sched/numa: Use {cpu, pid} to create task groups for shared faults
[linux-block.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9 683#ifdef CONFIG_SMP
fb13c7ee
MG
684static unsigned long task_h_load(struct task_struct *p);
685
a75cdaa9
AS
686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
bf0f6f24
IM
705/*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
8ebc91d9
IM
710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
bf0f6f24 712{
bbdba7c0 713 unsigned long delta_exec_weighted;
bf0f6f24 714
41acab88
LDM
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
717
718 curr->sum_exec_runtime += delta_exec;
7a62eabc 719 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 721
e9acbff6 722 curr->vruntime += delta_exec_weighted;
1af5f730 723 update_min_vruntime(cfs_rq);
bf0f6f24
IM
724}
725
b7cc0896 726static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 727{
429d43bc 728 struct sched_entity *curr = cfs_rq->curr;
78becc27 729 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
8ebc91d9 740 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
741 if (!delta_exec)
742 return;
bf0f6f24 743
8ebc91d9
IM
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
d842de87
SV
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
f977bb49 750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 751 cpuacct_charge(curtask, delta_exec);
f06febc9 752 account_group_exec_runtime(curtask, delta_exec);
d842de87 753 }
ec12cb7f
PT
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
756}
757
758static inline void
5870db5b 759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 760{
78becc27 761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
762}
763
bf0f6f24
IM
764/*
765 * Task is being enqueued - update stats:
766 */
d2417e5a 767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 768{
bf0f6f24
IM
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
429d43bc 773 if (se != cfs_rq->curr)
5870db5b 774 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
775}
776
bf0f6f24 777static void
9ef0a961 778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
41acab88 780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
78becc27 788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
789 }
790#endif
41acab88 791 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
792}
793
794static inline void
19b6a2e3 795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 796{
bf0f6f24
IM
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
429d43bc 801 if (se != cfs_rq->curr)
9ef0a961 802 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
79303e9e 809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
810{
811 /*
812 * We are starting a new run period:
813 */
78becc27 814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
815}
816
bf0f6f24
IM
817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
cbee9f88
PZ
821#ifdef CONFIG_NUMA_BALANCING
822/*
598f0ec0
MG
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
cbee9f88 826 */
598f0ec0
MG
827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
6e5fb223
PZ
830
831/* Portion of address space to scan in MB */
832unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 833
4b96a29b
PZ
834/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
598f0ec0
MG
837static unsigned int task_nr_scan_windows(struct task_struct *p)
838{
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854}
855
856/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857#define MAX_SCAN_WINDOW 2560
858
859static unsigned int task_scan_min(struct task_struct *p)
860{
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870}
871
872static unsigned int task_scan_max(struct task_struct *p)
873{
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880}
881
3a7053b3
MG
882/*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
6fe6b2d6 889unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 890
8c8a743c
PZ
891struct numa_group {
892 atomic_t refcount;
893
894 spinlock_t lock; /* nr_tasks, tasks */
895 int nr_tasks;
896 struct list_head task_list;
897
898 struct rcu_head rcu;
899 atomic_long_t faults[0];
900};
901
ac8e895b
MG
902static inline int task_faults_idx(int nid, int priv)
903{
904 return 2 * nid + priv;
905}
906
907static inline unsigned long task_faults(struct task_struct *p, int nid)
908{
909 if (!p->numa_faults)
910 return 0;
911
912 return p->numa_faults[task_faults_idx(nid, 0)] +
913 p->numa_faults[task_faults_idx(nid, 1)];
914}
915
e6628d5b 916static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
917static unsigned long source_load(int cpu, int type);
918static unsigned long target_load(int cpu, int type);
919static unsigned long power_of(int cpu);
920static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
921
fb13c7ee 922/* Cached statistics for all CPUs within a node */
58d081b5 923struct numa_stats {
fb13c7ee 924 unsigned long nr_running;
58d081b5 925 unsigned long load;
fb13c7ee
MG
926
927 /* Total compute capacity of CPUs on a node */
928 unsigned long power;
929
930 /* Approximate capacity in terms of runnable tasks on a node */
931 unsigned long capacity;
932 int has_capacity;
58d081b5 933};
e6628d5b 934
fb13c7ee
MG
935/*
936 * XXX borrowed from update_sg_lb_stats
937 */
938static void update_numa_stats(struct numa_stats *ns, int nid)
939{
940 int cpu;
941
942 memset(ns, 0, sizeof(*ns));
943 for_each_cpu(cpu, cpumask_of_node(nid)) {
944 struct rq *rq = cpu_rq(cpu);
945
946 ns->nr_running += rq->nr_running;
947 ns->load += weighted_cpuload(cpu);
948 ns->power += power_of(cpu);
949 }
950
951 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
952 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
953 ns->has_capacity = (ns->nr_running < ns->capacity);
954}
955
58d081b5
MG
956struct task_numa_env {
957 struct task_struct *p;
e6628d5b 958
58d081b5
MG
959 int src_cpu, src_nid;
960 int dst_cpu, dst_nid;
e6628d5b 961
58d081b5 962 struct numa_stats src_stats, dst_stats;
e6628d5b 963
fb13c7ee
MG
964 int imbalance_pct, idx;
965
966 struct task_struct *best_task;
967 long best_imp;
58d081b5
MG
968 int best_cpu;
969};
970
fb13c7ee
MG
971static void task_numa_assign(struct task_numa_env *env,
972 struct task_struct *p, long imp)
973{
974 if (env->best_task)
975 put_task_struct(env->best_task);
976 if (p)
977 get_task_struct(p);
978
979 env->best_task = p;
980 env->best_imp = imp;
981 env->best_cpu = env->dst_cpu;
982}
983
984/*
985 * This checks if the overall compute and NUMA accesses of the system would
986 * be improved if the source tasks was migrated to the target dst_cpu taking
987 * into account that it might be best if task running on the dst_cpu should
988 * be exchanged with the source task
989 */
990static void task_numa_compare(struct task_numa_env *env, long imp)
991{
992 struct rq *src_rq = cpu_rq(env->src_cpu);
993 struct rq *dst_rq = cpu_rq(env->dst_cpu);
994 struct task_struct *cur;
995 long dst_load, src_load;
996 long load;
997
998 rcu_read_lock();
999 cur = ACCESS_ONCE(dst_rq->curr);
1000 if (cur->pid == 0) /* idle */
1001 cur = NULL;
1002
1003 /*
1004 * "imp" is the fault differential for the source task between the
1005 * source and destination node. Calculate the total differential for
1006 * the source task and potential destination task. The more negative
1007 * the value is, the more rmeote accesses that would be expected to
1008 * be incurred if the tasks were swapped.
1009 */
1010 if (cur) {
1011 /* Skip this swap candidate if cannot move to the source cpu */
1012 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1013 goto unlock;
1014
1015 imp += task_faults(cur, env->src_nid) -
1016 task_faults(cur, env->dst_nid);
1017 }
1018
1019 if (imp < env->best_imp)
1020 goto unlock;
1021
1022 if (!cur) {
1023 /* Is there capacity at our destination? */
1024 if (env->src_stats.has_capacity &&
1025 !env->dst_stats.has_capacity)
1026 goto unlock;
1027
1028 goto balance;
1029 }
1030
1031 /* Balance doesn't matter much if we're running a task per cpu */
1032 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1033 goto assign;
1034
1035 /*
1036 * In the overloaded case, try and keep the load balanced.
1037 */
1038balance:
1039 dst_load = env->dst_stats.load;
1040 src_load = env->src_stats.load;
1041
1042 /* XXX missing power terms */
1043 load = task_h_load(env->p);
1044 dst_load += load;
1045 src_load -= load;
1046
1047 if (cur) {
1048 load = task_h_load(cur);
1049 dst_load -= load;
1050 src_load += load;
1051 }
1052
1053 /* make src_load the smaller */
1054 if (dst_load < src_load)
1055 swap(dst_load, src_load);
1056
1057 if (src_load * env->imbalance_pct < dst_load * 100)
1058 goto unlock;
1059
1060assign:
1061 task_numa_assign(env, cur, imp);
1062unlock:
1063 rcu_read_unlock();
1064}
1065
2c8a50aa
MG
1066static void task_numa_find_cpu(struct task_numa_env *env, long imp)
1067{
1068 int cpu;
1069
1070 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1071 /* Skip this CPU if the source task cannot migrate */
1072 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1073 continue;
1074
1075 env->dst_cpu = cpu;
1076 task_numa_compare(env, imp);
1077 }
1078}
1079
58d081b5
MG
1080static int task_numa_migrate(struct task_struct *p)
1081{
58d081b5
MG
1082 struct task_numa_env env = {
1083 .p = p,
fb13c7ee 1084
58d081b5
MG
1085 .src_cpu = task_cpu(p),
1086 .src_nid = cpu_to_node(task_cpu(p)),
fb13c7ee
MG
1087
1088 .imbalance_pct = 112,
1089
1090 .best_task = NULL,
1091 .best_imp = 0,
1092 .best_cpu = -1
58d081b5
MG
1093 };
1094 struct sched_domain *sd;
fb13c7ee 1095 unsigned long faults;
2c8a50aa
MG
1096 int nid, ret;
1097 long imp;
e6628d5b 1098
58d081b5 1099 /*
fb13c7ee
MG
1100 * Pick the lowest SD_NUMA domain, as that would have the smallest
1101 * imbalance and would be the first to start moving tasks about.
1102 *
1103 * And we want to avoid any moving of tasks about, as that would create
1104 * random movement of tasks -- counter the numa conditions we're trying
1105 * to satisfy here.
58d081b5
MG
1106 */
1107 rcu_read_lock();
fb13c7ee
MG
1108 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1109 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1110 rcu_read_unlock();
1111
fb13c7ee
MG
1112 faults = task_faults(p, env.src_nid);
1113 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa
MG
1114 env.dst_nid = p->numa_preferred_nid;
1115 imp = task_faults(env.p, env.dst_nid) - faults;
1116 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1117
e1dda8a7
RR
1118 /* If the preferred nid has capacity, try to use it. */
1119 if (env.dst_stats.has_capacity)
2c8a50aa 1120 task_numa_find_cpu(&env, imp);
e1dda8a7
RR
1121
1122 /* No space available on the preferred nid. Look elsewhere. */
1123 if (env.best_cpu == -1) {
2c8a50aa
MG
1124 for_each_online_node(nid) {
1125 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1126 continue;
58d081b5 1127
2c8a50aa
MG
1128 /* Only consider nodes that recorded more faults */
1129 imp = task_faults(env.p, nid) - faults;
1130 if (imp < 0)
fb13c7ee
MG
1131 continue;
1132
2c8a50aa
MG
1133 env.dst_nid = nid;
1134 update_numa_stats(&env.dst_stats, env.dst_nid);
1135 task_numa_find_cpu(&env, imp);
58d081b5
MG
1136 }
1137 }
1138
fb13c7ee
MG
1139 /* No better CPU than the current one was found. */
1140 if (env.best_cpu == -1)
1141 return -EAGAIN;
1142
1143 if (env.best_task == NULL) {
1144 int ret = migrate_task_to(p, env.best_cpu);
1145 return ret;
1146 }
1147
1148 ret = migrate_swap(p, env.best_task);
1149 put_task_struct(env.best_task);
1150 return ret;
e6628d5b
MG
1151}
1152
6b9a7460
MG
1153/* Attempt to migrate a task to a CPU on the preferred node. */
1154static void numa_migrate_preferred(struct task_struct *p)
1155{
1156 /* Success if task is already running on preferred CPU */
1157 p->numa_migrate_retry = 0;
06ea5e03
RR
1158 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1159 /*
1160 * If migration is temporarily disabled due to a task migration
1161 * then re-enable it now as the task is running on its
1162 * preferred node and memory should migrate locally
1163 */
1164 if (!p->numa_migrate_seq)
1165 p->numa_migrate_seq++;
6b9a7460 1166 return;
06ea5e03 1167 }
6b9a7460
MG
1168
1169 /* This task has no NUMA fault statistics yet */
1170 if (unlikely(p->numa_preferred_nid == -1))
1171 return;
1172
1173 /* Otherwise, try migrate to a CPU on the preferred node */
1174 if (task_numa_migrate(p) != 0)
1175 p->numa_migrate_retry = jiffies + HZ*5;
1176}
1177
cbee9f88
PZ
1178static void task_numa_placement(struct task_struct *p)
1179{
688b7585
MG
1180 int seq, nid, max_nid = -1;
1181 unsigned long max_faults = 0;
cbee9f88 1182
2832bc19 1183 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1184 if (p->numa_scan_seq == seq)
1185 return;
1186 p->numa_scan_seq = seq;
3a7053b3 1187 p->numa_migrate_seq++;
598f0ec0 1188 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1189
688b7585
MG
1190 /* Find the node with the highest number of faults */
1191 for_each_online_node(nid) {
fb13c7ee 1192 unsigned long faults = 0;
ac8e895b 1193 int priv, i;
745d6147 1194
ac8e895b 1195 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1196 long diff;
1197
ac8e895b 1198 i = task_faults_idx(nid, priv);
8c8a743c 1199 diff = -p->numa_faults[i];
745d6147 1200
ac8e895b
MG
1201 /* Decay existing window, copy faults since last scan */
1202 p->numa_faults[i] >>= 1;
1203 p->numa_faults[i] += p->numa_faults_buffer[i];
1204 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1205
1206 faults += p->numa_faults[i];
8c8a743c
PZ
1207 diff += p->numa_faults[i];
1208 if (p->numa_group) {
1209 /* safe because we can only change our own group */
1210 atomic_long_add(diff, &p->numa_group->faults[i]);
1211 }
ac8e895b
MG
1212 }
1213
688b7585
MG
1214 if (faults > max_faults) {
1215 max_faults = faults;
1216 max_nid = nid;
1217 }
1218 }
1219
6b9a7460 1220 /* Preferred node as the node with the most faults */
3a7053b3 1221 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1222 /* Update the preferred nid and migrate task if possible */
688b7585 1223 p->numa_preferred_nid = max_nid;
6fe6b2d6 1224 p->numa_migrate_seq = 1;
6b9a7460 1225 numa_migrate_preferred(p);
3a7053b3 1226 }
cbee9f88
PZ
1227}
1228
8c8a743c
PZ
1229static inline int get_numa_group(struct numa_group *grp)
1230{
1231 return atomic_inc_not_zero(&grp->refcount);
1232}
1233
1234static inline void put_numa_group(struct numa_group *grp)
1235{
1236 if (atomic_dec_and_test(&grp->refcount))
1237 kfree_rcu(grp, rcu);
1238}
1239
1240static void double_lock(spinlock_t *l1, spinlock_t *l2)
1241{
1242 if (l1 > l2)
1243 swap(l1, l2);
1244
1245 spin_lock(l1);
1246 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1247}
1248
1249static void task_numa_group(struct task_struct *p, int cpupid)
1250{
1251 struct numa_group *grp, *my_grp;
1252 struct task_struct *tsk;
1253 bool join = false;
1254 int cpu = cpupid_to_cpu(cpupid);
1255 int i;
1256
1257 if (unlikely(!p->numa_group)) {
1258 unsigned int size = sizeof(struct numa_group) +
1259 2*nr_node_ids*sizeof(atomic_long_t);
1260
1261 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1262 if (!grp)
1263 return;
1264
1265 atomic_set(&grp->refcount, 1);
1266 spin_lock_init(&grp->lock);
1267 INIT_LIST_HEAD(&grp->task_list);
1268
1269 for (i = 0; i < 2*nr_node_ids; i++)
1270 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1271
1272 list_add(&p->numa_entry, &grp->task_list);
1273 grp->nr_tasks++;
1274 rcu_assign_pointer(p->numa_group, grp);
1275 }
1276
1277 rcu_read_lock();
1278 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1279
1280 if (!cpupid_match_pid(tsk, cpupid))
1281 goto unlock;
1282
1283 grp = rcu_dereference(tsk->numa_group);
1284 if (!grp)
1285 goto unlock;
1286
1287 my_grp = p->numa_group;
1288 if (grp == my_grp)
1289 goto unlock;
1290
1291 /*
1292 * Only join the other group if its bigger; if we're the bigger group,
1293 * the other task will join us.
1294 */
1295 if (my_grp->nr_tasks > grp->nr_tasks)
1296 goto unlock;
1297
1298 /*
1299 * Tie-break on the grp address.
1300 */
1301 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1302 goto unlock;
1303
1304 if (!get_numa_group(grp))
1305 goto unlock;
1306
1307 join = true;
1308
1309unlock:
1310 rcu_read_unlock();
1311
1312 if (!join)
1313 return;
1314
1315 for (i = 0; i < 2*nr_node_ids; i++) {
1316 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1317 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1318 }
1319
1320 double_lock(&my_grp->lock, &grp->lock);
1321
1322 list_move(&p->numa_entry, &grp->task_list);
1323 my_grp->nr_tasks--;
1324 grp->nr_tasks++;
1325
1326 spin_unlock(&my_grp->lock);
1327 spin_unlock(&grp->lock);
1328
1329 rcu_assign_pointer(p->numa_group, grp);
1330
1331 put_numa_group(my_grp);
1332}
1333
1334void task_numa_free(struct task_struct *p)
1335{
1336 struct numa_group *grp = p->numa_group;
1337 int i;
1338
1339 if (grp) {
1340 for (i = 0; i < 2*nr_node_ids; i++)
1341 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1342
1343 spin_lock(&grp->lock);
1344 list_del(&p->numa_entry);
1345 grp->nr_tasks--;
1346 spin_unlock(&grp->lock);
1347 rcu_assign_pointer(p->numa_group, NULL);
1348 put_numa_group(grp);
1349 }
1350
1351 kfree(p->numa_faults);
1352}
1353
cbee9f88
PZ
1354/*
1355 * Got a PROT_NONE fault for a page on @node.
1356 */
90572890 1357void task_numa_fault(int last_cpupid, int node, int pages, bool migrated)
cbee9f88
PZ
1358{
1359 struct task_struct *p = current;
ac8e895b 1360 int priv;
cbee9f88 1361
10e84b97 1362 if (!numabalancing_enabled)
1a687c2e
MG
1363 return;
1364
9ff1d9ff
MG
1365 /* for example, ksmd faulting in a user's mm */
1366 if (!p->mm)
1367 return;
1368
f809ca9a
MG
1369 /* Allocate buffer to track faults on a per-node basis */
1370 if (unlikely(!p->numa_faults)) {
ac8e895b 1371 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1372
745d6147
MG
1373 /* numa_faults and numa_faults_buffer share the allocation */
1374 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1375 if (!p->numa_faults)
1376 return;
745d6147
MG
1377
1378 BUG_ON(p->numa_faults_buffer);
ac8e895b 1379 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
f809ca9a 1380 }
cbee9f88 1381
8c8a743c
PZ
1382 /*
1383 * First accesses are treated as private, otherwise consider accesses
1384 * to be private if the accessing pid has not changed
1385 */
1386 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1387 priv = 1;
1388 } else {
1389 priv = cpupid_match_pid(p, last_cpupid);
1390 if (!priv)
1391 task_numa_group(p, last_cpupid);
1392 }
1393
fb003b80 1394 /*
b8593bfd
MG
1395 * If pages are properly placed (did not migrate) then scan slower.
1396 * This is reset periodically in case of phase changes
fb003b80 1397 */
598f0ec0
MG
1398 if (!migrated) {
1399 /* Initialise if necessary */
1400 if (!p->numa_scan_period_max)
1401 p->numa_scan_period_max = task_scan_max(p);
1402
1403 p->numa_scan_period = min(p->numa_scan_period_max,
1404 p->numa_scan_period + 10);
1405 }
fb003b80 1406
cbee9f88 1407 task_numa_placement(p);
f809ca9a 1408
6b9a7460
MG
1409 /* Retry task to preferred node migration if it previously failed */
1410 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1411 numa_migrate_preferred(p);
1412
ac8e895b 1413 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
cbee9f88
PZ
1414}
1415
6e5fb223
PZ
1416static void reset_ptenuma_scan(struct task_struct *p)
1417{
1418 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1419 p->mm->numa_scan_offset = 0;
1420}
1421
cbee9f88
PZ
1422/*
1423 * The expensive part of numa migration is done from task_work context.
1424 * Triggered from task_tick_numa().
1425 */
1426void task_numa_work(struct callback_head *work)
1427{
1428 unsigned long migrate, next_scan, now = jiffies;
1429 struct task_struct *p = current;
1430 struct mm_struct *mm = p->mm;
6e5fb223 1431 struct vm_area_struct *vma;
9f40604c 1432 unsigned long start, end;
598f0ec0 1433 unsigned long nr_pte_updates = 0;
9f40604c 1434 long pages;
cbee9f88
PZ
1435
1436 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1437
1438 work->next = work; /* protect against double add */
1439 /*
1440 * Who cares about NUMA placement when they're dying.
1441 *
1442 * NOTE: make sure not to dereference p->mm before this check,
1443 * exit_task_work() happens _after_ exit_mm() so we could be called
1444 * without p->mm even though we still had it when we enqueued this
1445 * work.
1446 */
1447 if (p->flags & PF_EXITING)
1448 return;
1449
7e8d16b6
MG
1450 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1451 mm->numa_next_scan = now +
1452 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1453 mm->numa_next_reset = now +
1454 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1455 }
1456
b8593bfd
MG
1457 /*
1458 * Reset the scan period if enough time has gone by. Objective is that
1459 * scanning will be reduced if pages are properly placed. As tasks
1460 * can enter different phases this needs to be re-examined. Lacking
1461 * proper tracking of reference behaviour, this blunt hammer is used.
1462 */
1463 migrate = mm->numa_next_reset;
1464 if (time_after(now, migrate)) {
598f0ec0 1465 p->numa_scan_period = task_scan_min(p);
b8593bfd
MG
1466 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1467 xchg(&mm->numa_next_reset, next_scan);
1468 }
1469
cbee9f88
PZ
1470 /*
1471 * Enforce maximal scan/migration frequency..
1472 */
1473 migrate = mm->numa_next_scan;
1474 if (time_before(now, migrate))
1475 return;
1476
598f0ec0
MG
1477 if (p->numa_scan_period == 0) {
1478 p->numa_scan_period_max = task_scan_max(p);
1479 p->numa_scan_period = task_scan_min(p);
1480 }
cbee9f88 1481
fb003b80 1482 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1483 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1484 return;
1485
19a78d11
PZ
1486 /*
1487 * Delay this task enough that another task of this mm will likely win
1488 * the next time around.
1489 */
1490 p->node_stamp += 2 * TICK_NSEC;
1491
9f40604c
MG
1492 start = mm->numa_scan_offset;
1493 pages = sysctl_numa_balancing_scan_size;
1494 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1495 if (!pages)
1496 return;
cbee9f88 1497
6e5fb223 1498 down_read(&mm->mmap_sem);
9f40604c 1499 vma = find_vma(mm, start);
6e5fb223
PZ
1500 if (!vma) {
1501 reset_ptenuma_scan(p);
9f40604c 1502 start = 0;
6e5fb223
PZ
1503 vma = mm->mmap;
1504 }
9f40604c 1505 for (; vma; vma = vma->vm_next) {
fc314724 1506 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1507 continue;
1508
4591ce4f
MG
1509 /*
1510 * Shared library pages mapped by multiple processes are not
1511 * migrated as it is expected they are cache replicated. Avoid
1512 * hinting faults in read-only file-backed mappings or the vdso
1513 * as migrating the pages will be of marginal benefit.
1514 */
1515 if (!vma->vm_mm ||
1516 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1517 continue;
1518
9f40604c
MG
1519 do {
1520 start = max(start, vma->vm_start);
1521 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1522 end = min(end, vma->vm_end);
598f0ec0
MG
1523 nr_pte_updates += change_prot_numa(vma, start, end);
1524
1525 /*
1526 * Scan sysctl_numa_balancing_scan_size but ensure that
1527 * at least one PTE is updated so that unused virtual
1528 * address space is quickly skipped.
1529 */
1530 if (nr_pte_updates)
1531 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1532
9f40604c
MG
1533 start = end;
1534 if (pages <= 0)
1535 goto out;
1536 } while (end != vma->vm_end);
cbee9f88 1537 }
6e5fb223 1538
9f40604c 1539out:
f307cd1a
MG
1540 /*
1541 * If the whole process was scanned without updates then no NUMA
1542 * hinting faults are being recorded and scan rate should be lower.
1543 */
1544 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1545 p->numa_scan_period = min(p->numa_scan_period_max,
1546 p->numa_scan_period << 1);
1547
1548 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1549 mm->numa_next_scan = next_scan;
1550 }
1551
6e5fb223 1552 /*
c69307d5
PZ
1553 * It is possible to reach the end of the VMA list but the last few
1554 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1555 * would find the !migratable VMA on the next scan but not reset the
1556 * scanner to the start so check it now.
