, so shift by
2490 * 20 to get a milliseconds-range estimation of the
2491 * amount of time that the task spent sleeping:
2492 */
2493 if (unlikely(prof_on == SLEEP_PROFILING)) {
2494 profile_hits(SLEEP_PROFILING,
2495 (void *)get_wchan(tsk),
2496 delta >> 20);
2497 }
2498 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2499 }
bf0f6f24
IM
2500 }
2501#endif
2502}
2503
ddc97297
PZ
2504static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2505{
2506#ifdef CONFIG_SCHED_DEBUG
2507 s64 d = se->vruntime - cfs_rq->min_vruntime;
2508
2509 if (d < 0)
2510 d = -d;
2511
2512 if (d > 3*sysctl_sched_latency)
2513 schedstat_inc(cfs_rq, nr_spread_over);
2514#endif
2515}
2516
aeb73b04
PZ
2517static void
2518place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2519{
1af5f730 2520 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2521
2cb8600e
PZ
2522 /*
2523 * The 'current' period is already promised to the current tasks,
2524 * however the extra weight of the new task will slow them down a
2525 * little, place the new task so that it fits in the slot that
2526 * stays open at the end.
2527 */
94dfb5e7 2528 if (initial && sched_feat(START_DEBIT))
f9c0b095 2529 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2530
a2e7a7eb 2531 /* sleeps up to a single latency don't count. */
5ca9880c 2532 if (!initial) {
a2e7a7eb 2533 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2534
a2e7a7eb
MG
2535 /*
2536 * Halve their sleep time's effect, to allow
2537 * for a gentler effect of sleepers:
2538 */
2539 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2540 thresh >>= 1;
51e0304c 2541
a2e7a7eb 2542 vruntime -= thresh;
aeb73b04
PZ
2543 }
2544
b5d9d734 2545 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2546 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2547}
2548
d3d9dc33
PT
2549static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2550
bf0f6f24 2551static void
88ec22d3 2552enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2553{
88ec22d3
PZ
2554 /*
2555 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2556 * through calling update_curr().
88ec22d3 2557 */
371fd7e7 2558 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2559 se->vruntime += cfs_rq->min_vruntime;
2560
bf0f6f24 2561 /*
a2a2d680 2562 * Update run-time statistics of the 'current'.
bf0f6f24 2563 */
b7cc0896 2564 update_curr(cfs_rq);
f269ae04 2565 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2566 account_entity_enqueue(cfs_rq, se);
2567 update_cfs_shares(cfs_rq);
bf0f6f24 2568
88ec22d3 2569 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2570 place_entity(cfs_rq, se, 0);
2396af69 2571 enqueue_sleeper(cfs_rq, se);
e9acbff6 2572 }
bf0f6f24 2573
d2417e5a 2574 update_stats_enqueue(cfs_rq, se);
ddc97297 2575 check_spread(cfs_rq, se);
83b699ed
SV
2576 if (se != cfs_rq->curr)
2577 __enqueue_entity(cfs_rq, se);
2069dd75 2578 se->on_rq = 1;
3d4b47b4 2579
d3d9dc33 2580 if (cfs_rq->nr_running == 1) {
3d4b47b4 2581 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2582 check_enqueue_throttle(cfs_rq);
2583 }
bf0f6f24
IM
2584}
2585
2c13c919 2586static void __clear_buddies_last(struct sched_entity *se)
2002c695 2587{
2c13c919
RR
2588 for_each_sched_entity(se) {
2589 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2590 if (cfs_rq->last == se)
2591 cfs_rq->last = NULL;
2592 else
2593 break;
2594 }
2595}
2002c695 2596
2c13c919
RR
2597static void __clear_buddies_next(struct sched_entity *se)
2598{
2599 for_each_sched_entity(se) {
2600 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2601 if (cfs_rq->next == se)
2602 cfs_rq->next = NULL;
2603 else
2604 break;
2605 }
2002c695
PZ
2606}
2607
ac53db59
RR
2608static void __clear_buddies_skip(struct sched_entity *se)
2609{
2610 for_each_sched_entity(se) {
2611 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2612 if (cfs_rq->skip == se)
2613 cfs_rq->skip = NULL;
2614 else
2615 break;
2616 }
2617}
2618
a571bbea
PZ
2619static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2620{
2c13c919
RR
2621 if (cfs_rq->last == se)
2622 __clear_buddies_last(se);
2623
2624 if (cfs_rq->next == se)
2625 __clear_buddies_next(se);
ac53db59
RR
2626
2627 if (cfs_rq->skip == se)
2628 __clear_buddies_skip(se);
a571bbea
PZ
2629}
2630
6c16a6dc 2631static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2632
bf0f6f24 2633static void
371fd7e7 2634dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2635{
a2a2d680
DA
2636 /*
2637 * Update run-time statistics of the 'current'.
2638 */
2639 update_curr(cfs_rq);
17bc14b7 2640 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2641
19b6a2e3 2642 update_stats_dequeue(cfs_rq, se);
371fd7e7 2643 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2644#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2645 if (entity_is_task(se)) {
2646 struct task_struct *tsk = task_of(se);
2647
2648 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2649 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2650 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2651 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2652 }
db36cc7d 2653#endif
67e9fb2a
PZ
2654 }
2655
2002c695 2656 clear_buddies(cfs_rq, se);
4793241b 2657
83b699ed 2658 if (se != cfs_rq->curr)
30cfdcfc 2659 __dequeue_entity(cfs_rq, se);
17bc14b7 2660 se->on_rq = 0;
30cfdcfc 2661 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2662
2663 /*
2664 * Normalize the entity after updating the min_vruntime because the
2665 * update can refer to the ->curr item and we need to reflect this
2666 * movement in our normalized position.
2667 */
371fd7e7 2668 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2669 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2670
d8b4986d
PT
2671 /* return excess runtime on last dequeue */
2672 return_cfs_rq_runtime(cfs_rq);
2673
1e876231 2674 update_min_vruntime(cfs_rq);
17bc14b7 2675 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2676}
2677
2678/*
2679 * Preempt the current task with a newly woken task if needed:
2680 */
7c92e54f 2681static void
2e09bf55 2682check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2683{
11697830 2684 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2685 struct sched_entity *se;
2686 s64 delta;
11697830 2687
6d0f0ebd 2688 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2689 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2690 if (delta_exec > ideal_runtime) {
bf0f6f24 2691 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2692 /*
2693 * The current task ran long enough, ensure it doesn't get
2694 * re-elected due to buddy favours.
2695 */
2696 clear_buddies(cfs_rq, curr);
f685ceac
MG
2697 return;
2698 }
2699
2700 /*
2701 * Ensure that a task that missed wakeup preemption by a
2702 * narrow margin doesn't have to wait for a full slice.
2703 * This also mitigates buddy induced latencies under load.
2704 */
f685ceac
MG
2705 if (delta_exec < sysctl_sched_min_granularity)
2706 return;
2707
f4cfb33e
WX
2708 se = __pick_first_entity(cfs_rq);
2709 delta = curr->vruntime - se->vruntime;
f685ceac 2710
f4cfb33e
WX
2711 if (delta < 0)
2712 return;
d7d82944 2713
f4cfb33e
WX
2714 if (delta > ideal_runtime)
2715 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2716}
2717
83b699ed 2718static void
8494f412 2719set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2720{
83b699ed
SV
2721 /* 'current' is not kept within the tree. */
2722 if (se->on_rq) {
2723 /*
2724 * Any task has to be enqueued before it get to execute on
2725 * a CPU. So account for the time it spent waiting on the
2726 * runqueue.
2727 */
2728 update_stats_wait_end(cfs_rq, se);
2729 __dequeue_entity(cfs_rq, se);
2730 }
2731
79303e9e 2732 update_stats_curr_start(cfs_rq, se);
429d43bc 2733 cfs_rq->curr = se;
eba1ed4b
IM
2734#ifdef CONFIG_SCHEDSTATS
2735 /*
2736 * Track our maximum slice length, if the CPU's load is at
2737 * least twice that of our own weight (i.e. dont track it
2738 * when there are only lesser-weight tasks around):
2739 */
495eca49 2740 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2741 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2742 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2743 }
2744#endif
4a55b450 2745 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2746}
2747
3f3a4904
PZ
2748static int
2749wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2750
ac53db59
RR
2751/*
2752 * Pick the next process, keeping these things in mind, in this order:
2753 * 1) keep things fair between processes/task groups
2754 * 2) pick the "next" process, since someone really wants that to run
2755 * 3) pick the "last" process, for cache locality
2756 * 4) do not run the "skip" process, if something else is available
2757 */
f4b6755f 2758static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2759{
ac53db59 2760 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2761 struct sched_entity *left = se;
f4b6755f 2762
ac53db59
RR
2763 /*
2764 * Avoid running the skip buddy, if running something else can
2765 * be done without getting too unfair.
2766 */
2767 if (cfs_rq->skip == se) {
2768 struct sched_entity *second = __pick_next_entity(se);
2769 if (second && wakeup_preempt_entity(second, left) < 1)
2770 se = second;
2771 }
aa2ac252 2772
f685ceac
MG
2773 /*
2774 * Prefer last buddy, try to return the CPU to a preempted task.
2775 */
2776 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2777 se = cfs_rq->last;
2778
ac53db59
RR
2779 /*
2780 * Someone really wants this to run. If it's not unfair, run it.
2781 */
2782 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2783 se = cfs_rq->next;
2784
f685ceac 2785 clear_buddies(cfs_rq, se);
4793241b
PZ
2786
2787 return se;
aa2ac252
PZ
2788}
2789
d3d9dc33
PT
2790static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2791
ab6cde26 2792static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2793{
2794 /*
2795 * If still on the runqueue then deactivate_task()
2796 * was not called and update_curr() has to be done:
2797 */
2798 if (prev->on_rq)
b7cc0896 2799 update_curr(cfs_rq);
bf0f6f24 2800
d3d9dc33
PT
2801 /* throttle cfs_rqs exceeding runtime */
2802 check_cfs_rq_runtime(cfs_rq);
2803
ddc97297 2804 check_spread(cfs_rq, prev);
30cfdcfc 2805 if (prev->on_rq) {
5870db5b 2806 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2807 /* Put 'current' back into the tree. */
2808 __enqueue_entity(cfs_rq, prev);
9d85f21c 2809 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2810 update_entity_load_avg(prev, 1);
30cfdcfc 2811 }
429d43bc 2812 cfs_rq->curr = NULL;
bf0f6f24
IM
2813}
2814
8f4d37ec
PZ
2815static void
2816entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2817{
bf0f6f24 2818 /*
30cfdcfc 2819 * Update run-time statistics of the 'current'.
bf0f6f24 2820 */
30cfdcfc 2821 update_curr(cfs_rq);
bf0f6f24 2822
9d85f21c
PT
2823 /*
2824 * Ensure that runnable average is periodically updated.
2825 */
9ee474f5 2826 update_entity_load_avg(curr, 1);
aff3e498 2827 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2828 update_cfs_shares(cfs_rq);
9d85f21c 2829
8f4d37ec
PZ
2830#ifdef CONFIG_SCHED_HRTICK
2831 /*
2832 * queued ticks are scheduled to match the slice, so don't bother
2833 * validating it and just reschedule.
2834 */
983ed7a6
HH
2835 if (queued) {
2836 resched_task(rq_of(cfs_rq)->curr);
2837 return;
2838 }
8f4d37ec
PZ
2839 /*
2840 * don't let the period tick interfere with the hrtick preemption
2841 */
2842 if (!sched_feat(DOUBLE_TICK) &&
2843 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2844 return;
2845#endif
2846
2c2efaed 2847 if (cfs_rq->nr_running > 1)
2e09bf55 2848 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2849}
2850
ab84d31e
PT
2851
2852/**************************************************
2853 * CFS bandwidth control machinery
2854 */
2855
2856#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2857
2858#ifdef HAVE_JUMP_LABEL
c5905afb 2859static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2860
2861static inline bool cfs_bandwidth_used(void)
2862{
c5905afb 2863 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2864}
2865
1ee14e6c 2866void cfs_bandwidth_usage_inc(void)
029632fb 2867{
1ee14e6c
BS
2868 static_key_slow_inc(&__cfs_bandwidth_used);
2869}
2870
2871void cfs_bandwidth_usage_dec(void)
2872{
2873 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2874}
2875#else /* HAVE_JUMP_LABEL */
2876static bool cfs_bandwidth_used(void)
2877{
2878 return true;
2879}
2880
1ee14e6c
BS
2881void cfs_bandwidth_usage_inc(void) {}
2882void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
2883#endif /* HAVE_JUMP_LABEL */
2884
ab84d31e
PT
2885/*
2886 * default period for cfs group bandwidth.
2887 * default: 0.1s, units: nanoseconds
2888 */
2889static inline u64 default_cfs_period(void)
2890{
2891 return 100000000ULL;
2892}
ec12cb7f
PT
2893
2894static inline u64 sched_cfs_bandwidth_slice(void)
2895{
2896 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2897}
2898
a9cf55b2
PT
2899/*
2900 * Replenish runtime according to assigned quota and update expiration time.
2901 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2902 * additional synchronization around rq->lock.
2903 *
2904 * requires cfs_b->lock
2905 */
029632fb 2906void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2907{
2908 u64 now;
2909
2910 if (cfs_b->quota == RUNTIME_INF)
2911 return;
2912
2913 now = sched_clock_cpu(smp_processor_id());
2914 cfs_b->runtime = cfs_b->quota;
2915 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2916}
2917
029632fb
PZ
2918static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2919{
2920 return &tg->cfs_bandwidth;
2921}
2922
f1b17280
PT
2923/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2924static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2925{
2926 if (unlikely(cfs_rq->throttle_count))
2927 return cfs_rq->throttled_clock_task;
2928
78becc27 2929 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2930}
2931
85dac906
PT
2932/* returns 0 on failure to allocate runtime */
2933static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2934{
2935 struct task_group *tg = cfs_rq->tg;
2936 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2937 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2938
2939 /* note: this is a positive sum as runtime_remaining <= 0 */
2940 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2941
2942 raw_spin_lock(&cfs_b->lock);
2943 if (cfs_b->quota == RUNTIME_INF)
2944 amount = min_amount;
58088ad0 2945 else {
a9cf55b2
PT
2946 /*
2947 * If the bandwidth pool has become inactive, then at least one
2948 * period must have elapsed since the last consumption.
2949 * Refresh the global state and ensure bandwidth timer becomes
2950 * active.
2951 */
2952 if (!cfs_b->timer_active) {
2953 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2954 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2955 }
58088ad0
PT
2956
2957 if (cfs_b->runtime > 0) {
2958 amount = min(cfs_b->runtime, min_amount);
2959 cfs_b->runtime -= amount;
2960 cfs_b->idle = 0;
2961 }
ec12cb7f 2962 }
a9cf55b2 2963 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2964 raw_spin_unlock(&cfs_b->lock);
2965
2966 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2967 /*
2968 * we may have advanced our local expiration to account for allowed
2969 * spread between our sched_clock and the one on which runtime was
2970 * issued.
2971 */
2972 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2973 cfs_rq->runtime_expires = expires;
85dac906
PT
2974
2975 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2976}
2977
a9cf55b2
PT
2978/*
2979 * Note: This depends on the synchronization provided by sched_clock and the
2980 * fact that rq->clock snapshots this value.
2981 */
2982static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2983{
a9cf55b2 2984 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2985
2986 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2987 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2988 return;
2989
a9cf55b2
PT
2990 if (cfs_rq->runtime_remaining < 0)
2991 return;
2992
2993 /*
2994 * If the local deadline has passed we have to consider the
2995 * possibility that our sched_clock is 'fast' and the global deadline
2996 * has not truly expired.
2997 *
2998 * Fortunately we can check determine whether this the case by checking
2999 * whether the global deadline has advanced.
3000 */
3001
3002 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3003 /* extend local deadline, drift is bounded above by 2 ticks */
3004 cfs_rq->runtime_expires += TICK_NSEC;
3005 } else {
3006 /* global deadline is ahead, expiration has passed */
3007 cfs_rq->runtime_remaining = 0;
3008 }
3009}
3010
9dbdb155 3011static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3012{
3013 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3014 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3015 expire_cfs_rq_runtime(cfs_rq);
3016
3017 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3018 return;
3019
85dac906
PT
3020 /*
3021 * if we're unable to extend our runtime we resched so that the active
3022 * hierarchy can be throttled
3023 */
3024 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3025 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3026}
3027
6c16a6dc 3028static __always_inline
9dbdb155 3029void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3030{
56f570e5 3031 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3032 return;
3033
3034 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3035}
3036
85dac906
PT
3037static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3038{
56f570e5 3039 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3040}
3041
64660c86
PT
3042/* check whether cfs_rq, or any parent, is throttled */
3043static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3044{
56f570e5 3045 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3046}
3047
3048/*
3049 * Ensure that neither of the group entities corresponding to src_cpu or
3050 * dest_cpu are members of a throttled hierarchy when performing group
3051 * load-balance operations.