6e5fb223
PZ
1557 */
1558 if (vma)
9f40604c 1559 mm->numa_scan_offset = start;
6e5fb223
PZ
1560 else
1561 reset_ptenuma_scan(p);
1562 up_read(&mm->mmap_sem);
cbee9f88
PZ
1563}
1564
1565/*
1566 * Drive the periodic memory faults..
1567 */
1568void task_tick_numa(struct rq *rq, struct task_struct *curr)
1569{
1570 struct callback_head *work = &curr->numa_work;
1571 u64 period, now;
1572
1573 /*
1574 * We don't care about NUMA placement if we don't have memory.
1575 */
1576 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1577 return;
1578
1579 /*
1580 * Using runtime rather than walltime has the dual advantage that
1581 * we (mostly) drive the selection from busy threads and that the
1582 * task needs to have done some actual work before we bother with
1583 * NUMA placement.
1584 */
1585 now = curr->se.sum_exec_runtime;
1586 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1587
1588 if (now - curr->node_stamp > period) {
4b96a29b 1589 if (!curr->node_stamp)
598f0ec0 1590 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1591 curr->node_stamp += period;
cbee9f88
PZ
1592
1593 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1594 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1595 task_work_add(curr, work, true);
1596 }
1597 }
1598}
1599#else
1600static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1601{
1602}
1603#endif /* CONFIG_NUMA_BALANCING */
1604
30cfdcfc
DA
1605static void
1606account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1607{
1608 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1609 if (!parent_entity(se))
029632fb 1610 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1611#ifdef CONFIG_SMP
1612 if (entity_is_task(se))
eb95308e 1613 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1614#endif
30cfdcfc 1615 cfs_rq->nr_running++;
30cfdcfc
DA
1616}
1617
1618static void
1619account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1620{
1621 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1622 if (!parent_entity(se))
029632fb 1623 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1624 if (entity_is_task(se))
b87f1724 1625 list_del_init(&se->group_node);
30cfdcfc 1626 cfs_rq->nr_running--;
30cfdcfc
DA
1627}
1628
3ff6dcac
YZ
1629#ifdef CONFIG_FAIR_GROUP_SCHED
1630# ifdef CONFIG_SMP
cf5f0acf
PZ
1631static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1632{
1633 long tg_weight;
1634
1635 /*
1636 * Use this CPU's actual weight instead of the last load_contribution
1637 * to gain a more accurate current total weight. See
1638 * update_cfs_rq_load_contribution().
1639 */
bf5b986e 1640 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1641 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1642 tg_weight += cfs_rq->load.weight;
1643
1644 return tg_weight;
1645}
1646
6d5ab293 1647static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1648{
cf5f0acf 1649 long tg_weight, load, shares;
3ff6dcac 1650
cf5f0acf 1651 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1652 load = cfs_rq->load.weight;
3ff6dcac 1653
3ff6dcac 1654 shares = (tg->shares * load);
cf5f0acf
PZ
1655 if (tg_weight)
1656 shares /= tg_weight;
3ff6dcac
YZ
1657
1658 if (shares < MIN_SHARES)
1659 shares = MIN_SHARES;
1660 if (shares > tg->shares)
1661 shares = tg->shares;
1662
1663 return shares;
1664}
3ff6dcac 1665# else /* CONFIG_SMP */
6d5ab293 1666static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1667{
1668 return tg->shares;
1669}
3ff6dcac 1670# endif /* CONFIG_SMP */
2069dd75
PZ
1671static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1672 unsigned long weight)
1673{
19e5eebb
PT
1674 if (se->on_rq) {
1675 /* commit outstanding execution time */
1676 if (cfs_rq->curr == se)
1677 update_curr(cfs_rq);
2069dd75 1678 account_entity_dequeue(cfs_rq, se);
19e5eebb 1679 }
2069dd75
PZ
1680
1681 update_load_set(&se->load, weight);
1682
1683 if (se->on_rq)
1684 account_entity_enqueue(cfs_rq, se);
1685}
1686
82958366
PT
1687static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1688
6d5ab293 1689static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1690{
1691 struct task_group *tg;
1692 struct sched_entity *se;
3ff6dcac 1693 long shares;
2069dd75 1694
2069dd75
PZ
1695 tg = cfs_rq->tg;
1696 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1697 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1698 return;
3ff6dcac
YZ
1699#ifndef CONFIG_SMP
1700 if (likely(se->load.weight == tg->shares))
1701 return;
1702#endif
6d5ab293 1703 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1704
1705 reweight_entity(cfs_rq_of(se), se, shares);
1706}
1707#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1708static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1709{
1710}
1711#endif /* CONFIG_FAIR_GROUP_SCHED */
1712
141965c7 1713#ifdef CONFIG_SMP
5b51f2f8
PT
1714/*
1715 * We choose a half-life close to 1 scheduling period.
1716 * Note: The tables below are dependent on this value.
1717 */
1718#define LOAD_AVG_PERIOD 32
1719#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1720#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1721
1722/* Precomputed fixed inverse multiplies for multiplication by y^n */
1723static const u32 runnable_avg_yN_inv[] = {
1724 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1725 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1726 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1727 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1728 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1729 0x85aac367, 0x82cd8698,
1730};
1731
1732/*
1733 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1734 * over-estimates when re-combining.
1735 */
1736static const u32 runnable_avg_yN_sum[] = {
1737 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1738 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1739 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1740};
1741
9d85f21c
PT
1742/*
1743 * Approximate:
1744 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1745 */
1746static __always_inline u64 decay_load(u64 val, u64 n)
1747{
5b51f2f8
PT
1748 unsigned int local_n;
1749
1750 if (!n)
1751 return val;
1752 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1753 return 0;
1754
1755 /* after bounds checking we can collapse to 32-bit */
1756 local_n = n;
1757
1758 /*
1759 * As y^PERIOD = 1/2, we can combine
1760 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1761 * With a look-up table which covers k^n (n<PERIOD)
1762 *
1763 * To achieve constant time decay_load.
1764 */
1765 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1766 val >>= local_n / LOAD_AVG_PERIOD;
1767 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1768 }
1769
5b51f2f8
PT
1770 val *= runnable_avg_yN_inv[local_n];
1771 /* We don't use SRR here since we always want to round down. */
1772 return val >> 32;
1773}
1774
1775/*
1776 * For updates fully spanning n periods, the contribution to runnable
1777 * average will be: \Sum 1024*y^n
1778 *
1779 * We can compute this reasonably efficiently by combining:
1780 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1781 */
1782static u32 __compute_runnable_contrib(u64 n)
1783{
1784 u32 contrib = 0;
1785
1786 if (likely(n <= LOAD_AVG_PERIOD))
1787 return runnable_avg_yN_sum[n];
1788 else if (unlikely(n >= LOAD_AVG_MAX_N))
1789 return LOAD_AVG_MAX;
1790
1791 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1792 do {
1793 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1794 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1795
1796 n -= LOAD_AVG_PERIOD;
1797 } while (n > LOAD_AVG_PERIOD);
1798
1799 contrib = decay_load(contrib, n);
1800 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1801}
1802
1803/*
1804 * We can represent the historical contribution to runnable average as the
1805 * coefficients of a geometric series. To do this we sub-divide our runnable
1806 * history into segments of approximately 1ms (1024us); label the segment that
1807 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1808 *
1809 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1810 * p0 p1 p2
1811 * (now) (~1ms ago) (~2ms ago)
1812 *
1813 * Let u_i denote the fraction of p_i that the entity was runnable.
1814 *
1815 * We then designate the fractions u_i as our co-efficients, yielding the
1816 * following representation of historical load:
1817 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1818 *
1819 * We choose y based on the with of a reasonably scheduling period, fixing:
1820 * y^32 = 0.5
1821 *
1822 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1823 * approximately half as much as the contribution to load within the last ms
1824 * (u_0).
1825 *
1826 * When a period "rolls over" and we have new u_0`, multiplying the previous
1827 * sum again by y is sufficient to update:
1828 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1829 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1830 */
1831static __always_inline int __update_entity_runnable_avg(u64 now,
1832 struct sched_avg *sa,
1833 int runnable)
1834{
5b51f2f8
PT
1835 u64 delta, periods;
1836 u32 runnable_contrib;
9d85f21c
PT
1837 int delta_w, decayed = 0;
1838
1839 delta = now - sa->last_runnable_update;
1840 /*
1841 * This should only happen when time goes backwards, which it
1842 * unfortunately does during sched clock init when we swap over to TSC.
1843 */
1844 if ((s64)delta < 0) {
1845 sa->last_runnable_update = now;
1846 return 0;
1847 }
1848
1849 /*
1850 * Use 1024ns as the unit of measurement since it's a reasonable
1851 * approximation of 1us and fast to compute.
1852 */
1853 delta >>= 10;
1854 if (!delta)
1855 return 0;
1856 sa->last_runnable_update = now;
1857
1858 /* delta_w is the amount already accumulated against our next period */
1859 delta_w = sa->runnable_avg_period % 1024;
1860 if (delta + delta_w >= 1024) {
1861 /* period roll-over */
1862 decayed = 1;
1863
1864 /*
1865 * Now that we know we're crossing a period boundary, figure
1866 * out how much from delta we need to complete the current
1867 * period and accrue it.
1868 */
1869 delta_w = 1024 - delta_w;
5b51f2f8
PT
1870 if (runnable)
1871 sa->runnable_avg_sum += delta_w;
1872 sa->runnable_avg_period += delta_w;
1873
1874 delta -= delta_w;
1875
1876 /* Figure out how many additional periods this update spans */
1877 periods = delta / 1024;
1878 delta %= 1024;
1879
1880 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1881 periods + 1);
1882 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1883 periods + 1);
1884
1885 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1886 runnable_contrib = __compute_runnable_contrib(periods);
1887 if (runnable)
1888 sa->runnable_avg_sum += runnable_contrib;
1889 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1890 }
1891
1892 /* Remainder of delta accrued against u_0` */
1893 if (runnable)
1894 sa->runnable_avg_sum += delta;
1895 sa->runnable_avg_period += delta;
1896
1897 return decayed;
1898}
1899
9ee474f5 1900/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1901static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1902{
1903 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1904 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1905
1906 decays -= se->avg.decay_count;
1907 if (!decays)
aff3e498 1908 return 0;
9ee474f5
PT
1909
1910 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1911 se->avg.decay_count = 0;
aff3e498
PT
1912
1913 return decays;
9ee474f5
PT
1914}
1915
c566e8e9
PT
1916#ifdef CONFIG_FAIR_GROUP_SCHED
1917static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1918 int force_update)
1919{
1920 struct task_group *tg = cfs_rq->tg;
bf5b986e 1921 long tg_contrib;
c566e8e9
PT
1922
1923 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1924 tg_contrib -= cfs_rq->tg_load_contrib;
1925
bf5b986e
AS
1926 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1927 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
1928 cfs_rq->tg_load_contrib += tg_contrib;
1929 }
1930}
8165e145 1931
bb17f655
PT
1932/*
1933 * Aggregate cfs_rq runnable averages into an equivalent task_group
1934 * representation for computing load contributions.
1935 */
1936static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1937 struct cfs_rq *cfs_rq)
1938{
1939 struct task_group *tg = cfs_rq->tg;
1940 long contrib;
1941
1942 /* The fraction of a cpu used by this cfs_rq */
1943 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1944 sa->runnable_avg_period + 1);
1945 contrib -= cfs_rq->tg_runnable_contrib;
1946
1947 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1948 atomic_add(contrib, &tg->runnable_avg);
1949 cfs_rq->tg_runnable_contrib += contrib;
1950 }
1951}
1952
8165e145
PT
1953static inline void __update_group_entity_contrib(struct sched_entity *se)
1954{
1955 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1956 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1957 int runnable_avg;
1958
8165e145
PT
1959 u64 contrib;
1960
1961 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
1962 se->avg.load_avg_contrib = div_u64(contrib,
1963 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
1964
1965 /*
1966 * For group entities we need to compute a correction term in the case
1967 * that they are consuming <1 cpu so that we would contribute the same
1968 * load as a task of equal weight.
1969 *
1970 * Explicitly co-ordinating this measurement would be expensive, but
1971 * fortunately the sum of each cpus contribution forms a usable
1972 * lower-bound on the true value.
1973 *
1974 * Consider the aggregate of 2 contributions. Either they are disjoint
1975 * (and the sum represents true value) or they are disjoint and we are
1976 * understating by the aggregate of their overlap.
1977 *
1978 * Extending this to N cpus, for a given overlap, the maximum amount we
1979 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1980 * cpus that overlap for this interval and w_i is the interval width.
1981 *
1982 * On a small machine; the first term is well-bounded which bounds the
1983 * total error since w_i is a subset of the period. Whereas on a
1984 * larger machine, while this first term can be larger, if w_i is the
1985 * of consequential size guaranteed to see n_i*w_i quickly converge to
1986 * our upper bound of 1-cpu.
1987 */
1988 runnable_avg = atomic_read(&tg->runnable_avg);
1989 if (runnable_avg < NICE_0_LOAD) {
1990 se->avg.load_avg_contrib *= runnable_avg;
1991 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1992 }
8165e145 1993}
c566e8e9
PT
1994#else
1995static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1996 int force_update) {}
bb17f655
PT
1997static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1998 struct cfs_rq *cfs_rq) {}
8165e145 1999static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2000#endif
2001
8165e145
PT
2002static inline void __update_task_entity_contrib(struct sched_entity *se)
2003{
2004 u32 contrib;
2005
2006 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2007 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2008 contrib /= (se->avg.runnable_avg_period + 1);
2009 se->avg.load_avg_contrib = scale_load(contrib);
2010}
2011
2dac754e
PT
2012/* Compute the current contribution to load_avg by se, return any delta */
2013static long __update_entity_load_avg_contrib(struct sched_entity *se)
2014{
2015 long old_contrib = se->avg.load_avg_contrib;
2016
8165e145
PT
2017 if (entity_is_task(se)) {
2018 __update_task_entity_contrib(se);
2019 } else {
bb17f655 2020 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2021 __update_group_entity_contrib(se);
2022 }
2dac754e
PT
2023
2024 return se->avg.load_avg_contrib - old_contrib;
2025}
2026
9ee474f5
PT
2027static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2028 long load_contrib)
2029{
2030 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2031 cfs_rq->blocked_load_avg -= load_contrib;
2032 else
2033 cfs_rq->blocked_load_avg = 0;
2034}
2035
f1b17280
PT
2036static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2037
9d85f21c 2038/* Update a sched_entity's runnable average */
9ee474f5
PT
2039static inline void update_entity_load_avg(struct sched_entity *se,
2040 int update_cfs_rq)
9d85f21c 2041{
2dac754e
PT
2042 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2043 long contrib_delta;
f1b17280 2044 u64 now;
2dac754e 2045
f1b17280
PT
2046 /*
2047 * For a group entity we need to use their owned cfs_rq_clock_task() in
2048 * case they are the parent of a throttled hierarchy.
2049 */
2050 if (entity_is_task(se))
2051 now = cfs_rq_clock_task(cfs_rq);
2052 else
2053 now = cfs_rq_clock_task(group_cfs_rq(se));
2054
2055 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2056 return;
2057
2058 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2059
2060 if (!update_cfs_rq)
2061 return;
2062
2dac754e
PT
2063 if (se->on_rq)
2064 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2065 else
2066 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2067}
2068
2069/*
2070 * Decay the load contributed by all blocked children and account this so that
2071 * their contribution may appropriately discounted when they wake up.
2072 */
aff3e498 2073static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2074{
f1b17280 2075 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2076 u64 decays;
2077
2078 decays = now - cfs_rq->last_decay;
aff3e498 2079 if (!decays && !force_update)
9ee474f5
PT
2080 return;
2081
2509940f
AS
2082 if (atomic_long_read(&cfs_rq->removed_load)) {
2083 unsigned long removed_load;
2084 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2085 subtract_blocked_load_contrib(cfs_rq, removed_load);
2086 }
9ee474f5 2087
aff3e498
PT
2088 if (decays) {
2089 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2090 decays);
2091 atomic64_add(decays, &cfs_rq->decay_counter);
2092 cfs_rq->last_decay = now;
2093 }
c566e8e9
PT
2094
2095 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2096}
18bf2805
BS
2097
2098static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2099{
78becc27 2100 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2101 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2102}
2dac754e
PT
2103
2104/* Add the load generated by se into cfs_rq's child load-average */
2105static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2106 struct sched_entity *se,
2107 int wakeup)
2dac754e 2108{
aff3e498
PT
2109 /*
2110 * We track migrations using entity decay_count <= 0, on a wake-up
2111 * migration we use a negative decay count to track the remote decays
2112 * accumulated while sleeping.
a75cdaa9
AS
2113 *
2114 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2115 * are seen by enqueue_entity_load_avg() as a migration with an already
2116 * constructed load_avg_contrib.
aff3e498
PT
2117 */
2118 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2119 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2120 if (se->avg.decay_count) {
2121 /*
2122 * In a wake-up migration we have to approximate the
2123 * time sleeping. This is because we can't synchronize
2124 * clock_task between the two cpus, and it is not
2125 * guaranteed to be read-safe. Instead, we can
2126 * approximate this using our carried decays, which are
2127 * explicitly atomically readable.
2128 */
2129 se->avg.last_runnable_update -= (-se->avg.decay_count)
2130 << 20;
2131 update_entity_load_avg(se, 0);
2132 /* Indicate that we're now synchronized and on-rq */
2133 se->avg.decay_count = 0;
2134 }
9ee474f5
PT
2135 wakeup = 0;
2136 } else {
282cf499
AS
2137 /*
2138 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2139 * would have made count negative); we must be careful to avoid
2140 * double-accounting blocked time after synchronizing decays.
2141 */
2142 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2143 << 20;
9ee474f5
PT
2144 }
2145
aff3e498
PT
2146 /* migrated tasks did not contribute to our blocked load */
2147 if (wakeup) {
9ee474f5 2148 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2149 update_entity_load_avg(se, 0);
2150 }
9ee474f5 2151
2dac754e 2152 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2153 /* we force update consideration on load-balancer moves */
2154 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2155}
2156
9ee474f5
PT
2157/*
2158 * Remove se's load from this cfs_rq child load-average, if the entity is
2159 * transitioning to a blocked state we track its projected decay using
2160 * blocked_load_avg.
2161 */
2dac754e 2162static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2163 struct sched_entity *se,
2164 int sleep)
2dac754e 2165{
9ee474f5 2166 update_entity_load_avg(se, 1);
aff3e498
PT
2167 /* we force update consideration on load-balancer moves */
2168 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2169
2dac754e 2170 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2171 if (sleep) {
2172 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2173 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2174 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2175}
642dbc39
VG
2176
2177/*
2178 * Update the rq's load with the elapsed running time before entering
2179 * idle. if the last scheduled task is not a CFS task, idle_enter will
2180 * be the only way to update the runnable statistic.
2181 */
2182void idle_enter_fair(struct rq *this_rq)
2183{
2184 update_rq_runnable_avg(this_rq, 1);
2185}
2186
2187/*
2188 * Update the rq's load with the elapsed idle time before a task is
2189 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2190 * be the only way to update the runnable statistic.
2191 */
2192void idle_exit_fair(struct rq *this_rq)
2193{
2194 update_rq_runnable_avg(this_rq, 0);
2195}
2196
9d85f21c 2197#else
9ee474f5
PT
2198static inline void update_entity_load_avg(struct sched_entity *se,
2199 int update_cfs_rq) {}
18bf2805 2200static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2201static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2202 struct sched_entity *se,
2203 int wakeup) {}
2dac754e 2204static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2205 struct sched_entity *se,
2206 int sleep) {}
aff3e498
PT
2207static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2208 int force_update) {}
9d85f21c
PT
2209#endif
2210
2396af69 2211static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2212{
bf0f6f24 2213#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2214 struct task_struct *tsk = NULL;
2215
2216 if (entity_is_task(se))
2217 tsk = task_of(se);
2218
41acab88 2219 if (se->statistics.sleep_start) {
78becc27 2220 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2221
2222 if ((s64)delta < 0)
2223 delta = 0;
2224
41acab88
LDM
2225 if (unlikely(delta > se->statistics.sleep_max))
2226 se->statistics.sleep_max = delta;
bf0f6f24 2227
8c79a045 2228 se->statistics.sleep_start = 0;
41acab88 2229 se->statistics.sum_sleep_runtime += delta;
9745512c 2230
768d0c27 2231 if (tsk) {
e414314c 2232 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2233 trace_sched_stat_sleep(tsk, delta);
2234 }
bf0f6f24 2235 }
41acab88 2236 if (se->statistics.block_start) {
78becc27 2237 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2238
2239 if ((s64)delta < 0)
2240 delta = 0;
2241
41acab88
LDM
2242 if (unlikely(delta > se->statistics.block_max))
2243 se->statistics.block_max = delta;
bf0f6f24 2244
8c79a045 2245 se->statistics.block_start = 0;
41acab88 2246 se->statistics.sum_sleep_runtime += delta;
30084fbd 2247
e414314c 2248 if (tsk) {
8f0dfc34 2249 if (tsk->in_iowait) {
41acab88
LDM
2250 se->statistics.iowait_sum += delta;
2251 se->statistics.iowait_count++;
768d0c27 2252 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2253 }
2254
b781a602
AV
2255 trace_sched_stat_blocked(tsk, delta);
2256
e414314c
PZ
2257 /*
2258 * Blocking time is in units of nanosecs, so shift by
2259 * 20 to get a milliseconds-range estimation of the
2260 * amount of time that the task spent sleeping:
2261 */
2262 if (unlikely(prof_on == SLEEP_PROFILING)) {
2263 profile_hits(SLEEP_PROFILING,
2264 (void *)get_wchan(tsk),
2265 delta >> 20);
2266 }
2267 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2268 }
bf0f6f24
IM
2269 }
2270#endif
2271}
2272
ddc97297
PZ
2273static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2274{
2275#ifdef CONFIG_SCHED_DEBUG
2276 s64 d = se->vruntime - cfs_rq->min_vruntime;
2277
2278 if (d < 0)
2279 d = -d;
2280
2281 if (d > 3*sysctl_sched_latency)
2282 schedstat_inc(cfs_rq, nr_spread_over);
2283#endif
2284}
2285
aeb73b04
PZ
2286static void
2287place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2288{
1af5f730 2289 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2290
2cb8600e
PZ
2291 /*
2292 * The 'current' period is already promised to the current tasks,
2293 * however the extra weight of the new task will slow them down a
2294 * little, place the new task so that it fits in the slot that
2295 * stays open at the end.
2296 */
94dfb5e7 2297 if (initial && sched_feat(START_DEBIT))
f9c0b095 2298 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2299
a2e7a7eb 2300 /* sleeps up to a single latency don't count. */
5ca9880c 2301 if (!initial) {
a2e7a7eb 2302 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2303
a2e7a7eb
MG
2304 /*
2305 * Halve their sleep time's effect, to allow
2306 * for a gentler effect of sleepers:
2307 */
2308 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2309 thresh >>= 1;
51e0304c 2310
a2e7a7eb 2311 vruntime -= thresh;
aeb73b04
PZ
2312 }
2313
b5d9d734 2314 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2315 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2316}
2317
d3d9dc33
PT
2318static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2319
bf0f6f24 2320static void
88ec22d3 2321enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2322{
88ec22d3
PZ
2323 /*
2324 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2325 * through calling update_curr().
88ec22d3 2326 */
371fd7e7 2327 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2328 se->vruntime += cfs_rq->min_vruntime;
2329
bf0f6f24 2330 /*
a2a2d680 2331 * Update run-time statistics of the 'current'.
bf0f6f24 2332 */
b7cc0896 2333 update_curr(cfs_rq);
f269ae04 2334 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2335 account_entity_enqueue(cfs_rq, se);
2336 update_cfs_shares(cfs_rq);
bf0f6f24 2337
88ec22d3 2338 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2339 place_entity(cfs_rq, se, 0);
2396af69 2340 enqueue_sleeper(cfs_rq, se);
e9acbff6 2341 }
bf0f6f24 2342
d2417e5a 2343 update_stats_enqueue(cfs_rq, se);
ddc97297 2344 check_spread(cfs_rq, se);
83b699ed
SV
2345 if (se != cfs_rq->curr)
2346 __enqueue_entity(cfs_rq, se);
2069dd75 2347 se->on_rq = 1;
3d4b47b4 2348
d3d9dc33 2349 if (cfs_rq->nr_running == 1) {
3d4b47b4 2350 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2351 check_enqueue_throttle(cfs_rq);
2352 }
bf0f6f24
IM
2353}
2354
2c13c919 2355static void __clear_buddies_last(struct sched_entity *se)
2002c695 2356{
2c13c919
RR
2357 for_each_sched_entity(se) {
2358 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2359 if (cfs_rq->last == se)
2360 cfs_rq->last = NULL;
2361 else
2362 break;
2363 }
2364}
2002c695 2365
2c13c919
RR
2366static void __clear_buddies_next(struct sched_entity *se)
2367{
2368 for_each_sched_entity(se) {
2369 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2370 if (cfs_rq->next == se)
2371 cfs_rq->next = NULL;
2372 else
2373 break;
2374 }
2002c695
PZ
2375}
2376
ac53db59
RR
2377static void __clear_buddies_skip(struct sched_entity *se)
2378{
2379 for_each_sched_entity(se) {
2380 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2381 if (cfs_rq->skip == se)
2382 cfs_rq->skip = NULL;
2383 else
2384 break;
2385 }
2386}
2387
a571bbea
PZ
2388static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2389{
2c13c919
RR
2390 if (cfs_rq->last == se)
2391 __clear_buddies_last(se);
2392
2393 if (cfs_rq->next == se)
2394 __clear_buddies_next(se);
ac53db59
RR
2395
2396 if (cfs_rq->skip == se)
2397 __clear_buddies_skip(se);
a571bbea
PZ
2398}
2399
6c16a6dc 2400static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2401
bf0f6f24 2402static void
371fd7e7 2403dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2404{
a2a2d680
DA
2405 /*
2406 * Update run-time statistics of the 'current'.
2407 */
2408 update_curr(cfs_rq);
17bc14b7 2409 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2410
19b6a2e3 2411 update_stats_dequeue(cfs_rq, se);
371fd7e7 2412 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2413#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2414 if (entity_is_task(se)) {
2415 struct task_struct *tsk = task_of(se);
2416
2417 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2418 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2419 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2420 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2421 }
db36cc7d 2422#endif
67e9fb2a
PZ
2423 }
2424
2002c695 2425 clear_buddies(cfs_rq, se);
4793241b 2426
83b699ed 2427 if (se != cfs_rq->curr)
30cfdcfc 2428 __dequeue_entity(cfs_rq, se);
17bc14b7 2429 se->on_rq = 0;
30cfdcfc 2430 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2431
2432 /*
2433 * Normalize the entity after updating the min_vruntime because the
2434 * update can refer to the ->curr item and we need to reflect this
2435 * movement in our normalized position.
2436 */
371fd7e7 2437 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2438 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2439
d8b4986d
PT
2440 /* return excess runtime on last dequeue */
2441 return_cfs_rq_runtime(cfs_rq);
2442
1e876231 2443 update_min_vruntime(cfs_rq);
17bc14b7 2444 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2445}
2446
2447/*
2448 * Preempt the current task with a newly woken task if needed:
2449 */
7c92e54f 2450static void
2e09bf55 2451check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2452{
11697830 2453 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2454 struct sched_entity *se;
2455 s64 delta;
11697830 2456
6d0f0ebd 2457 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2458 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2459 if (delta_exec > ideal_runtime) {
bf0f6f24 2460 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2461 /*
2462 * The current task ran long enough, ensure it doesn't get
2463 * re-elected due to buddy favours.
2464 */
2465 clear_buddies(cfs_rq, curr);
f685ceac
MG
2466 return;
2467 }
2468
2469 /*
2470 * Ensure that a task that missed wakeup preemption by a
2471 * narrow margin doesn't have to wait for a full slice.
2472 * This also mitigates buddy induced latencies under load.
2473 */
f685ceac
MG
2474 if (delta_exec < sysctl_sched_min_granularity)
2475 return;
2476
f4cfb33e
WX
2477 se = __pick_first_entity(cfs_rq);
2478 delta = curr->vruntime - se->vruntime;
f685ceac 2479
f4cfb33e
WX
2480 if (delta < 0)
2481 return;
d7d82944 2482
f4cfb33e
WX
2483 if (delta > ideal_runtime)
2484 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2485}
2486
83b699ed 2487static void
8494f412 2488set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2489{
83b699ed
SV
2490 /* 'current' is not kept within the tree. */
2491 if (se->on_rq) {
2492 /*
2493 * Any task has to be enqueued before it get to execute on
2494 * a CPU. So account for the time it spent waiting on the
2495 * runqueue.
2496 */
2497 update_stats_wait_end(cfs_rq, se);
2498 __dequeue_entity(cfs_rq, se);
2499 }
2500
79303e9e 2501 update_stats_curr_start(cfs_rq, se);
429d43bc 2502 cfs_rq->curr = se;
eba1ed4b
IM
2503#ifdef CONFIG_SCHEDSTATS
2504 /*
2505 * Track our maximum slice length, if the CPU's load is at
2506 * least twice that of our own weight (i.e. dont track it
2507 * when there are only lesser-weight tasks around):
2508 */
495eca49 2509 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2510 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2511 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2512 }
2513#endif
4a55b450 2514 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2515}
2516
3f3a4904
PZ
2517static int
2518wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2519
ac53db59
RR
2520/*
2521 * Pick the next process, keeping these things in mind, in this order:
2522 * 1) keep things fair between processes/task groups
2523 * 2) pick the "next" process, since someone really wants that to run
2524 * 3) pick the "last" process, for cache locality
2525 * 4) do not run the "skip" process, if something else is available
2526 */
f4b6755f 2527static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2528{
ac53db59 2529 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2530 struct sched_entity *left = se;
f4b6755f 2531
ac53db59
RR
2532 /*
2533 * Avoid running the skip buddy, if running something else can
2534 * be done without getting too unfair.
2535 */
2536 if (cfs_rq->skip == se) {
2537 struct sched_entity *second = __pick_next_entity(se);
2538 if (second && wakeup_preempt_entity(second, left) < 1)
2539 se = second;
2540 }
aa2ac252 2541
f685ceac
MG
2542 /*
2543 * Prefer last buddy, try to return the CPU to a preempted task.
2544 */
2545 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2546 se = cfs_rq->last;
2547
ac53db59
RR
2548 /*
2549 * Someone really wants this to run. If it's not unfair, run it.
2550 */
2551 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2552 se = cfs_rq->next;
2553
f685ceac 2554 clear_buddies(cfs_rq, se);
4793241b
PZ
2555
2556 return se;
aa2ac252
PZ
2557}
2558
d3d9dc33
PT
2559static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2560
ab6cde26 2561static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2562{
2563 /*
2564 * If still on the runqueue then deactivate_task()
2565 * was not called and update_curr() has to be done:
2566 */
2567 if (prev->on_rq)
b7cc0896 2568 update_curr(cfs_rq);
bf0f6f24 2569
d3d9dc33
PT
2570 /* throttle cfs_rqs exceeding runtime */
2571 check_cfs_rq_runtime(cfs_rq);
2572
ddc97297 2573 check_spread(cfs_rq, prev);
30cfdcfc 2574 if (prev->on_rq) {
5870db5b 2575 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2576 /* Put 'current' back into the tree. */
2577 __enqueue_entity(cfs_rq, prev);
9d85f21c 2578 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2579 update_entity_load_avg(prev, 1);
30cfdcfc 2580 }
429d43bc 2581 cfs_rq->curr = NULL;
bf0f6f24
IM
2582}
2583
8f4d37ec
PZ
2584static void
2585entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2586{
bf0f6f24 2587 /*
30cfdcfc 2588 * Update run-time statistics of the 'current'.
bf0f6f24 2589 */
30cfdcfc 2590 update_curr(cfs_rq);
bf0f6f24 2591
9d85f21c
PT
2592 /*
2593 * Ensure that runnable average is periodically updated.
2594 */
9ee474f5 2595 update_entity_load_avg(curr, 1);
aff3e498 2596 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2597 update_cfs_shares(cfs_rq);
9d85f21c 2598
8f4d37ec
PZ
2599#ifdef CONFIG_SCHED_HRTICK
2600 /*
2601 * queued ticks are scheduled to match the slice, so don't bother
2602 * validating it and just reschedule.
2603 */
983ed7a6
HH
2604 if (queued) {
2605 resched_task(rq_of(cfs_rq)->curr);
2606 return;
2607 }
8f4d37ec
PZ
2608 /*
2609 * don't let the period tick interfere with the hrtick preemption
2610 */
2611 if (!sched_feat(DOUBLE_TICK) &&
2612 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2613 return;
2614#endif
2615
2c2efaed 2616 if (cfs_rq->nr_running > 1)
2e09bf55 2617 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2618}
2619
ab84d31e
PT
2620
2621/**************************************************
2622 * CFS bandwidth control machinery
2623 */
2624
2625#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2626
2627#ifdef HAVE_JUMP_LABEL
c5905afb 2628static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2629
2630static inline bool cfs_bandwidth_used(void)
2631{
c5905afb 2632 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2633}
2634
2635void account_cfs_bandwidth_used(int enabled, int was_enabled)
2636{
2637 /* only need to count groups transitioning between enabled/!enabled */
2638 if (enabled && !was_enabled)
c5905afb 2639 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2640 else if (!enabled && was_enabled)
c5905afb 2641 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2642}
2643#else /* HAVE_JUMP_LABEL */
2644static bool cfs_bandwidth_used(void)
2645{
2646 return true;
2647}
2648
2649void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2650#endif /* HAVE_JUMP_LABEL */
2651
ab84d31e
PT
2652/*
2653 * default period for cfs group bandwidth.
2654 * default: 0.1s, units: nanoseconds
2655 */
2656static inline u64 default_cfs_period(void)
2657{
2658 return 100000000ULL;
2659}
ec12cb7f
PT
2660
2661static inline u64 sched_cfs_bandwidth_slice(void)
2662{
2663 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2664}
2665
a9cf55b2
PT
2666/*
2667 * Replenish runtime according to assigned quota and update expiration time.
2668 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2669 * additional synchronization around rq->lock.
2670 *
2671 * requires cfs_b->lock
2672 */
029632fb 2673void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2674{
2675 u64 now;
2676
2677 if (cfs_b->quota == RUNTIME_INF)
2678 return;
2679
2680 now = sched_clock_cpu(smp_processor_id());
2681 cfs_b->runtime = cfs_b->quota;
2682 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2683}
2684
029632fb
PZ
2685static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2686{
2687 return &tg->cfs_bandwidth;
2688}
2689
f1b17280
PT
2690/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2691static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2692{
2693 if (unlikely(cfs_rq->throttle_count))
2694 return cfs_rq->throttled_clock_task;
2695
78becc27 2696 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2697}
2698
85dac906
PT
2699/* returns 0 on failure to allocate runtime */
2700static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2701{
2702 struct task_group *tg = cfs_rq->tg;
2703 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2704 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2705
2706 /* note: this is a positive sum as runtime_remaining <= 0 */
2707 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2708
2709 raw_spin_lock(&cfs_b->lock);
2710 if (cfs_b->quota == RUNTIME_INF)
2711 amount = min_amount;
58088ad0 2712 else {
a9cf55b2
PT
2713 /*
2714 * If the bandwidth pool has become inactive, then at least one
2715 * period must have elapsed since the last consumption.
2716 * Refresh the global state and ensure bandwidth timer becomes
2717 * active.
2718 */
2719 if (!cfs_b->timer_active) {
2720 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2721 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2722 }
58088ad0
PT
2723
2724 if (cfs_b->runtime > 0) {
2725 amount = min(cfs_b->runtime, min_amount);
2726 cfs_b->runtime -= amount;
2727 cfs_b->idle = 0;
2728 }
ec12cb7f 2729 }
a9cf55b2 2730 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2731 raw_spin_unlock(&cfs_b->lock);
2732
2733 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2734 /*
2735 * we may have advanced our local expiration to account for allowed
2736 * spread between our sched_clock and the one on which runtime was
2737 * issued.
2738 */
2739 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2740 cfs_rq->runtime_expires = expires;
85dac906
PT
2741
2742 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2743}
2744
a9cf55b2
PT
2745/*
2746 * Note: This depends on the synchronization provided by sched_clock and the
2747 * fact that rq->clock snapshots this value.
2748 */
2749static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2750{
a9cf55b2 2751 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2752
2753 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2754 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2755 return;
2756
a9cf55b2
PT
2757 if (cfs_rq->runtime_remaining < 0)
2758 return;
2759
2760 /*
2761 * If the local deadline has passed we have to consider the
2762 * possibility that our sched_clock is 'fast' and the global deadline
2763 * has not truly expired.
2764 *
2765 * Fortunately we can check determine whether this the case by checking
2766 * whether the global deadline has advanced.
2767 */
2768
2769 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2770 /* extend local deadline, drift is bounded above by 2 ticks */
2771 cfs_rq->runtime_expires += TICK_NSEC;
2772 } else {
2773 /* global deadline is ahead, expiration has passed */
2774 cfs_rq->runtime_remaining = 0;
2775 }
2776}
2777
2778static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2779 unsigned long delta_exec)
2780{
2781 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2782 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2783 expire_cfs_rq_runtime(cfs_rq);
2784
2785 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2786 return;
2787
85dac906
PT
2788 /*
2789 * if we're unable to extend our runtime we resched so that the active
2790 * hierarchy can be throttled
2791 */
2792 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2793 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2794}
2795
6c16a6dc
PZ
2796static __always_inline
2797void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2798{
56f570e5 2799 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2800 return;
2801
2802 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2803}
2804
85dac906
PT
2805static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2806{
56f570e5 2807 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2808}
2809
64660c86
PT
2810/* check whether cfs_rq, or any parent, is throttled */
2811static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2812{
56f570e5 2813 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2814}
2815
2816/*
2817 * Ensure that neither of the group entities corresponding to src_cpu or
2818 * dest_cpu are members of a throttled hierarchy when performing group
2819 * load-balance operations.
2820 */
2821static inline int throttled_lb_pair(struct task_group *tg,
2822 int src_cpu, int dest_cpu)
2823{
2824 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2825
2826 src_cfs_rq = tg->cfs_rq[src_cpu];
2827 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2828
2829 return throttled_hierarchy(src_cfs_rq) ||
2830 throttled_hierarchy(dest_cfs_rq);
2831}
2832
2833/* updated child weight may affect parent so we have to do this bottom up */
2834static int tg_unthrottle_up(struct task_group *tg, void *data)
2835{
2836 struct rq *rq = data;
2837 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2838
2839 cfs_rq->throttle_count--;
2840#ifdef CONFIG_SMP
2841 if (!cfs_rq->throttle_count) {
f1b17280 2842 /* adjust cfs_rq_clock_task() */
78becc27 2843 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 2844 cfs_rq->throttled_clock_task;
64660c86
PT
2845 }
2846#endif
2847
2848 return 0;
2849}
2850
2851static int tg_throttle_down(struct task_group *tg, void *data)
2852{
2853 struct rq *rq = data;
2854 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2855
82958366
PT
2856 /* group is entering throttled state, stop time */
2857 if (!cfs_rq->throttle_count)
78becc27 2858 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
2859 cfs_rq->throttle_count++;
2860
2861 return 0;
2862}
2863
d3d9dc33 2864static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2865{
2866 struct rq *rq = rq_of(cfs_rq);
2867 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2868 struct sched_entity *se;
2869 long task_delta, dequeue = 1;
2870
2871 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2872
f1b17280 2873 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2874 rcu_read_lock();
2875 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2876 rcu_read_unlock();
85dac906
PT
2877
2878 task_delta = cfs_rq->h_nr_running;
2879 for_each_sched_entity(se) {
2880 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2881 /* throttled entity or throttle-on-deactivate */
2882 if (!se->on_rq)
2883 break;
2884
2885 if (dequeue)
2886 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2887 qcfs_rq->h_nr_running -= task_delta;
2888
2889 if (qcfs_rq->load.weight)
2890 dequeue = 0;
2891 }
2892
2893 if (!se)
2894 rq->nr_running -= task_delta;
2895
2896 cfs_rq->throttled = 1;
78becc27 2897 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
2898 raw_spin_lock(&cfs_b->lock);
2899 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2900 raw_spin_unlock(&cfs_b->lock);
2901}
2902
029632fb 2903void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2904{
2905 struct rq *rq = rq_of(cfs_rq);
2906 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2907 struct sched_entity *se;
2908 int enqueue = 1;
2909 long task_delta;
2910
22b958d8 2911 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
2912
2913 cfs_rq->throttled = 0;
1a55af2e
FW
2914
2915 update_rq_clock(rq);
2916
671fd9da 2917 raw_spin_lock(&cfs_b->lock);
78becc27 2918 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
2919 list_del_rcu(&cfs_rq->throttled_list);
2920 raw_spin_unlock(&cfs_b->lock);
2921
64660c86
PT
2922 /* update hierarchical throttle state */
2923 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2924
671fd9da
PT
2925 if (!cfs_rq->load.weight)
2926 return;
2927
2928 task_delta = cfs_rq->h_nr_running;
2929 for_each_sched_entity(se) {
2930 if (se->on_rq)
2931 enqueue = 0;
2932
2933 cfs_rq = cfs_rq_of(se);
2934 if (enqueue)
2935 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2936 cfs_rq->h_nr_running += task_delta;
2937
2938 if (cfs_rq_throttled(cfs_rq))
2939 break;
2940 }
2941
2942 if (!se)
2943 rq->nr_running += task_delta;
2944
2945 /* determine whether we need to wake up potentially idle cpu */
2946 if (rq->curr == rq->idle && rq->cfs.nr_running)
2947 resched_task(rq->curr);
2948}
2949
2950static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2951 u64 remaining, u64 expires)
2952{
2953 struct cfs_rq *cfs_rq;
2954 u64 runtime = remaining;
2955
2956 rcu_read_lock();
2957 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2958 throttled_list) {
2959 struct rq *rq = rq_of(cfs_rq);
2960
2961 raw_spin_lock(&rq->lock);
2962 if (!cfs_rq_throttled(cfs_rq))
2963 goto next;
2964
2965 runtime = -cfs_rq->runtime_remaining + 1;
2966 if (runtime > remaining)
2967 runtime = remaining;
2968 remaining -= runtime;
2969
2970 cfs_rq->runtime_remaining += runtime;
2971 cfs_rq->runtime_expires = expires;
2972
2973 /* we check whether we're throttled above */
2974 if (cfs_rq->runtime_remaining > 0)
2975 unthrottle_cfs_rq(cfs_rq);
2976
2977next:
2978 raw_spin_unlock(&rq->lock);
2979
2980 if (!remaining)
2981 break;
2982 }
2983 rcu_read_unlock();
2984
2985 return remaining;
2986}
2987
58088ad0
PT
2988/*
2989 * Responsible for refilling a task_group's bandwidth and unthrottling its
2990 * cfs_rqs as appropriate. If there has been no activity within the last
2991 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2992 * used to track this state.
2993 */
2994static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2995{
671fd9da
PT
2996 u64 runtime, runtime_expires;
2997 int idle = 1, throttled;
58088ad0
PT
2998
2999 raw_spin_lock(&cfs_b->lock);
3000 /* no need to continue the timer with no bandwidth constraint */
3001 if (cfs_b->quota == RUNTIME_INF)
3002 goto out_unlock;
3003
671fd9da
PT
3004 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3005 /* idle depends on !throttled (for the case of a large deficit) */
3006 idle = cfs_b->idle && !throttled;
e8da1b18 3007 cfs_b->nr_periods += overrun;
671fd9da 3008
a9cf55b2
PT
3009 /* if we're going inactive then everything else can be deferred */
3010 if (idle)
3011 goto out_unlock;
3012
3013 __refill_cfs_bandwidth_runtime(cfs_b);
3014
671fd9da
PT
3015 if (!throttled) {
3016 /* mark as potentially idle for the upcoming period */
3017 cfs_b->idle = 1;
3018 goto out_unlock;
3019 }
3020
e8da1b18
NR
3021 /* account preceding periods in which throttling occurred */
3022 cfs_b->nr_throttled += overrun;
3023
671fd9da
PT
3024 /*
3025 * There are throttled entities so we must first use the new bandwidth
3026 * to unthrottle them before making it generally available. This
3027 * ensures that all existing debts will be paid before a new cfs_rq is
3028 * allowed to run.
3029 */
3030 runtime = cfs_b->runtime;
3031 runtime_expires = cfs_b->runtime_expires;
3032 cfs_b->runtime = 0;
3033
3034 /*
3035 * This check is repeated as we are holding onto the new bandwidth
3036 * while we unthrottle. This can potentially race with an unthrottled
3037 * group trying to acquire new bandwidth from the global pool.
3038 */
3039 while (throttled && runtime > 0) {
3040 raw_spin_unlock(&cfs_b->lock);
3041 /* we can't nest cfs_b->lock while distributing bandwidth */
3042 runtime = distribute_cfs_runtime(cfs_b, runtime,
3043 runtime_expires);
3044 raw_spin_lock(&cfs_b->lock);
3045
3046 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3047 }
58088ad0 3048
671fd9da
PT
3049 /* return (any) remaining runtime */
3050 cfs_b->runtime = runtime;
3051 /*
3052 * While we are ensured activity in the period following an
3053 * unthrottle, this also covers the case in which the new bandwidth is
3054 * insufficient to cover the existing bandwidth deficit. (Forcing the
3055 * timer to remain active while there are any throttled entities.)
3056 */
3057 cfs_b->idle = 0;
58088ad0
PT
3058out_unlock:
3059 if (idle)
3060 cfs_b->timer_active = 0;
3061 raw_spin_unlock(&cfs_b->lock);
3062
3063 return idle;
3064}
d3d9dc33 3065
d8b4986d
PT
3066/* a cfs_rq won't donate quota below this amount */
3067static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3068/* minimum remaining period time to redistribute slack quota */
3069static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3070/* how long we wait to gather additional slack before distributing */
3071static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3072
3073/* are we near the end of the current quota period? */
3074static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3075{
3076 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3077 u64 remaining;
3078
3079 /* if the call-back is running a quota refresh is already occurring */
3080 if (hrtimer_callback_running(refresh_timer))
3081 return 1;
3082
3083 /* is a quota refresh about to occur? */
3084 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3085 if (remaining < min_expire)
3086 return 1;
3087
3088 return 0;
3089}
3090
3091static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3092{
3093 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3094
3095 /* if there's a quota refresh soon don't bother with slack */
3096 if (runtime_refresh_within(cfs_b, min_left))
3097 return;
3098
3099 start_bandwidth_timer(&cfs_b->slack_timer,
3100 ns_to_ktime(cfs_bandwidth_slack_period));
3101}
3102
3103/* we know any runtime found here is valid as update_curr() precedes return */
3104static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3105{
3106 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3107 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3108
3109 if (slack_runtime <= 0)
3110 return;
3111
3112 raw_spin_lock(&cfs_b->lock);
3113 if (cfs_b->quota != RUNTIME_INF &&
3114 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3115 cfs_b->runtime += slack_runtime;
3116
3117 /* we are under rq->lock, defer unthrottling using a timer */
3118 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3119 !list_empty(&cfs_b->throttled_cfs_rq))
3120 start_cfs_slack_bandwidth(cfs_b);
3121 }
3122 raw_spin_unlock(&cfs_b->lock);
3123
3124 /* even if it's not valid for return we don't want to try again */
3125 cfs_rq->runtime_remaining -= slack_runtime;
3126}
3127
3128static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3129{
56f570e5
PT
3130 if (!cfs_bandwidth_used())
3131 return;
3132
fccfdc6f 3133 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3134 return;
3135
3136 __return_cfs_rq_runtime(cfs_rq);
3137}
3138
3139/*
3140 * This is done with a timer (instead of inline with bandwidth return) since
3141 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3142 */
3143static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3144{
3145 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3146 u64 expires;
3147
3148 /* confirm we're still not at a refresh boundary */
3149 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3150 return;
3151
3152 raw_spin_lock(&cfs_b->lock);
3153 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3154 runtime = cfs_b->runtime;
3155 cfs_b->runtime = 0;
3156 }
3157 expires = cfs_b->runtime_expires;
3158 raw_spin_unlock(&cfs_b->lock);
3159
3160 if (!runtime)
3161 return;
3162
3163 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3164
3165 raw_spin_lock(&cfs_b->lock);
3166 if (expires == cfs_b->runtime_expires)
3167 cfs_b->runtime = runtime;
3168 raw_spin_unlock(&cfs_b->lock);
3169}
3170
d3d9dc33
PT
3171/*
3172 * When a group wakes up we want to make sure that its quota is not already
3173 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3174 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3175 */
3176static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3177{
56f570e5
PT
3178 if (!cfs_bandwidth_used())
3179 return;
3180
d3d9dc33
PT
3181 /* an active group must be handled by the update_curr()->put() path */
3182 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3183 return;
3184
3185 /* ensure the group is not already throttled */
3186 if (cfs_rq_throttled(cfs_rq))
3187 return;
3188
3189 /* update runtime allocation */
3190 account_cfs_rq_runtime(cfs_rq, 0);
3191 if (cfs_rq->runtime_remaining <= 0)
3192 throttle_cfs_rq(cfs_rq);
3193}
3194
3195/* conditionally throttle active cfs_rq's from put_prev_entity() */
3196static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3197{
56f570e5
PT
3198 if (!cfs_bandwidth_used())
3199 return;
3200
d3d9dc33
PT
3201 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3202 return;
3203
3204 /*
3205 * it's possible for a throttled entity to be forced into a running
3206 * state (e.g. set_curr_task), in this case we're finished.