3052 */
3053static inline int throttled_lb_pair(struct task_group *tg,
3054 int src_cpu, int dest_cpu)
3055{
3056 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3057
3058 src_cfs_rq = tg->cfs_rq[src_cpu];
3059 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3060
3061 return throttled_hierarchy(src_cfs_rq) ||
3062 throttled_hierarchy(dest_cfs_rq);
3063}
3064
3065/* updated child weight may affect parent so we have to do this bottom up */
3066static int tg_unthrottle_up(struct task_group *tg, void *data)
3067{
3068 struct rq *rq = data;
3069 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3070
3071 cfs_rq->throttle_count--;
3072#ifdef CONFIG_SMP
3073 if (!cfs_rq->throttle_count) {
f1b17280 3074 /* adjust cfs_rq_clock_task() */
78becc27 3075 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3076 cfs_rq->throttled_clock_task;
64660c86
PT
3077 }
3078#endif
3079
3080 return 0;
3081}
3082
3083static int tg_throttle_down(struct task_group *tg, void *data)
3084{
3085 struct rq *rq = data;
3086 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3087
82958366
PT
3088 /* group is entering throttled state, stop time */
3089 if (!cfs_rq->throttle_count)
78becc27 3090 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3091 cfs_rq->throttle_count++;
3092
3093 return 0;
3094}
3095
d3d9dc33 3096static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3097{
3098 struct rq *rq = rq_of(cfs_rq);
3099 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3100 struct sched_entity *se;
3101 long task_delta, dequeue = 1;
3102
3103 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3104
f1b17280 3105 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3106 rcu_read_lock();
3107 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3108 rcu_read_unlock();
85dac906
PT
3109
3110 task_delta = cfs_rq->h_nr_running;
3111 for_each_sched_entity(se) {
3112 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3113 /* throttled entity or throttle-on-deactivate */
3114 if (!se->on_rq)
3115 break;
3116
3117 if (dequeue)
3118 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3119 qcfs_rq->h_nr_running -= task_delta;
3120
3121 if (qcfs_rq->load.weight)
3122 dequeue = 0;
3123 }
3124
3125 if (!se)
3126 rq->nr_running -= task_delta;
3127
3128 cfs_rq->throttled = 1;
78becc27 3129 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3130 raw_spin_lock(&cfs_b->lock);
3131 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3132 if (!cfs_b->timer_active)
3133 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3134 raw_spin_unlock(&cfs_b->lock);
3135}
3136
029632fb 3137void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3138{
3139 struct rq *rq = rq_of(cfs_rq);
3140 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3141 struct sched_entity *se;
3142 int enqueue = 1;
3143 long task_delta;
3144
22b958d8 3145 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3146
3147 cfs_rq->throttled = 0;
1a55af2e
FW
3148
3149 update_rq_clock(rq);
3150
671fd9da 3151 raw_spin_lock(&cfs_b->lock);
78becc27 3152 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3153 list_del_rcu(&cfs_rq->throttled_list);
3154 raw_spin_unlock(&cfs_b->lock);
3155
64660c86
PT
3156 /* update hierarchical throttle state */
3157 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3158
671fd9da
PT
3159 if (!cfs_rq->load.weight)
3160 return;
3161
3162 task_delta = cfs_rq->h_nr_running;
3163 for_each_sched_entity(se) {
3164 if (se->on_rq)
3165 enqueue = 0;
3166
3167 cfs_rq = cfs_rq_of(se);
3168 if (enqueue)
3169 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3170 cfs_rq->h_nr_running += task_delta;
3171
3172 if (cfs_rq_throttled(cfs_rq))
3173 break;
3174 }
3175
3176 if (!se)
3177 rq->nr_running += task_delta;
3178
3179 /* determine whether we need to wake up potentially idle cpu */
3180 if (rq->curr == rq->idle && rq->cfs.nr_running)
3181 resched_task(rq->curr);
3182}
3183
3184static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3185 u64 remaining, u64 expires)
3186{
3187 struct cfs_rq *cfs_rq;
3188 u64 runtime = remaining;
3189
3190 rcu_read_lock();
3191 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3192 throttled_list) {
3193 struct rq *rq = rq_of(cfs_rq);
3194
3195 raw_spin_lock(&rq->lock);
3196 if (!cfs_rq_throttled(cfs_rq))
3197 goto next;
3198
3199 runtime = -cfs_rq->runtime_remaining + 1;
3200 if (runtime > remaining)
3201 runtime = remaining;
3202 remaining -= runtime;
3203
3204 cfs_rq->runtime_remaining += runtime;
3205 cfs_rq->runtime_expires = expires;
3206
3207 /* we check whether we're throttled above */
3208 if (cfs_rq->runtime_remaining > 0)
3209 unthrottle_cfs_rq(cfs_rq);
3210
3211next:
3212 raw_spin_unlock(&rq->lock);
3213
3214 if (!remaining)
3215 break;
3216 }
3217 rcu_read_unlock();
3218
3219 return remaining;
3220}
3221
58088ad0
PT
3222/*
3223 * Responsible for refilling a task_group's bandwidth and unthrottling its
3224 * cfs_rqs as appropriate. If there has been no activity within the last
3225 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3226 * used to track this state.
3227 */
3228static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3229{
671fd9da
PT
3230 u64 runtime, runtime_expires;
3231 int idle = 1, throttled;
58088ad0
PT
3232
3233 raw_spin_lock(&cfs_b->lock);
3234 /* no need to continue the timer with no bandwidth constraint */
3235 if (cfs_b->quota == RUNTIME_INF)
3236 goto out_unlock;
3237
671fd9da
PT
3238 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3239 /* idle depends on !throttled (for the case of a large deficit) */
3240 idle = cfs_b->idle && !throttled;
e8da1b18 3241 cfs_b->nr_periods += overrun;
671fd9da 3242
a9cf55b2
PT
3243 /* if we're going inactive then everything else can be deferred */
3244 if (idle)
3245 goto out_unlock;
3246
927b54fc
BS
3247 /*
3248 * if we have relooped after returning idle once, we need to update our
3249 * status as actually running, so that other cpus doing
3250 * __start_cfs_bandwidth will stop trying to cancel us.
3251 */
3252 cfs_b->timer_active = 1;
3253
a9cf55b2
PT
3254 __refill_cfs_bandwidth_runtime(cfs_b);
3255
671fd9da
PT
3256 if (!throttled) {
3257 /* mark as potentially idle for the upcoming period */
3258 cfs_b->idle = 1;
3259 goto out_unlock;
3260 }
3261
e8da1b18
NR
3262 /* account preceding periods in which throttling occurred */
3263 cfs_b->nr_throttled += overrun;
3264
671fd9da
PT
3265 /*
3266 * There are throttled entities so we must first use the new bandwidth
3267 * to unthrottle them before making it generally available. This
3268 * ensures that all existing debts will be paid before a new cfs_rq is
3269 * allowed to run.
3270 */
3271 runtime = cfs_b->runtime;
3272 runtime_expires = cfs_b->runtime_expires;
3273 cfs_b->runtime = 0;
3274
3275 /*
3276 * This check is repeated as we are holding onto the new bandwidth
3277 * while we unthrottle. This can potentially race with an unthrottled
3278 * group trying to acquire new bandwidth from the global pool.
3279 */
3280 while (throttled && runtime > 0) {
3281 raw_spin_unlock(&cfs_b->lock);
3282 /* we can't nest cfs_b->lock while distributing bandwidth */
3283 runtime = distribute_cfs_runtime(cfs_b, runtime,
3284 runtime_expires);
3285 raw_spin_lock(&cfs_b->lock);
3286
3287 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3288 }
58088ad0 3289
671fd9da
PT
3290 /* return (any) remaining runtime */
3291 cfs_b->runtime = runtime;
3292 /*
3293 * While we are ensured activity in the period following an
3294 * unthrottle, this also covers the case in which the new bandwidth is
3295 * insufficient to cover the existing bandwidth deficit. (Forcing the
3296 * timer to remain active while there are any throttled entities.)
3297 */
3298 cfs_b->idle = 0;
58088ad0
PT
3299out_unlock:
3300 if (idle)
3301 cfs_b->timer_active = 0;
3302 raw_spin_unlock(&cfs_b->lock);
3303
3304 return idle;
3305}
d3d9dc33 3306
d8b4986d
PT
3307/* a cfs_rq won't donate quota below this amount */
3308static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3309/* minimum remaining period time to redistribute slack quota */
3310static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3311/* how long we wait to gather additional slack before distributing */
3312static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3313
db06e78c
BS
3314/*
3315 * Are we near the end of the current quota period?
3316 *
3317 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3318 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3319 * migrate_hrtimers, base is never cleared, so we are fine.
3320 */
d8b4986d
PT
3321static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3322{
3323 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3324 u64 remaining;
3325
3326 /* if the call-back is running a quota refresh is already occurring */
3327 if (hrtimer_callback_running(refresh_timer))
3328 return 1;
3329
3330 /* is a quota refresh about to occur? */
3331 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3332 if (remaining < min_expire)
3333 return 1;
3334
3335 return 0;
3336}
3337
3338static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3339{
3340 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3341
3342 /* if there's a quota refresh soon don't bother with slack */
3343 if (runtime_refresh_within(cfs_b, min_left))
3344 return;
3345
3346 start_bandwidth_timer(&cfs_b->slack_timer,
3347 ns_to_ktime(cfs_bandwidth_slack_period));
3348}
3349
3350/* we know any runtime found here is valid as update_curr() precedes return */
3351static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3352{
3353 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3354 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3355
3356 if (slack_runtime <= 0)
3357 return;
3358
3359 raw_spin_lock(&cfs_b->lock);
3360 if (cfs_b->quota != RUNTIME_INF &&
3361 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3362 cfs_b->runtime += slack_runtime;
3363
3364 /* we are under rq->lock, defer unthrottling using a timer */
3365 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3366 !list_empty(&cfs_b->throttled_cfs_rq))
3367 start_cfs_slack_bandwidth(cfs_b);
3368 }
3369 raw_spin_unlock(&cfs_b->lock);
3370
3371 /* even if it's not valid for return we don't want to try again */
3372 cfs_rq->runtime_remaining -= slack_runtime;
3373}
3374
3375static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3376{
56f570e5
PT
3377 if (!cfs_bandwidth_used())
3378 return;
3379
fccfdc6f 3380 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3381 return;
3382
3383 __return_cfs_rq_runtime(cfs_rq);
3384}
3385
3386/*
3387 * This is done with a timer (instead of inline with bandwidth return) since
3388 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3389 */
3390static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3391{
3392 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3393 u64 expires;
3394
3395 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3396 raw_spin_lock(&cfs_b->lock);
3397 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3398 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3399 return;
db06e78c 3400 }
d8b4986d 3401
d8b4986d
PT
3402 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3403 runtime = cfs_b->runtime;
3404 cfs_b->runtime = 0;
3405 }
3406 expires = cfs_b->runtime_expires;
3407 raw_spin_unlock(&cfs_b->lock);
3408
3409 if (!runtime)
3410 return;
3411
3412 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3413
3414 raw_spin_lock(&cfs_b->lock);
3415 if (expires == cfs_b->runtime_expires)
3416 cfs_b->runtime = runtime;
3417 raw_spin_unlock(&cfs_b->lock);
3418}
3419
d3d9dc33
PT
3420/*
3421 * When a group wakes up we want to make sure that its quota is not already
3422 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3423 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3424 */
3425static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3426{
56f570e5
PT
3427 if (!cfs_bandwidth_used())
3428 return;
3429
d3d9dc33
PT
3430 /* an active group must be handled by the update_curr()->put() path */
3431 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3432 return;
3433
3434 /* ensure the group is not already throttled */
3435 if (cfs_rq_throttled(cfs_rq))
3436 return;
3437
3438 /* update runtime allocation */
3439 account_cfs_rq_runtime(cfs_rq, 0);
3440 if (cfs_rq->runtime_remaining <= 0)
3441 throttle_cfs_rq(cfs_rq);
3442}
3443
3444/* conditionally throttle active cfs_rq's from put_prev_entity() */
3445static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3446{
56f570e5
PT
3447 if (!cfs_bandwidth_used())
3448 return;
3449
d3d9dc33
PT
3450 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3451 return;
3452
3453 /*
3454 * it's possible for a throttled entity to be forced into a running
3455 * state (e.g. set_curr_task), in this case we're finished.
3456 */
3457 if (cfs_rq_throttled(cfs_rq))
3458 return;
3459
3460 throttle_cfs_rq(cfs_rq);
3461}
029632fb 3462
029632fb
PZ
3463static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3464{
3465 struct cfs_bandwidth *cfs_b =
3466 container_of(timer, struct cfs_bandwidth, slack_timer);
3467 do_sched_cfs_slack_timer(cfs_b);
3468
3469 return HRTIMER_NORESTART;
3470}
3471
3472static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3473{
3474 struct cfs_bandwidth *cfs_b =
3475 container_of(timer, struct cfs_bandwidth, period_timer);
3476 ktime_t now;
3477 int overrun;
3478 int idle = 0;
3479
3480 for (;;) {
3481 now = hrtimer_cb_get_time(timer);
3482 overrun = hrtimer_forward(timer, now, cfs_b->period);
3483
3484 if (!overrun)
3485 break;
3486
3487 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3488 }
3489
3490 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3491}
3492
3493void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3494{
3495 raw_spin_lock_init(&cfs_b->lock);
3496 cfs_b->runtime = 0;
3497 cfs_b->quota = RUNTIME_INF;
3498 cfs_b->period = ns_to_ktime(default_cfs_period());
3499
3500 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3501 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3502 cfs_b->period_timer.function = sched_cfs_period_timer;
3503 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3504 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3505}
3506
3507static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3508{
3509 cfs_rq->runtime_enabled = 0;
3510 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3511}
3512
3513/* requires cfs_b->lock, may release to reprogram timer */
3514void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3515{
3516 /*
3517 * The timer may be active because we're trying to set a new bandwidth
3518 * period or because we're racing with the tear-down path
3519 * (timer_active==0 becomes visible before the hrtimer call-back
3520 * terminates). In either case we ensure that it's re-programmed
3521 */
927b54fc
BS
3522 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3523 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3524 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3525 raw_spin_unlock(&cfs_b->lock);
927b54fc 3526 cpu_relax();
029632fb
PZ
3527 raw_spin_lock(&cfs_b->lock);
3528 /* if someone else restarted the timer then we're done */
3529 if (cfs_b->timer_active)
3530 return;
3531 }
3532
3533 cfs_b->timer_active = 1;
3534 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3535}
3536
3537static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3538{
3539 hrtimer_cancel(&cfs_b->period_timer);
3540 hrtimer_cancel(&cfs_b->slack_timer);
3541}
3542
38dc3348 3543static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3544{
3545 struct cfs_rq *cfs_rq;
3546
3547 for_each_leaf_cfs_rq(rq, cfs_rq) {
3548 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3549
3550 if (!cfs_rq->runtime_enabled)
3551 continue;
3552
3553 /*
3554 * clock_task is not advancing so we just need to make sure
3555 * there's some valid quota amount
3556 */
3557 cfs_rq->runtime_remaining = cfs_b->quota;
3558 if (cfs_rq_throttled(cfs_rq))
3559 unthrottle_cfs_rq(cfs_rq);
3560 }
3561}
3562
3563#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3564static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3565{
78becc27 3566 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3567}
3568
9dbdb155 3569static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
d3d9dc33
PT
3570static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3571static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3572static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3573
3574static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3575{
3576 return 0;
3577}
64660c86
PT
3578
3579static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3580{
3581 return 0;
3582}
3583
3584static inline int throttled_lb_pair(struct task_group *tg,
3585 int src_cpu, int dest_cpu)
3586{
3587 return 0;
3588}
029632fb
PZ
3589
3590void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3591
3592#ifdef CONFIG_FAIR_GROUP_SCHED
3593static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3594#endif
3595
029632fb
PZ
3596static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3597{
3598 return NULL;
3599}
3600static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3601static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3602
3603#endif /* CONFIG_CFS_BANDWIDTH */
3604
bf0f6f24
IM
3605/**************************************************
3606 * CFS operations on tasks:
3607 */
3608
8f4d37ec
PZ
3609#ifdef CONFIG_SCHED_HRTICK
3610static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3611{
8f4d37ec
PZ
3612 struct sched_entity *se = &p->se;
3613 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3614
3615 WARN_ON(task_rq(p) != rq);
3616
b39e66ea 3617 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3618 u64 slice = sched_slice(cfs_rq, se);
3619 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3620 s64 delta = slice - ran;
3621
3622 if (delta < 0) {
3623 if (rq->curr == p)
3624 resched_task(p);
3625 return;
3626 }
3627
3628 /*
3629 * Don't schedule slices shorter than 10000ns, that just
3630 * doesn't make sense. Rely on vruntime for fairness.
3631 */
31656519 3632 if (rq->curr != p)
157124c1 3633 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3634
31656519 3635 hrtick_start(rq, delta);
8f4d37ec
PZ
3636 }
3637}
a4c2f00f
PZ
3638
3639/*
3640 * called from enqueue/dequeue and updates the hrtick when the
3641 * current task is from our class and nr_running is low enough
3642 * to matter.
3643 */
3644static void hrtick_update(struct rq *rq)
3645{
3646 struct task_struct *curr = rq->curr;
3647
b39e66ea 3648 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3649 return;
3650
3651 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3652 hrtick_start_fair(rq, curr);
3653}
55e12e5e 3654#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3655static inline void
3656hrtick_start_fair(struct rq *rq, struct task_struct *p)
3657{
3658}
a4c2f00f
PZ
3659
3660static inline void hrtick_update(struct rq *rq)
3661{
3662}
8f4d37ec
PZ
3663#endif
3664
bf0f6f24
IM
3665/*
3666 * The enqueue_task method is called before nr_running is
3667 * increased. Here we update the fair scheduling stats and
3668 * then put the task into the rbtree:
3669 */
ea87bb78 3670static void
371fd7e7 3671enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3672{
3673 struct cfs_rq *cfs_rq;
62fb1851 3674 struct sched_entity *se = &p->se;
bf0f6f24
IM
3675
3676 for_each_sched_entity(se) {
62fb1851 3677 if (se->on_rq)
bf0f6f24
IM
3678 break;
3679 cfs_rq = cfs_rq_of(se);
88ec22d3 3680 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3681
3682 /*
3683 * end evaluation on encountering a throttled cfs_rq
3684 *
3685 * note: in the case of encountering a throttled cfs_rq we will
3686 * post the final h_nr_running increment below.
3687 */
3688 if (cfs_rq_throttled(cfs_rq))
3689 break;
953bfcd1 3690 cfs_rq->h_nr_running++;
85dac906 3691
88ec22d3 3692 flags = ENQUEUE_WAKEUP;
bf0f6f24 3693 }
8f4d37ec 3694
2069dd75 3695 for_each_sched_entity(se) {
0f317143 3696 cfs_rq = cfs_rq_of(se);
953bfcd1 3697 cfs_rq->h_nr_running++;
2069dd75 3698
85dac906
PT
3699 if (cfs_rq_throttled(cfs_rq))
3700 break;
3701
17bc14b7 3702 update_cfs_shares(cfs_rq);
9ee474f5 3703 update_entity_load_avg(se, 1);
2069dd75
PZ
3704 }
3705
18bf2805
BS
3706 if (!se) {
3707 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3708 inc_nr_running(rq);
18bf2805 3709 }
a4c2f00f 3710 hrtick_update(rq);
bf0f6f24
IM
3711}
3712
2f36825b
VP
3713static void set_next_buddy(struct sched_entity *se);
3714
bf0f6f24
IM
3715/*
3716 * The dequeue_task method is called before nr_running is
3717 * decreased. We remove the task from the rbtree and
3718 * update the fair scheduling stats:
3719 */
371fd7e7 3720static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3721{
3722 struct cfs_rq *cfs_rq;
62fb1851 3723 struct sched_entity *se = &p->se;
2f36825b 3724 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3725
3726 for_each_sched_entity(se) {
3727 cfs_rq = cfs_rq_of(se);
371fd7e7 3728 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3729
3730 /*
3731 * end evaluation on encountering a throttled cfs_rq
3732 *
3733 * note: in the case of encountering a throttled cfs_rq we will
3734 * post the final h_nr_running decrement below.
3735 */
3736 if (cfs_rq_throttled(cfs_rq))
3737 break;
953bfcd1 3738 cfs_rq->h_nr_running--;
2069dd75 3739
bf0f6f24 3740 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3741 if (cfs_rq->load.weight) {
3742 /*
3743 * Bias pick_next to pick a task from this cfs_rq, as
3744 * p is sleeping when it is within its sched_slice.
3745 */
3746 if (task_sleep && parent_entity(se))
3747 set_next_buddy(parent_entity(se));
9598c82d
PT
3748
3749 /* avoid re-evaluating load for this entity */
3750 se = parent_entity(se);
bf0f6f24 3751 break;
2f36825b 3752 }
371fd7e7 3753 flags |= DEQUEUE_SLEEP;
bf0f6f24 3754 }
8f4d37ec 3755
2069dd75 3756 for_each_sched_entity(se) {
0f317143 3757 cfs_rq = cfs_rq_of(se);
953bfcd1 3758 cfs_rq->h_nr_running--;
2069dd75 3759
85dac906
PT
3760 if (cfs_rq_throttled(cfs_rq))
3761 break;
3762
17bc14b7 3763 update_cfs_shares(cfs_rq);
9ee474f5 3764 update_entity_load_avg(se, 1);
2069dd75
PZ
3765 }
3766
18bf2805 3767 if (!se) {
85dac906 3768 dec_nr_running(rq);
18bf2805
BS
3769 update_rq_runnable_avg(rq, 1);
3770 }
a4c2f00f 3771 hrtick_update(rq);
bf0f6f24
IM
3772}
3773
e7693a36 3774#ifdef CONFIG_SMP
029632fb
PZ
3775/* Used instead of source_load when we know the type == 0 */
3776static unsigned long weighted_cpuload(const int cpu)
3777{
b92486cb 3778 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3779}
3780
3781/*
3782 * Return a low guess at the load of a migration-source cpu weighted
3783 * according to the scheduling class and "nice" value.