3207 */
3208 if (cfs_rq_throttled(cfs_rq))
3209 return;
3210
3211 throttle_cfs_rq(cfs_rq);
3212}
029632fb 3213
029632fb
PZ
3214static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3215{
3216 struct cfs_bandwidth *cfs_b =
3217 container_of(timer, struct cfs_bandwidth, slack_timer);
3218 do_sched_cfs_slack_timer(cfs_b);
3219
3220 return HRTIMER_NORESTART;
3221}
3222
3223static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3224{
3225 struct cfs_bandwidth *cfs_b =
3226 container_of(timer, struct cfs_bandwidth, period_timer);
3227 ktime_t now;
3228 int overrun;
3229 int idle = 0;
3230
3231 for (;;) {
3232 now = hrtimer_cb_get_time(timer);
3233 overrun = hrtimer_forward(timer, now, cfs_b->period);
3234
3235 if (!overrun)
3236 break;
3237
3238 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3239 }
3240
3241 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3242}
3243
3244void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3245{
3246 raw_spin_lock_init(&cfs_b->lock);
3247 cfs_b->runtime = 0;
3248 cfs_b->quota = RUNTIME_INF;
3249 cfs_b->period = ns_to_ktime(default_cfs_period());
3250
3251 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3252 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3253 cfs_b->period_timer.function = sched_cfs_period_timer;
3254 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3255 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3256}
3257
3258static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3259{
3260 cfs_rq->runtime_enabled = 0;
3261 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3262}
3263
3264/* requires cfs_b->lock, may release to reprogram timer */
3265void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3266{
3267 /*
3268 * The timer may be active because we're trying to set a new bandwidth
3269 * period or because we're racing with the tear-down path
3270 * (timer_active==0 becomes visible before the hrtimer call-back
3271 * terminates). In either case we ensure that it's re-programmed
3272 */
3273 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3274 raw_spin_unlock(&cfs_b->lock);
3275 /* ensure cfs_b->lock is available while we wait */
3276 hrtimer_cancel(&cfs_b->period_timer);
3277
3278 raw_spin_lock(&cfs_b->lock);
3279 /* if someone else restarted the timer then we're done */
3280 if (cfs_b->timer_active)
3281 return;
3282 }
3283
3284 cfs_b->timer_active = 1;
3285 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3286}
3287
3288static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3289{
3290 hrtimer_cancel(&cfs_b->period_timer);
3291 hrtimer_cancel(&cfs_b->slack_timer);
3292}
3293
38dc3348 3294static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3295{
3296 struct cfs_rq *cfs_rq;
3297
3298 for_each_leaf_cfs_rq(rq, cfs_rq) {
3299 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3300
3301 if (!cfs_rq->runtime_enabled)
3302 continue;
3303
3304 /*
3305 * clock_task is not advancing so we just need to make sure
3306 * there's some valid quota amount
3307 */
3308 cfs_rq->runtime_remaining = cfs_b->quota;
3309 if (cfs_rq_throttled(cfs_rq))
3310 unthrottle_cfs_rq(cfs_rq);
3311 }
3312}
3313
3314#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3315static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3316{
78becc27 3317 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3318}
3319
3320static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3321 unsigned long delta_exec) {}
d3d9dc33
PT
3322static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3323static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3324static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3325
3326static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3327{
3328 return 0;
3329}
64660c86
PT
3330
3331static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3332{
3333 return 0;
3334}
3335
3336static inline int throttled_lb_pair(struct task_group *tg,
3337 int src_cpu, int dest_cpu)
3338{
3339 return 0;
3340}
029632fb
PZ
3341
3342void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3343
3344#ifdef CONFIG_FAIR_GROUP_SCHED
3345static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3346#endif
3347
029632fb
PZ
3348static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3349{
3350 return NULL;
3351}
3352static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3353static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3354
3355#endif /* CONFIG_CFS_BANDWIDTH */
3356
bf0f6f24
IM
3357/**************************************************
3358 * CFS operations on tasks:
3359 */
3360
8f4d37ec
PZ
3361#ifdef CONFIG_SCHED_HRTICK
3362static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3363{
8f4d37ec
PZ
3364 struct sched_entity *se = &p->se;
3365 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3366
3367 WARN_ON(task_rq(p) != rq);
3368
b39e66ea 3369 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3370 u64 slice = sched_slice(cfs_rq, se);
3371 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3372 s64 delta = slice - ran;
3373
3374 if (delta < 0) {
3375 if (rq->curr == p)
3376 resched_task(p);
3377 return;
3378 }
3379
3380 /*
3381 * Don't schedule slices shorter than 10000ns, that just
3382 * doesn't make sense. Rely on vruntime for fairness.
3383 */
31656519 3384 if (rq->curr != p)
157124c1 3385 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3386
31656519 3387 hrtick_start(rq, delta);
8f4d37ec
PZ
3388 }
3389}
a4c2f00f
PZ
3390
3391/*
3392 * called from enqueue/dequeue and updates the hrtick when the
3393 * current task is from our class and nr_running is low enough
3394 * to matter.
3395 */
3396static void hrtick_update(struct rq *rq)
3397{
3398 struct task_struct *curr = rq->curr;
3399
b39e66ea 3400 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3401 return;
3402
3403 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3404 hrtick_start_fair(rq, curr);
3405}
55e12e5e 3406#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3407static inline void
3408hrtick_start_fair(struct rq *rq, struct task_struct *p)
3409{
3410}
a4c2f00f
PZ
3411
3412static inline void hrtick_update(struct rq *rq)
3413{
3414}
8f4d37ec
PZ
3415#endif
3416
bf0f6f24
IM
3417/*
3418 * The enqueue_task method is called before nr_running is
3419 * increased. Here we update the fair scheduling stats and
3420 * then put the task into the rbtree:
3421 */
ea87bb78 3422static void
371fd7e7 3423enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3424{
3425 struct cfs_rq *cfs_rq;
62fb1851 3426 struct sched_entity *se = &p->se;
bf0f6f24
IM
3427
3428 for_each_sched_entity(se) {
62fb1851 3429 if (se->on_rq)
bf0f6f24
IM
3430 break;
3431 cfs_rq = cfs_rq_of(se);
88ec22d3 3432 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3433
3434 /*
3435 * end evaluation on encountering a throttled cfs_rq
3436 *
3437 * note: in the case of encountering a throttled cfs_rq we will
3438 * post the final h_nr_running increment below.
3439 */
3440 if (cfs_rq_throttled(cfs_rq))
3441 break;
953bfcd1 3442 cfs_rq->h_nr_running++;
85dac906 3443
88ec22d3 3444 flags = ENQUEUE_WAKEUP;
bf0f6f24 3445 }
8f4d37ec 3446
2069dd75 3447 for_each_sched_entity(se) {
0f317143 3448 cfs_rq = cfs_rq_of(se);
953bfcd1 3449 cfs_rq->h_nr_running++;
2069dd75 3450
85dac906
PT
3451 if (cfs_rq_throttled(cfs_rq))
3452 break;
3453
17bc14b7 3454 update_cfs_shares(cfs_rq);
9ee474f5 3455 update_entity_load_avg(se, 1);
2069dd75
PZ
3456 }
3457
18bf2805
BS
3458 if (!se) {
3459 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3460 inc_nr_running(rq);
18bf2805 3461 }
a4c2f00f 3462 hrtick_update(rq);
bf0f6f24
IM
3463}
3464
2f36825b
VP
3465static void set_next_buddy(struct sched_entity *se);
3466
bf0f6f24
IM
3467/*
3468 * The dequeue_task method is called before nr_running is
3469 * decreased. We remove the task from the rbtree and
3470 * update the fair scheduling stats:
3471 */
371fd7e7 3472static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3473{
3474 struct cfs_rq *cfs_rq;
62fb1851 3475 struct sched_entity *se = &p->se;
2f36825b 3476 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3477
3478 for_each_sched_entity(se) {
3479 cfs_rq = cfs_rq_of(se);
371fd7e7 3480 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3481
3482 /*
3483 * end evaluation on encountering a throttled cfs_rq
3484 *
3485 * note: in the case of encountering a throttled cfs_rq we will
3486 * post the final h_nr_running decrement below.
3487 */
3488 if (cfs_rq_throttled(cfs_rq))
3489 break;
953bfcd1 3490 cfs_rq->h_nr_running--;
2069dd75 3491
bf0f6f24 3492 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3493 if (cfs_rq->load.weight) {
3494 /*
3495 * Bias pick_next to pick a task from this cfs_rq, as
3496 * p is sleeping when it is within its sched_slice.
3497 */
3498 if (task_sleep && parent_entity(se))
3499 set_next_buddy(parent_entity(se));
9598c82d
PT
3500
3501 /* avoid re-evaluating load for this entity */
3502 se = parent_entity(se);
bf0f6f24 3503 break;
2f36825b 3504 }
371fd7e7 3505 flags |= DEQUEUE_SLEEP;
bf0f6f24 3506 }
8f4d37ec 3507
2069dd75 3508 for_each_sched_entity(se) {
0f317143 3509 cfs_rq = cfs_rq_of(se);
953bfcd1 3510 cfs_rq->h_nr_running--;
2069dd75 3511
85dac906
PT
3512 if (cfs_rq_throttled(cfs_rq))
3513 break;
3514
17bc14b7 3515 update_cfs_shares(cfs_rq);
9ee474f5 3516 update_entity_load_avg(se, 1);
2069dd75
PZ
3517 }
3518
18bf2805 3519 if (!se) {
85dac906 3520 dec_nr_running(rq);
18bf2805
BS
3521 update_rq_runnable_avg(rq, 1);
3522 }
a4c2f00f 3523 hrtick_update(rq);
bf0f6f24
IM
3524}
3525
e7693a36 3526#ifdef CONFIG_SMP
029632fb
PZ
3527/* Used instead of source_load when we know the type == 0 */
3528static unsigned long weighted_cpuload(const int cpu)
3529{
b92486cb 3530 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3531}
3532
3533/*
3534 * Return a low guess at the load of a migration-source cpu weighted
3535 * according to the scheduling class and "nice" value.
3536 *
3537 * We want to under-estimate the load of migration sources, to
3538 * balance conservatively.
3539 */
3540static unsigned long source_load(int cpu, int type)
3541{
3542 struct rq *rq = cpu_rq(cpu);
3543 unsigned long total = weighted_cpuload(cpu);
3544
3545 if (type == 0 || !sched_feat(LB_BIAS))
3546 return total;
3547
3548 return min(rq->cpu_load[type-1], total);
3549}
3550
3551/*
3552 * Return a high guess at the load of a migration-target cpu weighted
3553 * according to the scheduling class and "nice" value.
3554 */
3555static unsigned long target_load(int cpu, int type)
3556{
3557 struct rq *rq = cpu_rq(cpu);
3558 unsigned long total = weighted_cpuload(cpu);
3559
3560 if (type == 0 || !sched_feat(LB_BIAS))
3561 return total;
3562
3563 return max(rq->cpu_load[type-1], total);
3564}
3565
3566static unsigned long power_of(int cpu)
3567{
3568 return cpu_rq(cpu)->cpu_power;
3569}
3570
3571static unsigned long cpu_avg_load_per_task(int cpu)
3572{
3573 struct rq *rq = cpu_rq(cpu);
3574 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3575 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3576
3577 if (nr_running)
b92486cb 3578 return load_avg / nr_running;
029632fb
PZ
3579
3580 return 0;
3581}
3582
62470419
MW
3583static void record_wakee(struct task_struct *p)
3584{
3585 /*
3586 * Rough decay (wiping) for cost saving, don't worry
3587 * about the boundary, really active task won't care
3588 * about the loss.
3589 */
3590 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3591 current->wakee_flips = 0;
3592 current->wakee_flip_decay_ts = jiffies;
3593 }
3594
3595 if (current->last_wakee != p) {
3596 current->last_wakee = p;
3597 current->wakee_flips++;
3598 }
3599}
098fb9db 3600
74f8e4b2 3601static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3602{
3603 struct sched_entity *se = &p->se;
3604 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3605 u64 min_vruntime;
3606
3607#ifndef CONFIG_64BIT
3608 u64 min_vruntime_copy;
88ec22d3 3609
3fe1698b
PZ
3610 do {
3611 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3612 smp_rmb();
3613 min_vruntime = cfs_rq->min_vruntime;
3614 } while (min_vruntime != min_vruntime_copy);
3615#else
3616 min_vruntime = cfs_rq->min_vruntime;
3617#endif
88ec22d3 3618
3fe1698b 3619 se->vruntime -= min_vruntime;
62470419 3620 record_wakee(p);
88ec22d3
PZ
3621}
3622
bb3469ac 3623#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3624/*
3625 * effective_load() calculates the load change as seen from the root_task_group
3626 *
3627 * Adding load to a group doesn't make a group heavier, but can cause movement
3628 * of group shares between cpus. Assuming the shares were perfectly aligned one
3629 * can calculate the shift in shares.
cf5f0acf
PZ
3630 *
3631 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3632 * on this @cpu and results in a total addition (subtraction) of @wg to the
3633 * total group weight.
3634 *
3635 * Given a runqueue weight distribution (rw_i) we can compute a shares
3636 * distribution (s_i) using:
3637 *
3638 * s_i = rw_i / \Sum rw_j (1)
3639 *
3640 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3641 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3642 * shares distribution (s_i):
3643 *
3644 * rw_i = { 2, 4, 1, 0 }
3645 * s_i = { 2/7, 4/7, 1/7, 0 }
3646 *
3647 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3648 * task used to run on and the CPU the waker is running on), we need to
3649 * compute the effect of waking a task on either CPU and, in case of a sync
3650 * wakeup, compute the effect of the current task going to sleep.
3651 *
3652 * So for a change of @wl to the local @cpu with an overall group weight change
3653 * of @wl we can compute the new shares distribution (s'_i) using:
3654 *
3655 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3656 *
3657 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3658 * differences in waking a task to CPU 0. The additional task changes the
3659 * weight and shares distributions like:
3660 *
3661 * rw'_i = { 3, 4, 1, 0 }
3662 * s'_i = { 3/8, 4/8, 1/8, 0 }
3663 *
3664 * We can then compute the difference in effective weight by using:
3665 *
3666 * dw_i = S * (s'_i - s_i) (3)
3667 *
3668 * Where 'S' is the group weight as seen by its parent.
3669 *
3670 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3671 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3672 * 4/7) times the weight of the group.
f5bfb7d9 3673 */
2069dd75 3674static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3675{
4be9daaa 3676 struct sched_entity *se = tg->se[cpu];
f1d239f7 3677
58d081b5 3678 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3679 return wl;
3680
4be9daaa 3681 for_each_sched_entity(se) {
cf5f0acf 3682 long w, W;
4be9daaa 3683
977dda7c 3684 tg = se->my_q->tg;
bb3469ac 3685
cf5f0acf
PZ
3686 /*
3687 * W = @wg + \Sum rw_j
3688 */
3689 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3690
cf5f0acf
PZ
3691 /*
3692 * w = rw_i + @wl
3693 */
3694 w = se->my_q->load.weight + wl;
940959e9 3695
cf5f0acf
PZ
3696 /*
3697 * wl = S * s'_i; see (2)
3698 */
3699 if (W > 0 && w < W)
3700 wl = (w * tg->shares) / W;
977dda7c
PT
3701 else
3702 wl = tg->shares;
940959e9 3703
cf5f0acf
PZ
3704 /*
3705 * Per the above, wl is the new se->load.weight value; since
3706 * those are clipped to [MIN_SHARES, ...) do so now. See
3707 * calc_cfs_shares().
3708 */
977dda7c
PT
3709 if (wl < MIN_SHARES)
3710 wl = MIN_SHARES;
cf5f0acf
PZ
3711
3712 /*
3713 * wl = dw_i = S * (s'_i - s_i); see (3)
3714 */
977dda7c 3715 wl -= se->load.weight;
cf5f0acf
PZ
3716
3717 /*
3718 * Recursively apply this logic to all parent groups to compute
3719 * the final effective load change on the root group. Since
3720 * only the @tg group gets extra weight, all parent groups can
3721 * only redistribute existing shares. @wl is the shift in shares
3722 * resulting from this level per the above.
3723 */
4be9daaa 3724 wg = 0;
4be9daaa 3725 }
bb3469ac 3726
4be9daaa 3727 return wl;
bb3469ac
PZ
3728}
3729#else
4be9daaa 3730
58d081b5 3731static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3732{
83378269 3733 return wl;
bb3469ac 3734}
4be9daaa 3735
bb3469ac
PZ
3736#endif
3737
62470419
MW
3738static int wake_wide(struct task_struct *p)
3739{
7d9ffa89 3740 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3741
3742 /*
3743 * Yeah, it's the switching-frequency, could means many wakee or
3744 * rapidly switch, use factor here will just help to automatically
3745 * adjust the loose-degree, so bigger node will lead to more pull.
3746 */
3747 if (p->wakee_flips > factor) {
3748 /*
3749 * wakee is somewhat hot, it needs certain amount of cpu
3750 * resource, so if waker is far more hot, prefer to leave
3751 * it alone.
3752 */
3753 if (current->wakee_flips > (factor * p->wakee_flips))
3754 return 1;
3755 }
3756
3757 return 0;
3758}
3759
c88d5910 3760static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3761{
e37b6a7b 3762 s64 this_load, load;
c88d5910 3763 int idx, this_cpu, prev_cpu;
098fb9db 3764 unsigned long tl_per_task;
c88d5910 3765 struct task_group *tg;
83378269 3766 unsigned long weight;
b3137bc8 3767 int balanced;
098fb9db 3768
62470419
MW
3769 /*
3770 * If we wake multiple tasks be careful to not bounce
3771 * ourselves around too much.
3772 */
3773 if (wake_wide(p))
3774 return 0;
3775
c88d5910
PZ
3776 idx = sd->wake_idx;
3777 this_cpu = smp_processor_id();
3778 prev_cpu = task_cpu(p);
3779 load = source_load(prev_cpu, idx);
3780 this_load = target_load(this_cpu, idx);
098fb9db 3781
b3137bc8
MG
3782 /*
3783 * If sync wakeup then subtract the (maximum possible)
3784 * effect of the currently running task from the load
3785 * of the current CPU:
3786 */
83378269
PZ
3787 if (sync) {
3788 tg = task_group(current);
3789 weight = current->se.load.weight;
3790
c88d5910 3791 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3792 load += effective_load(tg, prev_cpu, 0, -weight);
3793 }
b3137bc8 3794
83378269
PZ
3795 tg = task_group(p);
3796 weight = p->se.load.weight;
b3137bc8 3797
71a29aa7
PZ
3798 /*
3799 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3800 * due to the sync cause above having dropped this_load to 0, we'll
3801 * always have an imbalance, but there's really nothing you can do
3802 * about that, so that's good too.
71a29aa7
PZ
3803 *
3804 * Otherwise check if either cpus are near enough in load to allow this
3805 * task to be woken on this_cpu.
3806 */
e37b6a7b
PT
3807 if (this_load > 0) {
3808 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3809
3810 this_eff_load = 100;
3811 this_eff_load *= power_of(prev_cpu);
3812 this_eff_load *= this_load +
3813 effective_load(tg, this_cpu, weight, weight);
3814
3815 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3816 prev_eff_load *= power_of(this_cpu);
3817 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3818
3819 balanced = this_eff_load <= prev_eff_load;
3820 } else
3821 balanced = true;
b3137bc8 3822
098fb9db 3823 /*
4ae7d5ce
IM
3824 * If the currently running task will sleep within
3825 * a reasonable amount of time then attract this newly
3826 * woken task:
098fb9db 3827 */
2fb7635c
PZ
3828 if (sync && balanced)
3829 return 1;
098fb9db 3830
41acab88 3831 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3832 tl_per_task = cpu_avg_load_per_task(this_cpu);
3833
c88d5910
PZ
3834 if (balanced ||
3835 (this_load <= load &&
3836 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3837 /*
3838 * This domain has SD_WAKE_AFFINE and
3839 * p is cache cold in this domain, and
3840 * there is no bad imbalance.
3841 */
c88d5910 3842 schedstat_inc(sd, ttwu_move_affine);
41acab88 3843 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3844
3845 return 1;
3846 }
3847 return 0;
3848}
3849
aaee1203
PZ
3850/*
3851 * find_idlest_group finds and returns the least busy CPU group within the
3852 * domain.
3853 */
3854static struct sched_group *
78e7ed53 3855find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3856 int this_cpu, int load_idx)
e7693a36 3857{
b3bd3de6 3858 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3859 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3860 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3861
aaee1203
PZ
3862 do {
3863 unsigned long load, avg_load;
3864 int local_group;
3865 int i;
e7693a36 3866
aaee1203
PZ
3867 /* Skip over this group if it has no CPUs allowed */
3868 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3869 tsk_cpus_allowed(p)))
aaee1203
PZ
3870 continue;
3871
3872 local_group = cpumask_test_cpu(this_cpu,
3873 sched_group_cpus(group));
3874
3875 /* Tally up the load of all CPUs in the group */
3876 avg_load = 0;
3877
3878 for_each_cpu(i, sched_group_cpus(group)) {
3879 /* Bias balancing toward cpus of our domain */
3880 if (local_group)
3881 load = source_load(i, load_idx);
3882 else
3883 load = target_load(i, load_idx);
3884
3885 avg_load += load;
3886 }
3887
3888 /* Adjust by relative CPU power of the group */
9c3f75cb 3889 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3890
3891 if (local_group) {
3892 this_load = avg_load;
aaee1203
PZ
3893 } else if (avg_load < min_load) {
3894 min_load = avg_load;
3895 idlest = group;
3896 }
3897 } while (group = group->next, group != sd->groups);
3898
3899 if (!idlest || 100*this_load < imbalance*min_load)
3900 return NULL;
3901 return idlest;
3902}
3903
3904/*
3905 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3906 */
3907static int
3908find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3909{
3910 unsigned long load, min_load = ULONG_MAX;
3911 int idlest = -1;
3912 int i;
3913
3914 /* Traverse only the allowed CPUs */
fa17b507 3915 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3916 load = weighted_cpuload(i);
3917
3918 if (load < min_load || (load == min_load && i == this_cpu)) {
3919 min_load = load;
3920 idlest = i;
e7693a36
GH
3921 }
3922 }
3923
aaee1203
PZ
3924 return idlest;
3925}
e7693a36 3926
a50bde51
PZ
3927/*
3928 * Try and locate an idle CPU in the sched_domain.
3929 */
99bd5e2f 3930static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3931{
99bd5e2f 3932 struct sched_domain *sd;
37407ea7 3933 struct sched_group *sg;
e0a79f52 3934 int i = task_cpu(p);
a50bde51 3935
e0a79f52
MG
3936 if (idle_cpu(target))
3937 return target;
99bd5e2f
SS
3938
3939 /*
e0a79f52 3940 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3941 */
e0a79f52
MG
3942 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3943 return i;
a50bde51
PZ
3944
3945 /*
37407ea7 3946 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3947 */
518cd623 3948 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3949 for_each_lower_domain(sd) {
37407ea7
LT
3950 sg = sd->groups;
3951 do {
3952 if (!cpumask_intersects(sched_group_cpus(sg),
3953 tsk_cpus_allowed(p)))
3954 goto next;
3955
3956 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3957 if (i == target || !idle_cpu(i))
37407ea7
LT
3958 goto next;
3959 }
970e1789 3960
37407ea7
LT
3961 target = cpumask_first_and(sched_group_cpus(sg),
3962 tsk_cpus_allowed(p));
3963 goto done;
3964next:
3965 sg = sg->next;
3966 } while (sg != sd->groups);
3967 }
3968done:
a50bde51
PZ
3969 return target;
3970}
3971
aaee1203
PZ
3972/*
3973 * sched_balance_self: balance the current task (running on cpu) in domains
3974 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3975 * SD_BALANCE_EXEC.