3784 *
3785 * We want to under-estimate the load of migration sources, to
3786 * balance conservatively.
3787 */
3788static unsigned long source_load(int cpu, int type)
3789{
3790 struct rq *rq = cpu_rq(cpu);
3791 unsigned long total = weighted_cpuload(cpu);
3792
3793 if (type == 0 || !sched_feat(LB_BIAS))
3794 return total;
3795
3796 return min(rq->cpu_load[type-1], total);
3797}
3798
3799/*
3800 * Return a high guess at the load of a migration-target cpu weighted
3801 * according to the scheduling class and "nice" value.
3802 */
3803static unsigned long target_load(int cpu, int type)
3804{
3805 struct rq *rq = cpu_rq(cpu);
3806 unsigned long total = weighted_cpuload(cpu);
3807
3808 if (type == 0 || !sched_feat(LB_BIAS))
3809 return total;
3810
3811 return max(rq->cpu_load[type-1], total);
3812}
3813
3814static unsigned long power_of(int cpu)
3815{
3816 return cpu_rq(cpu)->cpu_power;
3817}
3818
3819static unsigned long cpu_avg_load_per_task(int cpu)
3820{
3821 struct rq *rq = cpu_rq(cpu);
3822 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3823 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3824
3825 if (nr_running)
b92486cb 3826 return load_avg / nr_running;
029632fb
PZ
3827
3828 return 0;
3829}
3830
62470419
MW
3831static void record_wakee(struct task_struct *p)
3832{
3833 /*
3834 * Rough decay (wiping) for cost saving, don't worry
3835 * about the boundary, really active task won't care
3836 * about the loss.
3837 */
3838 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3839 current->wakee_flips = 0;
3840 current->wakee_flip_decay_ts = jiffies;
3841 }
3842
3843 if (current->last_wakee != p) {
3844 current->last_wakee = p;
3845 current->wakee_flips++;
3846 }
3847}
098fb9db 3848
74f8e4b2 3849static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3850{
3851 struct sched_entity *se = &p->se;
3852 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3853 u64 min_vruntime;
3854
3855#ifndef CONFIG_64BIT
3856 u64 min_vruntime_copy;
88ec22d3 3857
3fe1698b
PZ
3858 do {
3859 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3860 smp_rmb();
3861 min_vruntime = cfs_rq->min_vruntime;
3862 } while (min_vruntime != min_vruntime_copy);
3863#else
3864 min_vruntime = cfs_rq->min_vruntime;
3865#endif
88ec22d3 3866
3fe1698b 3867 se->vruntime -= min_vruntime;
62470419 3868 record_wakee(p);
88ec22d3
PZ
3869}
3870
bb3469ac 3871#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3872/*
3873 * effective_load() calculates the load change as seen from the root_task_group
3874 *
3875 * Adding load to a group doesn't make a group heavier, but can cause movement
3876 * of group shares between cpus. Assuming the shares were perfectly aligned one
3877 * can calculate the shift in shares.
cf5f0acf
PZ
3878 *
3879 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3880 * on this @cpu and results in a total addition (subtraction) of @wg to the
3881 * total group weight.
3882 *
3883 * Given a runqueue weight distribution (rw_i) we can compute a shares
3884 * distribution (s_i) using:
3885 *
3886 * s_i = rw_i / \Sum rw_j (1)
3887 *
3888 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3889 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3890 * shares distribution (s_i):
3891 *
3892 * rw_i = { 2, 4, 1, 0 }
3893 * s_i = { 2/7, 4/7, 1/7, 0 }
3894 *
3895 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3896 * task used to run on and the CPU the waker is running on), we need to
3897 * compute the effect of waking a task on either CPU and, in case of a sync
3898 * wakeup, compute the effect of the current task going to sleep.
3899 *
3900 * So for a change of @wl to the local @cpu with an overall group weight change
3901 * of @wl we can compute the new shares distribution (s'_i) using:
3902 *
3903 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3904 *
3905 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3906 * differences in waking a task to CPU 0. The additional task changes the
3907 * weight and shares distributions like:
3908 *
3909 * rw'_i = { 3, 4, 1, 0 }
3910 * s'_i = { 3/8, 4/8, 1/8, 0 }
3911 *
3912 * We can then compute the difference in effective weight by using:
3913 *
3914 * dw_i = S * (s'_i - s_i) (3)
3915 *
3916 * Where 'S' is the group weight as seen by its parent.
3917 *
3918 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3919 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3920 * 4/7) times the weight of the group.
f5bfb7d9 3921 */
2069dd75 3922static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3923{
4be9daaa 3924 struct sched_entity *se = tg->se[cpu];
f1d239f7 3925
58d081b5 3926 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3927 return wl;
3928
4be9daaa 3929 for_each_sched_entity(se) {
cf5f0acf 3930 long w, W;
4be9daaa 3931
977dda7c 3932 tg = se->my_q->tg;
bb3469ac 3933
cf5f0acf
PZ
3934 /*
3935 * W = @wg + \Sum rw_j
3936 */
3937 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3938
cf5f0acf
PZ
3939 /*
3940 * w = rw_i + @wl
3941 */
3942 w = se->my_q->load.weight + wl;
940959e9 3943
cf5f0acf
PZ
3944 /*
3945 * wl = S * s'_i; see (2)
3946 */
3947 if (W > 0 && w < W)
3948 wl = (w * tg->shares) / W;
977dda7c
PT
3949 else
3950 wl = tg->shares;
940959e9 3951
cf5f0acf
PZ
3952 /*
3953 * Per the above, wl is the new se->load.weight value; since
3954 * those are clipped to [MIN_SHARES, ...) do so now. See
3955 * calc_cfs_shares().
3956 */
977dda7c
PT
3957 if (wl < MIN_SHARES)
3958 wl = MIN_SHARES;
cf5f0acf
PZ
3959
3960 /*
3961 * wl = dw_i = S * (s'_i - s_i); see (3)
3962 */
977dda7c 3963 wl -= se->load.weight;
cf5f0acf
PZ
3964
3965 /*
3966 * Recursively apply this logic to all parent groups to compute
3967 * the final effective load change on the root group. Since
3968 * only the @tg group gets extra weight, all parent groups can
3969 * only redistribute existing shares. @wl is the shift in shares
3970 * resulting from this level per the above.
3971 */
4be9daaa 3972 wg = 0;
4be9daaa 3973 }
bb3469ac 3974
4be9daaa 3975 return wl;
bb3469ac
PZ
3976}
3977#else
4be9daaa 3978
58d081b5 3979static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3980{
83378269 3981 return wl;
bb3469ac 3982}
4be9daaa 3983
bb3469ac
PZ
3984#endif
3985
62470419
MW
3986static int wake_wide(struct task_struct *p)
3987{
7d9ffa89 3988 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3989
3990 /*
3991 * Yeah, it's the switching-frequency, could means many wakee or
3992 * rapidly switch, use factor here will just help to automatically
3993 * adjust the loose-degree, so bigger node will lead to more pull.
3994 */
3995 if (p->wakee_flips > factor) {
3996 /*
3997 * wakee is somewhat hot, it needs certain amount of cpu
3998 * resource, so if waker is far more hot, prefer to leave
3999 * it alone.
4000 */
4001 if (current->wakee_flips > (factor * p->wakee_flips))
4002 return 1;
4003 }
4004
4005 return 0;
4006}
4007
c88d5910 4008static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4009{
e37b6a7b 4010 s64 this_load, load;
c88d5910 4011 int idx, this_cpu, prev_cpu;
098fb9db 4012 unsigned long tl_per_task;
c88d5910 4013 struct task_group *tg;
83378269 4014 unsigned long weight;
b3137bc8 4015 int balanced;
098fb9db 4016
62470419
MW
4017 /*
4018 * If we wake multiple tasks be careful to not bounce
4019 * ourselves around too much.
4020 */
4021 if (wake_wide(p))
4022 return 0;
4023
c88d5910
PZ
4024 idx = sd->wake_idx;
4025 this_cpu = smp_processor_id();
4026 prev_cpu = task_cpu(p);
4027 load = source_load(prev_cpu, idx);
4028 this_load = target_load(this_cpu, idx);
098fb9db 4029
b3137bc8
MG
4030 /*
4031 * If sync wakeup then subtract the (maximum possible)
4032 * effect of the currently running task from the load
4033 * of the current CPU:
4034 */
83378269
PZ
4035 if (sync) {
4036 tg = task_group(current);
4037 weight = current->se.load.weight;
4038
c88d5910 4039 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4040 load += effective_load(tg, prev_cpu, 0, -weight);
4041 }
b3137bc8 4042
83378269
PZ
4043 tg = task_group(p);
4044 weight = p->se.load.weight;
b3137bc8 4045
71a29aa7
PZ
4046 /*
4047 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4048 * due to the sync cause above having dropped this_load to 0, we'll
4049 * always have an imbalance, but there's really nothing you can do
4050 * about that, so that's good too.
71a29aa7
PZ
4051 *
4052 * Otherwise check if either cpus are near enough in load to allow this
4053 * task to be woken on this_cpu.
4054 */
e37b6a7b
PT
4055 if (this_load > 0) {
4056 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4057
4058 this_eff_load = 100;
4059 this_eff_load *= power_of(prev_cpu);
4060 this_eff_load *= this_load +
4061 effective_load(tg, this_cpu, weight, weight);
4062
4063 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4064 prev_eff_load *= power_of(this_cpu);
4065 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4066
4067 balanced = this_eff_load <= prev_eff_load;
4068 } else
4069 balanced = true;
b3137bc8 4070
098fb9db 4071 /*
4ae7d5ce
IM
4072 * If the currently running task will sleep within
4073 * a reasonable amount of time then attract this newly
4074 * woken task:
098fb9db 4075 */
2fb7635c
PZ
4076 if (sync && balanced)
4077 return 1;
098fb9db 4078
41acab88 4079 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4080 tl_per_task = cpu_avg_load_per_task(this_cpu);
4081
c88d5910
PZ
4082 if (balanced ||
4083 (this_load <= load &&
4084 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4085 /*
4086 * This domain has SD_WAKE_AFFINE and
4087 * p is cache cold in this domain, and
4088 * there is no bad imbalance.
4089 */
c88d5910 4090 schedstat_inc(sd, ttwu_move_affine);
41acab88 4091 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4092
4093 return 1;
4094 }
4095 return 0;
4096}
4097
aaee1203
PZ
4098/*
4099 * find_idlest_group finds and returns the least busy CPU group within the
4100 * domain.
4101 */
4102static struct sched_group *
78e7ed53 4103find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 4104 int this_cpu, int load_idx)
e7693a36 4105{
b3bd3de6 4106 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4107 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 4108 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4109
aaee1203
PZ
4110 do {
4111 unsigned long load, avg_load;
4112 int local_group;
4113 int i;
e7693a36 4114
aaee1203
PZ
4115 /* Skip over this group if it has no CPUs allowed */
4116 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4117 tsk_cpus_allowed(p)))
aaee1203
PZ
4118 continue;
4119
4120 local_group = cpumask_test_cpu(this_cpu,
4121 sched_group_cpus(group));
4122
4123 /* Tally up the load of all CPUs in the group */
4124 avg_load = 0;
4125
4126 for_each_cpu(i, sched_group_cpus(group)) {
4127 /* Bias balancing toward cpus of our domain */
4128 if (local_group)
4129 load = source_load(i, load_idx);
4130 else
4131 load = target_load(i, load_idx);
4132
4133 avg_load += load;
4134 }
4135
4136 /* Adjust by relative CPU power of the group */
9c3f75cb 4137 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4138
4139 if (local_group) {
4140 this_load = avg_load;
aaee1203
PZ
4141 } else if (avg_load < min_load) {
4142 min_load = avg_load;
4143 idlest = group;
4144 }
4145 } while (group = group->next, group != sd->groups);
4146
4147 if (!idlest || 100*this_load < imbalance*min_load)
4148 return NULL;
4149 return idlest;
4150}
4151
4152/*
4153 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4154 */
4155static int
4156find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4157{
4158 unsigned long load, min_load = ULONG_MAX;
4159 int idlest = -1;
4160 int i;
4161
4162 /* Traverse only the allowed CPUs */
fa17b507 4163 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4164 load = weighted_cpuload(i);
4165
4166 if (load < min_load || (load == min_load && i == this_cpu)) {
4167 min_load = load;
4168 idlest = i;
e7693a36
GH
4169 }
4170 }
4171
aaee1203
PZ
4172 return idlest;
4173}
e7693a36 4174
a50bde51
PZ
4175/*
4176 * Try and locate an idle CPU in the sched_domain.
4177 */
99bd5e2f 4178static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4179{
99bd5e2f 4180 struct sched_domain *sd;
37407ea7 4181 struct sched_group *sg;
e0a79f52 4182 int i = task_cpu(p);
a50bde51 4183
e0a79f52
MG
4184 if (idle_cpu(target))
4185 return target;
99bd5e2f
SS
4186
4187 /*
e0a79f52 4188 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4189 */
e0a79f52
MG
4190 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4191 return i;
a50bde51
PZ
4192
4193 /*
37407ea7 4194 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4195 */
518cd623 4196 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4197 for_each_lower_domain(sd) {
37407ea7
LT
4198 sg = sd->groups;
4199 do {
4200 if (!cpumask_intersects(sched_group_cpus(sg),
4201 tsk_cpus_allowed(p)))
4202 goto next;
4203
4204 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4205 if (i == target || !idle_cpu(i))
37407ea7
LT
4206 goto next;
4207 }
970e1789 4208
37407ea7
LT
4209 target = cpumask_first_and(sched_group_cpus(sg),
4210 tsk_cpus_allowed(p));
4211 goto done;
4212next:
4213 sg = sg->next;
4214 } while (sg != sd->groups);
4215 }
4216done:
a50bde51
PZ
4217 return target;
4218}
4219
aaee1203
PZ
4220/*
4221 * sched_balance_self: balance the current task (running on cpu) in domains
4222 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4223 * SD_BALANCE_EXEC.
4224 *
4225 * Balance, ie. select the least loaded group.
4226 *
4227 * Returns the target CPU number, or the same CPU if no balancing is needed.
4228 *
4229 * preempt must be disabled.
4230 */
0017d735 4231static int
ac66f547 4232select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4233{
29cd8bae 4234 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4235 int cpu = smp_processor_id();
c88d5910 4236 int new_cpu = cpu;
99bd5e2f 4237 int want_affine = 0;
5158f4e4 4238 int sync = wake_flags & WF_SYNC;
c88d5910 4239
29baa747 4240 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4241 return prev_cpu;
4242
0763a660 4243 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4244 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4245 want_affine = 1;
4246 new_cpu = prev_cpu;
4247 }
aaee1203 4248
dce840a0 4249 rcu_read_lock();
aaee1203 4250 for_each_domain(cpu, tmp) {
e4f42888
PZ
4251 if (!(tmp->flags & SD_LOAD_BALANCE))
4252 continue;
4253
fe3bcfe1 4254 /*
99bd5e2f
SS
4255 * If both cpu and prev_cpu are part of this domain,
4256 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4257 */
99bd5e2f
SS
4258 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4259 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4260 affine_sd = tmp;
29cd8bae 4261 break;
f03542a7 4262 }
29cd8bae 4263
f03542a7 4264 if (tmp->flags & sd_flag)
29cd8bae
PZ
4265 sd = tmp;
4266 }
4267
8b911acd 4268 if (affine_sd) {
f03542a7 4269 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4270 prev_cpu = cpu;
4271
4272 new_cpu = select_idle_sibling(p, prev_cpu);
4273 goto unlock;
8b911acd 4274 }
e7693a36 4275
aaee1203 4276 while (sd) {
5158f4e4 4277 int load_idx = sd->forkexec_idx;
aaee1203 4278 struct sched_group *group;
c88d5910 4279 int weight;
098fb9db 4280
0763a660 4281 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4282 sd = sd->child;
4283 continue;
4284 }
098fb9db 4285
5158f4e4
PZ
4286 if (sd_flag & SD_BALANCE_WAKE)
4287 load_idx = sd->wake_idx;
098fb9db 4288
5158f4e4 4289 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
4290 if (!group) {
4291 sd = sd->child;
4292 continue;
4293 }
4ae7d5ce 4294
d7c33c49 4295 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4296 if (new_cpu == -1 || new_cpu == cpu) {
4297 /* Now try balancing at a lower domain level of cpu */
4298 sd = sd->child;
4299 continue;
e7693a36 4300 }
aaee1203
PZ
4301
4302 /* Now try balancing at a lower domain level of new_cpu */
4303 cpu = new_cpu;
669c55e9 4304 weight = sd->span_weight;
aaee1203
PZ
4305 sd = NULL;
4306 for_each_domain(cpu, tmp) {
669c55e9 4307 if (weight <= tmp->span_weight)
aaee1203 4308 break;
0763a660 4309 if (tmp->flags & sd_flag)
aaee1203
PZ
4310 sd = tmp;
4311 }
4312 /* while loop will break here if sd == NULL */
e7693a36 4313 }
dce840a0
PZ
4314unlock:
4315 rcu_read_unlock();
e7693a36 4316
c88d5910 4317 return new_cpu;
e7693a36 4318}
0a74bef8
PT
4319
4320/*
4321 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4322 * cfs_rq_of(p) references at time of call are still valid and identify the
4323 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4324 * other assumptions, including the state of rq->lock, should be made.
4325 */
4326static void
4327migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4328{
aff3e498
PT
4329 struct sched_entity *se = &p->se;
4330 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4331
4332 /*
4333 * Load tracking: accumulate removed load so that it can be processed
4334 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4335 * to blocked load iff they have a positive decay-count. It can never
4336 * be negative here since on-rq tasks have decay-count == 0.
4337 */
4338 if (se->avg.decay_count) {
4339 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4340 atomic_long_add(se->avg.load_avg_contrib,
4341 &cfs_rq->removed_load);
aff3e498 4342 }
0a74bef8 4343}
e7693a36
GH
4344#endif /* CONFIG_SMP */
4345
e52fb7c0
PZ
4346static unsigned long
4347wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4348{
4349 unsigned long gran = sysctl_sched_wakeup_granularity;
4350
4351 /*
e52fb7c0
PZ
4352 * Since its curr running now, convert the gran from real-time
4353 * to virtual-time in his units.
13814d42
MG
4354 *
4355 * By using 'se' instead of 'curr' we penalize light tasks, so
4356 * they get preempted easier. That is, if 'se' < 'curr' then
4357 * the resulting gran will be larger, therefore penalizing the
4358 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4359 * be smaller, again penalizing the lighter task.
4360 *
4361 * This is especially important for buddies when the leftmost
4362 * task is higher priority than the buddy.
0bbd3336 4363 */
f4ad9bd2 4364 return calc_delta_fair(gran, se);
0bbd3336
PZ
4365}
4366
464b7527
PZ
4367/*
4368 * Should 'se' preempt 'curr'.
4369 *
4370 * |s1
4371 * |s2
4372 * |s3
4373 * g
4374 * |<--->|c
4375 *
4376 * w(c, s1) = -1
4377 * w(c, s2) = 0
4378 * w(c, s3) = 1
4379 *
4380 */
4381static int
4382wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4383{
4384 s64 gran, vdiff = curr->vruntime - se->vruntime;
4385
4386 if (vdiff <= 0)
4387 return -1;
4388
e52fb7c0 4389 gran = wakeup_gran(curr, se);
464b7527
PZ
4390 if (vdiff > gran)
4391 return 1;
4392
4393 return 0;
4394}
4395
02479099
PZ
4396static void set_last_buddy(struct sched_entity *se)
4397{
69c80f3e
VP
4398 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4399 return;
4400
4401 for_each_sched_entity(se)
4402 cfs_rq_of(se)->last = se;
02479099
PZ
4403}
4404
4405static void set_next_buddy(struct sched_entity *se)
4406{
69c80f3e
VP
4407 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4408 return;
4409
4410 for_each_sched_entity(se)
4411 cfs_rq_of(se)->next = se;
02479099
PZ
4412}
4413
ac53db59
RR
4414static void set_skip_buddy(struct sched_entity *se)
4415{
69c80f3e
VP
4416 for_each_sched_entity(se)
4417 cfs_rq_of(se)->skip = se;
ac53db59
RR
4418}
4419
bf0f6f24
IM
4420/*
4421 * Preempt the current task with a newly woken task if needed:
4422 */
5a9b86f6 4423static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4424{
4425 struct task_struct *curr = rq->curr;
8651a86c 4426 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4427 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4428 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4429 int next_buddy_marked = 0;
bf0f6f24 4430
4ae7d5ce
IM
4431 if (unlikely(se == pse))
4432 return;
4433
5238cdd3 4434 /*
ddcdf6e7 4435 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4436 * unconditionally check_prempt_curr() after an enqueue (which may have
4437 * lead to a throttle). This both saves work and prevents false
4438 * next-buddy nomination below.
4439 */
4440 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4441 return;
4442
2f36825b 4443 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4444 set_next_buddy(pse);
2f36825b
VP
4445 next_buddy_marked = 1;
4446 }
57fdc26d 4447
aec0a514
BR
4448 /*
4449 * We can come here with TIF_NEED_RESCHED already set from new task
4450 * wake up path.
5238cdd3
PT
4451 *
4452 * Note: this also catches the edge-case of curr being in a throttled
4453 * group (e.g. via set_curr_task), since update_curr() (in the
4454 * enqueue of curr) will have resulted in resched being set. This
4455 * prevents us from potentially nominating it as a false LAST_BUDDY
4456 * below.
aec0a514
BR
4457 */
4458 if (test_tsk_need_resched(curr))
4459 return;
4460
a2f5c9ab
DH
4461 /* Idle tasks are by definition preempted by non-idle tasks. */
4462 if (unlikely(curr->policy == SCHED_IDLE) &&
4463 likely(p->policy != SCHED_IDLE))
4464 goto preempt;
4465
91c234b4 4466 /*
a2f5c9ab
DH
4467 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4468 * is driven by the tick):
91c234b4 4469 */
8ed92e51 4470 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4471 return;
bf0f6f24 4472
464b7527 4473 find_matching_se(&se, &pse);
9bbd7374 4474 update_curr(cfs_rq_of(se));
002f128b 4475 BUG_ON(!pse);
2f36825b
VP
4476 if (wakeup_preempt_entity(se, pse) == 1) {
4477 /*
4478 * Bias pick_next to pick the sched entity that is
4479 * triggering this preemption.
4480 */
4481 if (!next_buddy_marked)
4482 set_next_buddy(pse);
3a7e73a2 4483 goto preempt;
2f36825b 4484 }
464b7527 4485
3a7e73a2 4486 return;
a65ac745 4487
3a7e73a2
PZ
4488preempt:
4489 resched_task(curr);
4490 /*
4491 * Only set the backward buddy when the current task is still
4492 * on the rq. This can happen when a wakeup gets interleaved
4493 * with schedule on the ->pre_schedule() or idle_balance()
4494 * point, either of which can * drop the rq lock.
4495 *
4496 * Also, during early boot the idle thread is in the fair class,
4497 * for obvious reasons its a bad idea to schedule back to it.
4498 */
4499 if (unlikely(!se->on_rq || curr == rq->idle))
4500 return;
4501
4502 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4503 set_last_buddy(se);
bf0f6f24
IM
4504}
4505
fb8d4724 4506static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4507{
8f4d37ec 4508 struct task_struct *p;
bf0f6f24
IM
4509 struct cfs_rq *cfs_rq = &rq->cfs;
4510 struct sched_entity *se;
4511
36ace27e 4512 if (!cfs_rq->nr_running)
bf0f6f24
IM
4513 return NULL;
4514
4515 do {
9948f4b2 4516 se = pick_next_entity(cfs_rq);
f4b6755f 4517 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4518 cfs_rq = group_cfs_rq(se);
4519 } while (cfs_rq);
4520
8f4d37ec 4521 p = task_of(se);
b39e66ea
MG
4522 if (hrtick_enabled(rq))
4523 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4524
4525 return p;
bf0f6f24
IM
4526}
4527
4528/*
4529 * Account for a descheduled task:
4530 */
31ee529c 4531static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4532{
4533 struct sched_entity *se = &prev->se;
4534 struct cfs_rq *cfs_rq;
4535
4536 for_each_sched_entity(se) {
4537 cfs_rq = cfs_rq_of(se);
ab6cde26 4538 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4539 }
4540}
4541
ac53db59
RR
4542/*
4543 * sched_yield() is very simple
4544 *
4545 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4546 */
4547static void yield_task_fair(struct rq *rq)
4548{
4549 struct task_struct *curr = rq->curr;
4550 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4551 struct sched_entity *se = &curr->se;
4552
4553 /*
4554 * Are we the only task in the tree?
4555 */
4556 if (unlikely(rq->nr_running == 1))
4557 return;
4558
4559 clear_buddies(cfs_rq, se);
4560
4561 if (curr->policy != SCHED_BATCH) {
4562 update_rq_clock(rq);
4563 /*
4564 * Update run-time statistics of the 'current'.
4565 */
4566 update_curr(cfs_rq);
916671c0
MG
4567 /*
4568 * Tell update_rq_clock() that we've just updated,
4569 * so we don't do microscopic update in schedule()
4570 * and double the fastpath cost.
4571 */
4572 rq->skip_clock_update = 1;
ac53db59
RR
4573 }
4574
4575 set_skip_buddy(se);
4576}
4577
d95f4122
MG
4578static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4579{
4580 struct sched_entity *se = &p->se;
4581
5238cdd3
PT
4582 /* throttled hierarchies are not runnable */
4583 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4584 return false;
4585
4586 /* Tell the scheduler that we'd really like pse to run next. */
4587 set_next_buddy(se);
4588
d95f4122
MG
4589 yield_task_fair(rq);
4590
4591 return true;
4592}
4593
681f3e68 4594#ifdef CONFIG_SMP
bf0f6f24 4595/**************************************************
e9c84cb8
PZ
4596 * Fair scheduling class load-balancing methods.
4597 *
4598 * BASICS
4599 *
4600 * The purpose of load-balancing is to achieve the same basic fairness the
4601 * per-cpu scheduler provides, namely provide a proportional amount of compute
4602 * time to each task. This is expressed in the following equation:
4603 *
4604 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4605 *
4606 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4607 * W_i,0 is defined as:
4608 *
4609 * W_i,0 = \Sum_j w_i,j (2)
4610 *
4611 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4612 * is derived from the nice value as per prio_to_weight[].
4613 *
4614 * The weight average is an exponential decay average of the instantaneous
4615 * weight:
4616 *
4617 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4618 *
4619 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4620 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4621 * can also include other factors [XXX].
4622 *
4623 * To achieve this balance we define a measure of imbalance which follows
4624 * directly from (1):
4625 *
4626 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4627 *
4628 * We them move tasks around to minimize the imbalance. In the continuous
4629 * function space it is obvious this converges, in the discrete case we get
4630 * a few fun cases generally called infeasible weight scenarios.
4631 *
4632 * [XXX expand on:
4633 * - infeasible weights;
4634 * - local vs global optima in the discrete case. ]
4635 *
4636 *
4637 * SCHED DOMAINS
4638 *
4639 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4640 * for all i,j solution, we create a tree of cpus that follows the hardware
4641 * topology where each level pairs two lower groups (or better). This results
4642 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4643 * tree to only the first of the previous level and we decrease the frequency
4644 * of load-balance at each level inv. proportional to the number of cpus in
4645 * the groups.
4646 *
4647 * This yields:
4648 *
4649 * log_2 n 1 n
4650 * \Sum { --- * --- * 2^i } = O(n) (5)
4651 * i = 0 2^i 2^i
4652 * `- size of each group
4653 * | | `- number of cpus doing load-balance
4654 * | `- freq
4655 * `- sum over all levels
4656 *
4657 * Coupled with a limit on how many tasks we can migrate every balance pass,
4658 * this makes (5) the runtime complexity of the balancer.
4659 *
4660 * An important property here is that each CPU is still (indirectly) connected
4661 * to every other cpu in at most O(log n) steps:
4662 *
4663 * The adjacency matrix of the resulting graph is given by:
4664 *
4665 * log_2 n
4666 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4667 * k = 0
4668 *
4669 * And you'll find that:
4670 *
4671 * A^(log_2 n)_i,j != 0 for all i,j (7)
4672 *
4673 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4674 * The task movement gives a factor of O(m), giving a convergence complexity
4675 * of:
4676 *
4677 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4678 *
4679 *
4680 * WORK CONSERVING
4681 *
4682 * In order to avoid CPUs going idle while there's still work to do, new idle
4683 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4684 * tree itself instead of relying on other CPUs to bring it work.
4685 *
4686 * This adds some complexity to both (5) and (8) but it reduces the total idle
4687 * time.
4688 *
4689 * [XXX more?]
4690 *
4691 *
4692 * CGROUPS
4693 *
4694 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4695 *
4696 * s_k,i
4697 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4698 * S_k
4699 *
4700 * Where
4701 *
4702 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4703 *
4704 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4705 *
4706 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4707 * property.
4708 *
4709 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4710 * rewrite all of this once again.]
4711 */
bf0f6f24 4712
ed387b78
HS
4713static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4714
0ec8aa00
PZ
4715enum fbq_type { regular, remote, all };
4716
ddcdf6e7 4717#define LBF_ALL_PINNED 0x01
367456c7 4718#define LBF_NEED_BREAK 0x02
6263322c
PZ
4719#define LBF_DST_PINNED 0x04
4720#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4721
4722struct lb_env {
4723 struct sched_domain *sd;
4724
ddcdf6e7 4725 struct rq *src_rq;
85c1e7da 4726 int src_cpu;
ddcdf6e7
PZ
4727
4728 int dst_cpu;
4729 struct rq *dst_rq;
4730
88b8dac0
SV
4731 struct cpumask *dst_grpmask;
4732 int new_dst_cpu;
ddcdf6e7 4733 enum cpu_idle_type idle;
bd939f45 4734 long imbalance;
b9403130
MW
4735 /* The set of CPUs under consideration for load-balancing */
4736 struct cpumask *cpus;
4737
ddcdf6e7 4738 unsigned int flags;
367456c7
PZ
4739
4740 unsigned int loop;
4741 unsigned int loop_break;
4742 unsigned int loop_max;
0ec8aa00
PZ
4743
4744 enum fbq_type fbq_type;
ddcdf6e7
PZ
4745};
4746
1e3c88bd 4747/*
ddcdf6e7 4748 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4749 * Both runqueues must be locked.
4750 */
ddcdf6e7 4751static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4752{
ddcdf6e7
PZ
4753 deactivate_task(env->src_rq, p, 0);
4754 set_task_cpu(p, env->dst_cpu);
4755 activate_task(env->dst_rq, p, 0);
4756 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4757}
4758
029632fb
PZ
4759/*
4760 * Is this task likely cache-hot:
4761 */
4762static int
4763task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4764{
4765 s64 delta;
4766
4767 if (p->sched_class != &fair_sched_class)
4768 return 0;
4769
4770 if (unlikely(p->policy == SCHED_IDLE))
4771 return 0;
4772
4773 /*
4774 * Buddy candidates are cache hot:
4775 */
4776 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4777 (&p->se == cfs_rq_of(&p->se)->next ||
4778 &p->se == cfs_rq_of(&p->se)->last))
4779 return 1;
4780
4781 if (sysctl_sched_migration_cost == -1)
4782 return 1;
4783 if (sysctl_sched_migration_cost == 0)
4784 return 0;
4785
4786 delta = now - p->se.exec_start;
4787
4788 return delta < (s64)sysctl_sched_migration_cost;
4789}
4790
3a7053b3
MG
4791#ifdef CONFIG_NUMA_BALANCING
4792/* Returns true if the destination node has incurred more faults */
4793static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4794{
4795 int src_nid, dst_nid;
4796
4797 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4798 !(env->sd->flags & SD_NUMA)) {
4799 return false;
4800 }
4801
4802 src_nid = cpu_to_node(env->src_cpu);
4803 dst_nid = cpu_to_node(env->dst_cpu);
4804
83e1d2cd 4805 if (src_nid == dst_nid)
3a7053b3
MG
4806 return false;
4807
83e1d2cd
MG
4808 /* Always encourage migration to the preferred node. */
4809 if (dst_nid == p->numa_preferred_nid)
4810 return true;
4811
887c290e
RR
4812 /* If both task and group weight improve, this move is a winner. */
4813 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4814 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4815 return true;
4816
4817 return false;
4818}
7a0f3083
MG
4819
4820
4821static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4822{
4823 int src_nid, dst_nid;
4824
4825 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4826 return false;
4827
4828 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4829 return false;
4830
4831 src_nid = cpu_to_node(env->src_cpu);
4832 dst_nid = cpu_to_node(env->dst_cpu);
4833
83e1d2cd 4834 if (src_nid == dst_nid)
7a0f3083
MG
4835 return false;
4836
83e1d2cd
MG
4837 /* Migrating away from the preferred node is always bad. */
4838 if (src_nid == p->numa_preferred_nid)
4839 return true;
4840
887c290e
RR
4841 /* If either task or group weight get worse, don't do it. */
4842 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4843 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4844 return true;
4845
4846 return false;
4847}
4848
3a7053b3
MG
4849#else
4850static inline bool migrate_improves_locality(struct task_struct *p,
4851 struct lb_env *env)
4852{
4853 return false;
4854}
7a0f3083
MG
4855
4856static inline bool migrate_degrades_locality(struct task_struct *p,
4857 struct lb_env *env)
4858{
4859 return false;
4860}
3a7053b3
MG
4861#endif
4862
1e3c88bd
PZ
4863/*
4864 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4865 */
4866static
8e45cb54 4867int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4868{
4869 int tsk_cache_hot = 0;
4870 /*
4871 * We do not migrate tasks that are:
d3198084 4872 * 1) throttled_lb_pair, or
1e3c88bd 4873 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4874 * 3) running (obviously), or
4875 * 4) are cache-hot on their current CPU.
1e3c88bd 4876 */
d3198084
JK
4877 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4878 return 0;
4879
ddcdf6e7 4880 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4881 int cpu;
88b8dac0 4882
41acab88 4883 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4884
6263322c
PZ
4885 env->flags |= LBF_SOME_PINNED;
4886
88b8dac0
SV
4887 /*
4888 * Remember if this task can be migrated to any other cpu in
4889 * our sched_group. We may want to revisit it if we couldn't
4890 * meet load balance goals by pulling other tasks on src_cpu.
4891 *
4892 * Also avoid computing new_dst_cpu if we have already computed
4893 * one in current iteration.
4894 */
6263322c 4895 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4896 return 0;
4897
e02e60c1
JK
4898 /* Prevent to re-select dst_cpu via env's cpus */
4899 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4900 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4901 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4902 env->new_dst_cpu = cpu;
4903 break;
4904 }
88b8dac0 4905 }
e02e60c1 4906
1e3c88bd
PZ
4907 return 0;
4908 }
88b8dac0
SV
4909
4910 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4911 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4912
ddcdf6e7 4913 if (task_running(env->src_rq, p)) {
41acab88 4914 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4915 return 0;
4916 }
4917
4918 /*
4919 * Aggressive migration if:
3a7053b3
MG
4920 * 1) destination numa is preferred
4921 * 2) task is cache cold, or
4922 * 3) too many balance attempts have failed.
1e3c88bd 4923 */
78becc27 4924 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4925 if (!tsk_cache_hot)
4926 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4927
4928 if (migrate_improves_locality(p, env)) {
4929#ifdef CONFIG_SCHEDSTATS
4930 if (tsk_cache_hot) {
4931 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4932 schedstat_inc(p, se.statistics.nr_forced_migrations);
4933 }
4934#endif
4935 return 1;
4936 }
4937
1e3c88bd 4938 if (!tsk_cache_hot ||
8e45cb54 4939 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4940
1e3c88bd 4941 if (tsk_cache_hot) {
8e45cb54 4942 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4943 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4944 }
4e2dcb73 4945
1e3c88bd
PZ
4946 return 1;
4947 }
4948
4e2dcb73
ZH
4949 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4950 return 0;
1e3c88bd
PZ
4951}
4952
897c395f
PZ
4953/*
4954 * move_one_task tries to move exactly one task from busiest to this_rq, as
4955 * part of active balancing operations within "domain".
4956 * Returns 1 if successful and 0 otherwise.
4957 *
4958 * Called with both runqueues locked.
4959 */
8e45cb54 4960static int move_one_task(struct lb_env *env)
897c395f
PZ
4961{
4962 struct task_struct *p, *n;
897c395f 4963
367456c7 4964 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4965 if (!can_migrate_task(p, env))
4966 continue;
897c395f 4967
367456c7
PZ
4968 move_task(p, env);
4969 /*
4970 * Right now, this is only the second place move_task()
4971 * is called, so we can safely collect move_task()
4972 * stats here rather than inside move_task().
4973 */
4974 schedstat_inc(env->sd, lb_gained[env->idle]);
4975 return 1;
897c395f 4976 }
897c395f
PZ
4977 return 0;
4978}
4979
eb95308e
PZ
4980static const unsigned int sched_nr_migrate_break = 32;
4981
5d6523eb 4982/*
bd939f45 4983 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4984 * this_rq, as part of a balancing operation within domain "sd".
4985 * Returns 1 if successful and 0 otherwise.
4986 *
4987 * Called with both runqueues locked.