3976 *
3977 * Balance, ie. select the least loaded group.
3978 *
3979 * Returns the target CPU number, or the same CPU if no balancing is needed.
3980 *
3981 * preempt must be disabled.
3982 */
0017d735 3983static int
ac66f547 3984select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 3985{
29cd8bae 3986 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 3987 int cpu = smp_processor_id();
c88d5910 3988 int new_cpu = cpu;
99bd5e2f 3989 int want_affine = 0;
5158f4e4 3990 int sync = wake_flags & WF_SYNC;
c88d5910 3991
29baa747 3992 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3993 return prev_cpu;
3994
0763a660 3995 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3996 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3997 want_affine = 1;
3998 new_cpu = prev_cpu;
3999 }
aaee1203 4000
dce840a0 4001 rcu_read_lock();
aaee1203 4002 for_each_domain(cpu, tmp) {
e4f42888
PZ
4003 if (!(tmp->flags & SD_LOAD_BALANCE))
4004 continue;
4005
fe3bcfe1 4006 /*
99bd5e2f
SS
4007 * If both cpu and prev_cpu are part of this domain,
4008 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4009 */
99bd5e2f
SS
4010 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4011 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4012 affine_sd = tmp;
29cd8bae 4013 break;
f03542a7 4014 }
29cd8bae 4015
f03542a7 4016 if (tmp->flags & sd_flag)
29cd8bae
PZ
4017 sd = tmp;
4018 }
4019
8b911acd 4020 if (affine_sd) {
f03542a7 4021 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4022 prev_cpu = cpu;
4023
4024 new_cpu = select_idle_sibling(p, prev_cpu);
4025 goto unlock;
8b911acd 4026 }
e7693a36 4027
aaee1203 4028 while (sd) {
5158f4e4 4029 int load_idx = sd->forkexec_idx;
aaee1203 4030 struct sched_group *group;
c88d5910 4031 int weight;
098fb9db 4032
0763a660 4033 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4034 sd = sd->child;
4035 continue;
4036 }
098fb9db 4037
5158f4e4
PZ
4038 if (sd_flag & SD_BALANCE_WAKE)
4039 load_idx = sd->wake_idx;
098fb9db 4040
5158f4e4 4041 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
4042 if (!group) {
4043 sd = sd->child;
4044 continue;
4045 }
4ae7d5ce 4046
d7c33c49 4047 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4048 if (new_cpu == -1 || new_cpu == cpu) {
4049 /* Now try balancing at a lower domain level of cpu */
4050 sd = sd->child;
4051 continue;
e7693a36 4052 }
aaee1203
PZ
4053
4054 /* Now try balancing at a lower domain level of new_cpu */
4055 cpu = new_cpu;
669c55e9 4056 weight = sd->span_weight;
aaee1203
PZ
4057 sd = NULL;
4058 for_each_domain(cpu, tmp) {
669c55e9 4059 if (weight <= tmp->span_weight)
aaee1203 4060 break;
0763a660 4061 if (tmp->flags & sd_flag)
aaee1203
PZ
4062 sd = tmp;
4063 }
4064 /* while loop will break here if sd == NULL */
e7693a36 4065 }
dce840a0
PZ
4066unlock:
4067 rcu_read_unlock();
e7693a36 4068
c88d5910 4069 return new_cpu;
e7693a36 4070}
0a74bef8
PT
4071
4072/*
4073 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4074 * cfs_rq_of(p) references at time of call are still valid and identify the
4075 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4076 * other assumptions, including the state of rq->lock, should be made.
4077 */
4078static void
4079migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4080{
aff3e498
PT
4081 struct sched_entity *se = &p->se;
4082 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4083
4084 /*
4085 * Load tracking: accumulate removed load so that it can be processed
4086 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4087 * to blocked load iff they have a positive decay-count. It can never
4088 * be negative here since on-rq tasks have decay-count == 0.
4089 */
4090 if (se->avg.decay_count) {
4091 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4092 atomic_long_add(se->avg.load_avg_contrib,
4093 &cfs_rq->removed_load);
aff3e498 4094 }
0a74bef8 4095}
e7693a36
GH
4096#endif /* CONFIG_SMP */
4097
e52fb7c0
PZ
4098static unsigned long
4099wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4100{
4101 unsigned long gran = sysctl_sched_wakeup_granularity;
4102
4103 /*
e52fb7c0
PZ
4104 * Since its curr running now, convert the gran from real-time
4105 * to virtual-time in his units.
13814d42
MG
4106 *
4107 * By using 'se' instead of 'curr' we penalize light tasks, so
4108 * they get preempted easier. That is, if 'se' < 'curr' then
4109 * the resulting gran will be larger, therefore penalizing the
4110 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4111 * be smaller, again penalizing the lighter task.
4112 *
4113 * This is especially important for buddies when the leftmost
4114 * task is higher priority than the buddy.
0bbd3336 4115 */
f4ad9bd2 4116 return calc_delta_fair(gran, se);
0bbd3336
PZ
4117}
4118
464b7527
PZ
4119/*
4120 * Should 'se' preempt 'curr'.
4121 *
4122 * |s1
4123 * |s2
4124 * |s3
4125 * g
4126 * |<--->|c
4127 *
4128 * w(c, s1) = -1
4129 * w(c, s2) = 0
4130 * w(c, s3) = 1
4131 *
4132 */
4133static int
4134wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4135{
4136 s64 gran, vdiff = curr->vruntime - se->vruntime;
4137
4138 if (vdiff <= 0)
4139 return -1;
4140
e52fb7c0 4141 gran = wakeup_gran(curr, se);
464b7527
PZ
4142 if (vdiff > gran)
4143 return 1;
4144
4145 return 0;
4146}
4147
02479099
PZ
4148static void set_last_buddy(struct sched_entity *se)
4149{
69c80f3e
VP
4150 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4151 return;
4152
4153 for_each_sched_entity(se)
4154 cfs_rq_of(se)->last = se;
02479099
PZ
4155}
4156
4157static void set_next_buddy(struct sched_entity *se)
4158{
69c80f3e
VP
4159 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4160 return;
4161
4162 for_each_sched_entity(se)
4163 cfs_rq_of(se)->next = se;
02479099
PZ
4164}
4165
ac53db59
RR
4166static void set_skip_buddy(struct sched_entity *se)
4167{
69c80f3e
VP
4168 for_each_sched_entity(se)
4169 cfs_rq_of(se)->skip = se;
ac53db59
RR
4170}
4171
bf0f6f24
IM
4172/*
4173 * Preempt the current task with a newly woken task if needed:
4174 */
5a9b86f6 4175static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4176{
4177 struct task_struct *curr = rq->curr;
8651a86c 4178 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4179 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4180 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4181 int next_buddy_marked = 0;
bf0f6f24 4182
4ae7d5ce
IM
4183 if (unlikely(se == pse))
4184 return;
4185
5238cdd3 4186 /*
ddcdf6e7 4187 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4188 * unconditionally check_prempt_curr() after an enqueue (which may have
4189 * lead to a throttle). This both saves work and prevents false
4190 * next-buddy nomination below.
4191 */
4192 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4193 return;
4194
2f36825b 4195 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4196 set_next_buddy(pse);
2f36825b
VP
4197 next_buddy_marked = 1;
4198 }
57fdc26d 4199
aec0a514
BR
4200 /*
4201 * We can come here with TIF_NEED_RESCHED already set from new task
4202 * wake up path.
5238cdd3
PT
4203 *
4204 * Note: this also catches the edge-case of curr being in a throttled
4205 * group (e.g. via set_curr_task), since update_curr() (in the
4206 * enqueue of curr) will have resulted in resched being set. This
4207 * prevents us from potentially nominating it as a false LAST_BUDDY
4208 * below.
aec0a514
BR
4209 */
4210 if (test_tsk_need_resched(curr))
4211 return;
4212
a2f5c9ab
DH
4213 /* Idle tasks are by definition preempted by non-idle tasks. */
4214 if (unlikely(curr->policy == SCHED_IDLE) &&
4215 likely(p->policy != SCHED_IDLE))
4216 goto preempt;
4217
91c234b4 4218 /*
a2f5c9ab
DH
4219 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4220 * is driven by the tick):
91c234b4 4221 */
8ed92e51 4222 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4223 return;
bf0f6f24 4224
464b7527 4225 find_matching_se(&se, &pse);
9bbd7374 4226 update_curr(cfs_rq_of(se));
002f128b 4227 BUG_ON(!pse);
2f36825b
VP
4228 if (wakeup_preempt_entity(se, pse) == 1) {
4229 /*
4230 * Bias pick_next to pick the sched entity that is
4231 * triggering this preemption.
4232 */
4233 if (!next_buddy_marked)
4234 set_next_buddy(pse);
3a7e73a2 4235 goto preempt;
2f36825b 4236 }
464b7527 4237
3a7e73a2 4238 return;
a65ac745 4239
3a7e73a2
PZ
4240preempt:
4241 resched_task(curr);
4242 /*
4243 * Only set the backward buddy when the current task is still
4244 * on the rq. This can happen when a wakeup gets interleaved
4245 * with schedule on the ->pre_schedule() or idle_balance()
4246 * point, either of which can * drop the rq lock.
4247 *
4248 * Also, during early boot the idle thread is in the fair class,
4249 * for obvious reasons its a bad idea to schedule back to it.
4250 */
4251 if (unlikely(!se->on_rq || curr == rq->idle))
4252 return;
4253
4254 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4255 set_last_buddy(se);
bf0f6f24
IM
4256}
4257
fb8d4724 4258static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4259{
8f4d37ec 4260 struct task_struct *p;
bf0f6f24
IM
4261 struct cfs_rq *cfs_rq = &rq->cfs;
4262 struct sched_entity *se;
4263
36ace27e 4264 if (!cfs_rq->nr_running)
bf0f6f24
IM
4265 return NULL;
4266
4267 do {
9948f4b2 4268 se = pick_next_entity(cfs_rq);
f4b6755f 4269 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4270 cfs_rq = group_cfs_rq(se);
4271 } while (cfs_rq);
4272
8f4d37ec 4273 p = task_of(se);
b39e66ea
MG
4274 if (hrtick_enabled(rq))
4275 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4276
4277 return p;
bf0f6f24
IM
4278}
4279
4280/*
4281 * Account for a descheduled task:
4282 */
31ee529c 4283static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4284{
4285 struct sched_entity *se = &prev->se;
4286 struct cfs_rq *cfs_rq;
4287
4288 for_each_sched_entity(se) {
4289 cfs_rq = cfs_rq_of(se);
ab6cde26 4290 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4291 }
4292}
4293
ac53db59
RR
4294/*
4295 * sched_yield() is very simple
4296 *
4297 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4298 */
4299static void yield_task_fair(struct rq *rq)
4300{
4301 struct task_struct *curr = rq->curr;
4302 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4303 struct sched_entity *se = &curr->se;
4304
4305 /*
4306 * Are we the only task in the tree?
4307 */
4308 if (unlikely(rq->nr_running == 1))
4309 return;
4310
4311 clear_buddies(cfs_rq, se);
4312
4313 if (curr->policy != SCHED_BATCH) {
4314 update_rq_clock(rq);
4315 /*
4316 * Update run-time statistics of the 'current'.
4317 */
4318 update_curr(cfs_rq);
916671c0
MG
4319 /*
4320 * Tell update_rq_clock() that we've just updated,
4321 * so we don't do microscopic update in schedule()
4322 * and double the fastpath cost.
4323 */
4324 rq->skip_clock_update = 1;
ac53db59
RR
4325 }
4326
4327 set_skip_buddy(se);
4328}
4329
d95f4122
MG
4330static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4331{
4332 struct sched_entity *se = &p->se;
4333
5238cdd3
PT
4334 /* throttled hierarchies are not runnable */
4335 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4336 return false;
4337
4338 /* Tell the scheduler that we'd really like pse to run next. */
4339 set_next_buddy(se);
4340
d95f4122
MG
4341 yield_task_fair(rq);
4342
4343 return true;
4344}
4345
681f3e68 4346#ifdef CONFIG_SMP
bf0f6f24 4347/**************************************************
e9c84cb8
PZ
4348 * Fair scheduling class load-balancing methods.
4349 *
4350 * BASICS
4351 *
4352 * The purpose of load-balancing is to achieve the same basic fairness the
4353 * per-cpu scheduler provides, namely provide a proportional amount of compute
4354 * time to each task. This is expressed in the following equation:
4355 *
4356 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4357 *
4358 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4359 * W_i,0 is defined as:
4360 *
4361 * W_i,0 = \Sum_j w_i,j (2)
4362 *
4363 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4364 * is derived from the nice value as per prio_to_weight[].
4365 *
4366 * The weight average is an exponential decay average of the instantaneous
4367 * weight:
4368 *
4369 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4370 *
4371 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4372 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4373 * can also include other factors [XXX].
4374 *
4375 * To achieve this balance we define a measure of imbalance which follows
4376 * directly from (1):
4377 *
4378 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4379 *
4380 * We them move tasks around to minimize the imbalance. In the continuous
4381 * function space it is obvious this converges, in the discrete case we get
4382 * a few fun cases generally called infeasible weight scenarios.
4383 *
4384 * [XXX expand on:
4385 * - infeasible weights;
4386 * - local vs global optima in the discrete case. ]
4387 *
4388 *
4389 * SCHED DOMAINS
4390 *
4391 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4392 * for all i,j solution, we create a tree of cpus that follows the hardware
4393 * topology where each level pairs two lower groups (or better). This results
4394 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4395 * tree to only the first of the previous level and we decrease the frequency
4396 * of load-balance at each level inv. proportional to the number of cpus in
4397 * the groups.
4398 *
4399 * This yields:
4400 *
4401 * log_2 n 1 n
4402 * \Sum { --- * --- * 2^i } = O(n) (5)
4403 * i = 0 2^i 2^i
4404 * `- size of each group
4405 * | | `- number of cpus doing load-balance
4406 * | `- freq
4407 * `- sum over all levels
4408 *
4409 * Coupled with a limit on how many tasks we can migrate every balance pass,
4410 * this makes (5) the runtime complexity of the balancer.
4411 *
4412 * An important property here is that each CPU is still (indirectly) connected
4413 * to every other cpu in at most O(log n) steps:
4414 *
4415 * The adjacency matrix of the resulting graph is given by:
4416 *
4417 * log_2 n
4418 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4419 * k = 0
4420 *
4421 * And you'll find that:
4422 *
4423 * A^(log_2 n)_i,j != 0 for all i,j (7)
4424 *
4425 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4426 * The task movement gives a factor of O(m), giving a convergence complexity
4427 * of:
4428 *
4429 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4430 *
4431 *
4432 * WORK CONSERVING
4433 *
4434 * In order to avoid CPUs going idle while there's still work to do, new idle
4435 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4436 * tree itself instead of relying on other CPUs to bring it work.
4437 *
4438 * This adds some complexity to both (5) and (8) but it reduces the total idle
4439 * time.
4440 *
4441 * [XXX more?]
4442 *
4443 *
4444 * CGROUPS
4445 *
4446 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4447 *
4448 * s_k,i
4449 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4450 * S_k
4451 *
4452 * Where
4453 *
4454 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4455 *
4456 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4457 *
4458 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4459 * property.
4460 *
4461 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4462 * rewrite all of this once again.]
4463 */
bf0f6f24 4464
ed387b78
HS
4465static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4466
ddcdf6e7 4467#define LBF_ALL_PINNED 0x01
367456c7 4468#define LBF_NEED_BREAK 0x02
6263322c
PZ
4469#define LBF_DST_PINNED 0x04
4470#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4471
4472struct lb_env {
4473 struct sched_domain *sd;
4474
ddcdf6e7 4475 struct rq *src_rq;
85c1e7da 4476 int src_cpu;
ddcdf6e7
PZ
4477
4478 int dst_cpu;
4479 struct rq *dst_rq;
4480
88b8dac0
SV
4481 struct cpumask *dst_grpmask;
4482 int new_dst_cpu;
ddcdf6e7 4483 enum cpu_idle_type idle;
bd939f45 4484 long imbalance;
b9403130
MW
4485 /* The set of CPUs under consideration for load-balancing */
4486 struct cpumask *cpus;
4487
ddcdf6e7 4488 unsigned int flags;
367456c7
PZ
4489
4490 unsigned int loop;
4491 unsigned int loop_break;
4492 unsigned int loop_max;
ddcdf6e7
PZ
4493};
4494
1e3c88bd 4495/*
ddcdf6e7 4496 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4497 * Both runqueues must be locked.
4498 */
ddcdf6e7 4499static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4500{
ddcdf6e7
PZ
4501 deactivate_task(env->src_rq, p, 0);
4502 set_task_cpu(p, env->dst_cpu);
4503 activate_task(env->dst_rq, p, 0);
4504 check_preempt_curr(env->dst_rq, p, 0);
6fe6b2d6
RR
4505#ifdef CONFIG_NUMA_BALANCING
4506 if (p->numa_preferred_nid != -1) {
4507 int src_nid = cpu_to_node(env->src_cpu);
4508 int dst_nid = cpu_to_node(env->dst_cpu);
4509
4510 /*
4511 * If the load balancer has moved the task then limit
4512 * migrations from taking place in the short term in
4513 * case this is a short-lived migration.
4514 */
4515 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4516 p->numa_migrate_seq = 0;
4517 }
4518#endif
1e3c88bd
PZ
4519}
4520
029632fb
PZ
4521/*
4522 * Is this task likely cache-hot:
4523 */
4524static int
4525task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4526{
4527 s64 delta;
4528
4529 if (p->sched_class != &fair_sched_class)
4530 return 0;
4531
4532 if (unlikely(p->policy == SCHED_IDLE))
4533 return 0;
4534
4535 /*
4536 * Buddy candidates are cache hot:
4537 */
4538 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4539 (&p->se == cfs_rq_of(&p->se)->next ||
4540 &p->se == cfs_rq_of(&p->se)->last))
4541 return 1;
4542
4543 if (sysctl_sched_migration_cost == -1)
4544 return 1;
4545 if (sysctl_sched_migration_cost == 0)
4546 return 0;
4547
4548 delta = now - p->se.exec_start;
4549
4550 return delta < (s64)sysctl_sched_migration_cost;
4551}
4552
3a7053b3
MG
4553#ifdef CONFIG_NUMA_BALANCING
4554/* Returns true if the destination node has incurred more faults */
4555static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4556{
4557 int src_nid, dst_nid;
4558
4559 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4560 !(env->sd->flags & SD_NUMA)) {
4561 return false;
4562 }
4563
4564 src_nid = cpu_to_node(env->src_cpu);
4565 dst_nid = cpu_to_node(env->dst_cpu);
4566
4567 if (src_nid == dst_nid ||
4568 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4569 return false;
4570
4571 if (dst_nid == p->numa_preferred_nid ||
ac8e895b 4572 task_faults(p, dst_nid) > task_faults(p, src_nid))
3a7053b3
MG
4573 return true;
4574
4575 return false;
4576}
7a0f3083
MG
4577
4578
4579static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4580{
4581 int src_nid, dst_nid;
4582
4583 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4584 return false;
4585
4586 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4587 return false;
4588
4589 src_nid = cpu_to_node(env->src_cpu);
4590 dst_nid = cpu_to_node(env->dst_cpu);
4591
4592 if (src_nid == dst_nid ||
4593 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4594 return false;
4595
ac8e895b 4596 if (task_faults(p, dst_nid) < task_faults(p, src_nid))
7a0f3083
MG
4597 return true;
4598
4599 return false;
4600}
4601
3a7053b3
MG
4602#else
4603static inline bool migrate_improves_locality(struct task_struct *p,
4604 struct lb_env *env)
4605{
4606 return false;
4607}
7a0f3083
MG
4608
4609static inline bool migrate_degrades_locality(struct task_struct *p,
4610 struct lb_env *env)
4611{
4612 return false;
4613}
3a7053b3
MG
4614#endif
4615
1e3c88bd
PZ
4616/*
4617 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4618 */
4619static
8e45cb54 4620int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4621{
4622 int tsk_cache_hot = 0;
4623 /*
4624 * We do not migrate tasks that are:
d3198084 4625 * 1) throttled_lb_pair, or
1e3c88bd 4626 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4627 * 3) running (obviously), or
4628 * 4) are cache-hot on their current CPU.
1e3c88bd 4629 */
d3198084
JK
4630 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4631 return 0;
4632
ddcdf6e7 4633 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4634 int cpu;
88b8dac0 4635
41acab88 4636 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4637
6263322c
PZ
4638 env->flags |= LBF_SOME_PINNED;
4639
88b8dac0
SV
4640 /*
4641 * Remember if this task can be migrated to any other cpu in
4642 * our sched_group. We may want to revisit it if we couldn't
4643 * meet load balance goals by pulling other tasks on src_cpu.
4644 *
4645 * Also avoid computing new_dst_cpu if we have already computed
4646 * one in current iteration.
4647 */
6263322c 4648 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4649 return 0;
4650
e02e60c1
JK
4651 /* Prevent to re-select dst_cpu via env's cpus */
4652 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4653 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4654 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4655 env->new_dst_cpu = cpu;
4656 break;
4657 }
88b8dac0 4658 }
e02e60c1 4659
1e3c88bd
PZ
4660 return 0;
4661 }
88b8dac0
SV
4662
4663 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4664 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4665
ddcdf6e7 4666 if (task_running(env->src_rq, p)) {
41acab88 4667 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4668 return 0;
4669 }
4670
4671 /*
4672 * Aggressive migration if:
3a7053b3
MG
4673 * 1) destination numa is preferred
4674 * 2) task is cache cold, or
4675 * 3) too many balance attempts have failed.
1e3c88bd 4676 */
78becc27 4677 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4678 if (!tsk_cache_hot)
4679 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4680
4681 if (migrate_improves_locality(p, env)) {
4682#ifdef CONFIG_SCHEDSTATS
4683 if (tsk_cache_hot) {
4684 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4685 schedstat_inc(p, se.statistics.nr_forced_migrations);
4686 }
4687#endif
4688 return 1;
4689 }
4690
1e3c88bd 4691 if (!tsk_cache_hot ||
8e45cb54 4692 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4693
1e3c88bd 4694 if (tsk_cache_hot) {
8e45cb54 4695 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4696 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4697 }
4e2dcb73 4698
1e3c88bd
PZ
4699 return 1;
4700 }
4701
4e2dcb73
ZH
4702 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4703 return 0;
1e3c88bd
PZ
4704}
4705
897c395f
PZ
4706/*
4707 * move_one_task tries to move exactly one task from busiest to this_rq, as
4708 * part of active balancing operations within "domain".
4709 * Returns 1 if successful and 0 otherwise.
4710 *
4711 * Called with both runqueues locked.
4712 */
8e45cb54 4713static int move_one_task(struct lb_env *env)
897c395f
PZ
4714{
4715 struct task_struct *p, *n;
897c395f 4716
367456c7 4717 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4718 if (!can_migrate_task(p, env))
4719 continue;
897c395f 4720
367456c7
PZ
4721 move_task(p, env);
4722 /*
4723 * Right now, this is only the second place move_task()
4724 * is called, so we can safely collect move_task()
4725 * stats here rather than inside move_task().
4726 */
4727 schedstat_inc(env->sd, lb_gained[env->idle]);
4728 return 1;
897c395f 4729 }
897c395f
PZ
4730 return 0;
4731}
4732
eb95308e
PZ
4733static const unsigned int sched_nr_migrate_break = 32;
4734
5d6523eb 4735/*
bd939f45 4736 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4737 * this_rq, as part of a balancing operation within domain "sd".
4738 * Returns 1 if successful and 0 otherwise.
4739 *
4740 * Called with both runqueues locked.
4741 */
4742static int move_tasks(struct lb_env *env)
1e3c88bd 4743{
5d6523eb
PZ
4744 struct list_head *tasks = &env->src_rq->cfs_tasks;
4745 struct task_struct *p;
367456c7
PZ
4746 unsigned long load;
4747 int pulled = 0;
1e3c88bd 4748
bd939f45 4749 if (env->imbalance <= 0)
5d6523eb 4750 return 0;
1e3c88bd 4751
5d6523eb
PZ
4752 while (!list_empty(tasks)) {
4753 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4754
367456c7
PZ
4755 env->loop++;
4756 /* We've more or less seen every task there is, call it quits */
5d6523eb 4757 if (env->loop > env->loop_max)
367456c7 4758 break;
5d6523eb
PZ
4759
4760 /* take a breather every nr_migrate tasks */
367456c7 4761 if (env->loop > env->loop_break) {
eb95308e 4762 env->loop_break += sched_nr_migrate_break;
8e45cb54 4763 env->flags |= LBF_NEED_BREAK;
ee00e66f 4764 break;
a195f004 4765 }
1e3c88bd 4766
d3198084 4767 if (!can_migrate_task(p, env))
367456c7
PZ
4768 goto next;
4769
4770 load = task_h_load(p);
5d6523eb 4771
eb95308e 4772 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4773 goto next;
4774
bd939f45 4775 if ((load / 2) > env->imbalance)
367456c7 4776 goto next;
1e3c88bd 4777
ddcdf6e7 4778 move_task(p, env);
ee00e66f 4779 pulled++;
bd939f45 4780 env->imbalance -= load;
1e3c88bd
PZ
4781
4782#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4783 /*
4784 * NEWIDLE balancing is a source of latency, so preemptible
4785 * kernels will stop after the first task is pulled to minimize
4786 * the critical section.