4988 */
4989static int move_tasks(struct lb_env *env)
1e3c88bd 4990{
5d6523eb
PZ
4991 struct list_head *tasks = &env->src_rq->cfs_tasks;
4992 struct task_struct *p;
367456c7
PZ
4993 unsigned long load;
4994 int pulled = 0;
1e3c88bd 4995
bd939f45 4996 if (env->imbalance <= 0)
5d6523eb 4997 return 0;
1e3c88bd 4998
5d6523eb
PZ
4999 while (!list_empty(tasks)) {
5000 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5001
367456c7
PZ
5002 env->loop++;
5003 /* We've more or less seen every task there is, call it quits */
5d6523eb 5004 if (env->loop > env->loop_max)
367456c7 5005 break;
5d6523eb
PZ
5006
5007 /* take a breather every nr_migrate tasks */
367456c7 5008 if (env->loop > env->loop_break) {
eb95308e 5009 env->loop_break += sched_nr_migrate_break;
8e45cb54 5010 env->flags |= LBF_NEED_BREAK;
ee00e66f 5011 break;
a195f004 5012 }
1e3c88bd 5013
d3198084 5014 if (!can_migrate_task(p, env))
367456c7
PZ
5015 goto next;
5016
5017 load = task_h_load(p);
5d6523eb 5018
eb95308e 5019 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5020 goto next;
5021
bd939f45 5022 if ((load / 2) > env->imbalance)
367456c7 5023 goto next;
1e3c88bd 5024
ddcdf6e7 5025 move_task(p, env);
ee00e66f 5026 pulled++;
bd939f45 5027 env->imbalance -= load;
1e3c88bd
PZ
5028
5029#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5030 /*
5031 * NEWIDLE balancing is a source of latency, so preemptible
5032 * kernels will stop after the first task is pulled to minimize
5033 * the critical section.
5034 */
5d6523eb 5035 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5036 break;
1e3c88bd
PZ
5037#endif
5038
ee00e66f
PZ
5039 /*
5040 * We only want to steal up to the prescribed amount of
5041 * weighted load.
5042 */
bd939f45 5043 if (env->imbalance <= 0)
ee00e66f 5044 break;
367456c7
PZ
5045
5046 continue;
5047next:
5d6523eb 5048 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5049 }
5d6523eb 5050
1e3c88bd 5051 /*
ddcdf6e7
PZ
5052 * Right now, this is one of only two places move_task() is called,
5053 * so we can safely collect move_task() stats here rather than
5054 * inside move_task().
1e3c88bd 5055 */
8e45cb54 5056 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5057
5d6523eb 5058 return pulled;
1e3c88bd
PZ
5059}
5060
230059de 5061#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5062/*
5063 * update tg->load_weight by folding this cpu's load_avg
5064 */
48a16753 5065static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5066{
48a16753
PT
5067 struct sched_entity *se = tg->se[cpu];
5068 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5069
48a16753
PT
5070 /* throttled entities do not contribute to load */
5071 if (throttled_hierarchy(cfs_rq))
5072 return;
9e3081ca 5073
aff3e498 5074 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5075
82958366
PT
5076 if (se) {
5077 update_entity_load_avg(se, 1);
5078 /*
5079 * We pivot on our runnable average having decayed to zero for
5080 * list removal. This generally implies that all our children
5081 * have also been removed (modulo rounding error or bandwidth
5082 * control); however, such cases are rare and we can fix these
5083 * at enqueue.
5084 *
5085 * TODO: fix up out-of-order children on enqueue.
5086 */
5087 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5088 list_del_leaf_cfs_rq(cfs_rq);
5089 } else {
48a16753 5090 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5091 update_rq_runnable_avg(rq, rq->nr_running);
5092 }
9e3081ca
PZ
5093}
5094
48a16753 5095static void update_blocked_averages(int cpu)
9e3081ca 5096{
9e3081ca 5097 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5098 struct cfs_rq *cfs_rq;
5099 unsigned long flags;
9e3081ca 5100
48a16753
PT
5101 raw_spin_lock_irqsave(&rq->lock, flags);
5102 update_rq_clock(rq);
9763b67f
PZ
5103 /*
5104 * Iterates the task_group tree in a bottom up fashion, see
5105 * list_add_leaf_cfs_rq() for details.
5106 */
64660c86 5107 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5108 /*
5109 * Note: We may want to consider periodically releasing
5110 * rq->lock about these updates so that creating many task
5111 * groups does not result in continually extending hold time.
5112 */
5113 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5114 }
48a16753
PT
5115
5116 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5117}
5118
9763b67f 5119/*
68520796 5120 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5121 * This needs to be done in a top-down fashion because the load of a child
5122 * group is a fraction of its parents load.
5123 */
68520796 5124static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5125{
68520796
VD
5126 struct rq *rq = rq_of(cfs_rq);
5127 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5128 unsigned long now = jiffies;
68520796 5129 unsigned long load;
a35b6466 5130
68520796 5131 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5132 return;
5133
68520796
VD
5134 cfs_rq->h_load_next = NULL;
5135 for_each_sched_entity(se) {
5136 cfs_rq = cfs_rq_of(se);
5137 cfs_rq->h_load_next = se;
5138 if (cfs_rq->last_h_load_update == now)
5139 break;
5140 }
a35b6466 5141
68520796 5142 if (!se) {
7e3115ef 5143 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5144 cfs_rq->last_h_load_update = now;
5145 }
5146
5147 while ((se = cfs_rq->h_load_next) != NULL) {
5148 load = cfs_rq->h_load;
5149 load = div64_ul(load * se->avg.load_avg_contrib,
5150 cfs_rq->runnable_load_avg + 1);
5151 cfs_rq = group_cfs_rq(se);
5152 cfs_rq->h_load = load;
5153 cfs_rq->last_h_load_update = now;
5154 }
9763b67f
PZ
5155}
5156
367456c7 5157static unsigned long task_h_load(struct task_struct *p)
230059de 5158{
367456c7 5159 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5160
68520796 5161 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5162 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5163 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5164}
5165#else
48a16753 5166static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5167{
5168}
5169
367456c7 5170static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5171{
a003a25b 5172 return p->se.avg.load_avg_contrib;
1e3c88bd 5173}
230059de 5174#endif
1e3c88bd 5175
1e3c88bd 5176/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5177/*
5178 * sg_lb_stats - stats of a sched_group required for load_balancing
5179 */
5180struct sg_lb_stats {
5181 unsigned long avg_load; /*Avg load across the CPUs of the group */
5182 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5183 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5184 unsigned long load_per_task;
3ae11c90 5185 unsigned long group_power;
147c5fc2
PZ
5186 unsigned int sum_nr_running; /* Nr tasks running in the group */
5187 unsigned int group_capacity;
5188 unsigned int idle_cpus;
5189 unsigned int group_weight;
1e3c88bd 5190 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5191 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5192#ifdef CONFIG_NUMA_BALANCING
5193 unsigned int nr_numa_running;
5194 unsigned int nr_preferred_running;
5195#endif
1e3c88bd
PZ
5196};
5197
56cf515b
JK
5198/*
5199 * sd_lb_stats - Structure to store the statistics of a sched_domain
5200 * during load balancing.
5201 */
5202struct sd_lb_stats {
5203 struct sched_group *busiest; /* Busiest group in this sd */
5204 struct sched_group *local; /* Local group in this sd */
5205 unsigned long total_load; /* Total load of all groups in sd */
5206 unsigned long total_pwr; /* Total power of all groups in sd */
5207 unsigned long avg_load; /* Average load across all groups in sd */
5208
56cf515b 5209 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5210 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5211};
5212
147c5fc2
PZ
5213static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5214{
5215 /*
5216 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5217 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5218 * We must however clear busiest_stat::avg_load because
5219 * update_sd_pick_busiest() reads this before assignment.
5220 */
5221 *sds = (struct sd_lb_stats){
5222 .busiest = NULL,
5223 .local = NULL,
5224 .total_load = 0UL,
5225 .total_pwr = 0UL,
5226 .busiest_stat = {
5227 .avg_load = 0UL,
5228 },
5229 };
5230}
5231
1e3c88bd
PZ
5232/**
5233 * get_sd_load_idx - Obtain the load index for a given sched domain.
5234 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5235 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5236 *
5237 * Return: The load index.
1e3c88bd
PZ
5238 */
5239static inline int get_sd_load_idx(struct sched_domain *sd,
5240 enum cpu_idle_type idle)
5241{
5242 int load_idx;
5243
5244 switch (idle) {
5245 case CPU_NOT_IDLE:
5246 load_idx = sd->busy_idx;
5247 break;
5248
5249 case CPU_NEWLY_IDLE:
5250 load_idx = sd->newidle_idx;
5251 break;
5252 default:
5253 load_idx = sd->idle_idx;
5254 break;
5255 }
5256
5257 return load_idx;
5258}
5259
15f803c9 5260static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5261{
1399fa78 5262 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5263}
5264
5265unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5266{
5267 return default_scale_freq_power(sd, cpu);
5268}
5269
15f803c9 5270static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5271{
669c55e9 5272 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5273 unsigned long smt_gain = sd->smt_gain;
5274
5275 smt_gain /= weight;
5276
5277 return smt_gain;
5278}
5279
5280unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5281{
5282 return default_scale_smt_power(sd, cpu);
5283}
5284
15f803c9 5285static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5286{
5287 struct rq *rq = cpu_rq(cpu);
b654f7de 5288 u64 total, available, age_stamp, avg;
1e3c88bd 5289
b654f7de
PZ
5290 /*
5291 * Since we're reading these variables without serialization make sure
5292 * we read them once before doing sanity checks on them.
5293 */
5294 age_stamp = ACCESS_ONCE(rq->age_stamp);
5295 avg = ACCESS_ONCE(rq->rt_avg);
5296
78becc27 5297 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5298
b654f7de 5299 if (unlikely(total < avg)) {
aa483808
VP
5300 /* Ensures that power won't end up being negative */
5301 available = 0;
5302 } else {
b654f7de 5303 available = total - avg;
aa483808 5304 }
1e3c88bd 5305
1399fa78
NR
5306 if (unlikely((s64)total < SCHED_POWER_SCALE))
5307 total = SCHED_POWER_SCALE;
1e3c88bd 5308
1399fa78 5309 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5310
5311 return div_u64(available, total);
5312}
5313
5314static void update_cpu_power(struct sched_domain *sd, int cpu)
5315{
669c55e9 5316 unsigned long weight = sd->span_weight;
1399fa78 5317 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5318 struct sched_group *sdg = sd->groups;
5319
1e3c88bd
PZ
5320 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5321 if (sched_feat(ARCH_POWER))
5322 power *= arch_scale_smt_power(sd, cpu);
5323 else
5324 power *= default_scale_smt_power(sd, cpu);
5325
1399fa78 5326 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5327 }
5328
9c3f75cb 5329 sdg->sgp->power_orig = power;
9d5efe05
SV
5330
5331 if (sched_feat(ARCH_POWER))
5332 power *= arch_scale_freq_power(sd, cpu);
5333 else
5334 power *= default_scale_freq_power(sd, cpu);
5335
1399fa78 5336 power >>= SCHED_POWER_SHIFT;
9d5efe05 5337
1e3c88bd 5338 power *= scale_rt_power(cpu);
1399fa78 5339 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5340
5341 if (!power)
5342 power = 1;
5343
e51fd5e2 5344 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5345 sdg->sgp->power = power;
1e3c88bd
PZ
5346}
5347
029632fb 5348void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5349{
5350 struct sched_domain *child = sd->child;
5351 struct sched_group *group, *sdg = sd->groups;
863bffc8 5352 unsigned long power, power_orig;
4ec4412e
VG
5353 unsigned long interval;
5354
5355 interval = msecs_to_jiffies(sd->balance_interval);
5356 interval = clamp(interval, 1UL, max_load_balance_interval);
5357 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5358
5359 if (!child) {
5360 update_cpu_power(sd, cpu);
5361 return;
5362 }
5363
863bffc8 5364 power_orig = power = 0;
1e3c88bd 5365
74a5ce20
PZ
5366 if (child->flags & SD_OVERLAP) {
5367 /*
5368 * SD_OVERLAP domains cannot assume that child groups
5369 * span the current group.
5370 */
5371
863bffc8 5372 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5373 struct sched_group_power *sgp;
5374 struct rq *rq = cpu_rq(cpu);
863bffc8 5375
9abf24d4
SD
5376 /*
5377 * build_sched_domains() -> init_sched_groups_power()
5378 * gets here before we've attached the domains to the
5379 * runqueues.
5380 *
5381 * Use power_of(), which is set irrespective of domains
5382 * in update_cpu_power().
5383 *
5384 * This avoids power/power_orig from being 0 and
5385 * causing divide-by-zero issues on boot.
5386 *
5387 * Runtime updates will correct power_orig.
5388 */
5389 if (unlikely(!rq->sd)) {
5390 power_orig += power_of(cpu);
5391 power += power_of(cpu);
5392 continue;
5393 }
5394
5395 sgp = rq->sd->groups->sgp;
5396 power_orig += sgp->power_orig;
5397 power += sgp->power;
863bffc8 5398 }
74a5ce20
PZ
5399 } else {
5400 /*
5401 * !SD_OVERLAP domains can assume that child groups
5402 * span the current group.
5403 */
5404
5405 group = child->groups;
5406 do {
863bffc8 5407 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5408 power += group->sgp->power;
5409 group = group->next;
5410 } while (group != child->groups);
5411 }
1e3c88bd 5412
863bffc8
PZ
5413 sdg->sgp->power_orig = power_orig;
5414 sdg->sgp->power = power;
1e3c88bd
PZ
5415}
5416
9d5efe05
SV
5417/*
5418 * Try and fix up capacity for tiny siblings, this is needed when
5419 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5420 * which on its own isn't powerful enough.
5421 *
5422 * See update_sd_pick_busiest() and check_asym_packing().
5423 */
5424static inline int
5425fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5426{
5427 /*
1399fa78 5428 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5429 */
a6c75f2f 5430 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5431 return 0;
5432
5433 /*
5434 * If ~90% of the cpu_power is still there, we're good.
5435 */
9c3f75cb 5436 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5437 return 1;
5438
5439 return 0;
5440}
5441
30ce5dab
PZ
5442/*
5443 * Group imbalance indicates (and tries to solve) the problem where balancing
5444 * groups is inadequate due to tsk_cpus_allowed() constraints.
5445 *
5446 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5447 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5448 * Something like:
5449 *
5450 * { 0 1 2 3 } { 4 5 6 7 }
5451 * * * * *
5452 *
5453 * If we were to balance group-wise we'd place two tasks in the first group and
5454 * two tasks in the second group. Clearly this is undesired as it will overload
5455 * cpu 3 and leave one of the cpus in the second group unused.
5456 *
5457 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5458 * by noticing the lower domain failed to reach balance and had difficulty
5459 * moving tasks due to affinity constraints.
30ce5dab
PZ
5460 *
5461 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5462 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5463 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5464 * to create an effective group imbalance.
5465 *
5466 * This is a somewhat tricky proposition since the next run might not find the
5467 * group imbalance and decide the groups need to be balanced again. A most
5468 * subtle and fragile situation.
5469 */
5470
6263322c 5471static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5472{
6263322c 5473 return group->sgp->imbalance;
30ce5dab
PZ
5474}
5475
b37d9316
PZ
5476/*
5477 * Compute the group capacity.
5478 *
c61037e9
PZ
5479 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5480 * first dividing out the smt factor and computing the actual number of cores
5481 * and limit power unit capacity with that.
b37d9316
PZ
5482 */
5483static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5484{
c61037e9
PZ
5485 unsigned int capacity, smt, cpus;
5486 unsigned int power, power_orig;
5487
5488 power = group->sgp->power;
5489 power_orig = group->sgp->power_orig;
5490 cpus = group->group_weight;
b37d9316 5491
c61037e9
PZ
5492 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5493 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5494 capacity = cpus / smt; /* cores */
b37d9316 5495
c61037e9 5496 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5497 if (!capacity)
5498 capacity = fix_small_capacity(env->sd, group);
5499
5500 return capacity;
5501}
5502
1e3c88bd
PZ
5503/**
5504 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5505 * @env: The load balancing environment.
1e3c88bd 5506 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5507 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5508 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5509 * @sgs: variable to hold the statistics for this group.
5510 */
bd939f45
PZ
5511static inline void update_sg_lb_stats(struct lb_env *env,
5512 struct sched_group *group, int load_idx,
23f0d209 5513 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5514{
30ce5dab
PZ
5515 unsigned long nr_running;
5516 unsigned long load;
bd939f45 5517 int i;
1e3c88bd 5518
b72ff13c
PZ
5519 memset(sgs, 0, sizeof(*sgs));
5520
b9403130 5521 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5522 struct rq *rq = cpu_rq(i);
5523
e44bc5c5
PZ
5524 nr_running = rq->nr_running;
5525
1e3c88bd 5526 /* Bias balancing toward cpus of our domain */
6263322c 5527 if (local_group)
04f733b4 5528 load = target_load(i, load_idx);
6263322c 5529 else
1e3c88bd 5530 load = source_load(i, load_idx);
1e3c88bd
PZ
5531
5532 sgs->group_load += load;
e44bc5c5 5533 sgs->sum_nr_running += nr_running;
0ec8aa00
PZ
5534#ifdef CONFIG_NUMA_BALANCING
5535 sgs->nr_numa_running += rq->nr_numa_running;
5536 sgs->nr_preferred_running += rq->nr_preferred_running;
5537#endif
1e3c88bd 5538 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5539 if (idle_cpu(i))
5540 sgs->idle_cpus++;
1e3c88bd
PZ
5541 }
5542
1e3c88bd 5543 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5544 sgs->group_power = group->sgp->power;
5545 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5546
dd5feea1 5547 if (sgs->sum_nr_running)
38d0f770 5548 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5549
aae6d3dd 5550 sgs->group_weight = group->group_weight;
fab47622 5551
b37d9316
PZ
5552 sgs->group_imb = sg_imbalanced(group);
5553 sgs->group_capacity = sg_capacity(env, group);
5554
fab47622
NR
5555 if (sgs->group_capacity > sgs->sum_nr_running)
5556 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5557}
5558
532cb4c4
MN
5559/**
5560 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5561 * @env: The load balancing environment.
532cb4c4
MN
5562 * @sds: sched_domain statistics
5563 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5564 * @sgs: sched_group statistics
532cb4c4
MN
5565 *
5566 * Determine if @sg is a busier group than the previously selected
5567 * busiest group.
e69f6186
YB
5568 *
5569 * Return: %true if @sg is a busier group than the previously selected
5570 * busiest group. %false otherwise.
532cb4c4 5571 */
bd939f45 5572static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5573 struct sd_lb_stats *sds,
5574 struct sched_group *sg,
bd939f45 5575 struct sg_lb_stats *sgs)
532cb4c4 5576{
56cf515b 5577 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5578 return false;
5579
5580 if (sgs->sum_nr_running > sgs->group_capacity)
5581 return true;
5582
5583 if (sgs->group_imb)
5584 return true;
5585
5586 /*
5587 * ASYM_PACKING needs to move all the work to the lowest
5588 * numbered CPUs in the group, therefore mark all groups
5589 * higher than ourself as busy.