4787 */
5d6523eb 4788 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4789 break;
1e3c88bd
PZ
4790#endif
4791
ee00e66f
PZ
4792 /*
4793 * We only want to steal up to the prescribed amount of
4794 * weighted load.
4795 */
bd939f45 4796 if (env->imbalance <= 0)
ee00e66f 4797 break;
367456c7
PZ
4798
4799 continue;
4800next:
5d6523eb 4801 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4802 }
5d6523eb 4803
1e3c88bd 4804 /*
ddcdf6e7
PZ
4805 * Right now, this is one of only two places move_task() is called,
4806 * so we can safely collect move_task() stats here rather than
4807 * inside move_task().
1e3c88bd 4808 */
8e45cb54 4809 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4810
5d6523eb 4811 return pulled;
1e3c88bd
PZ
4812}
4813
230059de 4814#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4815/*
4816 * update tg->load_weight by folding this cpu's load_avg
4817 */
48a16753 4818static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4819{
48a16753
PT
4820 struct sched_entity *se = tg->se[cpu];
4821 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4822
48a16753
PT
4823 /* throttled entities do not contribute to load */
4824 if (throttled_hierarchy(cfs_rq))
4825 return;
9e3081ca 4826
aff3e498 4827 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4828
82958366
PT
4829 if (se) {
4830 update_entity_load_avg(se, 1);
4831 /*
4832 * We pivot on our runnable average having decayed to zero for
4833 * list removal. This generally implies that all our children
4834 * have also been removed (modulo rounding error or bandwidth
4835 * control); however, such cases are rare and we can fix these
4836 * at enqueue.
4837 *
4838 * TODO: fix up out-of-order children on enqueue.
4839 */
4840 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4841 list_del_leaf_cfs_rq(cfs_rq);
4842 } else {
48a16753 4843 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4844 update_rq_runnable_avg(rq, rq->nr_running);
4845 }
9e3081ca
PZ
4846}
4847
48a16753 4848static void update_blocked_averages(int cpu)
9e3081ca 4849{
9e3081ca 4850 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4851 struct cfs_rq *cfs_rq;
4852 unsigned long flags;
9e3081ca 4853
48a16753
PT
4854 raw_spin_lock_irqsave(&rq->lock, flags);
4855 update_rq_clock(rq);
9763b67f
PZ
4856 /*
4857 * Iterates the task_group tree in a bottom up fashion, see
4858 * list_add_leaf_cfs_rq() for details.
4859 */
64660c86 4860 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4861 /*
4862 * Note: We may want to consider periodically releasing
4863 * rq->lock about these updates so that creating many task
4864 * groups does not result in continually extending hold time.
4865 */
4866 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4867 }
48a16753
PT
4868
4869 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4870}
4871
9763b67f 4872/*
68520796 4873 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
4874 * This needs to be done in a top-down fashion because the load of a child
4875 * group is a fraction of its parents load.
4876 */
68520796 4877static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 4878{
68520796
VD
4879 struct rq *rq = rq_of(cfs_rq);
4880 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 4881 unsigned long now = jiffies;
68520796 4882 unsigned long load;
a35b6466 4883
68520796 4884 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
4885 return;
4886
68520796
VD
4887 cfs_rq->h_load_next = NULL;
4888 for_each_sched_entity(se) {
4889 cfs_rq = cfs_rq_of(se);
4890 cfs_rq->h_load_next = se;
4891 if (cfs_rq->last_h_load_update == now)
4892 break;
4893 }
a35b6466 4894
68520796 4895 if (!se) {
7e3115ef 4896 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
4897 cfs_rq->last_h_load_update = now;
4898 }
4899
4900 while ((se = cfs_rq->h_load_next) != NULL) {
4901 load = cfs_rq->h_load;
4902 load = div64_ul(load * se->avg.load_avg_contrib,
4903 cfs_rq->runnable_load_avg + 1);
4904 cfs_rq = group_cfs_rq(se);
4905 cfs_rq->h_load = load;
4906 cfs_rq->last_h_load_update = now;
4907 }
9763b67f
PZ
4908}
4909
367456c7 4910static unsigned long task_h_load(struct task_struct *p)
230059de 4911{
367456c7 4912 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 4913
68520796 4914 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
4915 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4916 cfs_rq->runnable_load_avg + 1);
230059de
PZ
4917}
4918#else
48a16753 4919static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4920{
4921}
4922
367456c7 4923static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4924{
a003a25b 4925 return p->se.avg.load_avg_contrib;
1e3c88bd 4926}
230059de 4927#endif
1e3c88bd 4928
1e3c88bd 4929/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
4930/*
4931 * sg_lb_stats - stats of a sched_group required for load_balancing
4932 */
4933struct sg_lb_stats {
4934 unsigned long avg_load; /*Avg load across the CPUs of the group */
4935 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 4936 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 4937 unsigned long load_per_task;
3ae11c90 4938 unsigned long group_power;
147c5fc2
PZ
4939 unsigned int sum_nr_running; /* Nr tasks running in the group */
4940 unsigned int group_capacity;
4941 unsigned int idle_cpus;
4942 unsigned int group_weight;
1e3c88bd 4943 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4944 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4945};
4946
56cf515b
JK
4947/*
4948 * sd_lb_stats - Structure to store the statistics of a sched_domain
4949 * during load balancing.
4950 */
4951struct sd_lb_stats {
4952 struct sched_group *busiest; /* Busiest group in this sd */
4953 struct sched_group *local; /* Local group in this sd */
4954 unsigned long total_load; /* Total load of all groups in sd */
4955 unsigned long total_pwr; /* Total power of all groups in sd */
4956 unsigned long avg_load; /* Average load across all groups in sd */
4957
56cf515b 4958 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 4959 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
4960};
4961
147c5fc2
PZ
4962static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4963{
4964 /*
4965 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4966 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4967 * We must however clear busiest_stat::avg_load because
4968 * update_sd_pick_busiest() reads this before assignment.
4969 */
4970 *sds = (struct sd_lb_stats){
4971 .busiest = NULL,
4972 .local = NULL,
4973 .total_load = 0UL,
4974 .total_pwr = 0UL,
4975 .busiest_stat = {
4976 .avg_load = 0UL,
4977 },
4978 };
4979}
4980
1e3c88bd
PZ
4981/**
4982 * get_sd_load_idx - Obtain the load index for a given sched domain.
4983 * @sd: The sched_domain whose load_idx is to be obtained.
4984 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
e69f6186
YB
4985 *
4986 * Return: The load index.
1e3c88bd
PZ
4987 */
4988static inline int get_sd_load_idx(struct sched_domain *sd,
4989 enum cpu_idle_type idle)
4990{
4991 int load_idx;
4992
4993 switch (idle) {
4994 case CPU_NOT_IDLE:
4995 load_idx = sd->busy_idx;
4996 break;
4997
4998 case CPU_NEWLY_IDLE:
4999 load_idx = sd->newidle_idx;
5000 break;
5001 default:
5002 load_idx = sd->idle_idx;
5003 break;
5004 }
5005
5006 return load_idx;
5007}
5008
15f803c9 5009static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5010{
1399fa78 5011 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5012}
5013
5014unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5015{
5016 return default_scale_freq_power(sd, cpu);
5017}
5018
15f803c9 5019static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5020{
669c55e9 5021 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5022 unsigned long smt_gain = sd->smt_gain;
5023
5024 smt_gain /= weight;
5025
5026 return smt_gain;
5027}
5028
5029unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5030{
5031 return default_scale_smt_power(sd, cpu);
5032}
5033
15f803c9 5034static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5035{
5036 struct rq *rq = cpu_rq(cpu);
b654f7de 5037 u64 total, available, age_stamp, avg;
1e3c88bd 5038
b654f7de
PZ
5039 /*
5040 * Since we're reading these variables without serialization make sure
5041 * we read them once before doing sanity checks on them.
5042 */
5043 age_stamp = ACCESS_ONCE(rq->age_stamp);
5044 avg = ACCESS_ONCE(rq->rt_avg);
5045
78becc27 5046 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5047
b654f7de 5048 if (unlikely(total < avg)) {
aa483808
VP
5049 /* Ensures that power won't end up being negative */
5050 available = 0;
5051 } else {
b654f7de 5052 available = total - avg;
aa483808 5053 }
1e3c88bd 5054
1399fa78
NR
5055 if (unlikely((s64)total < SCHED_POWER_SCALE))
5056 total = SCHED_POWER_SCALE;
1e3c88bd 5057
1399fa78 5058 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5059
5060 return div_u64(available, total);
5061}
5062
5063static void update_cpu_power(struct sched_domain *sd, int cpu)
5064{
669c55e9 5065 unsigned long weight = sd->span_weight;
1399fa78 5066 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5067 struct sched_group *sdg = sd->groups;
5068
1e3c88bd
PZ
5069 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5070 if (sched_feat(ARCH_POWER))
5071 power *= arch_scale_smt_power(sd, cpu);
5072 else
5073 power *= default_scale_smt_power(sd, cpu);
5074
1399fa78 5075 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5076 }
5077
9c3f75cb 5078 sdg->sgp->power_orig = power;
9d5efe05
SV
5079
5080 if (sched_feat(ARCH_POWER))
5081 power *= arch_scale_freq_power(sd, cpu);
5082 else
5083 power *= default_scale_freq_power(sd, cpu);
5084
1399fa78 5085 power >>= SCHED_POWER_SHIFT;
9d5efe05 5086
1e3c88bd 5087 power *= scale_rt_power(cpu);
1399fa78 5088 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5089
5090 if (!power)
5091 power = 1;
5092
e51fd5e2 5093 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5094 sdg->sgp->power = power;
1e3c88bd
PZ
5095}
5096
029632fb 5097void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5098{
5099 struct sched_domain *child = sd->child;
5100 struct sched_group *group, *sdg = sd->groups;
863bffc8 5101 unsigned long power, power_orig;
4ec4412e
VG
5102 unsigned long interval;
5103
5104 interval = msecs_to_jiffies(sd->balance_interval);
5105 interval = clamp(interval, 1UL, max_load_balance_interval);
5106 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5107
5108 if (!child) {
5109 update_cpu_power(sd, cpu);
5110 return;
5111 }
5112
863bffc8 5113 power_orig = power = 0;
1e3c88bd 5114
74a5ce20
PZ
5115 if (child->flags & SD_OVERLAP) {
5116 /*
5117 * SD_OVERLAP domains cannot assume that child groups
5118 * span the current group.
5119 */
5120
863bffc8
PZ
5121 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5122 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5123
5124 power_orig += sg->sgp->power_orig;
5125 power += sg->sgp->power;
5126 }
74a5ce20
PZ
5127 } else {
5128 /*
5129 * !SD_OVERLAP domains can assume that child groups
5130 * span the current group.
5131 */
5132
5133 group = child->groups;
5134 do {
863bffc8 5135 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5136 power += group->sgp->power;
5137 group = group->next;
5138 } while (group != child->groups);
5139 }
1e3c88bd 5140
863bffc8
PZ
5141 sdg->sgp->power_orig = power_orig;
5142 sdg->sgp->power = power;
1e3c88bd
PZ
5143}
5144
9d5efe05
SV
5145/*
5146 * Try and fix up capacity for tiny siblings, this is needed when
5147 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5148 * which on its own isn't powerful enough.
5149 *
5150 * See update_sd_pick_busiest() and check_asym_packing().
5151 */
5152static inline int
5153fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5154{
5155 /*
1399fa78 5156 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5157 */
a6c75f2f 5158 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5159 return 0;
5160
5161 /*
5162 * If ~90% of the cpu_power is still there, we're good.
5163 */
9c3f75cb 5164 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5165 return 1;
5166
5167 return 0;
5168}
5169
30ce5dab
PZ
5170/*
5171 * Group imbalance indicates (and tries to solve) the problem where balancing
5172 * groups is inadequate due to tsk_cpus_allowed() constraints.
5173 *
5174 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5175 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5176 * Something like:
5177 *
5178 * { 0 1 2 3 } { 4 5 6 7 }
5179 * * * * *
5180 *
5181 * If we were to balance group-wise we'd place two tasks in the first group and
5182 * two tasks in the second group. Clearly this is undesired as it will overload
5183 * cpu 3 and leave one of the cpus in the second group unused.
5184 *
5185 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5186 * by noticing the lower domain failed to reach balance and had difficulty
5187 * moving tasks due to affinity constraints.
30ce5dab
PZ
5188 *
5189 * When this is so detected; this group becomes a candidate for busiest; see
5190 * update_sd_pick_busiest(). And calculcate_imbalance() and
6263322c 5191 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5192 * to create an effective group imbalance.
5193 *
5194 * This is a somewhat tricky proposition since the next run might not find the
5195 * group imbalance and decide the groups need to be balanced again. A most
5196 * subtle and fragile situation.
5197 */
5198
6263322c 5199static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5200{
6263322c 5201 return group->sgp->imbalance;
30ce5dab
PZ
5202}
5203
b37d9316
PZ
5204/*
5205 * Compute the group capacity.
5206 *
c61037e9
PZ
5207 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5208 * first dividing out the smt factor and computing the actual number of cores
5209 * and limit power unit capacity with that.
b37d9316
PZ
5210 */
5211static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5212{
c61037e9
PZ
5213 unsigned int capacity, smt, cpus;
5214 unsigned int power, power_orig;
5215
5216 power = group->sgp->power;
5217 power_orig = group->sgp->power_orig;
5218 cpus = group->group_weight;
b37d9316 5219
c61037e9
PZ
5220 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5221 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5222 capacity = cpus / smt; /* cores */
b37d9316 5223
c61037e9 5224 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5225 if (!capacity)
5226 capacity = fix_small_capacity(env->sd, group);
5227
5228 return capacity;
5229}
5230
1e3c88bd
PZ
5231/**
5232 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5233 * @env: The load balancing environment.
1e3c88bd 5234 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5235 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5236 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5237 * @sgs: variable to hold the statistics for this group.
5238 */
bd939f45
PZ
5239static inline void update_sg_lb_stats(struct lb_env *env,
5240 struct sched_group *group, int load_idx,
23f0d209 5241 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5242{
30ce5dab
PZ
5243 unsigned long nr_running;
5244 unsigned long load;
bd939f45 5245 int i;
1e3c88bd 5246
b72ff13c
PZ
5247 memset(sgs, 0, sizeof(*sgs));
5248
b9403130 5249 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5250 struct rq *rq = cpu_rq(i);
5251
e44bc5c5
PZ
5252 nr_running = rq->nr_running;
5253
1e3c88bd 5254 /* Bias balancing toward cpus of our domain */
6263322c 5255 if (local_group)
04f733b4 5256 load = target_load(i, load_idx);
6263322c 5257 else
1e3c88bd 5258 load = source_load(i, load_idx);
1e3c88bd
PZ
5259
5260 sgs->group_load += load;
e44bc5c5 5261 sgs->sum_nr_running += nr_running;
1e3c88bd 5262 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5263 if (idle_cpu(i))
5264 sgs->idle_cpus++;
1e3c88bd
PZ
5265 }
5266
1e3c88bd 5267 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5268 sgs->group_power = group->sgp->power;
5269 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5270
dd5feea1 5271 if (sgs->sum_nr_running)
38d0f770 5272 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5273
aae6d3dd 5274 sgs->group_weight = group->group_weight;
fab47622 5275
b37d9316
PZ
5276 sgs->group_imb = sg_imbalanced(group);
5277 sgs->group_capacity = sg_capacity(env, group);
5278
fab47622
NR
5279 if (sgs->group_capacity > sgs->sum_nr_running)
5280 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5281}
5282
532cb4c4
MN
5283/**
5284 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5285 * @env: The load balancing environment.
532cb4c4
MN
5286 * @sds: sched_domain statistics
5287 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5288 * @sgs: sched_group statistics
532cb4c4
MN
5289 *
5290 * Determine if @sg is a busier group than the previously selected
5291 * busiest group.
e69f6186
YB
5292 *
5293 * Return: %true if @sg is a busier group than the previously selected
5294 * busiest group. %false otherwise.
532cb4c4 5295 */
bd939f45 5296static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5297 struct sd_lb_stats *sds,
5298 struct sched_group *sg,
bd939f45 5299 struct sg_lb_stats *sgs)
532cb4c4 5300{
56cf515b 5301 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5302 return false;
5303
5304 if (sgs->sum_nr_running > sgs->group_capacity)
5305 return true;
5306
5307 if (sgs->group_imb)
5308 return true;
5309
5310 /*
5311 * ASYM_PACKING needs to move all the work to the lowest
5312 * numbered CPUs in the group, therefore mark all groups
5313 * higher than ourself as busy.
5314 */
bd939f45
PZ
5315 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5316 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5317 if (!sds->busiest)
5318 return true;
5319
5320 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5321 return true;
5322 }
5323
5324 return false;
5325}
5326
1e3c88bd 5327/**
461819ac 5328 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5329 * @env: The load balancing environment.
1e3c88bd
PZ
5330 * @balance: Should we balance.
5331 * @sds: variable to hold the statistics for this sched_domain.
5332 */
bd939f45 5333static inline void update_sd_lb_stats(struct lb_env *env,
23f0d209 5334 struct sd_lb_stats *sds)
1e3c88bd 5335{
bd939f45
PZ
5336 struct sched_domain *child = env->sd->child;
5337 struct sched_group *sg = env->sd->groups;
56cf515b 5338 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5339 int load_idx, prefer_sibling = 0;
5340
5341 if (child && child->flags & SD_PREFER_SIBLING)
5342 prefer_sibling = 1;
5343
bd939f45 5344 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5345
5346 do {
56cf515b 5347 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5348 int local_group;
5349
bd939f45 5350 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5351 if (local_group) {
5352 sds->local = sg;
5353 sgs = &sds->local_stat;
b72ff13c
PZ
5354
5355 if (env->idle != CPU_NEWLY_IDLE ||
5356 time_after_eq(jiffies, sg->sgp->next_update))
5357 update_group_power(env->sd, env->dst_cpu);
56cf515b 5358 }
1e3c88bd 5359
56cf515b 5360 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5361
b72ff13c
PZ
5362 if (local_group)
5363 goto next_group;
5364
1e3c88bd
PZ
5365 /*
5366 * In case the child domain prefers tasks go to siblings
532cb4c4 5367 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5368 * and move all the excess tasks away. We lower the capacity
5369 * of a group only if the local group has the capacity to fit
5370 * these excess tasks, i.e. nr_running < group_capacity. The
5371 * extra check prevents the case where you always pull from the
5372 * heaviest group when it is already under-utilized (possible
5373 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5374 */
b72ff13c
PZ
5375 if (prefer_sibling && sds->local &&
5376 sds->local_stat.group_has_capacity)
147c5fc2 5377 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5378
b72ff13c 5379 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5380 sds->busiest = sg;
56cf515b 5381 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5382 }
5383
b72ff13c
PZ
5384next_group:
5385 /* Now, start updating sd_lb_stats */
5386 sds->total_load += sgs->group_load;
5387 sds->total_pwr += sgs->group_power;
5388
532cb4c4 5389 sg = sg->next;
bd939f45 5390 } while (sg != env->sd->groups);
532cb4c4
MN
5391}
5392
532cb4c4
MN
5393/**
5394 * check_asym_packing - Check to see if the group is packed into the
5395 * sched doman.
5396 *
5397 * This is primarily intended to used at the sibling level. Some
5398 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5399 * case of POWER7, it can move to lower SMT modes only when higher
5400 * threads are idle. When in lower SMT modes, the threads will
5401 * perform better since they share less core resources. Hence when we
5402 * have idle threads, we want them to be the higher ones.
5403 *
5404 * This packing function is run on idle threads. It checks to see if
5405 * the busiest CPU in this domain (core in the P7 case) has a higher
5406 * CPU number than the packing function is being run on. Here we are
5407 * assuming lower CPU number will be equivalent to lower a SMT thread
5408 * number.
5409 *
e69f6186 5410 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5411 * this CPU. The amount of the imbalance is returned in *imbalance.
5412 *
cd96891d 5413 * @env: The load balancing environment.
532cb4c4 5414 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5415 */
bd939f45 5416static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5417{
5418 int busiest_cpu;
5419
bd939f45 5420 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5421 return 0;
5422
5423 if (!sds->busiest)
5424 return 0;
5425
5426 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5427 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5428 return 0;
5429
bd939f45 5430 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5431 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5432 SCHED_POWER_SCALE);
bd939f45 5433
532cb4c4 5434 return 1;
1e3c88bd
PZ
5435}
5436
5437/**
5438 * fix_small_imbalance - Calculate the minor imbalance that exists
5439 * amongst the groups of a sched_domain, during
5440 * load balancing.
cd96891d 5441 * @env: The load balancing environment.
1e3c88bd 5442 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5443 */
bd939f45
PZ
5444static inline
5445void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5446{
5447 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5448 unsigned int imbn = 2;
dd5feea1 5449 unsigned long scaled_busy_load_per_task;
56cf515b 5450 struct sg_lb_stats *local, *busiest;
1e3c88bd 5451
56cf515b
JK
5452 local = &sds->local_stat;
5453 busiest = &sds->busiest_stat;
1e3c88bd 5454
56cf515b
JK
5455 if (!local->sum_nr_running)
5456 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5457 else if (busiest->load_per_task > local->load_per_task)
5458 imbn = 1;
dd5feea1 5459
56cf515b
JK
5460 scaled_busy_load_per_task =
5461 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5462 busiest->group_power;
56cf515b 5463
3029ede3
VD
5464 if (busiest->avg_load + scaled_busy_load_per_task >=
5465 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5466 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5467 return;
5468 }
5469
5470 /*
5471 * OK, we don't have enough imbalance to justify moving tasks,
5472 * however we may be able to increase total CPU power used by
5473 * moving them.
5474 */
5475
3ae11c90 5476 pwr_now += busiest->group_power *
56cf515b 5477 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5478 pwr_now += local->group_power *
56cf515b 5479 min(local->load_per_task, local->avg_load);
1399fa78 5480 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5481
5482 /* Amount of load we'd subtract */
56cf515b 5483 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5484 busiest->group_power;
56cf515b 5485 if (busiest->avg_load > tmp) {
3ae11c90 5486 pwr_move += busiest->group_power *
56cf515b
JK
5487 min(busiest->load_per_task,
5488 busiest->avg_load - tmp);
5489 }
1e3c88bd
PZ
5490
5491 /* Amount of load we'd add */
3ae11c90 5492 if (busiest->avg_load * busiest->group_power <
56cf515b 5493 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5494 tmp = (busiest->avg_load * busiest->group_power) /
5495 local->group_power;
56cf515b
JK
5496 } else {
5497 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5498 local->group_power;
56cf515b 5499 }
3ae11c90
PZ
5500 pwr_move += local->group_power *
5501 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5502 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5503
5504 /* Move if we gain throughput */
5505 if (pwr_move > pwr_now)
56cf515b 5506 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5507}
5508
5509/**
5510 * calculate_imbalance - Calculate the amount of imbalance present within the
5511 * groups of a given sched_domain during load balance.
bd939f45 5512 * @env: load balance environment
1e3c88bd 5513 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5514 */
bd939f45 5515static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5516{
dd5feea1 5517 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5518 struct sg_lb_stats *local, *busiest;
5519
5520 local = &sds->local_stat;
56cf515b 5521 busiest = &sds->busiest_stat;
dd5feea1 5522
56cf515b 5523 if (busiest->group_imb) {
30ce5dab
PZ
5524 /*
5525 * In the group_imb case we cannot rely on group-wide averages
5526 * to ensure cpu-load equilibrium, look at wider averages. XXX
5527 */
56cf515b
JK
5528 busiest->load_per_task =
5529 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5530 }
5531
1e3c88bd
PZ
5532 /*
5533 * In the presence of smp nice balancing, certain scenarios can have
5534 * max load less than avg load(as we skip the groups at or below
5535 * its cpu_power, while calculating max_load..)
5536 */
b1885550
VD
5537 if (busiest->avg_load <= sds->avg_load ||
5538 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5539 env->imbalance = 0;
5540 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5541 }
5542
56cf515b 5543 if (!busiest->group_imb) {
dd5feea1
SS
5544 /*
5545 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5546 * Except of course for the group_imb case, since then we might
5547 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5548 */
56cf515b
JK
5549 load_above_capacity =
5550 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5551
1399fa78 5552 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5553 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5554 }
5555
5556 /*
5557 * We're trying to get all the cpus to the average_load, so we don't
5558 * want to push ourselves above the average load, nor do we wish to
5559 * reduce the max loaded cpu below the average load. At the same time,
5560 * we also don't want to reduce the group load below the group capacity
5561 * (so that we can implement power-savings policies etc). Thus we look
5562 * for the minimum possible imbalance.
dd5feea1 5563 */
30ce5dab 5564 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5565
5566 /* How much load to actually move to equalise the imbalance */
56cf515b 5567 env->imbalance = min(
3ae11c90
PZ
5568 max_pull * busiest->group_power,
5569 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5570 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5571
5572 /*
5573 * if *imbalance is less than the average load per runnable task
25985edc 5574 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5575 * a think about bumping its value to force at least one task to be
5576 * moved
5577 */
56cf515b 5578 if (env->imbalance < busiest->load_per_task)
bd939f45 5579 return fix_small_imbalance(env, sds);
1e3c88bd 5580}
fab47622 5581
1e3c88bd
PZ
5582/******* find_busiest_group() helpers end here *********************/
5583
5584/**
5585 * find_busiest_group - Returns the busiest group within the sched_domain
5586 * if there is an imbalance. If there isn't an imbalance, and
5587 * the user has opted for power-savings, it returns a group whose
5588 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5589 * such a group exists.
5590 *
5591 * Also calculates the amount of weighted load which should be moved
5592 * to restore balance.
5593 *
cd96891d 5594 * @env: The load balancing environment.
1e3c88bd 5595 *
e69f6186 5596 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5597 * - If no imbalance and user has opted for power-savings balance,
5598 * return the least loaded group whose CPUs can be
5599 * put to idle by rebalancing its tasks onto our group.
5600 */
56cf515b 5601static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5602{
56cf515b 5603 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5604 struct sd_lb_stats sds;
5605
147c5fc2 5606 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5607
5608 /*
5609 * Compute the various statistics relavent for load balancing at
5610 * this level.
5611 */
23f0d209 5612 update_sd_lb_stats(env, &sds);
56cf515b
JK
5613 local = &sds.local_stat;
5614 busiest = &sds.busiest_stat;
1e3c88bd 5615
bd939f45
PZ
5616 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5617 check_asym_packing(env, &sds))
532cb4c4
MN
5618 return sds.busiest;
5619
cc57aa8f 5620 /* There is no busy sibling group to pull tasks from */
56cf515b 5621 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5622 goto out_balanced;
5623
1399fa78 5624 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5625
866ab43e
PZ
5626 /*
5627 * If the busiest group is imbalanced the below checks don't
30ce5dab 5628 * work because they assume all things are equal, which typically
866ab43e
PZ
5629 * isn't true due to cpus_allowed constraints and the like.
5630 */
56cf515b 5631 if (busiest->group_imb)
866ab43e
PZ
5632 goto force_balance;
5633
cc57aa8f 5634 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5635 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5636 !busiest->group_has_capacity)
fab47622
NR
5637 goto force_balance;
5638
cc57aa8f
PZ
5639 /*
5640 * If the local group is more busy than the selected busiest group
5641 * don't try and pull any tasks.
5642 */
56cf515b 5643 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5644 goto out_balanced;
5645
cc57aa8f
PZ
5646 /*
5647 * Don't pull any tasks if this group is already above the domain
5648 * average load.
5649 */
56cf515b 5650 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5651 goto out_balanced;
5652
bd939f45 5653 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5654 /*
5655 * This cpu is idle. If the busiest group load doesn't
5656 * have more tasks than the number of available cpu's and
5657 * there is no imbalance between this and busiest group
5658 * wrt to idle cpu's, it is balanced.
5659 */
56cf515b
JK
5660 if ((local->idle_cpus < busiest->idle_cpus) &&
5661 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5662 goto out_balanced;
c186fafe
PZ
5663 } else {
5664 /*
5665 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5666 * imbalance_pct to be conservative.
5667 */
56cf515b
JK
5668 if (100 * busiest->avg_load <=
5669 env->sd->imbalance_pct * local->avg_load)
c186fafe 5670 goto out_balanced;
aae6d3dd 5671 }
1e3c88bd 5672
fab47622 5673force_balance:
1e3c88bd 5674 /* Looks like there is an imbalance. Compute it */
bd939f45 5675 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5676 return sds.busiest;
5677
5678out_balanced:
bd939f45 5679 env->imbalance = 0;
1e3c88bd
PZ
5680 return NULL;
5681}
5682
5683/*
5684 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5685 */
bd939f45 5686static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5687 struct sched_group *group)
1e3c88bd
PZ
5688{
5689 struct rq *busiest = NULL, *rq;
95a79b80 5690 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5691 int i;
5692
6906a408 5693 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd 5694 unsigned long power = power_of(i);
1399fa78
NR
5695 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5696 SCHED_POWER_SCALE);
1e3c88bd
PZ
5697 unsigned long wl;
5698
9d5efe05 5699 if (!capacity)
bd939f45 5700 capacity = fix_small_capacity(env->sd, group);
9d5efe05 5701
1e3c88bd 5702 rq = cpu_rq(i);
6e40f5bb 5703 wl = weighted_cpuload(i);
1e3c88bd 5704
6e40f5bb
TG
5705 /*
5706 * When comparing with imbalance, use weighted_cpuload()
5707 * which is not scaled with the cpu power.
5708 */
bd939f45 5709 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
5710 continue;
5711
6e40f5bb
TG
5712 /*
5713 * For the load comparisons with the other cpu's, consider
5714 * the weighted_cpuload() scaled with the cpu power, so that
5715 * the load can be moved away from the cpu that is potentially
5716 * running at a lower capacity.
95a79b80
JK
5717 *
5718 * Thus we're looking for max(wl_i / power_i), crosswise
5719 * multiplication to rid ourselves of the division works out
5720 * to: wl_i * power_j > wl_j * power_i; where j is our
5721 * previous maximum.
6e40f5bb 5722 */
95a79b80
JK
5723 if (wl * busiest_power > busiest_load * power) {
5724 busiest_load = wl;
5725 busiest_power = power;
1e3c88bd
PZ
5726 busiest = rq;
5727 }
5728 }
5729
5730 return busiest;
5731}
5732
5733/*
5734 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5735 * so long as it is large enough.
5736 */
5737#define MAX_PINNED_INTERVAL 512
5738
5739/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 5740DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 5741
bd939f45 5742static int need_active_balance(struct lb_env *env)
1af3ed3d 5743{
bd939f45
PZ
5744 struct sched_domain *sd = env->sd;
5745
5746 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
5747
5748 /*
5749 * ASYM_PACKING needs to force migrate tasks from busy but
5750 * higher numbered CPUs in order to pack all tasks in the
5751 * lowest numbered CPUs.
5752 */
bd939f45 5753 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5754 return 1;
1af3ed3d
PZ
5755 }
5756
5757 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5758}
5759
969c7921
TH
5760static int active_load_balance_cpu_stop(void *data);
5761
23f0d209
JK
5762static int should_we_balance(struct lb_env *env)
5763{
5764 struct sched_group *sg = env->sd->groups;
5765 struct cpumask *sg_cpus, *sg_mask;
5766 int cpu, balance_cpu = -1;
5767
5768 /*
5769 * In the newly idle case, we will allow all the cpu's
5770 * to do the newly idle load balance.
5771 */
5772 if (env->idle == CPU_NEWLY_IDLE)
5773 return 1;
5774
5775 sg_cpus = sched_group_cpus(sg);
5776 sg_mask = sched_group_mask(sg);
5777 /* Try to find first idle cpu */
5778 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5779 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5780 continue;
5781
5782 balance_cpu = cpu;
5783 break;
5784 }
5785
5786 if (balance_cpu == -1)
5787 balance_cpu = group_balance_cpu(sg);
5788
5789 /*
5790 * First idle cpu or the first cpu(busiest) in this sched group
5791 * is eligible for doing load balancing at this and above domains.
5792 */
b0cff9d8 5793 return balance_cpu == env->dst_cpu;
23f0d209
JK
5794}
5795
1e3c88bd
PZ
5796/*
5797 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5798 * tasks if there is an imbalance.
5799 */
5800static int load_balance(int this_cpu, struct rq *this_rq,
5801 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 5802 int *continue_balancing)
1e3c88bd 5803{
88b8dac0 5804 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 5805 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 5806 struct sched_group *group;
1e3c88bd
PZ
5807 struct rq *busiest;
5808 unsigned long flags;
e6252c3e 5809 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5810
8e45cb54
PZ
5811 struct lb_env env = {
5812 .sd = sd,
ddcdf6e7
PZ
5813 .dst_cpu = this_cpu,
5814 .dst_rq = this_rq,
88b8dac0 5815 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5816 .idle = idle,
eb95308e 5817 .loop_break = sched_nr_migrate_break,
b9403130 5818 .cpus = cpus,
8e45cb54
PZ
5819 };
5820
cfc03118
JK
5821 /*
5822 * For NEWLY_IDLE load_balancing, we don't need to consider
5823 * other cpus in our group
5824 */
e02e60c1 5825 if (idle == CPU_NEWLY_IDLE)
cfc03118 5826 env.dst_grpmask = NULL;
cfc03118 5827
1e3c88bd
PZ
5828 cpumask_copy(cpus, cpu_active_mask);
5829
1e3c88bd
PZ
5830 schedstat_inc(sd, lb_count[idle]);
5831
5832redo:
23f0d209
JK
5833 if (!should_we_balance(&env)) {
5834 *continue_balancing = 0;
1e3c88bd 5835 goto out_balanced;
23f0d209 5836 }
1e3c88bd 5837
23f0d209 5838 group = find_busiest_group(&env);
1e3c88bd
PZ
5839 if (!group) {
5840 schedstat_inc(sd, lb_nobusyg[idle]);
5841 goto out_balanced;
5842 }
5843
b9403130 5844 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5845 if (!busiest) {
5846 schedstat_inc(sd, lb_nobusyq[idle]);
5847 goto out_balanced;
5848 }
5849
78feefc5 5850 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5851
bd939f45 5852 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5853
5854 ld_moved = 0;
5855 if (busiest->nr_running > 1) {
5856 /*
5857 * Attempt to move tasks. If find_busiest_group has found
5858 * an imbalance but busiest->nr_running <= 1, the group is
5859 * still unbalanced. ld_moved simply stays zero, so it is
5860 * correctly treated as an imbalance.
5861 */
8e45cb54 5862 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5863 env.src_cpu = busiest->cpu;
5864 env.src_rq = busiest;
5865 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5866
5d6523eb 5867more_balance:
1e3c88bd 5868 local_irq_save(flags);
78feefc5 5869 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5870
5871 /*
5872 * cur_ld_moved - load moved in current iteration
5873 * ld_moved - cumulative load moved across iterations
5874 */
5875 cur_ld_moved = move_tasks(&env);
5876 ld_moved += cur_ld_moved;
78feefc5 5877 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5878 local_irq_restore(flags);
5879
5880 /*
5881 * some other cpu did the load balance for us.
5882 */
88b8dac0
SV
5883 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5884 resched_cpu(env.dst_cpu);
5885
f1cd0858
JK
5886 if (env.flags & LBF_NEED_BREAK) {
5887 env.flags &= ~LBF_NEED_BREAK;
5888 goto more_balance;
5889 }
5890
88b8dac0
SV
5891 /*
5892 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5893 * us and move them to an alternate dst_cpu in our sched_group
5894 * where they can run. The upper limit on how many times we
5895 * iterate on same src_cpu is dependent on number of cpus in our
5896 * sched_group.
5897 *
5898 * This changes load balance semantics a bit on who can move
5899 * load to a given_cpu. In addition to the given_cpu itself
5900 * (or a ilb_cpu acting on its behalf where given_cpu is
5901 * nohz-idle), we now have balance_cpu in a position to move
5902 * load to given_cpu. In rare situations, this may cause
5903 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5904 * _independently_ and at _same_ time to move some load to
5905 * given_cpu) causing exceess load to be moved to given_cpu.
5906 * This however should not happen so much in practice and
5907 * moreover subsequent load balance cycles should correct the
5908 * excess load moved.
5909 */
6263322c 5910 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 5911
7aff2e3a
VD
5912 /* Prevent to re-select dst_cpu via env's cpus */
5913 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5914
78feefc5 5915 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 5916 env.dst_cpu = env.new_dst_cpu;
6263322c 5917 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
5918 env.loop = 0;
5919 env.loop_break = sched_nr_migrate_break;
e02e60c1 5920
88b8dac0
SV
5921 /*
5922 * Go back to "more_balance" rather than "redo" since we
5923 * need to continue with same src_cpu.
5924 */
5925 goto more_balance;
5926 }
1e3c88bd 5927
6263322c
PZ
5928 /*
5929 * We failed to reach balance because of affinity.
5930 */
5931 if (sd_parent) {
5932 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5933
5934 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5935 *group_imbalance = 1;
5936 } else if (*group_imbalance)
5937 *group_imbalance = 0;
5938 }
5939
1e3c88bd 5940 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5941 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5942 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5943 if (!cpumask_empty(cpus)) {
5944 env.loop = 0;
5945 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5946 goto redo;
bbf18b19 5947 }
1e3c88bd
PZ
5948 goto out_balanced;
5949 }
5950 }
5951
5952 if (!ld_moved) {
5953 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5954 /*
5955 * Increment the failure counter only on periodic balance.
5956 * We do not want newidle balance, which can be very
5957 * frequent, pollute the failure counter causing
5958 * excessive cache_hot migrations and active balances.
5959 */
5960 if (idle != CPU_NEWLY_IDLE)
5961 sd->nr_balance_failed++;
1e3c88bd 5962
bd939f45 5963 if (need_active_balance(&env)) {
1e3c88bd
PZ
5964 raw_spin_lock_irqsave(&busiest->lock, flags);
5965
969c7921
TH
5966 /* don't kick the active_load_balance_cpu_stop,
5967 * if the curr task on busiest cpu can't be
5968 * moved to this_cpu
1e3c88bd
PZ
5969 */
5970 if (!cpumask_test_cpu(this_cpu,
fa17b507 5971 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5972 raw_spin_unlock_irqrestore(&busiest->lock,
5973 flags);
8e45cb54 5974 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5975 goto out_one_pinned;
5976 }
5977
969c7921
TH
5978 /*
5979 * ->active_balance synchronizes accesses to
5980 * ->active_balance_work. Once set, it's cleared
5981 * only after active load balance is finished.
5982 */
1e3c88bd
PZ
5983 if (!busiest->active_balance) {
5984 busiest->active_balance = 1;
5985 busiest->push_cpu = this_cpu;
5986 active_balance = 1;
5987 }
5988 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5989
bd939f45 5990 if (active_balance) {
969c7921
TH
5991 stop_one_cpu_nowait(cpu_of(busiest),
5992 active_load_balance_cpu_stop, busiest,
5993 &busiest->active_balance_work);
bd939f45 5994 }
1e3c88bd
PZ
5995
5996 /*
5997 * We've kicked active balancing, reset the failure
5998 * counter.
5999 */
6000 sd->nr_balance_failed = sd->cache_nice_tries+1;
6001 }
6002 } else
6003 sd->nr_balance_failed = 0;
6004
6005 if (likely(!active_balance)) {
6006 /* We were unbalanced, so reset the balancing interval */
6007 sd->balance_interval = sd->min_interval;
6008 } else {
6009 /*
6010 * If we've begun active balancing, start to back off. This
6011 * case may not be covered by the all_pinned logic if there
6012 * is only 1 task on the busy runqueue (because we don't call
6013 * move_tasks).
6014 */
6015 if (sd->balance_interval < sd->max_interval)
6016 sd->balance_interval *= 2;
6017 }
6018
1e3c88bd
PZ
6019 goto out;
6020
6021out_balanced:
6022 schedstat_inc(sd, lb_balanced[idle]);
6023
6024 sd->nr_balance_failed = 0;
6025
6026out_one_pinned:
6027 /* tune up the balancing interval */
8e45cb54 6028 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6029 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6030 (sd->balance_interval < sd->max_interval))
6031 sd->balance_interval *= 2;
6032
46e49b38 6033 ld_moved = 0;
1e3c88bd 6034out:
1e3c88bd
PZ
6035 return ld_moved;
6036}
6037
1e3c88bd
PZ
6038/*
6039 * idle_balance is called by schedule() if this_cpu is about to become
6040 * idle. Attempts to pull tasks from other CPUs.
6041 */
029632fb 6042void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6043{
6044 struct sched_domain *sd;
6045 int pulled_task = 0;
6046 unsigned long next_balance = jiffies + HZ;
9bd721c5 6047 u64 curr_cost = 0;
1e3c88bd 6048
78becc27 6049 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6050
6051 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6052 return;
6053
f492e12e
PZ
6054 /*
6055 * Drop the rq->lock, but keep IRQ/preempt disabled.
6056 */
6057 raw_spin_unlock(&this_rq->lock);
6058
48a16753 6059 update_blocked_averages(this_cpu);
dce840a0 6060 rcu_read_lock();
1e3c88bd
PZ
6061 for_each_domain(this_cpu, sd) {
6062 unsigned long interval;
23f0d209 6063 int continue_balancing = 1;
9bd721c5 6064 u64 t0, domain_cost;
1e3c88bd
PZ
6065
6066 if (!(sd->flags & SD_LOAD_BALANCE))
6067 continue;
6068
9bd721c5
JL
6069 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6070 break;
6071
f492e12e 6072 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6073 t0 = sched_clock_cpu(this_cpu);
6074
1e3c88bd 6075 /* If we've pulled tasks over stop searching: */
f492e12e 6076 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6077 sd, CPU_NEWLY_IDLE,
6078 &continue_balancing);
9bd721c5
JL
6079
6080 domain_cost = sched_clock_cpu(this_cpu) - t0;
6081 if (domain_cost > sd->max_newidle_lb_cost)
6082 sd->max_newidle_lb_cost = domain_cost;
6083
6084 curr_cost += domain_cost;
f492e12e 6085 }
1e3c88bd
PZ
6086
6087 interval = msecs_to_jiffies(sd->balance_interval);
6088 if (time_after(next_balance, sd->last_balance + interval))
6089 next_balance = sd->last_balance + interval;
d5ad140b
NR
6090 if (pulled_task) {
6091 this_rq->idle_stamp = 0;
1e3c88bd 6092 break;
d5ad140b 6093 }
1e3c88bd 6094 }
dce840a0 6095 rcu_read_unlock();
f492e12e
PZ
6096
6097 raw_spin_lock(&this_rq->lock);
6098
1e3c88bd
PZ
6099 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6100 /*
6101 * We are going idle. next_balance may be set based on
6102 * a busy processor. So reset next_balance.
6103 */
6104 this_rq->next_balance = next_balance;
6105 }
9bd721c5
JL
6106
6107 if (curr_cost > this_rq->max_idle_balance_cost)
6108 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6109}
6110
6111/*
969c7921
TH
6112 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6113 * running tasks off the busiest CPU onto idle CPUs. It requires at
6114 * least 1 task to be running on each physical CPU where possible, and
6115 * avoids physical / logical imbalances.
1e3c88bd 6116 */
969c7921 6117static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6118{
969c7921
TH
6119 struct rq *busiest_rq = data;
6120 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6121 int target_cpu = busiest_rq->push_cpu;
969c7921 6122 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6123 struct sched_domain *sd;
969c7921
TH
6124
6125 raw_spin_lock_irq(&busiest_rq->lock);
6126
6127 /* make sure the requested cpu hasn't gone down in the meantime */
6128 if (unlikely(busiest_cpu != smp_processor_id() ||
6129 !busiest_rq->active_balance))
6130 goto out_unlock;
1e3c88bd
PZ
6131
6132 /* Is there any task to move? */
6133 if (busiest_rq->nr_running <= 1)
969c7921 6134 goto out_unlock;
1e3c88bd
PZ
6135
6136 /*
6137 * This condition is "impossible", if it occurs
6138 * we need to fix it. Originally reported by
6139 * Bjorn Helgaas on a 128-cpu setup.
6140 */
6141 BUG_ON(busiest_rq == target_rq);
6142
6143 /* move a task from busiest_rq to target_rq */
6144 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6145
6146 /* Search for an sd spanning us and the target CPU. */
dce840a0 6147 rcu_read_lock();
1e3c88bd
PZ
6148 for_each_domain(target_cpu, sd) {
6149 if ((sd->flags & SD_LOAD_BALANCE) &&
6150 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6151 break;
6152 }
6153
6154 if (likely(sd)) {
8e45cb54
PZ
6155 struct lb_env env = {
6156 .sd = sd,
ddcdf6e7
PZ
6157 .dst_cpu = target_cpu,
6158 .dst_rq = target_rq,
6159 .src_cpu = busiest_rq->cpu,
6160 .src_rq = busiest_rq,
8e45cb54
PZ
6161 .idle = CPU_IDLE,
6162 };
6163
1e3c88bd
PZ
6164 schedstat_inc(sd, alb_count);
6165
8e45cb54 6166 if (move_one_task(&env))
1e3c88bd
PZ
6167 schedstat_inc(sd, alb_pushed);
6168 else
6169 schedstat_inc(sd, alb_failed);
6170 }
dce840a0 6171 rcu_read_unlock();
1e3c88bd 6172 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6173out_unlock:
6174 busiest_rq->active_balance = 0;
6175 raw_spin_unlock_irq(&busiest_rq->lock);
6176 return 0;
1e3c88bd
PZ
6177}
6178
3451d024 6179#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6180/*
6181 * idle load balancing details
83cd4fe2
VP
6182 * - When one of the busy CPUs notice that there may be an idle rebalancing
6183 * needed, they will kick the idle load balancer, which then does idle
6184 * load balancing for all the idle CPUs.
6185 */
1e3c88bd 6186static struct {
83cd4fe2 6187 cpumask_var_t idle_cpus_mask;
0b005cf5 6188 atomic_t nr_cpus;
83cd4fe2
VP
6189 unsigned long next_balance; /* in jiffy units */
6190} nohz ____cacheline_aligned;
1e3c88bd 6191
8e7fbcbc 6192static inline int find_new_ilb(int call_cpu)
1e3c88bd 6193{
0b005cf5 6194 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6195
786d6dc7
SS
6196 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6197 return ilb;
6198
6199 return nr_cpu_ids;
1e3c88bd 6200}
1e3c88bd 6201
83cd4fe2
VP
6202/*
6203 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6204 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6205 * CPU (if there is one).
6206 */
6207static void nohz_balancer_kick(int cpu)
6208{
6209 int ilb_cpu;
6210
6211 nohz.next_balance++;
6212
0b005cf5 6213 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6214
0b005cf5
SS
6215 if (ilb_cpu >= nr_cpu_ids)
6216 return;
83cd4fe2 6217
cd490c5b 6218 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6219 return;
6220 /*
6221 * Use smp_send_reschedule() instead of resched_cpu().
6222 * This way we generate a sched IPI on the target cpu which
6223 * is idle. And the softirq performing nohz idle load balance
6224 * will be run before returning from the IPI.
6225 */
6226 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6227 return;
6228}
6229
c1cc017c 6230static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6231{
6232 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6233 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6234 atomic_dec(&nohz.nr_cpus);
6235 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6236 }
6237}
6238
69e1e811
SS
6239static inline void set_cpu_sd_state_busy(void)
6240{
6241 struct sched_domain *sd;
69e1e811 6242
69e1e811 6243 rcu_read_lock();
424c93fe 6244 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6245
6246 if (!sd || !sd->nohz_idle)
6247 goto unlock;
6248 sd->nohz_idle = 0;
6249
6250 for (; sd; sd = sd->parent)
69e1e811 6251 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6252unlock:
69e1e811
SS
6253 rcu_read_unlock();
6254}
6255
6256void set_cpu_sd_state_idle(void)
6257{
6258 struct sched_domain *sd;
69e1e811 6259
69e1e811 6260 rcu_read_lock();
424c93fe 6261 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6262
6263 if (!sd || sd->nohz_idle)
6264 goto unlock;
6265 sd->nohz_idle = 1;
6266
6267 for (; sd; sd = sd->parent)
69e1e811 6268 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6269unlock:
69e1e811
SS
6270 rcu_read_unlock();
6271}
6272
1e3c88bd 6273/*
c1cc017c 6274 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6275 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6276 */
c1cc017c 6277void nohz_balance_enter_idle(int cpu)
1e3c88bd 6278{
71325960
SS
6279 /*
6280 * If this cpu is going down, then nothing needs to be done.