5590 */
bd939f45
PZ
5591 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5592 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5593 if (!sds->busiest)
5594 return true;
5595
5596 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5597 return true;
5598 }
5599
5600 return false;
5601}
5602
0ec8aa00
PZ
5603#ifdef CONFIG_NUMA_BALANCING
5604static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5605{
5606 if (sgs->sum_nr_running > sgs->nr_numa_running)
5607 return regular;
5608 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5609 return remote;
5610 return all;
5611}
5612
5613static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5614{
5615 if (rq->nr_running > rq->nr_numa_running)
5616 return regular;
5617 if (rq->nr_running > rq->nr_preferred_running)
5618 return remote;
5619 return all;
5620}
5621#else
5622static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5623{
5624 return all;
5625}
5626
5627static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5628{
5629 return regular;
5630}
5631#endif /* CONFIG_NUMA_BALANCING */
5632
1e3c88bd 5633/**
461819ac 5634 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5635 * @env: The load balancing environment.
1e3c88bd
PZ
5636 * @sds: variable to hold the statistics for this sched_domain.
5637 */
0ec8aa00 5638static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5639{
bd939f45
PZ
5640 struct sched_domain *child = env->sd->child;
5641 struct sched_group *sg = env->sd->groups;
56cf515b 5642 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5643 int load_idx, prefer_sibling = 0;
5644
5645 if (child && child->flags & SD_PREFER_SIBLING)
5646 prefer_sibling = 1;
5647
bd939f45 5648 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5649
5650 do {
56cf515b 5651 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5652 int local_group;
5653
bd939f45 5654 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5655 if (local_group) {
5656 sds->local = sg;
5657 sgs = &sds->local_stat;
b72ff13c
PZ
5658
5659 if (env->idle != CPU_NEWLY_IDLE ||
5660 time_after_eq(jiffies, sg->sgp->next_update))
5661 update_group_power(env->sd, env->dst_cpu);
56cf515b 5662 }
1e3c88bd 5663
56cf515b 5664 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5665
b72ff13c
PZ
5666 if (local_group)
5667 goto next_group;
5668
1e3c88bd
PZ
5669 /*
5670 * In case the child domain prefers tasks go to siblings
532cb4c4 5671 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5672 * and move all the excess tasks away. We lower the capacity
5673 * of a group only if the local group has the capacity to fit
5674 * these excess tasks, i.e. nr_running < group_capacity. The
5675 * extra check prevents the case where you always pull from the
5676 * heaviest group when it is already under-utilized (possible
5677 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5678 */
b72ff13c
PZ
5679 if (prefer_sibling && sds->local &&
5680 sds->local_stat.group_has_capacity)
147c5fc2 5681 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5682
b72ff13c 5683 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5684 sds->busiest = sg;
56cf515b 5685 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5686 }
5687
b72ff13c
PZ
5688next_group:
5689 /* Now, start updating sd_lb_stats */
5690 sds->total_load += sgs->group_load;
5691 sds->total_pwr += sgs->group_power;
5692
532cb4c4 5693 sg = sg->next;
bd939f45 5694 } while (sg != env->sd->groups);
0ec8aa00
PZ
5695
5696 if (env->sd->flags & SD_NUMA)
5697 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5698}
5699
532cb4c4
MN
5700/**
5701 * check_asym_packing - Check to see if the group is packed into the
5702 * sched doman.
5703 *
5704 * This is primarily intended to used at the sibling level. Some
5705 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5706 * case of POWER7, it can move to lower SMT modes only when higher
5707 * threads are idle. When in lower SMT modes, the threads will
5708 * perform better since they share less core resources. Hence when we
5709 * have idle threads, we want them to be the higher ones.
5710 *
5711 * This packing function is run on idle threads. It checks to see if
5712 * the busiest CPU in this domain (core in the P7 case) has a higher
5713 * CPU number than the packing function is being run on. Here we are
5714 * assuming lower CPU number will be equivalent to lower a SMT thread
5715 * number.
5716 *
e69f6186 5717 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5718 * this CPU. The amount of the imbalance is returned in *imbalance.
5719 *
cd96891d 5720 * @env: The load balancing environment.
532cb4c4 5721 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5722 */
bd939f45 5723static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5724{
5725 int busiest_cpu;
5726
bd939f45 5727 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5728 return 0;
5729
5730 if (!sds->busiest)
5731 return 0;
5732
5733 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5734 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5735 return 0;
5736
bd939f45 5737 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5738 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5739 SCHED_POWER_SCALE);
bd939f45 5740
532cb4c4 5741 return 1;
1e3c88bd
PZ
5742}
5743
5744/**
5745 * fix_small_imbalance - Calculate the minor imbalance that exists
5746 * amongst the groups of a sched_domain, during
5747 * load balancing.
cd96891d 5748 * @env: The load balancing environment.
1e3c88bd 5749 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5750 */
bd939f45
PZ
5751static inline
5752void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5753{
5754 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5755 unsigned int imbn = 2;
dd5feea1 5756 unsigned long scaled_busy_load_per_task;
56cf515b 5757 struct sg_lb_stats *local, *busiest;
1e3c88bd 5758
56cf515b
JK
5759 local = &sds->local_stat;
5760 busiest = &sds->busiest_stat;
1e3c88bd 5761
56cf515b
JK
5762 if (!local->sum_nr_running)
5763 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5764 else if (busiest->load_per_task > local->load_per_task)
5765 imbn = 1;
dd5feea1 5766
56cf515b
JK
5767 scaled_busy_load_per_task =
5768 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5769 busiest->group_power;
56cf515b 5770
3029ede3
VD
5771 if (busiest->avg_load + scaled_busy_load_per_task >=
5772 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5773 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5774 return;
5775 }
5776
5777 /*
5778 * OK, we don't have enough imbalance to justify moving tasks,
5779 * however we may be able to increase total CPU power used by
5780 * moving them.
5781 */
5782
3ae11c90 5783 pwr_now += busiest->group_power *
56cf515b 5784 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5785 pwr_now += local->group_power *
56cf515b 5786 min(local->load_per_task, local->avg_load);
1399fa78 5787 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5788
5789 /* Amount of load we'd subtract */
56cf515b 5790 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5791 busiest->group_power;
56cf515b 5792 if (busiest->avg_load > tmp) {
3ae11c90 5793 pwr_move += busiest->group_power *
56cf515b
JK
5794 min(busiest->load_per_task,
5795 busiest->avg_load - tmp);
5796 }
1e3c88bd
PZ
5797
5798 /* Amount of load we'd add */
3ae11c90 5799 if (busiest->avg_load * busiest->group_power <
56cf515b 5800 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5801 tmp = (busiest->avg_load * busiest->group_power) /
5802 local->group_power;
56cf515b
JK
5803 } else {
5804 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5805 local->group_power;
56cf515b 5806 }
3ae11c90
PZ
5807 pwr_move += local->group_power *
5808 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5809 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5810
5811 /* Move if we gain throughput */
5812 if (pwr_move > pwr_now)
56cf515b 5813 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5814}
5815
5816/**
5817 * calculate_imbalance - Calculate the amount of imbalance present within the
5818 * groups of a given sched_domain during load balance.
bd939f45 5819 * @env: load balance environment
1e3c88bd 5820 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5821 */
bd939f45 5822static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5823{
dd5feea1 5824 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5825 struct sg_lb_stats *local, *busiest;
5826
5827 local = &sds->local_stat;
56cf515b 5828 busiest = &sds->busiest_stat;
dd5feea1 5829
56cf515b 5830 if (busiest->group_imb) {
30ce5dab
PZ
5831 /*
5832 * In the group_imb case we cannot rely on group-wide averages
5833 * to ensure cpu-load equilibrium, look at wider averages. XXX
5834 */
56cf515b
JK
5835 busiest->load_per_task =
5836 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5837 }
5838
1e3c88bd
PZ
5839 /*
5840 * In the presence of smp nice balancing, certain scenarios can have
5841 * max load less than avg load(as we skip the groups at or below
5842 * its cpu_power, while calculating max_load..)
5843 */
b1885550
VD
5844 if (busiest->avg_load <= sds->avg_load ||
5845 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5846 env->imbalance = 0;
5847 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5848 }
5849
56cf515b 5850 if (!busiest->group_imb) {
dd5feea1
SS
5851 /*
5852 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5853 * Except of course for the group_imb case, since then we might
5854 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5855 */
56cf515b
JK
5856 load_above_capacity =
5857 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5858
1399fa78 5859 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5860 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5861 }
5862
5863 /*
5864 * We're trying to get all the cpus to the average_load, so we don't
5865 * want to push ourselves above the average load, nor do we wish to
5866 * reduce the max loaded cpu below the average load. At the same time,
5867 * we also don't want to reduce the group load below the group capacity
5868 * (so that we can implement power-savings policies etc). Thus we look
5869 * for the minimum possible imbalance.
dd5feea1 5870 */
30ce5dab 5871 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5872
5873 /* How much load to actually move to equalise the imbalance */
56cf515b 5874 env->imbalance = min(
3ae11c90
PZ
5875 max_pull * busiest->group_power,
5876 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5877 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5878
5879 /*
5880 * if *imbalance is less than the average load per runnable task
25985edc 5881 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5882 * a think about bumping its value to force at least one task to be
5883 * moved
5884 */
56cf515b 5885 if (env->imbalance < busiest->load_per_task)
bd939f45 5886 return fix_small_imbalance(env, sds);
1e3c88bd 5887}
fab47622 5888
1e3c88bd
PZ
5889/******* find_busiest_group() helpers end here *********************/
5890
5891/**
5892 * find_busiest_group - Returns the busiest group within the sched_domain
5893 * if there is an imbalance. If there isn't an imbalance, and
5894 * the user has opted for power-savings, it returns a group whose
5895 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5896 * such a group exists.
5897 *
5898 * Also calculates the amount of weighted load which should be moved
5899 * to restore balance.
5900 *
cd96891d 5901 * @env: The load balancing environment.
1e3c88bd 5902 *
e69f6186 5903 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5904 * - If no imbalance and user has opted for power-savings balance,
5905 * return the least loaded group whose CPUs can be
5906 * put to idle by rebalancing its tasks onto our group.
5907 */
56cf515b 5908static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5909{
56cf515b 5910 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5911 struct sd_lb_stats sds;
5912
147c5fc2 5913 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5914
5915 /*
5916 * Compute the various statistics relavent for load balancing at
5917 * this level.
5918 */
23f0d209 5919 update_sd_lb_stats(env, &sds);
56cf515b
JK
5920 local = &sds.local_stat;
5921 busiest = &sds.busiest_stat;
1e3c88bd 5922
bd939f45
PZ
5923 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5924 check_asym_packing(env, &sds))
532cb4c4
MN
5925 return sds.busiest;
5926
cc57aa8f 5927 /* There is no busy sibling group to pull tasks from */
56cf515b 5928 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5929 goto out_balanced;
5930
1399fa78 5931 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5932
866ab43e
PZ
5933 /*
5934 * If the busiest group is imbalanced the below checks don't
30ce5dab 5935 * work because they assume all things are equal, which typically
866ab43e
PZ
5936 * isn't true due to cpus_allowed constraints and the like.
5937 */
56cf515b 5938 if (busiest->group_imb)
866ab43e
PZ
5939 goto force_balance;
5940
cc57aa8f 5941 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5942 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5943 !busiest->group_has_capacity)
fab47622
NR
5944 goto force_balance;
5945
cc57aa8f
PZ
5946 /*
5947 * If the local group is more busy than the selected busiest group
5948 * don't try and pull any tasks.
5949 */
56cf515b 5950 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5951 goto out_balanced;
5952
cc57aa8f
PZ
5953 /*
5954 * Don't pull any tasks if this group is already above the domain
5955 * average load.
5956 */
56cf515b 5957 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5958 goto out_balanced;
5959
bd939f45 5960 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5961 /*
5962 * This cpu is idle. If the busiest group load doesn't
5963 * have more tasks than the number of available cpu's and
5964 * there is no imbalance between this and busiest group
5965 * wrt to idle cpu's, it is balanced.
5966 */
56cf515b
JK
5967 if ((local->idle_cpus < busiest->idle_cpus) &&
5968 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5969 goto out_balanced;
c186fafe
PZ
5970 } else {
5971 /*
5972 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5973 * imbalance_pct to be conservative.
5974 */
56cf515b
JK
5975 if (100 * busiest->avg_load <=
5976 env->sd->imbalance_pct * local->avg_load)
c186fafe 5977 goto out_balanced;
aae6d3dd 5978 }
1e3c88bd 5979
fab47622 5980force_balance:
1e3c88bd 5981 /* Looks like there is an imbalance. Compute it */
bd939f45 5982 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5983 return sds.busiest;
5984
5985out_balanced:
bd939f45 5986 env->imbalance = 0;
1e3c88bd
PZ
5987 return NULL;
5988}
5989
5990/*
5991 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5992 */
bd939f45 5993static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5994 struct sched_group *group)
1e3c88bd
PZ
5995{
5996 struct rq *busiest = NULL, *rq;
95a79b80 5997 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5998 int i;
5999
6906a408 6000 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
6001 unsigned long power, capacity, wl;
6002 enum fbq_type rt;
6003
6004 rq = cpu_rq(i);
6005 rt = fbq_classify_rq(rq);
1e3c88bd 6006
0ec8aa00
PZ
6007 /*
6008 * We classify groups/runqueues into three groups:
6009 * - regular: there are !numa tasks
6010 * - remote: there are numa tasks that run on the 'wrong' node
6011 * - all: there is no distinction
6012 *
6013 * In order to avoid migrating ideally placed numa tasks,
6014 * ignore those when there's better options.
6015 *
6016 * If we ignore the actual busiest queue to migrate another
6017 * task, the next balance pass can still reduce the busiest
6018 * queue by moving tasks around inside the node.
6019 *
6020 * If we cannot move enough load due to this classification
6021 * the next pass will adjust the group classification and
6022 * allow migration of more tasks.
6023 *
6024 * Both cases only affect the total convergence complexity.
6025 */
6026 if (rt > env->fbq_type)
6027 continue;
6028
6029 power = power_of(i);
6030 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6031 if (!capacity)
bd939f45 6032 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6033
6e40f5bb 6034 wl = weighted_cpuload(i);
1e3c88bd 6035
6e40f5bb
TG
6036 /*
6037 * When comparing with imbalance, use weighted_cpuload()
6038 * which is not scaled with the cpu power.
6039 */
bd939f45 6040 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6041 continue;
6042
6e40f5bb
TG
6043 /*
6044 * For the load comparisons with the other cpu's, consider
6045 * the weighted_cpuload() scaled with the cpu power, so that
6046 * the load can be moved away from the cpu that is potentially
6047 * running at a lower capacity.
95a79b80
JK
6048 *
6049 * Thus we're looking for max(wl_i / power_i), crosswise
6050 * multiplication to rid ourselves of the division works out
6051 * to: wl_i * power_j > wl_j * power_i; where j is our
6052 * previous maximum.
6e40f5bb 6053 */
95a79b80
JK
6054 if (wl * busiest_power > busiest_load * power) {
6055 busiest_load = wl;
6056 busiest_power = power;
1e3c88bd
PZ
6057 busiest = rq;
6058 }
6059 }
6060
6061 return busiest;
6062}
6063
6064/*
6065 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6066 * so long as it is large enough.
6067 */
6068#define MAX_PINNED_INTERVAL 512
6069
6070/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6071DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6072
bd939f45 6073static int need_active_balance(struct lb_env *env)
1af3ed3d 6074{
bd939f45
PZ
6075 struct sched_domain *sd = env->sd;
6076
6077 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6078
6079 /*
6080 * ASYM_PACKING needs to force migrate tasks from busy but
6081 * higher numbered CPUs in order to pack all tasks in the
6082 * lowest numbered CPUs.
6083 */
bd939f45 6084 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6085 return 1;
1af3ed3d
PZ
6086 }
6087
6088 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6089}
6090
969c7921
TH
6091static int active_load_balance_cpu_stop(void *data);
6092
23f0d209
JK
6093static int should_we_balance(struct lb_env *env)
6094{
6095 struct sched_group *sg = env->sd->groups;
6096 struct cpumask *sg_cpus, *sg_mask;
6097 int cpu, balance_cpu = -1;
6098
6099 /*
6100 * In the newly idle case, we will allow all the cpu's
6101 * to do the newly idle load balance.
6102 */
6103 if (env->idle == CPU_NEWLY_IDLE)
6104 return 1;
6105
6106 sg_cpus = sched_group_cpus(sg);
6107 sg_mask = sched_group_mask(sg);
6108 /* Try to find first idle cpu */
6109 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6110 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6111 continue;
6112
6113 balance_cpu = cpu;
6114 break;
6115 }
6116
6117 if (balance_cpu == -1)
6118 balance_cpu = group_balance_cpu(sg);
6119
6120 /*
6121 * First idle cpu or the first cpu(busiest) in this sched group
6122 * is eligible for doing load balancing at this and above domains.
6123 */
b0cff9d8 6124 return balance_cpu == env->dst_cpu;
23f0d209
JK
6125}
6126
1e3c88bd
PZ
6127/*
6128 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6129 * tasks if there is an imbalance.
6130 */
6131static int load_balance(int this_cpu, struct rq *this_rq,
6132 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6133 int *continue_balancing)
1e3c88bd 6134{
88b8dac0 6135 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6136 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6137 struct sched_group *group;
1e3c88bd
PZ
6138 struct rq *busiest;
6139 unsigned long flags;
e6252c3e 6140 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6141
8e45cb54
PZ
6142 struct lb_env env = {
6143 .sd = sd,
ddcdf6e7
PZ
6144 .dst_cpu = this_cpu,
6145 .dst_rq = this_rq,
88b8dac0 6146 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6147 .idle = idle,
eb95308e 6148 .loop_break = sched_nr_migrate_break,
b9403130 6149 .cpus = cpus,
0ec8aa00 6150 .fbq_type = all,
8e45cb54
PZ
6151 };
6152
cfc03118
JK
6153 /*
6154 * For NEWLY_IDLE load_balancing, we don't need to consider
6155 * other cpus in our group
6156 */
e02e60c1 6157 if (idle == CPU_NEWLY_IDLE)
cfc03118 6158 env.dst_grpmask = NULL;
cfc03118 6159
1e3c88bd
PZ
6160 cpumask_copy(cpus, cpu_active_mask);
6161
1e3c88bd
PZ
6162 schedstat_inc(sd, lb_count[idle]);
6163
6164redo:
23f0d209
JK
6165 if (!should_we_balance(&env)) {
6166 *continue_balancing = 0;
1e3c88bd 6167 goto out_balanced;
23f0d209 6168 }
1e3c88bd 6169
23f0d209 6170 group = find_busiest_group(&env);
1e3c88bd
PZ
6171 if (!group) {
6172 schedstat_inc(sd, lb_nobusyg[idle]);
6173 goto out_balanced;
6174 }
6175
b9403130 6176 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6177 if (!busiest) {
6178 schedstat_inc(sd, lb_nobusyq[idle]);
6179 goto out_balanced;
6180 }
6181
78feefc5 6182 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6183
bd939f45 6184 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6185
6186 ld_moved = 0;
6187 if (busiest->nr_running > 1) {
6188 /*
6189 * Attempt to move tasks. If find_busiest_group has found
6190 * an imbalance but busiest->nr_running <= 1, the group is
6191 * still unbalanced. ld_moved simply stays zero, so it is
6192 * correctly treated as an imbalance.