6281 */
6282 if (!cpu_active(cpu))
6283 return;
6284
c1cc017c
AS
6285 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6286 return;
1e3c88bd 6287
c1cc017c
AS
6288 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6289 atomic_inc(&nohz.nr_cpus);
6290 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6291}
71325960 6292
0db0628d 6293static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6294 unsigned long action, void *hcpu)
6295{
6296 switch (action & ~CPU_TASKS_FROZEN) {
6297 case CPU_DYING:
c1cc017c 6298 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6299 return NOTIFY_OK;
6300 default:
6301 return NOTIFY_DONE;
6302 }
6303}
1e3c88bd
PZ
6304#endif
6305
6306static DEFINE_SPINLOCK(balancing);
6307
49c022e6
PZ
6308/*
6309 * Scale the max load_balance interval with the number of CPUs in the system.
6310 * This trades load-balance latency on larger machines for less cross talk.
6311 */
029632fb 6312void update_max_interval(void)
49c022e6
PZ
6313{
6314 max_load_balance_interval = HZ*num_online_cpus()/10;
6315}
6316
1e3c88bd
PZ
6317/*
6318 * It checks each scheduling domain to see if it is due to be balanced,
6319 * and initiates a balancing operation if so.
6320 *
b9b0853a 6321 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6322 */
6323static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6324{
23f0d209 6325 int continue_balancing = 1;
1e3c88bd
PZ
6326 struct rq *rq = cpu_rq(cpu);
6327 unsigned long interval;
04f733b4 6328 struct sched_domain *sd;
1e3c88bd
PZ
6329 /* Earliest time when we have to do rebalance again */
6330 unsigned long next_balance = jiffies + 60*HZ;
6331 int update_next_balance = 0;
f48627e6
JL
6332 int need_serialize, need_decay = 0;
6333 u64 max_cost = 0;
1e3c88bd 6334
48a16753 6335 update_blocked_averages(cpu);
2069dd75 6336
dce840a0 6337 rcu_read_lock();
1e3c88bd 6338 for_each_domain(cpu, sd) {
f48627e6
JL
6339 /*
6340 * Decay the newidle max times here because this is a regular
6341 * visit to all the domains. Decay ~1% per second.
6342 */
6343 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6344 sd->max_newidle_lb_cost =
6345 (sd->max_newidle_lb_cost * 253) / 256;
6346 sd->next_decay_max_lb_cost = jiffies + HZ;
6347 need_decay = 1;
6348 }
6349 max_cost += sd->max_newidle_lb_cost;
6350
1e3c88bd
PZ
6351 if (!(sd->flags & SD_LOAD_BALANCE))
6352 continue;
6353
f48627e6
JL
6354 /*
6355 * Stop the load balance at this level. There is another
6356 * CPU in our sched group which is doing load balancing more
6357 * actively.
6358 */
6359 if (!continue_balancing) {
6360 if (need_decay)
6361 continue;
6362 break;
6363 }
6364
1e3c88bd
PZ
6365 interval = sd->balance_interval;
6366 if (idle != CPU_IDLE)
6367 interval *= sd->busy_factor;
6368
6369 /* scale ms to jiffies */
6370 interval = msecs_to_jiffies(interval);
49c022e6 6371 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6372
6373 need_serialize = sd->flags & SD_SERIALIZE;
6374
6375 if (need_serialize) {
6376 if (!spin_trylock(&balancing))
6377 goto out;
6378 }
6379
6380 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6381 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6382 /*
6263322c 6383 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6384 * env->dst_cpu, so we can't know our idle
6385 * state even if we migrated tasks. Update it.
1e3c88bd 6386 */
de5eb2dd 6387 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6388 }
6389 sd->last_balance = jiffies;
6390 }
6391 if (need_serialize)
6392 spin_unlock(&balancing);
6393out:
6394 if (time_after(next_balance, sd->last_balance + interval)) {
6395 next_balance = sd->last_balance + interval;
6396 update_next_balance = 1;
6397 }
f48627e6
JL
6398 }
6399 if (need_decay) {
1e3c88bd 6400 /*
f48627e6
JL
6401 * Ensure the rq-wide value also decays but keep it at a
6402 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6403 */
f48627e6
JL
6404 rq->max_idle_balance_cost =
6405 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6406 }
dce840a0 6407 rcu_read_unlock();
1e3c88bd
PZ
6408
6409 /*
6410 * next_balance will be updated only when there is a need.
6411 * When the cpu is attached to null domain for ex, it will not be
6412 * updated.
6413 */
6414 if (likely(update_next_balance))
6415 rq->next_balance = next_balance;
6416}
6417
3451d024 6418#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6419/*
3451d024 6420 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6421 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6422 */
83cd4fe2
VP
6423static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6424{
6425 struct rq *this_rq = cpu_rq(this_cpu);
6426 struct rq *rq;
6427 int balance_cpu;
6428
1c792db7
SS
6429 if (idle != CPU_IDLE ||
6430 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6431 goto end;
83cd4fe2
VP
6432
6433 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6434 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6435 continue;
6436
6437 /*
6438 * If this cpu gets work to do, stop the load balancing
6439 * work being done for other cpus. Next load
6440 * balancing owner will pick it up.
6441 */
1c792db7 6442 if (need_resched())
83cd4fe2 6443 break;
83cd4fe2 6444
5ed4f1d9
VG
6445 rq = cpu_rq(balance_cpu);
6446
6447 raw_spin_lock_irq(&rq->lock);
6448 update_rq_clock(rq);
6449 update_idle_cpu_load(rq);
6450 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6451
6452 rebalance_domains(balance_cpu, CPU_IDLE);
6453
83cd4fe2
VP
6454 if (time_after(this_rq->next_balance, rq->next_balance))
6455 this_rq->next_balance = rq->next_balance;
6456 }
6457 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6458end:
6459 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6460}
6461
6462/*
0b005cf5
SS
6463 * Current heuristic for kicking the idle load balancer in the presence
6464 * of an idle cpu is the system.
6465 * - This rq has more than one task.
6466 * - At any scheduler domain level, this cpu's scheduler group has multiple
6467 * busy cpu's exceeding the group's power.
6468 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6469 * domain span are idle.
83cd4fe2
VP
6470 */
6471static inline int nohz_kick_needed(struct rq *rq, int cpu)
6472{
6473 unsigned long now = jiffies;
0b005cf5 6474 struct sched_domain *sd;
83cd4fe2 6475
1c792db7 6476 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6477 return 0;
6478
1c792db7
SS
6479 /*
6480 * We may be recently in ticked or tickless idle mode. At the first
6481 * busy tick after returning from idle, we will update the busy stats.
6482 */
69e1e811 6483 set_cpu_sd_state_busy();
c1cc017c 6484 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6485
6486 /*
6487 * None are in tickless mode and hence no need for NOHZ idle load
6488 * balancing.
6489 */
6490 if (likely(!atomic_read(&nohz.nr_cpus)))
6491 return 0;
1c792db7
SS
6492
6493 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6494 return 0;
6495
0b005cf5
SS
6496 if (rq->nr_running >= 2)
6497 goto need_kick;
83cd4fe2 6498
067491b7 6499 rcu_read_lock();
0b005cf5
SS
6500 for_each_domain(cpu, sd) {
6501 struct sched_group *sg = sd->groups;
6502 struct sched_group_power *sgp = sg->sgp;
6503 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 6504
0b005cf5 6505 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 6506 goto need_kick_unlock;
0b005cf5
SS
6507
6508 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6509 && (cpumask_first_and(nohz.idle_cpus_mask,
6510 sched_domain_span(sd)) < cpu))
067491b7 6511 goto need_kick_unlock;
0b005cf5
SS
6512
6513 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6514 break;
83cd4fe2 6515 }
067491b7 6516 rcu_read_unlock();
83cd4fe2 6517 return 0;
067491b7
PZ
6518
6519need_kick_unlock:
6520 rcu_read_unlock();
0b005cf5
SS
6521need_kick:
6522 return 1;
83cd4fe2
VP
6523}
6524#else
6525static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6526#endif
6527
6528/*
6529 * run_rebalance_domains is triggered when needed from the scheduler tick.
6530 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6531 */
1e3c88bd
PZ
6532static void run_rebalance_domains(struct softirq_action *h)
6533{
6534 int this_cpu = smp_processor_id();
6535 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6536 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6537 CPU_IDLE : CPU_NOT_IDLE;
6538
6539 rebalance_domains(this_cpu, idle);
6540
1e3c88bd 6541 /*
83cd4fe2 6542 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6543 * balancing on behalf of the other idle cpus whose ticks are
6544 * stopped.
6545 */
83cd4fe2 6546 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6547}
6548
6549static inline int on_null_domain(int cpu)
6550{
90a6501f 6551 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6552}
6553
6554/*
6555 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6556 */
029632fb 6557void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6558{
1e3c88bd
PZ
6559 /* Don't need to rebalance while attached to NULL domain */
6560 if (time_after_eq(jiffies, rq->next_balance) &&
6561 likely(!on_null_domain(cpu)))
6562 raise_softirq(SCHED_SOFTIRQ);
3451d024 6563#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6564 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6565 nohz_balancer_kick(cpu);
6566#endif
1e3c88bd
PZ
6567}
6568
0bcdcf28
CE
6569static void rq_online_fair(struct rq *rq)
6570{
6571 update_sysctl();
6572}
6573
6574static void rq_offline_fair(struct rq *rq)
6575{
6576 update_sysctl();
a4c96ae3
PB
6577
6578 /* Ensure any throttled groups are reachable by pick_next_task */
6579 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6580}
6581
55e12e5e 6582#endif /* CONFIG_SMP */
e1d1484f 6583
bf0f6f24
IM
6584/*
6585 * scheduler tick hitting a task of our scheduling class:
6586 */
8f4d37ec 6587static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6588{
6589 struct cfs_rq *cfs_rq;
6590 struct sched_entity *se = &curr->se;
6591
6592 for_each_sched_entity(se) {
6593 cfs_rq = cfs_rq_of(se);
8f4d37ec 6594 entity_tick(cfs_rq, se, queued);
bf0f6f24 6595 }
18bf2805 6596
10e84b97 6597 if (numabalancing_enabled)
cbee9f88 6598 task_tick_numa(rq, curr);
3d59eebc 6599
18bf2805 6600 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6601}
6602
6603/*
cd29fe6f
PZ
6604 * called on fork with the child task as argument from the parent's context
6605 * - child not yet on the tasklist
6606 * - preemption disabled
bf0f6f24 6607 */
cd29fe6f 6608static void task_fork_fair(struct task_struct *p)
bf0f6f24 6609{
4fc420c9
DN
6610 struct cfs_rq *cfs_rq;
6611 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6612 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6613 struct rq *rq = this_rq();
6614 unsigned long flags;
6615
05fa785c 6616 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6617
861d034e
PZ
6618 update_rq_clock(rq);
6619
4fc420c9
DN
6620 cfs_rq = task_cfs_rq(current);
6621 curr = cfs_rq->curr;
6622
6c9a27f5
DN
6623 /*
6624 * Not only the cpu but also the task_group of the parent might have
6625 * been changed after parent->se.parent,cfs_rq were copied to
6626 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6627 * of child point to valid ones.
6628 */
6629 rcu_read_lock();
6630 __set_task_cpu(p, this_cpu);
6631 rcu_read_unlock();
bf0f6f24 6632
7109c442 6633 update_curr(cfs_rq);
cd29fe6f 6634
b5d9d734
MG
6635 if (curr)
6636 se->vruntime = curr->vruntime;
aeb73b04 6637 place_entity(cfs_rq, se, 1);
4d78e7b6 6638
cd29fe6f 6639 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6640 /*
edcb60a3
IM
6641 * Upon rescheduling, sched_class::put_prev_task() will place
6642 * 'current' within the tree based on its new key value.
6643 */
4d78e7b6 6644 swap(curr->vruntime, se->vruntime);
aec0a514 6645 resched_task(rq->curr);
4d78e7b6 6646 }
bf0f6f24 6647
88ec22d3
PZ
6648 se->vruntime -= cfs_rq->min_vruntime;
6649
05fa785c 6650 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6651}
6652
cb469845
SR
6653/*
6654 * Priority of the task has changed. Check to see if we preempt
6655 * the current task.
6656 */
da7a735e
PZ
6657static void
6658prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6659{
da7a735e
PZ
6660 if (!p->se.on_rq)
6661 return;
6662
cb469845
SR
6663 /*
6664 * Reschedule if we are currently running on this runqueue and
6665 * our priority decreased, or if we are not currently running on
6666 * this runqueue and our priority is higher than the current's
6667 */
da7a735e 6668 if (rq->curr == p) {
cb469845
SR
6669 if (p->prio > oldprio)
6670 resched_task(rq->curr);
6671 } else
15afe09b 6672 check_preempt_curr(rq, p, 0);
cb469845
SR
6673}
6674
da7a735e
PZ
6675static void switched_from_fair(struct rq *rq, struct task_struct *p)
6676{
6677 struct sched_entity *se = &p->se;
6678 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6679
6680 /*
6681 * Ensure the task's vruntime is normalized, so that when its
6682 * switched back to the fair class the enqueue_entity(.flags=0) will
6683 * do the right thing.
6684 *
6685 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6686 * have normalized the vruntime, if it was !on_rq, then only when
6687 * the task is sleeping will it still have non-normalized vruntime.
6688 */
6689 if (!se->on_rq && p->state != TASK_RUNNING) {
6690 /*
6691 * Fix up our vruntime so that the current sleep doesn't
6692 * cause 'unlimited' sleep bonus.
6693 */
6694 place_entity(cfs_rq, se, 0);
6695 se->vruntime -= cfs_rq->min_vruntime;
6696 }
9ee474f5 6697
141965c7 6698#ifdef CONFIG_SMP
9ee474f5
PT
6699 /*
6700 * Remove our load from contribution when we leave sched_fair
6701 * and ensure we don't carry in an old decay_count if we
6702 * switch back.
6703 */
87e3c8ae
KT
6704 if (se->avg.decay_count) {
6705 __synchronize_entity_decay(se);
6706 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
6707 }
6708#endif
da7a735e
PZ
6709}
6710
cb469845
SR
6711/*
6712 * We switched to the sched_fair class.
6713 */
da7a735e 6714static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 6715{
da7a735e
PZ
6716 if (!p->se.on_rq)
6717 return;
6718
cb469845
SR
6719 /*
6720 * We were most likely switched from sched_rt, so
6721 * kick off the schedule if running, otherwise just see
6722 * if we can still preempt the current task.
6723 */
da7a735e 6724 if (rq->curr == p)
cb469845
SR
6725 resched_task(rq->curr);
6726 else
15afe09b 6727 check_preempt_curr(rq, p, 0);
cb469845
SR
6728}
6729
83b699ed
SV
6730/* Account for a task changing its policy or group.
6731 *
6732 * This routine is mostly called to set cfs_rq->curr field when a task
6733 * migrates between groups/classes.
6734 */
6735static void set_curr_task_fair(struct rq *rq)
6736{
6737 struct sched_entity *se = &rq->curr->se;
6738
ec12cb7f
PT
6739 for_each_sched_entity(se) {
6740 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6741
6742 set_next_entity(cfs_rq, se);
6743 /* ensure bandwidth has been allocated on our new cfs_rq */
6744 account_cfs_rq_runtime(cfs_rq, 0);
6745 }
83b699ed
SV
6746}
6747
029632fb
PZ
6748void init_cfs_rq(struct cfs_rq *cfs_rq)
6749{
6750 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
6751 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6752#ifndef CONFIG_64BIT
6753 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6754#endif
141965c7 6755#ifdef CONFIG_SMP
9ee474f5 6756 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 6757 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 6758#endif
029632fb
PZ
6759}
6760
810b3817 6761#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6762static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 6763{
aff3e498 6764 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
6765 /*
6766 * If the task was not on the rq at the time of this cgroup movement
6767 * it must have been asleep, sleeping tasks keep their ->vruntime
6768 * absolute on their old rq until wakeup (needed for the fair sleeper
6769 * bonus in place_entity()).
6770 *
6771 * If it was on the rq, we've just 'preempted' it, which does convert
6772 * ->vruntime to a relative base.
6773 *
6774 * Make sure both cases convert their relative position when migrating
6775 * to another cgroup's rq. This does somewhat interfere with the
6776 * fair sleeper stuff for the first placement, but who cares.
6777 */
7ceff013
DN
6778 /*
6779 * When !on_rq, vruntime of the task has usually NOT been normalized.
6780 * But there are some cases where it has already been normalized:
6781 *
6782 * - Moving a forked child which is waiting for being woken up by
6783 * wake_up_new_task().
62af3783
DN
6784 * - Moving a task which has been woken up by try_to_wake_up() and
6785 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
6786 *
6787 * To prevent boost or penalty in the new cfs_rq caused by delta
6788 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6789 */
62af3783 6790 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
6791 on_rq = 1;
6792
b2b5ce02
PZ
6793 if (!on_rq)
6794 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6795 set_task_rq(p, task_cpu(p));
aff3e498
PT
6796 if (!on_rq) {
6797 cfs_rq = cfs_rq_of(&p->se);
6798 p->se.vruntime += cfs_rq->min_vruntime;
6799#ifdef CONFIG_SMP
6800 /*
6801 * migrate_task_rq_fair() will have removed our previous
6802 * contribution, but we must synchronize for ongoing future
6803 * decay.
6804 */
6805 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6806 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6807#endif
6808 }
810b3817 6809}
029632fb
PZ
6810
6811void free_fair_sched_group(struct task_group *tg)
6812{
6813 int i;
6814
6815 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6816
6817 for_each_possible_cpu(i) {
6818 if (tg->cfs_rq)
6819 kfree(tg->cfs_rq[i]);
6820 if (tg->se)
6821 kfree(tg->se[i]);
6822 }
6823
6824 kfree(tg->cfs_rq);
6825 kfree(tg->se);
6826}
6827
6828int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6829{
6830 struct cfs_rq *cfs_rq;
6831 struct sched_entity *se;
6832 int i;
6833
6834 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6835 if (!tg->cfs_rq)
6836 goto err;
6837 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6838 if (!tg->se)
6839 goto err;
6840
6841 tg->shares = NICE_0_LOAD;
6842
6843 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6844
6845 for_each_possible_cpu(i) {
6846 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6847 GFP_KERNEL, cpu_to_node(i));
6848 if (!cfs_rq)
6849 goto err;
6850
6851 se = kzalloc_node(sizeof(struct sched_entity),
6852 GFP_KERNEL, cpu_to_node(i));
6853 if (!se)
6854 goto err_free_rq;
6855
6856 init_cfs_rq(cfs_rq);
6857 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6858 }
6859
6860 return 1;
6861
6862err_free_rq:
6863 kfree(cfs_rq);
6864err:
6865 return 0;
6866}
6867
6868void unregister_fair_sched_group(struct task_group *tg, int cpu)
6869{
6870 struct rq *rq = cpu_rq(cpu);
6871 unsigned long flags;
6872
6873 /*
6874 * Only empty task groups can be destroyed; so we can speculatively
6875 * check on_list without danger of it being re-added.
6876 */
6877 if (!tg->cfs_rq[cpu]->on_list)
6878 return;
6879
6880 raw_spin_lock_irqsave(&rq->lock, flags);
6881 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6882 raw_spin_unlock_irqrestore(&rq->lock, flags);
6883}
6884
6885void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6886 struct sched_entity *se, int cpu,
6887 struct sched_entity *parent)
6888{
6889 struct rq *rq = cpu_rq(cpu);
6890
6891 cfs_rq->tg = tg;
6892 cfs_rq->rq = rq;
029632fb
PZ
6893 init_cfs_rq_runtime(cfs_rq);
6894
6895 tg->cfs_rq[cpu] = cfs_rq;
6896 tg->se[cpu] = se;
6897
6898 /* se could be NULL for root_task_group */
6899 if (!se)
6900 return;
6901
6902 if (!parent)
6903 se->cfs_rq = &rq->cfs;
6904 else
6905 se->cfs_rq = parent->my_q;
6906
6907 se->my_q = cfs_rq;
6908 update_load_set(&se->load, 0);
6909 se->parent = parent;
6910}
6911
6912static DEFINE_MUTEX(shares_mutex);
6913
6914int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6915{
6916 int i;
6917 unsigned long flags;
6918
6919 /*
6920 * We can't change the weight of the root cgroup.
6921 */
6922 if (!tg->se[0])
6923 return -EINVAL;
6924
6925 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6926
6927 mutex_lock(&shares_mutex);
6928 if (tg->shares == shares)
6929 goto done;
6930
6931 tg->shares = shares;
6932 for_each_possible_cpu(i) {
6933 struct rq *rq = cpu_rq(i);
6934 struct sched_entity *se;
6935
6936 se = tg->se[i];
6937 /* Propagate contribution to hierarchy */
6938 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
6939
6940 /* Possible calls to update_curr() need rq clock */
6941 update_rq_clock(rq);
17bc14b7 6942 for_each_sched_entity(se)
029632fb
PZ
6943 update_cfs_shares(group_cfs_rq(se));
6944 raw_spin_unlock_irqrestore(&rq->lock, flags);
6945 }
6946
6947done:
6948 mutex_unlock(&shares_mutex);
6949 return 0;
6950}
6951#else /* CONFIG_FAIR_GROUP_SCHED */
6952
6953void free_fair_sched_group(struct task_group *tg) { }
6954
6955int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6956{
6957 return 1;
6958}
6959
6960void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6961
6962#endif /* CONFIG_FAIR_GROUP_SCHED */
6963
810b3817 6964
6d686f45 6965static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6966{
6967 struct sched_entity *se = &task->se;
0d721cea
PW
6968 unsigned int rr_interval = 0;
6969
6970 /*
6971 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6972 * idle runqueue:
6973 */
0d721cea 6974 if (rq->cfs.load.weight)
a59f4e07 6975 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6976
6977 return rr_interval;
6978}
6979
bf0f6f24
IM
6980/*
6981 * All the scheduling class methods:
6982 */
029632fb 6983const struct sched_class fair_sched_class = {
5522d5d5 6984 .next = &idle_sched_class,
bf0f6f24
IM
6985 .enqueue_task = enqueue_task_fair,
6986 .dequeue_task = dequeue_task_fair,
6987 .yield_task = yield_task_fair,
d95f4122 6988 .yield_to_task = yield_to_task_fair,
bf0f6f24 6989
2e09bf55 6990 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6991
6992 .pick_next_task = pick_next_task_fair,
6993 .put_prev_task = put_prev_task_fair,
6994
681f3e68 6995#ifdef CONFIG_SMP
4ce72a2c 6996 .select_task_rq = select_task_rq_fair,
0a74bef8 6997 .migrate_task_rq = migrate_task_rq_fair,
141965c7 6998
0bcdcf28
CE
6999 .rq_online = rq_online_fair,
7000 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7001
7002 .task_waking = task_waking_fair,
681f3e68 7003#endif
bf0f6f24 7004
83b699ed 7005 .set_curr_task = set_curr_task_fair,
bf0f6f24 7006 .task_tick = task_tick_fair,
cd29fe6f 7007 .task_fork = task_fork_fair,
cb469845
SR
7008
7009 .prio_changed = prio_changed_fair,
da7a735e 7010 .switched_from = switched_from_fair,
cb469845 7011 .switched_to = switched_to_fair,
810b3817 7012
0d721cea
PW
7013 .get_rr_interval = get_rr_interval_fair,
7014
810b3817 7015#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7016 .task_move_group = task_move_group_fair,
810b3817 7017#endif
bf0f6f24
IM
7018};
7019
7020#ifdef CONFIG_SCHED_DEBUG
029632fb 7021void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7022{
bf0f6f24
IM
7023 struct cfs_rq *cfs_rq;
7024
5973e5b9 7025 rcu_read_lock();
c3b64f1e 7026 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7027 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7028 rcu_read_unlock();
bf0f6f24
IM
7029}
7030#endif
029632fb
PZ
7031
7032__init void init_sched_fair_class(void)
7033{
7034#ifdef CONFIG_SMP
7035 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7036
3451d024 7037#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7038 nohz.next_balance = jiffies;
029632fb 7039 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7040 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7041#endif
7042#endif /* SMP */
7043
7044}