6193 */
8e45cb54 6194 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6195 env.src_cpu = busiest->cpu;
6196 env.src_rq = busiest;
6197 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6198
5d6523eb 6199more_balance:
1e3c88bd 6200 local_irq_save(flags);
78feefc5 6201 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6202
6203 /*
6204 * cur_ld_moved - load moved in current iteration
6205 * ld_moved - cumulative load moved across iterations
6206 */
6207 cur_ld_moved = move_tasks(&env);
6208 ld_moved += cur_ld_moved;
78feefc5 6209 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6210 local_irq_restore(flags);
6211
6212 /*
6213 * some other cpu did the load balance for us.
6214 */
88b8dac0
SV
6215 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6216 resched_cpu(env.dst_cpu);
6217
f1cd0858
JK
6218 if (env.flags & LBF_NEED_BREAK) {
6219 env.flags &= ~LBF_NEED_BREAK;
6220 goto more_balance;
6221 }
6222
88b8dac0
SV
6223 /*
6224 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6225 * us and move them to an alternate dst_cpu in our sched_group
6226 * where they can run. The upper limit on how many times we
6227 * iterate on same src_cpu is dependent on number of cpus in our
6228 * sched_group.
6229 *
6230 * This changes load balance semantics a bit on who can move
6231 * load to a given_cpu. In addition to the given_cpu itself
6232 * (or a ilb_cpu acting on its behalf where given_cpu is
6233 * nohz-idle), we now have balance_cpu in a position to move
6234 * load to given_cpu. In rare situations, this may cause
6235 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6236 * _independently_ and at _same_ time to move some load to
6237 * given_cpu) causing exceess load to be moved to given_cpu.
6238 * This however should not happen so much in practice and
6239 * moreover subsequent load balance cycles should correct the
6240 * excess load moved.
6241 */
6263322c 6242 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6243
7aff2e3a
VD
6244 /* Prevent to re-select dst_cpu via env's cpus */
6245 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6246
78feefc5 6247 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6248 env.dst_cpu = env.new_dst_cpu;
6263322c 6249 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6250 env.loop = 0;
6251 env.loop_break = sched_nr_migrate_break;
e02e60c1 6252
88b8dac0
SV
6253 /*
6254 * Go back to "more_balance" rather than "redo" since we
6255 * need to continue with same src_cpu.
6256 */
6257 goto more_balance;
6258 }
1e3c88bd 6259
6263322c
PZ
6260 /*
6261 * We failed to reach balance because of affinity.
6262 */
6263 if (sd_parent) {
6264 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6265
6266 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6267 *group_imbalance = 1;
6268 } else if (*group_imbalance)
6269 *group_imbalance = 0;
6270 }
6271
1e3c88bd 6272 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6273 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6274 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6275 if (!cpumask_empty(cpus)) {
6276 env.loop = 0;
6277 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6278 goto redo;
bbf18b19 6279 }
1e3c88bd
PZ
6280 goto out_balanced;
6281 }
6282 }
6283
6284 if (!ld_moved) {
6285 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6286 /*
6287 * Increment the failure counter only on periodic balance.
6288 * We do not want newidle balance, which can be very
6289 * frequent, pollute the failure counter causing
6290 * excessive cache_hot migrations and active balances.
6291 */
6292 if (idle != CPU_NEWLY_IDLE)
6293 sd->nr_balance_failed++;
1e3c88bd 6294
bd939f45 6295 if (need_active_balance(&env)) {
1e3c88bd
PZ
6296 raw_spin_lock_irqsave(&busiest->lock, flags);
6297
969c7921
TH
6298 /* don't kick the active_load_balance_cpu_stop,
6299 * if the curr task on busiest cpu can't be
6300 * moved to this_cpu
1e3c88bd
PZ
6301 */
6302 if (!cpumask_test_cpu(this_cpu,
fa17b507 6303 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6304 raw_spin_unlock_irqrestore(&busiest->lock,
6305 flags);
8e45cb54 6306 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6307 goto out_one_pinned;
6308 }
6309
969c7921
TH
6310 /*
6311 * ->active_balance synchronizes accesses to
6312 * ->active_balance_work. Once set, it's cleared
6313 * only after active load balance is finished.
6314 */
1e3c88bd
PZ
6315 if (!busiest->active_balance) {
6316 busiest->active_balance = 1;
6317 busiest->push_cpu = this_cpu;
6318 active_balance = 1;
6319 }
6320 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6321
bd939f45 6322 if (active_balance) {
969c7921
TH
6323 stop_one_cpu_nowait(cpu_of(busiest),
6324 active_load_balance_cpu_stop, busiest,
6325 &busiest->active_balance_work);
bd939f45 6326 }
1e3c88bd
PZ
6327
6328 /*
6329 * We've kicked active balancing, reset the failure
6330 * counter.
6331 */
6332 sd->nr_balance_failed = sd->cache_nice_tries+1;
6333 }
6334 } else
6335 sd->nr_balance_failed = 0;
6336
6337 if (likely(!active_balance)) {
6338 /* We were unbalanced, so reset the balancing interval */
6339 sd->balance_interval = sd->min_interval;
6340 } else {
6341 /*
6342 * If we've begun active balancing, start to back off. This
6343 * case may not be covered by the all_pinned logic if there
6344 * is only 1 task on the busy runqueue (because we don't call
6345 * move_tasks).
6346 */
6347 if (sd->balance_interval < sd->max_interval)
6348 sd->balance_interval *= 2;
6349 }
6350
1e3c88bd
PZ
6351 goto out;
6352
6353out_balanced:
6354 schedstat_inc(sd, lb_balanced[idle]);
6355
6356 sd->nr_balance_failed = 0;
6357
6358out_one_pinned:
6359 /* tune up the balancing interval */
8e45cb54 6360 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6361 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6362 (sd->balance_interval < sd->max_interval))
6363 sd->balance_interval *= 2;
6364
46e49b38 6365 ld_moved = 0;
1e3c88bd 6366out:
1e3c88bd
PZ
6367 return ld_moved;
6368}
6369
1e3c88bd
PZ
6370/*
6371 * idle_balance is called by schedule() if this_cpu is about to become
6372 * idle. Attempts to pull tasks from other CPUs.
6373 */
029632fb 6374void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6375{
6376 struct sched_domain *sd;
6377 int pulled_task = 0;
6378 unsigned long next_balance = jiffies + HZ;
9bd721c5 6379 u64 curr_cost = 0;
1e3c88bd 6380
78becc27 6381 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6382
6383 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6384 return;
6385
f492e12e
PZ
6386 /*
6387 * Drop the rq->lock, but keep IRQ/preempt disabled.
6388 */
6389 raw_spin_unlock(&this_rq->lock);
6390
48a16753 6391 update_blocked_averages(this_cpu);
dce840a0 6392 rcu_read_lock();
1e3c88bd
PZ
6393 for_each_domain(this_cpu, sd) {
6394 unsigned long interval;
23f0d209 6395 int continue_balancing = 1;
9bd721c5 6396 u64 t0, domain_cost;
1e3c88bd
PZ
6397
6398 if (!(sd->flags & SD_LOAD_BALANCE))
6399 continue;
6400
9bd721c5
JL
6401 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6402 break;
6403
f492e12e 6404 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6405 t0 = sched_clock_cpu(this_cpu);
6406
1e3c88bd 6407 /* If we've pulled tasks over stop searching: */
f492e12e 6408 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6409 sd, CPU_NEWLY_IDLE,
6410 &continue_balancing);
9bd721c5
JL
6411
6412 domain_cost = sched_clock_cpu(this_cpu) - t0;
6413 if (domain_cost > sd->max_newidle_lb_cost)
6414 sd->max_newidle_lb_cost = domain_cost;
6415
6416 curr_cost += domain_cost;
f492e12e 6417 }
1e3c88bd
PZ
6418
6419 interval = msecs_to_jiffies(sd->balance_interval);
6420 if (time_after(next_balance, sd->last_balance + interval))
6421 next_balance = sd->last_balance + interval;
d5ad140b
NR
6422 if (pulled_task) {
6423 this_rq->idle_stamp = 0;
1e3c88bd 6424 break;
d5ad140b 6425 }
1e3c88bd 6426 }
dce840a0 6427 rcu_read_unlock();
f492e12e
PZ
6428
6429 raw_spin_lock(&this_rq->lock);
6430
1e3c88bd
PZ
6431 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6432 /*
6433 * We are going idle. next_balance may be set based on
6434 * a busy processor. So reset next_balance.
6435 */
6436 this_rq->next_balance = next_balance;
6437 }
9bd721c5
JL
6438
6439 if (curr_cost > this_rq->max_idle_balance_cost)
6440 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6441}
6442
6443/*
969c7921
TH
6444 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6445 * running tasks off the busiest CPU onto idle CPUs. It requires at
6446 * least 1 task to be running on each physical CPU where possible, and
6447 * avoids physical / logical imbalances.
1e3c88bd 6448 */
969c7921 6449static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6450{
969c7921
TH
6451 struct rq *busiest_rq = data;
6452 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6453 int target_cpu = busiest_rq->push_cpu;
969c7921 6454 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6455 struct sched_domain *sd;
969c7921
TH
6456
6457 raw_spin_lock_irq(&busiest_rq->lock);
6458
6459 /* make sure the requested cpu hasn't gone down in the meantime */
6460 if (unlikely(busiest_cpu != smp_processor_id() ||
6461 !busiest_rq->active_balance))
6462 goto out_unlock;
1e3c88bd
PZ
6463
6464 /* Is there any task to move? */
6465 if (busiest_rq->nr_running <= 1)
969c7921 6466 goto out_unlock;
1e3c88bd
PZ
6467
6468 /*
6469 * This condition is "impossible", if it occurs
6470 * we need to fix it. Originally reported by
6471 * Bjorn Helgaas on a 128-cpu setup.
6472 */
6473 BUG_ON(busiest_rq == target_rq);
6474
6475 /* move a task from busiest_rq to target_rq */
6476 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6477
6478 /* Search for an sd spanning us and the target CPU. */
dce840a0 6479 rcu_read_lock();
1e3c88bd
PZ
6480 for_each_domain(target_cpu, sd) {
6481 if ((sd->flags & SD_LOAD_BALANCE) &&
6482 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6483 break;
6484 }
6485
6486 if (likely(sd)) {
8e45cb54
PZ
6487 struct lb_env env = {
6488 .sd = sd,
ddcdf6e7
PZ
6489 .dst_cpu = target_cpu,
6490 .dst_rq = target_rq,
6491 .src_cpu = busiest_rq->cpu,
6492 .src_rq = busiest_rq,
8e45cb54
PZ
6493 .idle = CPU_IDLE,
6494 };
6495
1e3c88bd
PZ
6496 schedstat_inc(sd, alb_count);
6497
8e45cb54 6498 if (move_one_task(&env))
1e3c88bd
PZ
6499 schedstat_inc(sd, alb_pushed);
6500 else
6501 schedstat_inc(sd, alb_failed);
6502 }
dce840a0 6503 rcu_read_unlock();
1e3c88bd 6504 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6505out_unlock:
6506 busiest_rq->active_balance = 0;
6507 raw_spin_unlock_irq(&busiest_rq->lock);
6508 return 0;
1e3c88bd
PZ
6509}
6510
3451d024 6511#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6512/*
6513 * idle load balancing details
83cd4fe2
VP
6514 * - When one of the busy CPUs notice that there may be an idle rebalancing
6515 * needed, they will kick the idle load balancer, which then does idle
6516 * load balancing for all the idle CPUs.
6517 */
1e3c88bd 6518static struct {
83cd4fe2 6519 cpumask_var_t idle_cpus_mask;
0b005cf5 6520 atomic_t nr_cpus;
83cd4fe2
VP
6521 unsigned long next_balance; /* in jiffy units */
6522} nohz ____cacheline_aligned;
1e3c88bd 6523
8e7fbcbc 6524static inline int find_new_ilb(int call_cpu)
1e3c88bd 6525{
0b005cf5 6526 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6527
786d6dc7
SS
6528 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6529 return ilb;
6530
6531 return nr_cpu_ids;
1e3c88bd 6532}
1e3c88bd 6533
83cd4fe2
VP
6534/*
6535 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6536 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6537 * CPU (if there is one).
6538 */
6539static void nohz_balancer_kick(int cpu)
6540{
6541 int ilb_cpu;
6542
6543 nohz.next_balance++;
6544
0b005cf5 6545 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6546
0b005cf5
SS
6547 if (ilb_cpu >= nr_cpu_ids)
6548 return;
83cd4fe2 6549
cd490c5b 6550 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6551 return;
6552 /*
6553 * Use smp_send_reschedule() instead of resched_cpu().
6554 * This way we generate a sched IPI on the target cpu which
6555 * is idle. And the softirq performing nohz idle load balance
6556 * will be run before returning from the IPI.
6557 */
6558 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6559 return;
6560}
6561
c1cc017c 6562static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6563{
6564 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6565 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6566 atomic_dec(&nohz.nr_cpus);
6567 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6568 }
6569}
6570
69e1e811
SS
6571static inline void set_cpu_sd_state_busy(void)
6572{
6573 struct sched_domain *sd;
37dc6b50 6574 int cpu = smp_processor_id();
69e1e811 6575
69e1e811 6576 rcu_read_lock();
37dc6b50 6577 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6578
6579 if (!sd || !sd->nohz_idle)
6580 goto unlock;
6581 sd->nohz_idle = 0;
6582
37dc6b50 6583 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6584unlock:
69e1e811
SS
6585 rcu_read_unlock();
6586}
6587
6588void set_cpu_sd_state_idle(void)
6589{
6590 struct sched_domain *sd;
37dc6b50 6591 int cpu = smp_processor_id();
69e1e811 6592
69e1e811 6593 rcu_read_lock();
37dc6b50 6594 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6595
6596 if (!sd || sd->nohz_idle)
6597 goto unlock;
6598 sd->nohz_idle = 1;
6599
37dc6b50 6600 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6601unlock:
69e1e811
SS
6602 rcu_read_unlock();
6603}
6604
1e3c88bd 6605/*
c1cc017c 6606 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6607 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6608 */
c1cc017c 6609void nohz_balance_enter_idle(int cpu)
1e3c88bd 6610{
71325960
SS
6611 /*
6612 * If this cpu is going down, then nothing needs to be done.
6613 */
6614 if (!cpu_active(cpu))
6615 return;
6616
c1cc017c
AS
6617 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6618 return;
1e3c88bd 6619
c1cc017c
AS
6620 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6621 atomic_inc(&nohz.nr_cpus);
6622 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6623}
71325960 6624
0db0628d 6625static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6626 unsigned long action, void *hcpu)
6627{
6628 switch (action & ~CPU_TASKS_FROZEN) {
6629 case CPU_DYING:
c1cc017c 6630 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6631 return NOTIFY_OK;
6632 default:
6633 return NOTIFY_DONE;
6634 }
6635}
1e3c88bd
PZ
6636#endif
6637
6638static DEFINE_SPINLOCK(balancing);
6639
49c022e6
PZ
6640/*
6641 * Scale the max load_balance interval with the number of CPUs in the system.
6642 * This trades load-balance latency on larger machines for less cross talk.
6643 */
029632fb 6644void update_max_interval(void)
49c022e6
PZ
6645{
6646 max_load_balance_interval = HZ*num_online_cpus()/10;
6647}
6648
1e3c88bd
PZ
6649/*
6650 * It checks each scheduling domain to see if it is due to be balanced,
6651 * and initiates a balancing operation if so.
6652 *
b9b0853a 6653 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6654 */
6655static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6656{
23f0d209 6657 int continue_balancing = 1;
1e3c88bd
PZ
6658 struct rq *rq = cpu_rq(cpu);
6659 unsigned long interval;
04f733b4 6660 struct sched_domain *sd;
1e3c88bd
PZ
6661 /* Earliest time when we have to do rebalance again */
6662 unsigned long next_balance = jiffies + 60*HZ;
6663 int update_next_balance = 0;
f48627e6
JL
6664 int need_serialize, need_decay = 0;
6665 u64 max_cost = 0;
1e3c88bd 6666
48a16753 6667 update_blocked_averages(cpu);
2069dd75 6668
dce840a0 6669 rcu_read_lock();
1e3c88bd 6670 for_each_domain(cpu, sd) {
f48627e6
JL
6671 /*
6672 * Decay the newidle max times here because this is a regular
6673 * visit to all the domains. Decay ~1% per second.
6674 */
6675 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6676 sd->max_newidle_lb_cost =
6677 (sd->max_newidle_lb_cost * 253) / 256;
6678 sd->next_decay_max_lb_cost = jiffies + HZ;
6679 need_decay = 1;
6680 }
6681 max_cost += sd->max_newidle_lb_cost;
6682
1e3c88bd
PZ
6683 if (!(sd->flags & SD_LOAD_BALANCE))
6684 continue;
6685
f48627e6
JL
6686 /*
6687 * Stop the load balance at this level. There is another
6688 * CPU in our sched group which is doing load balancing more
6689 * actively.
6690 */
6691 if (!continue_balancing) {
6692 if (need_decay)
6693 continue;
6694 break;
6695 }
6696
1e3c88bd
PZ
6697 interval = sd->balance_interval;
6698 if (idle != CPU_IDLE)
6699 interval *= sd->busy_factor;
6700
6701 /* scale ms to jiffies */
6702 interval = msecs_to_jiffies(interval);
49c022e6 6703 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6704
6705 need_serialize = sd->flags & SD_SERIALIZE;
6706
6707 if (need_serialize) {
6708 if (!spin_trylock(&balancing))
6709 goto out;
6710 }
6711
6712 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6713 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6714 /*
6263322c 6715 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6716 * env->dst_cpu, so we can't know our idle
6717 * state even if we migrated tasks. Update it.
1e3c88bd 6718 */
de5eb2dd 6719 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6720 }
6721 sd->last_balance = jiffies;
6722 }
6723 if (need_serialize)
6724 spin_unlock(&balancing);
6725out:
6726 if (time_after(next_balance, sd->last_balance + interval)) {
6727 next_balance = sd->last_balance + interval;
6728 update_next_balance = 1;
6729 }
f48627e6
JL
6730 }
6731 if (need_decay) {
1e3c88bd 6732 /*
f48627e6
JL
6733 * Ensure the rq-wide value also decays but keep it at a
6734 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6735 */
f48627e6
JL
6736 rq->max_idle_balance_cost =
6737 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6738 }
dce840a0 6739 rcu_read_unlock();
1e3c88bd
PZ
6740
6741 /*
6742 * next_balance will be updated only when there is a need.
6743 * When the cpu is attached to null domain for ex, it will not be
6744 * updated.
6745 */
6746 if (likely(update_next_balance))
6747 rq->next_balance = next_balance;
6748}
6749
3451d024 6750#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6751/*
3451d024 6752 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6753 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6754 */
83cd4fe2
VP
6755static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6756{
6757 struct rq *this_rq = cpu_rq(this_cpu);
6758 struct rq *rq;
6759 int balance_cpu;
6760
1c792db7
SS
6761 if (idle != CPU_IDLE ||
6762 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6763 goto end;
83cd4fe2
VP
6764
6765 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6766 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6767 continue;
6768
6769 /*
6770 * If this cpu gets work to do, stop the load balancing
6771 * work being done for other cpus. Next load
6772 * balancing owner will pick it up.
6773 */
1c792db7 6774 if (need_resched())
83cd4fe2 6775 break;
83cd4fe2 6776
5ed4f1d9
VG
6777 rq = cpu_rq(balance_cpu);
6778
6779 raw_spin_lock_irq(&rq->lock);
6780 update_rq_clock(rq);
6781 update_idle_cpu_load(rq);
6782 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6783
6784 rebalance_domains(balance_cpu, CPU_IDLE);
6785
83cd4fe2
VP
6786 if (time_after(this_rq->next_balance, rq->next_balance))
6787 this_rq->next_balance = rq->next_balance;
6788 }
6789 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6790end:
6791 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6792}
6793
6794/*
0b005cf5
SS
6795 * Current heuristic for kicking the idle load balancer in the presence
6796 * of an idle cpu is the system.
6797 * - This rq has more than one task.
6798 * - At any scheduler domain level, this cpu's scheduler group has multiple
6799 * busy cpu's exceeding the group's power.
6800 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6801 * domain span are idle.
83cd4fe2
VP
6802 */
6803static inline int nohz_kick_needed(struct rq *rq, int cpu)
6804{
6805 unsigned long now = jiffies;
0b005cf5 6806 struct sched_domain *sd;
37dc6b50
PM
6807 struct sched_group_power *sgp;
6808 int nr_busy;
83cd4fe2 6809
1c792db7 6810 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6811 return 0;
6812
1c792db7
SS
6813 /*
6814 * We may be recently in ticked or tickless idle mode. At the first
6815 * busy tick after returning from idle, we will update the busy stats.
6816 */
69e1e811 6817 set_cpu_sd_state_busy();
c1cc017c 6818 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6819
6820 /*
6821 * None are in tickless mode and hence no need for NOHZ idle load
6822 * balancing.
6823 */
6824 if (likely(!atomic_read(&nohz.nr_cpus)))
6825 return 0;
1c792db7
SS
6826
6827 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6828 return 0;
6829
0b005cf5
SS
6830 if (rq->nr_running >= 2)
6831 goto need_kick;
83cd4fe2 6832
067491b7 6833 rcu_read_lock();
37dc6b50 6834 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 6835
37dc6b50
PM
6836 if (sd) {
6837 sgp = sd->groups->sgp;
6838 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 6839
37dc6b50 6840 if (nr_busy > 1)
067491b7 6841 goto need_kick_unlock;
83cd4fe2 6842 }
37dc6b50
PM
6843
6844 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6845
6846 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6847 sched_domain_span(sd)) < cpu))
6848 goto need_kick_unlock;
6849
067491b7 6850 rcu_read_unlock();
83cd4fe2 6851 return 0;
067491b7
PZ
6852
6853need_kick_unlock:
6854 rcu_read_unlock();
0b005cf5
SS
6855need_kick:
6856 return 1;
83cd4fe2
VP
6857}
6858#else
6859static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6860#endif
6861
6862/*
6863 * run_rebalance_domains is triggered when needed from the scheduler tick.
6864 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6865 */
1e3c88bd
PZ
6866static void run_rebalance_domains(struct softirq_action *h)
6867{
6868 int this_cpu = smp_processor_id();
6869 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6870 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6871 CPU_IDLE : CPU_NOT_IDLE;
6872
6873 rebalance_domains(this_cpu, idle);
6874
1e3c88bd 6875 /*
83cd4fe2 6876 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6877 * balancing on behalf of the other idle cpus whose ticks are
6878 * stopped.
6879 */
83cd4fe2 6880 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6881}
6882
6883static inline int on_null_domain(int cpu)
6884{
90a6501f 6885 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6886}
6887
6888/*
6889 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6890 */
029632fb 6891void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6892{
1e3c88bd
PZ
6893 /* Don't need to rebalance while attached to NULL domain */
6894 if (time_after_eq(jiffies, rq->next_balance) &&
6895 likely(!on_null_domain(cpu)))
6896 raise_softirq(SCHED_SOFTIRQ);
3451d024 6897#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6898 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6899 nohz_balancer_kick(cpu);
6900#endif
1e3c88bd
PZ
6901}
6902
0bcdcf28
CE
6903static void rq_online_fair(struct rq *rq)
6904{
6905 update_sysctl();
6906}
6907
6908static void rq_offline_fair(struct rq *rq)
6909{
6910 update_sysctl();
a4c96ae3
PB
6911
6912 /* Ensure any throttled groups are reachable by pick_next_task */
6913 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6914}
6915
55e12e5e 6916#endif /* CONFIG_SMP */
e1d1484f 6917
bf0f6f24
IM
6918/*
6919 * scheduler tick hitting a task of our scheduling class:
6920 */
8f4d37ec 6921static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6922{
6923 struct cfs_rq *cfs_rq;
6924 struct sched_entity *se = &curr->se;
6925
6926 for_each_sched_entity(se) {
6927 cfs_rq = cfs_rq_of(se);
8f4d37ec 6928 entity_tick(cfs_rq, se, queued);
bf0f6f24 6929 }
18bf2805 6930
10e84b97 6931 if (numabalancing_enabled)
cbee9f88 6932 task_tick_numa(rq, curr);
3d59eebc 6933
18bf2805 6934 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6935}
6936
6937/*
cd29fe6f
PZ
6938 * called on fork with the child task as argument from the parent's context
6939 * - child not yet on the tasklist
6940 * - preemption disabled
bf0f6f24 6941 */
cd29fe6f 6942static void task_fork_fair(struct task_struct *p)
bf0f6f24 6943{
4fc420c9
DN
6944 struct cfs_rq *cfs_rq;
6945 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6946 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6947 struct rq *rq = this_rq();
6948 unsigned long flags;
6949
05fa785c 6950 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6951
861d034e
PZ
6952 update_rq_clock(rq);
6953
4fc420c9
DN
6954 cfs_rq = task_cfs_rq(current);
6955 curr = cfs_rq->curr;
6956
6c9a27f5
DN
6957 /*
6958 * Not only the cpu but also the task_group of the parent might have
6959 * been changed after parent->se.parent,cfs_rq were copied to
6960 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6961 * of child point to valid ones.
6962 */
6963 rcu_read_lock();
6964 __set_task_cpu(p, this_cpu);
6965 rcu_read_unlock();
bf0f6f24 6966
7109c442 6967 update_curr(cfs_rq);
cd29fe6f 6968
b5d9d734
MG
6969 if (curr)
6970 se->vruntime = curr->vruntime;
aeb73b04 6971 place_entity(cfs_rq, se, 1);
4d78e7b6 6972
cd29fe6f 6973 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6974 /*
edcb60a3
IM
6975 * Upon rescheduling, sched_class::put_prev_task() will place
6976 * 'current' within the tree based on its new key value.
6977 */
4d78e7b6 6978 swap(curr->vruntime, se->vruntime);
aec0a514 6979 resched_task(rq->curr);
4d78e7b6 6980 }
bf0f6f24 6981
88ec22d3
PZ
6982 se->vruntime -= cfs_rq->min_vruntime;
6983
05fa785c 6984 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6985}
6986
cb469845
SR
6987/*
6988 * Priority of the task has changed. Check to see if we preempt
6989 * the current task.
6990 */
da7a735e
PZ
6991static void
6992prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6993{
da7a735e
PZ
6994 if (!p->se.on_rq)
6995 return;
6996
cb469845
SR
6997 /*
6998 * Reschedule if we are currently running on this runqueue and
6999 * our priority decreased, or if we are not currently running on
7000 * this runqueue and our priority is higher than the current's
7001 */
da7a735e 7002 if (rq->curr == p) {
cb469845
SR
7003 if (p->prio > oldprio)
7004 resched_task(rq->curr);
7005 } else
15afe09b 7006 check_preempt_curr(rq, p, 0);
cb469845
SR
7007}
7008
da7a735e
PZ
7009static void switched_from_fair(struct rq *rq, struct task_struct *p)
7010{
7011 struct sched_entity *se = &p->se;
7012 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7013
7014 /*
7015 * Ensure the task's vruntime is normalized, so that when its
7016 * switched back to the fair class the enqueue_entity(.flags=0) will
7017 * do the right thing.
7018 *
7019 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7020 * have normalized the vruntime, if it was !on_rq, then only when
7021 * the task is sleeping will it still have non-normalized vruntime.
7022 */
7023 if (!se->on_rq && p->state != TASK_RUNNING) {
7024 /*
7025 * Fix up our vruntime so that the current sleep doesn't
7026 * cause 'unlimited' sleep bonus.
7027 */
7028 place_entity(cfs_rq, se, 0);
7029 se->vruntime -= cfs_rq->min_vruntime;
7030 }
9ee474f5 7031
141965c7 7032#ifdef CONFIG_SMP
9ee474f5
PT
7033 /*
7034 * Remove our load from contribution when we leave sched_fair
7035 * and ensure we don't carry in an old decay_count if we
7036 * switch back.
7037 */
87e3c8ae
KT
7038 if (se->avg.decay_count) {
7039 __synchronize_entity_decay(se);
7040 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7041 }
7042#endif
da7a735e
PZ
7043}
7044
cb469845
SR
7045/*
7046 * We switched to the sched_fair class.
7047 */
da7a735e 7048static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7049{
da7a735e
PZ
7050 if (!p->se.on_rq)
7051 return;
7052
cb469845
SR
7053 /*
7054 * We were most likely switched from sched_rt, so
7055 * kick off the schedule if running, otherwise just see
7056 * if we can still preempt the current task.
7057 */
da7a735e 7058 if (rq->curr == p)
cb469845
SR
7059 resched_task(rq->curr);
7060 else
15afe09b 7061 check_preempt_curr(rq, p, 0);
cb469845
SR
7062}
7063
83b699ed
SV
7064/* Account for a task changing its policy or group.
7065 *
7066 * This routine is mostly called to set cfs_rq->curr field when a task
7067 * migrates between groups/classes.
7068 */
7069static void set_curr_task_fair(struct rq *rq)
7070{
7071 struct sched_entity *se = &rq->curr->se;
7072
ec12cb7f
PT
7073 for_each_sched_entity(se) {
7074 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7075
7076 set_next_entity(cfs_rq, se);
7077 /* ensure bandwidth has been allocated on our new cfs_rq */
7078 account_cfs_rq_runtime(cfs_rq, 0);
7079 }
83b699ed
SV
7080}
7081
029632fb
PZ
7082void init_cfs_rq(struct cfs_rq *cfs_rq)
7083{
7084 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7085 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7086#ifndef CONFIG_64BIT
7087 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7088#endif
141965c7 7089#ifdef CONFIG_SMP
9ee474f5 7090 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7091 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7092#endif
029632fb
PZ
7093}
7094
810b3817 7095#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7096static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7097{
aff3e498 7098 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7099 /*
7100 * If the task was not on the rq at the time of this cgroup movement
7101 * it must have been asleep, sleeping tasks keep their ->vruntime
7102 * absolute on their old rq until wakeup (needed for the fair sleeper
7103 * bonus in place_entity()).
7104 *
7105 * If it was on the rq, we've just 'preempted' it, which does convert
7106 * ->vruntime to a relative base.
7107 *
7108 * Make sure both cases convert their relative position when migrating
7109 * to another cgroup's rq. This does somewhat interfere with the
7110 * fair sleeper stuff for the first placement, but who cares.
7111 */
7ceff013
DN
7112 /*
7113 * When !on_rq, vruntime of the task has usually NOT been normalized.
7114 * But there are some cases where it has already been normalized:
7115 *
7116 * - Moving a forked child which is waiting for being woken up by
7117 * wake_up_new_task().
62af3783
DN
7118 * - Moving a task which has been woken up by try_to_wake_up() and
7119 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7120 *
7121 * To prevent boost or penalty in the new cfs_rq caused by delta
7122 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7123 */
62af3783 7124 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7125 on_rq = 1;
7126
b2b5ce02
PZ
7127 if (!on_rq)
7128 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7129 set_task_rq(p, task_cpu(p));
aff3e498
PT
7130 if (!on_rq) {
7131 cfs_rq = cfs_rq_of(&p->se);
7132 p->se.vruntime += cfs_rq->min_vruntime;
7133#ifdef CONFIG_SMP
7134 /*
7135 * migrate_task_rq_fair() will have removed our previous
7136 * contribution, but we must synchronize for ongoing future
7137 * decay.
7138 */
7139 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7140 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7141#endif
7142 }
810b3817 7143}
029632fb
PZ
7144
7145void free_fair_sched_group(struct task_group *tg)
7146{
7147 int i;
7148
7149 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7150
7151 for_each_possible_cpu(i) {
7152 if (tg->cfs_rq)
7153 kfree(tg->cfs_rq[i]);
7154 if (tg->se)
7155 kfree(tg->se[i]);
7156 }
7157
7158 kfree(tg->cfs_rq);
7159 kfree(tg->se);
7160}
7161
7162int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7163{
7164 struct cfs_rq *cfs_rq;
7165 struct sched_entity *se;
7166 int i;
7167
7168 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7169 if (!tg->cfs_rq)
7170 goto err;
7171 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7172 if (!tg->se)
7173 goto err;
7174
7175 tg->shares = NICE_0_LOAD;
7176
7177 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7178
7179 for_each_possible_cpu(i) {
7180 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7181 GFP_KERNEL, cpu_to_node(i));
7182 if (!cfs_rq)
7183 goto err;
7184
7185 se = kzalloc_node(sizeof(struct sched_entity),
7186 GFP_KERNEL, cpu_to_node(i));
7187 if (!se)
7188 goto err_free_rq;
7189
7190 init_cfs_rq(cfs_rq);
7191 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7192 }
7193
7194 return 1;
7195
7196err_free_rq:
7197 kfree(cfs_rq);
7198err:
7199 return 0;
7200}
7201
7202void unregister_fair_sched_group(struct task_group *tg, int cpu)
7203{
7204 struct rq *rq = cpu_rq(cpu);
7205 unsigned long flags;
7206
7207 /*
7208 * Only empty task groups can be destroyed; so we can speculatively
7209 * check on_list without danger of it being re-added.
7210 */
7211 if (!tg->cfs_rq[cpu]->on_list)
7212 return;
7213
7214 raw_spin_lock_irqsave(&rq->lock, flags);
7215 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7216 raw_spin_unlock_irqrestore(&rq->lock, flags);
7217}
7218
7219void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7220 struct sched_entity *se, int cpu,
7221 struct sched_entity *parent)
7222{
7223 struct rq *rq = cpu_rq(cpu);
7224
7225 cfs_rq->tg = tg;
7226 cfs_rq->rq = rq;
029632fb
PZ
7227 init_cfs_rq_runtime(cfs_rq);
7228
7229 tg->cfs_rq[cpu] = cfs_rq;
7230 tg->se[cpu] = se;
7231
7232 /* se could be NULL for root_task_group */
7233 if (!se)
7234 return;
7235
7236 if (!parent)
7237 se->cfs_rq = &rq->cfs;
7238 else
7239 se->cfs_rq = parent->my_q;
7240
7241 se->my_q = cfs_rq;
0ac9b1c2
PT
7242 /* guarantee group entities always have weight */
7243 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7244 se->parent = parent;
7245}
7246
7247static DEFINE_MUTEX(shares_mutex);
7248
7249int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7250{
7251 int i;
7252 unsigned long flags;
7253
7254 /*
7255 * We can't change the weight of the root cgroup.
7256 */
7257 if (!tg->se[0])
7258 return -EINVAL;
7259
7260 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7261
7262 mutex_lock(&shares_mutex);
7263 if (tg->shares == shares)
7264 goto done;
7265
7266 tg->shares = shares;
7267 for_each_possible_cpu(i) {
7268 struct rq *rq = cpu_rq(i);
7269 struct sched_entity *se;
7270
7271 se = tg->se[i];
7272 /* Propagate contribution to hierarchy */
7273 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7274
7275 /* Possible calls to update_curr() need rq clock */
7276 update_rq_clock(rq);
17bc14b7 7277 for_each_sched_entity(se)
029632fb
PZ
7278 update_cfs_shares(group_cfs_rq(se));
7279 raw_spin_unlock_irqrestore(&rq->lock, flags);
7280 }
7281
7282done:
7283 mutex_unlock(&shares_mutex);
7284 return 0;
7285}
7286#else /* CONFIG_FAIR_GROUP_SCHED */
7287
7288void free_fair_sched_group(struct task_group *tg) { }
7289
7290int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7291{
7292 return 1;
7293}
7294
7295void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7296
7297#endif /* CONFIG_FAIR_GROUP_SCHED */
7298
810b3817 7299
6d686f45 7300static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7301{
7302 struct sched_entity *se = &task->se;
0d721cea
PW
7303 unsigned int rr_interval = 0;
7304
7305 /*
7306 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7307 * idle runqueue:
7308 */
0d721cea 7309 if (rq->cfs.load.weight)
a59f4e07 7310 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7311
7312 return rr_interval;
7313}
7314
bf0f6f24
IM
7315/*
7316 * All the scheduling class methods:
7317 */
029632fb 7318const struct sched_class fair_sched_class = {
5522d5d5 7319 .next = &idle_sched_class,
bf0f6f24
IM
7320 .enqueue_task = enqueue_task_fair,
7321 .dequeue_task = dequeue_task_fair,
7322 .yield_task = yield_task_fair,
d95f4122 7323 .yield_to_task = yield_to_task_fair,
bf0f6f24 7324
2e09bf55 7325 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7326
7327 .pick_next_task = pick_next_task_fair,
7328 .put_prev_task = put_prev_task_fair,
7329
681f3e68 7330#ifdef CONFIG_SMP
4ce72a2c 7331 .select_task_rq = select_task_rq_fair,
0a74bef8 7332 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7333
0bcdcf28
CE
7334 .rq_online = rq_online_fair,
7335 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7336
7337 .task_waking = task_waking_fair,
681f3e68 7338#endif
bf0f6f24 7339
83b699ed 7340 .set_curr_task = set_curr_task_fair,
bf0f6f24 7341 .task_tick = task_tick_fair,
cd29fe6f 7342 .task_fork = task_fork_fair,
cb469845
SR
7343
7344 .prio_changed = prio_changed_fair,
da7a735e 7345 .switched_from = switched_from_fair,
cb469845 7346 .switched_to = switched_to_fair,
810b3817 7347
0d721cea
PW
7348 .get_rr_interval = get_rr_interval_fair,
7349
810b3817 7350#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7351 .task_move_group = task_move_group_fair,
810b3817 7352#endif
bf0f6f24
IM
7353};
7354
7355#ifdef CONFIG_SCHED_DEBUG
029632fb 7356void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7357{
bf0f6f24
IM
7358 struct cfs_rq *cfs_rq;
7359
5973e5b9 7360 rcu_read_lock();
c3b64f1e 7361 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7362 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7363 rcu_read_unlock();
bf0f6f24
IM
7364}
7365#endif
029632fb
PZ
7366
7367__init void init_sched_fair_class(void)
7368{
7369#ifdef CONFIG_SMP
7370 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7371
3451d024 7372#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7373 nohz.next_balance = jiffies;
029632fb 7374 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7375 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7376#endif
7377#endif /* SMP */
7378
7379}